
Math

13 Arithmetic and Logic
13.1 Arithmetic
13.2 Mathematical Logic
13.3 Propositional Logic

13.3.1 ∧ and ∨
13.3.2 Other Propositional Operators

13.4 Predicate Logic
13.5 The choose Operator

14 Sets
14.1 An Introduction to Sets
14.2 Simple Set Operators
14.3 Set Constructors
14.4 subset and union
14.5 Collections too Big to Be Sets
14.6 Bags

15 Functions
15.1 Functions and Their Domains
15.2 Writing Functions
15.3 Sets of Functions
15.4 The except Construct
15.5 Tuples
15.6 Records
15.7 Strings

16 Miscellaneous Constructs
16.1 Conditional Constructs

16.1.1 if /then /else
16.1.2 case

16.2 Definitions
16.2.1 Simple Operator Definitions
16.2.2 Function Definitions
16.2.3 Recursive Operator Definitions
16.2.4 Recursive Or Inductive?

16.3 The let / in Construct
16.4 The lambda Construct

17 Temporal Logic
17.1 Understanding Temporal Formulas
17.2 Proof Rules and Proofs
17.3 Rules for Proving Safety

1

?

�

-

C

I

S

17.4 Leads To
17.4.1 The Leads-To Induction Rule
17.4.2 The 2 ; Rule
17.4.3 Proving ; Formulas by Contradiction

17.5 Fairness
17.5.1 The enabled Operator
17.5.2 Weak Fairness
17.5.3 Strong Fairness
17.5.4 Proving ; Properties with Fairness
17.5.5 Proving Fairness

2

?

�

-

C

I

S

13 Arithmetic and Logic

13.1 Arithmetic

Ordinary numbers (such as 3421) and decimal fractions (such as 3.14) are built-
in primitive TLA+ symbols. The standard arithmetic operations on integers are
defined in the standard Integers module:

+ Addition.

− Subtraction and unary minus.

∗ Multiplication.

^ Exponentiation, where ab is typed a^b .

The module defines the usual inequality relations:

< (typed <) ≤ (typed \leq or =<)

> (typed >) ≥ (typed \geq or >=)

The Integers module also defines

Int The set of all integers.

Nat The set of all natural numbers (non-negative integers).

. . m . . n is the set of integers from m through n. More precisely:

m . . n
∆
= {i ∈ Int : (m ≤ i) ∧ (i ≤ n)}

The ordinary division operation / is not defined in the Integers module, since
a/b need not be an integer. Instead, the module defines the operators

÷ Integer division, where n ÷ d is the integer part of n/d .

% Modulus, where n % d is the remainder when n is divided by d .

More precisely, these two operators are defined so that the following two condi-
tions hold for any integer n and positive integer d :

n % d ∈ 0 . . (d − 1) n = d ∗ (n ÷ d) + (n % d)

All these operators except for ÷ , % , and . . are defined so they have their
usual meaning on real numbers—for example so that .81.5 ∗ 2 + .14 equals 1.94.
The Reals module extends the Integers module and also defines / (real division)
and the set Real of all real numbers. However, TLC can handle neither / nor
numbers that are not integers. There is also a Naturals module that is the same
as the Integers module except it does not define unary minus.

Mathematically sophisticated readers who are curious about how the opera-
tors of arithmetic are defined in TLA+ can find out in Section 18.4 (page 344)
of Specifying Systems. (See the errata for a correction to the definitions.)

3

?

�

-

C

I

S

http://research.microsoft.com/en-us/um/people/lamport/tla/book.html
http://research.microsoft.com/en-us/um/people/lamport/tla/errata.pdf

13.2 Mathematical Logic

In the beginning, numbers were modifiers. People talked about two goats or
three pigs. Mathematics was born when numbers like two and three became
nouns. Operations like addition combine nouns to form a noun—for example:

1
noun

+ 1
noun

noun

In the beginning, equations were sentences and equals was a verb:

1+1

subject

=
verb

2
object

In mathematical logic, equations are nouns and equals is an operation, just like
addition:

1+1

noun

= 2
noun

noun

Just as the noun 1 + 1 names the number 2, the noun 1 + 1 = 2 names the
value true. The noun 1 + 1 = 3 names the value false.

The values true and false are called truth values or Booleans. Truth values
are to mathematical logic what numbers are to arithmetic. Mathematical logic
is simpler than arithmetic because there are just two truth values, while there
are infinitely many numbers.

The sentence 1+1 equals 2 asserts the fact that the formula (noun) 1+1 = 2
is equal to true. Sometimes mathematicians assert this fact by writing

` 1 + 1 = 2

However, few mathematicians bother doing this; instead they write both the
formula and the fact as 1 + 1 = 2 . You have to figure out by context which
they mean.

Many people think of all mathematical expressions as sentences, reading 1+1
as Add 1 and 1. They think of 1 + 1 = 2 as asserting

Adding 1 and 1 produces 2.

This kind of operational thinking is a mental straight jacket that limits your
ability to use mathematics. It doesn’t allow you to make proper sense of formulas
like

1 + 1/2 + 1/4 + 1/8 + · · · = 2 Is this really a formula?

Viewed operationally, this formula is an assertion about the result of performing
infinitely many operations. Trying to reason about what happens when you
perform an infinite number of operations can get you in trouble.

4

?

�

-

C

I

S

13.3 Propositional Logic

Propositional logic is the study of simple operations on Booleans (truth values),
which are analogous to operations like addition and subtraction on numbers.
Because there are only two Booleans, true and false, the operators of propo-
sitional logic are much simpler than their arithmetic cousins. We will use five of
them.

13.3.1 ∧ and ∨

The first two propositional logic operators we need are ∧ (typed /\), called
conjunction or and, and ∨ (typed \/), called disjunction or or. The names and
and or describe these operators fairly well. For example, F ∧G equals true iff
both F and G are true. Thus, true∧false equals false. You can use TLC to
check this. Open a brand new spec in the Toolbox with a new module named
Calculate, using the default spec name Calculate. Create a new model, giving
it any name. The Toolbox will show the model’s Model Checking Results page.
You can then type an expression for TLC to evaluate in the Evaluate Constant
Expression section and run TLC to evaluate it. Start by entering

true ∧ false ascii version

(Remember that you can click on the link in the right-hand margin to get a
popup from which you can copy this expression.) Running TLC shows that
this expression’s value is, indeed, false. In this way, we could check—one at a
time—the values of F ∧ G for all four choices of the Boolean values F and G .
But let’s do them all at once by entering the following expression.

〈true ∧ true, true ∧ false, false ∧ true, false ∧ false〉 ascii version

Angle brackets 〈 and 〉 enclose a tuple. This expression is a 4-tuple whose
components are the four possible expressions of the form F ∧G when F and G
are Booleans.

Next, change the four instances of ∧ in this expression to ∨ . Observe that
true ∨ true equals true. A better English name for ∨ would be and/or,
since in ordinary speech we generally take “A or B will happen” to exclude the
possibility that both A and B occur. However, we usually read ∨ as or because
that’s easier to say than and/or.

If this has been a detour, you may now want to return to Section 2.2 of the Starting
Track.

13.3.2 Other Propositional Operators

In addition to ∧ and ∨ , we use these three Boolean operators:

⇒ Implication. Typed => and read as implies
5

?

�

-

C

I

S

http://research.microsoft.com/en-us/um/people/lamport/tla/toolbox.html

≡ Equivalence. Also written ⇔ . Typed as \equiv or <=> and read as is
equivalent to.

¬ Negation. Typed ~ and read as not.

The first two are binary (infix) operators; negation is a unary (prefix) operator.
You can use the Toolbox’s Evaluate Constant Expression feature to let TLC

tell you what the definitions of these operators are, just as you did for ∧ and
∨ . For negation, you will find that ¬true equals false and ¬false equals
true. For equivalence, you will find that F ≡ G equals true iff F equals G , Why write ≡ instead of

= ?for any Boolean values F and G .
You may be surprised by the definition of ⇒ (implies). TLC reveals that

false⇒ G equals true for both Boolean values of G . Of the four possibilities,
only true ⇒ false equals false. To understand why ⇒ means implication,
consider the statement:

n > 5 implies n > 3

This statement is true for all integers n, so the formula (n > 5) ⇒ (n > 3)
should equal true for all integers n. Substituting 1 for n, the formula becomes
(1 > 5) ⇒ (1 > 3) . Since (1 > 5) and (1 > 3) both equal false, this latter
formula equals false ⇒ false . Hence, false ⇒ false should equal true.
Substituting other values for n will convince you that the definition of ⇒ is the
right one.

If this has been a detour, you may now want to return to Section 2.7 of the Starting
Track.

13.4 Predicate Logic

Predicate logic extends propositional logic with two operators called quantifiers.
The first is the universal quantifier ∀ , typed \A and read for all. The formula
∀ x ∈ S : P(x) is essentially the conjunction (∧) of the formulas P(x) for all x
in S . For example, the formula ∀ i ∈ {1, 2, 3} : i2 > i equals the formula

(12 > 1) ∧ (22 > 2) ∧ (32 > 3)

which equals false. In general, ∀ x ∈ S : P(x) is true iff P(x) is true for all
elements x in S . For example, ∀num ∈ Nat : num + 1 > num is the (true)
formula which asserts that i + 1 > i is true for all natural numbers i .

The second quantifier of predicate logic is the existential quantifier ∃ , typed
\E and read there exists. It is the analog of ∀ for disjunction (∨). Thus,
∃ i ∈ {1, 2, 3} : i2 > i equals the formula

(12 > 1) ∨ (22 > 2) ∨ (32 > 3)

6

?

�

-

C

I

S

which equals true. In general, ∃ x ∈ S : P(x) is true iff P(x) is true for at
least one element x in S . For example, ∃ id ∈ Int : id2 = 9 is the (true) formula
which asserts that there is some integer n such that n2 equals 9.

These two quantifiers are related by the following two tautologies. You should
make sure that you understand why they are true.

¬(∀ x ∈ S : P(x)) ≡ ∃ x ∈ S : ¬P(x)

¬(∃ x ∈ S : P(x)) ≡ ∀ x ∈ S : ¬P(x)

These two quantifiers ∀ and ∃ are said to be bounded because they are es-
sentially conjunction and disjunction over formulas in some set S . Mathemati-
cians also use unbounded versions of these operators, writing ∀ x : P(x) and
∃ x : P(x) . These formulas assert that P(x) is true for all (∀) or for some
(∃) values x . Make sure that you understand why bounded and unbounded
quantification are related by the following tautologies.

(∀ x ∈ S : P(x)) ≡ (∀ x : (x ∈ S)⇒ P(x))

(∃ x ∈ S : P(x)) ≡ (∃ x : (x ∈ S) ∧ P(x))

When writing specifications or algorithms, you will never have to use unbounded
quantification. Unbounded quantification is needed only to state some mathe-
matical laws, such as ∀ x : x = x . TLC can handle only quantification over a
finite set. Therefore, it cannot evaluate ∃n ∈ Int : n2 = 9 or ∀ x : x = x .

TLA+ allows some abbreviations for nested quantification. For example:

∀ x ∈ S , y ∈ T : P(x , y) means ∀ x ∈ S : ∀ y ∈ T : P(x , y)

∃ x , y , z ∈ S : P(x , y , z) means ∃ x ∈ S : ∃ y ∈ S : ∃ z ∈ S : P(x , y , z)

There are two things about the syntax of quantifiers that may be surprising.
The first is illustrated by the following syntactically incorrect definition: Should it be ∀ x : P or

∀ x : P(x) ?
Foo

∆
= ∀ x ∈ S : P ∧ ∀ x ∈ T : Q

The TLA+ parser will complain that the second x is a multiply-defined symbol.
This is because the definition is parsed as

Foo
∆
= ∀ x ∈ S : (P ∧ ∀ x ∈ T : Q)

TLA+ does not allow any symbol to be given a meaning if it already has one.
The first ∀ assigns a meaning to x within a scope that includes the second ∀ .
Thus, the second ∀ assigns a meaning to x where x already has a meaning.

A quantifier is treated like a prefix operator with the lowest possible prece-
dence, so the scope of its bound identifier extends as far as it “reasonably” can.
The following are two correct versions of this definition.

Foo
∆
= ∧ ∀ x ∈ S : P

∧ ∀ x ∈ T : Q

Foo
∆
= (∀ x ∈ S : P) ∧ (∀ x ∈ T : Q)

7

?

�

-

C

I

S

The second possibly surprising aspect of quantification is that in the formula
∀ x ∈ S : P , the expression S does not lie within the scope of the bound identifier
x . Thus, S may not contain the symbol x .

If this has been a detour, you may now want to return to Section 4.1 of the Starting
Track.

13.5 The choose Operator

The TLA+ choose operator is closely related to the existential quantifier ∃ .
The formula ∃ x ∈ S : P(x) asserts that there is a value x for which P(x) is
true. If that assertion is true, then choose x ∈ S : P(x) equals such a value.
More precisely, choose is specified by the following axiom. The fine print.

Choose Axiom (∃ x ∈ S : P(x)) ⇒ ∧ (choose x ∈ S : P(x)) ∈ S

∧ P(choose x ∈ S : P(x))

The most common use for the choose operator is to select a unique value that
is specified by the property it satisfies. For example, in Section 4.1.22 we define
the maximum of a set of numbers by using choose to select the largest element
of the set. TLC can evaluate choose x ∈ S : P(x) only if S is a finite set.

Computer scientists often think that choose must be nondeterministic. In
mathematics, there is no such thing as a nondeterministic operator or a non-
deterministic function. If some expression equals 42 today, then it equaled 42
yesterday and it will still equal 42 next year. The PlusCal statement

v : = choose n ∈ 1 . . 10 : true

and its TLA+ translation

v ′ = choose n ∈ 1 . . 10 : true

assign some value in 1 . . 10 to v . The semantics of TLA+ do not specify which
value in 1 . . 10; but it is the same one every time. If you want nondeterministic
assignment, you can use the following PlusCal statement.

with (n ∈ 1 . . 10) { v : = n }

This statement sets v to a nondeterministically chosen number in 1 . . 10 that
may differ each time it is executed. Its TLA+ translation is

∃n ∈ 1 . . 10 : v ′ = n

If there is no element x in S satisfying P(x), then we don’t know anything about
the value of choose x ∈ S : P(x) . For example, choose n ∈ Int : n2 = 2 could
be any value. TLC will report an error if it tries to evaluate such a choose.

There is also an unbounded version of choose that corresponds to un-
bounded existential quantification. Like unbounded quantification, it is not

8

?

�

-

C

I

S

handled by the TLC model checker. In writing specifications, it is used only in
the following idiom, which defines NotAnS to be an arbitrary value that is not
an element of S .

NotAnS
∆
= choose x : x /∈ S

For example, we might want the value of a variable v to be either an integer or
else some special value that indicates an error. We could define

Error
∆
= choose n : n /∈ Int

and let v satisfy the type invariant v ∈ Int ∪ {Error} . When creating a model
for a specification with this definition, the Toolbox will by default override the
definition by letting Error be a model value.

9

?

�

-

C

I

S

14 Sets

This has not yet been written. See Section 1.2 of Specifying Systems.

14.1 An Introduction to Sets

This section will define {e1, . . . , en} (including the empty set { } and ∈ (and
/∈).
If this has been a detour, you may now want to return to Section 2.5 of the Starting
Track.

14.2 Simple Set Operators

Click on the operators to see their definitions:

∪, ∩, ⊆ \

See Section 1.2 of Specifying Systems.

The standard FiniteSets module defines Cardinality(S) to equal the cardinal-
ity (the number of elements in) S , if S is a finite set. The value of Cardinality(S)
is unspecified if S is not a finite set.

If this has been a detour, you may now want to return to Section 4.1.3 of the
Starting Track.

14.3 Set Constructors

This section will define the constructs {x ∈ S : P(x)} and {e(x) : x ∈ S}.
Now, see Section 6.1 of Specifying Systems.

14.4 subset and union

For any set S , the set of all subsets of S is written subset S . For example:
subset {1, 2, 3} equals

{ {}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} }

Mathematicians call subset S the power set of S and write it P(S) or 2S . The
latter notation comes from the fact that, if S is a finite set S , then:

Cardinality(subset S) = 2Cardinality(S)

Note that the empty set has a single subset—namely, the empty set. Thus,
subset { } equals { { } }.

10

?

�

-

C

I

S

http://research.microsoft.com/en-us/um/people/lamport/tla/book.html
http://research.microsoft.com/en-us/um/people/lamport/tla/book.html
http://research.microsoft.com/en-us/um/people/lamport/tla/book.html

If S is a set of sets (a set whose elements are sets), then union S is the union of
all the elements of S . Thus, S is the set containing all the elements of elements
of S . In other words:

(x ∈ union S) ≡ (∃s ∈ S : x ∈ s)

If S equals the finite set {s1, s2, . . . , sn} then union S equals

s1 ∪ s2 ∪ . . . ∪ sn

Note that union { } equals { }. Mathematicians usually write union as
⋃

.

14.5 Collections too Big to Be Sets

This will contain a discussion of Russell’s paradox and what are sometimes called
classes in set theory. See page 66 of Specifying Systems.

11

?

�

-

C

I

S

http://research.microsoft.com/en-us/um/people/lamport/tla/book.html

14.6 Bags

This will contain a brief discussion of bags, also called multisets, and the stan-
dard Bags module. See page 340 of Specifying Systems.

15 Functions

Functions are what programmers call arrays. However, ordinary programming
languages permit only a small, rather dull class of functions/arrays. For example,
they allow only finite arrays—what are known to mathematicians as functions
with finite domains. Some languages permit only arrays (functions) with index
sets (domains) of the form 0 . . k for some integer k .

We begin with a description of arbitrary functions. We then discuss data
types that, in TLA+, are special kinds of functions. These are tuples (also known
as finite sequences and called lists by programmers), records, and strings.

15.1 Functions and Their Domains

Mathematicians define a function to be a set of ordered pairs. In practice, it
is more convenient to consider ordered pairs and other tuples to be functions.
TLA+ therefore takes a function to be a primitive object, without specifying
how it is defined in terms of sets.

A good way to learn about functions is to let TLC evaluate expressions
containing them. Open a new spec in the Toolbox. So we can use operations on
integers for our examples, have the spec import the Integers module by adding

extends Integers

Create a new model, which you can use to have TLC evaluate expressions.
What programmers call the index set of an array, mathematicians call the

domain of a function. The domain of a function f is written domain f . Since
a tuple is a function, we can see what its domain is. Let’s have TLC show us
what the domain of a triple is by having it evaluate:

domain 〈“a”, “b”, “c”〉 DOMAIN <<"a", "b", "c">>

It tells us that its domain is the set 1 . . 3 of integers from 1 to through 3. As
you can guess, an n-tuple is a function whose domain is the set 1 . . n.

What about a 0-tuple? Have TLC show you what the domain of the 0-tuple
〈 〉 is.

If f is a function and x is an element of domain f , mathematicians write
the value of f applied to x as f (x). TLA+ denotes function application with
square brackets instead of parentheses, writing f [x] instead of f (x). (It reserves What’s the difference

between a function and an
operator?

parentheses for operator application.) Have TLC evaluate the expression

〈“a”, “b”, “c”〉[2]
12

?

�

-

C

I

S

http://research.microsoft.com/en-us/um/people/lamport/tla/book.html

As you probably expected, it equals “b”. If τ is an n-tuple, then τ [i] equals the
i th element of τ , for any i in 1 . . n. Now have TLC evaluate

〈“a”, “b”, “c”〉[4]

This produces the TLC error

Attempted to apply tuple

<<"a", "b", "c">>

to integer 4 which is out of domain.

For a function f , the value of f [x] is unspecified if x is not an element of the
domain of f .

15.2 Writing Functions

A tuple is a particular kind of function—namely, one whose domain is the set
1 . . n for some natural number n. We will need to be able to write functions
with arbitrary domains. Mathematics does not provide a standard way of writing
functions, so the TLA+ notation for writing functions will mean nothing to you.
To illustrate the notation, I’ll first describe how to use the TLA+ notation to
write a tuple. Have TLC evaluate the following expression.

[i ∈ 1 . . 3 7→ i − 7] [i \in 1..3 |-> i - 7]

It reports that this expression equals the triple 〈1−7, 2−7, 3−7〉, which it writes
as 〈−6, −5, −4〉.

In general, the expression [v ∈ S 7→ e] is the function with domain S such
that [v ∈ S 7→ e][x] equals the expression obtained from e by substituting x for
v , for any x in S . For example, use TLC to check that

[i ∈ {2, 4, 6, 8} 7→ i − 42][4] [i \in {2, 4, 6, 8} |-> i - 42][4]

equals 4− 42 (which it writes as −38).
The domain of a function does not have to be a finite set. For example, the

function [i ∈ Nat 7→ i − 42] has as domain the set Nat of all natural numbers.
Use TLC to check that [i ∈ Nat 7→ i − 42][88] equals 88− 42, and that −88 is
not in its domain.

Now, have TLC evaluate the (function-valued) expression

[i ∈ {2, 4, 6, 8} 7→ i − 42] [i \in {2, 4, 6, 8} |-> i - 42]

TLC writes its value as

(2 :> −40 @@ 4 :> −38 @@ 6 :> −36 @@ 8 :> −34)

13

?

�

-

C

I

S

In TLA+, the operator :> has higher precedence (binds more tightly) than @@.
This expression therefore equals

(2 :> −40) @@ (4 :> −38) @@ (6 :> −36) @@ (8 :> −34)

In general, if f is a function with finite domain {d1, . . . , db} and is not a special
kind of function like a tuple, then TLC prints it as

(d1 :> f [d1] @@ . . . @@ dn :> f [dn])

The operators :> and @@ are defined in the standard TLC module. Import
that module by adding it to the extends statement. (Don’t forget the comma
between Integers and TLC.) Save the module and have TLC evaluate

(1 :> “a” @@ 2 :> “b” @@ 3 :> “c”) (1 :> "a" @@ 2 :> "b" @@ 3 :> "c")

It prints this function as the tuple 〈“a”, “b”, “c”〉. Here is how the TLC module
defines the operators :> and @@:

d :> e
∆
= [x ∈ {d} 7→ e]

f @@ g
∆
= [x ∈ (domain f) ∪ (domain g) 7→ if x ∈ domain f then f [x] else g [x]]

Question 15.1 Define the function F by

F
∆
= 〈“a”, “b”, “c”〉 @@ (2 :> −3 @@ 4 :> 〈1, “d”〉 @@ 6 :> 37)

Determine the values of the following expressions, and then use TLC to check
your answers.

domain F F [1] F [2] F [4] F [5]

You can define a symbol f to equal a function in the obvious way—for example,
writing:

f
∆
= [i ∈ 1 . . 5 7→ i2] f == [i \in 1..5 |-> i^2]

TLA+ also provides a special syntax for defining a symbol to equal a function.
For example, the following defines g to equal the same function as f above.

g [i ∈ 1 . . 5]
∆
= i2 g[i \in 1..5] == i^2

Add these two definitions to the module and then use TLC to check that f = g
equals true.

The semantics of TLA+ does not say what a function is—just as it does not
say what a number is. All it tells us about functions is that two functions f and

14

?

�

-

C

I

S

g are equal if they have the same domain and f [x] equals g [x] for all x in that
domain.

So far, we have discussed functions of a single argument. Mathematicians also
use functions of multiple arguments. In TLA+, a function of n arguments, where
n > 1, is equivalent to a function whose domain is a set of n-tuples. For example,
f [a, b] is shorthand for f [〈a, b 〉]. Here are four ways to define a function f with
domain Nat × Int such that F [a, b] = a + b2 for all a ∈ Nat and b ∈ Int . × is defined in Section 15.5

f
∆
= [a ∈ Nat , b ∈ Int 7→ a + b2]

f
∆
= [u ∈ Nat × Int 7→ u[1] + u[2]2]

f [a ∈ Nat , b ∈ Int]
∆
= a + b2

f [u ∈ Nat × Int]
∆
= u[1] + u[2]2

TLA+ provides some abbreviations for writing functions of multiple arguments
that are similar to the ones for nested quantification. For example, the following
two expressions are equivalent.

[x ∈ Nat , y , z ∈ Int 7→ x − (2 ∗ y + z)]

[x ∈ nat , y ∈ Int , z ∈ Int 7→ x − (2 ∗ y + z)]

15.3 Sets of Functions

The expression [S → T] is the set of all functions f whose domain is S such
that f [x] is in the set T for all x in S . (The arrow → is typed ->.) This set
corresponds roughly to what a programmer would call the set of all arrays of
type T indexed by S . Use TLC to see what the following two sets of functions
equal.

[{2, 4} → {“a”, “b”, “c”}]
[1 . . 3→ {“a”, “b”}]

[{2, 4} -> {"a", "b", "c"}]

[1..3 -> {"a", "b"}]

Question 15.2 If the set S has m elements and the set T has n elements, how answer

many elements does [S → T] contain? Check your answer for m = 0 and for
n = 0.

15.4 The except Construct

If you have done any programming, you’ve probably written an assignment
statement such as

A[3] = 42
15

?

�

-

C

I

S

With the TLA+ notation that A represents the original value of A and A′ repre-
sents its new value, some people think that the effect of executing this assignment
is represented by the formula

A′[3] = 42

It’s not, because this formula says nothing about the new value of any element
of the array except A[3]. For example, it says nothing about the new value of
A[2].

A more sophisticated belief is that the assignment is represented by

∀ i ∈ domain A : A′[i] = (if i = 3 then 42 else A[i])

However, this is not correct either because it does not prohibit the domain of A
from changing. For example, the old value of A could be a function whose domain
is the set Nat of natural numbers, and the new value could be a function with
domain Nat ∪ {−7} . We could conjoin to the formula above the requirement
that domain A is unchanged, but that’s getting pretty complicated—and it’s
still not right.

To specify the meaning of the assignment statement, we must state explicitly
what the value A′ equals. When we realize that’s what we have to do, it’s fairly
obvious that we can do it with the formula:

A′ = [i ∈ domain A 7→ if i = 3 then 42 else A[i]]

This formula is correct, but it’s a nuisance to have to write such a long formula to
represent something as common as a simple assignment statement. TLA+ there-
fore allows us to write the right-hand side of this formula as:

[A except ![3] = 42]

No one likes this notation. People want to know what the ! means. It doesn’t
mean anything; it’s just a piece of syntax. The TLA+ except notation is
terrible, but I don’t know a better way to write the function f that is identical
to A except that f [3] equals 42. I’ve gotten used to it; in time you will too.

TLA+ allows some useful generalizations of the except notation. The func-
tion f that is identical to A except that f [3] = 42 and f [6] = 24 can be written

[A except ![3] = 42, ![6] = 24]

In general,

[A except ![i] = d , ![j] = e] = [[A except ![i] = d] except ![j] = e]

You can guess the meaning of

[A except ![i1] = d1, . . . , ![in] = dn]

16

?

�

-

C

I

S

If A[3] is a function, we can represent the assignment statement A[3][j] = "a"

by the formula

A′ = [A except ![3][j] = “a”]

If you think about it a bit, you’ll see that:

[A except ![i][j] = e] = [A except ![i] = [A[i] except ![j] = e]]

Question 15.3 Figure out what the following expression equals:

[〈“a”, “b”, 〈“c”, 〈“d”, “e”〉〉〉 except ![1] = “X”, ![3][2][1] = “Y”]

Let TLC check your answer.

The @ Notation

When writing an expression of the form

[A except ![i] = e]

the expression A[i] often appears as a subexpression of e. TLA+ allows it to be
abbreviated in e as @ . For example, the formula

A′ = [A except ![i] = A[i] + 1]

can be written as

A′ = [A except ![i] = @ + 1] A’ = [A \EXCEPT ![i] = @+1]

Similarly, the following two expressions are equivalent:

[A except ![i][j] = 2 ∗A[i][j]] [A except ![i][j] = 2 ∗@]

The @ notation doesn’t save much space and is confusing to anyone not familiar
with it. I therefore recommend avoiding it unless it is used often and you are
writing your specification for someone already familiar with TLA+.

15.5 Tuples and Finite Sequences

In Section 15.1 above, we explained that an n-tuple t is a function whose domain
is the set 1 . . n of natural numbers, where t [n] is the nth component of t . For
example, 〈x + 1, 42, “a”〉[3] equals “a”.

Sets of tuples can be written with the Cartesian product operator ×, typed
as \X. For example, Nat× Int×{“a”, “bc”} is the set of all triples 〈i , j , k 〉 where
i is a natural number, j is an integer, and k is either “a” or “bc”.

17

?

�

-

C

I

S

Question 15.4 What do the following three sets equal?

S × T ×U (S × T)×U S × (T ×U)

Check your answer by having TLC evaluate these three expressions for particular
sets S , T , and U .

Another name for a tuple is a finite sequence. Finite sequences are known
to programmers as lists. Most programmers think of lists and tuples as having
different types, and they will find it strange to learn that we consider them to
be the same. However, if you forget about the idiosyncracies of programming
languages, lists and tuples are both just sequences of elements.

The standard Sequences module defines the following operations on finite
sequences.

Seq(S) The set of all sequences of elements of the set S . For example,
〈3, 7〉 is an element of Seq(Nat). Check that TLC can evaluate the
following expressions (even though Seq(Nat) is an infinite set).

〈3, 7〉 ∈ Seq(Nat) 〈3,−8〉 ∈ Seq(Nat)

Head(s) The first element of sequence s. For example, Head(〈3, 7〉) equals 3.

Tail(s) The tail of sequence s, which consists of s with its first element
removed. For example, Tail(〈3, 7, “a”〉) equals 〈7, “a”〉.

Append(s, e) The sequence obtained by appending element e to the tail of
sequence s. For example, Append(〈3, 7〉, 3) equals 〈3, 7, 3〉.

s ◦ t The sequence obtained by concatenating the sequences s and t . For
example, 〈3, 7〉 ◦ 〈3〉 equals 〈3, 7, 3〉. (We type ◦ as \o.)

Len(s) The length of sequence s. For example, Len(〈3, 7〉) equals 2.

SubSeq(s, m, n) The subsequence 〈s[m], s[m + 1], . . . , s[n]〉 consisting of
the mth through nth elements of s. It is undefined if m < 1 or
n > Len(s), except that it equals the empty sequence if m > n.

SelectSeq(s, Op) If Op is an operator that takes a single argument, then this
equals the subsequence of s consisting of the elements s[i] such that
Op(s[i]) equals true. For example, if Op is defined by

Op(n)
∆
= n > 0

then SelectSeq(〈0, 1, −1, 2, −2〉) equals 〈1, 2〉 .

Question 15.5 For what set S is Seq(S) a finite set? answer

18

?

�

-

C

I

S

15.6 Records

Mathematicians represent an object with several components as a tuple. For
example, a mathematician might define a graph to be a pair 〈N , E 〉, where N
is its set of nodes and E is its set of edges. She would then use N and E to mean
the sets of nodes and edges of a graph G . If she were being completely rigorous
and using the notation of TLA+, she would have to write G [1] and G [2] instead
of N and E . (If she were restricted to ordinary mathematical notation, she would
have no way to be rigorous.) This would be inelegant but feasible. However,
if she defined a Turing machine T to be a 7-tuple, it would be impossible to
remember if its initial state was T [4] or T [5].

Programming languages solve this problem by introducing records. A graph
G can be a record with nodes and edges field, where G .nodes and G .edges are
its sets of nodes and edges. TLA+ represents a record mathematically as a
function whose domain is a finite set of strings. The record G is represented
as a function whose domain is {“nodes”, “edges”} . TLA+ defines G .nodes and
G .edges to be abbreviations of G [“nodes”] and G [“edges”], respectively. We
adopt the terminology of programming languages, saying that nodes and edges
are the fields of the record G .

TLA+ provides a special notation for writing records. The record r with
fields nodes and edges such that r .nodes equals N and r .edges equals E is
written as:

[nodes 7→ N , edges 7→ E] [nodes |-> N, edges |-> E]

It can also be written as [edges 7→ E , nodes 7→ N] . (Because of how we represent
a record as a function, there is no notion of ordering of the fields.)

TLA+ also provides a notation for writing sets of records. The expression

[h1 : S 1, . . . , hn : Sn]

is the set of all records [h1 7→ e1, . . . , hn 7→ en] such that ei is in S i , for all i
in 1 . . n. For example,

[nodes : {Nat}, edges : subset (Nat ×Nat)]

is the set of all records G such that G .nodes equals Nat (the only element See the definitions of
subset and of ×.of {Nat}) and G .edges is a set of pairs of natural numbers (an element of

subset (Nat ×Nat)).

Question 15.6 Write the set [a : A, b : B] of records using the notation for answer

sets of functions described in Section 15.3.

The convention of .nodes being an abbreviation for [“nodes”] extends to the
except construct described in Section 15.4. Thus,

[G except !.nodes = NN]
19

?

�

-

C

I

S

is an abbreviation for

[G except ![“nodes”] = NN]

which is the record that is the same as G except that its nodes field equals NN .
This record convention also extends to PlusCal assignment statements, so

G .edges := EE is equivalent to G [“edges”] := EE , which sets the value of G .edges
to EE and leaves the other fields of the variable G unchanged.

15.7 Strings

A string is sequence of characters enclosed in double quotes, such as “abcd” ,
which is written as "abcd" . When writing specifications, you will almost always
think of strings as an elementary data type, with no internal structure. TLA+ ac-
tually defines strings to be tuples (finite sequences) of characters, though it does
not specify what a character is. (The only way to represent the character a
in TLA+ is as part of a string, such as “abc”[1].) However, TLC has limited
knowledge of strings as functions. About all that TLC can do with strings is to
test if they are equal and evaluate the operators ◦ (sequence concatenation) and
Len (the length of a sequence) of the standard Sequences module.

A TLA+ string may contain the following characters

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9

~ @ # $ % ^ & ∗ ? − + = () { } [] < > | / , . ? : ; ‘ ’

plus the following six special characters, each of which is typed as a \ (backslash)
followed by a second character:

\" " (double quote) \t tab \f form feed
\\ \ (backslash) \n line feed \r carriage return

20

?

�

-

C

I

S

16 Miscellaneous Constructs

16.1 Conditional Constructs

16.1.1 if /then /else

An if /then /else construct has the obvious meaning: the expression

if x > 0 then x else − x IF x > 0 THEN x ELSE -x

equals x if x > 0 equals true, and it equals −x if x > 0 equals false. If x is a The TLA+ if versus the
PlusCal if.number, then this expression equals its absolute value.

When a module is parsed, the else is treated as if it were a prefix operator
with the lowest possible precedence. This means that as much of the text as
possible that follows the else is considered to be part of the else expression.
An else clause is often terminated by the end of a definition or of a bulleted
disjunction or conjunction in which it appears, as in:

AbsoluteValue(x)
∆
= if x > 0 then x else − x

Sign(x)
∆
= . . .

or

Foo
∆
= ∧ x ′ = if y > 0 then x + 1 else x − 1
∧ y ′ = x

An if /then /else nested inside an outer then clause is often ended by the
outer else. If you’re not sure where the parser will think it ends, enclose an
if /then /else in parentheses.

16.1.2 case

The expression

case p1 → e1 2 . . . 2 pn → en CASE p1 -> e1 [] . . . [] pn -> en

equals ei for some i for which pi equals true. If no pi equals true, then the
value of the expression is unspecified. If pi equals true for more than one value case expressions versus

case proof steps.of i , then the expression might equal any of the corresponding ei ; the semantics
of TLA+ do not specify which one. (As in the case of choose, there is no
nondeterminism.) A case expression in which more than one pi can be true is
most often used when the value of the expression does not depend on which of
the possible ei the expression equals in that case. For example,

case x ≥ 0→ x 2 x ≤ 0→ −x

equals x if x > 0 equals true, −x if x < 0 equals true, and either x or −x
if x = 0 equals true—which in that case both equal 0. Thus, this expression
equals the absolute value of x , if x is a number.

The statement
21

?

�

-

C

I

S

case p1 → e1 2 . . . 2 pn → en 2 other → e CASE p1 -> e1 [] . . . [] pn -> en OTHER -> e

equals e if none of the pi equals true; otherwise it equals

case p1 → e1 2 . . . 2 pn → en

As with an if /then /else, as much text as possible following a case expression
is considered to be part of that expression.

16.2 Definitions

16.2.1 Simple Operator Definitions

Despite the important role that definitions play in mathematicians, logicians
have largely ignored them, and there is no standard formal notation for writing
definitions. In TLA+, a definition is simply an abbreviation. There is no concept
of an illegal definition; any syntactically correct definition defines something.

The simplest form of definition defines an identifier to be an abbreviation for
an expression. For example,

id
∆
= a + b id == a + b

defines id to be an abbreviation for the expression a + b. Thus, 2 ∗ id equals
the expression obtained from it by substituting a + b for id . Here, substitution
means semantic substitution rather than syntactic substitution, so 2 ∗ id equals
2 ∗ (a + b) rather than 2 ∗ a + b.

A defined operator is also an abbreviation. For example,

Op(a)
∆
= b ∗ a + c

defines Op(exp), for any expression exp, to be an abbreviation for the expression
obtained by substituting exp for a in the expression b ∗ a + c. Again, that is
semantic substitution, so Op(2 + 2) equals b ∗ (2 + 2) + c and not b ∗ 2 + 2 + c .

Semantic substitution is tricky in the presence of bound identifiers. For
example, if F is defined by

F (x)
∆
= ∃ i ∈ S : x + 1 > i

then F (i) does not equal ∃ i ∈ S : i + 1 > i . To explicitly perform the semantic
substitution, we must replace the bound identifier i by an identifier that is not
defined or declared in the current context. For example, F (i) equals the formula
∃ ii ∈ S : i + 1 > ii .

TLA+ provides a number of user-definable infix operators and a few user-
definable postfix operators, all listed here2. They are defined like this:

a ++ b
∆
= (a + 2 ∗ b) % N a ++ b == (a + 2*b) % N

22

?

�

-

C

I

S

How to type symbols with non-obvious ascii representations is shown here2.

TLA+ allows higher-order operators, which are ones having operators as
arguments. For example, the standard TLC module defines an operator SortSeq
so that if s is a sequence and ≺ is an operator, then SortSeq(s,≺) equals a
permutation of s sorted according to ≺. Thus, SortSeq(〈1, 5, 3〉, >) equals
〈5, 3, 1〉. The definition of SortSeq has the form:

SortSeq(s, ≺)
∆
= . . . SortSeq(s, _ \prec _) == . . .

It could also have been written

SortSeq(s,LT (,))
∆
= . . . SortSeq(s, LT(_, _)) == . . .

This is the highest-order operator we can define. TLA+ does not allow a higher-
order operator to be an argument of another operator.

16.2.2 Function Definitions

TLA+ provides a special syntax for defining functions. The following two defi-
nitions are equivalent.

Successor [i ∈ Nat]
∆
= i + 1

Successor
∆
= [i ∈ Nat 7→ i + 1]

However, the definition syntax permits recursive function definitions, such as:

factorial [n ∈ Nat]
∆
= if n = 0 then 1 else n ∗ factorial [n − 1]

This definition is equivalent to

factorial
∆
= choose f : f = [n ∈ Nat 7→ if n = 0 then 1 else n ∗ f [n − 1]]

Function definitions for functions of multiple arguments are written in the ob-
vious way.

You can write nonsensical recursive definitions, such as

tcaf [n ∈ Nat]
∆
= n ∗ tcaf [n + 1]

This defines tcaf to equal

choose f : f = [n ∈ Nat 7→ n ∗ f [n + 1]]

This expression might equal [n ∈ Nat 7→ 0], since that function satisfies the
choose formula that defines tcaf . Or, it might equal [n ∈ nat 7→ ∞] for some
other value ∞. Or, it might equal some other function. The semantics of
TLA+ does not determine the value of tcaf . However, we know it is a function
with domain Nat because there is an f satisfying the choose formula.

There are no illegal definitions in TLA+, but a recursive definition might not
define what you expect it to. You should use a recursive function definition only
when there is a unique function satisfying the choose formula, as is the case
for factorial .

23

?

�

-

C

I

S

16.2.3 Recursive Operator Definitions

With ordinary definitions, every symbol must be defined or declared before it is
used. A recursive function definition allows the function being defined to appear
in its defining expression. You can write recursive operator definitions by using
the recursive declaration. For example, you can define a factorial operator by
writing

recursive FactorialOp()

FactorialOp(n)
∆
= if n = 0 then 1 else n ∗ FactorialOp(n − 1)

You can also write mutually recursive definitions. For example, in

recursive F (,),G()

H
∆
= . . .

F (x , y)
∆
= . . .

G(z)
∆
= . . .

F and G can appear on the right-hand side of all three definitions. (Naturally,
H can appear on the right-hand side of the definitions of F and G .)

The meaning of recursive operator definitions is complicated and quite subtle.
In fact, they were not allowed in the first version of TLA+ because I didn’t
know how to define what they mean. (Georges Gonthier helped figure out their
meaning.) All you need to know about a recursively defined operator F , and all
you should depend upon, is this: For any value v , if the value of F (v) can be
computed by a finite number of “expansions” of the definition, then it equals that
computed value. Thus, FactorialOp(7) equals 7∗6∗5∗4∗3∗2∗1∗1 (which equals
5040), but you should not care about the value of FactorialOp(−3). I would have
to think hard to figure out whether or not it equals −3 ∗ FactorialOp(−4).

Question 16.1 Define IntFact by answer

IntFact [n ∈ Int]
∆
= if n = 0 then 1 else n ∗ IntFact [n − 1]

Does IntFact [−3] equal −3 ∗ IntFact [−4]?

Unless what you want to define is a function, an inductive definition is usually
more convenient to express with a recursive operator definition than a recursive
function definition. However, TLAPS2 does not yet handle recursive opera-
tor definitions, so you must use recursive function definitions. You can turn
a recursive operator definition into an ordinary definition by using a let with
recursive function definitions. For example, consider this recursive definition of
the cardinality of a finite set:

24

?

�

-

C

I

S

recursive Cardinality()
Cardinality(S)

∆
=

if S = {} then 0
else 1 + Cardinality(S \ {choose x ∈ S : true})

We can’t define Cardinality to be a function because its domain would have to
be the “set” of all sets, which isn’t a set. However, we can write this definition
as:

Cardinality(S)
∆
=

let C [T ∈ subset S]
∆
=

if T = {} then 0

else 1 + C [T \ {choose x ∈ T : true}]
in C [S]

TLA+ does not permit recursive definitions of higher-order operators.

16.2.4 Recursive Or Inductive?

The terms recursive definition and inductive definition seem to be used inter-
changeably. I will distinguish them as follows:

• A recursive definition is one in which the symbol being defined appears in
its definition.

• An inductive definition is one in which a function or operator is defined by
(a) defining its value on its smallest arguments and (b) defining its value
on any other argument in terms of its values on smaller arguments (for
some appropriate definition of “small”).

An inductive definition is therefore a special case of a recursive one. The def-
inition of factorial for natural numbers is the classic example of an inductive
definition. The definition of tcaf above is an example of a recursive definition
that is not inductive.

The recursive definitions used by mathematicians seem to all be inductive.
That’s not true of computer scientists, who might write the following definition
of the set of all finite sequences of integers:

A finite sequence of integers is either the empty sequence or equals the
prepending of an integer to a finite sequence of integers.

This informal definition is not inductive, and a mathematician would probably
consider it to be incorrect because it is satisfied by both the set of all finite
sequences and the set of all finite and infinite sequences. Computer scientists
generally define such a recursive definition in terms of a least fixed point, so it
defines the smallest set satisfying the recursion relation—in this case, the set of

25

?

�

-

C

I

S

finite sequences. TLA+ does not use a least fixed point semantics, so you should
write only recursive definitions that are inductive.

Mathematics is so expressive that recursion is needed much less often in
TLA+ than in most specification languages used by computer scientists. For
example, the set of all finite sequences of integers can be written in TLA+ as:

union {[1 . . n → Int] : n ∈ Nat}

16.3 The let / in Construct

A specification is a formula. In principle we can write it as a single large formula
without using any definitions. We make the formula easier to understand by
decomposing it with the aid of definitions. For example, we might decompose
the definition of an operator H by introducing operators F and G . If F and G
are used only in the definition of H , the complete specification might be easier
to understand by making the definitions of F and G local to the definition of
H . Local definitions are made with the let / in construct.

A let / in construct is an expression, and it can appear as a subexpression
of any expression. However, it is most often used as the right-hand side of a
definition, or as “most of” the right-hand side of a definition. For example, the
definition of H might have the form

H (a, b)
∆
= ∃ i ∈ Nat : let . . . in . . .

where the let clause is a list of definitions and the in clause is an expression in
which the defined symbols can be used. The symbols a, b, and i can be used in
both the definitions and the in clause. Here is a simple, meaningless example:

H (a, b)
∆
= ∃i ∈ Nat :

let F (u)
∆
= u + i

G
∆
= a ∗ F (2)

in G > F (b)

It defines H (x , y) to equal x ∗ (2 + i) > y + i .
Recursive function definitions2 and recursive operator definitions2 can ap-

pear in a let clause. The recursive declaration is used the same way as in
module-level definitions.

16.4 The lambda Construct

A higher-order operator takes an operator as an argument. What can that
argument be? It can’t be an expression, since the value of an expression is not
an operator. It can be the name of an already-defined operator; for example, we
wrote SortSeq(〈1, 5, 3〉, >) above, using the operator > as an argument of the
higher-order operator SortSeq . We might want to apply SortSeq to an operator

26

?

�

-

C

I

S

that is not already defined. One way is to define the operator locally using a
let / in, as in the expression

let LT (x , y)
∆
= x [1] > y [1]

in SortSeq(〈〈1, “a”〉, 〈5, “c”〉, 〈3, “x”〉〉, LT 〉

which equals

〈〈5, “c”〉, 〈3, “x”〉, 〈1, “a”〉〉

Another way is to write the operator as a lambda expression:

SortSeq(〈〈1, “a”〉, 〈5, “c”〉, 〈3, “x”〉〉, lambda x , y : x [1] > y [1])

It should be obvious from this example how to write any ordinary operator as
a lambda expression. Higher-order operators cannot be written as lambda
expressions.

A lambda expression can appear only as an operator argument of a higher-
order operator or as a substitution for a constant operator parameter in an
instance statement, as in:

instance M with N ← 42, LT ← lambda x , y : x [1] > y [1]

You cannot use a lambda expression as an operator anyplace else. Even though
it makes perfect sense, you can’t write:

(lambda x , y : x [1] > y [1]) (4, 2) This is illegal.

27

?

�

-

C

I

S

17 Temporal Logic

Temporal logic is not difficult, but it is different from the ordinary logic that
we use most of the time. That difference can lead to mistakes in reasoning. It’s
therefore important that you understand temporal logic clearly—especially if
you want to write temporal logic proofs.

From the point of view of logic, mathematics is just a game of manipulating
formulas. We show that certain formulas are theorems by applying formal rules
of reasoning—rules that are independent of what those formulas mean. This
hyperbook is about systems, not about logic. To use math in studying systems,
we must understand what our formulas mean. The study of the meaning of
formulas is called semantics.

We can define something only in terms of something else. In science and
engineering, meaning is ultimately defined in terms of ordinary mathematics.
So, I will define the meaning of temporal logic formulas in terms of ordinary
mathematical expressions. (A formula is a Boolean-valued expression.) Before
getting to temporal logic, I will precisely define the meaning of the non-temporal
expressions that we have been using.

The expressions of ordinary math are what I have been calling constant
expressions—ones like [{0, 1} → boolean] . A constant expression can also
contain unspecified constants. In TLA+, such constants are introduced by con-
stant statements and as bound identifiers. For example, in the expression
{i ∈ Nat : i > 2} , the identifier i is a constant in the subexpression i > 2. Un-
specified constants are what mathematicians usually call variables. (Temporal
logicians call them rigid variables.)

The simplest non-constant expressions we have seen are state expressions
(often called state functions). A state expression is like an ordinary mathemat-
ical expression except it can also contain (unprimed) variables—symbols that
in TLA+ are declared in variable statements. (Temporal logicians call them
flexible variables.) If pc is a variable and i is a constant, then pc[i] = “cs” is
a state expression. (The string “cs” is an ordinary mathematical value, just
like the empty set {} or the number 42.) A state formula, also called a state
predicate, is a Boolean-valued state expression.

The meaning of a state expression E is a mapping [[E]] from states to constant
expressions. I have written that a state is an assignment of values to variables.
More precisely, a state assigns a constant expression to every possible variable
name. We can consider a state s to be a record with an infinite number of
components—one for every variable name—that assigns to any variable v the
constant expression s.v . The meaning [[pc[i] = “cs”]] of the state expression
pc[i] = “cs” is the mapping that assigns to each state s the constant expression
(s.pc)[i] = “cs”. In general, for any state expression E , we define [[E]](s) to be

28

?

�

-

C

I

S

the constant expression obtained by replacing every occurrence of every variable
v in E by s.v .

I have defined an action to be a formula that may contain both primed and
unprimed variables. More generally, let a transition expression be like an ordi-
nary mathematical expression except that it may contain primed and unprimed
variables. The meaning [[T]] of a transition expression T is the mapping that
assigns to any pair 〈s, t 〉 of states the constant expression obtained from T by,
for each variable v , substituting s.v for each unprimed occurrence of v in T
and t .v for each occurrence of v ′ in T . A state expression E is a transition
expression that contains no primed variables, so [[E]](〈s, t〉) equals [[E]](s) for all
states s and t . An action is a Boolean-valued transition expression.

A temporal formula is one obtained by combining actions (and state pred-
icates) with temporal operators and the ordinary operators of logic. Those
ordinary operators of logic include unbounded quantification and bounded quan-
tification over constant sets. Thus, ∀N ∈ S : F is a temporal formula if S is a TLA+ allows S to be a state

expression, not just a
constant expression, in
∀N ∈ S : F ; but we never
write such a formula.

constant expression and F is a temporal formula.
A behavior is an infinite sequence of states. The meaning of a temporal for-

mula F is a mapping that assigns a Boolean-valued constant expression [[F]](σ)
to every behavior σ. An action A is considered to be a temporal formula such
that if σ equals the sequence s1, s2, . . . of states, then [[A]](σ) equals [[A]](〈s1, s2〉).
Thus, [[P]](σ) equals [[P]](s1) if P is a state predicate.

The meaning of the temporal operator 2 is defined by letting [[2F]](σ) be
true iff [[F]](τ) is true for all suffixes τ of σ. More precisely, if σ equals s1, s2,
. . . , let σ+i be the suffix s i+1, s i+2, . . . of σ. Then [[2F]](σ) is defined to equal
∀ i ∈ Nat : [[F]](σ+i) .

We have defined the temporal operator 3 by letting 3F equal ¬2¬F .
Since ¬∀ i ∈ S :¬ . . . equals ∃ i ∈ S : . . . , it follows that [[3F]](σ) equals
∃ i ∈ Nat : [[F]](σ+i) . That is, [[3F]](σ) is true iff F is true for some suffix
of σ (where a sequence is considered to be a suffix of itself).

The meanings of ordinary logical operators applied to temporal formulas
is obvious. For example, [[(F ∧G)]](σ) is defined to equal [[F]](σ) ∧ [[G]](σ) .
Similarly, [[(∀ i ∈ S : F i)]](σ) equals ∀ i ∈ S : [[F i]](σ) , for any constant expres-
sion S .

I have said nothing about formulas containing user-defined symbols. The
meaning of such a formula is the meaning of the formula obtained by expanding
the definitions of all user-defined symbols. It should be clear what this means
in the absence of recursive definitions, so defined symbols can be removed by a
finite number of expansions. Section 16.2.2 describes the meaning of recursive
function definitions, showing how they can be expanded. The meaning of re-
cursive operator definitions can be defined in a similar but considerably more
complicated fashion.

29

?

�

-

C

I

S

17.1 Understanding Temporal Formulas

Intuitively, a temporal formula F is an assertion about a behavior. The formula
2F asserts that F is always true, meaning that it is true for all the behavior’s
suffixes. The formula 3F asserts that F is eventually true, meaning that it is
true for some suffix of the behavior. (When discussing temporal logic, we take
eventually to include now.)

Here are some common temporal formulas. You should think carefully about
them until you find their meanings perfectly obvious.

23F True of a behavior σ iff F is true for infinitely many suffixes of σ.
We read 23 as infinitely often.

32F True of a behavior σ iff F is true for all suffixes of some suffix τ of
σ. We read 32 as eventually always.

The following formulas are tautologies, meaning that, for all temporal formulas
F , G , H , and F i , they are true for all behaviors. You should convince yourself
that they are, indeed, tautologies. Note that 2 and 3 have higher precedence
(bind more tightly) than ∧, and ∨, which have higher precedence than ⇒, ≡,
and ;.

¬2F ≡ 3¬F

¬3F ≡ 2¬F

22F ≡ 2F

33F ≡ 3F

2(F ∧G) ≡ (2F) ∧ (2G)
More generally: 2(∀ i ∈ S : F i) ≡ (∀ i ∈ S : 2F i) ,
for any constant expression S .

3(F ∨G) ≡ (3F) ∨ (3G)
More generally: 3(∃ i ∈ S : F i) ≡ (∃ i ∈ S : 3F i) ,
for any constant expression S .

All such temporal logic tautologies can be proved from a small number of axioms
and proof rules. However, with practice, you should understand the temporal
operators 2 and 3 well enough that whether or not simple formulas like these
are tautologies becomes obvious.

Question 17.1 Which of the following formulas are tautologies? Find coun- answer

terexamples for those that aren’t.

(a) 32(F ∧G) ≡ (32F) ∧ (32G) (f) 23(F ∧G) ≡ (23F) ∧ (23G)

(b) 32(F ∨G) ≡ (32F) ∨ (32G) (g) 23(F ∨G) ≡ (23F) ∨ (23G)

(c) (2F ≡ F) ⇒ (F ∧2G ≡ 2(F ∧G)) (h) (3F ≡ F) ⇒ (F ∨3G ≡ 3(F ∨G))

(d) (F ; G) ∨ (F ; H) ⇒ (F ; G ∨H) (i) (F ; G) ∧ (F ; H) ⇒ (F ; G ∧H)

(e) (F ; G) ∧ (G ; H) ⇒ (F ; H) (j) (F ∧H ; G) ⇒ (F ∧2H ; G ∧2H)
30

?

�

-

C

I

S

If you correctly answered this question, you should have no trouble understand-
ing any of the temporal formulas that arise in reasoning about algorithms—
assuming that you understand the state predicates and actions that occur in
those formulas.

Fortunately, there’s an easy way to check if a temporal logic formula is a
tautology: let the TLAPS prover2 do it for you. For example, you can check if
32(F ∧G) ≡ (32F) ∧ (32G) is a tautology by asking TLAPS to check:

THEOREM ASSUME TEMPORAL F, TEMPORAL G

PROVE <>[](F /\ G) \equiv (<>[]F) /\ (<>[]G)

BY PTL

The PTL backend prover will succeed in proving the theorem (coloring it green)
only if the formula is a tautology. If it fails, the formula is almost certainly not
a tautology.

17.2 Proof Rules and Proofs

Now that you understand temporal formulas, we can examine theorems and
their proofs. A temporal formula is a theorem iff it is true for all behaviors. Let Truth versus provability.

` F be the assertion that F is a theorem, so ` F can be informally defined to
equal ∀σ : [[F]](σ). The proof rule

PR. F 1, . . . ,Fn

G

asserts (`F 1)∧ . . .∧ (`Fn) ⇒ (`G) . We often omit the commas when writing
PR. Also, to save space, I will sometimes write this proof rule as F 1, . . . ,Fn ` G .

Proof rules cannot be written in TLA+. The theorem

theorem assume F 1, . . . ,Fn

prove G

asserts ` (F 1 ∧ . . . ∧ Fn ⇒ G) , which is very different from Rule PR. A simple
and striking example of the difference is provided by the proof rule F ` 2F .
This rule asserts that if F is true for all behaviors, then so is 2F . The rule
is valid because 2F asserts of a behavior σ that F is true for all suffixes of σ,
and every suffix of σ is a behavior. Therefore 2F is true for every behavior if
F is true for all behaviors. On the other hand, for a behavior σ, the formula
F ⇒ 2F asserts [[F ⇒ 2F]](σ), which is equivalent to [[F]](σ) ⇒ [[2F]](σ).
Hence it asserts that if F is true of σ, then it is true of all suffixes of σ. This
is clearly not true for an arbitrary formula F and behavior σ, so F ⇒ 2F is
not a tautology. It is a theorem for certain formulas F , for example if F equals
2(x = 1).

Question 17.2 Show that 2(x = 1)⇒ 2(2(x = 1)) is a theorem. answer
31

?

�

-

C

I

S

Temporal logic proof rules can be deduced from tautologies and a small number
of basic proof rules. For example, the proof rule F ` 2F can be deduced from the
proof rule (F ⇒ G) ` (2F ⇒ 2G), the tautology 2true, and ordinary logic.
You should be able to determine if a simple proof rule is valid by translating it
into a statement about behaviors.

When reasoning about temporal formulas, it is surprisingly easy to get into
trouble by confusing proof rules with formulas—for example, confusing the rule
F ` 2F with the formula F ⇒ 2F . Here’s a very blatant example of this.

theorem Fallacy
∆
= (y = 0)⇒ 2(y = 0)

Proof: To prove A⇒ B , it suffices to assume A and prove B . Hence, it
suffices to assume y = 0 and prove 2(y = 0). From y = 0 and the rule
F ` 2F , we deduce 2(y = 0). qed

The theorem is clearly not correct, and the error in the proof becomes clear if
we express all the statements explicitly in terms of assertions about behaviors.
However, the virtue of temporal logic is that it lets us reason about temporal
formulas without having to translate those formulas into explicit assertions about
behaviors. To understand how to do that without making mistakes, we need to
examine proofs more closely.

A theorem

theorem T

asserts that the formula T is true for all behaviors—that is, that ` T is true.
We prove this theorem by showing that T is true for some arbitrarily chosen
behavior. In other words, we prove [[T]](σ) for some behavior σ. Consider a
hierarchically structured proof of the theorem. The proof of the first top-level
step can use only previously proved theorems, which are true for all behaviors
σ. Hence, the first top-level step must be true for every behavior σ. Since
subsequent top-level statements can only use previously-proved theorems or top-
level statements, they too must be true for every behavior σ. In other words,
every top-level statement is itself a theorem. Hence, we can apply the proof rule
F ` 2F to every top-level statement F .

Suppose that the theorem contains no assume/prove steps, including no
suffices assume/prove steps. It’s then easy to see that every step, not just the
top-level ones, is proved assuming only formulas that are true for all behaviors,
and hence every step is a theorem. We can therefore apply the rule F ` 2F to
the formula F asserted by any step in the proof.

The problem comes when a proof contains an assume/prove. Here is the
“proof” of theorem Fallacy written more rigorously:

1. Suffices Assume: y = 0
Prove: 2(y = 0)

Proof: Obvious.
32

?

�

-

C

I

S

2. Q.E.D.

Proof: By step 1 and the proof rule F ` 2F , with y = 0 substituted
for F .

The theorem asserts that [[(y = 0) ⇒ 2(y = 0)]](σ) is true for all behaviors
σ. The proof attempts to show that it is true for some particular arbitrary
behavior σ. The suffices statement asserts that to prove this, it suffices to
assume [[y = 0]](σ) is true and prove that [[2(y = 0)]](σ). Thus, in the q.e.d.
proof, we can assume only that [[y = 0]](σ) is true for this particular behavior
σ. However, the hypothesis of the proof rule F ` 2F asserts that [[F]](τ) is true
for all behaviors τ , not just that [[F]](σ) is true. Hence, that hypothesis is not
satisfied for F equal to y = 0, and the proof rule cannot be applied.

In general, a formula A asserted in an assume cannot be used to prove the
hypothesis F of a proof rule, because the assume asserts that A is true for the
particular behavior under consideration, and the hypothesis of the proof rule
asserts that F is true for all behaviors. Since formulas proved without using
any assumptions in an assume clause are true of all behaviors, they can be
used as hypotheses of a proof rule. We can therefore stay out of trouble by
never doing any temporal reasoning within the scope of an assumption from an
assume/prove or suffices assume/prove step.

While eschewing assumes permits us to use temporal proof rules freely, it’s
a Draconian restriction. There are some formulas that can be assumed without
causing problems. For example, a constant formula in an assume is harmless.
Since it does not depend on the value of any variable, a constant formula is true
of some single behavior iff it is true of every behavior. We can use some non-
constant formulas in assumes, but to see why requires introducing a different
kind of proof rule.

The temporal logic proof rules that we use do not require their hypotheses
to be true for all behaviors. They require only that the hypotheses are always
true. More precisely, to deduce that the conclusion is true for any behavior σ,
they require only that their hypotheses be true for all suffixes of σ. We we write
such a rule as:

TR. F 1, . . . ,Fn

G

This asserts that for any behavior σ, formula G is true for σ if F 1, . . . , Fn is
true for all suffixes of σ. In other words, it asserts:

∀σ : (∀ i ∈ Nat : [[F 1]](σ+i)) ∧ . . . ∧ (∀ i ∈ Nat : [[Fn]](σ+i)) ⇒ [[G]](σ)

To save space, I sometimes write this rule as F 1, . . . ,Fn ‖− G . Rule TR is The symbol ‖− and ‖−
rules are not standard
terminology.

stronger than rule PR, since it makes a weaker assumption about its hypotheses
F i . I will call a rule having the form TR a ‖− rule.

33

?

�

-

C

I

S

Instead of using the rule F ` 2F , we can use the stronger rule F ‖− 2F . It
asserts that, for any behavior σ, if F is true for all prefixes of σ then 2F is true
for σ. It is valid by definition of 2. In fact, rule TR is equivalent to

TR⇒. ` 2F 1 ∧ . . . ∧2Fn ⇒ G

For example, F ‖− 2F is really the trivial assertion ` 2F ⇒ 2F . The reason
we write TR rather than TR⇒ is that there are rules in which some 2F i may
not be a legal TLA+ formula. For example,

P ⇒ P ′

P ⇒ 2P

is a valid rule for any state predicate P . However, 2(P ⇒ P ′) is not a legal
(syntactically correct) TLA+ formula because an action (a non-temporal formula
containing primes) A can occur in a temporal formula only in a subexpression
of the form 2[A]v or 3〈A〉v . This restriction is to ensure that you can’t write
temporal formulas that you shouldn’t, and that there is no need for you to write.
However, all of our proof rules and all the reasoning we do here remain valid
even if we do not place this restriction on our temporal formulas. (Our rules
and reasoning can be invalid only for formulas that contain a ∃∃∃∃∃∃ or ∀∀∀∀∀∀ operator.)

Our ‖− rules make it unnecessary to write illegal formulas like 2(P ⇒ P ′)
when reasoning about specifications. However, those formulas can be useful in
understanding and reasoning about our proof rules. I will therefore sometimes
use them in the rest of Section 17. I will use a red 2 or 3 when the operator is
applied illegally to an action formula, as in 2(P ⇒ P ′).

Of course, TLAPS will only accept legal TLA+ formulas. However, if each
2F i is a TLA+ formula, you can check that a rule of the form TR is valid by
having TLAPS check if TR⇒ is true.

Question 17.3 Prove the validity of the rule (P ⇒ P ′) ‖− (P ⇒ 2P) for P a answer

state predicate.

If 2G is a legal formula, then rule TR is equivalent to

TR2. F 1, . . . ,Fn

2G

Since 2G ⇒ G is a tautology, it’s easy to see that TR2 implies TR. The proof
that TR implies TR2 is as follows. To prove TR2, we let σ be any behavior,
assume that each F i is true for every suffix of σ, and prove that 2G is true for
σ. By definition of 2, we do this by showing that if τ is any suffix of σ, then G
is true for τ . Since a suffix of a suffix is a suffix, every suffix of τ is a suffix of σ.
Hence, each F i is true for every suffix of τ , which by TR implies that G is true
for τ , completing the proof. (If this is too confusing, write the proof in terms of
[[G]] and the [[Fi]].)

34

?

�

-

C

I

S

When we write a proof of a temporal formula, we are proving that the formula
is true for every particular behavior σ. For every step not within the scope of
an assume, or in the scope of only constant assumptions, this proves that the
step is true for all behaviors. If the step appears in the scope of a non-constant
assumption F , then we have proved the step only for behaviors σ for which F
is true. If F equals 2G for some formula G , then the behaviors for which F
is true include all suffixes of σ. Hence, if the only non-constant assumptions
within whose scope a step appears are all of the form 2G , then the step is true
for all suffixes of σ. Any such step can be used as a hypothesis of a ‖− rule,
which by the reasoning that led to TR2 shows that the conclusion is also true
for all suffixes of σ. Hence, our proofs remain sound even with assume/proofs
as long as the only non-constant assumptions equal 2G for some G , and the
only temporal proof rules we use are ‖− rules.

Since 22G is equivalent to G , a formula F equals 2G for some G iff F is
equivalent to 2F . Such a formula is called a 2 formula. More precisely, F is a
2 formula iff ` (F ≡ 2F) is true. Note that a constant formula is a 2 formula.
Since all the rules we use for temporal reasoning are ‖− rules, we have seen that
we can stay out of trouble by obeying the following rule when writing proofs:

A proof step asserting a temporal logic formula can appear in the scope
of an assume iff all the assumptions of the assume are 2 formulas.

Here are five simple rules for showing that a formula is a 2 formula.

• A constant formula is a 2 formula.

• 2F , 23F , and 32F are 2 formulas, for any formula F .

• The conjunction and disjunction of 2 formulas are 2 formulas.

• If P(i) is a 2 formula for every i in a constant set S , then ∀i ∈ S : P(i)
and ∃i ∈ S : P(i) are 2 formulas.

These rules and the definitions of WF and SF given below imply that WFv (A)
and SFv (A) are 2 formulas, for any v and A.

Since ` (2F ⇒ F) is a tautology, F is a 2 formula if ` (F ⇒ 2F) is true.
This observation will help you answer:

Question 17.4 Verify the five rules for 2 formulas given above.

Question 17.5 Explain why P ` P ′ is a valid proof rule, for any state predicate
P , and why 2P ⇒ P ′ is not equivalent to any legal TLA+ formula.

35

?

�

-

C

I

S

17.3 Rules for Proving Safety

The most fundamental safety property is invariance. The assertion that a state
predicate P is an invariant of a specification Spec is expressed in temporal logic
by the formula Spec ⇒ 2P . The formula is proved by finding an inductive
invariant2 Inv that implies P . The proof is based on the following proof rule:

INV1: Inv ∧ [Next]vars ⇒ Inv ′

Inv ∧2[Next]vars ⇒ 2Inv

If Spec equals Init ∧ 2[Next]vars , possibly conjoined with a liveness property,
then the proof looks like this:

theorem: Spec ⇒ P

1. Init ⇒ Inv

2. Inv ∧2[Next]vars ⇒ Inv ′

2.1. It suffices to prove Inv ∧Next ⇒ Inv ′

Proof: [Next]vars equals Next ∨ unchanged vars and

Inv ∧ unchanged vars ⇒ Inv ′

is obvious because the tuple vars of variables contains all the
variables that occur in Inv .

...

3. Inv ⇒ P

4. Q.E.D.

Proof: By the definition of Spec, steps 1–3, and rule INV1.

Here is a more complete proof of the Q.E.D. step, which we would normally not
bother to write.

4. Q.E.D.

4.1. Inv ∧2[Next]vars ⇒ 2Inv

Proof: By step 2 and rule INV1.

4.2. Init ∧2[Next]vars ⇒ 2Inv

Proof: By steps 1 and 4.1.

4.3. 2Inv ⇒ 2P

Proof: By step 3 and the proof rule (F ⇒ G) ` (2F ⇒ 2G).

4.4. Q.E.D.

Proof: By 4.1–4.3 and the definition of Spec.

36

?

�

-

C

I

S

The other kind of safety property that we prove is that one specification imple-
ments the safety part of another specification under a refinement mapping. As
explained in Section 6.82, such a property is expressed by a formula of the form:

I ∧2[M]v ⇒ J ∧2[N]w

To prove it, we prove the following properties for a suitable invariant Inv

I ⇒ J

I ∧2[M]v ⇒ 2Inv

Inv ∧ Inv ′ ∧ [M]v ⇒ [N]w

and apply this proof rule:

INV2: Inv ∧ Inv ′ ∧ [M]v ⇒ [N]w

2Inv ∧ 2[M]v ⇒ 2[N]w

plus simple propositional reasoning.

Question 17.6 Show that rule INV2 is valid.

17.4 Leads To

The temporal operator ; , read as leads to, is defined by

F ; G
∆
= 2(F ⇒ 3G)

Thus, F ; G is true of a behavior σ iff, for every suffix τ of σ, if F is true for
τ then G is true for some suffix of τ . In other words, it asserts that if F ever
becomes true, then G will be true then or later. We type ; as ~> in TLA+.

The formula F ; G is a liveness property, and the ; operator is fundamen-
tal in reasoning about liveness. A system satisfies a liveness property because
the system’s fairness property implies certain elementary leads-to properties—
ones that assert that if F is true, then a system step must eventually occur that
makes G true. We will see how to prove such elementary leads-to properties
below, when we examine fairness. Here, we consider how to deduce leads-to
properties from safety properties and other leads-to properties.

Note that F ; G is a 2 property, since by definition it is of the form 2H .
Also, the proof rule H ‖− 2H and the tautology G ⇒ 3G imply the proof rule
(F ⇒ G) ‖− (F ; G).

37

?

�

-

C

I

S

17.4.1 The Leads-To Induction Rule

The following tautology, which asserts the transitivity of ; , allows us to
deduce leads-to properties from simpler leads-to properties:

(F ; G) ∧ (G ; H) ⇒ (F ; H)

By induction, we can generalize this to

(Fn ; Fn−1) ∧ (Fn−1 ; Fn−2) ∧ . . . ∧ (F 1 ; F 0) ⇒ (Fn ; F 0)

We can further generalize this as follows. Suppose we have a finite directed
graph with no cycles that contains a single sink node. Let’s take it to be the
following graph that has the sink z ; we’ll generalize later.

����
t

����
u

����
v

����
w

����
x

����
y

����
z

-

-

-

-��
�
��

�
��
�*

�
��

�
��

�
��*

HHH
HHH

HHHj
PPPPPPPPPPPPPPq

@
@
@
@R �

�
�
��

U

Suppose that we start with a token on any of the nodes and move it according to
the following rule: if the token is not on the sink node, then it must eventually
move along one of the edges from its current node to another node. For example,
if the token is on node x , it must eventually move to node y or node z . Obviously,
the token must eventually end up on the sink node.

Now, let’s assign to each node n a formula Fn . In the token game, let’s
interpret the token being on node n to mean that Fn is true. The rule about
how tokens must move corresponds to the assumption that if Fn is ever true,
then F q must eventually become true for some node pointed to by an edge from
n. In other words, we assume that Fn leads to the disjunction of all formulas F q

for which there is an edge from n to q . The conjunction of all those assumptions
is the formula:

(F t ; (Fw ∨ F z)) ∧ (F u ; (Fw ∨ F x ∨ F y)) ∧ . . . ∧ (F y ; F z)

We observed that if the token is placed on any node, then it eventually reaches
the sink node. Therefore, if we start with at least one formula F t true, then
eventually F z must be true. In other words, the formula we are assuming implies

(F t ∨ F u ∨ . . . ∨ F z) ; F z
38

?

�

-

C

I

S

A little thought shows that we can generalize this to any directed graph
satisfying two conditions: (i) it has no infinite path starting from any node
(which implies that there are no cycles) and (ii) it has a unique sink.

Given a graph with a set N of nodes, let’s define the relation � by letting
m � n be true iff there is an edge from m to n. Condition (i) can then be
expressed by the assertion that there is no “infinite chain”

n1 � n2 � n3 � . . .

of elements in N . The relation � is said to be well-founded on the set N iff this
condition holds.

For any element n of N , define Nn � to be the set of all elements m of N
such that n � m. Our token-game assumption is that, from any node n other
than z , the token eventually moves to some node in Nn �. The corresponding
temporal property for node n is Fn ; (∃m ∈ Nn � : Fm). Our general rule
states that, if this formula is true for all nodes other than z , then if there exists
some node n with Fn true, eventually F z is true:

Leads-To Induction Rule If � is a well-founded relation on a set N
and z ∈ N , then:

(∀n ∈ N \ {z} : Fn ; (∃m ∈ Nn � : Fm))
⇒

((∃n ∈ N : Fn) ; F z)

The assumption (ii) of our example, that z is the unique sink node, has dis-
appeared from the rule. The reason is that if n is a sink node, then Nn � is
the empty set, so the hypothesis Fn ; (∃m ∈ Nn � : Fm) is equivalent to
Fn ; false. The proof rule (G ⇒ H) ` (G ; H) implies that false ; F z is
a tautology, so Fn ; false implies Fn ; F z . There is thus an implicit edge
from every sink node other than z to node z . Since we don’t draw any edges
leading out of z , adding these implicit edges produces a graph in which z is the
unique sink. While the rule is valid for any z in N , it is always used with z the
minimum element of N under the ordering �.

Of course, the graph has disappeared from the rule, being replaced by the
well-founded relation �. Also gone is the assumption that the graph is finite.
The rule is valid for infinite sets N as well. The argument about the token game
does not depend on having a finite number of nodes, only on there not being an
infinite path having a first node.

The most common example of a well-founded relation on an infinite set N
with minimum element is the relation> on the set Nat of natural numbers, which
has minimum element 0. Another useful well-founded relation on an infinite set
is lexicographical ordering on the set of k -tuples of natural numbers, for some
integer k > 0. This ordering is defined by letting 〈a1, . . . ak 〉 � 〈b1, . . . bk 〉
be true iff there is some i in 1 . . k such that ai > bi and aj = bj for all j in
1 . . (i − 1). This is a well-founded ordering with minimum element 〈0, . . . , 0〉.

39

?

�

-

C

I

S

When explaining a use of the Leads-To Induction Rule in a proof, it usually
helps to draw the directed graph of the relation � with the actual formulas Fn

as the nodes. For example, here is the graph used in a proof of T1 ; false.

T1 2T1

T0

2(T1 ∧ ¬T0) 2(T1 ∧ ¬x [0])

false-
Q
Qs

��
���

���
�:

- ���

XXXXXXXXXz

The graph shows that T1 ; false follows from these formulas:

T1 ; 2T1 2(T1 ∧ ¬T0) ; 2(T1 ∧ ¬x [0])

T0 ; false 2(T1 ∧ ¬x [0]) ; false

2T1 ; T0 ∨ 2(T1 ∧ ¬T0)

I call such a graph a proof graph. It’s clear that the token game, starting with
the token on the T1 node, shows that these ; formulas imply T1 ; false.
This follows from the Leads-To Induction Rule, the transitivity of ;, and the
observation that for any m ∈ N , the proof rule (G ⇒ H) ` (G ; H) implies
Fm ; (∃n ∈ N : Fn).

The Leads-To Induction Rule was originally called the Lattice Rule, which
was a misleading name because the rule has nothing to do with what mathe-
maticians call lattices. The following question explains why I prefer to call it
Leads-To Induction.

Question 17.7 The validity of the Leads-To Induction Rule depends only on
the transitivity of ;. Ordinary implication is also transitive. Therefore, the rule
obtained from Leads-To Induction by replacing ; with ⇒ is also valid. Show
that the following substitutions then produce the rule for ordinary mathematical
induction:

Fn ← ¬Fn N ← Nat � ← > z ← 0

Question 17.8 Define a TLA+ operator LeadsToInduction so that answer

LeadsToInduction(F , N , �, z)

expresses the Leads-To Induction Rule, writing F (n) instead of Fn and
LTSet(N , �) instead of Nn �. You should include the definition of LTSet and
of a well-founded relation with minimum element.

40

?

�

-

C

I

S

17.4.2 The 2 ; Rule

The formula 2F ∧G ; H is true of a behavior σ iff, for every suffixe τ of σ, if
2F and G are true of τ , then H is true of some suffix ρ of τ . By definition of
2, if 2F is true of τ then it is also true of its suffix ρ. Therefore, the following
formula is a tautology.

(2F ∧G ; H) ⇒ (2F ∧G ; 2F ∧H)

Suppose we’re proving a formula (2P ∧ Q) ; R by Leads-To Induction using
a graph having 2P ∧ Q as its only source node. This tautology implies that
we can let 2P be a conjunct of all the formulas in the proof graph. Instead
of explicitly making it a conjunct, we can simply assume 2P in the proof of
Q ; R, usually employing this proof structure:

〈i 〉j . (2P ∧Q) ; R

〈i + 1〉1. Suffices Assume: 2P
Prove: Q ; R

The justification for the Suffices step is this proof rule:

2 ; Rule: 2P ⇒ (Q ; R)

2P ∧Q ; 2P ∧ R

For a short Leads-To Induction proof, we may not bother with this rule and just
conjoin 2P to the formulas in the proof graph.

Question 17.9 Prove the validity of the 2 ; Rule. Show by an example that
the corresponding implication

(2P ⇒ (Q ; R)) ⇒ (2P ∧Q ; 2P ∧ R)

is not a tautology.

17.4.3 Proving ; Formulas by Contradiction

Proofs by contradiction are nice because they allow us to use an additional
hypothesis—namely, the negation of the formula we are trying to prove. This is
a very strong hypothesis because, if what we are trying to prove is true, then the
hypothesis is equivalent to false, which is the strongest possible hypothesis.

A proof by contradiction of a ; formula is based on the tautology:

F ; (G ∨ (F ∧2¬G))

This is a tautology because, at any point in an execution, either G eventually
becomes true or it is always false. Hence, to prove F ; G , it suffices to prove
that (F ∧2¬G) can never be true. We do that by proving (F ∧2¬G) ; false,

41

?

�

-

C

I

S

since only false can lead to false. In other words, a proof by contradiction of
F ; G uses this tautology:

((F ∧2¬G) ; false) ⇒ (F ; G)

To prove (F ∧2¬G) ; false, we often use the 2 ; Proof Rule, which implies
that it suffices to assume 2¬G and prove F ; false.

If this section on Temporal Logic has been a detour, you may now want to return
to Section 7.6.

17.5 Fairness

The concept of weak fairness of an action was introduced informally in Sec-
tion 6.42 and made more precise in Section 6.7.22. We now formally define
weak and strong fairness. To do this, we must first introduce the enabled
operator.

17.5.1 The enabled Operator

The TLA+ primitive operator enabled is defined so that, for an action A,
the formula enabled A is a state predicate asserting that A is enabled. Action
A is enabled in a state s iff there exists a state t such that s → t is an A step.
Thus, enabled A is defined semantically by:

[[enabled A]](s) ≡ ∃ t : [[A]](〈s, t〉)

Suppose A contains no user-defined operators, no enabled operator, and no
“ · ” operator. We can then construct enabled A as follows: What is the · operator?

• Let v1, . . . , vn be all the distinct variables that occur primed in A, and
let v̂1, . . . , v̂n be n identifiers that do not occur in A.

• Let Â be the formula obtained from A by replacing each occurrence of v ′i
by v̂ i , for each variable v i .

• Then enabled A is the formula ∃ v̂1, . . . , v̂n : Â .

For an arbitrary action A, let the full expansion of A be the action obtained
by recursively expanding all definitions of user-defined symbols in A. We can
compute enabled A by applying the procedure above to the full expansion of
A. If there are nested enabled operators, the procedure is applied in a bottom-
up fashion (constructing the innermost enabled formulas first). How to handle
occurrences of the “ · ” operator is left as an exercise for the reader.

For an action A defined as part of the definition of a next-state relation,
enabled A can usually be computed using the following rules, where A, B , and
the A(i) are actions, and P is a state predicate, and exp is a state function (an
expression with no primed variables), and v is a variable.

42

?

�

-

C

I

S

E1. enabled (P ∧A) ≡ (enabled P) ∧ (enabled A)

E2. enabled (A ∨ B) ≡ (enabled A) ∨ (enabled B)

E3. enabled (∃ i ∈ exp : A(i)) ≡ ∃ i ∈ exp : enabled A(i)

E4. If the full expansions of A and B have no primed variable in common, then

enabled (A ∧ B) ≡ (enabled A) ∧ (enabled B)

E5. enabled (v ′ = exp) ≡ true

E6. enabled (v ′ ∈ exp) ≡ exp 6= {}

For example, if x and y are variables, then:

enabled ((x ⊆ {y , y + 1}) ∧ (x ′ = {}) ∧ (y ′ ∈ x))

≡ (x ⊆ {y , y + 1}) ∧ enabled ((x ′ = {}) ∧ (y ′ ∈ x)) by E1

≡ (x ⊆ {y , y + 1}) ∧ enabled (x ′ = {}) ∧ enabled (y ′ ∈ x) by E4

≡ (x ⊆ {y , y + 1}) ∧ (x 6= {}) by E5 and E6

Unfortunately, fairness involves not enabled A for such an action A, but rather
enabled 〈A〉v , where 〈A〉v is defined to equal A∧ (v ′ 6= v) and v is usually the
tuple of all specification variables. The rules above do not allow us to compute
such an enabled expression.

In some cases, the action A does not permit stuttering steps, so A and 〈A〉v
are equivalent. If they are, then we can apply the proof rule

E7. (A ≡ B) ` ((enabled A) ≡ (enabled B))

to deduce that enabled 〈A〉v equals the more easily computed formula
enabled A. It’s rarely the case that A and 〈A〉v are equivalent on all steps
s → t . However, they often are equivalent on steps s → t in which s satisfies
a type invariant TypeOK . In that case, we can prove that TypeOK implies
enabled 〈A〉v ≡ enabled A using the following rule, which is true for any
actions A and B and any state predicate P .

(P ⇒ (A ≡ B)) ` (P ⇒ ((enabled A) ≡ (enabled B))

This proof rule follows easily from E7 and E1. Note that E7 and this rule are
ordinary proof rules, not ‖− rules.

Question 17.10 Explain why the formula answer

(A ≡ B) ⇒ ((enabled A) ≡ (enabled B))

and the rule

(A ≡ B) ‖− ((enabled A) ≡ (enabled B))

are not necessarily true.

43

?

�

-

C

I

S

17.5.2 Weak Fairness

We saw in Section 6.7.22 that the formula WFv (A) asserts of a behavior σ that
σ does not contain a suffix in which an 〈A〉v step is always enabled but never
occurs. Since 〈A〉v is defined to equal A ∧ (v ′ 6= v), if v is the tuple of all
variables in a system specification, then an 〈A〉v step is a non-stuttering A step.
Recall that [A]v is defined to equal A ∨ (v ′ = v). The calculation

〈A〉v ≡ A ∧ (v ′ 6= v) by definition of 〈 . . .〉v
≡ ¬¬(A ∧ (v ′ 6= v)) because ¬¬F ≡ F

≡ ¬(¬A ∨ (v ′ = v)) because ¬(F ∧G) ≡ (¬F ∨ ¬G)

≡ ¬[¬A]v by definition of []v

The operators 〈 . . .〉v and [. . .]v bear the same relation to each other that 3 and
2 do—that is, 〈A〉v ≡ ¬[¬A]v and 3F ≡ ¬2¬F . This relation is sometimes
called duality. These two duality relations imply

3〈A〉v ≡ ¬2[¬A]v

for any action A and state expression v .
We now express weak fairness in terms of temporal operators and enabled.

The formula WFv (A) asserts of a behavior σ that there is not a suffix τ of
σ such that enabled 〈A〉v is true in every state of τ and there is no 〈A〉v
step in τ . “enabled 〈A〉v is true in every state of τ” is expressed by τ `
2(enabled 〈A〉v); and “there is no 〈A〉v step in τ” is expressed by τ ` ¬3〈A〉v .
Therefore, WFv (A) can be written as the following formula:

¬3(2(enabled 〈A〉v) ∧ ¬3〈A〉v)

This formula probably looks inscrutable to you. However, like all mathemat-
ical formulas, we can understand it a piece at a time. Moreover, we can use
tautologies to simplify it as follows:

¬3(2(enabled 〈A〉v) ∧ ¬3〈A〉v)

≡ 2¬((2enabled 〈A〉v) ∧ ¬3〈A〉v) by ¬3F ≡ 2¬F

≡ 2((¬2enabled 〈A〉v) ∨3〈A〉v) by ¬(F ∧G) ≡ (¬F ∨ ¬G) and ¬¬F ≡ F

≡ 2(3(¬enabled 〈A〉v) ∨3〈A〉v) by ¬2F ≡ 3¬F

≡ 23((¬enabled 〈A〉v) ∨ 〈A〉v) by 3F ∨3G ≡ 3(F ∨G)

≡ 23(¬enabled 〈A〉v) ∨23〈A〉v by 23(F ∨G) ≡ (23F ∨23G)

We can therefore define:

WFv (A)
∆
= 23¬enabled 〈A〉v ∨ 23〈A〉v

Thus, WFv (A) asserts of a behavior that either 〈A〉v is infinitely often disabled
(not enabled), or there are infinitely many 〈A〉v steps.

44

?

�

-

C

I

S

Question 17.11 Show that WFv (A) is equivalent to each of the following two
formulas:

32 (enabled 〈A〉v) ⇒ 23〈A〉v
¬3 (2(enabled 〈A〉v) ∧2[¬A]v)

17.5.3 Strong Fairness

The weak fairness formula WFv (A) asserts of a behavior σ that σ does not
contain a suffix in which an 〈A〉v step is always enabled but never occurs. The
corresponding strong fairness formula SFv (A) asserts of a behavior σ that σ does
not contain a suffix in which an 〈A〉v step is infinitely often enabled but never
occurs. Since always true is stronger than (implies) infinitely often true, the
condition that something isn’t true infinitely often is stronger than its not being
always true. Hence, SFv (A) implies WFv (A), so strong fairness is stronger than
weak fairness. Doesn’t contain a suffix satisfying F is expressed in temporal
logic by ¬3F , and infinitely often is expressed as 23. Hence SFv (A) can be
written as

¬3(23(enabled 〈A〉v) ∧ ¬3〈A〉v

We can use tautologies to simplify this formula as follows:

¬3(23(enabled 〈A〉v) ∧ ¬3〈A〉v)

≡ 2¬((23enabled 〈A〉v) ∧ ¬3〈A〉v) by ¬3F ≡ 2¬F

≡ 2((¬23enabled 〈A〉v) ∨3〈A〉v) by ¬(F ∧G) ≡ (¬F ∨ ¬G) and ¬¬F ≡ F

≡ 2(32(¬enabled 〈A〉v) ∨3〈A〉v) by ¬23F ≡ 32¬F

≡ 232(¬enabled 〈A〉v) ∨23〈A〉v) by 2(3F ∨3G) ≡ 23F ∨23G

≡ 32(¬enabled 〈A〉v) ∨23〈A〉v by 323F ≡ 23F

We can therefore define:

SFv (A)
∆
= 32¬enabled 〈A〉v ∨ 23〈A〉v

Observe that replacing 32¬enabled 〈A〉v by the weaker formula 23¬enabled 〈A〉v
in this formula yields the (weaker) formula WFv (A).

Question 17.12 Show that the following formulas are all tautologies, for any
temporal formulas F and G :

¬23F ≡ 32¬F 323F ≡ 23F 32F ⇒ 23F 2(3F ∨3G) ≡ 23F ∨23G

45

?

�

-

C

I

S

17.5.4 Proving ; Properties with Fairness

Section 17.4 gives rules for deriving ; from other ; properties and safety
properties. However, except for the trivial rule (F ⇒ G) ` (F ; G) (which es-
sentially says that something happening now happens eventually), it provides no
rule for deriving ; properties without starting from ; properties. Elementary
; properties are derived from fairness assumptions.

To prove P ; Q for state predicates P and Q , we must show that if P ever
becomes true, then Q will eventually becomes true. We use WFvA to prove this
by contradiction by showing that if P is true and Q never becomes true, then
an 〈A〉v step must eventually make Q true. This follows in turn follows from
these three conditions:

• Once true, P remains true until Q becomes true.

• Any 〈A〉v step starting in a state with P true makes Q true.

• If P remains true forever, then an 〈A〉v step must eventually occur.

Assuming a next-state action N , so every step is a [N]v step, the first two
conditions are expressed as:

(1)P ∧ [N]v ⇒ (P ′ ∨Q ′)

(2)P ∧ 〈A〉v ⇒ Q ′

The third condition is implied by WFv (A) and:

(3)P ⇒ enabled 〈A〉v
Since we assume every non-stuttering step is an N step, we can strengthen (2)
by replacing 〈A〉v with 〈N ∧A〉v . (In almost all applications, N ∧A will equal
A.) This gives us the following proof rule:

WF1. P ∧ [N]v ⇒ (P ′ ∨Q ′)

P ∧ 〈A〉v ⇒ Q ′

P ⇒ enabled 〈A〉v
2[N]v ∧WFv (A)⇒ (P ; Q)

To apply this rule, we have to be able to prove its hypotheses. We will seldom
be able to prove the hypotheses without additional assumptions unless P rules
out states in which variables have values “of the wrong type”. We could let
P have a conjunct I that is an invariant asserting type-correctness and other
useful properties. Instead, we usually apply WF1 in a proof in the scope of the
assumption 2I , so we can assume I and I ′ in the proof of these hypotheses. (Of
course, I ′ would be useful only in the proof of the first two.)

There is an analogous rule to WF1 for strong fairness. With the hypothesis
SFv (A), to deduce that an 〈A〉v step eventually occurs, it suffices to show that

46

?

�

-

C

I

S

〈A〉v is infinitely often enabled. We can therefore weaken the third hypothesis
of WF1 to obtain:

SF1. P ∧ [N]v ⇒ (P ′ ∨Q ′)

P ∧ 〈A〉v ⇒ Q ′

2P ∧2[N]v ⇒ 3enabled 〈A〉v
2[N]v ∧ SFv (A)⇒ (P ; Q)

As with rule WF1, we usually need an assumption 2I to prove the hypotheses,
for a suitable invariant I . We often need an additional assumption 2F to prove
the third hypothesis, for some temporal formula F . Equivalently, we can use
the following generalization of SF1.

SF1a. P ∧ [N]v ⇒ (P ′ ∨Q ′)

P ∧ 〈A〉v ⇒ Q ′

2P ∧2[N]v ∧2F ⇒ 3enabled 〈A〉v
2[N]v ∧ SFv (A) ∧2F ⇒ (P ; Q)

Question 17.13 Use semantic reasoning to show the soundness of rule SF1. hint

17.5.5 Proving Fairness

As we saw in Section 6.82, to prove that a specification SpecH implements
a specification SpecA under a refinement mapping, we must prove SpecH ⇒
SpecA, where F is the formula obtained from a formula F by substituting,
for each variable x of SpecA the formula x . Formula SpecA usually has the
form InitA ∧ 2[NextA]w ∧ F , where w is the tuple of all the specification’s

variables and F is the conjunction of fairness formulas. In that case, SpecA

equals InitA ∧2[NextA]w ∧ F . We saw in Section 17.3 how to prove the SpecH

implies InitA ∧2[NextA]w . We now see how to prove that it implies F .
If F is the conjunction of fairness properties, then we can prove those prop-

erties one and a time. We therefore need to know only how to prove SpecH ⇒ F
when F is a weak or strong fairness formula. We begin with weak fairness.

Recall that since barring a formula means substituting for its variables, bar-
ring distributes over most mathematical operators, including ∨, ¬, 2, and 3.

For example, 23P equals 23P . Since WFw (B) equals 23¬enabled 〈B 〉w ∨
23〈B 〉w , this implies

WFw (B) ≡ 23¬enabled 〈B 〉w ∨ 23〈B 〉w

We cannot simplify this formula further because enabled 〈B 〉w need not equal Why not?
47

?

�

-

C

I

S

enabled 〈B 〉w .
The only mathematical operators you are likely to use that barring does not

distribute over are enabled and the operators WF and SF defined in terms of
it. (The only other TLA+ operator that barring doesn’t distribute over is the
action composition operator “·” .)

We now come to a rule for deducing WFw (B) from a fairness property
WFv (A). The complete rule, which is used in practice, is rather complicated.
We will approach it gradually, starting with this simple rule:

〈A〉v ⇒ 〈B 〉w
enabled 〈B 〉w ⇒ enabled 〈A〉v

WFv (A) ⇒ WFw (B)

To show the soundness of this rule, as explained above, we use some illegal
TLA+ formulas to reason about a proof rule F 1, . . . ,Fn ‖− G as if it were
2F 1 ∧ . . . ∧2Fn ⇒ G . Here is the proof of soundness of this rule.

Assume: A1. 2(〈A〉v ⇒ 〈B 〉w)

A2. 2(enabled 〈B 〉w ⇒ enabled 〈A〉v)

Prove: WFv (A) ⇒ WFw (B)

1. Suffices Assume: WFv (A) ∧ 32enabled 〈B 〉w Note that this assumption is
a 2 formula.Prove: 23〈B 〉w

Proof: By definition of WF, the tautology ¬23¬F ≡ 32F , and
propositional logic, WFv (A) ⇒ WFw (B) is equivalent to:

WFv (A) ∧ 32enabled 〈B 〉w ⇒ 23〈B 〉w
2. 32enabled 〈A〉v

Proof: By step 1, assumption A2, and the rule

(F ⇒ G) ‖− (32F ⇒ 32G).

3. 23〈A〉v
Proof: By step 1, since WFv (A) is equivalent to

32enabled 〈A〉v ⇒ 23〈A〉v .

4. Q.E.D.

Proof: By step 3, assumption A1, and the rule

(F ⇒ G) ‖− (23F ⇒ 23G).

You should study this rule until you understand it intuitively. We obtain the
complete rule by incrementally modifying it. We won’t worry much about sound-
ness of the intermediate rules; we will just prove that the complete rule is sound.

48

?

�

-

C

I

S

The first change is to introduce a next-state actionN and tuple v of variables,

so we can use 2[N]v to prove WFw (B):

〈N ∧A〉v ⇒ 〈B 〉w
enabled 〈B 〉w ⇒ enabled 〈A〉v

2[N]v ∧WFv (A) ⇒ WFw (B)

Soundness follows from soundness of the original rule because if 2[N]v is true
of a behavior σ, then a step of σ is an 〈A〉v step iff it is an 〈N ∧A〉v step.

Next, we make a modification that by itself accomplishes nothing, but will
allow further transformations. We introduce a new action C that’s stronger
than A:

〈N ∧ C 〉v ⇒ 〈B 〉w
〈N ∧A〉v ⇒ C

enabled 〈B 〉w ⇒ enabled 〈A〉v

2[N]v ∧WFv (A) ⇒ WFw (B)

Soundness of this rule is obvious, since the first two hypotheses imply the first
hypothesis of the previous rule.

From here on, we show the position of our successive rules within the com-
plete rule, the parts to be added later shown in gray. The next rule is obtained
by strengthening the second hypothesis:

〈N ∧ C 〉v ⇒ 〈B 〉w
P ∧ P ′ ∧ 〈N ∧A〉v ∧ enabled 〈B 〉w ⇒ C

P ∧ enabled 〈B 〉w ⇒ enabled 〈A〉v
2[N ∧ ¬C]v ∧ WFv (A) ∧ 2enabled 〈B 〉w ⇒ 32P

2[N]v ∧ WFv (A) ⇒ WFw (B)

The next step is to strengthen the second and third hypotheses to make use of
an invariant P , adding another hypothesis that proves the invariance of P .

〈N ∧ C 〉v ⇒ 〈B 〉w
P ∧ P ′ ∧ 〈N ∧A〉v ∧ enabled 〈B 〉w ⇒ C

P ∧ enabled 〈B 〉w ⇒ enabled 〈A〉v
2[N ∧ ¬C]v ∧ WFv (A) ∧ 2enabled 〈B 〉w ⇒ 32P

2[N]v ∧ WFv (A) ⇒ WFw (B)

49

?

�

-

C

I

S

Finally, we weaken the fourth hypothesis because it’s not necessary that P be
an invariant; we just need to show that 32P is satisfied, which WFv (A) can
help us prove. This yields our complete rule:

WF2. 〈N ∧ C 〉v ⇒ 〈B 〉w
P ∧ P ′ ∧ 〈N ∧A〉v ∧ enabled 〈B 〉w ⇒ C

P ∧ enabled 〈B 〉w ⇒ enabled 〈A〉v
2[N ∧ ¬C]v ∧ WFv (A) ∧ 2enabled 〈B 〉w ⇒ 32P

2[N]v ∧ WFv (A) ⇒ WFw (B)

Click here for the proof of rule WF2.
As with rule SF1, we often need an additional assumption 2F to prove the

last hypothesis, for some temporal formula F . We can similarly generalize WF2
to:

WF2a. 〈N ∧ C 〉v ⇒ 〈B 〉w
P ∧ P ′ ∧ 〈N ∧A〉v ∧ enabled 〈B 〉w ⇒ C

P ∧ enabled 〈B 〉w ⇒ enabled 〈A〉v
2[N ∧ ¬C]v ∧ WFv (A) ∧ 2enabled 〈B 〉w ∧ 2F ⇒ 32P

2[N]v ∧ WFv (A) ∧ 2F ⇒ WFw (B)

The analogous rule to WF2 for deducing SFw (B) from SFv (A) is:

SF2. 〈N ∧ C 〉v ⇒ 〈B 〉w
P ∧ P ′ ∧ 〈N ∧A〉v ⇒ C

P ∧ enabled 〈B 〉w ⇒ enabled 〈A〉v
2[N ∧ ¬C]v ∧ SFv (A) ∧ 23enabled 〈B 〉w ⇒ 32P

2[N]v ∧ SFv (A) ⇒ SFw (B)

It’s identical to WF2 except with SF replacing WF and 23enabled 〈B 〉w
replacing the stronger condition 2enabled 〈B 〉w in the fourth hypothesis. The
proof of soundness is similar to that for WF2 and is left as an exercise for the
motivated reader. Just as we generalized WF2 to WF2a to make use of an

50

?

�

-

C

I

S

assumption 2F , we can generalize SF2 to:

SF2. 〈N ∧ C 〉v ⇒ 〈B 〉w
P ∧ P ′ ∧ 〈N ∧A〉v ⇒ C

P ∧ enabled 〈B 〉w ⇒ enabled 〈A〉v
2[N ∧ ¬C]v ∧ SFv (A) ∧ 23enabled 〈B 〉w ∧ 2F ⇒ 32P

2[N]v ∧ SFv (A) ∧ 2F ⇒ SFw (B)

We now have rules to deduce WFw (B) from WFv (A) and SFw (B) from SFv (A).
This leaves two other deductions we might want to perform:

• Deducing WFw (B) from SFv (A).

• Deducing SFw (B) from WFv (A).

We can do the first by using SF2 to prove SFw (B), which implies WFw (B). We
can do the second if WFv (A) is equivalent to SFv (A) so we can use SF2, or if

SFw (B) is equivalent to WFw (B) so we can use WF2. Let’s first consider when
WFv (A) is equivalent to SFv (A).

We know that SFv (A) implies WFv (A), so to show them equivalent, it suffices
to show ¬SFv (A) implies ¬WFv (A). Since ¬23〈A〉v ≡ 32¬〈A〉v and ¬〈A〉v ≡
[¬A]v , it follows from the definitions of WF and SF that:

¬WFv (A) ≡ 32enabled 〈A〉v ∧ 32[¬A]v

¬SFv (A) ≡ 23enabled 〈A〉v ∧ 32[¬A]v

Consider a behavior σ that satisfies SFv (A). It has a suffix τ that satisfies
2[¬A]v and enabled 〈A〉v . If τ satisfies

enabled 〈A〉v ∧ 2[¬A]v ⇒ 2enabled 〈A〉v

then it satisfies

2enabled 〈A〉v ∧ 2[¬A]v

which implies that σ satisfies ¬WFv (A). By this argument, we have derived the
following rule:

enabled 〈A〉v ∧ 2[¬A]v ⇒ 2enabled 〈A〉v
WFv (A) ≡ SFv (A)

We will apply this rule in a context in which we have a next-state action N and
an invariant I . Propositional logic shows that ` [N]v ∧ [¬A]v ≡ [N ∧ ¬A]v ,

51

?

�

-

C

I

S

which implies ` 2[N]v ∧2[¬A]v ≡ 2[N ∧¬A]v . The proof rule above therefore
implies

enabled 〈A〉v ∧ 2I ∧ 2[N ∧ ¬A]v ⇒ 2enabled 〈A〉v
2I ∧ 2[N]v ⇒ (WFv (A) ≡ SFv (A))

Exactly the same reasoning used above proves the corresponding rule for SFw (B)

and WFw (B):

enabled 〈B 〉w ∧ 2[¬B]
w
⇒ 2enabled 〈B 〉w

WFv (B) ≡ SFv (B)

We can use a next-state action N and invariant I with the aid of this tautology:

(unchanged v ⇒ unchanged w) ⇒ ([N ∧ ¬B]v ⇒ [N]v ∧ [¬B]
w

)

This tautology and the preceding proof rule imply the soundness of:

unchanged v ⇒ unchanged w

enabled 〈B 〉w ∧ 2I ∧ 2[N ∧ ¬B]
w
⇒ 2enabled 〈B 〉w

2I ∧ 2[N]v ⇒ (WFv (B) ≡ SFv (B))

When using rule WF1, WF2, SF1, or SF2, I find it helpful to prove a step that
corresponds to the rule’s conclusion with a sequence of substeps that correspond
to the rule’s hypotheses, followed by a qed step whose by clause mentions those
substeps and the rule. When writing a formal TLA+ proof to be checked by
TLAPS, there’s no need to mention the rule (except perhaps in a comment)
because the TLP backend will deduce the rule by itself. I like to use local
definitions that make it clear what formulas are being substituted for what
identifiers in the rule. For example, if I’m using rule SF2, I will define P to
equal the formula to be substituted for P in the rule. Not only does this make
it easier to understand the proof, but it ensures that I’m substituted exactly the
same formula for each instance of P . The TLP backend will probably not be
able to check the proof if I were to substitute P1 ∧ P2 for P in one hypothesis
and P2 ∧ P1 for it in another.

52

?

�

-

C

I

S

