
The EXCEPT Notation

Don’t try to make any sense of the except and the ! . They are meaningless
pieces of syntax. Just remember that

[fcn except ![a] = d]

is the value that a function fcn has after executing the assignment statement

fcn[a] : = d

(assuming that a is in the domain of fcn). Since assignments to arrays are com-
mon in algorithms, we need a simple way of writing this function. Mathematics
doesn’t provide it, so I had to invent one.

The notation has some useful generalizations—for example,

[fcn except ![a][b] = d]

is the value of fcn after executing the assignment

fcn[a][b] : = d

and

[fcn except ![a] = d , ![b] = e]

is the value of fcn after executing the two assignment statements

fcn[a] : = d ; fcn[b] : = e

You understand the notation if you understand that:

[fcn except ![a] = d , ![b] = e] =

[[fcn except ![a] = d] except ![b] = e]

[fcn except ![a][b] = d] =

[fcn except ![a] = [fcn[a] except ![b] = d]]

Records (also known as structs in C) are represented in TLA+ as functions, and
the value of record R after executing R.d : = e is

[R except ! .d = e]

These notations can be combined, as in

[B except ![i].d [j] = e]

The except notation looks weird, and no one likes it—including me. How-
ever, I’ve found no alternative that I like better. One can devise a more compact
notation by replacing the “except” with some punctuation, but I think that
would make it even more obscure. In time, you’ll get used to it.

close

