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“An important open problem is to devise approximation 
schemes that are suitable for hybrid networks where 
Lauritzen’s algorithm cannot be applied.”

Lerner, Segal, and Koller, UAI’01



Graph topology is a red herring
in general nets
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Both intractable!
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Belief Propagation Expectation Propagation
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General problem: Approximate a distribution in product form
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Graphical models are special case, e.g. directed network:
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Undirected network:
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(exponential family)



Naïve algorithm

Approximate each term in isolation:
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Filtering algorithm

• Make approximations in context:
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• One pass, left to right

• Sensitive to ordering



KL minimization

• Factorized

– min KL = preserve marginals

• Gaussian

– min KL = preserve moments

• Exponential family

– min KL = preserve expectations
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Assumed-density filtering

• Generalizes Extended Kalman filtering (Kushner)

• Boyen-Koller, Factored Frontier

• “Moment matching” (West et al, 1985) (Bernardo&Giron,1988) 

(Spiegelhalter&Cowell,1992)

• “Online learning” (Opper,1999)

• “Inclusive trees” (Frey et al, 2000)

• “Gaussian fields” (Barber&Sollich,1999)



Expectation Propagation

• Round-robin algorithm

• Context is all other terms:

• Coupled consistency conditions:
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Loopy BP = Factorized EP
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1. Loopy belief propagation is a round-robin  
factorization of each CPT in the context of other 
factorizations.

2. Using EP, other approximations are possible (not 
completely factorized)

Insights

approx.



Benchmark results

.129.147.140Sonar

.115.113.099Ionosphere

.053.037.037Thyroid

.232.207.203Heart

SVMBilliardEPDataset



Future work/Open questions

• Different networks
• Different approximating families

– Mixture approximations

• Alternatives to KL
• Alternative fixed-point schemes
• Error estimates


