High-Quality Streamable Free-Viewpoint Video

Alvaro Collet Ming Chuang Pat Sweeney

Don Gillett Dennis Evseev David Calabrese

Hugues Hoppe Adam Kirk Steve Sullivan

Microsoft Corporation

Figure 1: Examples of reconstructed free-viewpoint video acquired by our system.

Abstract

We present the first end-to-end solution to create high-quality free-
viewpoint video encoded as a compact data stream. Our system
records performances using a dense set of RGB and IR video cam-
eras, generates dynamic textured surfaces, and compresses these to
a streamable 3D video format. Four technical advances contribute
to high fidelity and robustness: multimodal multi-view stereo fus-
ing RGB, IR, and silhouette information; adaptive meshing guided
by automatic detection of perceptually salient areas; mesh track-
ing to create temporally coherent subsequences; and encoding of
tracked textured meshes as an MPEG video stream. Quantitative
experiments demonstrate geometric accuracy, texture fidelity, and
encoding efficiency. We release several datasets with calibrated
inputs and processed results to foster future research.

CR Categories: 1.3.0 [Computer Graphics]: General

Keywords: multi-view stereo, surface reconstruction, 3D video,
mesh tracking, geometry compression, MPEG

1 Introduction

Interest in free-viewpoint video (FVV) has soared with recent ad-
vances in both capture technology and consumer virtual/augmented
reality hardware, e.g., Microsoft HoloLens. As real-time view track-
ing becomes more accurate and pervasive, a new class of immersive
viewing experiences becomes possible on a broad scale, demanding
similarly immersive content.

Our goal is to transform free-viewpoint video from research pro-
totype into a rich and accessible form of media. Several system
components must work together to achieve this goal: capture rigs
must be easy to reconfigure and support professional production
workflows; reconstruction must be automatic and scalable to high
processing throughput; and results must be compressible to a data
rate close to common media formats. Visual quality from any an-
gle must be on par with traditional video, and the format must be
renderable in real-time on a wide range of consumer devices.

In this paper, we discuss how we address these challenges to create
an end-to-end system for realistic, streamable free-viewpoint video
at significantly higher quality than the state of the art. Our approach
does not require prior knowledge of the scene content. It handles
challenging scenarios such as multi-figure captures, detailed hand
and facial expressions, free-flowing clothing, animals, and a wide
variety of props from golf clubs to ropes to furniture. The example
captures in Fig. 1 and 17 illustrate a range of scenarios.

Our main contribution is an integrated capture and processing
pipeline that attains fidelity, robustness, and scale suitable for pro-
fessional content production. Within this pipeline, several key ad-
vancements enable the high-quality results:

e A novel multimodal reconstruction that leverages RGB, infrared
(IR), and silhouette information to recover dense shape detail.

e An extension to Poisson surface reconstruction (PSR) [Kazhdan
et al. 2006] that performs implicit function clipping to improve
outlier removal and maintain silhouette accuracy.

e A method to automatically identify and preserve perceptually
important areas (e.g., faces, hands) in performances.

o A parallelizable, non-rigid mesh tracking framework to automat-
ically handle topology changes by segmenting the performance
into a sequence of deforming keyframe meshes.

e An encoding method to encapsulate tracked textured meshes and
audio information into a single low-bandwidth MPEG stream.

To support further research, we publish a dataset with thousands of
FVV frames, each comprising 106 calibrated and synchronized cam-
era images together with intermediate and final processing results.

Preprocessed
images

Capture + Meshing + Temporal Mesh Compression +
Point Generation
Preprocessing Texturing Processing Encoding

Point cloud

106 cameras

« Calibration
« Bias correction
« Background subtraction

« Depth maps (IR, RGB, SfS)
* Multimodal MVS

- Iterative surface estimation
(point-based)

« Island removal

« Texturing

« Topology denoising

* Hull-constrained PSR
» Occlusion detection

Mesh

FVV MP4

Tracked mesh

« Video encode H.264
+ Audio encode
» Mesh compression

* Mesh tracking
« Importance detection
* Mesh decimation
« Texture atlas generation

Figure 2: Processing pipeline.

2 Related work

We consider the problem of Free Viewpoint Video (FVV): a scene
photographically captured in real-time that can be played back in
real-time and appears like video from a continuous range of view-
points chosen at any time in playback. In particular, we focus on a
360-degree volume captured and experienced from the outside look-
ing in (as does the vast majority of the related work). The three main
techniques proposed in this literature are: shape from silhouettes,
freeform 3D reconstruction, and deformable models.

Shape from silhouette Silhouette-based approaches are rela-
tively fast, easy to compute, and can provide a good approximation
of the underlying shape, especially as the camera count grows.

One of the first silhouette-based systems is by Moezzi et al. [1997],
motivated by fast reconstruction time and interactive playback.
Matusik et al. [2000] improve the viewing experience with view-
dependent rendering, and Franco et al. [2006] goes beyond poly-
hedral models to recover smooth shapes consistent with the input
silhouettes. Ahmed et al. [2008b] generate temporally coherent
meshes from per-frame shape-from-silhouette. To recover greater
detail, Starck et al. [2007] enhance the visual hull with feature cor-
respondences and computed the surface using graph cuts; Wu et
al. [2011] enhance the visual hull with high frequency detail from
shading variations. There are now commercial systems to produce
FVV from silhouettes (e.g., 4DV [2007], DoubleMe [2014]).

Silhouette-based methods are fast and reliable, but quality can suf-
fer as silhouettes alone cannot represent concavities such as self
occlusions, eye sockets, or mouth openings, and can produce visible
artifacts in non-captured views or textures with incorrect blends.

Freeform 3D surface reconstruction Kanade et al. [1997] pi-
oneered FVV research with Virtualized Reality, using a dome of
cameras to compute multi-baseline stereo and generate new views
by triangulating merged depth maps. Narayanan et al. [1998] en-
hance the system by adding explicit surface reconstruction. Zitnick
et al. [2004] compute dense depth maps, segment them into tex-
tured layers, and warp them to render virtual viewpoints. FreeD
[2014] computes colored point clouds from still images for replays

in TV broadcasting. Goldluecke et al. [2004] use space-time level
sets to create temporal volumetric reconstructions. Labatut et al.
[2007] compute a 3D Delaunay triangulation of the stereo points
and reconstruct a surface by labeling the Delaunay tetrahedra as
empty or occupied. Vlasic et al. [2009] optimize visual-hull meshes
using normal maps estimated via active shape-from-shading. Similar
to our work, Liu et al. [2010] compute 3D points from stereo and
silhouettes, then refine and mesh to create a final surface.

Our work obtains higher-quality results by fusing silhouette, IR, and
RGB information, and it constructs tracked meshes to enable effi-
cient encoding of both geometry and texture for internet streaming.

Deformable models These systems exploit knowledge about the
captured subject to parameterize and constrain the reconstruction
process, and are often built to recover humans.

Carranza et al. [2003] pioneered fitting body models to images,
deforming the precomputed shape of a specific performer to fit
multiple silhouette images. Vlasic et al. [2008] deform a more
general skeleton-driven template to fit visual hulls. Ahmed et al.
[2008a] leverage calibrated lighting and reflectance variation to add
temporally coherent detail over a smooth template. De Aguiar et al.
[2008] add detail to a parameterized body model using silhouettes
and multi-view stereo. Ye et al. [2013] leverage RGBD data to
deform and texture Kinect-tracked skeleton templates. Huang et
al. [2014] deform a human shape rigged using Pinocchio with a
manually initialized skeleton.

Model-based systems produce very good results when the subject is
well-represented in the parameterized space, especially when stereo
information enhances the deformed model. The greatest challenges
are requiring precomputed models of all content, and artifacts where
the deformation cannot be represented in the parameterized space.

In comparison, our system does not require any prior knowledge of
the content, though we can exploit it when available. We leverage
silhouettes, IR and RGB multi-view stereo to create a highly detailed
point cloud. We enforce silhouettes when meshing, and generate
temporally coherent meshes and textures that can be encoded and
played back smoothly in real time on low-powered devices.

Figure 3: Typical stage setup. RGB and IR cameras and unstruc-
tured static IR laser light sources surround the capture volume.

3 System overview

We present an overview of the end-to-end system in Fig. 2. To
capture a performance, we use a greenscreen stage with high-speed
RGB and IR cameras. To calibrate the stage, we capture: background
images to assist in background segmentation; images of a calibration
object to compute the camera parameters; and color calibration
images to normalize pixel response across cameras for consistent
texturing. We then capture the performance and preprocess the
images to correct bias and segment out the background.

We compute a high-quality point cloud for each frame. We first
process the images from stereo pairs and silhouette data to generate
dense depth maps. We merge the depth maps using a multimodal
multi-view stereo algorithm, and refine the resulting point cloud
by locally fitting to the underlying surfaces. With this point cloud,
we create a watertight mesh using a silhouette-constrained Poisson
surface reconstruction. This mesh may contain spurious artifacts
and disconnected components, which we clean up with topological
denoising and island removal algorithms. We detect occlusions
and compute surface coloring in the mesh by blending colors from
visible cameras based on viewing angle and surface properties.

At this point we have a textured high-resolution mesh with differ-
ent connectivity at every frame. We automatically select suitable
keyframes and track them over sequences of frames to produce
temporally coherent subsequences. We then determine which areas
are perceptually important, and adaptively decimate and unwrap
the meshes preserving important geometric and texture detail. We
leverage mesh tracking to compute a temporally coherent mesh un-
wrapping and texture atlas. This is the raw FVV result, which we
compress and encode in a single MPEG stream.

4 Capture and preprocessing

The current capture volume is a greenscreen stage encircled by syn-
chronized high-speed video cameras, as shown in Fig. 3. The default
configuration is 53 Sentech STC-cMCc4MCL RGB cameras and 53
Sentech STC-CMB4MCL IR cameras covering a reconstruction volume
of 2.8 m in diameter and 2.5 m high. Ten cameras are mounted in an
array overhead, and 96 are mounted on 8 wheeled towers to support
easy reconfiguration, different lighting conditions, and to maximize
accuracy for a given scene size. We record 2048x2048 images at 30
Hz, though we can go up to 60 Hz for high-speed action. We add
unstructured static IR laser light sources on the towers to provide
strong IR texture cues. We surround the space with standard green-
screen to aid background segmentation, as a distinct background
improves the accuracy of segmentation and thus the reconstructed
shape. We use standard production lighting kits and typically choose
a uniform lighting setup, but colored or imbalanced lights can be
used to achieve specific looks.

We calibrate the stage before a performance to provide consistent ori-
entation and ensure geometric accuracy and sharp textures. The cali-
bration object is a wheeled octagonal tower with attached checker-
boards, from which we compute the camera parameters with known
scale, origin, and up vector. After each major lighting change, we
adjust the white balance of each camera (using an integrating sphere
as a constant D65 illumination source). We thus ensure photo-
consistency across all video sources, as differences in black levels
and color gains can lead to geometric and visual artifacts.

We control the capture stage through a central application that man-
ages data synchronization, production metadata, audio recording, as
well as preview tools and diagnostic views for directors. When cap-
turing, the cameras write image data to standard PCs (six cameras
per PC) which are then merged to a central disk array for processing.

More information on the configuration of cameras, including setup
schematics, stereo pair configurations, pod/camera specifications,
and frustum coverage can be found in the supplemental material.

5 Point generation

We introduce a multimodal 3D reconstruction method that adaptively
combines RGB stereo, IR stereo, and Shape from Silhouette (SfSil)
to improve reconstruction quality. Consider the capture in Fig. 4,
which presents multiple challenges for point generation: untextured
areas, hair, thin objects, etc. Most of the subject can be reconstructed
using IR data (blue points), but non-IR-reflective areas (e.g., shoes,
hair) cannot be accurately reconstructed. The RGB-based recon-
struction (green points) recovers the shoes and hair better, but it
is incomplete in other areas. The golf club is too thin to be recon-
structed from either RGB or IR data, but its reconstruction from
silhouette data (red points) is excellent. Our key insight is that no
sensing modality can resolve every challenge, but that each modality
is best suited to resolve different challenges.

Other works in the literature combine multiple modalities for 3D
reconstruction, mainly photo-consistency and SfSil in volumetric
methods (e.g., Hernandez et al. [2004], Sinha et al. [2005], Starck
et al. [2007]). Song et al. [2010] combine stereo and silhouette
data in a single point cloud, and reconstruct a mesh using Poisson
surface reconstruction. In contrast with our work, their fusion of
stereo and SfSil follows a fixed priority, in which stereo always takes
precedence over SfSil. Our work is also related to depth map fusion
approaches (e.g., [Campbell et al. 2008; Hiep et al. 2009]), though
we fuse depth maps across modalities. PMVS2 [Furukawa and
Ponce 2010] is regarded as the state of the art in 3D reconstruction.
‘We compare our method to PMVS2 in Fig. 4.

We split the capture stage into logical groups of 2 RGB + 2 IR cam-
eras that we call pods. Our algorithm is split into three components:
in Depth Map Generation, we compute independent depth maps
with confidences for each modality for each pod; in Multimodal
MVS we select the best depth values in each pod and refine them
with a combined RGB/IR score; and in Iterative Surface Estimation
we refine the positions and normals of the oriented points by locally
fitting the underlying surfaces. We perform a final photoconsistency
check based on the combined RGB/IR score to cull outliers.

5.1 Depth map generation and confidence estimation

For each pod k, our goal is to compute dense depth maps Dy, DEgz,
D&, and confidence maps ®fy, ®Xqp, ¥, for IR, RGB, and SfSil,
respectively. We assume that each camera C' in pod k has a similar
unobstructed view of the scene. We define the reference view C¥;
for pod k as the camera whose center is closest to the average camera
center in pod k. We transform each depth map in pod k to C¥,.

We compute Dk and DEgg with GPU PatchMatch [Bleyer et al.
2011] because it produces near-state-of-the-art results efficiently, but

Ours SfSil PMVS2 RGB

Ours RGB

PMVS2 IR

Ours IR Ours full

PMVS2 RGB+IR

> 4 <

Figure 4: Reconstructions of different modalities in PMVS2 and our method. All reconstructions (top) are meshed (bottom) with our
silhouette-constrained PSR with the same parameters. The main body shape is best reconstructed using IR in both methods. The hair and
shoes are not IR-reflective and cause artifacts in IR, so these regions are better reconstructed from RGB. The golf club seems to be properly
reconstructed using RGB+IR in both PMVS2 and our method, but noisy depth values and inconsistent normals in such a thin object cause
failures in surface reconstruction. Conversely, SfSil obtains good points and normals for such thin objects. Our final reconstruction (far right)
combines the best of each modality and provides superior reconstruction quality on a wider range of scenarios and materials.

our method also works with alternative dense stereo algorithms. We
compute Db, as in Song et al. [2010]: we first generate the visual
hull octree as the intersection of all background masks; we mesh the
octree with Marching Cubes; and we project the mesh into D¥,
with a Z-buffered rasterization.

Consider the confidence maps Of,, D s, BEg,, where each value
is in range [0, 1]. For stereo, there exist many alternatives to com-
pute confidences (see Hu et al. [2012] for a survey). We only need
to determine which modality is more reliable, so we use a simple
textureness measure Tis (p), Tigs (p) by computing the average of
the Sobel operator over a window centered at pixel p. High values of
T'(p) indicate abrupt variations in intensity, and therefore more in-
formation for stereo methods. We normalize T'(p) using the negated

Cauchy M-estimator, so that ®*(p) = 1 — 1/(1 + (T* (p)/oz)Q).

We measure ®¥; based on the range of valid depth values for a
given silhouette pixel, which we call the valid ray length (VRL).
Given that a silhouette pixel only intersects the visual hull in one
point, the VRL is an estimation of uncertainty. Consider a silhouette
pixel s in a background mask ¢, and P(s, C;, d) the 3D point from
camera center C; along the ray through s at a distance d. Then,
VRL(s) is the range of depth values d for which P is categorized
as foreground when projected into all background masks for all
pods. We normalize VRL(s) with the Cauchy M-estimator, so that

VRL'(s) = 1/(1 + (VRL(s)/B)*).

We compute VRL(s) for every silhouette pixel in every image. We
associate VRL(s) to all nodes in the visual hull octree that project
into s. We compute %, by projecting the confidences of the visual
hull octree into C¥; with a Z-buffered rasterization.

In our implementation, we learn the Cauchy normalization parame-
ters «, 8 using grid search over a training set of 20 frames of known
geometric shapes. The learned parameters result in SfSil confidences
larger than stereo when VRL < 2 cm, and SfSil confidences smaller
than average stereo confidences when VRL > 6 cm.

5.2 Multimodal MVS

In this section, we merge Diy, DEqg, D¥s; into a single depth map
per pod D*, and refine it with an RGB/IR photoconsistency metric.

RGB/IR MVS photoconsistency We cannot directly compute a
multi-view photoconsistency score because the data is not pixel-wise
comparable across modalities. Instead, our metric is a confidence-
weighted average of IR and RGB photoconsistency.

Consider the pairwise score NCC(W i (7rrer), Wi (rer)) for a pair
of patches W,: and W,,; centered around p* and p’ in images i
and 7, warped with a planar homography with respect to a reference
plane 7. To extend this score to multiple views, Goesele et al.
[2006] select a reference image and aggregate the score of p in each
view with respect to the reference image. In our case, we need one
reference image for each modality (IR and RGB) to compute the
multimodal score. We also need a single reference plane across
all images, so that all compared patches refer to the same physical
area. To extend the score to multiple views, we aggregate all pair-
wise scores (with respect to the reference image in each modality)
weighted by their normalized textureness confidences (T/rcp (p)-

Joint IR/RGB optimization To optimize a 3D point P in MVS
we require the following: initial position P; initial normal n; con-
fidence ¢; visibility set V' (P) (i.e., the set of images in which p is

visible); reference images IS¢, I1%; and reference plane mret.

Consider pixel p in pod k with highest-confidence modality mod.
We initialize its depth D* (p) = DZ%.4(p), and its confidence ¢(p) =
®F 4 (p). We initialize its normal N* (p) depending on mod: for IR
and RGB, we estimate N*(p) via plane fitting on the depth map
DE 4 (p) over a 3x3 window centered in p; for SfSil, we estimate
N*(p) from the corresponding face normal in the visual hull mesh.

The choice of V(P),I®, IR mer can be dynamic (with
V(P), IR IR 1 computed for every point depending on the

point normal and occlusions) or static (with constant V' (P) set to
all cameras in pod k). In our experiments, a dynamic visibility set
V(P) across all cameras provided no visible improvement over a
fixed V' (P) comprising only the cameras in pod k, while the latter
is significantly faster. Therefore, we choose a fixed V' (P) for all
points in pod k, as well as the reference images IXCE | IR closest to

the pod center, and reference plane mrer = Chef.

Following [Furukawa and Ponce 2010], we optimize a set © of
three parameters for each point P: its depth, and the two normal
angles in spherical coordinates. Point P can only move along the
ray passing through P and the center of its reference camera C%;.
We optimize © with our multimodal MVS score using a confidence-
aware gradient descent, as we assume that the initialization is already
fairly close to the optimum. Note that the textureness confidences
in the multimodal MVS score depend on © and should be recom-
puted at every iteration. We leverage our confidence estimation to
weight the default gradient descent step size as w’ = wo(1 — ¢(p)).
This weighting scheme is particularly useful to ensure that high-
confidence SfSil points are not modified by misleading IR/RGB
information near depth discontinuities and edges. If the point moves
outside the visual hull in an iteration, we terminate the optimization
early and mark the point as invalid.

5.3 Iterative surface estimation

We combine depth maps and normals from all pods and refine their
positions P; and normals /N; using a global optimization to make
them consistent with all views. Our approach is related to Moving
Least Squares (MLS) projection [Alexa et al. 2001] in that we iter-
atively fit local planes that approximate the underlying surface. In
addition to point positions, we augment MLS with a formulation
that also considers colors and normals, updated at each iteration.
Our algorithm iterates between the three steps described below.

1. Find point neighborhood. For each point P;, we define its neigh-
borhood N (P;) as a ball centered around P; which contains at least
K nearest neighbors and has minimum radius r. The parameters K
and r control the amount of smoothing.

2. Estimate local plane. Given P; and /' (P;), we estimate the best
local plane S; approximating the underlying surface at P; according
to a combination of metrics. Specifically, we estimate .S; as

argmax Y ¢(P)Fe(P;, Si)Fn(Ni, Nj)Fe(Pi, Py), (1)
‘ JEN(P;)

where all scores are in range [0, 1] (with 1 as the best possible score).
The position score Fp(P;, S;) measures the Euclidean distance be-
tween P; and the plane .S;, normalized as in Section 5.1. The normal
score F(N;, N;) =max(N;" N;,0) measures compatibility in nor-
mals: points with orthogonal normals are unlikely to belong to the
same surface. The color score Fc(P;, P;) compares the color of P;
and P; in CIELAB space, normalized as in Section 5.1. F¢(-,-) en-
codes the intuition that two points with dissimilar color are not likely
to be in the same surface, similar to the adaptive support weights
in [Bleyer et al. 2011]. We compute the color for P; from the RGB
reference image in the pod that generated P;. Overall, we estimate
surface S; at P; using those points in N/ (P;) with similar color and
normal, but not oversmoothing across large variations in color or
curvature. We calculate S; by drawing multiple random subsets of
3 points from A (P;), estimating a hypothesis plane S; from them,
and keeping the S; with best surface score according to Eq. (1).

3. Update point and normal. We set the position of P; as the
projection of P; on .S;, and its normal N; to the plane normal N, .

We iterate steps 1-3 until there is limited variation in the estimated
surfaces. In practice, two iterations are enough to calculate high-
quality points and normals ready for meshing.

Hull-constrained PSR

Figure 5: Surface reconstruction quality in Poisson surface recon-
struction (PSR) and hull-constrained PSR. The top of the skateboard
is not IR-reflective and is occluded in most camera views; the bottom
of the shoes is not visible from any camera. Without constraining the
surface to the visual hull, regular PSR produces bulging artifacts
and fails to recover some of the sharp features such as the thumb.

Poisson surface recon.

Input points

6 Meshing and texturing

We generate a textured simplified mesh from the point cloud in
each frame. This involves several steps: reconstruction of a high-
resolution triangle mesh, adaptive decimation to create a coarser
mesh, parameterization over a texture atlas domain, and resampling
of scene color into the texture. We focus on our novel contribu-
tions: adding implicit-function clipping to screened Poisson surface
reconstruction, and using automatic face detection to improve the
perceived quality of both geometry and texture.

6.1 Hull-constrained surface reconstruction

Screened Poisson surface reconstruction (PSR) [Kazhdan et al. 20006;
Kazhdan and Hoppe 2013] is a commonly used technique for point
cloud meshing, as it is both efficient and resilient to data imperfec-
tions. The basic approach is to transform the oriented points into a
sparse 3D vector field, solve for the scalar function whose gradient
best fits the vector field (i.e., a Poisson equation), and finally extract
an isosurface of this scalar function.

Although PSR is guaranteed to produce watertight surfaces, “bulging”
artifacts often arise in regions with missing data, as shown in Fig. 5.
We address this issue by intersecting the reconstructed implicit solid
with the visual hull, effectively constraining the reconstructed sur-
face by the background masks.

Rather than modifying the scalar coefficients used within the Poisson
solver, which are associated with smooth B-spline basis functions,
we find it more efficient and accurate to operate on the final scalar
values just before isosurface extraction. We project each octree
cell corner as-needed into the background masks. If the cell is
considered background in any mask, we set its scalar value to a
negative number to enforce that it lies outside the resulting isosurface.
As demonstrated in Fig. 5, the resulting meshes are free of the earlier
bulging artifacts and also have sharper features. Alternatively, Shan
et al. [2014] propose to add a soft constraint on free-space in PSR’s
energy formulation to achieve a similar effect.

Figure 6: In this frame, topology denoising closes 35 handles to
simplify the mesh genus from 37 to 2. Non-separating cycles are
illustrated in red (many of these cycles are normally occluded).

6.2 Topology denoising

Surfaces reconstructed from noisy point clouds often have tiny topo-
logical artifacts (handles and tunnels) not present in the scanned
objects [Guskov and Wood 2001]. These artifacts are nearly invisi-
ble, yet they raise the surface genus and can hinder the efficiency of
geometry processing including mesh simplification and surface pa-
rameterization [Wood et al. 2004]. Most importantly, as discussed in
Section 7.1, we find that robust characterization of surface genus pro-
vides a helpful heuristic in identifying keyframes for mesh tracking.
We therefore have to remove topological noise.

We first considered the technique of Wood et al. [2004], designed for
isosurfaces as in our pipeline. However, it assumes that the isosur-
face is created from a regular 3D grid; it has not yet been extended
to the case of octrees. Instead, we adapt the scheme of Guskov
et al. [2001], which iteratively examines the Euler characteristic
(x = #vertices — #edges + #faces) of small mesh neighborhoods.
A neighborhood that spans a topological handle (i.e. x # 2) con-
tains a non-separating cycle — a loop of edges that, when cut, still
leaves the surface connected [Erickson and Whittlesey 2005]. If the
length of this cycle is sufficiently short (10 cm in all our results), we
perform the cut and close each of the two resulting mesh boundaries
using a fan of triangles. Insertion of the new triangles may result in
self-intersections, but we have not found this to be a concern for our
application. Fig. 6 shows an example.

6.3 Adaptivity using importance functions

Rendering 3D objects in a streaming environment imposes a strict
budget on geometric and texture complexity. To apportion mesh
vertices and texture area, mesh simplification and parameterization
tools commonly use low-level cost functions based on surface ge-
ometry, visual fidelity [Lindstrom and Turk 2000], or local surface
curvature [Lee et al. 2005].

We find most helpful to include high-level contextual knowledge
to help guide this process. For instance, viewers of a human per-
formance are much more attuned to perceiving nuances in facial
expression than subtle deformations in clothing. Our approach is
to define a surface importance function based on automated ob-
ject detection in the original input views. We currently look for
human faces, but the method is generic enough to work with any
image-based object detector.

To create the importance function, we first compute per-pixel im-
portance values f; in each input view 7 based on whether a pixel is
part of a detected object (e.g., human face). For instance, the face
detector identifies rectangles in the image and assigns f; based on
the detection confidence. Then, for each mesh vertex, we compute
an importance value F' using a simple median voting of the f; at the
pixels in which it is visible. This field F is illustrated in Fig. 7.

Figure 7: Compared to default results (top row), introducing a
surface importance field significantly improves the perceived quality
of the reconstructed output frames (bottom row). The importance
function, shown in red on the left, is computed automatically using
face detection. The sub-images show how adaptive parameterization
allocates 4x greater texture atlas area to the face, and how adaptive
decimation retains greater geometric detail there.

Adaptive allocation of polygons We simplify the high-
resolution mesh using a variant of the Quadric Error Metric (QEM)
[Garland and Heckbert 1997]. In particular, we scale the per-vertex
QEM terms based on the F' importance weights (typically by a factor
of 100). Thus, vertices with higher importance are much more likely
to be retained during simplification.

Adaptive allocation of texels We compute a texture atlas param-
eterization using UVAtlas [Microsoft 2011]. A parameter in UVAtlas
for each mesh triangle is the Integrated Metric Tensor (IMT), a 2x2
positive-definite matrix that defines the inner product for computing
surface distances. A larger IMT for a triangle results in a larger
allocated area during unwrapping. For each triangle, we scale the
identity IMT by the average of importance values F at its vertices.

6.4 View-independent Texturing

Diffuse texturing an object by stitching RGB images is a well-studied
problem. It requires carefully registering images to geometry and
blending of samples from different images. Image-to-geometry
registration can be difficult in cases of inaccurate camera calibration
or geometry reconstruction [Gal et al. 2010; Zhou and Koltun 2014].
Blending can be challenging due to lighting variation from different
viewpoints [Lempitsky and Ivanov 2007; Chuang et al. 2009]. We
find that, thanks to our controlled and well calibrated environment,
direct image projection followed by normal-weighted blending of
non-occluded images yields sufficiently accurate results. Note that
although our setup has the potential to produce high-quality view-
dependent textures, these are not yet suitable for internet streaming
even when compressed using state-of-the-art methods [Casas et al.
2014; Volino et al. 2014].

7 Mesh tracking

Generating meshes independently per frame produces a surface
geometry which is spatiotemporally coherent yet tessellated incon-
sistently. We need consistent tessellations to support compression.

Extracting a spatiotemporally coherent mesh out of a 4D capture
is an active area of research. Template-based approaches address
the problem by introducing an offline process to acquire/learn a
static template mesh [Borshukov et al. 2005; de Aguiar et al. 2008;
Gall et al. 2009; Li et al. 2009; Wand et al. 2009; Klaudiny et al.
2012; Zollhofer et al. 2014]. They commonly assume that the
subjects are topologically consistent throughout the capture, thus
precluding the more complicated scenarios of surface interaction,

object fractures, prop insertion/removal, scene changes, etc. More
recent methods adapt the template by amending the triangulation in
the course of registration to record topological changes [Letouzey
and Boyer 2012; Bojsen-Hansen et al. 2012]. It has not yet been
demonstrated that such topological surgery can produce consistent
atlas parameterization over a sparse number of templates for complex
shapes. Finally, all these methods rely on the assumption that the
template can be robustly deformed and registered with all frames by
an ICP-like process without failure; they are not resilient to severe
deformation, sudden fast motion, and elastic/free-form material.

To deliver streamable content, the restriction of a single mesh repre-
sentation can be relaxed. Drawing the idea from ubiquitous I-frame
based video compression, we reformulate the problem as finding a
sparse set of keyframes whose meshes well abstract their neighbor
frames. The approach is similar to [Klaudiny et al. 2012; Huang et al.
2014] where a pool of keymeshes is used to describe the capture.
The difference is that by design we enforce continuous keyframe
coverage to support better texture compression and random-access
video seeking. Also, our approach is not specific to human subjects
and requires no manual initialization.

Algorithm overview First, we estimate a feasibility score of each
frame being a keyframe (Section 7.1). We choose the most promising
non-tracked frame (according to the feasibility score) as keyframe .
We then perform a nonlinear registration to fit the keyframe meshes
to neighboring frames (in both forward and backward directions),
a process we refer to as mesh tracking (Section 7.2). During this
process, we monitor the fitting error by measuring the Hausdorff
distance [Aspert et al. 2002]. We associate successfully registered
frames with keyframe ¢, and terminate the tracking for keyframe ¢
when the error is above a certain tolerance. We repeat this process on
the remaining frames until every frame is associated with a keyframe.
The algorithm is summarized in Algorithm 1.

Algorithm 1 Coherent Tessellation via Mesh Tracking

1: procedure COHERENTTESS({M}) > Input meshes
2 {v} =10 > Temporal mesh sequences
3 {S} <+ keyframe feasibility for all frames > Section 7.1
4 Sort {S} into priority queue Q > Key: i, Value:S;
5: while Q # (0 do > Until we cover all frames
6: i < Q.RemoveHighest() > Most feasible frame
7 K; +— M; > Set as keymesh
8 {M}s = MeshTracking(i,+1) > Forward Tracking
9: {M}, = MeshTracking(é,—1) > Backward Tracking
10: {U} « {Ki, {M}; U{M}s} > Save subsequences
11: return {V} > Return temporal sequences

12: procedure MESHTRACKING(%,0) > i: keyframe, §: offset

13: (M}y=90 > Initialize subsequence
14: while Q. HasEntry(i +) do > Proceed if uncovered
15: ./T/l/:Z +— K; L Initialize transient mesh
16: M s +DeformInto(M;,M;1s) > Section 7.2
17: e < FittingError(Ms5,M;45) > Compute error
18: ife < ethen _ > e: error threshold
19: {M} — Miygs > Save the tracked mesh
20: Q-Remove(i + 0) > This frame is covered
21: T i+6 > Move on to the next frame
22: else e > Error above threshold
23: return { M} > Keymesh no longer usable

24: return { M} > Reach end of sequence

Figure 8: Three examples illustrating our choice of heuristics for
keyframe selection. Each shows how frame B is preferable as a
keyframe because it can deform to approximate frame A with fewer
artifacts than vice versa, and this corresponds to frame B having
(1) greater surface area, (2) smaller genus, or (3) more connected
components than frame A.

7.1 Keyframe prediction

‘We wish to obtain the minimum set of keyframes that can register
all other frames within some tolerance. This problem is similar to
the famous set covering problem (which is NP-hard), except that we
cannot know a priori how many frames can be registered by a candi-
date keyframe without actually performing the expensive nonlinear
registration. Our solution entails a greedy algorithm that selects the
most promising keyframes and enforces that each keyframe covers a
continuous frame range.

We compute a feasibility score S; for each frame 4 to find the most
promising frames. The prediction is based on three key observations,
illustrated in Fig. 8. First, we observe that it is often easier to deform
a surface of larger area into one of smaller area (Fig. 8 (top)). Second,
a lower-genus surface is likely to be deformed as a higher-genus
surface, but not vice versa (Fig. 8 (middle)). Third, we observe it is
easier to deform a surface with more connected components into one
with fewer connected components, as the meshing algorithm might
incorrectly merge independent subjects in contact (Fig. 8 (bottom)).
The feasibility score combines these three observations as

Ac
Si = E (1+(gmaz—gc)+m
cec(i) maz

) (@)
where C (%) is the number of connected components in the reconstruc-
tion; g;, A; denote the genus/area of the surface; and gmaz, Amaz
denote the largest genus/area of components from all frames. Note
that for robust estimation of genus, the meshes need to be filtered
with the topological denoising process in Section 6.2.

7.2 Nonlinear registration

The described mesh tracking framework is designed to work in
conjunction with any nonlinear registration algorithm. In this work,
we implement the state-of-the-art non-rigid ICP algorithm of Li et
al. [2009], though other approaches (e.g., [de Aguiar et al. 2008]
and [Zollhofer et al. 2014]) can be adapted as well.

Group 1

LU
-

Group 2

inm

Figure 9: To parallelize mesh tracking, we first partition frames into
groups and process groups in parallel using Algorithm 1. To improve
the possibly suboptimal result near group boundaries, we join the
frames covered by the boundary keyframes (orange and green) and
reapply Algorithm 1. The algorithm often completes using a single
keyframe (bottom), thus effectively removing a keyframe (green).

To fit a keyframe mesh to neighboring frames, we solve for a
spatially-varying affine deformation field f : M — R? that mini-
mizes the composite energy

E(f) = En + uigiaErigia + Oreg Freg, 3)

where Ej; measures how well the deformed surface fits the target
surface, Fiigiq aims to maximize rigidity of deformation, and Eig
accounts for smoothness of deformation. E, and Eig¢ are com-
puted with respect to the embedded deformation graph as in [Sumner
et al. 2007]. The algorithm iteratively computes closest point cor-
respondences for all vertices and updates the fitting constraint Ej
accordingly. When there is no significant improvement of energies
between successive iterations, the rigidity and regularization con-
straints are relaxed by halving auigia and cueg, in order to avoid local
minima often observed during large-scale deformation.

We minimize Eq. (3) using the standard Gauss-Newton method from
[Sumner et al. 2007], which requires solving the normal equations
by (sparse) Cholesky factorization. We use Simplicial LLT [Guen-
nebaud et al. 2010] for the task, and we precompute the nonzero fac-
torization pattern to reuse it throughout the minimization. We have
found that the normal matrix can occasionally be ill-conditioned,
resulting in a factorization failure. To avoid this issue, we progres-
sively add a scalar matrix 10" 8T (where r is the number of retries)
to the system until factorization succeeds.

7.3 Parallel implementation

Algorithm 1 is greedy and inherently sequential, and can become a
processing bottleneck. We parallelize Algorithm 1 by splitting the
frame sequence evenly into N groups and processing each group
independently. To avoid redundant keyframes near group bound-
aries, we join the frames covered by the two keyframes nearest the
boundary into a new group and reapply the greedy algorithm, in an
attempt to merge the two keyframes. Fig. 9 demonstrates the idea
using a simplified two-group example.

8 Compression and encoding

The final output is a streamable MPEG-DASH [ISO/IEC 23009-1
2014] file, the standard for adaptive streaming and playback. Our
maximum target bitrate is 15.6Mbps, corresponding to Netflix’s
maximum video streaming bitrate. We store the texture and audio in
the standard MPEG video and audio streams. We embed the mesh
data as a custom Network Abstraction Layer (NAL) unit inside the
video stream, because the support for custom streams is non-existent
in the most widespread multimedia platforms (e.g., Microsoft Me-
dia Foundation). An additional advantage of this NAL unit mesh
embedding is that third-party MPEG editing tools can modify the
container without losing the mesh data.

Figure 10: Impact of mesh tracking on texture compression quality.
We show three consecutive frames compressed at a fixed bitrate of 2
Mbps without mesh tracking (top), and with mesh tracking (bottom).
The yellow inset, which corresponds to the same physical area in
all frames, highlights the quality benefit of having a temporally
consistent parameterization (thanks to mesh tracking).

Audio and video compression We compress the audio and
video streams using AAC and H.264, respectively. Each frame
of the video stream is a texture atlas. The key to compact representa-
tion of video textures is mesh tracking; without it, each mesh would
be topologically different and result in a different 2D parameteri-
zation. Fig. 10 shows the impact of a consistent parameterization
in texture compression quality: in the top row, non-tracked meshes
are unwrapped inconsistently in consecutive frames, and result in
poor quality. In the bottom row, the tracked meshes are unwrapped
consistently and result in much higher quality for the same bitrate.

Mesh compression Mesh tracking is also key for efficient mesh
compression. There exist multiple methods in the literature to encode
dynamic meshes with consistent topology (see [Yu et al. 2010] for
a survey). In this paper, we show how a simple motion prediction
scheme already achieves our bitrate goal when used in conjunction
with mesh tracking. Alternative methods (e.g., [Vasa and Skala
2007]) should decrease this bitrate even further.

We split the mesh sequence into a series of keyframes and predictive
frames. The keyframe meshes contain both geometry and connec-
tivity information. We encode the geometric information (vertex
positions and UV coordinates) quantized to 16 bits. We encode con-
nectivity information as a delta-encoded, variable-byte tristrip. The
predictive frames contain only delta geometry information. We use
a linear motion predictor to compute the delta geometry, which we
then quantize and compress with Golomb coding [Golomb 1966].

9 Implementation

Inputs and outputs Each recorded capture contains the following
data: input video sequence from every camera; audio input; back-
ground capture (one frame per RGB camera); metadata (calibration,
camera configuration, and processing parameters). The input data
bandwidth is approximately 60Gbps at 30 fps (120 Gbps at 60 fps),
requiring dedicated capture machines and dual 10-Gbps uplinks
between the capture stage and our central storage.

The output is an MPEG-4 file with an embedded mesh stream as
described in Section 8. By default, we set mesh resolution to 10K tri-
angles in single-subject captures and 20K in multi-subject captures,
with atlas video resolution of 1024x1024 pixels encoded at 4 Mbps.
The average output bitrate is 9.5 Mbps. The output bandwidth is
reduced by 3 orders of magnitude compared with the input.

Processing pipeline Our pipeline implementation aims to max-
imize (a) CPU and GPU parallelism on a single machine, and
(b) multi-machine parallelism. We achieve both goals with task-

based parallelism and shared storage, considering data dependencies
between tasks and launching independent tasks in parallel. Most
stages can be parallelized per camera or per frame; the exceptions
are mesh tracking (parallelized per group of frames) and the final
encoding (not parallelized). The processing pipeline is distributed
for multi-machine processing and, potentially, cloud processing.

Processing hardware To process the presented datasets, we use
61 Intel Xeon E5-2630, 2.3 GHz machines, each with dual 12-core
processors, 64 GB of RAM, and an AMD Radeon R9 200 GPU.

10 Experiments

We evaluate the full system in terms of overall throughput, geometric
quality, and texture quality. We use the five datasets illustrated
in Fig. 11: DancingDuo (886 frames), Haka (173 frames), Dress
(1157 frames), Kendo (740 frames), and Lincoln (508 frames) for a
total of 3464 frames and 367K images. Three of these datasets are
single-subject captures encoded at 10K triangles (Dress, Kendo, and
Lincoln) and two are dual-subject captures encoded at 20K triangles
(DancingDuo and Haka).

We also analyze the impact of the camera configuration on output
quality, by running our pipeline on reduced configurations of our
datasets as well as on publicly-available 3rd party datasets.

System throughput Table 1 shows the processing throughput for
each dataset. On average, processing a frame on a single machine
takes 28.2 minutes. With parallelization on the processing farm,
throughput is improved to 27.7 seconds per frame. The average lifes-
pan of a keyframe across all datasets is 31.7 frames, ranging from
72.6 frames in Lincoln (with relatively easy body motions) to 24.6
frames in DancingDuo (with multiple occlusions and intricate move-
ment). We observe that these results follow the expected behavior:
datasets with complex motion and fast movement such as Dancing-
Duo require more keyframes (because the tracking algorithm cannot
follow the action for long) and larger output bitrates (because there
are more keyframes to encode). On the other hand, datasets with
slower motion, such as Lincoln, can be tracked more consistently,
resulting in fewer keyframes and smaller output bitrates.

Table 2 shows the relative processing cost of each stage, averaged
over the five datasets. Point generation is the most time-consuming
stage, requiring 49% of the overall processing time (5% for depth
map generation, 31% for MVS, and 13% for iterative surface esti-
mation). Mesh tracking, which is also time-consuming (11%), has
significant room for improvement using a GPU-based implementa-
tion [Zollhofer et al. 2014].

Texture quality We validate texture fidelity by comparing render-
ings of our final results against the original images via leave-one-out
cross-validation. Specifically, we artificially remove a pair of RGB
cameras from the capture and then compare a rendering of the recon-
structed model against the removed cameras, as shown in Fig. 12.
We repeat the experiment eight times, removing a different pair of
RGB cameras each time. The reported statistics in Table 3 show an
average over all frames and all experiments for each dataset.

We measure texture fidelity in terms of PSNR and structural simi-
larity (MSSIM) [Wang et al. 2004], which closely correlates with
perceptual quality. We compute both PSNR and MSSIM over the
image intensity only on pixels where the 3D model is reprojected.

The main sources of error between the rendered frames and the
original images are high-specularity (light-dependent) areas, edge
misalignments, and blooming effects. Fig. 12 compares two exam-
ples of ground-truth views and their corresponding rendered views.
In Fig. 12(bottom row), note that the major differences between the
two views are due to lighting reflections, which cannot be accurately
represented without view-dependent texturing. Another important

<5
v

Figure 11: Datasets: DancingDuo, Dress, Kendo, Haka, Lincoln
.(a) .(b 7 l

Figure 12: Two tests of overall reconstruction accuracy using leave-
one-out cross-validation. (a) ground-truth view (not present in
reconstruction); (b) reconstructed view; (c) MSE; (d) SSIM.

Avg Avgtime/ Avg frames/ Output
Scene Frames points frame (s) keyframe Mbps
DDuo 886 2.25M 29.1 24.6 12.1
Dress 1157 1.44M 27.7 27.5 8.6
Kendo 740 2.01M 26.0 35.2 83
Haka 173 2.70M 28.2 57.7 12.0
Lincoln 508 1.60M 27.5 72.6 7.9

Table 1: Processing throughput and encoding performance analysis.

Stage Avg time (%)
Preprocessing 11%
Point generation 49%
Meshing 8%
Importance detection 2%
Mesh tracking 11%
Mesh decimation/unwrapping 4%
Texturing 7%
Compression and encoding 8%

Table 2: Breakdown of processing time for each stage, averaged
over the five datasets. The preprocessing step includes image 1/0
operations, bias correction, and background segmentation.

D.Duo Dress Kendo Haka Lincoln

PSNR (dB) 29.64 24.18 27.50 26.29 31.43
MSSIM 0.838 0.794 0.823 0.785 0.839

Table 3: Measures of texture quality in cross-validation tests, av-
eraged over all experiments (eight removed pairs of RGB cameras,
one at a time) and all frames.

source of error is blooming effects, where a camera captures the
subject in front of a bright light source (see Fig. 14 for an example).
This effect is particularly visible in Fig. 12(c, top), where the sub-
ject’s hand disappears due to a blooming effect in the original image.
The last source of error is due to edge misalignments caused by small
geometry errors. These edge misalignments cause increased vari-
ability in PSNR scores compared to MSSIM scores. Dress, Kendo,
and Haka contain features difficult to reconstruct accurately (hair, a
fast-moving sword, and a Haka dance kilt, respectively), resulting
in geometric errors and frequent edge misalignments. To improve

": I l

LG/LT LG/HT HG/LT
Figure 13: Comparison of geometry and texture quality for differ-
ent camera configurations, on Kendo dataset. See supplemental
material/video for a more extensive comparison.

Figure 14: Experiment to test geometric resolution, showing orig-
inal views and reconstructions. In (a,b), the thinnest cylinder is
partially reconstructed, whereas in (c,d), blooming from the rear
light source causes the cylinder to be missed entirely.

i (a)
7 ' (b)
@]

(a) (b) @]

Figure 15: Comparison of texturing schemes: (a) [Volino et al.
2014]; (b) Ours without adaptive allocation of triangles and texels;
(¢) Ours with importance-based adaptive allocation.

upon the statistics in Table 3, we would need to faithfully render
light-dependent effects, either with view-dependent texturing or with
material estimation and relighting.

We analyze the impact of the camera configuration on the final ge-
ometry and texture quality in Table 4 and Fig. 13. We compare four
configurations on Kendo: 8 RGB + 8 IR cameras for all processing
(which we refer to as ‘LG/LT’); 8 RGB cameras for texturing, with
geometry computed from the 106-camera setup (‘HG/LT’); 53 RGB
cameras for texturing, with geometry computed from the 8 RGB + 8
IR setup (‘LG/HT’); and the full 106-camera setup (‘HG/HT”). We
draw two conclusions: 1) it is more beneficial to use accurate geom-
etry with fewer texturing cameras than coarse geometry with more
texturing cameras, since accurate geometry enables the 8§ texture
views to align properly on the surface, resulting in fewer artifacts;
and 2) a higher density of cameras enables a better geometric and
texture reconstruction, when processed with algorithms capable of
leveraging the additional data volume and complexity.

Geometric resolution As a testing methodology to evaluate the
resolution of geometric reconstruction, we capture 300 frames of a
ground-truth object moving throughout the volume, and count the
number of frames in which it is reconstructed correctly. The ground-

LG/LT LGHT HG/LT HG/HT

PSNR (dB) 24.26 25.36 25.80 27.50
MSSIM 0.764 0.775 0.787 0.823

Table 4: For Kendo dataset, texture quality measures for different
camera configurations (Low and High number of cameras for both
Geometry and Texture reconstruction).

RMS (mm) Hausdorff (mm) Sil. (%)
[Budd et al. 2013] 5.67 39.3 0.05
Ours (1 keyframe) 2.27 21.2 0.02
Ours (3 keyframes) 2.06 17.5 0.02

Table 5: Comparison of tracking results on dataset ‘DanWalk’ from
[Casas et al. 2014]. RMS and Hausdor{f errors are measured with
point-to-plane distances at all vertices of the original and tracked
meshes. Silhouette error is computed as the percentage of pixels
failing the silhouette constraints.

truth object consists of 4 wooden cylinders of different diameters,
ranging from 6.35 mm to 25.4 mm (Fig. 14). The 25.4 mm and 19
mm cylinders are reconstructed in 100% of the frames, the 12.7 mm
cylinder 99.7% of the frames, and the 6.35 mm cylinder 3.3% of the
time. For a thin object, a main source of error is blooming, which
makes the object indistinguishable when viewed in front of a light
source, as shown in Fig. 14(c). According to this test, the minimum
object size we consistently reconstruct is 12.7 mm (0.5 inches).

Experiments on external datasets We evaluate our system on
the ‘DanWalk’ dataset of [Casas et al. 2014; Volino et al. 2014],
containing 28 frames (8 RGB cameras evenly spread in a 360-degree
configuration) with per-frame meshes and tracked meshes.

Table 5 compares our mesh tracking results with those of [Budd
et al. 2013] (used by [Casas et al. 2014]). The results confirm that
our tracking algorithm obtains comparable or better results even
with a single keyframe mesh. The use of multiple keyframe meshes
becomes essential when tracking more complex and longer motions,
such as the ones showcased in our datasets. Fig. 15 compares our
texture reconstruction results with those of [Volino et al. 2014]. Al-
though our simpler texturing does not reproduce view-dependent
effects, it achieves comparable quality on this dataset, at a higher
compression rate (2 Mbps versus 80 Mbps for theirs). Fig. 15(c)
shows the benefit of adaptive mesh decimation and texture unwrap-
ping, preserving greater detail on the face. Note that we could not
compare our point generation, as we use a dense stereo method
(PatchMatch, see Section 5.1) designed for narrow baseline stereo,
which is incompatible with the 45-degree baseline of this dataset.

11 Conclusions

‘We have presented the first system to create high-quality, streamable
free-viewpoint video suitable for a broad range of end-user scenarios.
Our capture and processing are automated and reliable, producing
results whose quality consistently exceeds state-of-the-art methods
(see Fig. 17 for examples).

Our approach does not require prior knowledge of the scene, which
allows us to recover a wide array of subjects and performances. By
fusing RGB, IR, SfSil, and importance information, we can recover
critical surface detail and maintain it even after reducing triangle
count by two orders of magnitude. The ability to track meshes into
coherent subsequences lets us create stable texture atlases, which
in turn supports compressing and encoding for wide consumption
of FVV as a media type. The pipeline has been implemented as
a robust distributed system, and we capture and process multiple
performances each day.

Figure 16: Examples of poor reconstruction: (a) black hair has
poor IR-reflectivity and lacks sufficient RGB detail; (b) helmet is
reflective and has highly occluded geometry; (c) hat brim is thin and
highly occluded; (d) glasses are reflective; (e) fast sword motion
results in bad reconstruction.

Future work Several types of content prove challenging and are
active areas of work. We include examples of failure cases in
Fig. 16. Three of the most important are specular materials, trans-
parent/translucent objects, and hair.

Specular materials may cause errors in pixel correspondence during
reconstruction due to view-dependent reflections. In some cases,
our system can fall back to shape-from-silhouette reconstruction
to produce a viable result, but often with noticeable artifacts. One
approach with potential is to estimate basic material properties using
all views and incorporate that knowledge into reconstruction.

Specularities also cause trouble for our pre-lit texture maps which
cannot reproduce view-dependent visual response. We have found in
practice that subject motion does change specular response enough
to distract from the inaccuracy, but moving the view around paused
frames is still problematic. We believe this should be feasible while
maintaining low bandwidth as the specular components can be fac-
tored out and compressed quite efficiently.

Similarly, transparent and translucent surfaces (e.g., glasses, visors)
are challenging to both reconstruction and rendering. A given pixel
can have two or more valid depths, so stereo methods cannot recover
them and conventional textured meshes cannot represent them. As
before, one potential approach is to estimate basic material properties
as part of the reconstruction process itself.

Hair presents a different challenge in that certain styles or motions
cannot be faithfully represented using a triangle mesh representation.
The structure of hair spans a broad spectrum, from dense hair that can
be well approximated by a compact mesh to sparse hair or strands
that points and meshes cannot reconstruct consistently across time
or even for a single frame because individual hair strands are at or
below the reconstruction resolution (e.g., Fig. 6). We are interested
in approaches that leverage complementary representations such as
billboards, curve segments, particles, etc. within a single capture.

Acknowledgements

‘We would like to thank: David Harnett, Chris Buehler, David Eraker,
Leszek Mazur, Kanchan Mitra, Kestutis Patiejunas, Oliver Whyte,
Simon Winder, Orest Zborowski, for their many contributions to
this project. We also thank: Bill Crow, Lisa Hazen, Tri Le, Spencer
Reynolds, David Vos, Jason Waskey, Dana Zimmerman for the
quality, quantity, and creativity of our captures. Special thanks to
Microsoft Research and affiliates, especially: Philip Chou, Shahram
Izadi, Sing Bing Kang, Misha Kazhdan, Charles Loop, Rick Szeliski,
Zhengyou Zhang, whose consultations were invaluable. Finally, we
would like to thank Dan Casas and Marco Volino for their help in
processing their dataset for comparison.

References

4D VIEW SOLUTIONS, 2007. http://www.4dviews.com.

AHMED, N., THEOBALT, C., DOBREV, P., AND SEIDEL, H. 2008.
Robust fusion of dynamic shape and normal capture for high-
quality reconstruction of time-varying geometry. In Proc. CVPR.

AHMED, N., THEOBALT, C., RossSL, C., THRUN, S., AND SEIDEL,
H. 2008. Dense correspondence finding for parameterization-free
animation reconstruction from video. In Proc. CVPR.

ALEXA, M., BEHR, J., COHEN-OR, D., FLEISHMAN, S., LEVIN,
D., AND S1LVA, C. T. 2001. Point set surfaces. In Proc. Conf.
on Visualization.

ASPERT, N., SANTA-CRUZ, D., AND EBRAHIMI, T. 2002. MESH:
Measuring errors between surfaces using the Hausdorff distance.
In Proc. ICME.

BLEYER, M., RHEMANN, C., AND ROTHER, C. 2011. PatchMatch
stereo - stereo matching with slanted support windows. In Proc.
BMVC.

BOJSEN-HANSEN, M., L1, H., AND WOIJTAN, C. 2012. Tracking
surfaces with evolving topology. ACM Trans. Graph. 31, 4.

BORSHUKOV, G., PIPONI, D., LARSEN, O., LEWIS, J. P., AND
TEMPELAAR-LIETZ, C. 2005. Universal capture — Image-based
facial animation for “The Matrix Reloaded”. In ACM SIGGRAPH
Courses.

BupD, C., HUANG, P., KLAUDINY, M., AND HILTON, A. 2013.
Global non-rigid alignment of surface sequences. Int. J. Comput.
Vision 102, 1-3.

CAMPBELL, N. D. F., VoGiaTzis, G., HERNANDEZ, C., AND
CIpoLLA, R. 2008. Using multiple hypotheses to improve
depth-maps for multi-view stereo. In Proc. ECCV.

CARRANZA, J., THEOBALT, C., MAGNOR, M. A., AND SEIDEL,
H.-P. 2003. Free-viewpoint video of human actors. ACM Trans.
Graph. 22, 3.

CAsAsS, D., VOLINO, M., COLLOMOSSE, J., AND HILTON, A.
2014. 4D video textures for interactive character appearance.
Comput. Graph. Forum 33, 2.

CHUANG, M., Luo, L., BROWN, B., RUSINKIEWICZ, S., AND
KAZHDAN, M. 2009. Estimating the Laplace-Beltrami operator
by restricting 3D functions. Symposium on Geometry Processing.

DE AGUIAR, E., STOLL, C., THEOBALT, C., AHMED, N., SEIDEL,
H.-P., AND THRUN, S. 2008. Performance capture from sparse
multi-view video. ACM Trans. Graph. 27, 3.

DOUBLEME, 2014. https://www.doubleme.me.

ERICKSON, J., AND WHITTLESEY, K. 2005. Greedy optimal homo-
topy and homology generators. In Proc. ACM-SIAM Symposium
on Discrete algorithms.

FRANCO, J., LAPIERRE, M., AND BOYER, E. 2006. Visual
shapes of silhouette sets. In Proc. Intl. Symp. 3D Data Processing,
Visualization and Transmission.

FREED, 2014. http://replay-technologies.com.

FURUKAWA, Y., AND PONCE, J. 2010. Accurate, dense, and robust
multiview stereopsis. IEEE PAMI 32, 8.

GAL, R., WEXLER, Y., OFEK, E., HOPPE, H., AND COHEN-OR,
D. 2010. Seamless montage for texturing models. Comput.
Graph. Forum 29, 2.

GALL, J., STOLL, C., AGUIAR, E. D., THEOBALT, C., ROSEN-
HAHN, B., AND PETER SEIDEL, H. 2009. Motion capture using
joint skeleton tracking and surface estimation. In Proc. CVPR.

GARLAND, M., AND HECKBERT, P. S. 1997. Surface simplification
using quadric error metrics. In ACM SIGGRAPH.

GOESELE, M., CURLESS, B., AND SEITZ, S. M. 2006. Multi-view
stereo revisited. In Proc. CVPR.

http://www.4dviews.com
https://www.doubleme.me
http://replay-technologies.com

GOLDLUECKE, B., AND MAGNOR, M. 2004. Space-time isosur-
face evolution for temporally coherent 3D reconstruction. In Proc.
CVPR.

GOLOMB, S. 1966. Run-length encodings (corresp.). IEEE Trans-
actions on Information Theory 12, 3.

GUENNEBAUD, G., JACcOB, B., ET AL., 2010.
http://eigen.tuxfamily.org.

Eigen v3.

GUSKoV, I., AND WooD, Z. J. 2001. Topological noise removal.
In Proc. Graphics Interface.

HERNANDEZ, C., AND SCHMITT, F. 2004. Silhouette and stereo
fusion for 3D object modeling. Computer Vision and Image
Understanding 96, 3.

HIEP, V. H., KERIVEN, R., LABATUT, P., AND PONS, J.-P. 2009.
Towards high-resolution large-scale multi-view stereo. In Proc.
CVPR.

Hu, X., AND MORDOHALI, P. 2012. A quantitative evaluation of
confidence measures for stereo vision. IEEE PAMI 34, 11.

HUANG, C.-H., BOYER, E., NAVAB, N., AND ILIC, S. 2014.
Human shape and pose tracking using keyframes. In Proc. CVPR.

ISO/IEC 23009-1, 2014. Information technology — dynamic adap-
tive streaming over HTTP (DASH) — Part 1: Media presentation
description and segment formats.

KANADE, T., RANDER, P., AND NARAYANAN, P. J. 1997. Virtual-
ized reality: Constructing virtual worlds from real scenes. IEEE
Multimedia 4, 1.

KAZHDAN, M., AND HOPPE, H. 2013. Screened Poisson surface
reconstruction. ACM Trans. Graph. 32, 3.

KAZHDAN, M., BOLITHO, M., AND HOPPE, H. 2006. Poisson
surface reconstruction. In Symposium on Geometry Processing.

KLAUDINY, M., BUDD, C., AND HILTON, A. 2012. Towards
optimal non-rigid surface tracking. In Proc. ECCV.

LABATUT, P., PONS, J.-P., AND KERIVEN, R. 2007. Efficient
multi-view reconstruction of large-scale scenes using interest
points, delaunay triangulation and graph cuts. In Proc. ICCV.

LEE, C. H., VARSHNEY, A., AND JACOBS, D. W. 2005. Mesh
saliency. ACM Trans. Graph. 24, 3.

LEMPITSKY, V. S., AND IVANOV, D. V. 2007. Seamless mosaicing
of image-based texture maps. In Proc. CVPR.

LETOUZEY, A., AND BOYER, E. 2012. Progressive shape models.
In Proc. CVPR.

L1, H., ADAMS, B., GUIBAS, L. J., AND PAULY, M. 2009. Robust
single-view geometry and motion reconstruction. ACM Trans.
Graph. 28, 5.

LINDSTROM, P., AND TURK, G. 2000. Image-driven simplification.
ACM Trans. Graph. 19, 3.

Liu, Y., DAL, Q., AND XU, W. 2010. A point-cloud-based multi-
view stereo algorithm for free-viewpoint video. IEEE TVCG.

MATUSIK, W., BUEHLER, C., RASKAR, R., GORTLER, S. J.,
AND MCMILLAN, L. 2000. Image-based visual hulls. In ACM
SIGGRAPH.

MICROSOFT, 2011. UVAtlas. http://uvatlas.codeplex.com.

MOEZzz1, S., TAL, L.-C., AND GERARD, P. 1997. Virtual view
generation for 3D digital video. IEEE Multimedia 4, 1.

NARAYANAN, P., RANDER, P., AND KANADE, T. 1998. Construct-
ing virtual worlds using dense stereo. In Proc. ICCV.

SHAN, Q., CURLESS, B., FURUKAWA, Y., HERNANDEZ, C., AND
SEITZ, S. M. 2014. Occluding contours for multi-view stereo.
In Proc. ECCV.

SINHA, S. N., AND POLLEFEYS, M. 2005. Multi-view reconstruc-
tion using photo-consistency and exact silhouette constraints: a
maximum-flow formulation. In Proc. ICCV.

SONG, P., WU, X., AND WANG, M. Y. 2010. Volumetric stereo and
silhouette fusion for image-based modeling. The Visual Computer
26, 12.

STARCK, J., AND HILTON, A. 2007. Surface capture for
performance-based animation. IEEE Computer Graphics and
Application 27, 6.

SUMNER, R. W., SCHMID, J., AND PAULY, M. 2007. Embedded
deformation for shape manipulation. ACM Trans. Graph. 26, 3.

VASA, L., AND SKALA, V. 2007. CoDDyaC: Connectivity Driven
Dynamic Mesh Compression. In Proc. 3DTV.

VLaAsIc, D., BARAN, 1., MATUSIK, W., AND Poprovic, J. 2008.
Articulated mesh animation from multiview silhouettes. ACM
Trans. Graph. 27, 3.

VLASIC, D., PEERS, P., BARAN, 1., DEBEVEC, P., POPOVIC, J.,
RUSINKIEWICZ, S., AND MATUSIK, W. 2009. Dynamic shape
capture using multi-view photometric stereo. ACM Trans. Graph.
28, 5.

VOLINO, M., CASAS, D., COLLOMOSSE, J. P., AND HILTON, A.
2014. Optimal representation of multiple view video. In Proc.
BMVC.

WAND, M., ADAMS, B., OVSJANIKOV, M., BERNER, A.,
BOKELOH, M., JENKE, P., GUIBAS, L., SEIDEL, H.-P., AND
SCHILLING, A. 2009. Efficient reconstruction of nonrigid shape
and motion from real-time 3D scanner data. ACM Trans. Graph.
28, 2.

WANG, Z., BOVIK, A. C., SHEIKH, H. R., AND SIMONCELLI,
E. P. 2004. Image quality assessment: From error visibility to
structural similarity. /[EEE Trans. Image Proc. 13, 4.

WooD, Z., HOPPE, H., DESBRUN, M., AND SCHRODER, P. 2004.
Removing excess topology from isosurfaces. ACM Trans. Graph.
23,2.

Wu, C., VARANASIL K., L1u, Y., SEIDEL, H.-P., AND THEOBALT,
C. 2011. Shading—based dynamic shape refinement from multi-
view video under general illumination. In Proc. ICCV.

YE, G., LIU, Y., DENG, Y., HASLER, N., J1, X., DAI, Q., AND
THEOBALT, C. 2013. Free-viewpoint video of human actors
using multiple handheld Kinects. IEEE Trans. on System, Man &
Cybernetics 43, 5.

Yu, F.,, Lvuo, H., Lu, Z., AND WANG, P. 2010. 3D mesh compres-
sion. Three-Dimensional Model Analysis and Processing.

ZHOoU, Q.-Y., AND KOLTUN, V. 2014. Color map optimization
for 3D reconstruction with consumer depth cameras. ACM Trans.
Graph. 33, 4.

ZITNICK, C. L., KANG, S. B., UYTTENDAELE, M., WINDER, S.,
AND SZELISKI, R. 2004. High-quality video view interpolation
using a layered representation. ACM Trans. Graph. 23, 3.

ZOLLHOFER, M., NIESSNER, M., 1ZADI, S., REHMANN, C.,
ZACH, C., FISHER, M., Wu, C., FITZGIBBON, A., LOooP,
C., THEOBALT, C., AND STAMMINGER, M. 2014. Real-time
non-rigid reconstruction using an RGB-D camera. ACM Trans.
Graph. 33, 4.

http://uvatlas.codeplex.com

4 & J Q¢ /4 < [

Figure 17: Gallery of example results. (All renderings are from viewpoints that differ from the original stage views.)

