
Recall the original (non-TLA+) definition:

R ∗∗S ∆
= {〈x , y 〉 : ∃ z : (〈x , z 〉 ∈ R) ∧ (〈z , y 〉 ∈ S )}

Since x is replacing 〈x , y 〉 , we can replace x and y by x [1] and x [2]. Hence, the
definition becomes

R ∗∗S ∆
= {x ∈ T : ∃ z : (〈x [1], z 〉 ∈ R) ∧ (〈z , x [2]〉 ∈ S )}

We now have to decide what the set T should be. A little thought reveals that
the elements of R ∗∗S have to be pairs 〈r , s 〉 with r a node of R and s a node
of S . Therefore, we can take T to be the Cartesian product NodesOf (R) ×
NodesOf (S ), to obtain:

R ∗∗S ∆
= {x ∈ NodesOf (R)×NodesOf (S ) :

∃ z : (〈x [1], z 〉 ∈ R) ∧ (〈z , x [2]〉 ∈ S )}

This is a legal TLA+ definition, but TLC can’t evaluate it because it contains
the unbounded quantifier ∃z : . . . . We need to restrict the range of the bound
identifier z . The body of the quantified expression is satisfied only if z is an
element of both NodesOf (R) and NodesOf (S ). So we could write this quantified
expression in any of these ways:

∃z ∈ NodesOf (R) : . . .

∃z ∈ NodesOf (S ) : . . .

∃z ∈ NodesOf (R) ∩ NodesOf (S ) : . . .

Although longer, I find the third to be a little clearer:

R ∗∗ S
∆
= {x ∈ NodesOf (R)×NodesOf (S ) :

∃ z ∈ NodesOf (R) ∩ NodesOf (S ) :

(〈x [1], z 〉 ∈ R) ∧ (〈z , x [2]〉 ∈ S )}
close


