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Abstract 
 

We present research on developing models that 
forecast traffic flow and congestion in the 
Greater Seattle area.  The research has led to the 
deployment of a service named JamBayes, that is 
being actively used by over 2,500 users via 
smartphones and desktop versions of the system. 
We review the modeling effort and describe 
experiments probing the predictive accuracy of 
the models. Finally, we present research on 
building models that can identify current and 
future surprises, via efforts on modeling and 
forecasting unexpected situations. 

 

1  Introduction 
 

We describe our work to develop and field a traffic 
forecasting service that monitors traffic patterns and 
that relays predictions about traffic forthcoming 
congestions and flows to users in mobile settings. The 
efforts have led to a prototype traffic service that is now 
relied upon daily by over 2,500 people. The predictive 
models take into consideration information about the 
status and dynamics of traffic in the Greater Seattle 
area. Other evidence considered in learning and 
prediction includes incident reports issued by the 
Washington Department of Transportation, information 
about the occurrence of major sporting events, weather 
reports, time of day, and calendar information.   
We discuss the modeling effort and review studies of 
the predictive accuracy of the learned models. After 
discussing details about the base-level predictions of 
the service, we discuss how we mesh inferences with 
visual representations that can communicate 
probabilistic information with a quick glance.  We also 
examine route-based alerting, based on a specification 
of user interests and preferences. We then turn to the 
challenge of constructing models that have the ability to 

predict when users may be surprised about sensed 
traffic events. Finally, we review our approach to 
learning models that can predict future surprises about 
traffic congestion and flow. This effort provides a 
window on possibilities for employing surprise 
forecasting in other realms. The models, visualization, 
and related components highlight the challenges and 
opportunities for leveraging machine learning and 
reasoning in a mobile application that can provide 
ongoing value to a large group of people. 
 

2   JamBayes: A Traffic Forecasting Service 
 

We have been intrigued by the challenges and 
opportunities for providing information and inferences 
to people in mobile settings. In one approach, we can 
embed reasoning machinery or compiled policies in 
small, portable devices that perform local, real-time 
sensing. For example, in the Bayesphone project 
(Horvitz, Koch, Sarin, et al., 2005), decision-theoretic 
policies, based on models learned on desktop 
computing systems, are downloaded onto smartphones. 
The devices are endowed with the ability to decide 
when to engage users with questions about context and 
to take call-handling actions based on expected utility. 
In another approach, policies, recommendations, and 
information can be streamed from server-based learning 
and reasoning systems to portable devices, based on 
information from the devices and other sources.  We 
focus on the latter approach in this paper, a 
methodology we refer to as streaming intelligence. 
We constructed and fielded a web service that provides 
users with the current status and predictions about the 
future of traffic flow at key hotspots within the Seattle 
highway system. The host application, named 
Smartphlow, provides users with a visualization of 
current traffic flows in Seattle and surrounding areas, 
by displaying color coded segments on major arteries to 
relay the speeds and densities of cars. The basic display 



of traffic status relays information reported by a 
network of sensors operated by the Washington 
Department of Transportation (WDOT).  Where there is 
a smooth, fast flow of traffic, cells reflecting sensed 
regions of the highway system, are colored green.  As 
roads become more congested the color coding of 
segments goes from green to yellow, to red, to black, 
indicating that traffic flow has diminished to a crawl.     
Beyond visualizing the current state of affairs on the 
key roads of Seattle and providing an easy navigation 
model for translating and zooming on a map of Seattle 
(Robbins, Cutrell, Sarin, et al., 2004), Smartphlow 
provides predictions about the future status of regions 
of the traffic system. We shall focus on the predictive 
component of Smartphlow, named JamBayes, a service 
that continues to provide forecasts to users about the 
likely times until congested bottlenecks will likely free 
up, and when key locations of the highway system that 
are currently open will likely become jammed.   
We made Smartphlow widely available to Microsoft 
employees nearly two years ago, and it has grown 
through word of mouth to become a popular 
application. We are logging unique hits to JamBayes 
servers and note that the service is now relied upon 
daily by over 2,500 users.  We shall review key aspects 
of Smartphlow and the JamBayes prediction service in 
the next several sections. 
2.1 Identifying Key Bottlenecks 
Numerous analyses in traffic engineering have explored 
the microstructure of flows at cells, using such methods 
as queue-theoretic models (e.g., Vandaele, Van 
Woensel, and Verbruggen, 2000).  Rather than model 
flows explicitly, we sought to abstract the problem of 
traffic prediction in the Greater Seattle area to a 
consideration of probabilistic dependencies among a set 
of random variables, representing properties of key 
congestion “hotspots” and contextual observations. 
Such hotspots are well-known by Seattle commuters, as 
they are often the source of frustrating delays, even 
when traveling short distances on the arterial system. 
We believe that representing and reasoning about the 
status of key bottleneck regions can serve as an 
organizing principle for building predictive traffic 
systems for cities throughout the world. Our research 
on adapting our traffic prediction methodology to other 
cities in the country and world has highlighted the 
commonality of sets of well-known hotspots.  Such 
trouble spots often acquire nicknames, like “the S-
curves,” that are bandied about in conversations and 
reports by traffic reporters during morning and evening 
commuting.   
The identification of a set of hotspots, which we refer to 
as traffic bottlenecks, for a traffic system enables us to 
focus the attention of modeling and alerting to a  set  of 

 
Figure 1: Bottleneck identification tool used to frame 
the learning problem for modeling Seattle traffic. Key 
trouble spots in the traffic system are highlighted via 
setting a threshold on percent time cells are congested. 
events and states that people care deeply about.  Such a 
framing helps to reduce the parameter space of the 
learning and inference effort as well as provide a 
representation of traffic problems that is easy to 
communicate with users. 
To probe Seattle’s bottlenecks, we developed an 
interactive tool that analyzes a large database of 
system-wide traffic flow data collected over many 
months.  The tool allows the moving of a slider to set a 
threshold amount of “percent of time of day cell is 
congested,” for all monitored cells.  When moving the 
slider, the cells of the highway system that are 
congested for at least the time represented by the 
current setting of the threshold are colored black. As the 
application user moves the threshold from 100% to 0% 
of the total time of the day, the most frequently 
congested spots, initially appearing as small regions of 
black segments, extend and meld together until the 
whole traffic system is marked. A screenshot from the 
bottleneck analysis tool is displayed in Figure 1.   
Using the tool, we identified 22 key bottlenecks in the 
Seattle traffic system.  Given the formulation of the 
hotspots, we set out to learn statistical models that 
could provide inferences with users about the expected 
time until a bottleneck, that was currently experiencing 
a traffic jam, would flow smoothly again, and the time 
until bottlenecks, which were currently flowing 
smoothly, would likely become jammed. 
2.2 Collecting a Case Library and Learning Models 
We began collecting traffic data and related information 
nearly two years ago by monitoring and storing as cases 
the status of all sensed traffic cells in the Seattle 
system. We also collected terse natural language 
“incident reports” that are emitted from time to time by 



operators at the WDOT. Incident reports include 
mention of a variety of traffic problems, such as 
accidents of different scales, including major incidents 
requiring emergency vehicles that span multiple lanes. 
A sample incident report is displayed in Figure 2. 
Beyond traffic data, we have collected contextual data 
that promised to be informative about traffic flows.  
These observations include the time of day, day of 
week, whether a holiday is in progress, whether school 
is in session, and the scheduling of large-scale events in 
the city, such as major sporting events like Mariners, 
Sonics, Huskies, and Seahawks games.  We also 
included in the case library synchronized information 
about Seattle weather, including the status of 
precipitation, visibility, temperature, and sunshine.  We 
have continued to harvest in an automated manner 
weather and event information from Web sources.   
 

                       
Figure 2: A typical incident report, mentioning police 
and fire vehicles within a particular bottleneck region. 
For each identified bottleneck region, we created sets of 
random variables that represent static and temporal 
abstractions of the status of one or more sensed cells 
within that bottleneck.  Such random variables include 
the number of cells that are showing blockage or 
slowing, the time since any cell became blocked within 
the bottleneck region after a threshold period of time 
when all cells showed open flow, and the maximum 
number of adjacent blocked cells. 
Given the rich case library, we experimented with 
several machine learning formulations and methods.  
As part of the iterative process of building and refining 
models, we created new distinctions about traffic, 
including several summarizing statistics capturing 
recent dynamics in flow, such as the rate and density of 
changes in velocities in cells within and near 
bottlenecks over time. Figure 3 shows an overview of 
the properties of cases and overall process of generating 
a graphical model for predicting traffic jams and flows.  
In the current fielded version of JamBayes, we employ 
Bayesian structure search, using tools developed by 
Chickering, et al. (Chickering, Heckerman, and Meek, 
1997) to construct a Bayesian network. The method 
provides a graphical view onto the model, enabling us 
to visualize multiple variables and influences. Given a 
training dataset, the method performs heuristic search 
over a space of dependency models using a Bayesian 

scoring criterion to guide the search.  Details on the 
heuristic search and model scoring can be found in 
(Chickering, Heckerman, and Meek, 1997). We 
employed a mix of discrete and continuous variables in 
the models, using continuous variables to represent 
times of different events interest. For each discrete 
variable, the method creates a tree containing a 
multinomial distribution at each leaf. For each 
continuous variable, the method constructs a tree in 
which leaves contain a binary-Gaussian distribution; 
each leaf contains a binomial distribution that 
represents the probability of the value being present or 
absent, and a Gaussian distribution over the values that 
are present. The Bayesian score used for each binary-
Gaussian distribution is the sum of the score for the 
binomial, a special case of the multinomial, and the 
score for a Gaussian defined over the values that are 
present in the training data. For details of the Gaussian 
score, see Heckerman and Geiger (1995). 
Rather than build separate models for each bottleneck, 
we construct a large model for all bottlenecks.  The 
comprehensive model captures the rich 
interdependencies among multiple bottlenecks and 
other variables, allowing the system to learn about 
dependencies and temporal relationships among the 
flows and congestions at bottlenecks. 
Figure 4 highlights, as an example, the influences 
within a learned graphical model of the weather 
variable, representing mutually exclusive sets of states 
about weather conditions, on other variables in the 
model, including variables capturing the amount of time 
until bottlenecks will become jammed if they are 
currently open, and the time until bottlenecks will melt 
into flows should they be currently bottlenecked. We 
shall explore the performance of the model after we 
briefly review how predictions are relayed to users. 
 

 
Figure 3: Overview of learning predictive models for 
traffic flows at potential bottlenecks.  Cases include 
data from the highway system, incident reports, major 
events (e.g., sporting events), weather, time of day, day 
of week, and holiday status. 
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Figure 4: Predictive model highlighting influence of 
weather conditions on the time for clearing and 
jamming for multiple portions of the traffic system. 
2.3 Visualization for Relaying Inferences 
Mobile users are typically engaged in a great diversity 
of primary tasks, such as driving a vehicle, when they 
may wish to access traffic status and predictions. Thus, 
it is critical to design lightweight navigation methods 
and visualizations for relaying predictions that can be 
glanced at quickly. Users can access different regions 
of the highway system in Smartphlow by depressing the 
1-9 dialing keys of the phone. The keys map 
isomophically to regions of the map. Users can also 
toggle between two levels of zoom depressing the 
smartphone joystick. By depressing the 0 button, users 
are taken on a dynamically constructed flyover that dips 
down and dwells briefly on current troublespots, before 
returning to the starting point. Figure 5 shows the 
display we employ on smartphones for communicating 
JamBayes inferences. If a bottleneck is currently 
congested, a “clock” graphic appears next to the 
congested segment.  The clock is filled with red 
proportional to the maximum likelihood time that the 
congestion will persist before it becomes a flowing 
thoroughfare.   If a bottleneck is to become congested 
in an hour or less, a clock filled with green appears, 
filled to represent the time expected until a jam appears. 
As highlighted in the inset in Figure 5, we also display 
the confidence in the prediction provided by the model 
with tick marks around the maximum likelihood, 
showing the computed standard deviation around the 
inference. 
2.4  Study of Prediction Quality 
We have continued to perform studies of the accuracy 
of the JamBayes service.  Table 1 shows results from a 
recent evaluation of the time until congested 
bottlenecks clear, and the time until clear bottlenecks 
jam, for each bottleneck, based on 15 months of data. 
We trained the model with seventy-five percent of the 
data and tested the model on the remaining twenty-five 

percent of the cases, segmented sequentially.  In the 
study, we considered an outcome a success if the 
prediction was within 15 minutes of the predicted time.  
Because the system relays to the user specific times up 
until 1 hour, and then indicates a prediction as being 
one hour or more with a filled clock icon, we consider a 
prediction of an hour or more as being a correct 
classification if the time until clearing turns out to be 
more than one hour.  Classification accuracies fall off if 
we attempt to reason about the details of longer 
durations, as, for example, traffic can be open for many 
hours before a bottleneck shows up, posing a more 
difficult prediction task.  
 

              
 
Figure 5: Smartphone application. Clock graphics are 
used to display time until a congested bottleneck will 
clear (red) and the time until a bottleneck that is 
currently open will become congested (green).  Inset: 
close up of prediction, showing confidence as 
represented by the standard deviation. 
 

Table 1: Accuracy of predictions for time until jams 
will clear and will form (15 minute tolerance). 

 
2.5 Learning Models of Competency 
In addition to studying the accuracy of the learned 
model for predicting the times until bottlenecks will 
clear or will form, we also studied the value of learning 
separate reliability models for each bottleneck. The 
reliability models predict whether a base-level 

Bottleneck    Accuracy  
  (Clear, Jam)       

Bottleneck    Accuracy 
  (Clear, Jam)      

0 0.83, 0.92 11 0.76, 0.93 
1 0.75, 0.93 12 0.65, 0.98 
2 0.78, 0.91 13 0.70, 0.95  
3 0.83, 0.90 14 0.83, 0.95 
4 0.87, 0.96 15 0.80, 0.84 
5 0.73, 0.94 16 0.73, 0.86 
6 0.65, 0.95 17 0.78, 0.92 
7 0.84, 0.97 18 0.76, 0.86 
8 0.85, 0.92 19 0.68. 0.94 
9 0.81, 0.96 20 0.82, 0.96 

10 0.71, 0.91 21 0.86, 0.94 



prediction will fail to be accurate.  This effort comes in 
the spirit of our work to make systems exploiting 
learning and reasoning more usable by providing users 
with context-sensitive competency information. Our 
intuition was that we would be able to predict the 
likelihood that the base-level model would provide 
accurate predictions with greater accuracy than the 
more difficult, detailed base-level predictions.   
To build reliability models for a bottleneck, we execute 
the learned base model on a test set, and label 
predictions as falling within a predefined time tolerance 
for a bottleneck event.  We then use this new case 
library, tagged by success and failure, to build a 
bottleneck-specific reliability model. In use, the 
reliability model predicts whether or not the base level 
model’s output will be within a predefined tolerance 
given all the observations available to the system. We 
found that the reliability models were typically simpler 
than the base-level models.  The studies of reliability 
models demonstrated that, for most bottlenecks, we 
could construct models that could predict when models 
would fail to provide predictions within a 15 minute 
tolerance of an outcome with greater accuracy than the 
marginal performance associated with the classification 
accuracies of the base-level model.  Sample models for 
the reliability of predictions of the base-level model on 
the duration of a jam at bottleneck 1 and 11 are 
displayed in Figure 6. The learned models show that the 
reliabilities are influenced by a small number of 
variables, representing such variables as the durations 
and extent (percent cells showing blockage) of jams at 
relevant bottlenecks. 

 

               
Figure 6: Sample learned models of context-sensitive 
accuracy of the reliability of predictions of the base 
model for bottlenecks 1 and 11. 
We learned models for reliability for each bottleneck 
and harnessed these models on the JamBayes server to 
annotate predictions provided by the base-level models.  
If the overall accuracy of the reliability models had 
been found to be high, and the reliability model predicts 
in real time that, in the current situation, the accuracy of 
the base-level models is lower than a reliability 
threshold, the system overlays a question mark within 

the icon as displayed in Figure 7. This provides users 
with feedback about when the prediction may be 
inaccurate.   
Informal feedback on the use of competency annotation 
has been positive.  The use of certifiably accurate 
reliability models that perform a task simpler than a 
more complex base-level challenge underscores a 
valuable direction in building systems that share 
important, but intermittently inaccurate inferences with 
people. We believe that providing systems with 
accurate models of their context-sensitive competency, 
and joining such reasoning with a means of 
communicating such inferred competency, e.g., with 
simple visual representations, will enable users to 
understand when they can trust systems that may fail 
intermittently.   

                                  
Figure 7: Use of a question mark annotation to relay to 
the user that prediction may be unreliable in the 
situation at hand, based on inference with a context-
sensitive reliability model for a bottleneck. 
To be sure, a critical goal is to make base-level models 
better rather than build reliability models for underlying 
“black box” learning methods. The accuracy of the 
learned reliability models suggests that we can raise the 
accuracy of models by using boosting methods that 
learn how to handle cases that an initial model had been 
failing on.  Preliminary studies with boosting suggest 
that employing a staged mixture model approach to 
boosting (Meek, Thiesson, and Heckerman, 2002) can 
be effective for increasing the accuracy of the base 
models. We plan to report on the value of boosting for 
traffic predictions in a future paper. 
2.6  Route-Centric Alerting  
Beyond direct inspection of the visualizations of the 
status of traffic, and of the predictions of the JamBayes 
service, we also provide a means for users to set up 
time-dependent route-based alerting. The approach 
allows users to weave together sets of bottlenecks in 
considered by the system into paths they care about 
during morning and evening commuting.  
We provide JamBayes users with a desktop tool called 
Deskflow, which provides JamBayes inferences in 
desktop settings, and also allows for configuration of 
alerting on mobile devices. A screenshot from 
Deskflow is displayed in Figure 8.  This mode of the 
program enables users to define routes of interest for 
their morning and evening commutes by defining routes 
as sets of bottlenecks for different segments of time. 



Active periodic refreshing of the device with fresh 
information can be limited to these specific periods of 
time so as to conserve battery life and data costs.   
After specifying routes, users can also set up route-
centric alerting policies.  When alerting policies are set 
up, users receive audio and vibratory alerts when 
specific criteria are met, based on the time of day.  
Figure 9 shows the configuration for alert 
configuration.  As examples of policies, users can set 
the system to register an alert on a smartphone, or send 
an SMS message to a standard cell phone, when their 
specified route becomes congested or becomes 
uncongested—or when their route will likely become 
congested or become free flowing within a selected 
period of time. As an example, for the configuration 
represented by the screenshot in Figure 9, a user has 
instructed the system to send an alert, during specified 
morning and evening hours, when their route will likely 
become congested in 30 minutes, when their route 
becomes clear after it has been blocked, and when the 
route will likely become clear in 20 minutes, e.g., so as 
to prepare to head home from work.  Users can instruct 
the system to forego alerts if they are sensed to be 
present, working on a desktop system. 
 

 
Figure 8: Desktop route-centric alert configuration tool, 
showing highlighting of an AM commuting route with 
associated active monitoring period. 
As indicated in Figure 9, users can also sign up for 
alerts that indicate that an unexpected situation has 
arisen or will arise on their active route.  We will now 
turn to our efforts to model and relay predictions about 
surprises. 

3   Reasoning and Alerting about Surprises  
Predictions about states of the world are most valuable 
to people when they complement a user’s knowledge, 
rather than providing them with redundant information, 
given a user’s intuitions and expectations.  Many 
commuters in the Seattle area have an overall sense for 

the status of hotspots and the overall times until 
congestion at bottlenecks will likely start and end, 
based on their long-term experiences.  To enhance the 
value of JamBayes for people who may be familiar with 
typical traffic patterns, we worked to include in 
JamBayes inferences about whether traffic states of 
interest would be viewed as surprising.   
 

 
Figure 9: Policy configuration screen for mobile and 
desktop alerting. 
There has been a great deal of work in detecting 
anomalies in data sets (e.g., Bay and Pazzani, 1999, 
Wong, Moore, Cooper, et al., 2003).  Rather than 
seeking to identify anomalies in data, we are primarily 
interested in a model for states of the world that would 
likely surprise a typical user of Smartphlow.  And 
moving beyond modeling when a user might be 
surprised by a current state of affairs, we have also been 
interested in models that can predict future surprises—
even if everything appears to be quite normal now.   
To identify situations that users would likely find 
surprising, we need to define a user model for surprise. 
In the current system, we use marginal models, that 
capture basic statistics for congestion, as an 
approximate model of user expectations.  We employ as 
a user model the marginal statistics describing the status 
of each bottleneck for every 15 minute segment of time 
within each day of the week.  The 15 minute marginal 
models are constructed from a small subset of 
observations that the machine-learning procedures use. 
Beyond time of day and day of week, we consider 
weather and holiday status. The latter pieces of 
evidence are widely available to commuters. To 
identify surprises, we compare the output of the 
marginal models with the real-time states to identify 
rare flows and congestion.  We mark these situations as 
situations that would likely be surprising to users.   
For surprise modeling in JamBayes, the current status 
of each bottleneck is compared to the likelihood of the 



observed state from the perspective of the marginal user 
model.  If the likelihood of an observed open flow or 
congestion at a bottleneck occurs with a probability of 
0.10 or less, we mark the situation as a surprising 
situation.  We then use the surprise tag in alerting and 
display. When a surprising situation is noted, we 
overlay an exclamation point on the clock graphic 
displayed on the smartphone. Two examples of 
visualizations of surprise are displayed in Figure 10.  
On the left side of the figure, an exclamation point on a 
clock icon, predicting that a blockage will last 40 
minutes, lets the user know this blockage is for this 
time in the early afternoon on a Sunday afternoon. On 
the right side of the figure, a surprise icon indicates that 
a portion of the highway that would be expected to be 
bottlenecked during rush hour is now wide open.  If one 
of these regions had been part of a user’s specified 
commute and the surprising situation had occurred 
during the hours configured for active route monitoring, 
the user would be alerted. 
Before moving on, we note that there is opportunity to 
employ more sophisticated methods to develop and 
validate user models that could predict when congestion 
and flows would be surprising to different users or 
groups of users.  For example, we could employ similar 
modeling methods to those described by Horvitz and 
Barry (1995) in a NASA Mission Control advisory 
system, named Vista. The work on Vista introduced a 
formal model of the value of information revelation. In 
that work, graphical models were constructed and 
refined to make inferences about the beliefs of users 
about the health of propulsion systems on the space 
shuttle.  The user model for shuttle failures was used in 
conjunction with a detailed probabilistic base-level 
model of the propulsion system to dynamically 
configure a display of relevant information updates.   
For the case of models of surprise for traffic, we might 
allow users in a future version of Smartphlow to specify 
a definition of surprise in terms of the rarity of an event, 
rather than using a default probability for anomalies.  
Additionally, we can extend the system to provide users 
with the ability to select from a set of user models, or 
even to customize a user model to capture additional 
details about his or her personal knowledge. For 
example, it is feasible to make available models more 
sophisticated than the marginal we have described (i.e., 
one taking into consideration widely known 
observations about time of day, day of week, holidays, 
and weather). As an example, we could provide users 
who follow major sporting events and who have a sense 
for the basic relationships between traffic delays and 
these major events, with the ability to select a user 
model for surprises that uses a marginal model that 
includes sporting events.  
 

             
Figure 10: Display of situations identified as surprises.   

4   Surprise Forecasting 
We have reviewed a method for identifying current 
traffic situations that would likely surprise commuters, 
and reviewed how the current version of JamBayes, in 
use by a large population of users, can be instructed to 
render visual and audio alerts about specific bottlenecks 
or routes that users care about when such surprises 
arise. We now move to the realm of future surprises, 
and address the construction of models that can predict 
future surprise. We make such models of future surprise 
available for alerting users in the current version of the 
system.  
4.1 Learning and Using Models of Future Surprises 
To construct models of future surprises, we first 
identify sets of surprising situations, as described 
earlier. However, rather than simply use the 
information for alerting and then discard it, we store a 
case library of surprising events.  We also consider 
observations available to the system at earlier points in 
time and add these to the cases.  That is, the case library 
for future surprise contains sets of surprising events, 
coupled with observations that had been taken at 
different amounts of time before the occurrence of 
surprising outcomes. For example, we note all 
observations that are available to the system about 
traffic and its recent history at 30 minutes before a 
surprising event is noticed, per a definition of surprising 
event.  The observations include the available stream of 
information about multiple sources of information, 
including the weather, incident reports, major events, 
and status of observations about the history of traffic 
flow throughout the Seattle traffic system.  However, 
unlike the modeling efforts we have described in other 
sections, the evidence for the case is drawn from points 
in time at least 30 minutes before the surprising event.  
Figure 11 schematizes the overall approach to learning 
to predict surprises in the future. Figure 12 displays a 
Bayesian network learned with this methodology for 
inferring the likelihood that states defined as surprising 
will occur in 30 minutes. We can use this model to 
explore the influence on the likelihood of surprises 
occurring 30 minutes in the future, given a report that a 
car accident just happened at bottleneck 15. The 
variable representing the accident at bottleneck 15 is 
highlighted at the center of the model in Figure 12.  



 

 
 
Figure 11: Learning models of future surprises. A user 
model defining surprising outcomes is used to compose 
a case library of surprises. These cases, along with 
detailed observations from the past are stored, and 
models of future surprise are constructed. 
Exploring the predictions of the model reveals that an 
accident at bottleneck 15 influences the likelihood that 
there will be a surprising traffic situation at bottleneck 
15 in 30 minutes—as might be expected by someone 
who observed the accident.  However, the model also 
predicts that there is a significant likelihood of seeing 
surprising flows at bottlenecks 4, 11, and 17 at 30 
minutes in the future.1 
For a better view of the flows, Figure 13 shows the 
numbered bottlenecks overlayed on a map of the Seattle 
traffic system, indicating the site of the reported 
accident with a star (southbound on Hwy 5, north of 
Hwy 520).  Bottlenecks predicted to have a significant 
increase in the likelihood of surprising flows in 30 
minutes after the accident at bottleneck 15 are circled. 
The influences highlight the time-delayed propagation 
of effects through the Seattle traffic network.  For 
example, probing the predictive model reveals that, for 
scenarios of an accident occurring at bottleneck 15 
during several spans of time during the day, there will 
be a 0.5 probability of a surprising low traffic flow at 
bottleneck 4, across Lake Washington, 30 minutes after 
the accident. 
4.2   Accuracy of Models of Future Surprise 
To get a sense for the discriminatory power of the 
learned models of future surprise, we constructed a 
model of future surprise with seventy-five percent of 
the cases in the surprise case library and tested the 
ability to predict surprises 30 minutes into the future 
with the remaining twenty-five percent of the data.   

                                                           
1As demonstrated by the model, the accident at bottleneck 15 
has a probabilistic relationship with the flow at bottleneck 18. 
We leave the explanation of this influence as an exercise to 
the reader. 

 

 
Figure 12: Predictive model for surprises 30 minutes 
into the future, showing influences of a current accident 
at bottleneck 15 on the likelihood of seeing surprising 
flows at several other bottlenecks 30 minutes later. 
 

 
Figure 13: Display of bottlenecks, highlighting the 
influences of an accident at bottleneck 15 (star), on the 
likelihood of seeing a surprising traffic situation at the 
circled bottlenecks in 30 minutes, as described by the 
graphical model in Figure 12.  
 

Classification accuracy does not provide a valuable 
signal as the accuracy is invariably reported as high for 
the marginal model (which assumes no surprise) given 
the rarity of surprises.  Thus, we sought to visualize the 
relationship between the false negatives and false 
positives for surprises.  Such curves for the task of 
predicting surprising traffic situations 30 minutes into 
the future for each bottleneck are displayed in Figure 
14.  We have removed from consideration all cases 
where the bottleneck was associated with a current 
surprising situation.  Thus, the model shows 
relationships among false negatives and false positives 



for cases where a bottleneck is not showing anomalous 
flows at the current time. 
We note from the graphs that, if we tolerate missing 
alerts about half of the surprises in 30 minutes, the false 
positive rate drops to approximately 0.05 for many of 
the bottlenecks.  This means that the probabilistic 
models of future surprise can be harnessed to report 
about half of the surprises on the Seattle traffic system 
with a 0.05 false positive rate.  
We integrated the future surprise reporting into the 
JamBayes service and, as highlighted in the options 
displayed in Figure 9, users can set up their systems to 
provide alerts when there will be a likely surprisingly 
light flow or surprising congestion in the future.  
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Figure 14: Surprise forecasting analysis. Curves show 
the relationship between false negatives (y axis) and 
false positives (x axis) for predictions of a surprise 30 
minutes in the future for the 22 Seattle bottlenecks, for 
cases where no surprise currently exists at the 
bottlenecks. 
 

4  Summary and Future Work 
 

We described our efforts to construct and field a 
probabilistic traffic forecasting system named 
JamBayes.  The system has been made available within 
our organization and is now in active use by over 2,500 
people. We are excited to provide the fruits of learning 
and reasoning as a basic utility that provides ongoing 
daily guidance to a large number of people.  
We are continuing to refine the methods.  Our ongoing 
research includes investigating alternate machine 
learning modeling methods, such as exploring the value 
of boosting, and also considering extensions that 
explore other inference and modeling methodologies, 
including particle filtering, continuous time Bayesian 
networks (Nodelman, Shelton, and Koller, 2003, 

Nodelman and Horvitz, 2003), and queue-theoretic 
techniques. We are also pursuing a deeper 
understanding of models of future surprise. We are 
intrigued by the challenges and opportunities associated 
with building models of future surprises, for traffic 
congestion as well as in other domains. 
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