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Abstract

This paper presents a novel algorithm for generating a watertight level-set from an octree. We show that the level-

set can be efficiently extracted regardless of the topology of the octree or the values assigned to the vertices. The

key idea behind our approach is the definition of a set of binary edge-trees derived from the octree’s topology. We

show that the edge-trees can be used define the positions of the isovalue-crossings in a consistent fashion and to

resolve inconsistencies that may arise when a single edge has multiple isovalue-crossings. Using the edge-trees,

we show that a provably watertight mesh can be extracted from the octree without necessitating the refinement of

nodes or modification of their values.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Boundary Representations

1. Introduction

Extracting the level-set of an implicit 3D function is a funda-
mental technique for many computer graphics applications.
Traditionally, an implicit function is represented by a regu-
lar sampling of the function’s values on a voxel grid. While
simple, this approach has the drawback that memory usage
is based upon the voxel grid’s resolution rather than actual
model complexity. Therefore, the need for higher resolu-
tion models, coupled with memory limitations of commodity
computers, has driven a move toward the use of octrees for
adaptively representing the implicit functions.

Extracting the level-set from the octree representation is,
however, more complicated than extracting it from the reg-
ular voxel grid. In the regular grid case, each voxel can be
processed independently to generate triangulations of the
portion of the level-set that the voxel intersects [WMW86,
LC87, NH91, KBSS01]. Since the same decisions are made
on both sides of a voxel face, the extracted triangulation is
guaranteed to be watertight. However, as seen in Figure 1,
the same approach applied to the octree’s leaves can yield an
inconsistent definition of edges across a face, causing cracks.

Although there has been a large amount of work in this
area, previous approaches have primarily focused on design-
ing solutions that adapt the octree in order to ensure that in-

consistencies cannot arise. In practice, this is often done by
refining leaf nodes in the tree and replacing scalar values
associated to the vertices with interpolated values from ad-
jacent vertices. In addition, many of these methods assume
that the isovalue at which the surface is extracted is fixed,
making it difficult to apply these methods to real-time data
exploration where a 3D volume is analyzed by considering
the family of surfaces extracted at different isovalues.

In response to these issue, this paper presents a novel al-
gorithm for generating a guaranteed watertight level-set for
an arbitrary octree (where both the octree structure and the
associated vertex values are unconstrained), without assum-
ing a fixed isovalue. To do this, we introduce of a set of
binary edge-trees, derived from the octree’s topology, that
can be used to extract a polygonal mesh which is prov-
ably watertight. As part of our method, we use an algorithm
from [BS95] for computing a minimum area triangulation
of a three-dimensional polygon to transform the extracted
polygon mesh into a triangulated level-set.

We begin our discussion in Section 2 by reviewing previ-
ous work in isosurface extraction from octrees. We introduce
edge-trees and show they can be used to generate a water-
tight mesh in Section 3. We present results in Section 4 and
conclude by summarizing our approach in Section 5.
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2. Related Work

Initial work in the extraction of isosurfaces from octrees fo-
cused on computational efficiency. Using a complete octree
representation, [WG92] encode the minimum and maximum
values of the samples falling within a node. This encoding
provides a method for efficiently identifying regions of space
through which the isosurface cannot pass, thereby avoid-
ing unnecessary traversal of finer nodes. However, this ap-
proaches require that the octree be complete and, as a result,
the memory overhead remains cubic in resolution.

The memory overhead of maintaining a complete octree
has motivated a focus on the extraction of isosurfaces from
adaptive octrees. These methods have been primarily applied
to the simplification of 3D meshes [Blo88, MS93, SZK95,
SFYC96, JLSW02, HWC∗05], but have also been applied to
the real-time exploration of volumetric data [OR97,WKE99]
and the extraction of level-sets from the solution of linear
systems realized on an octree [OBA∗03, LGF04, KBH06,
BGOS06]. These methods can be broadly classified into two
categories.

Primal Methods The approach taken by the primal meth-
ods is to extend the Marching Cubes algorithm by resolving
the inconsistencies that arise when adjacent leaf nodes in an
octree are of different depths.

When the octree values are obtained from a complete
voxel grid (or by sampling an implicit function), the in-
consistencies can be resolved by both using the grid (or
function) to consistently define the positions of isovalue-
crossings and by using refinement to prevent edges from
having multiple isovalue-crossings [Blo88,MS93]. A gener-
alization of this method that generates topology-preserving
extractions is presented in [VKSM04]. The limitation of
these methods is that they require knowledge of the origi-
nal function which may not be available. Additionally, the
refinement is dependent on the choice of isovalue, making it
difficult to apply these methods to applications such as real-
time volume data exploration.

Although initially proposed for the context of complete
octrees, a more general solution is described in the work of
Westermann et al. [WKE99]. Assuming a restricted octree
in which the depth-disparity between adjacent leaf nodes is
never greater than one, the authors show that a watertight
surface can be extracted by modifying sample values in re-
gions where adjacent leaf nodes are of different depths. This
solution has the advantage that it does not assume the exis-
tence of a prior implicit function and the pre-processing of
the octree is independent of the isovalue. However, the re-
striction on the depth disparity between adjacent leaf nodes
can necessitate refinement of the original octree, often re-
sulting in a marked increase in both the memory and time of
octree processing.

Dual Methods An alternate approach for extracting isosur-
faces from octrees was proposed in [JLSW02], in which

Figure 1: A coarser leaf node with face f (left) and the finer leaf

nodes adjacent across f (right): If leaf nodes are polygonized inde-

pendently, edges defined by f will not align with edges defined by

f1, f3, and f4 (top). This cracking can be resolved by replacing the

edge defined by f with the edges defined by the finer faces (bottom).

the feature sensitive extraction of [KBSS01] is general-
ized to the dual setting. Rather than defining the positions
of isovalue-crossings along edges of octree nodes, the au-
thors use Hermite data associated to zero-crossing edges
to define isovertex positions in the interior of the nodes,
and use the edge-adjacencies between leaf nodes to con-
nect these interior vertices. Although problems with non-
manifold and self-intersecting surfaces are addressed in sub-
sequent work [SJW07, JU06], it is still hard to extend the
method to the general case since the tagging of zero-crossing
edges with Hermite data assumes a fixed isovalue.

A hybrid (dual/primal) method is proposed in [SW04].
Using the fact that the polyhedra of the dual to the parti-
tion defined by the leaves of the octree can be thought of as
cubes (possibly with collapsed edges), the authors propose
a setting in which the Marching Cubes algorithm can be ap-
plied to extract a watertight mesh from an octree by assign-
ing scalar values to the interior of the leaf nodes. However,
because the surface is extracted from the dual partition, ver-
tices of the octree that are endpoints of zero-crossing edges
are not guaranteed to be separated by the extracted surface,
which can result in the introduction of topological artifacts.

In contrast to previous work, we show that a watertight
surface can be extracted from the octree without restricting
its topology, constraining the values at the vertices, or fixing
the isovalue. Using a primal approach, we extract the sur-
face directly from the samples, defining a level-set without
having to infer the values of the function at new locations.
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3. Isosurface Extraction

In this section, we describe a general method for extracting
a watertight surface from an octree without imposing any
restrictions on the topology of the tree or the values asso-
ciated to its vertices. We begin by reviewing early work of
Bloomenthal [Blo88] that uses an octree to obtain a poly-
gonization of an implicit surface. Although the method as-
sumes a fixed isovalue and constrains the octree, we show
that the approach can be generalized to the context of arbi-
trary values and unconstrained octrees through the use of the
edge-trees encoded by the octree. We conclude this section
by describing an algorithm for computing the minimal area
triangulation of the polygons, providing a way to transform
the polygon mesh into a triangle mesh.

3.1. Motivation

At a high level, the method proposed in [Blo88] generates
the polygon mesh corresponding to the zero-surface by asso-
ciating a set of isopolygons to each leaf node independently.
For each leaf node, the method iterates over the faces of the
node, applying a marching-squares-like algorithm. Iso-edges
separating vertices with positive value from those with neg-
ative value are defined for each face and, linking together
iso-edges sharing a common isovertex, the isopolygons as-
sociated to the node are obtained.

To ensure watertightness, the algorithm is altered in the
case that two face-adjacent leaf nodes are of different reso-
lutions. As shown in Figure 1, instead of using the iso-edges
computed from the coarser face, the iso-edges from the finer,
face-adjacent neighbors are copied (with flipped orientation)
to define the set of iso-edges associated to the coarser node.

However, after copying iso-edges from the finer nodes to
the coarser one, the set of iso-edges associated to the coarser
node may no longer form a closed loop. To address this
concern, the implicit function is used in two ways: First,
in the case that the implicit function exhibits multiple zero-
crossings along an edge of a leaf node, the leaf node is re-
fined and values are associated to the new vertices by sam-
pling the implicit function. Second, the position of an isover-
tex along a zero-crossing edge is defined as the (unique) root
of the implicit function along the edge.

Generalizing this solution to unconstrained surface ex-
traction poses several challenges: (1) Since no implicit func-
tion is assumed, the positions of zero-crossings may be de-
fined inconsistently. (2) The method can require modifica-
tion of the octree’s topology. And, (3) the refinement of leaf
nodes is dependent on the choice of isovalue.

To resolve these challenges, we introduce edge-trees and
show that they can be used to define a watertight polygon
mesh without refining the octree or modifying its values.

Figure 2: A quadtree decomposition of a square (top) with three of

its twelve edge-trees (bottom).

3.2. Edge-Trees

Given an octree with scalar values associated to the vertices,
we define a set of edge-trees whose nodes are in one-to-one
correspondence with the edges of the nodes in the octree.
The topology of the trees is inherited from the topology of
the octree and, for a given isovalue, a binary flag is associ-
ated to each edge-tree node indicating whether the endpoints
of the associated edge in the octree are on the same or oppo-
site sides of the isovalue.

As an example, Figure 2 shows a quadtree decomposition
of a square with three of its twelve edge-trees. The root of
the quadtree defines the left edge a. The two left children of
the root define the edges a1 and a2, children of a in the edge-
tree, and the two left children of the bottom left child define
the edges a10 and a11. Note that though b0 and b1 lie along a
single line, they are the roots of distinct edges-trees because
there is no quadtree node with edge e such that b0,b1 ⊂ e.

To define the value associated to an edge-tree node, the
values at the endpoints of its associated octree edge are com-
pared against the isovalue. So, for example, even though
there are multiple isovalue-crossings along the edge b1, it
is assigned a value of 0 since both endpoints are on the same
side of the isovalue.

We observe that since the nodes of the octree define a re-
cursive partition, the edges of the octree nodes have the prop-
erty that for any two edges e1 and e2:

• The interiors of e1 and e2 do not overlap, or
• e2 ⊇ e1 and e2 is an ancestor of e1 in an edge-tree, or
• e1 ⊇ e2 and e2 is a descendant of e1 in an edge-tree.

Defining Consistent Isovertices To define the position of
isovertices in a consistent manner, we observe that edge-
trees satisfy the property that the binary value of an interior
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node is equal to the sum (mod 2) of its children’s values.
Thus, if an edge e has value 1 (corresponding to an isovalue-
crossing) it must have a unique child that also has value 1.

Recursively traversing down the tree, we trace the unique
path e ⊇ ·· · ⊇ ẽ with the property that every node along the
path from e to the leaf node ẽ has value 1. Thus, we can
define the isovertex associated to e as the isovertex p defined
by ẽ. We denote this assignment as p ∈ e. (Note that using
this notation,p ∈ e and e′ ⊇ e does not imply p ∈ e′.)

If there is only one isovalue-crossing along e, this defini-
tion of isovertex position is consistent with the minimal edge

definition in [JLSW02].

Figure 3 shows how this definition of isovertex posi-
tion alleviates part of the difficulty in octree polygonization.
Rather than using the edge e to define the isovertex posi-
tion at p (top), we traverse down the edge-tree to node e1

(middle), and use the root associated with e1 to define the
isovertex position. As a result, the faces on either side of e

contribute iso-edges with p1 as an endpoint and part of the
isopolyline is closed off.

Closing the Isopolylines As shown in Figure 3 (middle),
we may still need to seal the isopolylines associated to a leaf
node N to obtain a set of closed isopolygons. To do this,
we show that whenever the isovertex p ∈ e has valence one,
there exists a unique twin isovertex p′ ∈ e′, with e′ in the
same edge-tree, that also has valence one. Thus, adding the
iso-edge (p, p′) to the set of iso-edges associated to N will
reduce the number of valence-one isovertices along N.

To obtain the twin isovertex of p, we traverse the parents
of e until we find the first edge ẽ which has value 0. Since ẽ

is the first such edge, we know that both children of ẽ have
value 1. Traversing down the second child of ẽ – the one
that is not an ancestor of e – through nodes with value 1, we
obtain the leaf node e′ defining the twin isovertex p′. (We
prove the existence of such an edge ẽ below.)

Figure 3 (bottom) shows how this definition of the twin
isovertex alleviates the difficulty in octree polygonization.
Identifying the isovertex p00 associated to e00 as an endpoint
of an isopolyline, we trace through the ancestors of e00 to get
to the edge e0, the first edge which has value 0. Following
the other child of e0 we arrive at the edge e01 defining the
twin isovertex p00. Adding the edge from p00 to p01, the
isopolylines become isopolygons, as desired.

Since the number of isovertices along an edge with va-
lence one must always be even, in the case of a restricted oc-
tree [WKE99], there can be at most two valence-one isover-
tices and the twin of p can simply be defined as the only
other valence-one isovertex p′ along the same edge.

Proof of Correctness For the extraction algorithm to result
in a watertight polygonal mesh, the polygons in the mesh
must be shown to satisfy two properties: (1) The extracted
isopolylines must be closed loops, and (2) each edge in the
polygon mesh must be shared by exactly two isopolygons.

Figure 3: In the case that the edge e exhibits more than one sign

change, the polygonization method of [Blo88] fails (top). Using the

edge-trees to define the position of the isovertices in a consistent

fashion (middle), and pair up open isovertices (bottom) results in a

valid polygonization.

Closedness

We prove that the isopolylines are closed by considering the
set of iso-edges associated to a leaf node of the octree, and
showing that every endpoint has valence two.

Consider the case when N is a leaf node in the octree con-
taining an isovertex p, defined by the leaf e ∋ p in the edge-
tree. In this case, there are two leaf nodes N1 and N2 in the
octree which can define iso-edges on N containing p.

These are the nodes that are either face-adjacent to N (if
N is coarser than Ni) or equal to N, and lie on opposite sides
of the edge e. Formally, these are defined to be the leaf nodes
containing faces fi ⊂ ∂Ni such that: (1) f1 6= f2, (2) fi ⊂ ∂N,
(3) there exists an edge ei ⊂ ∂ fi with ei ⊇ e, and (4) the
neighbor of Ni across fi is a leaf node no finer than Ni.

The isovertex p is an endpoint of an isopolyline on N if
and only if only one of the ei satisfies p ∈ ei. Without loss
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of generality, we assume p ∈ e1 and separately consider the
cases e1 ⊇ e2 and e2 ⊃ e1.

Case 1 (e1 ⊇ e2): Since p ∈ e1, all the edges along the chain
e1 ⊇ ·· · ⊇ e must have value one. Since e1 ⊇ e2 ⊇ e, e2 must
be an element of the chain and hence must also have p as an
isovertex, contradicting our initial assumption.

Case 2 (e2 ⊃ e1): Since p 6∈ e2, there must exist an edge ẽ

with value 0 along the chain e2 ⊃ ·· · ⊃ e1. Thus, the twin p′

of p is well-defined and satisfies p′ ∈ e′ for some e2 ⊃ e′.

Denoting by N′
1 and N′

2 the leaf nodes in the octree which
can define iso-edges on N containing p′, it is not hard to
show that (up to re-indexing) e2 = e′2 and ẽ ⊃ e′1. Since e′1 ⊇
e′, the edge e′1 must lie on the chain ẽ ⊃ ·· · ⊃ e′, whose
elements all have value 1 except ẽ, and therefore p′ ∈ e′1.
Additionally, since e2 ⊇ ẽ and since ẽ has value 0, we know
that p′ 6∈ e2, hence p′ must also be have valence one. Thus,
adding the iso-edge (p, p′) will have closed the isopolyline
at p, contradicting the assumption that p has valence one.

Edge Manifoldness

We demonstrate that anytime we close an isopolygon by
adding an edge between an isovertex and its twin, that new
iso-edge will be shared by exactly one other isopolygon.
(Since the initial set of iso-edges is obtained by copying from
finer leaf nodes to coarser leaf nodes across a common face,
we know that these edges must be shared by exactly two
isopolygons.)

To show the above, we prove that if the isovertex p is an
endpoint of an isopolyline associated to a leaf node N, then
p is also an endpoint of an isopolyline associated to exactly
one other leaf node N′. Thus, the edge (p, p′) will appear in
exactly two isopolygons.

We consider the two cases in which an isovertex p ∈ e can
exist: Either the (edge-tree leaf) e is adjacent to three octree
nodes, or it is adjacent to four. Figure 4 shows these two con-
figurations, with the bottom row providing a visualization of
the nodes looking down the e-axis.

In both cases, a simple counting argument shows that if
p is an endpoint of an isopolyline along Ni then there exists
one and only one other node N j (with i 6= j) such that p is
also an endpoint of an isopolyline along N j.

To count the number of nodes adding the iso-edge be-
tween p and its twin p′, we begin by associating a binary
value ni to each node Ni, indicating whether there exists an
edge ei ⊂ ∂Ni such that p ∈ ei. Next, we associate a value
fi j to each pair of face adjacent nodes Ni and N j, indicat-
ing the existence of an iso-edge contained in the shared face
between Ni and N j which has p as an endpoint – setting fi j

equal to 1 if either ni or n j is equal to one. Finally, we asso-
ciate a value ci to each node Ni, indicating whether p is an
endpoint of an isopolyline associated to the node Ni – setting
ci equal to 1 only if one of fi j and fi j′ , for nodes N j and N j′ ,
face adjacent to Ni, is equal to one.

Figure 4: The two configurations in which an isovertex p ∈ e can

exist: Either e is adjacent to three leaf nodes in the octree (left), or

it is adjacent to four (right).

The values of ci for the two cases are shown in Table 1,
which is abridged by using the symmetries of the rows under
reflection and rotation. Additionally, we omit the case n1 = 1
for the three-node case since e cannot lie on an edge of N1.

Three-Node Case

n1 n2 n3 f12 f23 f13 c1 c2 c3

0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 1 0 1
0 1 1 1 1 1 0 0 0

Four-Node Case

n1 n2 n3 n4 f12 f23 f34 f14 c1 c2 c3 c4

0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 1 0 1 1 0
1 1 0 0 1 1 0 1 0 0 1 1
1 0 1 0 1 1 1 1 0 0 0 0
1 1 1 0 1 1 1 1 0 0 0 0
1 1 0 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0

Table 1: The values of ci, indicating if the isovertex p is an end-

point of an isopolyline associated the leaf node Ni.

As the tables indicate, given the configuration of nodes
shown in Figure 4, either the edge from p to its twin p′ is
never added (∑ci = 0), or it is added exactly twice (∑ci = 2),
and the iso-edges in the mesh satisfy the condition that each
one is shared by exactly two isopolygons.

3.3. Polygon Triangulation

Given the polygon mesh extracted from the octree, we obtain
a triangle mesh by independently triangulating each of the
individual isopolygons.
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In general, the problem of triangulating a 3D polygon is
both open and hard [BDE98]. The problem is open because
even determining whether the polygon can be triangulated –
i.e. whether the polygon boundary is knotted – is an open
problem. The problem is hard because it can be shown that
even if the polygon boundary is not knotted, there exist ver-
tex configurations that require the introduction of exponen-
tially many new vertices in order to obtain a triangulated sur-
face that is not self-intersecting.

What makes our triangulation problem tractable is the
observation that the isopolygons obtained in the extraction
step are well-behaved. Specifically, each of the isopolygons
forms a simple closed curve on the surface of a convex body
(the nodes of the octree).

Recent work in differential geometry [MY80, MY82]
shows that for a simple, closed curve on the boundary of a
convex body, the minimal area surface bounded by the curve
and homeomorphic to a disk is not self-intersecting. Guided
by this result, we triangulate an isopolygon by finding the
minimal area triangulation homeomorphic to a disk. It is im-
portant to note, however, that our triangulations are not min-
imal area surfaces, only minimal area triangulations. Thus,
though we have found that in practice the extracted triangu-
lations do not self-intersect, this is not guaranteed.

To compute the minimal area triangulation, we use a
method from [BS95] which, for completeness, we describe
below.

Algorithm

To compute the minimal area triangulation of a polygon
P = {p1, . . . , pn}, two observations can be made. First, be-
cause the triangulation is homeomorphic to a disk, it fol-
lows that if the edge between pi and p j is in the minimal
area triangulation, then the induced triangulations of the two
sub-polygons Pi, j ≡{pi, . . . , p j} and Pj,i ≡{p j, . . . , pi} must
also have minimal area. Second, since for any pi the edge
between pi and pi+1 must be a boundary edge of the tri-
angulation, there must exist a vertex pk such that triangle
Ti,i+1,k ≡ {pi, pi+1, pk} is in the triangulation.

Thus, the minimal area triangulation can be determined
by computing the minimal area triangulations of nested sub-
polygons of P. Defining A(i, j,k) to be the area of the trian-
gle Ti, j,k and M(i, j) to be the area of the minimal area trian-
gulation of Pi, j, this leads to a simple recursive definition for
the value of M(i, j):

M(i, j) =











0 if i = j

0 if i = j +1 mod n

min
k∈( j,i)

M(i,k)+M(k, j)+A(i, j,k)

Caching the 2D array of values (and corresponding choice
of k) as values of M(i, j) are computed makes it possible to
compute M in O

(

n3
)

time and O
(

n2
)

space. The minimal
area triangulation can then be determined by starting at the

Figure 5: To compute the minimal area triangulation, we compute

the minimal area M(i, j) of the sub-polygons Pi, j (left). We do this

recursively by iterating over the vertices pk between p j and pi, and

finding the vertex minimizing the sum of areas A(i, j,k)+ M(i,k)+
M(k, j) (right).

entry M(1,2) and iteratively following the k-values to obtain
the triangles.

4. Results

Using the edge-trees, we have shown that it is possible to
extract an isosurface from an octree without requiring either
refinement of the tree or modification of the values associ-
ated to the vertices. In this section, we evaluate our approach
in the context of mesh simplification by considering the im-
plications of octree refinement on the simplification and by
comparing our results to those obtained using dual marching
cubes.

For a given 3D surface, we generate an adaptive octree
by starting with the root node and recursively refining nodes
that intersect the surface and whose intersection with the sur-
face is not “too flat”. We assign a value to the vertices of
the octree by sampling the Euclidean distance transform. For
simplicity, we define the measure of flatness to be the ratio
of the length of the mean curvature vector of the intersected
surface to its area.

4.1. The Cost of Octree Refinement

To evaluate the effects of octree refinement, we modify the
construction of the tree to ensure that the octree is restricted
so that the depth-disparity between adjacent nodes is never
greater than one ( [WKE99]). We do this by further refining
the leaves of the octree in the case that they are too coarse.

Figure 6 shows the results of our experiment for the sim-
ple case of a cube. We compare the surface returned when
the octree is adapted to the flatness of the model and is re-
fined to satisfy the depth-disparity constraint (left), and the
surface returned when the octree is adapted to the flatness of
the model without refinement (right). Results for analogous
experiments on more complex models are shown in Figure 8.

Although the difference between the surfaces extracted
using the constrained and the unconstrained octrees is barely
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Figure 6: Isosurfaces extractions obtained using a constrained

adaptive octree (left), and an unconstrained adaptive octree (right),

showing the underlying polygon mesh. Though both approaches ex-

tract surfaces preserving sharp edges, a constrained octree results

in many more triangles in flat regions.

perceptible, the computational cost and memory overhead is
more apparent. These statistics are summarized in Table 2
which compares the octree complexity (in nodes), surface
complexity (in vertices), and extraction time (in seconds).
As the table indicates, constraining the octree limits the sim-
plification process and results in surfaces satisfying the same
flatness criteria but with 20% more vertices. More signif-
icantly, we find that using the constrained octree more than
doubles the average number of nodes needed to represent the
sample data, forcing an unnecessary increase in both mem-
ory and computation time.

4.2. Comparison to Dual Marching Cubes

One of the motivations for using a primal approach for sur-
face extraction is that, because an isovertex is introduced
along every isovalue-crossing edge, the isosurface is guar-
anteed to separate samples that lie on opposite sides of
the isovalue. In contrast, methods such as dual marching
cubes [SW04] which extract a surface from an induced par-
tition do not guarantee that endpoints of an octree-edge on
opposite sides of the isovalue will be separated by the ex-
tracted surface.

As an example Figure 7 compares the surfaces extracted
from an adaptive octree sampling the Euclidean distance
transform of a pelvis. In the left image, we see the surface
obtained using dual marching cubes, where the vertex asso-
ciated to the interior of a node is defined as the node’s center
and the value is obtained by explicitly sampling the distance
transform. In the right image, we see the surface extracted
using our primal method.

In regions such as the ilium, the flatness of the surface im-
plies that the adaptive octree is much coarser than the thick-
ness of the model and the dual partition does not generate
samples interior to the surface. As a result, despite the ex-
istence of vertices in the primal representation that sample

Figure 7: Reconstructions of a pelvis obtained using the dual

marching cubes algorithm (left) and using our method (right). While

both methods generate watertight surfaces from an unconstrained

octree, only primal methods guarantee that the surface passes

through all isovalue-crossing edges in the octree. One possible con-

sequence, topological artifacts, can be observed here.

the interior of the pelvis, dual marching cubes generates a
reconstruction with topological holes.

Although the performance of dual marching cubes could
be improved by using an implicit function to refine the octree
(e.g. [VKZM06]), in these experiments we focus on evaluat-
ing the extraction performance in the case of unconstrained
octrees, and do not adapt the topology to dual marching
cubes.

5. Conclusion

In this work, we have provided a novel algorithm for ex-
tracting an isosurface from an octree. Introducing the notion
of edge-trees, we address the traditional problems in octree-
based surface extraction, providing a method for directly ex-
tracting a watertight mesh without constraining the topology
of the octree or modifying vertex values.
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