The Bakery Algorithm is FCFS

Theorem Spec = FCFS

1. SUFFICES ASSUME: OInv A O[Next]yars, p € Procs, q € Procs
PROVE: Waiting(p) A InNCS(q) A O-InCS(p) = O-InCS(q)
PrOOF: By definition of Spec and FCFS, the invariance of Inv
(the theorem Spec = OInv), and temporal logic. =~ We are using the
proof rule (F = G)F (OF = 0O@G), together with the observation that
Olnv A O[Next]yqrs is equivalent to O(OInv A O[Next]yars) -

A

DEFINE: Wlinv Waiting(p) A Before(p, q)

We prove that OInv A O=InCS(p) implies
Waiting(p) A InNCS A O[Next]yars = O-InCS(q)

by proving that =InCS(q) is an invariant of the specification
(Waiting(p) A InNCS) A O[Next]yars

using the inductive invariant Winwv. This is an ordinary invariance proof, except
that because we are assuming OInv A O-InCS(p), we can assume Inv A Inv' A
—InCS(p) A =InCS(p)’ in our action reasoning.

2. Inv A Waiting(p) A InNCS(q) = Winv
PROOF: By definition of Winv, since Inv A Waiting(p) A InNCS(q) implies
(num[p] > 0) A (num[q] = 0), which implies Before(p, q).

3. Inv A —~InCS(p)' A Winv A [Next]yars = Winv'
PRrROOF: =InCS(p)’ implies that p can’t enter its critical section, so [Next]yqrs A
Waiting(p) implies Waiting(p)'. Since Inv A Waiting(p) imply num[p] # 0,
a Next step can make Before(p,q) false only by making (num'[q],q) <
(num|[p], p) true, which is impossible because an enter(q) step sets num’|[q] >
num/[p).

4. Inv A Winv = —InCS(q)
PROOF: Inv A InCS(q) implies (numl[q] # 0) A Before(q, p), which implies
—Before(p, q).

5. Q.ED.
PROOF: Step 3 implies

OInv A O-InCS(p) = (Winv A O[Next]yors = O Winw)

which by steps 2 and 4 and the step 1 assumptions proves

Waiting(p) A InNCS(q) A O-InCS(p); = O-InCS(q)

CLOSE

