
The TLA+ Proof Track

10 About Proofs and Proving
10.1 About Proofs
10.2 About TLAPS

11 Correctness of Euclid’s Algorithm
11.1 Proving Safety
11.2 Proving Properties of the GCD

12 The Proof Language
12.1 What a Theorem Asserts
12.2 The Hierarchical Structure of a Proof

12.2.1 Writing Structured Proofs
12.2.2 Reading Structured Proofs

12.3 The State of a Proof
12.3.1 Steps That Can Have a Proof
12.3.2 Steps That Cannot Have a Proof

12.4 Proof Obligations
12.5 Further Details

12.5.1 Additional Language Features
12.5.2 Importing
12.5.3 Recursively Defined Functions and Operators
12.5.4 The Fine Print

13 The Bounded Buffer Proof

1

?

�

-

C

I

S

10 About Proofs and Proving

10.1 About Proofs

When writing proofs of properties of systems or algorithms, we should not look
at mathematicians’ proofs for models. There are three reasons why the way
(almost all) mathematicians write proofs do not work for our proofs:

• The theorems mathematicians prove are very different from what we are
proving. Mathematical theorems are usually deep, being based on knowl-
edge that has been developed over centuries. Our theorems are shallow but
wide. They generally use only simple mathematics, but require checking
many details.

• Mathematicians don’t care if their theorems are not quite correct. Omit-
ting a simple hypothesis such as that a certain set is nonempty would
not even be considered an error. For the proof of an algorithm, such an
omission means a bug in a “corner case”.

• The proofs mathematicians write are unreliable. Anecdotal evidence sug-
gests that a significant fraction of published, refereed mathematical papers
contain incorrect theorems—not ones ignoring corner cases, but results
that mathematicians would consider wrong. Based on a tiny amount of
data, I would guess that fraction to be more than a tenth. (This includes
results that have a correct proof but are wrong because the proof relies on
theorems that are wrong.)

Mathematicians depend on the social process to weed out incorrect results.
Most theorems are ignored and soon forgotten. The few important results
are scrutinized by many mathematicians, and errors in them are eventually
discovered. Two false 19th century proofs of the four-color theorem were
believed for 11 years. However, the greater number of mathematicians and
improved communications make it very likely that an incorrect proof of
such a major result would today be quickly discovered.

When a mathematician’s style of proof is used to prove properties of systems,
the result is often disastrous. There is no social process to find errors an engineer
makes in a proof of a system she is designing. Even for published algorithms,
the social process doesn’t work very well. One dramatic example is provided by:

Pamela Zave. Lightweight verification of network protocols: The case of
Chord. AT&T Technical Report, January 2010.

The Chord algorithm was first published in:

2

?

�

-

C

I

S

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for Internet applications.
Proceedings of SIGCOMM. ACM, August 2001.

This paper states:

Three features that distinguish Chord from many other peer-to-peer lookup
protocols are its simplicity, provable correctness, and provable perfor-
mance.

However, Zave reports:

[T]he Chord routing protocol is neither proven nor correct. The only
published proof of correctness excludes failures from consideration. Even
within its scope the proof does not compel belief, due to ill-defined terms
and missing or unjustified steps. The full protocol is clearly incorrect,
even after bugs with straightforward fixes have been eliminated. Not
one of the six properties claimed invariant for the full protocol . . . is
invariantly true.

Chord is quite well known. A web search on its title yields many thousands
of references. The paper won a SIGCOMM Test of Time Award in 2011. Yet,
the errors in the algorithm went unnoticed for almost 10 years. Zave found
them by writing a formal specification of the algorithm (in the Alloy language)
and applying a form of model checking. What distinguishes Chord from most
published algorithms is that someone applied formal methods to check if it really
was correct.

One way to make hand proofs more reliable is to structure them hierar-
chically. The Principles track of this hyperbook uses such structured proofs.
Structuring is equally important in handling the complexity of a formal proof,
and formal proofs written in TLA+ are hierarchically structured.

10.2 About TLAPS

This track is about writing formal TLA+ proofs that can be checked by TLAPS,
the TLA+ Proof System. TLAPS is a separate system that is called by the
TLA+ Toolbox. It is not distributed with the Toolbox; you can download it
from here.

TLA+ proofs are written in a declarative style that has the goal of making
proofs independent of the proof engines used to check them. A proof specifies
what facts are needed to justify a proof step; it does not say what to do with
those facts. The writer of a TLA+ proof should not have to know how the actual
proof checking works. TLAPS has been designed to come as close as we could
to achieving this goal.

In TLAPS, a proof manager translates the proof into a set of separate proof
obligations, checks the ones that are trivially true, and sends the others to one

3

?

�

-

C

I

S

http://tla.msr-inria.inria.fr/tlaps/

or more backend provers. Its default behavior is to try these three backend
provers: SMT, Zenon, and Isabelle—in that order.

The TLAPS distribution includes a library of TLA modules that contain
useful theorems that assert properties of mathematical objects like sets, func-
tions, and sequences, as well as theorems that assert proof rules such as ones for
mathematical induction. How to access library modules in your specifications is
explained on the help page for the TLA+ preferences page.

The proof manager remembers if it has already proved an obligation. Its
default behavior is not to try to prove an obligation that has already been proved.
TLAPS stores a record of what obligations have been proved in a fingerprint file.
For a module named M , the fingerprint file is the file named fingerprints inside
the folder (directory) M .tlaps. TLAPS may try to prove an obligation that it
has already proved for any of the following reasons: you chose to override the
default (using the Launch Prover command), the fingerprint file is not present
(for example, if you are using a different computer), or some change to TLAPS
has made the information in the fingerprint file obsolete.

Because the correctness of a proof obligation can depend on many things,
some not at all obvious, fingerprinting is subtle. There have been bugs that
cause the Toolbox to report that an obligation has been proved despite a change
to the specification making the obligation no longer provable. If any part of
the specification has changed since you proved something, you should reprove it
without using fingerprints to be sure that it is still proved. In particular, it’s a
good idea to do this after you have finished your complete proof.

Even if nothing has changed, a proof that succeeded may fail if tried again,
or vice-versa. There are two possible reasons for this.

• Whether or not a backend prover succeeds before it times out can depend
on what computer you are using and on what other programs are running.

• If you are using a different version of TLAPS, then a TLAPS library file or
a backend prover may have changed. We keep trying to make the libraries
and the backend provers better. However, automatic proving involves
tradeoffs, and making a library or a prover work better on some proofs
may make it worse on others. We hope that any change we make helps
more often than it hurts, but we cannot guarantee that it won’t make one
of your proofs fail.

4

?

�

-

C

I

S

http://tla.msr-inria.inria.fr/tlatoolbox/doc/gettingstarted/tla-preferences.html
http://tla.msr-inria.inria.fr/tlatoolbox/doc/gettingstarted/preferences.html

11 Correctness of Euclid’s Algorithm

We introduce the prover using Euclid’s algorithm of Section 42 as an example.
If you have not already done so, you should read the informal proof of Euclid’s
algorithm’s correctness in Section 4.92. You should also read about stuttering
in Section 6.7.22.

Here is the specification we wrote in Section 4, including the definitions of
the invariants used in the proof, and here is the ascii version. It calls module
GCD ; here is the ascii version of that module. Open the spec in the Toolbox.
You will have to run the PlusCal translator to make the parsing errors go away.

11.1 Proving Safety

The correctness property we will prove is that PartialCorrectness is an invariant
of the algorithm. This is expressed by the formula Spec ⇒ 2Correctness. As we
saw in Section 4, to do this we have to prove conditions I 1, I 2, and I 3—except
in light of stuttering we must replace I 2 by

Inv ∧ [Next]vars ⇒ Inv ′

Conditions I 1–I 3 are the first three steps of the following proof, which you
should add to the end of module Euclid .

theorem Spec ⇒ 2PartialCorrectness ascii version

〈1〉1. Init ⇒ Inv

〈1〉2. Inv ∧ [Next]vars ⇒ Inv ′

〈1〉3. Inv ⇒ PartialCorrectness

〈1〉4. qed

The proof of a theorem is a sequence of steps, the last step being a qed step.
Each step may be followed by its proof. Of course, the theorem hasn’t been
proved until all of these four steps have been proved. We can prove the steps
in any order, or work on several of them at once. However, it’s usually a good
idea to prove the qed step first.

qed means that which was to be proved, which in this proof is Spec ⇒
2PartialCorrectness. The proof of the qed step must show that the truth of
this formula follows from the truth of what is already known, which are the laws
of mathematics and steps 〈1〉1–〈1〉3. If we think that the proof of a statement
should be obvious, we can use the proof obvious. So, write the word OBVIOUS

after QED. I like to write a step’s proof indented, beginning on the line after the
step; so I would type this as

5

?

�

-

C

I

S

<1>4. QED

OBVIOUS

Indentation and line breaks are ignored in a proof—except as they affect the
meaning of a list of conjuncts or disjuncts within an individual expression.
However, you should begin each step on a new line, otherwise some Toolbox
commands may not behave properly.

Any proof can begin with the optional word PROOF, so we can also write

<1>4. QED

PROOF OBVIOUS

and

PROOF

<1>1. Init => Inv

...

Have TLAPS check the proof of the qed step by putting the cursor in the
step or its proof and executing the Prove Step or Module command either by
right-clicking and choosing it on the menu, or by typing control+g control+g.

The proof fails, shading the step (approximately) red and raising a window
showing the obligation that the backend provers failed to prove—which in this
case is

ASSUME NEW CONSTANT M,

NEW CONSTANT N,

NEW VARIABLE x,

NEW VARIABLE y,

NEW VARIABLE pc

PROVE Spec => []PartialCorrectness

This obligation is exactly what the backend provers are trying to prove. They
are trying to show that the goal, which is the formula in the PROVE section,
follows from the list of assumptions in the ASSUME section together with the
ordinary laws of mathematics. That’s all the backend provers know. They know
nothing about the spec or about anything else in the proof.

Imagine printing out this obligation, giving it to some mathematician you
have never seen before, and expecting her to verify that the goal follows from
the assumptions. Obviously, she couldn’t. How could she possibly determine the
truth of a formula containing the symbols Spec and PartialCorrectness knowing
only that M and N are constants and x , y , and pc are variables?

The truth of the goal follows from the truth of 〈1〉1–〈1〉3. So, we have to
tell the provers to use those facts. To do that, we replace the proof obvious
with

BY <1>1, <1>2, <1>3
6

?

�

-

C

I

S

The proof again fails because the backend provers can’t prove the obligation:

ASSUME NEW CONSTANT M,

...

NEW VARIABLE pc,

Init => Inv,

Inv /\ [Next]_vars => Inv’,

Inv => PartialCorrectness

PROVE Spec => []PartialCorrectness

Can you see what the mathematician would say if you gave here this obligation?
She’d say, “How can I prove a formula containing the symbol Spec if none of the
assumptions even mention that symbol?” To prove the goal, we have to replace
the symbol Spec with its definition. We tell TLAPS to do that by adding a def
clause to the proof:

BY <1>1, <1>2, <1>3 DEF Spec

The proof still fails, this time with the obligation:

ASSUME NEW CONSTANT M,

...

NEW VARIABLE pc,

Init => Inv,

Inv /\ [Next]_vars => Inv’,

Inv => PartialCorrectness

PROVE Init /\ [][Next]_vars => []PartialCorrectness

From everything you’ve read so far, it should be clear that the goal follows from
the three formulas in the ASSUME list. Why did the proof fail? Suppose we
asked the mathematician if the goal follows from the assumptions? If she were
a randomly chosen mathematician, she would probably know nothing about
temporal logic or TLA+, and she would say, “I don’t know if that’s true because
I don’t know what 2 or [Next]vars mean.” Sometimes the backend provers also
try to tell you why they can’t prove it in the window showing the obligation, on
the line that begins Obligation 1. But this time, they say nothing. Most of the
time, the only reason reported by a backend that makes any sense to you or me
is timeout, indicating that it timed out. In that case, the prover might be able
to prove the obligation if given more time, but it seldom can.

The default provers handle action reasoning—ordinary formulas that may
contain primed and unprimed variables. They know what [Next]vars means
because that’s an action formula, but not what 2 means. To prove our qed
step, we use the PTL backend. (PTL stands for Propositional Temporal Logic.)
To do this, we add the “fact” PTL. The symbol PTL is defined in the TLAPS

library module. The actual definition in that module is PTL
∆
= true , but a bit

of magic that has nothing to do with TLA+ makes putting PTL in a by clause
7

?

�

-

C

I

S

cause TLAPS to send the obligation to PTL rather than the default backends.
The proof

BY <1>1, <1>2, <1>3, PTL DEF Spec

works, and TLAPS colors the qed step green.

Let’s now prove the first step. We will have to tell the TLAPS to expand
the definitions of Init and Inv , and expanding the definition of Inv requires
expanding the definition of TypeOK as well. So, we can try the proof

BY DEF Init, Inv, TypeOK We can write DEFS instead
of DEF.

(The order of items in a def clause makes no difference.) TLAPS fails, reporting
this obligation.

ASSUME NEW CONSTANT M,

...

NEW VARIABLE pc

PROVE (/\ x = M

/\ y = N

/\ pc = "Lbl_1")

=>

(/\ /\ x \in Nat \ {0}

/\ y \in Nat \ {0}

/\ GCD(x, y) = GCD(M, N)

/\ pc = "Done" => x = y)

If TLAPS fails to prove an obligation this simple, it’s almost always because
you’ve forgotten to tell it to use some fact or definition that it needs. We
haven’t told it to expand the definition of GCD , but this isn’t necessary because
GCD(x , y) = GCD(M ,N) follows from x = M and y = N . Can you see what
the problem is?

If you can’t see the problem quickly, the quickest way to find it is usually to
break the proof into steps. The logical structure of what we’re trying to prove
tells us how to do that. We’re trying to prove that Init implies a conjunction,
and this is done by proving separately that Init implies each of the conjuncts.
The Toolbox’s Decompose Proof (control+g control+r) command allows you to
do that with a few mouse clicks. Put the cursor anywhere in that step or its
proof and execute the command. The Toolbox raises a window like this:

8

?

�

-

C

I

S

The only thing you can do next is click on the button labeled =>, so do it. The
window changes to:

This tells you that the decomposition so far is to change what is to be proved
from Init ⇒ Inv to

assume Init
prove Inv

By itself, this accomplishes nothing. The implication and the assume/prove
are logically equivalent. However, the button labeled /\ next to Inv tells you
that Inv is a conjunction and you can use that to decompose the proof. The
P next to the button means that clicking on it generates the decomposition.
Uncheck the Use SUFFICES and Use CASE options first and then click on that
button. This replaces the proof with:

〈2〉1. assume Init
prove TypeOK

by 〈2〉1 def Init , Inv , TypeOK
〈2〉2. assume Init

prove GCD(x , y) = GCD(M , N)
by 〈2〉2 def Init , Inv , TypeOK
〈2〉3. assume Init

prove (pc = “Done”)⇒ (x = y)
by 〈2〉3 def Init , Inv , TypeOK
〈2〉4. qed
by 〈2〉1, 〈2〉2, 〈2〉3 def Inv

Note that the original proof has been put into the proofs of steps 〈2〉1–〈2〉3.
Rather surprisingly, each of those steps seems to be using itself in its own proof.
The 〈2〉1 in the proof of step 〈2〉1 actually refers to the assumption Init of the
assume clause. Like any other fact, we must explicitly tell TLAPS when to use
the assumptions in an assume clause. Within the proof of an assume/prove
step, the name of the step refers to the assume clause’s assumptions.

9

?

�

-

C

I

S

Save the module and run TLAPS on this proof by putting the cursor in step
〈1〉1 and executing Prove Step or Module (control+g control+g). Everything
succeeds except the proof of TypeOK , which fails to prove the obligation:

ASSUME NEW CONSTANT M,

NEW CONSTANT N,

...

/\ x = M

/\ y = N

/\ pc = "Lbl_1" (now)

PROVE /\ x \in Nat \ {0}

/\ y \in Nat \ {0}

The problem should now be clear. This obligation is true only because the mod-
ule asserts the assumptions that M and N are in Nat \ {0}, but this assumption
doesn’t appear in the obligation. We have to tell TLAPS to use it.

In a by clause, instead of referring to a fact by its name, you can give the fact
itself. For example, you can replace 〈2〉2 in the proof of 〈2〉2 with Init . However,
the fact has to be stated in the syntactically identical form as its assertion in
the module. TLAPS proves step 〈2〉1 with the proof

by 〈2〉1, ∧M ∈ Nat \ {0}
∧N ∈ Nat \ {0}

def Init , Inv , TypeOK

but not with the proof

by 〈2〉1, M ∈ Nat \ {0} ∧ N ∈ Nat \ {0} def Init , Inv , TypeOK

Rather than doing that, let’s give the assumption a name. But first, there’s no
need to decompose the proof; the provers should have no problem proving 〈1〉1
with this additional fact. So, let’s undo the decomposition of step 〈1〉1’s proof
with the Toolbox’s Undo (control+z) command. Now let’s give the assumption
the name MNPosInt by changing it to:

assume MNPosInt
∆
= ∧M ∈ Nat \ {0}
∧N ∈ Nat \ {0}

TLAPS will now verify this proof of step 〈1〉1:

by MNPosInt def Init , Inv ,TypeOK

Let’s now prove step 〈1〉2, the step that proves that Inv is an inductive invariant.
This spec is simple enough that this step can be proved with a by proof. But
in most real-life examples, you’re going to have to decompose this step, so let’s
start right away by executing the Decompose Proof command on the step. This
provides the only option of a => decomposition, so click on it, producing this
window.

10

?

�

-

C

I

S

There are two basic ways to decompose this proof.

• We can prove each conjunction of Inv ′ separately.

• The next-state action Next is a disjunction, and we can prove A1 ∨ . . . ∨An ⇒ B
by proving Ai ⇒ B for each i .

I usually find the second approach easier, though I’m not sure if it really is or if
it’s just what I’m used to doing. Anyway, let’s do it that way. Click on the top
/\ button to turn the assumption Inv ∧ [Next]vars into the part of it that can
be further decomposed:

Click on the \/ button to get

11

?

�

-

C

I

S

This tells us that the assumption [Next]vars equals Next ∨ (unchanged vars)
and we can split the proof of Inv ′ into the two cases of assuming Next and of
assuming unchanged vars . The \/ button next to Next tells us that formula
Next is also a disjunction on which we can do a case split. Click on it to produce:

Look at the definition of Next in the algorithm’s translation to see that Next is
indeed the disjunction of the formulas in the two subcases.

Make sure that the Use SUFFICES and Use CASE options are unchecked and
click on the P button, which generates the proof. The generated steps 〈2〉1–
〈2〉3 have no proofs, since there was originally no proof for step 〈1〉2. We’re
going to need to expand the definition of Inv and TypeOK in all those proofs.
So we should have saved ourselves some typing by having a

12

?

�

-

C

I

S

by def Inv , TypeOK

proof on step 〈1〉1. Undo the decomposition, add that proof to 〈1〉1 and redo
the decomposition. Read the proof this produced and make sure you understand
why 〈1〉2 follows from 〈2〉1–〈2〉3 and the definition of Next , as the proof of the
qed step asserts. Run the prover on this qed step to see that the backend
provers can verify this simple deduction.

Before we prove this, let’s use the Decompose Proof command to learn a little
more about writing proofs. Undo the decomposition and rerun the decompo-
sition, except this time checking the Use SUFFICES options. This has changed
the resulting proof by adding the first step

〈2〉 suffices assume Inv ,
[Next]vars

prove Inv ′

obvious

and removing the assumptions Inv and [Next]vars from steps 〈2〉1–〈2〉3.
The suffices step asserts that to prove the goal of 〈1〉2, which is
Inv ∧ [Next]vars ⇒ Inv ′ , it suffices to assume Inv and [Next]vars and prove Inv ′.
It also allows the use of the assumptions Inv and [Next]vars in the remaining
steps of this proof (the proof of 〈1〉2).

Note that the suffices step has a level number, but not a name. Facts
asserted by an unnamed step are used by the backend provers without having
to be mentioned in a by step. Run the prover on step 〈2〉1. The proof fails
because the definition of Lbl 1 isn’t being used, but examine the obligation.
Note that the assumption following the declaration of pc—an assumption that
is ended by a comma—is Inv with its definition and the definition of TypeOK
expanded. The next assumption is [Next]vars . Now give the suffices step a
name—say 〈2〉x . Run the prover once again on step 〈2〉1. You’ll see that the two About step names.

assumptions no longer appear in the obligation. You can add those assumptions
to the obligation by adding 〈2〉x to the by proof.

Unnecessary assumptions make it harder for the backend provers to prove
an obligation, so unnamed steps should be used with care. An unnecessary
assumption like Inv has little effect if the definition of Inv is not expanded.
Similarly, the assumption [Next]vars is pretty harmless if the definitions of Next
and vars are not expanded. So not numbering this suffices step is not a
problem.

Now undo the decomposition of the proof of 〈1〉2 and redo it, this time with
both the Use SUFFICES and Use CASE options checked. Steps 〈2〉1–〈2〉3 have
been changed from assume/prove steps to case steps. For example,

〈2〉1. assume Lbl 1
prove Inv ′

has been changed to
13

?

�

-

C

I

S

〈2〉1. case Lbl 1

In general, the step case A is equivalent to the step assume A prove G ,
where G is the current goal. In this case, the current goal for steps 〈2〉1–〈2〉3
is set to Inv ′ by the suffices step.

Undo the proof decomposition and run the Decompose Proof command again,
now with Use CASE checked and Use SUFFICES unchecked. This time, the proof
has no case steps. The assume/prove steps all have two assumptions, so they
can’t be turned into case steps. I think the version of the proof with suffices
and case is the nicest one.

Using whichever decomposition you prefer, let’s now check the proof. We
obviously need to add Lbl 1 to the def clause in the proof of 〈2〉1 and vars to
the def clauses in the proofs of 〈2〉2 and 〈2〉3. Do that and run the prover on
the proof. You can either run the Prove Step or Module command on step 〈1〉2
(by putting the cursor in that step) or on the entire theorem (by putting the
cursor on the statement of the theorem) or on the entire module (by putting the
cursor outside any theorem or proof). Because of its use of fingerprints, TLAPS
doesn’t spend any significant amount of time rechecking proofs it has already
checked. (It does take time to compute the obligations, so you don’t want to
run TLAPS unnecessarily on more than a few dozen steps.) It will not check
any steps that have no proof, coloring those steps yellow.

TLAPS proves everything except step 〈2〉1, which is the only non-trivial
one. Examining the obligation, we see two problems. First, we’ve forgotten our
assumption MNPosInt telling us that M and N are positive integers. Second, the
obligation can’t be proved without knowing something about GCD . We can try
adding MNPosInt to the by clause and expanding the definition of GCD , which
requires also expanding the definitions of SetMax , DivisorsOf , and Divides. Do
that and try the proof again. It fails. The obligation is complicated enough that
we’d have a hard time trying to understand it. However, the backend provers can
handle obligations that large—especially the SMT solvers. The SMT solvers are
especially good at dealing with arithmetic formulas that involves inequalities,
addition, and subtraction. However, this obligation also involves multiplication.
(The other backends are pretty bad at any kind of arithmetic.) Furthermore, the
obligation contains a number of choose expressions and existential quantifiers,
both of which can trip up the provers.

We could further decompose the proof of 〈2〉1 by trying to prove each of the
conjuncts of Inv ′ separately. We would find that the conjunct whose proof fails is
(GCD(x , y) = GCD(M ,N))′ , which is equivalent to (GCD(x ′, y ′) = GCD(M ,N)) .
We have reached the point where we can’t get any further by blindly decompos-
ing the proof. We have to think about why GCD(x ′, y ′) equals GCD(M ,N).
Going back to the informal proof, we remember that correctness of Euclid’s al-
gorithm rests on properties GCD1—GCD3, which are defined in the module
GCD . In fact, the invariance of Inv is proved using GCD2 and GCD3. The
proof of 〈2〉1 succeeds if we add GCD2 and GCD3 to the by proof. In fact,

14

?

�

-

C

I

S

there’s no need to decompose step 〈1〉2. TLAPS verifies it with the proof

by MNPosInt , GCD2, GCD3 def Inv , TypeOK , Next , Lbl 1, vars

You should be able to prove step 〈1〉3, using GCD1.

11.2 Proving Properties of the GCD

Checking the correctness of algorithms and systems is hard enough. You should
not have to check the correctness of mathematical theorems. That should be
the job of mathematicians. So, normally you would not bother to get TLAPS
to check the correctness of theorems GCD1–GCD3 of the GCD module. If a
mathematical result is not very simple, then you should be able to find it in a
math book. You just have to translate the result from the informal math used by
mathematicians to a TLA+ theorem. To avoid errors in formalizing the result,
you should check the theorem with TLC.

However, our topic here is how to write proofs, and the proofs of GCD1–
GCD3 are instructive. So, let’s write them. Open module GCD in the Toolbox.
You don’t need to make it a separate specification; you can open it within
the Euclid spec with the Open Module command in the Toolbox’s File menu.
(Another way to go to the GCD module is to apply the Goto Declaration (F3)
command to the identifier GCD , which will go to its definition within that
module. The Return from Goto Declaration (F4) command returns to the original
cursor position.)

Let’s start trying to prove each of the theorems GCD1–GCD3 with a by
proof. We expand the definition of GCD down to its TLA+ primitive operators,
which is done by the following proof:

by def GCD , SetMax , DivisorsOf , Divides

Add that proof after each of the three theorems and run the prover on all of
them (by executing the Prove Step or Module command with the cursor outside
any theorem or proof). This succeeds in proving only GCD2. In fact, GCD2
follows from the top-level definition of GCD and commutativity of set union;
there is no need to expand the definitions of SetMax or DivisorsOf . Remove
the unnecessary definition expansions from the proof of GCD2 and check that
TLAPS still proves it.

Let’s prove GCD1 next. To decompose the proof, let’s use the Decompose
Proof command. It raises this window

15

?

�

-

C

I

S

which gives us only one option: clicking on the \A button. This changes the
dialog to

which tells us that we can prove the goal by assuming that m is an element of
Nat \ {0} and proving GCD(m,m) = m . Check the Use SUFFICES option and
click on the P button to produce this proof.

〈1〉 suffices assume new m ∈ Nat \ {0}
prove GCD(m, m) = m

obvious
〈1〉 qed

by def GCD , SetMax , DivisorsOf , Divides

Run the Prove Step or Module command on the theorem. It proves the suf-
fices step, but not the qed step. Proving the suffices step means proving
that assuming its assumptions and proving its prove formula proves the cur-
rent goal, which is the statement of the theorem. This is trivial because the
assume/prove is equivalent to the theorem. Naturally, transforming the theo-
rem’s goal to something obviously equivalent isn’t going to enable the backend
provers to prove it, so the proof of the qed step fails. What the suffices step
accomplishes is to remove the quantifier, allowing us to prove GCD(m,n) = m
for a particular choice of m.

The Decompose Proof command can take us no further; we have to start
thinking. To show that m is the GCD of m and m, we have to show that (1) m
divides m and (2) m is the largest number that divides m. This suggests that
we add the following two steps after the suffices step

〈1〉1. Divides(m, m)

〈1〉2. ∀ i ∈ Nat : Divides(i , m)⇒ (i ≤ m)

Before trying to prove them, it’s best to check that they are all we need. So,
add the facts 〈1〉1 and 〈1〉2 to the by clause of the qed step’s proof and see if Why number these steps?

TLAPS will prove that step.
TLAPS does prove the qed step. If it hadn’t, we would have had to do some

more thinking to see why not. Our thinking about the proof should have led us
16

?

�

-

C

I

S

to realize that proving the theorem from 〈1〉1 and 〈1〉2 doesn’t require expand-
ing the definition of Divides. Expanding the definition made the formula that
had to be proved more complicated than necessary. An unnecessary definition
expansion can make the difference between a proof succeeding and failing. So,
remove Divides from the def clause and check that TLAPS still proves the qed
step.

Now we have to prove steps 〈1〉1 and 〈1〉2. We have no useful facts at our
disposal; all we can do is tell the TLAPS to expand the definition of Divides.
So, add the proof

by def Divides

to both of them and try proving them both by telling TLAPS to prove the entire
theorem. TLAPS proves 〈1〉1 and 〈1〉2, thus proving the theorem.

Finally, we must prove theorem GCD3. Run the Decompose Proof command,
clicking on the \A button, then the => button, and then the P button to
produce this proof.

〈1〉 suffices assume new m ∈ Nat \ {0}, new n ∈ Nat \ {0},
n > m

prove GCD(m, n) = GCD(m, n −m)
obvious
〈1〉 qed

by def GCD , DivisorsOf , SetMax , Divides

We should have TLAPS check the proof of the suffices step to make sure that
the Decompose Proof command didn’t make an error. There’s no point wasting
time having TLAPS check the qed step because the decomposition so far has
been logically trivial. We have to do some thinking to decompose the proof into
simpler steps.

That result of that thinking appears in our informal proof of GCD3. The first
step of that proof states that, to prove the goal GCD(m,n) = GCD(m,n −m)
it suffices to prove

∀ i ∈ Int : Divides(i , m) ∧Divides(i , n)
≡ Divides(i , m) ∧Divides(i , n −m)

Let’s see if TLAPS believes that is enough to prove our goal. Insert that as an
unnumbered step (labeled by 〈1〉) before the qed step and now run the TLAPS
on the qed step. It succeeds. (In fact, it’s not necessary to expand the definition
of Divides.)

All we have left to do is to prove the newly added step. You will find that
TLAPS successfully checks the proof

by def Divides

Run the Prove Step or Module command on the entire module to verify that we
have indeed proved all three theorems.

17

?

�

-

C

I

S

12 The Proof Language

Now that you’ve seen the basics of using TLAPS, it’s time to examine proofs and
the proof language more closely. Before we do that, let’s examine the theorems
that we are trying to prove.

12.1 What a Theorem Asserts

A theorem consists of one of the equivalent keywords

theorem lemma corollary proposition

followed optionally by an identifier and the symbol
∆
= , followed by an assertion.

A theorem of the form

theorem id
∆
= A

defines id to equal assertion A. Naming theorems (and assumptions) is a good
idea, because it makes them easier to use in a proof.

An assertion is either a formula or an assume/prove. An assume/prove has
the form

assume A1 , . . . ,An

prove B

where B is a formula and each of the assumptions Ai is either a formula or
a declaration. A declaration is something like new v or new v ∈ S where v TLA+ allows other kinds of

declarations, but you’ll
never write them.

is a variable and S is an expression. The keyword new can be replaced by
constant or new constant. The declaration new v ∈ S is almost equivalent
to the declaration new v followed by the assumption v ∈ S . The only difference
is that when it appears in new v ∈ S , the formula v ∈ S is called a domain
assumption. However, the formula v ∈ S is not a domain assumption when
it appears by itself in a separate assume clause. The significance of domain
assumptions is explained below. It’s usually best to write new v ∈ S instead of
splitting the assumption in two.

To simplify the exposition, we consider an assertion that is a formula F to be
an assume/prove with no assumptions, as if it were written assume prove F .
(TLA+ does not allow you to write such an assume/prove, so I color it red.)

An assertion asserts (the truth of) a formula. The assertion

assume prove F

asserts the formula F . The assertion

assume new x ∈ S , P(x)
prove Q ∨ R(x)

18

?

�

-

C

I

S

asserts the formula ∀ x ∈ S : P(x)⇒ (Q ∨ R(x)) . The assertion

assume new P(), new x , new y , x = y
prove P(x) = P(y)

asserts the formula

∀P() : ∀ x : ∀ y : (x = y)⇒ (P(x) = P(y))

This isn’t a legal TLA+ formula, since TLA+ doesn’t allow quantifying over an
operator that takes an argument. I will use such formulas for the purpose of
explaining proofs, coloring the illegal parts red.

12.2 The Hierarchical Structure of a Proof

12.2.1 Writing Structured Proofs

A theorem may have a proof. A proof consists of the optional keyword proof
followed by either:

• A non-leaf proof that is a sequence of steps, ending with a qed step, each
of which may (but need not) have a proof.

• A leaf proof, which is either the keyword obvious, the keyword omitted,
or a by proof.

The leaf proof omitted is equivalent to having no proof; use it to indicate that
you are deliberately assuming something and have not simply forgotten to prove
it.

A step (of a non-leaf proof) begins with a preface token consisting of the
following three parts, with no spaces between them:

• A level specifier of the form 〈i 〉, where i is a non-negative integer called
the level number. (It is typed < i >.) All steps in a single non-leaf proof
must have the same level number. If the step has a non-leaf proof, the
steps of that proof must have a level number greater than i .

• A string of digits, letters, and/or _ characters that may be empty. If it is
non-empty, the step is said to be named, and its name is the level specifier
followed by this string.

• An optional period (.).

For example, 〈3〉2a. 1 + 1 = 3 is a named level-3 step with name 〈3〉2a and
assertion assume prove 1 + 1 = 3. If, like me, you prefer to name most of
the steps in a non-leaf proof 〈i 〉1, 〈i 〉2, . . . , see the help page of the Toolbox’s
Renumber Proof command.

We describe the hierarchical structure of a proof in the usual way as an
upside-down tree (with the root on top), where steps at a lower level (deeper)
in the proof structure (the tree) have larger level numbers.

19

?

�

-

C

I

S

12.2.2 Reading Structured Proofs

You may have noticed a little 	 next to theorems and proof steps. (For brevity,
I will write step to mean either a proof step or the statement of a theorem.)
Clicking on the 	 hides the step’s proof, replacing the 	 with ⊕. Clicking on
the ⊕ undoes the effect of clicking on the 	.

There are a number of commands for viewing the proof as hypertext that
provide finer control of what is shown than you can get by just clicking on 	
and ⊕. The following commands are executed on a step by putting the cursor
on the step and either right-clicking and selecting the command or typing the
indicated keystrokes.

Clicking on 	 or ⊕
sometimes doesn’t work
properly. These other
commands should always do
what they’re supposed to.

Show Current Subtree (control+g control+s)
Reveals the complete proof of the step.

Hide Current Subtree (control+g control+h)
Hides the proof of the step.

Show Children Only (control+g control+c)
Reveals the top level of the step’s proof.

Focus on Step (control+g control+f)
Hides everything except the top level of the step’s proof and the siblings
of (steps at the same level as) the step and of every ancestor of that step
in the proof.

This is useful when writing the proof because, after executing this com-
mand on a step, the steps before it that are shown are precisely the ones
that can be referred to in the proof of the step.

The following two commands are performed with the cursor anywhere in the
module.

Show All Proofs (control+g control+a)
Reveals the complete proof of every theorem in the module.

Hide All Proofs (control+g control+n)
Hides the proof of every theorem in the module. (The Focus on Step
command performed outside a proof is equivalent to Hide All Proofs.)

As you have undoubtedly noticed, the Toolbox editor commands having to do
with proofs are executed from the keyboard by typing control+g plus another
control character. If you just type control+g and wait a second, you will see a
list of all the commands you can execute with an additional keystroke.

20

?

�

-

C

I

S

12.3 The State of a Proof

At each step in a proof, and at each leaf proof, there is a state that consists of
the following components:

G A formula that is the current goal of the proof.

S The sequence of current symbol declarations. Here are examples of
symbol declarations:

variable x constant C constant Op(, ,)

constant ⊕

There is one additional kind of symbol declaration: constant id ∈ S ,
where id is an identifier and S is an arbitrary expression. We call the
formula id ∈ S the declaration’s domain assumption.

FK The known facts, which is the set of formulas currently asserted by the
user to be true, and which can be used to prove new facts.

FU The usable facts, which is the subset of FK consisting of those facts that
are used by default in proofs.

DK The set of all user-defined symbols.

DU The subset of DK containing all user-defined symbols whose definitions
are by default expanded in proofs.

B A sequence of backend provers.

The proof state determines the proof obligations that are sent to the backend
provers, and what backend provers they are sent to, as described below in Sec-
tion 12.4.

The proof-state components other than G are also defined at all high-level
statements in a module. They are all empty at the beginning of the module, ex-
cept that B equals the default sequence 〈SMT , Zenon, Isa 〉 of backend provers.
These components are changed by ordinary module statements in the following
ways:

constants C , F ()
Appends the sequence 〈constant C , constant F ()〉 of declarations to
S. In other words, if S equals 〈variable x , constant AB 〉 before the
declaration, then it equals

〈variable x , constant AB , constant C , constant F ()〉
immediately after the declaration. The constants statement leaves the
other components of the proof state unchanged. A variables statement
has a similar effect.

21

?

�

-

C

I

S

f (a)
∆
= {x , a}
adds the symbol f to DK , but leaves the other components, including DU ,
unchanged. Thus, a module’s definitions are not usable by default. A
function definition has essentially the same effect.

theorem thm
∆
= assume new i ∈ S , P(i)

prove Q(i)
Adds the formula ∀ i ∈ S : P(i)⇒ Q(i) to FK , adds thm to both DK

and DU , and leaves FU , S, and B unchanged. Thus, the definition of the
theorem name, but not the formula asserted by the theorem, is usable by

default. The statement has the same effect without the “ thm
∆
= ” except

that DK and DU are left unchanged. An assume statement (which can
also include a definition) has the same effect.

extends M1, M2
Has the same effect as if the statements of modules M 1 and M 2 were
inserted at the beginning of the current module.

An instance statement
The definitions imported by the statement are added to DK , and the in-
stantiated theorems from the module are added to FK as described below.
The components S, DU , FU , and B are unchanged.

recursive op()
Has no effect on the proof state.

To specify the proof state at each step and each leaf proof of a theorem’s proof,
we do two things:

• For a proof step Σ that is not a qed step, we specify the proof state at
the next proof step at the same level as Σ. (A qed step ends its level of
the proof.)

• For a proof step or theorem that has a proof, we specify the proof state at
the beginning of its proof—which is either its leaf proof or the first step of
its non-leaf proof .

How every different kind of proof step affects the proof state is described below.
Some of the descriptions are given for particular examples of the steps; the
generalizations to arbitrary instances of the steps should be obvious.

Remember that a step that has a preface token like 〈3〉14. is said to be
named, and 〈3〉14 is its name. A step with a prefix token like 〈3〉 is unnamed.

Similarly, a theorem that begins theorem thm
∆
= is said to be named and

have the name thm. Other theorems are said to be unnamed. In the following
lists of proof-step statements, the preface tokens are omitted.

22

?

�

-

C

I

S

12.3.1 Steps That Can Have a Proof

assume new i ∈ S , j ∈ T
prove Q(i)

This can be either a step or the statement of a theorem. If it is a step,
then the proof context of the next step at the same level is obtained from
the context at the step as follows:

• The formula ∀ i ∈ S : (j ∈ T)⇒ Q(i) asserted by the assume/prove
is added to FK . If the step is unnamed, this formula is also added to
FU ; otherwise FU is unchanged.

• If the step is named, then its name is added to DK and DU ; otherwise
DK and DU are unchanged.

• G, S, and B are left unchanged.

If the step or theorem has a proof, the proof context at the beginning of
the proof is obtained from the context at the step or theorem as follows:

• The current goal G becomes Q(i).

• The declaration constant i ∈ S is appended to S.

• The formula j ∈ T is added to FK . If this is a theorem or an un-
named step, then this formula is also added to FU ; otherwise FU is
unchanged.

• If the step or theorem is named, then its name is added to DK and
DU ; otherwise DK and DU are unchanged.

• B is unchanged.

If the step is named 〈3〉14, then:

• Within the step’s proof, 〈3〉14 names the formula j ∈ T . The name
can be used only as a fact—for example, in a by proof. A formula
that contains the name, such as (j > i)⇒ 〈3〉14, is illegal.

• Starting from the next step at the current level until the end of the
current-level proof, 〈3〉14 names the formula ∀ i ∈ S : (j ∈ T)⇒ Q(i)
asserted by the assume/prove.

Observe that facts that would be added to the set FU of usable facts if
the step were unnamed are not added if those facts can be named. The
philosophy behind this is that the user should state explicitly (usually by
name) what facts are needed to prove each step. This makes the proof
easier for humans to understand and for backend provers to check.

Unlike unnamed steps, unnamed theorems are not usable by default. This
means that adding a new theorem, whether named or not, will not affect

23

?

�

-

C

I

S

the proofs of later theorems. (Adding a new usable fact can’t invalidate a
proof, but it can make it harder for a prover to check it, causing TLAPS
to fail to check the proof.) Since unnamed theorems can’t be referred to
by name, using them in a proof is inconvenient.

qed
The context at the start of a qed step’s proof is the same as for the step
that simply asserted G, the step’s current goal. No step follows a qed
step at the same level.

suffices assume new i ∈ S , j ∈ T
prove Q(i)

The proof context of the next step at the same level is obtained from the
context at the step as follows:

• The current goal G becomes Q(i).

• The declaration constant i ∈ S is appended to S.

• The formula j ∈ T is added to FK . If this is an unnamed step, then
the formula is also added to FU ; otherwise FU is unchanged.

• If the step is named, then its name is added to DK and DU ; otherwise
DK and DU are unchanged.

• B is unchanged.

If the step has a proof, the proof context at the beginning of the proof is
obtained from the context at the step as follows:

• The current goal G is unchanged.

• The formula ∀ i ∈ S : (j ∈ T)⇒ Q(i) asserted by the assume/prove
is added to FK and FU .

• If the step is named, then its name is added to DK and DU ; otherwise
DK and DU are unchanged.

• G, S, and B are left unchanged.

If the step is named 〈3〉14, then:

• Starting from the next step at the same level until the end of the
current-level proof, 〈3〉14 names the formula j ∈ T .

• Within the step’s proof, 〈3〉14 names ∀ i ∈ S : (j ∈ T)⇒ Q(i) , the
formula asserted by the assume/prove.

Observe that there is a duality between an assume/prove step and a suf-
fices assume/prove step. The proof state at the beginning of the proof of
an assume/prove step is the state after the suffices assume/prove step
and its proof, and vice-versa. This reflects the fact that by renumbering
steps, we can convert a proof

24

?

�

-

C

I

S

〈3〉14. assume new i ∈ S , j ∈ T
prove Q(i)

Level-4 proof of Q(i) using assumptions i ∈ S and j ∈ T .

Rest of level-3 proof that proves G using ∀ i ∈ S : (j ∈ T)⇒ Q(i).

to the equivalent proof

〈3〉14. suffices assume new i ∈ S , j ∈ T
prove Q(i)

Level-4 proof of G, using ∀ i ∈ S : (j ∈ T)⇒ Q(i) .

Rest of level-3 proof that proves Q(i) using assumptions i ∈ S and j ∈ T .

The proof that ∀ i ∈ S : (j ∈ T)⇒ Q(i) implies G is usually a simple
leaf proof; the proof of Q(i) is often complicated, requiring multiple lev-
els. Therefore, the suffices proof usually has one fewer level. The main
function of the suffices construct is to reduce the depth of proofs.

case F
This step is equivalent to the step

assume F prove G

where G is the current goal at the step.

pick i ∈ S , j ∈ T : P(i , j)
This step produces the same proof state at the next statement at the same
level as the step

suffices assume new i ∈ S , new j ∈ T
P(i , j)

prove G

having the same prefix token as the pick step, and where G is the current
goal at the step. It produces the same state at the beginning of the step’s
proof as the step

∃ i ∈ S , j ∈ T : P(i , j)

Thus, to prove the step, you have to prove the existence of i ∈ S and j ∈ T
satisfying P(i , j). After the step, i and j are declared to be constants,
with domain assumptions i ∈ S and j ∈ T , formula P(i , j) is added to
the known facts, and the current goal remains the same. (As with the
corresponding assume/prove step, whether P(i , j) is usable depends on
whether the step is named.)

25

?

�

-

C

I

S

In general, a pick statement can be anything that is a legal expression if
the pick is replaced by ∃—for example:

pick i , j ∈ S , k ∈ T : P(i , j , k)

pick i , j , k : (i /∈ j) ∧Q(j , k)

The meaning of these statements and their effect on the proof state should
be clear.

12.3.2 Steps That Cannot Have a Proof

For a step that cannot have a proof, we need describe only how it changes the
proof state at the step to obtain the proof state at the following step (which
must be at the same level).

The use and hide Steps

These two steps modify the sets FU and DU of usable facts and definitions; a
use step can also modify B. They can appear either as a proof step with a
preface token, or as a top-level module statement with no preface token. When
they appear as a step, it makes no difference whether they are named or not. A
use or hide step can have a name, but that name can’t be used anywhere.

The keywords def and
defs are equivalent.

use 〈2〉2, Isa, i > 1, thm, SMT def F , ⊕
where thm is a theorem name. The step adds to FU the formula i > 1
and the facts named by the step name 〈2〉2 and the theorem name thm. It
adds to DU the symbols F and ⊕, which must be in DK . It leaves G, S,
FK , and DK unchanged, and it makes B equal 〈Isa, SMT 〉. (A use step Remember that the “facts”

Isa and SMT specify
backend provers.

that specifies no backend provers leaves B unchanged.) This step produces
the same proof obligations as the step

〈3〉14. true
by 〈2〉2, Isa, i > 1, thm, SMT def F , ⊕

hide 〈2〉2, thm def F , ⊕
Removes from FU the facts named by the step name 〈2〉2 and the theorem
name thm. It removes from DU the symbols F and ⊕. It leaves G, S,
FK , and DK unchanged.

Observe that while a use step can add arbitrary formulas to FU , a hide step
can remove only named facts from FU .

The define Step

This step makes definitions that are local to the current level of the proof and
its subproofs.

26

?

�

-

C

I

S

define f (a)
∆
= a + 1

g
∆
= f (42) ∗ b

adds to DK and DU the symbols f and g , which have the specified defini-
tions everywhere within the scope of the define—which is the rest of the
current proof (and its subproofs). The other proof-state components are
unchanged. The step may be named, but its name should not be used. We may change TLAPS to

make the step name refer to
both definitions when used
in the def clause of a use
or hide step.

Observe that, unlike ordinary definitions in the module, definitions made in a
define step are usable by default. They can be hidden (removed from DU) with
a hide step.

Other Steps That Cannot Have a Proof

witness n − 2 ∈ Nat , 2 ∗m ∈ 1 . . n
For this step to be legal, the current goal G must be obviously equivalent
to

G0. ∃ a ∈ S , b ∈ T : P(a, b)

for some identifiers a and b, expressions S and T , and operator P . For
example, G might be the formula

G1. ∃ i , j ∈ Int : i + j ≤ 3 ∗ (n + 1)

To prove G0, it suffices to prove P(v ,w) for particular values v in S and
w in T . In our example, v is n − 2, w is 2 ∗m, and S and T both equal
Int . The witness step we would generally use to prove G1 is

witness n − 2 ∈ Int , 2 ∗m ∈ Int

I have chosen a different, rather silly example to explain how a witness
step works in general. Our example witness step is equivalent to the step

suffices assume n − 2 ∈ Nat , 2 ∗m ∈ 1 . . n
prove (n − 2) + (2 ∗m) ≤ 3 ∗ (n + 1)

with the proof

by 1 . . n ⊆ Int , 2 ∗m ∈ 1 . . n, Nat ⊆ Int , n − 2 ∈ Nat

Thus, the step changes G to (n − 2) + (2 ∗m) ≤ 3 ∗ (n + 1) . If the step
is named, it adds formulas n − 2 ∈ Nat and 2 ∗m ∈ 1 . . n to FK ; if it is
unnamed, it adds these formulas to FK and FU .

There is also an unbounded form (without the ∈) of the witness state-
ment:

witness n − 2, 2 ∗m

27

?

�

-

C

I

S

that can be used if the goal is of the form ∃ a, b : P(a, b). It changes G
the same way as the corresponding bounded witness, but leaves the other
state components unchanged. It generates no proof obligations.

A witness statement helps the backend provers by explicitly telling them
how to prove an existentially quantified formula. They seldom need this
help. The provers will usually deduce G0 by themselves from the facts
v ∈ S , w ∈ T , and P(v ,w).

The have and take steps that are described next were added to the language
to save some typing. I never use them, preferring the equivalent suffices steps.
Readers encountering TLA+ proofs for the first time can find them forbidding.
For such readers, it’s a good idea to use as few different kinds of steps as you
can. If you use have and take steps, it’s best to do so only in the lowest-levels
of the proof.

have F
where F is an arbitrary formula. The current goal G must be of the form
P ⇒ Q , in which case the step is equivalent to

suffices assume F
prove Q

with a leaf proof obvious. To check this leaf proof, TLAPS has to prove
P ⇒ F . This statement is most often used with F equal to P .

take i , j ∈ U , k ∈ V
For this statement to be legal, the current goal G must be equivalent to

∀ a, b ∈ S , c ∈ T : P(a, b, c)

In this case, the step is equivalent to the step

suffices assume new i ∈ U , new j ∈ U , new k ∈ V
prove P(i , j , k)

with the leaf proof

by T ⊆ V , S ⊆ U

The take step is almost always used with U = S and V = T . In this
case, the suffices step can be generated with the Toolbox’s Decompose
proof command by selecting the Use suffices option.

There is also an analogous unbounded version:

take i , j , k

It is equivalent to

suffices assume new i , new j , new k
prove P(i , j , k)

with proof obvious.
28

?

�

-

C

I

S

An instance Statement
The instance step has the same syntax as a module level instance step

(not preceded by
∆
=). It leaves the current goal G unchanged and changes

the other components of the proof state the same way that an ordinary
instance statement in the module does. TLAPS does not (yet) handle
instance steps.

12.4 Proof Obligations

Proof obligations are generated by leaf proofs and by the following kinds of steps
that do not take proofs: use, witness, take, and have. These four kinds of
steps are explained above in terms of equivalent steps with obvious or by leaf
proofs. The proof obligations generated by the steps are the ones generated
by those leaf proofs. We therefore need to consider only the proof obligations
generated by an obvious or by leaf proof.

An obvious proof generates a single proof obligation. Suppose the proof
context at the proof has these components:

S: 〈variable x , constant i ∈ S 〉
FU : {v < 0, 2 ∗ y = 14}
DU : {S , w , y}
G: i + 3 > v + w

B: 〈Zenon, SMT 〉

where S , y , and w are defined by:

S
∆
= Nat

y
∆
= i − 1

w
∆
= y + 2

The proof obvious then generates this proof obligation:

assume variable x ,
constant i ∈ Nat
v < 0,
2 ∗ (i − 1) = 14

prove i + 3 > v + ((i − 1) + 2)

Note how all occurrences of S , y , and w have been replaced by their definitions.
The obligation is sent to Zenon and, if Zenon fails to prove it, it is sent to SMT .

To describe the obligations generated by a by proof, we consider this proof
step:

〈3〉8. assume new i ∈ Nat , P(i)
prove Q(i)

by 〈2〉5, F > 1, Isa, 2⊕ 3 = 5, 〈3〉8, SMT , G(42), Zenon def F , ⊕, Q
29

?

�

-

C

I

S

where step 〈2〉5 is

〈2〉5. Step2 5

for some formula Step2 5. Step 〈3〉8 and its proof are then equivalent to the
following steps. Note how each by fact that isn’t a name of a previously asserted
fact must be proved using the preceding by facts; and the definitions of symbols
in the def clause are expanded in all these proofs.

〈3〉8. assume new i ∈ Nat , P(i)
prove Q(i)

〈4〉 use def F , ⊕, Q

〈4〉1. assume new constant i ∈ Nat , Step2 5
prove F > 1

obvious

〈4〉 use Isa

〈4〉2. assume new constant i ∈ Nat , Step2 5, F > 1
prove 2⊕ 3 = 5

obvious

〈4〉 use Isa, SMT

〈4〉3. assume new constant i ∈ Nat , Step2 5, F > 1, 2⊕ 3 = 5, P(i)
prove G(42)

obvious

〈4〉 use Isa, SMT , Zenon

〈4〉4. assume new constant i ∈ Nat , Step2 5, F > 1, 2⊕ 3 = 5, P(i), G(42)
prove Q(i)

obvious

〈4〉4. qed

〈3〉 use Isa, SMT , Zenon

The use def step is omitted if the by proof has no def clause. The other use
steps are omitted if the by facts do not specify any backend prover. In that
case, the value of B at step 〈3〉8 determines the backend provers used to check
the proofs.

12.5 Further Details

Here are some miscellaneous facts about proofs and the proof language.

12.5.1 Additional Language Features

@ Expressions

Suppose you want to prove an equality a > d by proving a ≥ b, b = c, and
30

?

�

-

C

I

S

c > d , where a, b, c, and d may be large expressions. To save some typing, you
can write:

〈3〉6. a ≥ b
〈3〉7. @ = c
〈3〉8. @ > d

In this case, the @ in step 〈3〉7 is an abbreviation for b, and the @ in step 〈3〉8
is an abbreviation for c. The symbol @ does not mean b in a proof of 〈3〉7, nor
does it mean c in a proof of 〈3〉8. The symbol @ can be used in the same way
in subproofs of those steps’ proofs.

Using Unnamed Facts

The description of TLAPS given thus far makes it seem impossible to use an
unnamed fact such as

assume N + 1 > M

in a proof. There is one additional feature of TLAPS that makes it possible to
use such a fact: TLAPS will accept as proved a formula F appearing in a by
clause or use statement if F is identical to a fact in FK . This allows the use
of unnamed facts in a proof. For example, the statement adds to FK the fact
N + 1 > M . Thus the assumption above can be used in a proof as follows:

〈3〉7a. 2 ∗N + 2 > 2 ∗M
by N + 1 > M

The proof by 1 + N > M will fail, with TLAPS complaining that it can’t prove
1 + N > M (assuming that this formula is not implied by facts in FU). To use
a formula F this way, F must have the same parse tree as a formula in FK .

Implicit Level Specifiers

You can write a proof consisting entirely of unnamed steps without writing
explicit level numbers. Just write 〈+〉 (typed <+>) as the level specifier of the
first step and 〈∗〉 (typed <*>) as the level specifiers of subsequent steps. For
example, here is a possible subproof structure.

〈4〉2. . . .
〈+〉 . . .
〈 ∗ 〉 . . .
〈 ∗ 〉 . . .
〈+〉 . . .
〈 ∗ 〉 . . .
〈 ∗ 〉 qed

〈 ∗ 〉 . . .
〈 ∗ 〉 qed

31

?

�

-

C

I

S

You can write proof 〈∗〉 or proof 〈+〉 instead of 〈+〉.
Each 〈+〉 or 〈∗〉 is equivalent to 〈i 〉 for a suitable level number i . You can

even mix steps labeled 〈∗〉 and steps labeled 〈i 〉 or 〈i 〉j in the same proof. (A
little experimentation will reveal what the appropriate level i is.) However, this
is a bad idea. You should use 〈+〉 and 〈∗〉 only in short, low-level subproofs that
need no step names.

Subexpression Names

When writing proofs, it is often necessary to refer to subexpressions of a for-
mula. In theory, one could use definitions to name all these subexpressions. For
example, if

Foo(y)
∆
= (x + y) + z

and we need to mention the subexpression (x + 13) of Foo(13), we could write

Newname(y)
∆
= (x + y)

Foo(y)
∆
= NewName(y) + z

This doesn’t work in practice because it results in a mass of non-locally de-
fined names, and because we may not know when we define the formula which
subformulas will need to be mentioned later.

TLA+ provides a method of naming subexpressions of a definition. If F

is defined by F (a, b)
∆
= . . . , then any subexpression of the formula obtained

by substituting expressions A for a and B for b in the right-hand side of this
definition has a name beginning “F (A,B) !”. (Although this is a new use of the
symbol “!”, it is a natural extension of its use with module instantiation.) Here
is a complete explanation of subexpression names.

You can use subexpression names in any expression. When writing a specifi-
cation, you can define operators in terms of subexpressions of the definitions of
other operators. Don’t! Subexpression names should be used only in proofs. In
a specification, you should use definitions to give names to the subexpressions
that you want to re-use in this way.

12.5.2 Importing

Instantiated Theorems

The statement

I
∆
= instance M with . . .

imports definitions and theorems into the current module. If module M defines

D
∆
= ψ

32

?

�

-

C

I

S

for some expression ψ, then the instance statement defines I !D in the current
module to equal ψ, which is the formula obtained from ψ by performing the
substitutions for the constant and variable parameters of M specified by
the with clause. Suppose module M contains the theorem

theorem Thm
∆
= assume A

prove Γ

and that this theorem is preceded in module M by the two assumptions

assume B and assume C

The instance statement then imports the theorem I !Thm, which asserts

assume B , C , A
prove Γ

This is the case even if there are additional assumptions following theorem Thm
in module M .

Everything works the same if the “ I
∆
= ” is removed from the instance

statement, except that definitions and theorem names are imported from M
without renaming.

Special Modules

There are certain special modules whose defined operators are treated as if
they were built-in operators. That is, knowledge about the meanings of those
operators are built into the backend provers. Putting those operators in the def
clause of a use or hide statement has no effect. Those special modules are

Naturals Integers Sequences TLAPS TLC

Although all the operators defined in the TLC module are treated by TLAPS
like built-in operators, the backend provers have useful knowledge only about
:> and @@.

Local Definitions

You probably did not realize that TLA+ has local definitions, and it’s unlikely
that you will ever have any reason to use them. But if you do, here’s what
you need to know if your proofs use facts or definitions imported from modules
containing local definitions. Suppose module M contains

local L
∆
= 22 ∗ i

G
∆
= L + 14

In a module that imports M , the definition of G can be expanded in a proof by

use def G
33

?

�

-

C

I

S

(If the module is instantiated with renaming, G is replaced with something like
I !G .) However, the definition of L can’t be expanded because L cannot be
referenced in the importing module. Currently, the definition of L is automati-
cally expanded if module M is imported with the extends statement. It is left
unexpanded if M is imported with instantiation. This may change.

12.5.3 Recursively Defined Functions and Operators

A recursive function definition is treated as if it were the equivalent non-recursive
definition in terms of choose. For example

fact [n ∈ Nat]
∆
= if n = 0 then 1 else n ∗ fact [n − 1]

is treated as if it were

fact
∆
= choose f : f = [n ∈ Nat 7→ if n = 0 then 1 else n ∗ f [n − 1]]

The library modules NaturalsInduction and WellFoundedInduction provide use-
ful theorems for reasoning about recursively defined functions.

Recursive operator definitions are more problematic. The statements

recursive Fact()

Fact(n)
∆
= if n = 0 then 1 else n ∗ Fact(n − 1)

are equivalent to a definition

Fact(n)
∆
= . . .

whose right-hand side is very complicated and approximately incomprehensible.
We hope eventually to provide library modules that make it possible to prove
things about recursively defined operators. For now, operators that are declared
in a recursive statement are treated by TLAPS like declared operators rather
than defined operators. Their definitions cannot be expanded, and there is no
way to prove anything about them from their definitions. If you must use a
recursively defined operator like Fact now, you should assume without proof a
theorem like:

lemma FactDef
∆
= ∀n ∈ Nat : Fact(n) = (if n = 0 then 1 else n ∗ Fact(n − 1))

You should use TLC to check the theorem. When TLAPS handles recursively
defined operators, you should be able to prove it.

12.5.4 The Fine Print

Some of the explanations of proofs and the proof language given above were not
completely accurate. Here is what was omitted.

34

?

�

-

C

I

S

• FK and FU are not really sets of formulas; they are actually sets of for-
mulas and names of steps and theorems. For example, the sequence of
steps:

〈2〉 x = 2
〈2〉1. x = 2
〈2〉 use 〈2〉1

adds the formula x = 2 and the name 〈2〉1 to FU . The step

〈2〉hide 〈2〉1
removes the name 〈2〉1 from FU , but not the formula x = 2.

The step hide 〈2〉1 removes that step name from FU . It does not remove
the name of a step that names the same formula as 〈2〉1, nor the fact
named by 〈2〉1 if that formula is also in FU .

• Examining TLAPS’s console output reveals that, in addition to the proof
obligations described above, there are some trivial obligations that TLAPS
proves easily.

35

?

�

-

C

I

S

13 The Bounded Buffer Proof

In Section 8.4.22, we showed informally that the bounded buffer algorithm of
module PCalBoundedBuffer implements the bounded channel specification of
module PCalBoundedChannel under a refinement mapping. We now examine
the TLA+ proof of that result.

First, download the file PCalBoundedBuffer.tla that contains the specifica- Click here if you have
trouble downloading these
files.

tion’s root module with the proof, as well as the file PCalBoundedChannel.tla

that contains an instantiated module. I suggest that you put these files in a
different folder (directory) than the files by that name that you have already
created, but you can overwrite the existing files if you wish. (If you want to
overwrite the existing files, make sure that the Toolbox does not have a speci-
fication open that contains either of those files.) Open the specification in the
Toolbox.

Definitions and Assumptions

This version of module PCalBoundedBuffer is the same, up through the state-
ment of the algorithm, as the one you saw in Section 8.3.22. However, I have
given the assumption on line 15 the name NAssump so it can be used in the
proof.

The definitions of PCInv , TypeOK , and Inv (lines 79–85) are the same as How to go to line 79.

before, except that I defined TypeOK in terms of the new state function BufCtr
that is defined on line 77. When defining formulas to be used in a TLAPS proof,
we use auxiliary definitions to break them into smaller pieces than we would for
use in a specification or a hand proof. We do this are two reasons:

• TLAPS proofs are generally pretty long, and using auxiliary definitions to
abbreviate subexpressions can save a fair amount of typing.

• Replacing the subexpression 0 . . (2 ∗ N − 1) by the name BufCtr helps
the theorem provers, since they then don’t have to consider facts about
multiplication, subtraction, 0, 1, 2, or the operator “ . . ” when searching
for a proof.

The algorithm uses the modulus operator % . To prove properties of the algo-
rithm, we need to reason about this operator. The backend provers do not yet
know anything about % , so we need to assert some facts about it. The most
elegant way to do this would be to assert the defining properties of % and ÷ ,
explained in Section 13.12. This would lead us to the following axiom:

∀n ∈ Int , d ∈ Nat \ {0} : ∧ n % d ∈ 0 . . (d − 1)

∧ n ÷ d ∈ Int

∧ n = d ∗ (n ÷ d) + (n % d)

36

?

�

-

C

I

S

http://research.microsoft.com/en-us/um/people/lamport/tla/hyper-tla/PCalBoundedBuffer.tla
http://research.microsoft.com/en-us/um/people/lamport/tla/hyper-tla/PCalBoundedChannel.tla

However, I decided that it would be easier to assume Lemma ModDef (line 93).
This lemma should be strong enough to prove the axiom above from properties
of integers if n ÷ d were defined to equal

choose q ∈ Int : n − (n % d) = d ∗ q

so it should be the only assumption about % that we need. However, I found
that I also needed Lemma ModMod (line 100). Although ModMod can be proved
from ModDef using only the properties of integers, the proof would be rather
tiresome. Therefore, I decided to assume ModMod as well.

As I explained when we introduced GCD1–GCD3 in the proof of Euclid’s
algorithm, we should use TLC to check anything that we assume without proof.
We can check Lemmas ModDef and ModMod the same way we checked GCD1–
GCD3: by substituting finite sets of numbers for Int and Nat \ {} .

Lemmas ModDef and ModMod should be the only facts that we need to
assume to prove that Inv is an invariant of the algorithm. However, a bug in an
earlier backend prover that was used for reasoning about arithmetic prevented
it from proving that 2 ∗ N is an integer. I got around that bug by assuming
that 2 ∗ N equals N + N . Because that prover had trouble handling 2 ∗ N , it
seemed best to hide 2 ∗ N from it by defining K to equal 2 ∗ N and to use the
definition of K only to prove some simple properties of it. The expression 2 ∗N
therefore appears in almost no proof obligations. The definition of K is on line
113, and the assertion that it equals N + N appears as the lemma KDef on line
114, which the SMT prover checks easily.

Navigating the Module

Before getting into the actual proofs, let’s examine the commands provided
by the Toolbox for navigating through specifications and proofs. None of the
following navigation commands work if the Toolbox reports a parsing error in
the specification.

Finding a Definition or Declaration

The Goto Declaration command jumps to the definition or declaration of a sym-
bol. You select the symbol by putting the cursor anywhere in or just to the left
of an occurrence of it or by selecting any portion of the occurrence.

Select the symbol Msg on line 81 and execute the Goto Declaration command—
either by right-clicking anywhere and choosing it from the menu or by hitting
the F3 key. This will jump to and highlight the symbol Msg in the constant
declaration. Jump back to the Msg on line 81 by executing the Return from
Goto Declaration command—either from the menu raised by right-clicking or by
hitting the F4 key.

Another way to jump to a symbol’s definition or declaration is to hold down
the control key and move the mouse pointer over the symbol. The symbol should

37

?

�

-

C

I

S

become marked as a link—perhaps by changing color and being underlined.
Clicking on the symbol then jumps to its declaration or definition.

The Show Declarations command produces a pop-up menu with a list of all
symbols that have a meaning in the module, including ones imported from other
modules. However, the list does not include any symbols defined in a standard
module or any bound identifiers. The command can be executed either from
the menu raised by right-clicking or by hitting the F5 key. You can jump to a
symbol’s definition or declaration by clicking on its name in the list. You can
also select the symbol by moving up and down the list with the arrow keys;
hitting the Enter key jumps to the definition or declaration of the highlighted
symbol. You can also pare the list of symbols displayed by typing into the menu.
Only symbols that begin with the letters you have typed (ignoring case) will be
shown.

The Return from Goto Declaration command returns the cursor to where it
was when you last executed a Goto Declaration or Show Declarations command.

The Show Uses command highlights all uses of a symbol and jumps to the
first use. To execute it, select an occurrence of the symbol and execute the
command either by right-clicking and selecting it from the menu or by pressing
the F6 key. The Goto Next Use (F8) and Goto Prev Use (F7) commands let you
cycle through all the uses of the symbol. Remember that you can return to the
symbol’s definition or declaration with the Goto Declaration command.

Experiment with these commands. Execute the Show Declarations command
and choose C !Init . This will take you to the definition of Init in the instantiated
module PCalBoundedChannel . See what happens when you execute Show Uses
for Init .

Return to module PCalBoundedBuffer . Observe that the Show Uses com-
mand also works for bound identifiers such as the symbols i and j in Lemma
ModDef . (If you’ve forgotten where that lemma is, use the Show Declarations
command to find it.)

Find the uses of Lemma ModDef . Cycle up (F7) to the next to last use,
which is on line 1003.

Observe that a step name such as 〈2〉1 is considered to be a (non-global)
defined symbol, so the Goto Declaration and Show Uses commands work for it.

Go to the comment that begins on line 468 and observe that you can jump
to the definition of a symbol even from an occurrence inside a comment.

Check that you can’t go to the definition of any symbol defined in a standard
module. However, you can show the uses of such a symbol. You can show neither
definitions nor uses of built-in TLA+ operators like ⇒ .

These navigation commands may do strange things if the module has been mod-
ified since it was last saved and parsed. They usually act as if a symbol’s oc-
currences are at the location in the file where they were when the module was
last parsed. Most of the commands do nothing if the Toolbox reports a parsing
error in the specification.

38

?

�

-

C

I

S

The Proofs

The rest of the description of the bounded buffer proof has not yet
been written. However, comments in the TLA+ files explain the proof.
You should try reading those files.

39

?

�

-

C

I

S

