
The Backend Provers

SMT Solvers

The backend provers that are the most useful are a class called SMT solvers.
TLAPS can use several different SMT solver backends; the default one used by
the Toolbox is called SMT . By default, SMT is the first backend prover TLAPS
calls. The SMT solvers are much, much better than any other backend prover
at arithmetical reasoning. They will all prove any valid formula about integers
you are likely ever to write that contains only numbers, +, −, <, ≤, > ≥, =
and the operators of propositional logic—for example:

(m ≥ 0) ∧ (m ≤ p) ∧ (n ≥ q) ∧ (n ≤ r) ∧ (p + 1 ≤ q)⇒ (m 6= n)

for integers m, n, p, q , and r . They’re much better than you are at deciding
if such a formula is true. They also know that m ∈ p . . q is equivalent to (p ≤
m)∧(m ≤ q) if m, p, and q are integers, so they’re also good at reasoning about
integer intervals. However, they aren’t very good at formulas involving ∗, %,
and ÷.

The default SMT solver is called CVC3, so by default SMT and CVC3 are
synonymous. It is included in the TLAPS distribution. Other SMT solvers that
you can download yourself and use as TLAPS backend provers are Z3, Yices,
and veriT.

Most of the time, a proof obligation will be provable by one SMT solver iff it
is proved by all of them. However, they do vary in their ability to reason about
multiplication. Yices and Z3 prove

∀m,n ∈ Int : m ∗ (n − 1) = m ∗ n −m

but CVC3 does not. Only Z3 proves

∀i ∈ Int , j ∈ Nat {0} : i%j ∈ 0 . . (j − 1)

None of the SMT backends have built-in knowledge about ÷.
As this indicates, I currently find Z3 to work a little more often than the

others. It also seems to be the fastest. It is not the default SMT backend
because it is not free for commercial users, so it can’t be distributed with TLAPS.
However, you can download it yourself and make it the default. The default
SMT solver can be changed from the Toolbox’s preference window reached by
File/Preferences/TLA+ Preferences/TLAPS/Additional Preferences. Instructions
for how to do that are on this web page.

Zenon

Zenon is the second backend prover called by default. It knows nothing about
numbers, but it knows about the built-in TLA+ operators and is good at general
mathematical reasoning.

http://tla.msr-inria.inria.fr/tlaps/content/Download/Binaries.html
http://tla.msr-inria.inria.fr/tlaps/content/Documentation/Tutorial/Tactics.html


Isa

Isa is short for Isabelle, the third backend prover that is called by default.
It can do most of what Zenon does and some things Zenon can’t do, but it’s
slower. I find it better than Zenon at reasoning about functions and records.
It’s also better than Zenon for reasoning about higher-order operators—more
reasoning that requires substituting operators in assume/prove facts in which
the assumptions declare new operators. Examples of such facts are the library’s
rules for proofs by induction.

Isabelle knows a little bit about numbers, but isn’t too good with them. It
can prove 2 + 2 = 4 but times out trying to prove 20 + 20 = 40.

Isabelle uses methods, which you can specify with the IsaM operator. The
standard method is called auto, and the by “fact” Isa is synonymous with
IsaM (“auto”). Here are the other available methods, which can occasionally
help.

blast This method is somewhat better than auto for reasoning about higher-
order operators.

force This method is similar to auto but more aggressively tries instantiating
quantifiers.

Experts in mechanical verification may have some idea what the following meth-
ods are good for. The rest of us can try them for fun, or when we get desperate.

fast A resolution-based prover.

simp Is the part of auto that does rewriting. It is superseded by auto except
in borderline cases.

They have two variants: The clarsimp method combines simp with some basic
proof rules such as reducing A ⇒ B to assume A prove B . The fastsimp
method combines simp with fast, which is very similar to auto; it is unlikely to
work if auto doesn’t.

PTL

PTL stands for Propositional Temporal Logic. It is synonymous with LS4,
which is a backend prover that can prove temporal formulas that do not contain
quantification over temporal formulas.

Giving a Prover More Time

When a backend prover fails by timing out, giving it more time seldom helps.
However, it occasionally does. You can tell the SMT backend to timeout only
after 30 seconds with the by pseudo-fact SMTT (30). Similarly, ZenonT (45)
calls Zenon with a timeout of 45 seconds, and so on for the other backend



provers. By default, the backend provers all time out after 5 seconds except for
Isabelle, which times out after 30 seconds.

Increasing timeouts is most likely to help if you’re using a slow machine. In
that case, you can use the --stretch prover option to increase all timeouts by
a factor. Such advanced options and how to use them appear on this web page.

close

http://tla.msr-inria.inria.fr/tlaps/content/Documentation/Tutorial/Advanced_options.html

