

Prediction, Expectation, and Surprise: Methods, Designs,

and Study of a Deployed Traffic Forecasting Service

 Eric Horvitz Johnson Apacible Raman Sarin Lin Liao
 Microsoft Research Microsoft Research Microsoft Research University of Washington
 Redmond, Washington Redmond, Washington Redmond, Washington Seattle, Washington
 horvitz@microsoft.com johnsona@microsoft.com ramans@microsoft.com liaolin@cs.washington.edu

Abstract

We present research on developing models that
forecast traffic flow and congestion in the
Greater Seattle area. The research has led to the
deployment of a service named JamBayes, that is
being actively used by over 2,500 users via
smartphones and desktop versions of the system.
We review the modeling effort and describe
experiments probing the predictive accuracy of
the models. Finally, we present research on
building models that can identify current and
future surprises, via efforts on modeling and
forecasting unexpected situations.

1 Introduction

We describe our work to develop and field a traffic
forecasting service that monitors traffic patterns and
that relays predictions about traffic forthcoming
congestions and flows to users in mobile settings. The
efforts have led to a prototype traffic service that is now
relied upon daily by over 2,500 people. The predictive
models take into consideration information about the
status and dynamics of traffic in the Greater Seattle
area. Other evidence considered in learning and
prediction includes incident reports issued by the
Washington Department of Transportation, information
about the occurrence of major sporting events, weather
reports, time of day, and calendar information.
We discuss the modeling effort and review studies of
the predictive accuracy of the learned models. After
discussing details about the base-level predictions of
the service, we discuss how we mesh inferences with
visual representations that can communicate
probabilistic information with a quick glance. We also
examine route-based alerting, based on a specification
of user interests and preferences. We then turn to the
challenge of constructing models that have the ability to

predict when users may be surprised about sensed
traffic events. Finally, we review our approach to
learning models that can predict future surprises about
traffic congestion and flow. This effort provides a
window on possibilities for employing surprise
forecasting in other realms. The models, visualization,
and related components highlight the challenges and
opportunities for leveraging machine learning and
reasoning in a mobile application that can provide
ongoing value to a large group of people.

2 JamBayes: A Traffic Forecasting Service

We have been intrigued by the challenges and
opportunities for providing information and inferences
to people in mobile settings. In one approach, we can
embed reasoning machinery or compiled policies in
small, portable devices that perform local, real-time
sensing. For example, in the Bayesphone project
(Horvitz, Koch, Sarin, et al., 2005), decision-theoretic
policies, based on models learned on desktop
computing systems, are downloaded onto smartphones.
The devices are endowed with the ability to decide
when to engage users with questions about context and
to take call-handling actions based on expected utility.
In another approach, policies, recommendations, and
information can be streamed from server-based learning
and reasoning systems to portable devices, based on
information from the devices and other sources. We
focus on the latter approach in this paper, a
methodology we refer to as streaming intelligence.
We constructed and fielded a web service that provides
users with the current status and predictions about the
future of traffic flow at key hotspots within the Seattle
highway system. The host application, named
Smartphlow, provides users with a visualization of
current traffic flows in Seattle and surrounding areas,
by displaying color coded segments on major arteries to
relay the speeds and densities of cars. The basic display

of traffic status relays information reported by a
network of sensors operated by the Washington
Department of Transportation (WDOT). Where there is
a smooth, fast flow of traffic, cells reflecting sensed
regions of the highway system, are colored green. As
roads become more congested the color coding of
segments goes from green to yellow, to red, to black,
indicating that traffic flow has diminished to a crawl.
Beyond visualizing the current state of affairs on the
key roads of Seattle and providing an easy navigation
model for translating and zooming on a map of Seattle
(Robbins, Cutrell, Sarin, et al., 2004), Smartphlow
provides predictions about the future status of regions
of the traffic system. We shall focus on the predictive
component of Smartphlow, named JamBayes, a service
that continues to provide forecasts to users about the
likely times until congested bottlenecks will likely free
up, and when key locations of the highway system that
are currently open will likely become jammed.
We made Smartphlow widely available to Microsoft
employees nearly two years ago, and it has grown
through word of mouth to become a popular
application. We are logging unique hits to JamBayes
servers and note that the service is now relied upon
daily by over 2,500 users. We shall review key aspects
of Smartphlow and the JamBayes prediction service in
the next several sections.
2.1 Identifying Key Bottlenecks
Numerous analyses in traffic engineering have explored
the microstructure of flows at cells, using such methods
as queue-theoretic models (e.g., Vandaele, Van
Woensel, and Verbruggen, 2000). Rather than model
flows explicitly, we sought to abstract the problem of
traffic prediction in the Greater Seattle area to a
consideration of probabilistic dependencies among a set
of random variables, representing properties of key
congestion “hotspots” and contextual observations.
Such hotspots are well-known by Seattle commuters, as
they are often the source of frustrating delays, even
when traveling short distances on the arterial system.
We believe that representing and reasoning about the
status of key bottleneck regions can serve as an
organizing principle for building predictive traffic
systems for cities throughout the world. Our research
on adapting our traffic prediction methodology to other
cities in the country and world has highlighted the
commonality of sets of well-known hotspots. Such
trouble spots often acquire nicknames, like “the S-
curves,” that are bandied about in conversations and
reports by traffic reporters during morning and evening
commuting.
The identification of a set of hotspots, which we refer to
as traffic bottlenecks, for a traffic system enables us to
focus the attention of modeling and alerting to a set of

Figure 1: Bottleneck identification tool used to frame
the learning problem for modeling Seattle traffic. Key
trouble spots in the traffic system are highlighted via
setting a threshold on percent time cells are congested.
events and states that people care deeply about. Such a
framing helps to reduce the parameter space of the
learning and inference effort as well as provide a
representation of traffic problems that is easy to
communicate with users.
To probe Seattle’s bottlenecks, we developed an
interactive tool that analyzes a large database of
system-wide traffic flow data collected over many
months. The tool allows the moving of a slider to set a
threshold amount of “percent of time of day cell is
congested,” for all monitored cells. When moving the
slider, the cells of the highway system that are
congested for at least the time represented by the
current setting of the threshold are colored black. As the
application user moves the threshold from 100% to 0%
of the total time of the day, the most frequently
congested spots, initially appearing as small regions of
black segments, extend and meld together until the
whole traffic system is marked. A screenshot from the
bottleneck analysis tool is displayed in Figure 1.
Using the tool, we identified 22 key bottlenecks in the
Seattle traffic system. Given the formulation of the
hotspots, we set out to learn statistical models that
could provide inferences with users about the expected
time until a bottleneck, that was currently experiencing
a traffic jam, would flow smoothly again, and the time
until bottlenecks, which were currently flowing
smoothly, would likely become jammed.
2.2 Collecting a Case Library and Learning Models
We began collecting traffic data and related information
nearly two years ago by monitoring and storing as cases
the status of all sensed traffic cells in the Seattle
system. We also collected terse natural language
“incident reports” that are emitted from time to time by

operators at the WDOT. Incident reports include
mention of a variety of traffic problems, such as
accidents of different scales, including major incidents
requiring emergency vehicles that span multiple lanes.
A sample incident report is displayed in Figure 2.
Beyond traffic data, we have collected contextual data
that promised to be informative about traffic flows.
These observations include the time of day, day of
week, whether a holiday is in progress, whether school
is in session, and the scheduling of large-scale events in
the city, such as major sporting events like Mariners,
Sonics, Huskies, and Seahawks games. We also
included in the case library synchronized information
about Seattle weather, including the status of
precipitation, visibility, temperature, and sunshine. We
have continued to harvest in an automated manner
weather and event information from Web sources.

Figure 2: A typical incident report, mentioning police
and fire vehicles within a particular bottleneck region.
For each identified bottleneck region, we created sets of
random variables that represent static and temporal
abstractions of the status of one or more sensed cells
within that bottleneck. Such random variables include
the number of cells that are showing blockage or
slowing, the time since any cell became blocked within
the bottleneck region after a threshold period of time
when all cells showed open flow, and the maximum
number of adjacent blocked cells.
Given the rich case library, we experimented with
several machine learning formulations and methods.
As part of the iterative process of building and refining
models, we created new distinctions about traffic,
including several summarizing statistics capturing
recent dynamics in flow, such as the rate and density of
changes in velocities in cells within and near
bottlenecks over time. Figure 3 shows an overview of
the properties of cases and overall process of generating
a graphical model for predicting traffic jams and flows.
In the current fielded version of JamBayes, we employ
Bayesian structure search, using tools developed by
Chickering, et al. (Chickering, Heckerman, and Meek,
1997) to construct a Bayesian network. The method
provides a graphical view onto the model, enabling us
to visualize multiple variables and influences. Given a
training dataset, the method performs heuristic search
over a space of dependency models using a Bayesian

scoring criterion to guide the search. Details on the
heuristic search and model scoring can be found in
(Chickering, Heckerman, and Meek, 1997). We
employed a mix of discrete and continuous variables in
the models, using continuous variables to represent
times of different events interest. For each discrete
variable, the method creates a tree containing a
multinomial distribution at each leaf. For each
continuous variable, the method constructs a tree in
which leaves contain a binary-Gaussian distribution;
each leaf contains a binomial distribution that
represents the probability of the value being present or
absent, and a Gaussian distribution over the values that
are present. The Bayesian score used for each binary-
Gaussian distribution is the sum of the score for the
binomial, a special case of the multinomial, and the
score for a Gaussian defined over the values that are
present in the training data. For details of the Gaussian
score, see Heckerman and Geiger (1995).
Rather than build separate models for each bottleneck,
we construct a large model for all bottlenecks. The
comprehensive model captures the rich
interdependencies among multiple bottlenecks and
other variables, allowing the system to learn about
dependencies and temporal relationships among the
flows and congestions at bottlenecks.
Figure 4 highlights, as an example, the influences
within a learned graphical model of the weather
variable, representing mutually exclusive sets of states
about weather conditions, on other variables in the
model, including variables capturing the amount of time
until bottlenecks will become jammed if they are
currently open, and the time until bottlenecks will melt
into flows should they be currently bottlenecked. We
shall explore the performance of the model after we
briefly review how predictions are relayed to users.

Figure 3: Overview of learning predictive models for
traffic flows at potential bottlenecks. Cases include
data from the highway system, incident reports, major
events (e.g., sporting events), weather, time of day, day
of week, and holiday status.

 OOppeerraattoorr IIDD:: NNiicckk

 HHeeaaddiinngg:: IINNCCIIDDEENNTT

 MMeessssaaggee::IINNCCIIDDEENNTT IINNFFOORRMMAATTIIOONN

 CClleeaarreedd 11663377:: II--440055 SSBB

 JJSS II--9900 AACCCC BBLLKK RRLL CCCCTTVV

 11662233 –– WWSSPP,, FFIIRR OONN SSCCEENNEE

Figure 4: Predictive model highlighting influence of
weather conditions on the time for clearing and
jamming for multiple portions of the traffic system.
2.3 Visualization for Relaying Inferences
Mobile users are typically engaged in a great diversity
of primary tasks, such as driving a vehicle, when they
may wish to access traffic status and predictions. Thus,
it is critical to design lightweight navigation methods
and visualizations for relaying predictions that can be
glanced at quickly. Users can access different regions
of the highway system in Smartphlow by depressing the
1-9 dialing keys of the phone. The keys map
isomophically to regions of the map. Users can also
toggle between two levels of zoom depressing the
smartphone joystick. By depressing the 0 button, users
are taken on a dynamically constructed flyover that dips
down and dwells briefly on current troublespots, before
returning to the starting point. Figure 5 shows the
display we employ on smartphones for communicating
JamBayes inferences. If a bottleneck is currently
congested, a “clock” graphic appears next to the
congested segment. The clock is filled with red
proportional to the maximum likelihood time that the
congestion will persist before it becomes a flowing
thoroughfare. If a bottleneck is to become congested
in an hour or less, a clock filled with green appears,
filled to represent the time expected until a jam appears.
As highlighted in the inset in Figure 5, we also display
the confidence in the prediction provided by the model
with tick marks around the maximum likelihood,
showing the computed standard deviation around the
inference.
2.4 Study of Prediction Quality
We have continued to perform studies of the accuracy
of the JamBayes service. Table 1 shows results from a
recent evaluation of the time until congested
bottlenecks clear, and the time until clear bottlenecks
jam, for each bottleneck, based on 15 months of data.
We trained the model with seventy-five percent of the
data and tested the model on the remaining twenty-five

percent of the cases, segmented sequentially. In the
study, we considered an outcome a success if the
prediction was within 15 minutes of the predicted time.
Because the system relays to the user specific times up
until 1 hour, and then indicates a prediction as being
one hour or more with a filled clock icon, we consider a
prediction of an hour or more as being a correct
classification if the time until clearing turns out to be
more than one hour. Classification accuracies fall off if
we attempt to reason about the details of longer
durations, as, for example, traffic can be open for many
hours before a bottleneck shows up, posing a more
difficult prediction task.

Figure 5: Smartphone application. Clock graphics are
used to display time until a congested bottleneck will
clear (red) and the time until a bottleneck that is
currently open will become congested (green). Inset:
close up of prediction, showing confidence as
represented by the standard deviation.

Table 1: Accuracy of predictions for time until jams
will clear and will form (15 minute tolerance).

2.5 Learning Models of Competency
In addition to studying the accuracy of the learned
model for predicting the times until bottlenecks will
clear or will form, we also studied the value of learning
separate reliability models for each bottleneck. The
reliability models predict whether a base-level

Bottleneck Accuracy
 (Clear, Jam)

Bottleneck Accuracy
 (Clear, Jam)

0 0.83, 0.92 11 0.76, 0.93
1 0.75, 0.93 12 0.65, 0.98
2 0.78, 0.91 13 0.70, 0.95
3 0.83, 0.90 14 0.83, 0.95
4 0.87, 0.96 15 0.80, 0.84
5 0.73, 0.94 16 0.73, 0.86
6 0.65, 0.95 17 0.78, 0.92
7 0.84, 0.97 18 0.76, 0.86
8 0.85, 0.92 19 0.68. 0.94
9 0.81, 0.96 20 0.82, 0.96

10 0.71, 0.91 21 0.86, 0.94

prediction will fail to be accurate. This effort comes in
the spirit of our work to make systems exploiting
learning and reasoning more usable by providing users
with context-sensitive competency information. Our
intuition was that we would be able to predict the
likelihood that the base-level model would provide
accurate predictions with greater accuracy than the
more difficult, detailed base-level predictions.
To build reliability models for a bottleneck, we execute
the learned base model on a test set, and label
predictions as falling within a predefined time tolerance
for a bottleneck event. We then use this new case
library, tagged by success and failure, to build a
bottleneck-specific reliability model. In use, the
reliability model predicts whether or not the base level
model’s output will be within a predefined tolerance
given all the observations available to the system. We
found that the reliability models were typically simpler
than the base-level models. The studies of reliability
models demonstrated that, for most bottlenecks, we
could construct models that could predict when models
would fail to provide predictions within a 15 minute
tolerance of an outcome with greater accuracy than the
marginal performance associated with the classification
accuracies of the base-level model. Sample models for
the reliability of predictions of the base-level model on
the duration of a jam at bottleneck 1 and 11 are
displayed in Figure 6. The learned models show that the
reliabilities are influenced by a small number of
variables, representing such variables as the durations
and extent (percent cells showing blockage) of jams at
relevant bottlenecks.

Figure 6: Sample learned models of context-sensitive
accuracy of the reliability of predictions of the base
model for bottlenecks 1 and 11.
We learned models for reliability for each bottleneck
and harnessed these models on the JamBayes server to
annotate predictions provided by the base-level models.
If the overall accuracy of the reliability models had
been found to be high, and the reliability model predicts
in real time that, in the current situation, the accuracy of
the base-level models is lower than a reliability
threshold, the system overlays a question mark within

the icon as displayed in Figure 7. This provides users
with feedback about when the prediction may be
inaccurate.
Informal feedback on the use of competency annotation
has been positive. The use of certifiably accurate
reliability models that perform a task simpler than a
more complex base-level challenge underscores a
valuable direction in building systems that share
important, but intermittently inaccurate inferences with
people. We believe that providing systems with
accurate models of their context-sensitive competency,
and joining such reasoning with a means of
communicating such inferred competency, e.g., with
simple visual representations, will enable users to
understand when they can trust systems that may fail
intermittently.

Figure 7: Use of a question mark annotation to relay to
the user that prediction may be unreliable in the
situation at hand, based on inference with a context-
sensitive reliability model for a bottleneck.
To be sure, a critical goal is to make base-level models
better rather than build reliability models for underlying
“black box” learning methods. The accuracy of the
learned reliability models suggests that we can raise the
accuracy of models by using boosting methods that
learn how to handle cases that an initial model had been
failing on. Preliminary studies with boosting suggest
that employing a staged mixture model approach to
boosting (Meek, Thiesson, and Heckerman, 2002) can
be effective for increasing the accuracy of the base
models. We plan to report on the value of boosting for
traffic predictions in a future paper.
2.6 Route-Centric Alerting
Beyond direct inspection of the visualizations of the
status of traffic, and of the predictions of the JamBayes
service, we also provide a means for users to set up
time-dependent route-based alerting. The approach
allows users to weave together sets of bottlenecks in
considered by the system into paths they care about
during morning and evening commuting.
We provide JamBayes users with a desktop tool called
Deskflow, which provides JamBayes inferences in
desktop settings, and also allows for configuration of
alerting on mobile devices. A screenshot from
Deskflow is displayed in Figure 8. This mode of the
program enables users to define routes of interest for
their morning and evening commutes by defining routes
as sets of bottlenecks for different segments of time.

Active periodic refreshing of the device with fresh
information can be limited to these specific periods of
time so as to conserve battery life and data costs.
After specifying routes, users can also set up route-
centric alerting policies. When alerting policies are set
up, users receive audio and vibratory alerts when
specific criteria are met, based on the time of day.
Figure 9 shows the configuration for alert
configuration. As examples of policies, users can set
the system to register an alert on a smartphone, or send
an SMS message to a standard cell phone, when their
specified route becomes congested or becomes
uncongested—or when their route will likely become
congested or become free flowing within a selected
period of time. As an example, for the configuration
represented by the screenshot in Figure 9, a user has
instructed the system to send an alert, during specified
morning and evening hours, when their route will likely
become congested in 30 minutes, when their route
becomes clear after it has been blocked, and when the
route will likely become clear in 20 minutes, e.g., so as
to prepare to head home from work. Users can instruct
the system to forego alerts if they are sensed to be
present, working on a desktop system.

Figure 8: Desktop route-centric alert configuration tool,
showing highlighting of an AM commuting route with
associated active monitoring period.
As indicated in Figure 9, users can also sign up for
alerts that indicate that an unexpected situation has
arisen or will arise on their active route. We will now
turn to our efforts to model and relay predictions about
surprises.

3 Reasoning and Alerting about Surprises
Predictions about states of the world are most valuable
to people when they complement a user’s knowledge,
rather than providing them with redundant information,
given a user’s intuitions and expectations. Many
commuters in the Seattle area have an overall sense for

the status of hotspots and the overall times until
congestion at bottlenecks will likely start and end,
based on their long-term experiences. To enhance the
value of JamBayes for people who may be familiar with
typical traffic patterns, we worked to include in
JamBayes inferences about whether traffic states of
interest would be viewed as surprising.

Figure 9: Policy configuration screen for mobile and
desktop alerting.
There has been a great deal of work in detecting
anomalies in data sets (e.g., Bay and Pazzani, 1999,
Wong, Moore, Cooper, et al., 2003). Rather than
seeking to identify anomalies in data, we are primarily
interested in a model for states of the world that would
likely surprise a typical user of Smartphlow. And
moving beyond modeling when a user might be
surprised by a current state of affairs, we have also been
interested in models that can predict future surprises—
even if everything appears to be quite normal now.
To identify situations that users would likely find
surprising, we need to define a user model for surprise.
In the current system, we use marginal models, that
capture basic statistics for congestion, as an
approximate model of user expectations. We employ as
a user model the marginal statistics describing the status
of each bottleneck for every 15 minute segment of time
within each day of the week. The 15 minute marginal
models are constructed from a small subset of
observations that the machine-learning procedures use.
Beyond time of day and day of week, we consider
weather and holiday status. The latter pieces of
evidence are widely available to commuters. To
identify surprises, we compare the output of the
marginal models with the real-time states to identify
rare flows and congestion. We mark these situations as
situations that would likely be surprising to users.
For surprise modeling in JamBayes, the current status
of each bottleneck is compared to the likelihood of the

observed state from the perspective of the marginal user
model. If the likelihood of an observed open flow or
congestion at a bottleneck occurs with a probability of
0.10 or less, we mark the situation as a surprising
situation. We then use the surprise tag in alerting and
display. When a surprising situation is noted, we
overlay an exclamation point on the clock graphic
displayed on the smartphone. Two examples of
visualizations of surprise are displayed in Figure 10.
On the left side of the figure, an exclamation point on a
clock icon, predicting that a blockage will last 40
minutes, lets the user know this blockage is for this
time in the early afternoon on a Sunday afternoon. On
the right side of the figure, a surprise icon indicates that
a portion of the highway that would be expected to be
bottlenecked during rush hour is now wide open. If one
of these regions had been part of a user’s specified
commute and the surprising situation had occurred
during the hours configured for active route monitoring,
the user would be alerted.
Before moving on, we note that there is opportunity to
employ more sophisticated methods to develop and
validate user models that could predict when congestion
and flows would be surprising to different users or
groups of users. For example, we could employ similar
modeling methods to those described by Horvitz and
Barry (1995) in a NASA Mission Control advisory
system, named Vista. The work on Vista introduced a
formal model of the value of information revelation. In
that work, graphical models were constructed and
refined to make inferences about the beliefs of users
about the health of propulsion systems on the space
shuttle. The user model for shuttle failures was used in
conjunction with a detailed probabilistic base-level
model of the propulsion system to dynamically
configure a display of relevant information updates.
For the case of models of surprise for traffic, we might
allow users in a future version of Smartphlow to specify
a definition of surprise in terms of the rarity of an event,
rather than using a default probability for anomalies.
Additionally, we can extend the system to provide users
with the ability to select from a set of user models, or
even to customize a user model to capture additional
details about his or her personal knowledge. For
example, it is feasible to make available models more
sophisticated than the marginal we have described (i.e.,
one taking into consideration widely known
observations about time of day, day of week, holidays,
and weather). As an example, we could provide users
who follow major sporting events and who have a sense
for the basic relationships between traffic delays and
these major events, with the ability to select a user
model for surprises that uses a marginal model that
includes sporting events.

Figure 10: Display of situations identified as surprises.

4 Surprise Forecasting
We have reviewed a method for identifying current
traffic situations that would likely surprise commuters,
and reviewed how the current version of JamBayes, in
use by a large population of users, can be instructed to
render visual and audio alerts about specific bottlenecks
or routes that users care about when such surprises
arise. We now move to the realm of future surprises,
and address the construction of models that can predict
future surprise. We make such models of future surprise
available for alerting users in the current version of the
system.
4.1 Learning and Using Models of Future Surprises
To construct models of future surprises, we first
identify sets of surprising situations, as described
earlier. However, rather than simply use the
information for alerting and then discard it, we store a
case library of surprising events. We also consider
observations available to the system at earlier points in
time and add these to the cases. That is, the case library
for future surprise contains sets of surprising events,
coupled with observations that had been taken at
different amounts of time before the occurrence of
surprising outcomes. For example, we note all
observations that are available to the system about
traffic and its recent history at 30 minutes before a
surprising event is noticed, per a definition of surprising
event. The observations include the available stream of
information about multiple sources of information,
including the weather, incident reports, major events,
and status of observations about the history of traffic
flow throughout the Seattle traffic system. However,
unlike the modeling efforts we have described in other
sections, the evidence for the case is drawn from points
in time at least 30 minutes before the surprising event.
Figure 11 schematizes the overall approach to learning
to predict surprises in the future. Figure 12 displays a
Bayesian network learned with this methodology for
inferring the likelihood that states defined as surprising
will occur in 30 minutes. We can use this model to
explore the influence on the likelihood of surprises
occurring 30 minutes in the future, given a report that a
car accident just happened at bottleneck 15. The
variable representing the accident at bottleneck 15 is
highlighted at the center of the model in Figure 12.

Figure 11: Learning models of future surprises. A user
model defining surprising outcomes is used to compose
a case library of surprises. These cases, along with
detailed observations from the past are stored, and
models of future surprise are constructed.
Exploring the predictions of the model reveals that an
accident at bottleneck 15 influences the likelihood that
there will be a surprising traffic situation at bottleneck
15 in 30 minutes—as might be expected by someone
who observed the accident. However, the model also
predicts that there is a significant likelihood of seeing
surprising flows at bottlenecks 4, 11, and 17 at 30
minutes in the future.1
For a better view of the flows, Figure 13 shows the
numbered bottlenecks overlayed on a map of the Seattle
traffic system, indicating the site of the reported
accident with a star (southbound on Hwy 5, north of
Hwy 520). Bottlenecks predicted to have a significant
increase in the likelihood of surprising flows in 30
minutes after the accident at bottleneck 15 are circled.
The influences highlight the time-delayed propagation
of effects through the Seattle traffic network. For
example, probing the predictive model reveals that, for
scenarios of an accident occurring at bottleneck 15
during several spans of time during the day, there will
be a 0.5 probability of a surprising low traffic flow at
bottleneck 4, across Lake Washington, 30 minutes after
the accident.
4.2 Accuracy of Models of Future Surprise
To get a sense for the discriminatory power of the
learned models of future surprise, we constructed a
model of future surprise with seventy-five percent of
the cases in the surprise case library and tested the
ability to predict surprises 30 minutes into the future
with the remaining twenty-five percent of the data.

1As demonstrated by the model, the accident at bottleneck 15
has a probabilistic relationship with the flow at bottleneck 18.
We leave the explanation of this influence as an exercise to
the reader.

Figure 12: Predictive model for surprises 30 minutes
into the future, showing influences of a current accident
at bottleneck 15 on the likelihood of seeing surprising
flows at several other bottlenecks 30 minutes later.

Figure 13: Display of bottlenecks, highlighting the
influences of an accident at bottleneck 15 (star), on the
likelihood of seeing a surprising traffic situation at the
circled bottlenecks in 30 minutes, as described by the
graphical model in Figure 12.

Classification accuracy does not provide a valuable
signal as the accuracy is invariably reported as high for
the marginal model (which assumes no surprise) given
the rarity of surprises. Thus, we sought to visualize the
relationship between the false negatives and false
positives for surprises. Such curves for the task of
predicting surprising traffic situations 30 minutes into
the future for each bottleneck are displayed in Figure
14. We have removed from consideration all cases
where the bottleneck was associated with a current
surprising situation. Thus, the model shows
relationships among false negatives and false positives

for cases where a bottleneck is not showing anomalous
flows at the current time.
We note from the graphs that, if we tolerate missing
alerts about half of the surprises in 30 minutes, the false
positive rate drops to approximately 0.05 for many of
the bottlenecks. This means that the probabilistic
models of future surprise can be harnessed to report
about half of the surprises on the Seattle traffic system
with a 0.05 false positive rate.
We integrated the future surprise reporting into the
JamBayes service and, as highlighted in the options
displayed in Figure 9, users can set up their systems to
provide alerts when there will be a likely surprisingly
light flow or surprising congestion in the future.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p('Surprise' | No surprise)

p(
'N

o
su

rp
ris

e'
 |

Su
rp

ris
e)

B0
B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B20
B21

Figure 14: Surprise forecasting analysis. Curves show
the relationship between false negatives (y axis) and
false positives (x axis) for predictions of a surprise 30
minutes in the future for the 22 Seattle bottlenecks, for
cases where no surprise currently exists at the
bottlenecks.

4 Summary and Future Work

We described our efforts to construct and field a
probabilistic traffic forecasting system named
JamBayes. The system has been made available within
our organization and is now in active use by over 2,500
people. We are excited to provide the fruits of learning
and reasoning as a basic utility that provides ongoing
daily guidance to a large number of people.
We are continuing to refine the methods. Our ongoing
research includes investigating alternate machine
learning modeling methods, such as exploring the value
of boosting, and also considering extensions that
explore other inference and modeling methodologies,
including particle filtering, continuous time Bayesian
networks (Nodelman, Shelton, and Koller, 2003,

Nodelman and Horvitz, 2003), and queue-theoretic
techniques. We are also pursuing a deeper
understanding of models of future surprise. We are
intrigued by the challenges and opportunities associated
with building models of future surprises, for traffic
congestion as well as in other domains.
Acknowledgments
We thank the WDOT for data and assistance. We thank
Max Chickering for his assistance and enthusiastic
support. We thank David Heckerman, Chris Meek, and
Bo Thiesson for discussions and exploratory evaluation
of boosting methods for traffic predictions.

References
Bay, S.D., & Pazzani, M.J. (1999). Detecting Change in

Categorical Data: Mining Contrast Sets. Knowledge
Discovery and Data Mining, pp. 302-499.

Chickering, D. M., Heckerman, D., & Meek, C. (1997).
A Bayesian approach to learning Bayesian networks
with local structure. Proceedings of UAI 97, 80-89.

Heckerman, D. & Geiger, D. (1995). Learning Bayesian
Networks: A Unification for Discrete and Gaussian
Domains. Proceedings of UAI 95, pp. 274-284.

Horvitz, E., & Barry, M. (1995) Display of Information
for Time-Critical Decision Making. Proceedings UAI
95, pp. 296-305.

Horvitz, E., Koch, P., Sarin, R., Apacible, J. &
Subramani, M. (2005) Bayesphone: Precomputation
of Context-Sensitive Policies for Inquiry and Action
in Mobile Devices, Proc. of User Modeling 2005.

Meek, M., Thiesson, B. & Heckerman, D. (2002).
Staged mixture modeling and boosting. Proceedings
of the UAI 2002, pp. 335-343.

Nodelman, U. & Horvitz, E. Continuous Time Bayesian
Networks for Inferring Users’ Presence and
Activities with Extensions for Modeling and
Evaluation, Microsoft Research Technical Report
MSR-TR-2003-97, December 2003.

Nodelman, U., Shelton, C.R., & Koller, D. (2003).
Learning Continuous Time Bayesian Networks.
Proceedings of UAI 2003, pp. 451-458.

Robbins, D., Cutrell, E., Sarin, R., & Horvitz, E.
(2004). ZoneZoom: Map Navigation with
Smartphones with Recursive View Segmentation,
Advanced Visual Interfaces 2004.

Vandaele, N. Van Woensel, T., & Verbruggen, N.
(2000). A Queuing-Based Traffic Flow Model.
Transportation Research-D: Transportation and
Environment, 5(2), pp. 121-135.

Wong, W., Moore, A.W., Cooper, G.F., & Wagner, M.
(2003). Bayesian Network Anomaly Pattern Detection
for Disease Outbreaks. ICML 2003, pp. 808-815.

