L

A Temporal Logic Proof of Deadlock Freedom
Theorem The 2-process 1-bit algorithm satisfies DeadlockFree

DEFINE T0 = Trying(0)
T1 = Trying(1)
Success = InCS(0)V InCS(1)

1 (1)1. SUFFICES ASSUME: O-Success
PrROVE: (T0V T1) ~» FALSE

PRrOOF: By standard temporal reasoning, since DeadlockFree equals (T0 V
T1) ~ Success.

2 (1)2. TO ~ FALSE

2.1 (2)1. TO ~ O(pc[0] = “e2”)
PROOF: Process 0 is never at e3 or e4. Therefore, from the code and
fairness, we see that if 70 is true and process 0 never reaches cs (which is
implied by the assumption O-Success), then process 0 eventually reaches
e2 and stays there forever.

2.2 (2)2. O(pc[0] = “€2”) ~ O((pcl0] = “e2”) A —z[1]).
2.2.1 (3)1. SUFFICES ASSUME: O(pc[0] = “e2”)
PROVE: TRUE ~» O-z[l]

PROOF: By the O~ Rule.
2.22 (3)2. TRUE ~ (O(pc[l] = “ncs”) v OT1).
PROOF: The code and fairness imply that if process 1 never reaches cs

(by the assumption O—Success), then eventually it must either reach and
remain forever at ncs, or T'1 must become true and remain true forever.

2.23 (3)3. O(pc[l] = “ncs”) = O-z[l].
PROOF: z[1] equals FALSE when process 1 is at ncs.
224 (3)4. OT1 ~ O-z[1]
PROOF: (pc[0] = “e2”) implies z[0]; and the code, fairness, and O-Success

imply that Oz[0] leads to process 1 reaching and remaining forever at e4
with z[1] equal to FALSE.

225 (3)5. Q.E.D.
PROOF: By (3)1-(3)4 and Leads-To Induction, with this proof graph:

O(pc[1] = “ncs”)

TRUE O-z[1]

I

L

2.3 (2)3. O((pc[0] = “e2”) A —z[1]) ~ FALSE
PROOF: The code and fairness imply that (pc[0] = “€2”) and O—-z[1] leads
to process 0 reaching cs, contradicting O—Success.

2.4 (2)4. Q.E.D.
PROOF: By (2)1-(2)3 and Leads-To Induction, with this proof graph:

T0 — O(pc[0] =7€2”) — O((pc[0] =" e2”) A —z[l]) —»> FALSE

3 (1)3. T1 ~» FALSE

31 (2)1. T1 = 0OT1

PROOF: From the code, we see that if T'1 is true and process 1 never reaches
¢s (which is implied by the assumption O-Success), then T'1 remains for-
ever true.

32 (2)2. OT1 ~ (T0 V O(T1A~T0))
PROOF: By the tautologies F' ~ (GV(FAO-G)) and OFAOG = O(FAG).
3.3 (2)3. O(T1A-T0) ~ O(T1A-z[0])
PrROOF: By the code and fairness, 0-T0 implies that eventually process 0
is always at ncs, which implies that z[0] always equals FALSE.

3.4 (2)4. O(T1 A —z[0]) ~ FALSE

PROOF: The code, fairness, and O-z[0] imply that process 1 eventually
reaches e2. Fairness and O-z[0] then imply that process 1 reaches cs,
contradicting the assumption O-Success.

(2)5. Q.E.D.
PRrROOF: By (2)1-(2)4, step (1)2, and Leads-To Induction, with this proof

graph:

71T — 0OT1 FALSE

=2
ot

O(T1A-T1) — O(T1 A —-z[0))
4 (1)4. Q.E.D.
PROOF: By steps (1)1-(1)3 and a trivial application of Leads-To Induction.

