
module CandidateRanking

This module formally specifies two systems of ranking candidates in an election–the Borda ranking
and the Condorcet ranking. The specifications can be executed by TLC to compute the results
for very small elections (on the order of 10 voters and 10 candidates). The module begins by

importing operators defined in some standard modules.

extends Integers, Sequences, FiniteSets

The Borda system assigns each candidate a score and ranks them by score. This requires sorting
the candidates by score, so we must define a sorting operator. For simplicity, we assume the items
to be sorted are records with a key component, and they are to be sorted by that component.
We sort a set of such records, defining a sorting of them to be a sequence of the set’s elements
in non-decreasing order of key. Since different elements can have the same key value, there is no
unique way to sort them. We first define Sortings(S) to be the set of all sortings of the set S of

records.

Sortings(S )
∆
=

let D
∆
= 1 . . Cardinality(S )

in {seq ∈ [D → S ] :
∧ S ⊆ {seq [i ] : i ∈ D}
∧ ∀ i , j ∈ D : (i < j )⇒ (seq [i ].key ≤ seq [j ].key)}

We now define SortSet(S) to be some element of Sortings(S). We can define it quite simply to
choose an arbitrary element of Sortings(S), but TLC could execute that definition in a reasonable

time only for very tiny sets. Here’s a definition that TLC can execute efficiently enough.

recursive SortSet( )
SortSet(S )

∆
=

if S = {} then 〈〉
else let s

∆
= choose ss ∈ S : ∀ t ∈ S : ss.key ≤ t .key

in 〈s〉 ◦ SortSet(S \ {s})

We now declare the constant parameter Votes, which is the input. It is assumed to be a sequence
of rankings, where each ranking is a sequence of candidate names in preference order. We assume
that each voter ranks all the candidates.

constant Votes

The following defines Cand to be the set of all candidates in the first voter’s ranking, which we

assume is the set of all candidates.

Cand
∆
= {Votes[1][i ] : i ∈ 1 . . Len(Votes[1])}

The following asserts what we assume about Votes: that is it a sequence of rankings, each of

which is a sequence of candidates, and that each candidate appears in each ranking exactly once.

assume ∧Votes ∈ Seq(Seq(Cand))
∧ ∀ j ∈ 1 . . Len(Votes) :
∧ Len(Votes[j ]) = Cardinality(Cand)
∧ {Votes[j ][i ] : i ∈ 1 . . Len(Votes[j ])} = Cand
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We now define the Borda ranking. Each ranking assigns a value to the candidates, where an i-th
place ranking has a value of N − i . A candidate’s score is the sum of the values assigned to it
by the rankings. The Borda system ranks candidates according to their scores. We define an
operator Borda whose value is a sequence of records, each having a candidate’s name and score,
sorted by score.

We start by defining SumOfSeq(s) so that, if s is a sequence of numbers, then SumOfSeq(s) is

the sum of those numbers.

recursive SumSeq( )
SumSeq(s)

∆
= if s = 〈〉 then 0

else Head(s) + SumSeq(Tail(s))

For convenience, we define N to be the number of candidates and V the number of voters.

N
∆
= Cardinality(Cand)

V
∆
= Len(Votes)

RankBy(c, i) is the rank (a number from 1 to N ) that voter number i assigns to candidate c.

RankBy(c, i)
∆
= choose r ∈ 1 . . N : Votes[i ][r ] = c

Score(c) is the score of candidate c.

Score(c)
∆
= SumSeq([i ∈ 1 . . V 7→ N − RankBy(c, i)])

To define Borda, we first define ReverseBorda to be a sequence containing the candidates’ records
in increasing order of their scores, and then define Borda to be the sequence obtained by reversing
the sequence ReverseBorda.

ReverseBorda
∆
= SortSet({[name 7→ c, key 7→ Score(c)] : c ∈ Cand})

Borda
∆
= [i ∈ 1 . . N 7→ ReverseBorda[N − i + 1]]

We now define the Condorcet ranking. We first define � so that c � d is true iff more voters

prefer c to d (rank c before d) than prefer d to c.

c � d
∆
=

let NumberPreferring(a, b)
∆
=

The number of voters who prefer candidate a to candidate b .

Cardinality({v ∈ 1 . . V : RankBy(a, v) < RankBy(b, v)})
in NumberPreferring(c, d) > NumberPreferring(d , c)

We now define the Condorcet ranking to be the sequence

〈C 1, . . . , C m〉

of disjoint sets of candidates such that

− C 1 ∪ . . . ∪ C m is the set of all candidates.

- For each i and j in 1 . . m, if i > j then c � d for each c in C i and d in C j .

- The sets C i are as small as possible.

CondorcetRanking
∆
=

let IsDominatingSet(D , C )
∆
=
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If D and C are sets of candidates, then this is true iff d � e is true for all d ∈ D and

all e in C but not in D .

∧D 6= {}
∧ ∀ d ∈ D : ∀ e ∈ C \D : d � e

CWinners(C )
∆
=

The set of Condorcet winners in the election for the set C of candidates, meaning that

it is the smallest nonempty subset D of C such that IsDominateSet(D , C ) is true.

choose D ∈ subset C :
∧ IsDominatingSet(D , C )
∧ ∀E ∈ subset C : IsDominatingSet(E , C )⇒ (D ⊆ E )

We now inductively define CRanking(C ) for sets C of candidates such that the Condorcet

ranking is CRanking(Cand).

recursive CRanking( )
CRanking(C )

∆
= if C = {} then 〈〉

else let CW
∆
= CWinners(C )

in 〈CW 〉 ◦ CRanking(C \CW )
in CRanking(Cand)

We now write another definition of the Condorcet ranking that TLC can compute more efficiently.
To do that, we first define the transitive closure of a relation, where a relation R is a set of ordered
pairs. We informally write c R d to mean 〈c, d〉 ∈ R. We say that R is a relation on a set S if

R is a subset of S × S .

We think of a relation R as a directed graph, where there is an edge from c to d iff c R d holds.
We then define NodesOf (R) to be the set of nodes of this graph. (The set NodesOf (R) is the

smallest set S such that R is a relation on S .)

NodesOf (R)
∆
= {r [1] : r ∈ R} ∪ {r [2] : r ∈ R}

The transitive closure of a relation R is the relation R+ such that c R+ d holds iff there is a path
from c to d in the graph of R. It is not hard to see that if there is a path from c to d in R, then
there is a path from c to d in R whose length (number of nodes) is at most one greater than the
number of nodes in R. We now define PathsOfLen(R, j ) to be the set of all paths in R of length

exactly j .

PathsOfLen(R, j )
∆
= {p ∈ [1 . . j → NodesOf (R)] :

∀ i ∈ 1 . . (j − 1) : 〈p[i ], p[i + 1]〉 ∈ R}

We define ShortPaths(R) to be the set of paths in R of length between 2 and 1 plus the number

of nodes in R.

ShortPaths(R)
∆
= union {PathsOfLen(R, j ) : j ∈ 2 . . (Cardinality(NodesOf (R)) + 1)}

Finally, we define TC (R), the transitive closure of R, to be the set of all pairs 〈c, d〉 of nodes of

R that are joined by a path in ShortPaths(R).

TC (R)
∆
= {〈p[1], p[Len(p)]〉 : p ∈ ShortPaths(R)}
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This definition of the transitive closure is mathematically elegant, but it can’t be computed ef-
ficiently by TLC . (The time it takes TLC to compute TC (R) is exponential in the number of
nodes of R.) We therefore write an equivalent definition that TLC can compute faster. To do
this, we first define R ∗∗S to be the composition of relations R and S , which is the set of all pairs
〈r , s〉 such that r R t and t R s hold for some t .

R ∗∗S ∆
= let T

∆
= {rs ∈ R × S : rs[1][2] = rs[2][1]}

in {〈x [1][1], x [2][2]〉 : x ∈ T}

It is not hard to show that the transitive closure of a relation R equals

R ∪ R ∗∗R ∪ . . . ∪ R ∗∗ . . . ∗∗R

where the number of sets in the union is the number of nodes in R. The following alternative
definition of the transitive closure is based on this observation.

SimpleTC (R)
∆
=

let recursive STC ( )
STC (n)

∆
= if n = 1 then R

else STC (n − 1) ∪ STC (n − 1) ∗∗R
in if R = {} then {} else STC (Cardinality(NodesOf (R)))

TLC has checked that SimpleTC (R) equals TC (R) for all relations R on a set of 4 elements.

We now write a definition of the Condorcet ranking that TLC can compute more efficiently than
the definition CondorcetRanking above. It is based on the following observation. Let � be the
relation on the set of candidates such that c � d holds iff d � c does not hold. (It’s not hard to
see that c � d means that at least as many voters prefer c to d as prefer d to c.) Let � + be

the transitive closure of � . Then the Condorcet ranking is the unique sequence

〈C 1, . . . , C m〉

of sets of candidates such that

− C 1 ∪ . . . ∪ C m equals the set of all candidates.

- For all i and j in 1 . . m, if i ≥ j then c � + d for all c ∈ C i and d ∈ C j .

In the following definition, DomEq is the relation � and DomEqPlus is its transitive closure
� +.

CRanking
∆
=

let DomEq
∆
= {r ∈ Cand × Cand : ¬(r [2] � r [1])}

DomEqPlus
∆
= SimpleTC (DomEq)

CWinners(C )
∆
= {c ∈ C : ∀ d ∈ C : 〈c, d〉 ∈ DomEqPlus}

recursive CRanking( )
CRanking(C )

∆
= if C = {} then 〈〉

else let CW
∆
= CWinners(C )

in 〈CW 〉 ◦ CRanking(C \CW )
in CRanking(Cand)

TLC has checked the equivalence of CondorcetRanking and CRanking on all possible values of
Votes for a set of 4 candidates and 3 or 4 voters, as well as on a number of randomly chosen values
of Votes with more candidates and voters.
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