
The Specification Track

9 An Input/Output Specification
9.1 The Example
9.2 Sorting
9.3 Votes
9.4 The Borda Ranking
9.5 The Condorcet Ranking
9.6 Transitive Closure

9.6.1 A Mathematical Definition
9.6.2 A Definition TLC Can Execute Faster
9.6.3 Warshall’s Algorithm

9.7 The Condorcet Ranking Revisited

1

?

�

-

C

I

S

9 An Input/Output Specification

This hyperbook is mainly about systems. We call something a system when we
are interested in its behavior—that is, what is happening while the system is
operating or being executed. These systems are also called concurrent systems,
because we usually consider them to be composed of multiple components that
may be doing things at the same time. What this hyperbook calls a system has
also been called a reactive system because such systems usually interact with
their environment throughout the course of their execution.

Sometimes we are interested in conceptually simpler systems that interact
with their environment only by taking an input when they are started and
then producing an output and stopping. We can specify such a system by
an Input/Output Specification (I/O Spec for short) that describes the relation
between its input and its output.

An I/O Spec may consist of a function F whose domain is the set of possible
inputs, where F [x] is the output that should be produced by the input x in
domain F . It may also be more convenient to write it as an operator Op rather
than a function, where Op(x) is the output that should be produced by the
possible input x . If more than one possible output is permitted for a single
input, then an I/O Spec consists of a relation. The relation may be described
by a set R of ordered pairs, where 〈x , y 〉 is an element of R iff x is a legal input
that allows y as an output. It may be more convenient to describe the relation
by a Boolean-valued operator Op, where Op(x , y) is true iff y is an allowed
output for input x .

Often, the I/O system we are specifying takes as input an operation and a
collection of arguments. In that case, we may specify each possible operation
separately.

We can write I/O specifications as well as system specifications in TLA+.
I/O specs are chararcterized by not using variables. The only parameters of an
I/O spec are constants. I/O specs are conceptually simpler than system specs,
requiring only ordinary math without any temporal logic. They provide a good
way to familiarize yourself with ordinary math, without the complications of
dealing with behaviors.

An I/O spec is ordinary math, which means that if you can explain it math-
ematically then you can easily write it in TLA+. However, you might not be
able to check the spec because TLC can’t evaluate the math or can’t evaluate
it efficiently enough to check a large enough model. In this section, I illustrate
how to write an I/O spec that TLC can handle. In effect, I will show you how
to use TLA+ as a programming language for mathematics.

2

?

�

-

C

I

S

9.1 The Example

The I/O spec described here is a real-life example. I was a member of a commit-
tee that chooses the recipient of an award. Before the committee meets, each
member ranks the candidates, and these individual rankings are combined into
a single ranking. This combined ranking is meant to serve only as an indication
of the committee members’ views; it does not determine the recipient. However,
it inevitably influences the outcome.

A few hundred years of research into elections has shown that there is no
perfect method of choosing a winner. A result known as Arrow’s Theorem proves
that no voting system can satisfy a small number of clearly desirable properties.
Reasonable systems can produce significantly different outcomes. I decided that
it would be better for the committee to use more than one system for ranking
the candidates.

The obvious thing to do would have been to write a little program to compute
each ranking. For some voting systems, computing a ranking can be tricky.
When faced with the task of writing a tricky piece of code, it’s a good idea to
first write and debug a PlusCal algorithm that computes the desired result and
then hand-translate the PlusCal code into the programming language. To get
the PlusCal algorithm right, you can specify the ranking with a TLA+ operator
and have the algorithm compare the value it computes with the value of the
operator. You can then check the algorithm with TLC on a large collection of
small instances.

This is a procedure I use regularly when writing code that is at all tricky and
that I want to be correct. But, getting this program correct was not important
enough to warrant spending that much time. Even if I didn’t do it right, it would
still have taken me more time to write the program than I felt like spending.
However, there are only about 10 members of the committee and about the
same number of candidates. This meant that TLC could compute the rankings
directly from their high-level TLA+ specifications. This seemed like it would
be easier and more fun than writing a program to do it, since I prefer writing
TLA+ specs to programming. So, that’s what I did.

It turned out that the simplest, most obviously correct specifications could
not be executed efficiently enough by TLC even on the committee’s small elec-
tions. The thing to do in such a case is to write two versions of some definitions:
one that is simpler and more obviously correct, and another that TLC can eval-
uate more efficiently. You can then use TLC to check the equivalence of the two
definitions on small examples. I was confident enough in the correctness of the
more efficient definitions not to bother doing this. However, I will do it here to
show you how. It’s what I would have done if getting the right result had been
more important.

The process of writing two versions of an operator’s definition—a simpler
version and one that TLC can evaluate more efficiently—tends to be more use-
ful for system specifications than for I/O specifications. You use the simpler

3

?

�

-

C

I

S

definition to make sure that you are specifying the system you intend to, and
then have TLC use the second definition for checking the specification. The
voting example will show how this sort of TLA+ “programming” is done.

I decided to specify two ranking systems, known as the Borda and Condorcet
systems. The Borda system assigns a score to each candidate, and candidates
are ranked by their score. I wanted the output of this system to be a list of
candidates and their scores, sorted by score. This requires specifying sorting.
The standard TLC module defines a specfication of sorting that is implemented
efficiently by TLC. However, the operator it defines is not exactly the one we
need, and sorting provides a nice example of an I/O specification. So, let’s
specify it from scratch.

9.2 Sorting

We want to specify what it means to sort a set of elements. For simplicity, let’s
assume that each element is a record2 with a key component, and the elements
are to be sorted in increasing order of their key value.

Sorting a set means arranging its elements in a list. A sorting of a set S is
therefore a list of elements of S that contains each element exactly once and is
sorted according to the elements’ key values. To describe this precisely, we must
define:

• What a list of elements of S is.

• What it means for such a list to contain each element of S exactly once.

• What it means for the list to be sorted according to elements’ key values.

The mathematical representation of a list is a finite sequence2, also known as
a tuple. In TLA+, the sequence 〈e1, . . . , en 〉 is defined to be the function2 f
with domain 1 . . n such that f [i] equals ei , for each i in 1 . . n. This sequence
represents a list of elements of S iff each ei is an element of S .

TLA+ defines [1 . . n → S] to be the set of all functions f with domain 1 . . n
such that f [i] is in S for all i in 1 . . n. Therefore, [1 . . n → S] represents the
set of all lists of length n of elements in S . Such a list contains each element of
S exactly once iff n equals the number of elements of S and every element of S
appears in the list. The standard FiniteSets module defines Cardinality(S) to
be the cardinality2 of a finite set S . A sequence seq is therefore a sorting of S
iff it satisfies the following conditions:

1. seq is an element of [1 . . Cardinality(S)→ S]

2. Each element of S equals seq [i] for some i in 1 . . Cardinality(S).

3. seq is sorted, which means: For each i and j in 1 . . Cardinality(S), if i < j
then seq [i] ≤ seq [j].

4

?

�

-

C

I

S

It is obvious how to write condition 1 as a mathematical formula. Conditions 2
and 3 are also easily expressed as formulas:

S2. ∀ s ∈ S : ∃ i ∈ 1 . . Cardinality(S) : seq [i] = s

S3. ∀ i , j ∈ 1 . . Cardinality(S) : (i < j)⇒ (seq [i].key ≤ seq [j].key)

Since multiple elements of S can contain the same key value, there is no unique
way to sort the elements of S . We specify sorting by defining the set Sortings(S)
of all sortings of the elements of S . This set is the set of all elements seq of
[1 . . Cardinality(S)→ S] satisfying S2 and S3. We write the set of all elements
x in a set T satisfying a condition P(x) as {x ∈ T : P(x)} . Therefore, we can
define Sorting(S) to equal

{seq ∈ [1 . . Cardinality(S)→ S] :

∧ ∀ s ∈ S : ∃ i ∈ 1 . . Cardinality(S) : seq [i] = s

∧ ∀ i , j ∈ 1 . . Cardinality(S) : (i < j)⇒ (seq [i].key ≤ seq [j].key) }

This is a perfectly fine definition of Sortings(S), but we can express condition 2
in a different way that I find a little more elegant. The set of all elements in the
sequence seq can be written as

{seq [i] : i ∈ 1 . . Cardinality(S)}

In general, {f (x) : x ∈ T} is the set of all elements of the form f (x) for x an
element of the set T . Condition 2 asserts that this set equals S , so it can be
written as:

S2a. S = {seq [i] : i ∈ 1 . . Cardinality(S)}

This condition is partially redundant. Condition 1 implies that seq [i] is in S , for
all i in 1 . . Cardinality(S), which implies that {seq [i] : i ∈ 1 . . Cardinality(S)}
is a subset of S . Therefore, the two sets are equal iff S is a subset of {seq [i] :
i ∈ 1 . . Cardinality(S)}. We can thus replace S2a by:

S2b. S ⊆ {seq [i] : i ∈ 1 . . Cardinality(S)}

This leads to the definition:

Sortings(S)
∆
=

{seq ∈ [1 . . Cardinality(S)→ S] :

∧ S ⊆ {seq [i] : i ∈ 1 . . Cardinality(S)}
∧ ∀ i , j ∈ 1 . . Cardinality(S) : (i < j)⇒ (seq [i].key ≤ seq [j].key)}

The expression 1 . . Cardinality(S) occurs three times in the definition. We can
use a let / in2 construct to make the definition easier to read by locally defining
an identifier to equal that expression. Let’s use the identifier D (for domain)
and write:

5

?

�

-

C

I

S

Sortings(S)
∆
= asii version

let D
∆
= 1 . . Cardinality(S)

in {seq ∈ [D → S] :

∧ S ⊆ {seq [i] : i ∈ D}
∧ ∀ i , j ∈ D : (i < j)⇒ (seq [i].key ≤ seq [j].key)}

Let’s start creating our specification and test this definition. In the Toolbox,
open a new specification named CandidateRanking . We will need the standard
modules Integers, Sequences, and FiniteSets (for the definition of Cardinality),
so begin the module with:

extends Integers, Sequences, FiniteSets EXTENDS Integers, Sequences, FiniteSets

Now insert the definition of Sortings(S). Let’s check the definition by evaluating
the operator Sortings with some arguments. First, create a new model. The
model will open on the Model Checking Results. We enter the expression we want
to evaluate in the Expression field of the Evaluate Constant Expression section.

The argument of Sortings should be a set of records2 with key fields. Let’s
start simply, with the set containing the a single element [key 7→ 42], which is a
record with only a key field having value 42. Enter the expression

Sortings({[key 7→ 42]}) Sortings({[key |-> 42]})

and run TLC to evaluate it. TLC gives the value {〈[key 7→ 42]〉}, a set containing
the single sequence having that record as its one element.

Question 9.1 What does Sortings applied to the empty set of records equal?
Let TLC check your answer.

Let’s test the definition on a more interesting set of records. To allow different
records with the same key value, the records must have at least one additional
field. We want to test our definitions on sets with different numbers of elements,
so let’s define TestSet(n) to be the set of all records having a key field in the set
1 . . n and a val field in the set {“x”, “y”}. (There are 2n such records.)

TestSet(n)
∆
= [key : 1 . . n, val : {“x”, “y”}] TestSet(n) == [key : 1..n, val : {"x", "y"}]

Since this definition is just for testing, we don’t want to make it part of our speci-
fication. Instead, copy the definition into the Additional Definitions section of the
model’s Advanced Options page. Now have TLC evaluate Sortings(TestSet(3)).
It reports a set of 8 sequences, including

〈 [key 7→ 1, val 7→ “y”], [key 7→ 1, val 7→ “x”], [key 7→ 2, val 7→ “x”]

[key 7→ 2, val 7→ “y”], [key 7→ 3, val 7→ “y”], [key 7→ 3, val 7→ “x”] 〉

You can read TLC’s output more easily by copying it (click on the Value region
and type Control+A) and pasting it into a text editor.

6

?

�

-

C

I

S

TLC should have taken just a second or two to perform the evaluation. Now
have it evaluate Sorting(TestSet(4)). It probably takes about 30 seconds. Now
try Sorting(TestSet(5)). It will take TLC several hours. (You can hit Cancel if
you get bored waiting.) What’s going on?

To evaluate a set of the form {x ∈ T : P(x)}, TLC enumerates all the
elements of T and keeps only those elements x satisfying P(x). The number
of elements in a set of the form [D → R] is Cardinality(D)Cardinality(R). The
set TestSet(n) contains 2n elements. To evaluate Sorting on it, TLC must
enumerate a set of 2n2n functions. For n = 5, that’s 10 billion functions—600
times more than for n = 4. Although it’s not a large number of elements for
computers these days, TLC is quite slow at such a task compared to a program
written especially for that task. For the n = 4 case, the 30 seconds it takes TLC
to enumerate the 16.7 million functions to find the sortings of this 8-element set
is perhaps 50 times longer than it would take a hand-coded program to perform
that same calculation.

For candidate ranking, we need to define an operator SortSet so that SortSet(S)
is some single sorting of S . The simplest way to define it is with the choose2

operator:

SortSet(S)
∆
= choose seq ∈ Sorting(S) : true

This defines S to be an arbitrarily chosen element of Sorted(S). While this
definition is fine in principle, in practice it won’t do. With this definition,
computing SortSet(S) requires computing Sortings(S), which for a set of 10
candidates would take billions of years. We need a definition that TLC can
compute more efficiently.

Here is the simplest practical algorithm I know for computing a sorting seq
of a set S :

• Let T equal S and i equal 1.

• While T is nonempty:

– Set seq [i] to be any element x of T with a minimal value of x .key .

– Increment i by 1.

– Remove x from the set T .

It’s easy to write this algorithm in PlusCal. However, we’re writing a definition,
not an algorithm. The value computed by an iterative computation like this
can be defined inductively2. In TLA+, you describe the value inductively using
a recursive operator2 or recursive function2 definition. This will seem quite
natural if you’ve used a functional programming language.

We define SortSet(S) inductively by:

• Defining SortSet({ }) to equal 〈 〉, the empty sequence.
7

?

�

-

C

I

S

• Defining SortSet(S), for a nonempty set S , to equal the sequence that be-
gins with an element s of S having a minimal value of s.key and ends with
SortSet(S \ {s}), where S \ {s} is the set obtained from S by removing the
element s.

To write this definition in TLA+, we use the choose operator2 as follows to
describe an element of S with minimal value of s.key :

choose ss ∈ S : ∀ t ∈ S : ss.key ≤ t .key

The complete definition is as follows, where ◦ is sequence concatenation2 and \
is the set-difference operator:

recursive SortSet() ascii version

SortSet(S)
∆
=

if S = {} then 〈 〉
else let s

∆
= choose ss ∈ S : ∀ t ∈ S : ss.key ≤ t .key

in 〈s〉 ◦ SortSet(S \ {s})

Since the definition of SortSet is recursive, it is preceded by a recursive dec-
laration.

Copy the definition of SortSet into module CandidateRanking , and let’s test
it. Have TLC evaluate SortSet(TestSet(3)). It should give the value

〈 [key 7→ 1, val 7→ “x”], [key 7→ 1, val 7→ “y”], [key 7→ 2, val 7→ “x”]

[key 7→ 2, val 7→ “y”], [key 7→ 3, val 7→ “x”], [key 7→ 3, val 7→ “y”] 〉

We can do better than just testing the definition of SortSet on a few individual
arguments. The value of SortSet(S) is correct iff it is an element of Sortings(S).
We can check that SortSet(S) is correct for all sets S in some set Σ of sets by
having TLC check that the following formula equals true:

∀S ∈ Σ : SortSet(S) ∈ Sortings(S)

Try this for Σ equal to the set of all subsets of TestSet(3). Using the TLA+ subset
operator2, this set is written subset TestSet(3). TLC quickly reports the value
true.

Checking it on all 26 subsets of this 6-element set gives us quite a bit of con-
fidence in the correctness of the definition of SortSet . Just to be safe, let’s check
it on the larger set subset TestSet(4) . Just evaluating Sortings on TestSet(4)
[key : 1 . . 4, val : {“x”, “y”}] took 30 seconds, and now we must evaluate the ex-
pression SortSet(S) ∈ Sortings(S) for all subsets S of this set (which includes
TestSet(4) itself). We expect this to take quite a bit of time, but let’s start it
and see what happens.

Surprise! TLC reports the answer immediately. Try it with TestSet(5). Still
an immediate answer. Try it on TestSet(6), TestSet(7), and so on until it starts

8

?

�

-

C

I

S

taking more than a couple of seconds. On my computer, only for TestSet(9)
does it take 15 seconds. This is a set with 18 elements. To compute its set
of sortings, TLC must enumerate a set containing 1818 elements—a task that
should take it billions of years. What’s going on?

You should always be suspicious of success when using TLC, especially if it
reports success more quickly than you expect. You should make sure that TLC
is checking what you think it is. When TLC reports no error, it’s a good idea
to insert an error and make sure that TLC catches it. For example, you can
replace ≤ by ≥ in the definition of SortSet . In this case, you will find that TLC
really is checking the correctness of SortSet as we expect it to.

TLC is so fast because it is evaluating SortSet(S) ∈ Sortings(S) without
computing the set Sortings(S). To compute all the elements of a set of the
form {x ∈ T : P(x)}, TLC must enumerate the elements of T . However,
the expression e ∈ {x ∈ T : P(x)}, is equivalent to (e ∈ T) ∧ P(e), and TLC
usually does not have to enumerate the elements of a set T to determine if e ∈ T
is true. (Indeed, TLC can evaluate e ∈ T for some infinite sets T such as Nat .)
If T is the set TestSet(9), then e ∈ T is true iff e is a record with only key and
val fields, e.key is in 1 . . 9, and e.val equals “x” or “y”. TLC can check this
quickly, and the evaluation of SortSet(S) ∈ Sortings(S) for each S takes almost
no time. TLC takes 15 seconds to evaluate the entire formula because it must
perform that evaluation for each of the 218 subsets S of TestSet(9).

A little thought reveals that the time needed to compute SortSet(S) for an
n-element set S is on the order of n2. There are faster sorting algorithms.
However, a bit of testing shows that TLC can perform the computation essen-
tially instantaneously for a 100-element set, so this definition of SortSet is good
enough for us.

We have defined sorting a set of records according to their key values, which
we have assumed to be integers. We could just as easily have defined sorting of
a set according to an arbitrary relation by using higher-order operators2.

Let’s define an operator GeneralSortings so that, if KeyLeq is defined by

KeyLeq(s, t)
∆
= s.key ≤ t .key

then GeneralSortings(S ,KeyLeq) equals Sortings(S), for any set S . This is
easily done by modifying the definition of Sortings to be:

GeneralSortings(S , LEQ(,))
∆
=

let D
∆
= 1 . . Cardinality(S)

in {seq ∈ [D → S] : ∧ S ⊆ {seq [i] : i ∈ D}
∧ ∀ i , j ∈ D : (i < j)⇒ LEQ(seq [i], seq [j])}

Copy the source of this definition into the CandidateRanking module and let’s
make sure that Sortings(S) does equal GeneralSortings(S , KeyLeq), when KeyLeq
is defined as above. Check that this is true for all subsets of TestSet(3) by letting
TLC evaluate:

ascii version
9

?

�

-

C

I

S

let KeyLeq(s, t)
∆
= s.key ≤ t .key

in ∀S ∈ subset TestSet(3) : Sortings(S) = GeneralSortings(S , KeyLeq)

We can also write this expression without explicitly defining KeyLeq by using a
lambda expression2:

∀S ∈ subset TestSet(3) :

Sortings(S) = GeneralSortings(S , lambda s, t : s.key ≤ t .key)

Either way we write it, TLC reports that its value is true.

Question 9.2 We generalized Sortings to GeneralSortings by giving it an answer

operator argument. Generalize SortSet in the same way by defining an operator
GeneralSortSet in terms of the SortSeq operator2 defined in the standard TLC
module. Use TLC to check the correctness of your definition on all subsets of
TestSet(7).

9.3 Votes

In both Borda and Condorcet elections, each voter ranks the candidates in order
of preference. To write the spec, I had to decide how to represent the voters’
ballots. The obvious way to represent a single voter’s ballot is by a sequence
whose i th element is the name of the candidate the voter ranks number i . An
obvious way to represent all the votes is as a set of such sequences. However,
that’s not right because two voters can cast identical ballots, and there is no
concept of a set having “two copies” of an element. Here are three reasonable
ways to represent the collection of votes:

• With a set whose elements are records or tuples with one component being
the ranking and the other identifying the voter (with a randomly chosen
identification if the vote is to be anonymous).

• With a bag (multiset)2 of rankings.

• With a sequence of rankings, arranged in an arbitrary order.

The first two methods are more elegant than the third, which imposes an un-
necessary ordering on the rankings. However, I decided to use the third because
it’s a little simpler.

Instead of making the collection of votes an argument of an operator that
describes a voting scheme, it’s more convenient to make it a parameter of
the module. Let’s call it Votes and add the following declaration to module
CandidateRanking :

constant Votes CONSTANT Votes

10

?

�

-

C

I

S

We can declare the set of candidates also to be a parameter, but there’s no
need to; we can extract the set of candidates from the value of Votes. Since
Votes is a sequence of rankings, and each ranking lists all the candidates, we
can define the set Cand of all candidates to be the set of all candidate names in
Votes[1], the first voter’s ranking. That ranking is a sequence, its i th element
being Votes[1][i]. The set of candidates is therefore the set

{Votes[1][1], Votes[1][2], . . . , Votes[1][Len(Votes[1])}

where Len(s) is defined in the Sequences module to be the length of a sequence s.
We can write this set formally (without the “. . .”) as:

ascii versionCand
∆
= {Votes[1][i] : i ∈ 1 . . Len(Votes[1])}

This uses the TLA+ notation that {e(x) : x ∈ S} is the set of all elements of
the form e(x) for x an element of the set S .

When we have TLC evaluate the definition of a voting scheme to determine
an outcome, we should check that Votes is a correct collection of votes—namely,
that it is a sequence of rankings of the candidates. A ranking r is a sequence
containing every candidate exactly once, which is true iff the length of r equals
the number of candidates, and the set of all elements of r is the set of all
candidates. Correctness of the collection of votes is therefore expressed by the
following formula.

∧Votes ∈ Seq(Seq(Cand))

∧ ∀ j ∈ 1 . . Len(Votes) :

∧ Len(Votes[j]) = Cardinality(Cand)

∧ {Votes[j][i] : i ∈ 1 . . Len(Votes[j])} = Cand

Make this an assumption of the spec by adding it as an assume statement. TLC

ascii version of assume
statement

checks a specification’s assumptions, and it will report an error if this formula
is not true for the value a model assigns to the constant parameter Votes.

Question 9.3 Create a new model for the specification. In the What is the
model? section of the Model Overview page, assign this value to Votes. Run TLC
on the model. It will report that the assumption is false. Add print statements2

to the assumption to help locate the errors, and correct them. (It will help to
start by commenting out the first conjunct of the assumption.)

9.4 The Borda Ranking

In the Borda ranking, a candidate gets a score computed as follows from the
rankings. A ranking of N candidates assigns to the first-ranked (highest-ranked)
candidate N − 1 points, to the the second-ranked candidate N − 2 points, . . . ,

11

?

�

-

C

I

S

assigning 0 points to the last-ranked candidate. The score of a candidate is the
sum of the points assigned to him or her by all the rankings.

Let N be the number of candidates, let V be the number of voters, and let
RankBy(c, i) be the ranking of candidate c by the i th voter (which is a number
in 1 . . V). The score of candidate c is written mathematically as

V∑
i=1

N −RankBy(c, i)

It would be nice if we could define an operator Sigma that allowed us to write
this formula as

Sigma(i , 1, V , N − RankBy(c, i))

However, the i in the summation is a bound identifier, and TLA+ has no mech-
anism for defining an operator that takes a bound identifier as an argument.
Instead, we define an operator that sums a sequence of numbers and apply it to
the sequence:

〈N − RankBy(c, 1), N − RankBy(c, 2), . . . , N − RankBy(c, V)〉

The standard way to write an inductive definition of an operator Op whose
argument is a finite sequence is:

Op(s)
∆
= if s = 〈 〉 then . . .

else some function of Head(s)2 and Op(Tail(s)2)

Using this pattern, we define the operator SumSeq that sums a sequence of
integers as follows:

ascii versionrecursive SumSeq()
SumSeq(s)

∆
= if s = 〈 〉 then 0

else Head(s) + SumSeq(Tail(s))

Add this definition to module CandidateRanking , and use TLC to check that it
correctly sums a sequence of numbers.

Question 9.4 (a) Define an operator SumFcn so that if f is an integer-valued
function with a finite domain {d1, . . . , dn}, then SumFcn(f) equals f [d1]+ · · ·+
f [dn]. Use TLC to check that SumFcn(s) equals SumSeq(s) for finite sequences
s of integers.

(b) Define a higher-order operator SumOp so that if Op(d) is an integer for
all d in the finite set D , then SumOp(Op,D) equals the the sum of Op(d) for
all d in D .

12

?

�

-

C

I

S

The score of candidate c is the sum of the sequence of numbers:

〈N − RankBy(c, 1), N − RankBy(c, 2), . . . , N − RankBy(c, V)〉

This is a sequence of length V whose i th element is N − RankBy(c, i). Using
TLA+’s notation for writing functions2, we can write this sequence as:

[i ∈ 1 . . V 7→ N − RankBy(c, i)]

We can therefore define the score Score(c) of candidate c by

Score(c)
∆
= SumSeq([i ∈ 1 . . V 7→ N − RankBy(c, i)])

Before we can add this definition to the spec, we must define RankBy . Remember
that RankBy(c, i) is the ranking (a number in 1 . . N) that the i th vote assigns
to candidate c. In other words, it is the value r in 1 . . N such that the r th

element of the i th vote is c. We express “the value r in 1 . . N such that . . . ”
with the choose operator2 as

choose r ∈ 1 . . N : . . .

Thus, we define:

RankBy(c, i)
∆
= choose r ∈ 1 . . N : Votes[i][r] = c

We can represent the ranking of a candidate as a record with two fields: the
name of the candidate and his or her score. Let’s put the name in the record’s
name field and, because we want to sort the rankings, let’s put the score in the
record’s key field. The set of rankings is the set of all elements

[name 7→ c, key 7→ Score(c)]

with c a candidate—a set we write

{[name 7→ c, key 7→ Score(c)] : c ∈ Cand}

We can then define Borda as follows to be the sequence of all elements in this
set, sorted by score:

Borda
∆
= SortSet({[name 7→ c, key 7→ Score(c)] : c ∈ Cand})

Add these definitions to the spec. Create a new model, copying and pasting
this value for the constant Votes. (It is a corrected version of the value given
in Question 9.3.) Have TLC compute the value of Borda. It should produce
something like:

13

?

�

-

C

I

S

<< [key |-> 9, name |-> "bacon"],

[key |-> 14, name |-> "boyle"],

[key |-> 18, name |-> "faust"],

[key |-> 19, name |-> "romeo"],

[key |-> 24, name |-> "green"],

[key |-> 44, name |-> "brown"],

[key |-> 48, name |-> "smith"],

[key |-> 48, name |-> "jones"] >>

This is OK, but it would be better to sort the results with the highest ranking
candidate first. We could change the definition of SortSet to sort the elements
in descending order of key . However, let us instead change the name of this
operator from Borda to ReverseBorda and define Borda to be the sequence
obtained by reversing the sequence ReverseBorda. A little thought (or a little
less thought and some experimenting with TLC) shows the correct definition to
be:

ascii versionBorda
∆
= [i ∈ 1 . . N 7→ ReverseBorda[N − i + 1]]

Problem 9.5 In addition to seeing the total scores, the award committee for
which I was doing this was used to seeing how many voters ranked each candidate
first, second, etc. Define an operator BordaDetails that produces approximately
the following output when evaluated with the value of Votes used above, where
the first line indicates that Jones was ranked first by 3 voters, second by 2 voters,
etc.

<< <<48, "jones", 3, 2, 3, 0, 0, 0, 0, 0>>,

<<48, "smith", 5, 1, 0, 1, 1, 0, 0, 0>>,

<<44, "brown", 0, 4, 4, 0, 0, 0, 0, 0>>,

<<24, "green", 0, 1, 1, 2, 0, 2, 1, 1>>,

<<19, "romeo", 0, 0, 0, 2, 3, 1, 0, 2>>,

<<18, "faust", 0, 0, 0, 1, 1, 5, 1, 0>>,

<<14, "boyle", 0, 0, 0, 1, 2, 0, 4, 1>>,

<<9, "bacon", 0, 0, 0, 1, 1, 0, 2, 4>> >>

9.5 The Condorcet Ranking

We say that a candidate c dominates a candidate d , and write c � d , iff c 6= d
and more voters prefer c to d than prefer d to c. In a Condorcet voting scheme,
a candidate that dominates all other candidates is the winner. However, there
may not be any candidate that dominates all others. An equal number of voters
might prefer c to d as prefer d to c, so neither c � d nor d � c holds. More
interestingly, there could be three candidates c, d , and e for whom c � d , d � e,
and e � c hold.

14

?

�

-

C

I

S

Define a nonempty set D of candidates to be a dominating set iff every
candidate in D dominates every candidate not in D . Define the set of Condorcet
winners to be the smallest dominating set. A Condorcet voting scheme is one
in which the winner is some element of the set of Condorcet winners. There are
various ways of choosing which element should win an election. However, my
goal was not to choose a winner but to help the committee make its decision.
Therefore, I wanted to determine the complete set of Condorcet winners. For
this set to exist, there must be a smallest dominating set; and it’s not obvious
that such a set always exists. To show that it does, we must first prove:

C1. If D and E are dominating sets, then D ⊆ E or E ⊆ D .

Proof

The set of all candidates is a dominating set (assuming it is nonempty) and it is
finite, so there is a finite, nonempty set of dominating sets. Therefore, property
C1 implies that there is a (unique) dominating set that is a subset of all other
dominating sets. We define the set of Condorcet winners to be this smallest
dominating set. It can be written mathematically as:

choose D ∈ subset Cand :

∧ IsDominatingSet(D)

∧ ∀E ∈ subset Cand : IsDominatingSet(E)⇒ (D ⊆ E)

where IsDominatingSet is defined by

IsDominatingSet(D)
∆
= ∧D 6= {}
∧ ∀ d ∈ D : ∀ e ∈ Cand \D : d � e

Instead of just computing the set of Condorcet winners, I wanted a ranking of
all the candidates. To define this ranking, observe that the ballots cast for all
the candidates define an election for any subset C of the set of candidates. The
ballots of this election are obtained from the ballots Votes[i] by simply removing
all the candidates not in C . I defined the Condorcet ranking to be the sequence
〈C 1, . . . ,Cm 〉 of sets of candidates such that:

• C 1 is the set of Condorcet winners of the election for all candidates.

• C 2 is the set of Condorcet winners of the election for all candidates not
in C 1.

...

• Cm−1 is the set of Condorcet winners of the election for all candidates not
in C 1 ∪ C 2 ∪ . . . ∪ Cm−2.

• Every candidate in Cm is a Condorcet winner in the election for all candi-
dates in Cm , where Cm is the set of all candidates not in C 1∪ . . .∪Cm−1.

15

?

�

-

C

I

S

You should now be able to complete the definition of the Condorcet ranking
yourself.

Question 9.6 Add to module CandidateRanking the definitions of � and answer

CondorcetRanking , the Condorcet ranking. Test them using this value for the
parameter Votes. TLC should produce this Condorcet ranking.

<< {"smith"}, {"jones"}, {"brown"}, {"green"},

{"faust", "romeo"}, {"boyle"}, {"bacon"} >>

Checking the definition on one example isn’t very satisfactory. Since this is the
only definition we have for the Condorcet ranking, there is nothing to check it
against. The best we can do is to try it on examples and see if it produces
the correct answer. Typing values to substitute for the parameter Votes would
be tedious. Instead, let’s generate random values of Votes. (Since we have to
examine them to check the value of CondorcetRanking , we can try them one at
a time.)

The trick to generating random test data is to use the RandomElement Warning: RandomElement
is not mathematics.operator from the TLC module. For a nonempty set S , RandomElement(S)

equals an arbitrary element of S . If S is finite, TLC computes its value by
pseudo-randomly choosing an element of S , with each element chosen with the
same probability. Let’s first define RandomRanking(S) to be a randomly cho-
sen single voter’s ranking of the candidates in the set S . Remember that a a
ranking of candidates is a sequence containing each candidate exactly once. The
definition is easy:

recursive RandomRanking() ascii version

RandomRanking(S)
∆
= if S = {} then 〈 〉

else let e
∆
= RandomElement(S)

in 〈e〉 ◦ RandomRanking(S \ {e})

The value of Votes is a sequence of rankings, one from each voter. We can
therefore define RandomVotes(n, S) as follows to be a value of Votes with n
voters and a set S of candidates.

RandomVotes(n,S)
∆
= [i ∈ 1 . . n 7→ RandomRanking(S)] ascii version

Create a new TLC model for the CandidateRanking spec and add these defini-
tions to the Additional Definitions section of the model’s Advanced Options page.
Have the model set Votes to RandomVotes(4, {“a”, “b”, “c”, “d”}), and have
TLC evaluate the pair 〈Votes, CondorcetRanking 〉 Verify that (unless you’re
very unlucky), each execution of TLC uses a different value of Votes. Check a
few of the results to make sure that they contain the correct Condorcet ranking.

The definition of the Condorcet ranking we have developed is the mathe-
matically nicest one. It’s not very efficient since evaluating it requires TLC to

16

?

�

-

C

I

S

examine each of the 2N subset of Cand for every level of recursion. (Remember
that N is the number of candidates.) But TLC can do it in a few seconds for
N = 13, which is good enough.

However, this is not how I originally wrote the definition of the Condorcet
ranking. I wanted to execute the definition, not explain it to others. So, I wrote
a more algorithmic definition in terms of the transitive closure of a relation—in
part because I had already written a definition of transitive closure in another
specification. The transitive closure of a relation is a very useful mathematical
concept in computer science, so let’s define it.

9.6 Transitive Closure

9.6.1 A Mathematical Definition

The transitive closure �+ of a relation � is defined by letting r �+ s hold iff
there are values t1, . . . , tn such that

r � t1 � · · · � tn � s

where this is an abbreviation for the formula

(r � t1) ∧ (t1 � t2) ∧ . . . ∧ (tn � s)

We allow the possibility n = 0, in which case this formula becomes r � s, so we
define r �+ s to be true if r � s is.

Mathematicians represent a relation as a set of ordered pairs, taking r � s
to be an abbreviation of 〈r , s 〉 ∈ �. In the syntax of TLA+, the symbol � is
the name of an infix operator, so it cannot be used as the name of a set. Let’s
therefore switch to using letters like R rather than symbols like � as names of
relations. We can still use r R s as an abbrevation, but we have to write this
formula as 〈r , s 〉 ∈ R in an actual TLA+ specification.

To understand the transitive closure, it is perhaps best to think of a relation
R as a directed graph, where we take r R s to mean that there is an edge from
node r to node s. The transitive closure R+ of R is then the directed graph in
which there is an edge from r to s iff there is a path from r to s in the graph
R. To define R+ in this way, we need to define what a path in R is.

There are two natural ways to represent a path mathematically: as a sequence
of its nodes or a sequence of its edges. I tend to prefer the representation as a
sequence of nodes. So, let’s first define the set NodesOf (R) of nodes of a relation
R. A node of R is an element x such that x R y or y R x holds for some y , which
means that x is either the first or second element of some pair in R. A pair r
is a sequence of length 2 whose two elements are r [1] and r [2]. Hence, we can
define the set of nodes of R by:

NodesOf (R)
∆
= {r [1] : r ∈ R} ∪ {r [2] : r ∈ R}

17

?

�

-

C

I

S

A path in R is a sequence p of nodes of R such that there is an edge from each
of its nodes to the next. The i th node of p is p[i], so p is a path iff 〈p[i], p[i +1]〉
is in R, for all i with 1 ≤ i < Len(p). We want to restrict paths to ones with
at least one edge, which means at least two nodes. Hence, we can define the set
Paths(R) of all paths in R by:

Paths(R)
∆
= {p ∈ Seq(NodesOf (R)) :

∧ Len(p) > 1

∧ ∀ i ∈ 1 . . (Len(p)− 1) : 〈p[i], p[i + 1]〉 ∈ R}

There is a path from one node in R to another iff they are the first and last
nodes in a path in R. Hence, we define the transitive closure of R, which we
write TC (R), by:

TC (R)
∆
= {〈p[1], p[Len(p)]〉 : p ∈ Paths(R)}

This is a fine mathematical definition, but TLC can’t evaluate it. To evaluate
TC (R), TLC must calculate the set Paths(R), which may be infinite. (Even if
it is finite, to compute its value TLC must compute the set Seq(NodesOf (R)),
which is infinite if R is nonempty.)

To compute the transitive closure, we don’t need to compute the set of all
paths in R. There is a path from one node to another in R iff there is a path
that contains each node at most once. Hence, for a finite relation, it suffices
to consider paths of length at most equal to the cardinality of the set of nodes. Is this correct?

A sequence of nodes of R of length j is an element of the set of functions2

[1 . . j → NodesOf (R)]. We can therefore define the set PathsOfLen(R, j) of
paths in R of length j by:

PathsOfLen(R, j)
∆
= {p ∈ [1 . . j → NodesOf (R)] :

∀ i ∈ 1 . . (j − 1) : 〈p[i], p[i + 1]〉 ∈ R}

Let’s next define ShortPaths(R) to be all paths with length between 2 and the
cardinality of NodesOf (R). This is the set:

PathsOfLen(R, 2) ∪ PathsOfLen(R, 3) ∪ . . . ∪ PathsOfLen(R, Cardinality(NodesOf (R)))

We can write this union of sets with the union operator2, defining ShortPaths
by:

ShortPaths(R)
∆
= union {PathsOfLen(R, j) : j ∈ 2 . . Cardinality(NodesOf (R))}

We can then define the transitive closure operator TC as above, except using
ShortPaths instead of Paths. Copy and paste these definitions into the spec.

Let’s check our definition of TC . It’s a good idea to start small. The smallest
non-trivial example is a relation with 3 nodes, say the nodes 1, 2, and 3, whose

18

?

�

-

C

I

S

graph is 1→ 2→ 3. The corresponding relation R is {〈1, 2〉, 〈2, 3〉}. Have TLC
evaluate TC applied to this set. It should produce

{〈1, 2〉, 〈1, 3〉, 〈2, 3〉}

which is correct. Now lets add the edge 3 → 1 to the graph (adding 〈3, 1〉 to
the set). TLC finds the transitive closure to be

{〈1, 2〉, 〈1, 3〉, 〈2, 1〉, 〈2, 3〉, 〈3, 1〉, 〈3, 2〉}

This is not right. The graph has a path between every pair of nodes, so the
transitive closure should contain all nine possible pairs, not just six. Missing are
the pairs 〈1, 1〉, 〈2, 2〉, and 〈3, 3〉.

The problem is that our definition does not include long enough paths. If
there is a path from any node x to any different node y , then there is a path
from x to y in which each node appears at most once. However, in a path from a
node to itself, that node must appear twice. Hence, we must also include paths
of length Cardinality(NodesOf (R))+1 in ShortPaths(R). Correct the definition
of ShortPaths and check that TLC now computes the correct transitive closure.
Further checking will reveal no errors; the definition is now correct.

9.6.2 A Definition TLC Can Execute Faster

With the definition above, TLC can compute the transitive closure, but can
TLC compute it fast enough? To evalute it, TLC must compute the set of all
paths in R of length Cardinality(NodesOf (R))+1. The number of paths of some
length j increases exponentially with j . A little experimentation reveals that
with 8 nodes, TLC starts taking a long time. (Even for some relations with only
7 nodes, the set ShortPaths(R) can be too large for TLC to handle.) Since there
could be more than 8 candidates, we need a definition that TLC can compute
more efficiently.

Searching the Web reveals that the transitive closure of a relation R is often
defined to equal

R ∪ R ·R ∪ R ·R ·R ∪ . . .

where · denotes relation composition. The composition R ·S of relations R and
S is defined by letting x R ·S y be true iff there is a z such that x R z and z S y
hold. Mathematicians often write Rn for the composition R · R · . . . · R of a
relation R with itself n times. With this notation, the transitive closure of R is

R1 ∪ R2 ∪ R3 ∪ . . .

For a finite relation R, we can stop after a finite number of terms, so the transitive
closure equals

R1 ∪ R2 ∪ . . . ∪ Rk

19

?

�

-

C

I

S

for a sufficiently large k . A little throught reveals that we can take k to be the
number of nodes of R. This leads immediately to a simple recursive definition
of the transitive closure. Let’s write that definition.

First, we must define relation composition. TLA+ does not provide · as a
user-defined operator, so let’s write ∗∗ instead. Since a relation is a set of ordered
pairs, a mathematician might define ∗∗ by

R ∗∗S
∆
= {〈x , y 〉 : ∃ z : (〈x , z 〉 ∈ R) ∧ (〈z , y 〉 ∈ S)}

However, the right-hand side of this definition is not a legal TLA+ expression.
TLA+ provides two ways to write a set in terms of the conditions satisfied by
its elements: {x ∈ T : P(x)} and {e(x) : x ∈ T}. Let’s use the second way.

The definition above suggests that we want T to be the set of all pairs of
pairs of the form 〈 〈x , z 〉, 〈z , y 〉 〉 with 〈x , z 〉 ∈ R and 〈z , y 〉 ∈ S . That’s the
subset of R×S consisting of all pairs 〈r , s 〉 with r [2] = s[1]. We can define that See the definition of ×.2

set T by

T
∆
= {rs ∈ R × S : rs[1][2] = rs[2][1]}

For R ∗∗S to have the form {e(x) : x ∈ T}, what should e be? If rs equals
〈 〈x , z 〉, 〈z , y 〉 〉, then 〈x , y 〉 equals 〈rs[1][1], rs[2][2]〉. This leads to the follow-
ing definition

R ∗∗ S
∆
= let T

∆
= {rs ∈ R × S : rs[1][2] = rs[2][1]} ascii version

in {〈x [1][1], x [2][2]〉 : x ∈ T}

Question 9.7 Write an alternative definition of ∗∗ using a set construction of answer

the form {x ∈ T : P(x)}.

We can now define the transitive closure of R to be

R ∪ R ∗∗R ∪ . . . ∪

Cardinality(NodesOf(R)) times︷ ︸︸ ︷
R ∗∗ . . . ∗∗R

Calling the operator SimpleTC , we write it as:

SimpleTC (R)
∆
= ascii version

let recursive STC ()

STC (n)
∆
= if n = 1 then R

else STC (n − 1) ∪ STC (n − 1) ∗∗R

in STC (Cardinality(NodesOf (R)))

Add this definition to module CandidateRanking . Let’s now test it by comparing
it with the definition TC of the transitive closure. A relation is just a set of
ordered pairs, so let’s check it on all possible relations on a set of three elements
by checking it on all subsets of 1 . . 3 × 1 . . 3. Have TLC evaluate:

20

?

�

-

C

I

S

∀S ∈ subset ((1 . . 3)× (1 . . 3)) :
SimpleTC (S) = TC (S)

\A S \in SUBSET ((1..3)\X (1..3)) :

 SimpleTC(S) = TC(S)

TLC reports the error:

This was a Java StackOverflowError. It was probably the result of an
incorrect recursive function definition that caused TLC to enter an infinite
loop when trying to compute the function or its application to an element
in its putative domain.

What’s the problem? On what value of S is the definition failing? Let’s add a
print statement2 to find out. Have TLC evaluate

∀S ∈ subset ((1 . . 3)× (1 . . 3)) :

PrintT (S) ∧ SimpleTC (S) = TC (S)

The only value printed is { }. (TLC prints the value twice because it re-evaluates
the expression when determining its error message.) When S equals the empty
set, NodesOf (S) is the empty set, which has cardinality 0. The evaluation of
STC (0) never terminates.

Modify the definition to check for the special case of the empty relation,
whose transitive closure is the empty relation

SimpleTC (R)
∆
=

let recursive STC ()

STC (n)
∆
= if n = 1 then R

else STC (n − 1) ∪ STC (n − 1) ∗∗R
in if R = {} then {} else STC (Cardinality(NodesOf (R)))

Have TLC again check that SimpleTC equals TC when applied to all subsets
of (1 . . 3) × (1 . . 3). This time, immediately TLC reports that they are equal.
It takes TLC a few minutes to check all subsets of (1 . . 4)× (1 . . 4). There’s no
point trying it on the 225 subsets of (1 . . 5) × (1 . . 5), which would take more
than 29 times as long.

Although we haven’t tried comparing these definitions on any relation with
more than four nodes, we have tried it on all relations with at most four nodes.
This kind of complete testing on small relations is much more effective at finding
errors than is testing on randomly chosen large relations. We can be quite
confident that the two definitions are equivalent on finite relations. Since the two
definitions are so different, it’s unlikely that we’ve made an error in formalizing
the definition of transitive closure in TLA+.

9.6.3 Warshall’s Algorithm

Searching for transitive closure on the Web reveals that the standard method of
computing it is called Warshall’s Algorithm or sometimes the Floyd-Warshall

21

?

�

-

C

I

S

Algorithm. The algorithm is usually described in code consisting of nested iter-
ative loops. It’s easy to write such code as a PlusCal algorithm, but we want
to define a TLA+ operator Warshall for which TLC evaluates Warshall(R) by
executing Warshall’s algorithm. We could do it by directly translating the in-
terative loops into a recursively defined operator. As a simple example of how
that’s done, consider this code for computing a value v .

i : = 1 ;

v : = v0 ;

while (i ≤ n) { v : = F (v , i) ;

i : = i + 1; }

The value v it computes can be defined as follows (assuming n > 0):

v
∆
= let recursive vr()

vr(i)
∆
= if i = 0 then v0 else F (vr(i − 1), i)

in vr(n)

Note that vr(i) is defined to be the value of v computed by the i th iteration of
the code’s loop.

Instead of trying to mimic a particular coding of an algorithm, it’s best
to first understand the algorithm and then express your understanding in a
mathematical definition. Let’s return to our definition of the transitive closure
in terms of the graph of a relation. Let N be the set of nodes of a relation R.
The transitive closure TC (R) of R is the set of all pairs 〈r , s 〉 in N × N such
that there is a path

r → t1 → · · · → tk → s

in R. By eliminating loops, we can choose this path so that all the t i are distinct.
So, let’s consider only such paths. Let W (M) be the set of all such pairs 〈r , s 〉
for which the path can be chosen with all the t i in M. Observe that W (N)
equals TC (R), and W ({}) equals R. Warshall’s algorithm computes TC (R) by
recursively computing W (N). The key observation is that for any node n in N ,
the pair 〈r , s 〉 is in W (M∪ {n}) iff it is in W (M) or there is a path

r → t1 → · · · → t j → n → t j+1 → · · · tk → s

in R with all the t i in M. Thus, 〈r , s 〉 is in W (M∪ {n}) iff it is in W (M) or
else 〈r ,n 〉 and 〈n, s 〉 are in W (M). In other words:

W (M∪ {n}) = W (M) ∪ {rs ∈ N ×N :
(〈rs[1],n 〉 ∈ W (M)) ∧ (〈n, rs[2]〉 ∈ W (M))}

Substituting L forM∪{n} in this relation, we get the following relation, where
n is any element of L:

W (L) = W (L\ {n}) ∪ {rs ∈ N ×N :
(〈rs[1],n 〉 ∈ W (L\ {n})) ∧ (〈n, rs[2]〉 ∈ W (L\ {n}))}

22

?

�

-

C

I

S

Remembering that W ({}) equals R and W (N) equals TC (R), this leads to the
following definition of Warshall :

Warshall(R)
∆
=

let NR
∆
= NodesOf (R)

recursive W ()

W (L)
∆
= if L = {}

then R

else let n
∆
= choose node ∈ L : true

WM
∆
= W (L \ {n})

in WM ∪ {rs ∈ NR ×NR :

(〈rs[1], n〉 ∈ WM) ∧ (〈n, rs[2]〉 ∈ WM)}
in W (NR)

Use TLC to check that the operators Warshall and SimpleTC are equivalent

ascii version

definitions of the transitive closure on all subsets of 1 . . 4 × 1 . . 4, which it should
do in a fraction of a minute.

Question 9.8 The time taken by Warshall’s algorithm to compute the transitive answer

closure of a relation with n nodes is proportional to n3. Use TLC to evaluate
Warshall on the relation with graph

0→ 1→ 2→ . . .→ n − 1→ 0

for different values of n. How does the time taken by TLC vary with n? Why?

9.7 The Condorcet Ranking Revisited

Let us return now to the problem of computing the Condorcet ranking, defined
in Section 9.5 above. This requires computing the set of Condorcet winners of
an election. Let � be the domination relation, meaning that c � d iff more
voters prefer c to d than prefer d to c. Recall that a set D of candidates is a
dominating set iff c � d holds for any c in D and any candidate d not in D .
The set CW of Condorcet winners is the smallest dominating set.

Let c be in CW and suppose c 6� d for some candidate d . By definition of a
dominating set, this implies that d is also in CW. Similarly, if d 6� e for some
candidate e, then e is also in CW. Let � be the relation defined by letting x � y
hold iff ¬(y � x) holds. Then c ∈ CW and d � c imply d ∈ Cset , and e � d
then implies e ∈ CW. A simple induction argument shows that if �+ is the
transitive closure of the � relation, then c ∈ CW and d �+ c imply d ∈ CW.

The observation that d ∈ CW and c �+ d imply c ∈ CW suggests that the
reason a candidate c must be in CW is that c �+ d holds for some candidate d
that must be in CW. This line of thinking leads us eventually to the following
property:

23

?

�

-

C

I

S

C2. c �+ d holds, for any elements c and d of CW.

Proof

It follows from the definition of � that c � d holds iff either c = d or the number
of voters that prefer c to d is greater than or equal to the number of voters that
prefer d to c. Therefore, c � d implies c � d , as does c = d .

Property C2 asserts that any candidate c in CW satisfies c �+ d for all
d ∈ CW. Because CW is a dominating set, c � d for all candidates d not in
CW. Since c � d implies c � d , which implies c �+ d , we see that every c
in CW satisfies c �+ d for all candidates d . We now show that this condition
characterizes the elements of CW.

C3. CW = {c ∈ Cand : ∀d ∈ Cand : c �+ d}
Proof

It’s easy to modify the definition CondorcetRanking of the Condorcet ranking
that you wrote in Question 9.6 to use the formula of C3 for the set of Condorcet
winners. The following defines CRanking to be equivalent to CondorcetRanking .
It assumes the definition of � from the answer to Question 9.6; DomEq is the
relation � and DomEqPlus is its transitive closure computed using SimpleTC .

CRanking
∆
=

let DomEq
∆
= {r ∈ Cand × Cand : ¬(r [2] � r [1])} ascii version

DomEqPlus
∆
= SimpleTC (DomEq)

CWinners(C)
∆
= {c ∈ C : ∀ d ∈ C : 〈c, d〉 ∈ DomEqPlus}

recursive CRanking()

CRanking(C)
∆
= if C = {} then 〈〉

else let CW
∆
= CWinners(C)

in 〈CW 〉 ◦ CRanking(C \CW)

in CRanking(Cand)

Add this definition to module CandidateRanking .
Now that we have two definitions of the Condorcet ranking, we can check

them by comparing the two. In module CandidateRanking , we have made their
inputs (the collection of votes) the parameter Votes. We can therefore compare
the definitions of CondorcetRanking and CRanking on only one input for each
run of TLC. Had we instead made the votes an argument of the definitions,
then it would have been easy to compare them on a set of inputs.

By using the TLA+ instance construct, we can compare the two defini-
tions on a set of inputs without without having to rewrite the definitions. The
statement

instance CandidateRankings with Votes ← e
24

?

�

-

C

I

S

in a module M imports into M all the definitions from the CandidateRankings
module, except with the expression e substituted for Votes in all those defi-
nitions. For example, it defines Borda in module M to be the Borda ranking
for the collection e of votes. We can parameterize the imported definitions by
instead using this form of instance statement:

CR(vt)
∆
= instance CandidateRanking with Votes ← vt

This defines CV (e)!Borda to be the definition of Borda from CandidateRanking What does “ ! ” mean?

with e substituted for Votes. (It’s a “deep” substitution, meaning that the
substitution is made as well in all the other definitions in CandidateRanking
on which the definition of Borda depends.) Of course, the same applies to all
definitions in CandidateRanking , so CV (e)!RankBy(c, i) equals the result of
substituting e for Votes in RankBy(c, i).

Create a new specification with a root module named CheckRankings. We
will need the operators of the Integers and Sequences modules, so import them
with an extends statement. Then add the parameterized instance statement
above.

As we have seen with our definitions of the transitive closure, a good way to
check that two definitions are equivalent is to test them on all possible inputs of a
certain size. So, let’s check them on all sets of N candidates and V voters. Add a
constants statement declaring N and V to be constant parameters. (There is
no name conflict with the definitions of N and V in module CandidateRankings,
because those operators are renamed to CV ()!N and CV ()!V .)

We now have to define the set of all values of Votes with N candidates and V
voters. Let’s start by defining the set of all rankings of N candidates by a single
voter. Such a ranking is a sequence of candidates containing each candidate
exactly once. From the discussion in Section 9.2 we can see that the set of all
such rankings for an N -element set Cand of candidates is:

{seq ∈ [1 . . N → Cand] : Cand ⊆ {seq [i] : i ∈ Cand}}

Since the identities of the candidates doesn’t matter, we can let the set of can-
didates be 1 . . N . This leads to the definition:

VoterRankings
∆
= let Cand

∆
= 1 . . N

in {seq ∈ [Cand → Cand] :

Cand ⊆ {seq [i] : i ∈ Cand}}

The set of all sequences of rankings by V voters is then

AllVotes
∆
= [1 . . V → VoterRankings]

The assertion that our two definitions of the Condorcet rankings are equivalent
is then expressed by the following assumption.

assume ∀v ∈ AllVotes : CR(v)!CondorcetRanking = CR(v)!CRanking
25

?

�

-

C

I

S

Add these definitions and this assumption to module CheckRankings. Create a
model with 3 candidates and 4 voters and run TLC on it. TLC checks assump-
tions, so it will report an error if this assumptions is violated. It should run for
a couple of seconds and not report any error. TLC can check the assumption
for 4 candidates and 4 voters in about 15 minutes. However, with 5 candidates
and 4 voters there are about 200 million values to check, which would take TLC
days.

The checks for 4 or fewer candidates that TLC can do provide some confi-
dence in the equivalence of the definitions. However, there could be strange cases
that occur only with more candidates or voters. It would be nice to do some
further checking. We can’t check all possible elections with more candidates and
voters, but we can check randomly chosen ones. Recall the definitions above of
RandomRanking and RandomVotes, where RandomVotes(n,S) is a randomly
chosen value of Votes with n voters and S the set of candidates. Add these
definitions to module CheckRanking . Also, add a declaration of a new constant
Trials that is the number of random values of Votes to check. The following
strange definition is evaluated to be a set of (usually) Trials randomly chosen
values for Votes.

ascii versionSetOfRandomVotes
∆
= {RandomVotes(V , 1 . . N) : x ∈ 1 . . Trials}

This definition is strange because the set expression has the form {e(x) :
x ∈ S} where the value of e(x) is independent of x . Mathematically, this
should define SetOfRandomVotes to be a set consisting of one element (assuming
Trials > 0). However, because TLC evaluates the set expression by evaluating
RandomVotes(V , 1 . . N) for each value of x in 1 . . Trials, it obtains a set con-
taining Trial elements (unless two different executions of RandomVotes(V , 1 . . N)
happen to obtain the same value).

Add the definition of SetOfRandomVotes and the following assumption to
module CheckRanking : ascii version

assume ∀ v ∈ SetOfRandomVotes : CR(v) !CondorcetRanking = CR(v) !CRanking

Use TLC to check the equivalence of the two definitions of the Condorcet ranking
for some values of V and N . First, set Trial to 1 to see how long it takes TLC to
check equivalence for a single value of Votes. For V and N equal to 10, it should
take a couple of seconds per trial. (Comment out the previous assumption before
doing this, otherwise TLC will spend forever trying to check it.)

After some amount of checking, we will decide that module CandidateRanking
is correct. However, we are not done yet. I am assuming we wrote the speci-
fication for someone to use. It would be difficult for a user to understand the
specification just from the formulas—especially if she were not used to reading
TLA+ specs. (It would also be difficult for us a year from now.) We need to add
comments to explain the spec. Here is what the module might look like2 after
adding some comments. It contains what I regard to be a fairly minimal set

26

?

�

-

C

I

S

of comments, suitable for a reasonably sophisticated reader who is acquainted
with TLA+. The members of the committee for which I wrote my original spec-
ification were mathematically sophisticated but knew nothing of TLA+. The
comments that I wrote for them therefore explained all the TLA+ notation
whose meaning I felt they would not find obvious.

Problem 9.9 There is a more efficient method for computing the Condorcet
ranking than by using property C3. The sets of candidates that occur in the
Condorcet ranking are the connected components of the graph of �. There are
algorithms that compute the set of connected components of a graph in time
approximately proportional to the sum of the number of nodes and the number
of edges in the graph. Look up these algorithms and use one as the basis for
another definition of the Condorcet ranking. (Needless to say, you should use
TLC to check the equivalence of this definition with CRanking .)

Problem 9.10 Write a new specification that allows voters to indicate that they
have no preference among certain candidates. In other words, voters should be
able to rank some sets of candidates as equivalent. Choose a convenient method
of representing the votes, and define the Borda and Condorcet rankings on this
representation.

27

?

�

-

C

I

S

