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Outline

• EP algorithm
• Examples:

– Tracking a dynamic system
– Signal detection in fading channels
– Document modeling
– Boltzmann machines

Extensions to EP

• Alternatives to moment-matching
• Factors raised to powers
• Skipping factors

EP in a nutshell

• Approximate a function by a simpler one:

• Where each           lives in a parametric, 
exponential family (e.g. Gaussian)

• Factors            can be conditional 
distributions in a Bayesian network
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EP algorithm

• Iterate the fixed-point equations:

• specifies where the approximation 
needs to be good

• Coordinated local approximations
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(Loopy) Belief propagation

• Specialize to factorized approximations: 

• Minimize KL-divergence = match 
marginals of                  (partially factorized) 
and                    (fully factorized)
– “send messages”
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EP versus BP

• EP approximation can be in a restricted 
family, e.g. Gaussian

• EP approximation does not have to be 
factorized

• EP applies to many more problems
– e.g. mixture of discrete/continuous variables

EP versus Monte Carlo

• Monte Carlo is general but expensive
– A sledgehammer

• EP exploits underlying simplicity of the 
problem (if it exists)

• Monte Carlo is still needed for complex 
problems (e.g. large isolated peaks)

• Trick is to know what problem you have



Example: Tracking

Guess the position of an object given noisy measurements
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Bayesian network
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ttt �xx += −1

noise+= tt xy

(random walk)e.g.

want distribution of x’s given y’s

Terminology

• Filtering: posterior for last state only
• Smoothing: posterior for middle states
• On-line: old data is discarded (fixed 

memory)
• Off-line: old data is re-used (unbounded 

memory)

Kalman filtering / Belief propagation

• Prediction:

• Measurement:

• Smoothing:
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Approximation
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Factorized and Gaussian in x

Approximation
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EP equations are exactly the prediction, measurement, 
and smoothing equations for the Kalman filter
- but only preserve first and second moments

Consider case of linear dynamics… 

EP in dynamic systems

• Loop t = 1, …, T       (filtering)
– Prediction step
– Approximate measurement step

• Loop t = T, …, 1       (smoothing)
– Smoothing step
– Divide out the approximate measurement
– Re-approximate the measurement

• Loop t = 1, …, T       (re-filtering)
– Prediction and measurement using previous approx

Generalization

• Instead of matching moments, can use any 
method for approximate filtering

• E.g. Extended Kalman filter, statistical 
linearization, unscented filter, etc.

• All can be interpreted as finding 
linear/Gaussian approx to original terms



Interpreting EP

• After more information is available, re-
approximate individual terms for better 
results

• Optimal filtering is no longer on-line

Example: Poisson tracking

• is an integer valued Poisson variate with      
mean )exp( tx

ty

Poisson tracking model
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Approximate measurement step

• is not Gaussian
• Moments of x not analytic
• Two approaches:

– Gauss-Hermite quadrature for moments
– Statistical linearization instead of moment-

matching

• Both work well
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Posterior for the last state



EP for signal detection

• Wireless communication problem
• Transmitted signal =
• vary to encode each symbol 
• In complex numbers:
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Binary symbols, Gaussian noise

• Symbols are 1 and –1 (in complex plane)
• Received signal =
• Recovered 
• Optimal detection is easy          
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Fading channel

• Channel systematically changes amplitude 
and phase:

• changes over time
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Differential detection

• Use last measurement to estimate state
• Binary symbols only
• No smoothing of state = noisy
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Bayesian network

1y 2y 3y 4y
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Dynamics are learned from training data (all 1’s)

1s 2s 3s 4s

Symbols can also be correlated (e.g. error-correcting code)

On-line implementation

• Iterate over the last     measurements
• Previous measurements act as prior

• Results comparable to particle filtering, but 
much faster

δ

Document modeling

• Want to classify documents by semantic 
content

• Word order generally found to be irrelevant
– Word choice is what matters

• Model each document as a bag of words
– Reduces to modeling correlations between 

word probabilities



Generative aspect model

Each document mixes aspects in different proportions

Aspect 1 Aspect 2

1λ
11 λ− 2λ

3λ21 λ− 31 λ−

(Hofmann 1999; Blei, Ng, & Jordan 2001)

Generative aspect model

Document

Aspect 1 Aspect 2

) word( wp

λ λ−1
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Multinomial sampling

Two tasks

Inference:
• Given aspects and document i, what is 

(posterior for)    ?

Learning:
• Given some documents, what are 

(maximum likelihood) aspects?

iλ

Approximation

• Likelihood is composed of terms of form

• Want Dirichlet approximation:
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EP with powers

• These terms seem too complicated for EP
• Can match moments  if           , but not for 

large
• Solution: match moments of one occurrance

at a time
– Redefine what are the “terms”
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EP with powers

• Moment match:

• Context function: all but one occurrence

• Fixed point equations for 
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EP with skipping

• Context fcn might not be a proper density
• Solution: “skip” this term

– (keep old approximation)

• In later iterations, context becomes proper

Another problem

• Minimizing KL-divergence of Dirichlet is 
expensive
– Requires iteration

• Match (mean,variance) instead
– Closed-form



One term
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VB = Variational 
Bayes (Blei et al)

Ten word document

General behavior

• For long documents, VB recovers correct 
mean, but not correct variance of 

• Disastrous for learning
– No Occam factor

• Gets worse with more documents
– No asymptotic salvation

• EP gets correct variance, learns properly

λ

Learning in probability simplex

100 docs,
Length 10



Learning in probability simplex

10 docs,
Length 10

Learning in probability simplex

10 docs,
Length 10

Learning in probability simplex

10 docs,
Length 10

Boltzmann machines
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Joint distribution is product of pair potentials:

Want to approximate by a simpler distribution



Approximations
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Approximating an edge by a tree
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Each potential in p is projected onto the tree-structure of q

Correlations are not lost, but projected onto the tree

Fixed-point equations

• Match single and pairwise marginals of

• Reduces to exact inference on single loops
– Use cutset conditioning
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5-node complete graphs, 10 trials

0.211360,000GBP

0.186200,000BP/double-loop

0.0323,000TreeEP

0500Exact

ErrorFLOPSMethod



8x8 grids, 10 trials

0.00317,500,000GBP

0.35815,500,000BP/double-loop

0.149300,000TreeEP

030,000Exact

ErrorFLOPSMethod

TreeEP versus BP

• TreeEP always more accurate than BP, 
often faster

• GBP slower than BP, not always more 
accurate

• TreeEP converges more often than BP and 
GBP

Conclusions

• EP algorithms exceed state-of-art in several 
domains

• Many more opportunities out there
• EP is sensitive to choice of approximation

– does not give guidance in choosing it (e.g. tree 
structure) – error bound?

• Exponential family constraint can be 
limiting – mixtures?

End


