
A Temporal Logic Proof of Deadlock Freedom

Theorem The 2-process 1-bit algorithm satisfies DeadlockFree

define T0
∆
= Trying(0)

T1
∆
= Trying(1)

Success
∆
= InCS (0) ∨ InCS (1)

1 〈1〉1. Suffices Assume: 2¬Success
Prove: (T0 ∨ T1) ; false

Proof: By standard temporal reasoning, since DeadlockFree equals (T0 ∨
T1) ; Success.

2 〈1〉2. T0 ; false

2.1 〈2〉1. T0 ; 2(pc[0] = “e2”)

Proof: Process 0 is never at e3 or e4. Therefore, from the code and
fairness, we see that if T0 is true and process 0 never reaches cs (which is
implied by the assumption 2¬Success), then process 0 eventually reaches
e2 and stays there forever.

2.2 〈2〉2. 2(pc[0] = “e2”) ; 2((pc[0] = “e2”) ∧ ¬x [1]).

2.2.1 〈3〉1. Suffices Assume: 2(pc[0] = “e2”)
Prove: true ; 2¬x [1]

Proof: By the 2 ; Rule.

2.2.2 〈3〉2. true ; (2(pc[1] = “ncs”) ∨2T1).

Proof: The code and fairness imply that if process 1 never reaches cs
(by the assumption 2¬Success), then eventually it must either reach and
remain forever at ncs, or T1 must become true and remain true forever.

2.2.3 〈3〉3. 2(pc[1] = “ncs”) ⇒ 2¬x [1].

Proof: x [1] equals false when process 1 is at ncs.

2.2.4 〈3〉4. 2T1 ; 2¬x [1]

Proof: (pc[0] = “e2”) implies x [0]; and the code, fairness, and 2¬Success
imply that 2x [0] leads to process 1 reaching and remaining forever at e4
with x [1] equal to false.

2.2.5 〈3〉5. Q.E.D.

Proof: By 〈3〉1–〈3〉4 and Leads-To Induction, with this proof graph:

true

2(pc[1] = “ncs”)

2T1

2¬x [1]
�
�3

Q
Qs

Q
Qs

���
���

��:

1

?

�

-

C

I

S



2.3 〈2〉3. 2((pc[0] = “e2”) ∧ ¬x [1]) ; false

Proof: The code and fairness imply that (pc[0] = “e2”) and 2¬x [1] leads
to process 0 reaching cs, contradicting 2¬Success.

2.4 〈2〉4. Q.E.D.

Proof: By 〈2〉1–〈2〉3 and Leads-To Induction, with this proof graph:

T0 2(pc[0] = ”e2”) 2((pc[0] = ”e2”) ∧ ¬x [1]) false- - -

3 〈1〉3. T1 ; false

3.1 〈2〉1. T1 ⇒ 2T1

Proof: From the code, we see that if T1 is true and process 1 never reaches
cs (which is implied by the assumption 2¬Success), then T1 remains for-
ever true.

3.2 〈2〉2. 2T1 ; (T0 ∨ 2(T1 ∧ ¬T0))

Proof: By the tautologies F ; (G∨(F∧2¬G)) and 2F∧2G ≡ 2(F∧G).

3.3 〈2〉3. 2(T1 ∧ ¬T0) ; 2(T1 ∧ ¬x [0])

Proof: By the code and fairness, 2¬T0 implies that eventually process 0
is always at ncs, which implies that x [0] always equals false.

3.4 〈2〉4. 2(T1 ∧ ¬x [0]) ; false

Proof: The code, fairness, and 2¬x [0] imply that process 1 eventually
reaches e2. Fairness and 2¬x [0] then imply that process 1 reaches cs,
contradicting the assumption 2¬Success.

3.5 〈2〉5. Q.E.D.

Proof: By 〈2〉1–〈2〉4, step 〈1〉2, and Leads-To Induction, with this proof
graph:

T1 2T1

T0

2(T1 ∧ ¬T1) 2(T1 ∧ ¬x [0])

false-
Q
Qs

���
���

���:

- ���

XXXXXXXXXz

4 〈1〉4. Q.E.D.

Proof: By steps 〈1〉1–〈1〉3 and a trivial application of Leads-To Induction.

2

?

�

-

C

I

S


