# Expectation Propagation in Practice

Tom Minka
CMU Statistics

Joint work with Yuan Qi and John Lafferty

#### Extensions to EP

- Alternatives to moment-matching
- Factors raised to powers
- Skipping factors

#### Outline

- EP algorithm
- Examples:
  - Tracking a dynamic system
  - Signal detection in fading channels
  - Document modeling
  - Boltzmann machines

#### EP in a nutshell

• Approximate a function by a simpler one:

$$p(\mathbf{x}) = \prod_{a} f_a(\mathbf{x})$$
  $q(\mathbf{x}) = \prod_{a} \tilde{f}_a(\mathbf{x})$ 

- Where each  $\tilde{f}_a(\mathbf{x})$  lives in a parametric, exponential family (e.g. Gaussian)
- Factors  $f_a(\mathbf{x})$  can be conditional distributions in a Bayesian network

## EP algorithm

• Iterate the fixed-point equations:

$$\widetilde{f}_a(\mathbf{x}) = \arg\min D(f_a(\mathbf{x})q^{\setminus a}(\mathbf{x}) \| \widetilde{f}_a(\mathbf{x})q^{\setminus a}(\mathbf{x}))$$

where 
$$q^{\setminus a}(\mathbf{x}) = \prod_{b \neq a} \tilde{f}_b(\mathbf{x})$$

- $q^{\setminus a}(\mathbf{x})$  specifies where the approximation needs to be good
- Coordinated local approximations

#### EP versus BP

- EP approximation can be in a restricted family, e.g. Gaussian
- EP approximation does not have to be factorized
- EP applies to many more problems
  - e.g. mixture of discrete/continuous variables

## (Loopy) Belief propagation

• Specialize to factorized approximations:

$$\widetilde{f}_a(\mathbf{x}) = \prod_i \widetilde{f}_{ai}(x_i)$$
 "messages"

- Minimize KL-divergence = match marginals of  $f_a(\mathbf{x})q^{\setminus a}(\mathbf{x})$  (partially factorized) and  $\tilde{f}_a(\mathbf{x})q^{\setminus a}(\mathbf{x})$  (fully factorized)
  - "send messages"

#### EP versus Monte Carlo

- Monte Carlo is general but expensive
  - A sledgehammer
- EP exploits underlying simplicity of the problem (if it exists)
- Monte Carlo is still needed for complex problems (e.g. large isolated peaks)
- Trick is to know what problem you have

# Example: Tracking

Guess the position of an object given noisy measurements



## Terminology

- Filtering: posterior for last state only
- Smoothing: posterior for middle states
- On-line: old data is discarded (fixed memory)
- Off-line: old data is re-used (unbounded memory)

#### Bayesian network



e.g. 
$$x_t = x_{t-1} + v_t$$
 (random walk) 
$$y_t = x_t + \text{noise}$$

want distribution of x's given y's

#### Kalman filtering / Belief propagation

• Prediction:

$$p(x_t \mid y_{< t}) = \int p(x_t \mid x_{t-1}) p(x_{t-1} \mid y_{< t}) dx_{t-1}$$

• Measurement:

$$p(x_t \mid y_{< t}, y_t) \propto p(y_t \mid x_t) p(x_t \mid y_{< t})$$

• Smoothing:

$$p(x_t \mid y_{\le t}, y_{> t}) \propto p(x_t \mid y_{\le t}) \int p(x_{t+1} \mid x_t) p(x_{t+1} \mid y_{\le t+1}, y_{> t+1}) dx_{t+1}$$

## Approximation

$$p(\mathbf{x}, \mathbf{y}) = p(x_1)p(y_1 \mid x_1) \prod_{t>1} p(x_t \mid x_{t-1})p(y_t \mid x_t)$$

$$q(\mathbf{x}) = p(x_1)\widetilde{o}_1(x_1) \prod_{t>1} \widetilde{p}_{t-1\to t}(x_t) \widetilde{p}_{t\to t-1}(x_{t-1}) \widetilde{o}_t(x_t)$$

Factorized and Gaussian in x

# EP in dynamic systems

- Loop t = 1, ..., T (filtering)
  - Prediction step
  - Approximate measurement step
- Loop t = T, ..., 1 (smoothing)
  - Smoothing step
  - Divide out the approximate measurement
  - Re-approximate the measurement
- Loop t = 1, ..., T (re-filtering)
  - Prediction and measurement using previous approx

## Approximation

$$q(x_t) = \widetilde{p}_{t-1 \to t}(x_t) \widetilde{o}(x_t) \widetilde{p}_{t+1 \to t}(x_t)$$

= (forward msg)(observation)(backward msg)

EP equations are exactly the prediction, measurement, and smoothing equations for the Kalman filter - but only preserve first and second moments

Consider case of linear dynamics...

#### Generalization

- Instead of matching moments, can use any method for approximate filtering
- E.g. Extended Kalman filter, statistical linearization, unscented filter, etc.
- All can be interpreted as finding linear/Gaussian approx to original terms

## Interpreting EP

- After more information is available, reapproximate individual terms for better results
- Optimal filtering is no longer on-line

# Poisson tracking model

$$p(x_1) \sim N(0,100)$$

$$p(x_t \mid x_{t-1}) \sim N(x_{t-1}, 0.01)$$

$$p(y_t \mid x_t) = \exp(y_t x_t - e^{x_t}) / y_t!$$

## Example: Poisson tracking

•  $y_t$  is an integer valued Poisson variate with mean  $\exp(x_t)$ 



#### Approximate measurement step

- $p(y_t | x_t) p(x_t | y_{< t})$  is not Gaussian
- Moments of x not analytic
- Two approaches:
  - Gauss-Hermite quadrature for moments
  - Statistical linearization instead of momentmatching
- Both work well

#### Posterior for the last state









# EP for signal detection

- Wireless communication problem
- Transmitted signal =  $a \sin(\omega t + \phi)$
- $(a,\phi)$  vary to encode each symbol
- In complex numbers:  $ae^{i\phi}$



# Binary symbols, Gaussian noise

- Symbols are 1 and –1 (in complex plane)
- Received signal =  $a \sin(\omega t + \phi) + \text{noise}$
- Recovered  $\hat{a}e^{\hat{\phi}} = ae^{\phi} + \text{noise} = y_t$
- Optimal detection is easy



# Fading channel

• Channel systematically changes amplitude and phase:  $y_t = x_t s + \text{noise}$ 

•  $x_t$  changes over time



#### Differential detection

- Use last measurement to estimate state
- Binary symbols only
- No smoothing of state = noisy



## Bayesian network



Symbols can also be correlated (e.g. error-correcting code)

Dynamics are learned from training data (all 1's)

## On-line implementation

- Iterate over the last  $\delta$  measurements
- Previous measurements act as prior
- Results comparable to particle filtering, but much faster



# Document modeling

- Want to classify documents by semantic content
- Word order generally found to be irrelevant
  - Word *choice* is what matters
- Model each document as a bag of words
  - Reduces to modeling correlations between word probabilities

# Generative aspect model

(Hofmann 1999; Blei, Ng, & Jordan 2001)

Each document mixes aspects in different proportions



#### Generative aspect model



 $p(\lambda) \sim Dirichlet(\alpha_1,...,\alpha_J)$ 

#### Two tasks

#### Inference:

• Given aspects and document i, what is (posterior for)  $\lambda_i$ ?

#### Learning:

• Given some documents, what are (maximum likelihood) aspects?

## Approximation

• Likelihood is composed of terms of form

$$t_{w}(\lambda)^{n_{w}} = p(w)^{n_{w}} = (\sum_{a} \lambda_{a} p(w \mid a))^{n_{w}}$$

• Want Dirichlet approximation:

$$\widetilde{t}_{w}(\lambda) = \prod_{a} \lambda_{a}^{\beta_{wa}}$$

## EP with powers

- These terms seem too complicated for EP
- Can match moments if  $n_w = 1$ , but not for large  $n_w$
- Solution: match moments of one occurrance at a time
  - Redefine what are the "terms"

# EP with skipping

- Context fcn might not be a proper density
- Solution: "skip" this term
  - (keep old approximation)
- In later iterations, context becomes proper

#### EP with powers

• Moment match:

$$t_{w}(\lambda)q^{w}(\lambda) \longleftrightarrow \widetilde{t}_{w}(\lambda)q^{w}(\lambda)$$

• Context function: all but one occurrence

$$q^{\setminus w}(\lambda) = \widetilde{t}_w(\lambda)^{n_w-1} \prod_{w' \neq w} \widetilde{t}_{w'}(\lambda)^{n_{w'}}$$

• Fixed point equations for  $\beta$ 

#### Another problem

- Minimizing KL-divergence of Dirichlet is expensive
  - Requires iteration
- Match (mean, variance) instead
  - Closed-form

#### One term

$$t_{w}(\lambda) = (\lambda)0.4 + (1 - \lambda)0.3$$



VB = Variational Bayes (Blei et al)

## General behavior

- For long documents, VB recovers correct mean, but not correct variance of  $\lambda$
- Disastrous for learning
  - No Occam factor
- Gets worse with more documents
  - No asymptotic salvation
- EP gets correct variance, learns properly

#### Ten word document



#### Learning in probability simplex



100 docs, Length 10

# Learning in probability simplex



10 docs, Length 10

# Learning in probability simplex



10 docs, Length 10

# Learning in probability simplex



10 docs, Length 10

## Boltzmann machines



Joint distribution is product of pair potentials:

$$p(\mathbf{x}) = \prod_{a} f_a(\mathbf{x}) \qquad \longrightarrow \qquad q(\mathbf{x}) = \prod_{a} \tilde{f}_a(\mathbf{x})$$

Want to approximate by a simpler distribution

# Approximations



# Approximating an edge by a tree

Each potential in p is projected onto the tree-structure of q

$$f_a(x_1, x_2) \approx \frac{\tilde{f}_a^{14}(x_1, x_4)\tilde{f}_a^{24}(x_2, x_4)\tilde{f}_a^{34}(x_3, x_4)}{\tilde{f}_a^{4}(x_4)^2}$$

Correlations are not lost, but projected onto the tree

# Fixed-point equations

• Match single and pairwise marginals of



- Reduces to exact inference on single loops
  - Use cutset conditioning

## 5-node complete graphs, 10 trials

| Method         | FLOPS   | Error |
|----------------|---------|-------|
| Exact          | 500     | 0     |
| TreeEP         | 3,000   | 0.032 |
| BP/double-loop | 200,000 | 0.186 |
| GBP            | 360,000 | 0.211 |

## 8x8 grids, 10 trials

| Method         | FLOPS      | Error |
|----------------|------------|-------|
| Exact          | 30,000     | 0     |
| TreeEP         | 300,000    | 0.149 |
| BP/double-loop | 15,500,000 | 0.358 |
| GBP            | 17,500,000 | 0.003 |

#### TreeEP versus BP

- TreeEP always more accurate than BP, often faster
- GBP slower than BP, not always more accurate
- TreeEP converges more often than BP and GBP

#### Conclusions

- EP algorithms exceed state-of-art in several domains
- Many more opportunities out there
- EP is sensitive to choice of approximation
  - does not give guidance in choosing it (e.g. tree structure) – error bound?
- Exponential family constraint can be limiting mixtures?

#### End