
Checking Implementation

Open module PCalBoundedBuffer in the Toolbox and create a small model that
substitutes 4 for N and a set of three model values for Msg . (For example
set Msg to {m1, m2, m} and choose the Set of model values option.) Add the
formula C !Spec to the Properties list in the What to check? section of the Model
Overview page of the model, and run TLC. It should find no error.

Now, let’s introduce an error. In the Definition Override section of the model’s
Advanced Options page, override the definition of chBar with the following defi-
nition.

[i ∈ 1 . . (p 	 c) 7→
if p 	 c = N then buf [0]

else buf [(c + i − 1)%N]]

[i \in 1..(p (-) c) |->

 IF p (-) c = N THEN buf[0]

 ELSE buf[(c + i - 1) % N]]

This changes the definition of chBar when p	c equals N , so it should introduce
an error when the length of the sequence of sent messages reaches N , which can
occur only after at least N steps.

Running TLC should now produce an error. Clicking on the location of
the error leads to the formula 2[Next]vars in module PCalBoundedChannel ,
indicating that the bounded buffer specification does not satisfy the property
2[Next]vars . (Here and in the rest of this pop-up, Next is the formula by that
name in module PCalBoundedChannel .)

To see why that property is violated, use the trace explorer to display the
values of chBar during the execution. In the Error-Trace Exploration section
of the TLC Errors window, use the Add button to enter the expression chBar .
Click on the Explore button to run the trace explorer. The behavior shown in
the Error-Trace section should now show the value of chBar in each state. Let’s
call that behavior σ. The behavior σ is defined to be the one whose i th state
assigns to the variable ch the value of chBar in the i th state of σ. The formula
2[Next]vars is true of σ iff 2[Next]vars is true of σ , and 2[Next]vars is not true
of σ because the last step of σ does not satisfy [Next]vars .

close

