

SIGIR 2008 Workshop

Learning to Rank for Information Retrieval

held in conjunction with the 31th Annual International
ACM SIGIR Conference

24 July 2008, Singapore

Organizers

Hang Li

Microsoft Research Asia
Tie-Yan Liu

Microsoft Research Asia
Chengxiang Zhai

University of Illinois at Urbana-Champaign

http://research.microsoft.com/users/LR4IR-2008/

http://research.microsoft.com/users/LR4IR-2008/
http://www.sigir2008.org/

Preface

The 2008 International Workshop on Learning to Rank for Information Retrieval (LR4IR
2008) is the second in a series of workshops on this topic held in conjunction with the An-
nual ACM SIGIR International Conference on Research and Development in Information
Retrieval.

The main purpose of this workshop is to bring together information retrieval researchers and
machine learning researchers working on or interested in the technologies of learning to rank,
and let them share their latest research results, express their opinions on the related issues,
and discuss future research directions.

Our call for papers this year has attracted many submissions. All submitted papers were
thoroughly reviewed by the program committee. The program committee finally accepted 8
papers. The 8 accepted papers were divided into 3 sessions: “Learning to Rank Algorithms
- I,” “Learning to Rank Algorithms - II,” and “Benchmark Dataset for Learning to Rank”.
In addition, we have a novel session named “Opinions on Learning to Rank” this year, to
encourage researchers in this field to share their opinions and viewpoints on the current status
and future directions of learning to rank. The LR4IR 2008 program also includes two invited
talks, with one on “The Optimisation of Evaluation Metrics” by Dr. Stephen Robertson,
from Microsoft Research Cambridge, and the other on “A Structured Learning Framework
for Learning to Rank in Web Search” by Prof. Hongyuan Zha, from Georgia Institute of
Technology.

We are grateful to the program committee members for carefully reviewing all the submis-
sions. We also would like to thank the SIGIR 2008 main program committee for their support
of this workshop and all the authors for their contributions.

Hang Li

Tie-Yan Liu

Chengxiang Zhai

Program Committee Co-Chairs

i

Table of Contents

LR4IR 2008 Workshop Organization . iv

Keynote Address

Chair: Chengxiang Zhai (University of Illinois at Urbana-Champaign)

• On the Optimisation of Evaluation Metrics . v
Stephen Robertson (Microsoft Research Cambridge)

Session 1: Learning to Rank Algorithms - I

Chair: Tie-Yan Liu (Microsoft Research Asia)

• SortNet: Learning To Rank By a Neural-Based Sorting Algorithm .1
Leonardo Rigutini (Dipartimento di Ingegneria dell'Informazione)

Tiziano Papini (Dipartimento di Ingegneria dell'Informazione)

Marco Maggini (Dipartimento di Ingegneria dell'Informazione)

Franco Scarselli (Dipartimento di Ingegneria dell'Informazione)

• Query-Level Learning to Rank Using Isotonic Regression .9
Zhaohui Zheng (Yahoo! Inc.)

Hongyuan Zha (Georgia Institute of Technology)

Gordon Sun (Yahoo! Inc.)

• A Meta-Learning Approach for Robust Rank Learning .15
Vitor R. Carvalho (Carnegie Mellon University)

Jonathan L. Elsas (Carnegie Mellon University)

William W. Cohen (Carnegie Mellon University)

Jaime G. Carbonell (Carnegie Mellon University)

• A Decision Theoretic Framework for Ranking using Implicit Feedback 24
Onno Zoeter (Microsoft Research Cambridge)

Michael Taylor (Microsoft Research Cambridge)

Ed Snelson (Microsoft Research Cambridge)

John Guiver (Microsoft Research Cambridge)

Nick Craswell (Microsoft Research Cambridge)

Martin Szummer (Microsoft Research Cambridge)

Keynote Address

Chair: Chengxiang Zhai (University of Illinois at Urbana-Champaign)

• A Structured Learning Framework for Learning to Rank in Web Search vi
Hongyuan Zha (Georgia Institute of Technology)

ii

Session 2: Learning to Rank Algorithms - II
Chair: Chengxiang Zhai (University of Illinois at Urbana-Champaign)

• A Framework for Unsupervised Rank Aggregation . 32
Alexandre Klementiev (University of Illinois at Urbana-Champaign)

Dan Roth (University of Illinois at Urbana-Champaign)

Kevin Small (University of Illinois at Urbana-Champaign)

• Machine Learned Sentence Selection Strategies for Query-Biased Summarization 40
Donald Metzler (Yahoo! Research)

Tapas Kanungo (Yahoo! Labs)

Session 3: Benchmark Dataset for Learning to Rank
Chair: Hang Li (Microsoft Research Asia)

• Selection Bias in the LETOR Datasets .48
Tom Minka (Microsoft Research Cambridge)

Stephen Robertson (Microsoft Research Cambridge)

• How to Make LETOR More Useful and Reliable . 52
Tao Qin (Microsoft Research Asia)

Tie-Yan Liu (Microsoft Research Asia)

Jun Xu (Microsoft Research Asia)

Hang Li (Microsoft Research Asia)

Session 4: Opinions on Learning to Rank
Chair: Hang Li (Microsoft Research Asia)

iii

LR4IR 2008 Organization

Program Co-Chair: Hang Li, (Microsoft Research Asia)

Tie-Yan Liu, (Microsoft Research Asia)

Chengxiang Zhai, (University of Illinois at Urbana-Champaign)

Program Committee: Alekh Agarwal, (University of California at Berkeley)

Djoerd Hiemstra, (University of Twente)
Donald Metzler, (Yahoo! Research)
Einat Minkov, (Carnegie Mellon University)

Filip Radlinski, (Cornell University)
Guirong Xue, (Shanghai Jiao-Tong University)

Guy Lebanon, (Prudue University)
Hongyuan Zha, (Georgia Institute of Technology)

Hsin-Hsi Chen, (National University of Taiwan)
Irina Matveeva, (University of Chicago)
Javed Aslam , (Northeastern University)

John Guiver, (Microsoft Research Cambridge)

Jun Xu, (Microsoft Research Asia)

Kai Yu, (NEC Research Institute)

Michael Taylor, (Microsoft Research Cambridge)

Olivier Chapelle, (Yahoo Research)

Ping Li, (Cornell University)
Quoc Le, (Australian National University)

Ralph Herbrich, (Microsoft Research Cambridge)

Ravi Kumar, (Yahoo Research)

Tao Qin, (Tsinghua University)

Yisong Yue, (Cornell university)
Zhaohui Zheng, (Yahoo Research)

Soumen Chakrabarti, (Indian Institute of Technology)

iv

Keynote Address

On the Optimisation of Evaluation Metrics

Stephen Robertson
Microsoft Research Cambridge

7 JJ Thomson Avenue Cambridge, U.K.

ser@microsoft.com

Abstract

The usual approach to optimisation, of ranking algorithms for search and in many other
contexts, is to obtain some training set of labeled data and optimise the algorithm on this
training set, then apply the resulting model (with the chosen optimal parameter set) to the
live environment. (There may be an intermediate test stage, but this does not affect the
present argument.) This approach involves the choice of a metric, in this context normally
some particular IR effectiveness metric. It is commonly assumed, overtly or tacitly, that if
we want to optimise a particular evaluation metric M for a live environment, we should try
to optimise exactly the metric M on the training set (even though in practice we often use
an approximation or other substitute measure). When the assumption is stated explicitly,
it is sometimes presented as self-evident. In this paper I will explore some reasons why the
assumption might not be a good general rule.

Bio

Stephen Robertson is a researcher at the Microsoft Research Laboratory in Cambridge, UK.
He retains a part-time professorship in the Department of Information Science of the City
University. He was full-time at City University from 1978 to 1998, and started the Centre for
Interactive Systems Research. His research interests are in theories and models for informa-
tion retrieval and the design and evaluation of IR systems. In 1976, he was the author (with
Karen Sparck Jones) of a moderately influential probabilistic theory of relevance weighting;
further work (with Stephen Walker, on the Okapi system) led to the BM25 function for term
weighting and document scoring, now used by many other groups. He is a Fellow of Girton
College, Cambridge; he was awarded the Tony Kent Strix award in 1998 and SIGIR’s Gerard
Salton award in 2000.

v

Keynote Address

A Structured Learning Framework for Learning to
Rank in Web Search

Hongyuan Zha
Georgia Institute of Technology

Atlanta, GA 30032, USA

zha@cc.gatech.edu

Abstract

Evaluation metrics are an essential part of a ranking system for Web search. We consider
an evaluation metric as a form of utility function which reflects the degree of satisfaction
of the users when presented a list of ranked documents in response to a user query. It is
critical for Web search that we design evaluation metrics that can accurately capture the
quality of search result sets in terms of relevancy, diversity and novelty. We argue that the
evaluation metrics themselves should be learned from judgment data and user interaction
data; and learning to rank algorithms should seek to optimize the evaluation metrics through
structured learning methodology. We will illustrate the above ideas using preference learning
from click data and learning the gain values and discount factors in NDCG as examples.

Bio

Hongyuan Zha received his B.S. degree in mathematics from Fudan University in Shang-
hai in 1984, and his Ph.D. in scientific computing from Stanford University in 1993. He was
a faculty member of the Department of Computer Science and Engineering at Pennsylva-
nia State University from 1992 to 2006, and he also worked from 1999 to 2001 at Inktomi
Corporation. He is currently a professor in College of Computing at Georgia Institute of
Technology. His research interests include Web search and machine learning applications.

vi

SortNet: Learning To Rank
By a Neural-Based Sorting Algorithm

Leonardo Rigutini, Tiziano Papini, Marco Maggini, Franco Scarselli
Dipartimento di Ingegneria dell’Informazione

via Roma 56, Siena, Italy
{rigutini,papinit,maggini,franco}@dii.unisi.it

ABSTRACT
The problem of relevance ranking consists of sorting a set of
objects with respect to a given criterion. Since users may
prefer different relevance criteria, the ranking algorithms
should be adaptable to the user needs. Two main approaches
exist in literature for the task of learning to rank: 1) a score
function, learned by examples, which evaluates the proper-
ties of each object yielding an absolute relevance value that
can be used to order the objects or 2) a pairwise approach,
where a “preference function” is learned using pairs of ob-
jects to define which one has to be ranked first. In this
paper, we present SortNet, an adaptive ranking algorithm
which orders objects using a neural network as a comparator.
The neural network training set provides examples of the de-
sired ordering between pairs of items and it is constructed
by an iterative procedure which, at each iteration, adds the
most informative training examples. Moreover, the com-
parator adopts a connectionist architecture that is particu-
larly suited for implementing a preference function. We also
prove that such an architecture has the universal approxima-
tion property and can implement a wide class of functions.
Finally, the proposed algorithm is evaluated on the LETOR
dataset showing promising performances in comparison with
other state of the art algorithms.

1. INTRODUCTION
The standard classification or regression tasks do not in-
clude all the supervised learning problems. Some applica-
tions require to focus on other computed properties of the
items, rather than values or classes. For instance, in ranking
tasks, the score value assigned to each object is less impor-
tant than the ordering induced on the set of items by the
scores. In other cases, the main goal is to retrieve the top k

objects without considering the ordering for the remaining
items. The differences among these classes of problems in-
fluences the properties of that we would like to predict, the
representation of the patterns and the type of the available
supervision. For example, when an user indicates that an
object is to be preferred with respect to another, or that

two objects should be in the same class, he/she does not
assign a value to the objects themselves. In these cases, the
given examples are in the form of relationships on pairs of
objects and the supervision values are the result of a pref-
erence or similarity function applied on the pair of items.
Two of these peculiar supervised learning tasks are prefer-
ence learning and learning to rank. In the machine learning
literature, preference learning problems can be categorized
into two specific cases, the Learning Objects Preference and
the Learning Labels Preference formulations as reviewed in
[7]. In the learning objects preferences scenario, it is sup-
posed to have a collection of instances xi with associated
a total or partial ordering. The goal of the training is to
learn a function that, given a pair of objects, correctly pre-
dicts the associated preference as provided by the available
ordering. In this approach, the training examples consist of
preferences between pairwise instances, while the supervi-
sion label consist of the preference expressed by the user on
the given pair: xi ≻ xj if xi is to be preferred to xj , xi ≺ xj

vice versa. This approach is known as pairwise preference
learning since it is based on pairs of objects.
On the other hand, the task of relevance ranking consists
of sorting a set of objects with respect to a given criterion.
In learning to rank, the criterion is not predefined, but it
has to be adapted to the users’ needs. The two research ar-
eas of preference learning and learning to rank have shown
many interactions. In particular, the approach of Herbrich
et al. in [8], which is based on a binary classifier, is con-
sidered the first work on preference learning and learning
to rank. Recently, an increasing number of new algorithms
have been proposed to learn a scoring function for ranking
objects. Freund et al. [5] proposed RankBoost, an algo-
rithm based on a collaborative filtering approach. Burges
et al. [3] used a neural network to model the underlying
ranking function (RankNet). Similarly to the approach pro-
posed in this paper, it uses a gradient descent technique to
optimize a probabilistic cost function, the cross entropy. The
neural network is trained on pairs of training examples using
a modified backpropagation algorithm. It differs from the
method proposed in this paper for the weight-sharing scheme
and for the training set construction procedure. In [1], the
authors use a pairwise learning approach to train a SVM
model (SVMRank), while AdaRank [13] uses an AdaBoost-
based scheme to learn the preference function for ranking.
Finally, Zhe Cao et al. proposed ListNet [2], that, for the
first time, extends the pairwise approach to a listwise ap-
proach. In the latter approach, lists of objects are used as
instances for learning.

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 1

In this paper we propose SortNet, a ranking algorithm that
orders objects using a neural network as a “comparator”.
The neural network is trained by examples to learn a compa-
rison function that specifies for each pair of objects which is
the preferred one. The network is embedded into a sorting
algorithm to provide the ranking of a set of objects.

The comparator adopts a particular neural architecture that
allows us to implement the symmetries naturally present in
a preference function. The approximation capability of this
architecture has been studied proving that the comparator
is an universal approximator and it can implement a wide
class of functions. The comparator is trained by an itera-
tive procedure, which aims at selecting the most informative
patterns in the training set. In particular, at each iteration,
the neural network is trained only a subset of the original
training set. This subset is enlarged at each step by in-
cluding the miss-classified patterns. The procedures selects
the comparator that obtains the best performance on the
validation set during the learning procedure.

The proposed approach is evaluated using the LETOR (LEar-
ning TO Rank) dataset [10], which is a standard bench-
mark for the task of learning to rank. The comparison con-
siders several state-of-the-art ranking algorithms, such as
RankSVM [1], RankBoost [5], FRank [12], ListNet [2], and
AdaRank [13]. The paper is organized as follows. In the
next section, we introduce the neural network model along
with a brief mathematical description of its properties. In
Section 3, the whole SortNet algorithm based on the com-
parator is defined. In Section 4, we present the experimental
setup, the LETOR dataset, and some comparative experi-
mental results. Finally, in Section 5, some conclusions are
drawn.

2. THE NEURAL COMPARATOR
In the following, S is a set of objects described by a vector
of features. We assume that a preference relationship exists
between the objects and it is represented by the symbols ≻
and ≺. Thus, x ≻ y means that x is preferred to y while
x ≺ y that y is preferred to x. The purpose of the proposed
method is to learn by examples the partial order specified
by the preference relationship. The main idea is that of
designing a neural network N that processes a representation
of two objects x, y and produces an estimate of P (x ≻ y) and
P (x ≺ y). We will refer to the network as the “comparator”.
More formally, we will have

N≻(<x, y>) ≈ P (x ≻ y)

N≺(<x, y>) ≈ P (x ≺ y),

where <x, y>= [x1, . . . , xd, y1, . . . , yd] is the concatenation
of the feature vectors of objects x, y and N≻, N≺ denote
the two network outputs. Since the neural network approx-
imates a preference function, it is naturally to enforce the
following constraints on the outputs:

N≻(<x, y>) = N≺(<y, x>) . (1)

Equation (1) suggests that the outputs N≻ and N≺ must be
symmetrical with respect to the order of the examples in the
input pair. The comparator consists of a feedforward neural
network with one hidden layer, two outputs, implementing
N≻ and N≺, respectively, and 2d input neurons, where d is

the dimension of the object feature vectors (see Figure 1).
Let us assume that vxk,i (vyk,i) denotes the weight of the
connection from the input node xk (yk) 1 to the i-th hidden
node, wi,≻, wi,≺ represent the weights of the connections
from the i-th hidden to the output nodes, bi is the bias of
i-th hidden and b≻, b≺ are the output biases. The network

Figure 1: The comparator network architecture

architecture adopts a weight sharing mechanism in order to
ensure that the constraint (1) holds. For each hidden neuron
i, a dual neuron i′ exists whose weights are shared with i

according to the following schema:

1. vxk,i′ = vyk,i and vyk,i′ = vxk,i hold, i.e., the weights
from xk, yk to i are inverted in the connections to i′;

2. wi′,≻ = wi,≺ and wi′,≺ = wi,≻ hold, i.e., the weights
of the connections from hidden i to outputs ≻,≺ are
inverted in the connections leaving from i′;

3. bi = bi′ and b≻ = b≺ hold, i.e., the biases are shared
between the dual hiddens i and i′ and between the
outputs ≻ and ≺.

In order to study the properties of the above described ar-
chitecture, let us denote by hi(<x, y>) the output of the
i-th hidden neuron when the network is feeded on the pair
<x, y>. Then, using the weight–sharing rule in point 1, we
have

hi(<x, y>) = σ

X

k

(vxk,i xk + vyk,i yk) + bi

!

= σ

X

k

(vxk,i′ yk + vyk,i′ xk) + bi

!

= hi′(<y, x>)

where σ is the activation function of hidden units. Moreover,
let N≻(< x, y >) and N≺(< x, y >) represent the network
outputs. Then, by the rules in points 2 and 4, it follows

N≻(<x, y>) =

= σ

0

@

X

i,i′

(wi,≻ hi(<x, y>) + wi′,≻ hi′(<x, y>) + b≻

1

A

= σ

0

@

X

i,i′

(wi′,≺ hi′(<y, x>) + wi,≺ hi(<y, x>) + b≺

1

A

= N≺(<y, x>) ,

1Here, with an abuse of notation, xk represents the node
that is feeded with the k-th feature of x.

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 2

where we applied the fact that hi(<x, y>) = hi′(<y, x>)
as shown before. Thus, N≻(<x, y>) = N≺(<y, x>) holds,
which proves that the constraint of equation (1) is fulfilled
by the network output.

Approximation capability
It has been proved that three layered networks are universal
approximators [9, 6, 4]. Similarly, it can be shown that the
neural comparator described in this paper can approximate
up to any degree of precision most of the practically useful
functions that satisfy the constraint (1). Formally, let F be
a set of functions f : Rn → Rm, ‖ · ‖ be a norm on F and
σ be an activation function. The universal approximation
property, proved for three layered networks, states that for
any function f ∈ F and any real ε > 0, there exists a net-
work that implements a function N : Rn → Rm such that
‖f −N‖ ≤ ε holds. Different versions of this property have
been proved, according to the adopted function set F (e.g.,
the set of the continuous or the measurable functions), the
norm ‖·‖ (e.g., the infinity norm or a probability norm) and
the activation function σ (e.g., a sigmoidal or a threshold ac-
tivation function) [11]. The following theorem demonstrates
that the network with the proposed weight sharing man-
tains the universal approximation property provided that
we restrict the attention to the functions that satisfy the
constraint (1).

Theorem 2.1. Let F be a set of functions f : R2d → R2,
‖ · ‖ be a norm on F and σ be an activation function such
that the corresponding three layered neural network class has
the universal approximation property on F . Let us denote
by F the set of the functions k that belongs to F and, for
any <x, y>, fulfill

k≻(<x, y>) = k≺(<y, x>) (2)

where k≻, k≺denote the two components of the outputs of k.
Then, for any function f ∈ F and any real ε > 0, there
exists a three layered neural network satisfying the weight
sharing schema defined in points 1-4 such that

‖f − h‖ ≤ ε

holds, where h : R2d → R2 is the function implemented by
the neural network.

Proof. (sketch)
By the universal approximation hypothesis, there exists a
three layered neural network A that implements a function
r : R2d → R2 such ‖ f

2
− r‖ ≤ ε

2
, where f and ε are the func-

tion and the real of the hypothesis, respectively. Then, we
can construct another network B that has twice the hidden
nodes ofA. The indexes of hidden nodes of B are partitioned
into pairs i, i′. The neurons with index i are connected to
the input and to the outputs with the same weights as in
A: in other words, B contains A as a sub–network. On the
other hand, the weights of the hidden neurons with index i′

are defined following the weight sharing rules in points 1,2,
and 3. Finally, the biases of the outputs nodes in B are set
to twice the values of the biases in A.

Notice that, by construction, the network B satisfies all the
rules of points 1-4 and it is a good candidate to be the net-
work of the thesis. Moreover, B is composed by two sub–

networks, the sub-network identified by the hiddens i and
the sub–network identified by the hiddens i′. Let p1, p2 rep-
resent the functions that define the contribution to the out-
put by the former and the latter sub-networks, respectively.
Then, we can easily prove that p1 produces a contribution to
output which is equal to r(<x, y>), i.e., p1

≻(<x, y>) = r≻(<
x, y>) and p1

≺(<x, y>) = r≺(<x, y>). On the other hand,
p2 has a symmetrical behaviour with respect to r due to the
weight–sharing schema, i.e., p2

≻(<x, y>) = r≺(<y, x>) and
p2
≺(<x, y>) = r≻(<y, x>). Since, the output function h im-

plemented by B is given by the sum of the two components,
then

h≻(<x, y>) = p
1
≻(<x, y>) + p

2
≻(<x, y>) =

= r≻(<x, y>) + r≺(<y, x>) = 2r≻(<x, y>)

h≺(<x, y>) = p
1
≺(<x, y>) + p

2
≺(<x, y>) =

= r≺(<x, y>) + r≻(<y, x>) = 2r≺(<x, y>)

where we have used r≻(< x, y >) = r≺(< y, x >) that
holds by definition of r and f . Then, the thesis follows
straightforwardly by

‖f − h‖ = 2

‚

‚

‚

‚

f

2
−

h

2

‚

‚

‚

‚

= 2

‚

‚

‚

‚

f

2
− r

‚

‚

‚

‚

≤ ε

The training and the test phase
To train the comparator, a learning algorithm based on gra-
dient descent is used. For each pair of inputs <x, y>, the
assigned target is

t =



[1 0] if x ≻ y

[0 1] if x ≺ y
. (3)

and the error is measured by the squared error function

E(<x, y>) = (t1 −N≻(<x, y>))2 + (t2 −N≺(<x, y>))2 .

After training, the comparator can be used to predict the
preference relationship between any pair of objects. For-
mally, we can define ≻,≺ by

x ≻ y if N≻(<x, y>) > N≺(<x, y>)

x ≺ y if N≺(<x, y>) > N≻(<x, y>) .

Notice that this approach cannot ensure that the predicted
relationship defines a total order, since the transitivity prop-
erty may not hold

Transitivity: x ≻ y and y ≻ z =⇒ x ≻ z .

However, the experimental results show that the neural net-
work can easily learn the transitivity relation provided that
the training set supports its validity.

3. THE SORTING ALGORITHM
The neural comparator is employed to provide a ranking of
a set of objects. In particular, the objects are ranked by a
common sorting algorithm that exploits the neural network
as a comparison function. In this case, the time compu-
tational cost of the ranking is mainly due to the sorting
algorithm, so that the objects can be ranked in O(n log n).

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 3

It is worth mentioning that the obtained ranking may de-
pend on the initial order of the objects and on the adopted
sorting algorithm, since we cannot ensure that the relation
≻ is transitive. However, in our experiments, the same sort-
ing algorithm was applied to different shufflings of the same
objects and different sorting algorithms were used on the
same set of objects. The obtained orderings were the same
in most of the cases and seldom they differed only by a very
small number of object positions (1− 5 over 1000).

3.1 The incremental learning procedure
Let us assume that a function RankQuality is available
to measure the quality of a given ranking. Some possible
choices for this measure are described in the following sub-
section. It is worth noticing that the quality of a given
ranked list roughly depends on how many pairs of objects
are correctly ordered. In fact, the comparator neural net-
work is trained using the square error function E, that forces
the network outputs to be close to the desired targets. When
the comparator produces a perfect classification of any in-
put pair, also the ranking algorithm yields a perfect sorting
of the objects. However, in general, the optimization of the
square error does not necessarily correspond to a good rank-
ing if the example pairs in the training set are not properly
chosen.

In order to optimize the selection of the training pairs with
the aim of improving the ranking performance of the algo-
rithm by using a minimal number of training examples, we
defined an incremental learning procedure to train the com-
parator. This procedure aims at constructing the training
set incrementally by selecting only the pairs of objects that
are likely to be relevant for the goal of obtaining a good
ranking. This technique allows us to optimize the size of the
training set avoiding the need to consider all the possible
pairs of the available objects. This method is somehow re-
lated to active learning algorithms, where the learning agent
is allowed to prompt the supervisor for providing the most
promising examples.

Given the set of objects T and V , that can be used as train-
ing and validation sets, respectively, at each iteration i a
comparator Ci is trained using two subsets TP ⊂ T×T×{≺
,≻}, V P ⊂ V × V × {≺,≻} that contain the current train-
ing and validation pairs of the form x ≻ y or x ≺ y. In
particular TP contains the pairs that are used to train the
comparator, while V P is used as validation set for the neural
network training procedure. The trained comparator neural
network Ci+1 is used to sort the objects in T and V and
the objects pairs that have been mis-compared by the com-
parator when producing the Ri

T are added to the subsets
TP , V P obtaining the training and validation sets for the
next iteration. The procedure is repeated until a maximum
number of iterations is reached or until there is no difference
in the sets TP and V P between two consecutive iterations.
The output of the incremental training is the comparator
network C∗ that yields the best performance on the valida-
tion set during the iterations.

The algorithm is formally described in figure 3.1. At the be-
ginning, the neural comparator is randomly initialized and
TP and V P are empty. At each iteration i, the whole la-
beled object set T is ranked using the comparator Ci (line

Algorithm 3.1 The SortNet algorithm

1: T ← Set of training objects

2: V ← Set of validation objects

3: C0 ← randomInit();
4: TP ← {};
5: V P ← {};
6: for i = 0 to max iter do
7: [TPi , Ri

T]← Sort(Ci, T);
8: [V Pi , Ri

V]← Sort(Ci, V);
9: score← RankQuality(Ri

V);
10: if score > best score then
11: best score← score;
12: C∗ ← Ci;
13: end if
14: if TPi ⊆ TP and V Pi ⊆ V P then
15: return C∗;
16: end if
17: TP ← TP ∪ TPi;
18: V P ← V P ∪ V Pi;
19: Ci+1 ← TrainAndV alidate(TP, V P);
20: end for
21: return C∗;

7). The sorting algorithm returns Ri
T , that is the ranking of

the training examples and TPi, the set of the objects pairs
that have been mis-compared by the comparator used in the
sorting algorithm to produce Ri

T . In detail, the sorting algo-
rithm employs Ci in |T | × log (|T |) pairwise comparisons to
produce Ri

T , where |T | indicates the size of T : the objects
pairs for which the Ci output differs from the known cor-
rect order are inserted in TPi. The known relative position
for the two objects in the pair is available in the set T by
exploiting the fact that relevant objects should precede not
relevant objects. Subsequently, in a similar way, Ci is also
used to rank the validation set (line 8), producing a ranking
Ri

V and a set of misclassified pairs V Pi. Then, the set of
misclassified pairs TPi are added to the current learning set
TP , removing the eventual duplicates (line 14). Similarly,
the pairs in the set V Pi are inserted into V P (line 15). A
new neural network comparator Ci+1 is trained at each iter-
ation using the current training and validation sets, TP and
V P (line 16). More precisely, the neural network training
lasts for a predefined number of epochs on the training set
TP . The selected comparator is the one that achieves the
best result, over all the epochs, on the validation set V P .

3.2 Measures of ranking quality
At each iteration, the quality of the ranking Ri

V over the
validation set is evaluated by the RankQuality function and
the model achieving the best performance (C∗) is stored
(lines 9 − 13). In this work, the following three ranking
measures, proposed in the LETOR report [10], were used.

• Precision at position n (P@n) — This value mea-
sures the relevance of the top n results of the ranking
list with respect to a given query.

P@n =
relevant docs in top n results

n

• Mean average precision (MAP) — Given a query

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 4

q, the average precision is

APq =

PNq

n=1 P@n · rel(n)

total relevant docs for q

where Nq is the number of documents in the result set
of q and rel(n) is 1 if the n-th document in the order-
ing is relevant and 0 otherwise. Thus, APq averages
the values of P@n over the positions n of the relevant
documents. Finally, the MAP value is computed as
the mean of APq over the set of all queries.

• Normalized discount cumulative gain (NDCG@n)
— This measure exploits an esplicit rating of the doc-
uments in the list. The NDCG value of a ranking list
at position n is calculated as

NDCG@n ≡ Zn

n
X

j=1

2rj − 1

log(1 + j)

where rj is the rating of the j-th document2, and Zn

is a normalization factor chosen such that the ideal
ordering (the DGC-maximizing one) gets a NDCG@n
score of 1.

The measure can be choosen according to the user require-
ments. For example, if an information retrieval system dis-
plays only the best k documents, then P@k might be the
preferred measure. If, on the other hand, the user is in-
terested on an overall precision of the results, then MAP

might be the best choice. Obviously, the selection of a mea-
sure to implement RankQuality affects the performance of
the model on the test set: for example, by selecting the
P@k measure, we will obtain a model producing high values
of P@k but not optimal values of MAP .

4. EXPERIMENTAL RESULTS
The proposed approach has been validated on two bench-
marks, TD2003 and TD2004, which are included in the
LETOR dataset [10] (LEarning TO Rank)3. The bench-
marks contain query-document pairs collected from TREC
(Text REtrieval Conference). TD2003 consists of 50 sets of
documents, each one containing 1000 documents returned in
response to a query. Similarly, TD2004 contains 75 sets of
documents corresponding to different queries. The datasets
are partitioned into five subsets in order to allow a com-
parison of different approaches by 5-fold cross-validation: in
each experiment, one of the subsets is used for the test, one
for validation purposes and three subsets for the training
procedure. Each query-document pair is represented by 44
values which include several features commonly used in in-
formation retrieval. The features also contain a label that
specifies whether the document is relevant R or not relevant
NR with respect to the query. For all queries, the relevant
documents are roughly 1% of whole set of documents.

In the reported experiments, the training set was built by
considering all the pairs <x, y> of documents, where x be-
longs to one of the two relevance classes (R and NR) and y

2Here, it is assumed that rj ≥ 0 and smaller values indicate
less relevance.
3The dataset was released by Microsoft Re-
search Asia and is available on line at
http://research.microsoft.com/users/LETOR/

belongs to the other class. The corresponding targets were

t =



[1 0] if x ∈ R and y ∈ NR

[0 1] if y ∈ R and x ∈ NR

The features were normalized to the range [−1, +1] with zero
mean. More precisely, let Ni be the number of documents
returned in response to the i-th query, and let us denote by
x̂i

j,r the normalized r-th feature of the j-th document of the
i-th query, then,

x̂
i
j,r =

xi
j,r − µi

r

maxs=1,...,ni
|xi

s,r|
, (4)

where xi
j,r is the original document feature and µi

r =
PNi

s=1
xi

s,r

Ni
.

In the set of experiments, the documents of the datasets
were ranked using the SortNet algorithm. In this setting, a
good ranking is characterized by the presence of the relevant
documents in the top positions and it was evaluated by the
three measures P@n, MAP and NDCG@n. The results ob-
tained by our approach were compared to those achieved by
the methods reported in [10], i.e., RankSVM [1], RankBoost
[5], FRank [12], ListNet [2] and AdaRank [13].

As first trial, we tested the SortNet algorithm varying the
number of hidden neurons in [10, 20, 30] to select the best
architecture for the TD2003 and for the TD2004 datasets.
In this first set of experiments, the MAP score was used
as RankQuality function (line 9 in algorithm 3.1). Table 1
reports the performances of the three architectures on the
test set. The results on the validation set reflect the perfor-
mances reported in Table 1 on the test set. Thus, for the
subsequent experiments, we selected a 10-hidden compara-
tor for the TD2003 dataset and a 20-hidden comparator for
the TD2004 dataset.

After the selection of the best neural network architecture
of the comparator, we performed a set of experiments to
compare the performances of SortNet with the methods re-
ported in [10]. In particular, we ran the algorithm on the
TD2003 and TD2004 datasets setting max iter = 20 and us-
ing MAP and P@10 as RankQuality function. Figure 2 and
the Tables 2 (a-b) show that, on the TD2004 dataset, the
SortNet algorithm clearly outperforms all the other meth-
ods. On TD2003, the SortNet method reports values of
MAP and P@n similar to the results of the AdaRank and
RankBoost. In the figure 3, we report the plot of the MAP

value on the validation set at each training iteration: this
plot clearly shows that convergence is reached before the
maximum number of iterations.

During the experiments on the TD2003 dataset, however,
we noticed a particular behaviour of the algorithm: at each
iteration, the performances on the validation set sligthly dif-
fered from the performances on the training set and test set.
In particular, when the algorithm reported high values for
MAP and P@n for the validation set, the MAP and P@n

on the test set and the training set were low, and viceversa.
This could mean that the distribution of data in the valida-
tion clearly differs from the test set and from the training
set. This observation is also supported by the fact that in
the TD2003 experiments, the neural architecture reporting
the best performances has a smaller number of neurons than

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 5

(a) NDCG@n

TD2003 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10
SortNet 10 Hiddens 0,34 0,36 0,35 0,33 0,33 0,33 0,34 0,34 0,33 0,34
SortNet 20 Hiddens 0,3 0,31 0,3 0,3 0,29 0,28 0,28 0,27 0,27 0,27
SortNet 30 Hiddens 0,36 0,29 0,29 0,28 0,27 0,27 0,28 0,27 0,27 0,28

TD2004 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10
SortNet 10 Hiddens 0,47 0,49 0,47 0,47 0,47 0,47 0,48 0,48 0,49 0,49
SortNet 20 Hiddens 0,47 0,54 0,54 0,52 0,52 0,53 0,53 0,54 0,54 0,55
SortNet 30 Hiddens 0,47 0,5 0,5 0,49 0,48 0,49 0,49 0,5 0,5 0,5

(b) P@n

TD2003 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10
SortNet 10 Hiddens 0,34 0,34 0,29 0,25 0,24 0,23 0,23 0,21 0,2 0,19
SortNet 20 Hiddens 0,3 0,3 0,27 0,25 0,22 0,2 0,19 0,17 0,16 0,15
SortNet 30 Hiddens 0,36 0,28 0,27 0,23 0,21 0,19 0,19 0,18 0,17 0,17

TD2004 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10
SortNet 10 Hiddens 0,47 0,45 0,39 0,37 0,35 0,33 0,32 0,3 0,28 0,27
SortNet 20 Hiddens 0,47 0,5 0,46 0,42 0,38 0,38 0,35 0,33 0,32 0,3
SortNet 30 Hiddens 0,47 0,47 0,42 0,38 0,35 0,34 0,32 0,31 0,28 0,26

(c) MAP

TD2003 MAP
SortNet 10 Hiddens 0,23
SortNet 20 Hiddens 0,2
SortNet 30 Hiddens 0,21

TD2004 MAP
SortNet 10 Hiddens 0,41
SortNet 20 Hiddens 0,45
SortNet 30 Hiddens 0,41

Table 1: The results achieved on TREC2003 and TD2004 varying the hidden neuron number: (a) NDCG@n,
(b) P@n and (c) MAP. The algorithm uses MAP as RankQuality function.

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 6

(a) TREC2003

NDCG n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10
RankBoost 0,26 0,28 0,27 0,27 0,28 0,28 0,29 0,28 0,28 0,29
RankSVM 0,42 0,37 0,38 0,36 0,35 0,34 0,34 0,34 0,34 0,34
Frank-c19.0 0,44 0,39 0,37 0,34 0,33 0,33 0,33 0,33 0,34 0,34
ListNet 0,46 0,43 0,41 0,39 0,38 0,39 0,38 0,37 0,38 0,37
AdaRank. MAP 0,42 0,32 0,29 0,27 0,24 0,23 0,22 0,21 0,2 0,19
AdaRank. NDCG 0,52 0,41 0,37 0,35 0,33 0,31 0,3 0,29 0,28 0,27
SortNet 10 Hiddens MAP 0,38 0,3 0,28 0,29 0,29 0,3 0,29 0,29 0,29 0,28
SortNet 10 Hiddens P@10 0,32 0,32 0,31 0,31 0,3 0,3 0,29 0,3 0,31 0,31

P@n n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10
RankBoost 0,26 0,27 0,24 0,23 0,22 0,21 0,21 0,19 0,18 0,18
RankSVM 0,42 0,35 0,34 0,3 0,26 0,24 0,23 0,23 0,22 0,21
Frank-c19 0,44 0,37 0,32 0,26 0,23 0,22 0,21 0,21 0,2 0,19
ListNet 0,46 0,42 0,36 0,31 0,29 0,28 0,26 0,24 0,23 0,22
AdaRank. MAP 0,42 0,31 0,27 0,23 0,19 0,16 0,14 0,13 0,11 0,1
AdaRank. NDCG 0,52 0,4 0,35 0,31 0,27 0,24 0,21 0,19 0,17 0,16
SortNet 10 Hiddens MAP 0,38 0,29 0,25 0,25 0,24 0,24 0,21 0,2 0,18 0,17
SortNet 10 Hiddens P@10 0,32 0,31 0,29 0,27 0,25 0,23 0,21 0,21 0,2 0,2

(b) TREC2004

NDCG n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10
RankBoost 0,48 0,47 0,46 0,44 0,44 0,45 0,46 0,46 0,46 0,47
RankSVM 0,44 0,43 0,41 0,41 0,39 0,4 0,41 0,41 0,41 0,42
FRank 0,44 0,47 0,45 0,43 0,44 0,45 0,46 0,45 0,46 0,47
ListNet 0,44 0,43 0,44 0,42 0,42 0,42 0,43 0,45 0,46 0,46
AdaRank.MAP 0,41 0,39 0,4 0,39 0,39 0,4 0,4 0,4 0,4 0,41
AdaRank.NDCG 0,36 0,36 0,38 0,38 0,38 0,38 0,38 0,38 0,39 0,39
SortNet 20 Hiddens MAP 0,48 0,52 0,53 0,5 0,5 0,5 0,49 0,5 0,51 0,51
SortNet 20 Hiddens P@10 0,43 0,5 0,47 0,47 0,46 0,47 0,47 0,48 0,48 0,49

P@n n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10
RankBoost 0,48 0,45 0,4 0,35 0,32 0,3 0,29 0,28 0,26 0,25
RankSVM 0,44 0,41 0,35 0,33 0,29 0,27 0,26 0,25 0,24 0,23
FRank 0,44 0,43 0,39 0,34 0,32 0,31 0,3 0,27 0,26 0,26
ListNet 0,44 0,41 0,4 0,36 0,33 0,31 0,3 0,29 0,28 0,26
AdaRank.MAP 0,41 0,35 0,34 0,3 0,29 0,28 0,26 0,24 0,23 0,22
AdaRank.NDCG 0,36 0,32 0,33 0,3 0,28 0,26 0,24 0,23 0,22 0,21
SortNet 20 Hiddens MAP 0,48 0,49 0,46 0,4 0,36 0,34 0,3 0,29 0,28 0,27
SortNet 20 Hiddens P@10 0,43 0,46 0,39 0,37 0,34 0,32 0,29 0,29 0,28 0,27

Table 2: The results achieved on (a) TREC2003 and (b) TD2004.

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 7

(a) TREC2003

(b) TREC2004

Figure 2: MAP on TREC2003 and TD2004.

the best one in the TD2004.

Figure 3: Trend of MAP on the validation set during
the training process for the TREC2003 and TD2004
datasets.

5. CONCLUSIONS
In this paper a neural-based learning-to-rank algorithm has
been proposed. A neural network is trained by examples to
decide which of two objects is preferable. The learning set is
selected by an iterative procedure which aims to maximize
the quality of the ranking. The network adopts a weight
sharing schema to ensure that the outputs satisfy logical
symmetries which are desirable in an ordering relationship.
Moreover, we proved that such a connectionist architecture
is a universal approximator.

In order to evaluate the performances of the proposed algo-
rithm, experiments were performed using the datasets TD2003
and TD2004. The results show that our approach outper-
forms the current state of the art methods on TD2004 and is
comparable to other techniques on TD2003. It is also argued
that a difference on the distribution of the patterns between
the validation and the training and the test set of TD2003
may be responsible for some limitations on the performance
of our and other algorithms.

Matters of future research include a wider experimentation
of the approach and the study of different learning proce-
dures to improve the performance of the method.

6. REFERENCES
[1] Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y. Huang, and H.-W.

Hon. Adapting ranking SVM to document retrieval. In
Proceedings of ACM SIGIR 2006, pages 186–193, New
York, NY, USA, 2006. ACM.

[2] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li.
Learning to rank: from pairwise approach to listwise
approach. In Proceedings of ICML 2007, pages
129–136, New York, NY, USA, 2007. ACM.

[3] E. A. M. N. C.Burges, T.Shaked and G.Hullender.
Learning to rank using gradient descent. In
Proceedings of the International Conference on
Machine Learning (ICML), pages 89–96, Madison, US,
2005.

[4] G. Cybenko. Approximation by superpositions of a
sigmoidal function. Mathematics of Control, Signals,
and Systems, 3:303–314, 1989.

[5] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An
efficient boosting algorithm for combining preferences.
In J. W. Shavlik, editor, Proceedings of ICML’98,
pages 170–178. Morgan Kaufmann Publishers, San
Francisco, USA, 1998.

[6] K. Funahashi. On the approximate realization of
continuous mappings by neural networks. Neural
networks, 2:183–192, 1989.

[7] J. Furnkranz and E. Hullermeier. Preference learning.
Kunstliche Intelligenz, 2005.

[8] R. Herbrich, T. Graepel, P. Bollmann-Sdorra, and
K. Obermayer. Learning a preference relation for
information retrieval. In In Proceedings of the AAAI
Workshop Text Categorization and Machine Learning,
1998.

[9] K. Hornik, M. Stinchcombe, and H. White. Multilayer
feedforward networks are universal approximators.
Neural networks, 2:359–366, 1989.

[10] T.-Y. Liu, J. Xu, T. Qin, W. Xiong, and H. Li.
LETOR: Benchmarking learning to rank for
information retrieval. In SIGIR 2007 – Workshop on
Learning to Rank for Information Retrieval,
Amsterdam, The Netherlands, 2007.

[11] F. Scarselli and A. C. Tsoi. Universal approximation
using feedforward neural networks: a survey of some
existing methods, and some new results. Neural
networks, pages 15–37, 1998.

[12] M.-F. Tsai, T.-Y. Liu, T. Qin, H.-H. Chen, and W.-Y.
Ma. FRank: a ranking method with fidelity loss. In
Proceedings of the ACM SIGIR 2007, pages 383–390,
New York, NY, USA, 2007. ACM.

[13] J. Xu and H. Li. AdaRank: a boosting algorithm for
information retrieval. In Proceedings of ACM SIGIR
2007, pages 391–398, New York, NY, USA, 2007.
ACM.

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 8

Query-Level Learning to Rank Using Isotonic Regression

Zhaohui Zheng† Hongyuan Zha? Gordon Sun†

†Yahoo! Inc.
701 First Avene

Sunnyvale, CA 94089
zhaohui,gzsun@yahoo-inc.com

?College of Computing
Georgia Institute of Technology

Atlanta, GA 30032
zha@cc.gatech.edu

ABSTRACT
In an IR system, ranking functions determine the relevance
of search results of search engines, and learning ranking
functions has become an active research area at the inter-
face between Web search, information retrieval and machine
learning. Most existing learning to rank methods, however,
ignore the query boundaries, thus treating the labeled data
or preference data equally across queries. In this paper, we
propose a minimum effort optimization method that takes
into account the entire training data within a query at each
iteration. We tackle this optimization problem using func-
tional iterative methods where the update at each iteration
is computed by solving an isotonic regression problem. This
more global approach results in faster convergency and sign-
ficantly improved performance of the learned ranking func-
tions over the state-of-the-art methods. We demonstrate the
effectiveness of the proposed method using publicly available
benchmark data.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval; I.2.6 [Artificial Intelligence]:
Learning; D.2.8 [Software Engineering]: Metrics—com-
plexity measures, performance measures

General Terms
Algorithms, Experiments, Theory

Keywords
Ranking functions, learning to rank, minimum effort opti-
mization, labeled data, preference data, user clickthrough,
isotonic regression

1. INTRODUCTION

SIGIR ’08 Workshop

Search engines are essential tools for finding and explor-
ing information on the Web and other information systems.
To a large extent the quality of a search engine is deter-
mined by the ranking function used to produce the search
results in response to user queries. Research and experi-
ments in information retrieval in the past have produced
many fundamental methodologies and algorithms including
vector space models, probabilistic models and the language
modeling-based methodology [21, 20, 4]. More recently, ma-
chine learning approaches for learning ranking functions gen-
erated much renewed interest from the Web search and in-
formation retrieval community as well as the machine learn-
ing community. It has the promise of improved relevancy of
search engines and reduced demand for manual parameter
tuning [19].

Several machine learning methods for learning to rank have
been proposed and we will present a brief review in the next
section. Most of the methods are based on the supervised
learning paradigm and requires training data which come
mostly in two different forms: 1) absolute relevance judg-
ments assessing the degree of relevance of a document with
respect to a query. This type of labeled data are usually
obtained from explicit relevance assessment by human ed-
itors, where labels or grades indicating degree of relevance
are assigned to documents with respect to a query. For ex-
ample, a judge can assign a label to a document from the
ordinal set Perfect, Excellent, Good, Fair, Bad; and 2) rela-
tive relevance judgments, also known as pairwise preference
data, indicating that a document is more relevant than an-
other with respect to a query [16, 17, 27]. Collecting the
first type of data is labor-intensive while the second type of
data can be generated from potentially unlimited supplies
of user clickthrough data and they also have the advantage
of capturing user searching behaviors and preferences in a
more timely manner [16, 17, 22]. Moreover, it is also easy
to convert labeled data into pairwise preference data.

In this paper, we focus on novel machine learning meth-
ods for learning ranking functions from the two types of
relevance judgments. Unlike most existing learning to rank
methods, we emphasize the importance of appropriately treat-
ing the training data within a query as a whole rather than
ignoring the query boundaries. This is a point similar to

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 9

that of exploring query difference in learning to rank dis-
cussed in [26], and it is also in the same spirit as some of the
recently proposed listwise learning to rank methods [8].

In particular, we consider either the labeled or preference
training data within a query as a set of constraints on the
ranking function to be learned. Starting with an arbitrary
ranking function, some of the constraints within this set will
be violated, we need to modify the ranking function to con-
form to this set of constraints as much as possible. There are
many possible ways to achieve this goal. In this paper, we
propose the minimum effort optimization principle: at each
iteration, we should spend the least amount of effort to per-
turbed the current ranking function so as to satisfy this set
of constraints within a query as much as possible. As we will
see, this formulation not only leads to a tractable quadratic
optimization problem, it also has convergence ramifications
for the overall optimization approach for learning the rank-
ing functions. It turns out that the minimum effort opti-
mization at each iterative step can be computed by solving
an isotonic regression problem. Furthermore, the associated
quadratic programming problem takes into account the en-
tire preference data within a query. More importantly, the
proposed approach also delivers comparable or significantly
improved performance of the learned ranking functions over
existing state-of-the-art methods. This will be illustrated in
the experimental study using data from a commercial search
engine as well as data from publicly available sources.

The rest of the paper is organized as follows: in section
2, we review previous work on the topic of learning ranking
functions especially its applications in learning ranking func-
tions for information retrieval and Web search. In section
4, we give the precise formulation of the learning problem
and specify an iterative method for its solution based on
a minimum effort principle. We introduce isotonic regres-
sion as a means for computing the updates in the iterative
method. In section 5, we describe experimental studies us-
ing publicly available data as well as data from a commercial
search engine. In the last section, we conclude and point out
directions for further investigations.

2. RELATED WORK
The notion of learning ranking functions in information re-
trieval can be traced back to the work of Fuhr and cowork-
ers [12, 13, 14]. They proposed the use of feature-oriented
methods for probabilistic indexing and retrieval whereby fea-
tures of query-document pairs such as the number of query
terms, length of the document text, term frequencies for the
terms in the query, are extracted, and least-squares regres-
sion methods and decision-trees are used for learning the
ranking functions based on a set of query-document pairs
represented as feature vectors with relevance assessment [12,
13, 14]. In a related work, Cooper and coworkers have de-
veloped similar approaches and used logistic regression to
build the ranking functions and experimented with several
retrieval tasks in TREC [9].

With the advance of the World Wide Web, learning ranking
functions has emerged as a rapidly growing area of research
in the information retrieval, Web search as well as machine
learning communities. Earlier works in this active area in-
clude: RankSVM based on linear SVM for learning ranking

functions [16, 17, 18]. RankNet, developed by a group from
Microsoft Research, proposed an optimization approach us-
ing an objective function based on Bradley-Terry models for
paired comparisons and explored neural networks for learn-
ing the ranking functions [6]. RankBoost discussed in [10],
using ideas of Adaboost for learning ranking functions based
weak learners that can handle preference data.

Most recently, there is an explosion of research in the gen-
eral area of learning ranking functions and its applications
in information retrieval and Web search: machine learning
algorithms for a variety of objective functions that more
closely match the metrics used in information retrieval and
Web search [7, 23, 25]; learning from pairwise preference
data using gradient boosting framework [27, 28]; and ex-
tending pairwise preference learning to list learning [8]. The
workshop learning to rank for information retrieval at SI-
GIR 2007 summarizes many of the recent advances in this
field [19].

3. TRAINING DATA FORMATS
Before we discuss learning to rank in more detail, we first
describe the formats of the training data we will use for
the learning process. We represent each query-document
pair (q, d) by a feature vector, generically denoted by x, and
in Section 5 we discuss the details on extraction of query-
document features. For query q, we have several associated
documents d1, . . . , dn, and the corresponding relevance judg-
ments either in the form of preference data or labeled data.

First, to describe the setting for the preference data more
precisely, let Sq be a subset of the index set Pn ≡ {(i, j), i, j =
1, . . . , n}. We assume (i, j) ∈ Sq represents the preference
data stating that di is more relevant than dj with respect
to the query q. Let xi be the feature vector for (q, di), we
represent the above preference dat as xi � xj , (i, j) ∈ Sq,
i.e., document di should be ranked higher than document
dj with respect to the query q. Second, we will convert la-
beled data into preference data in the following way: given
a query q and two documents dxi and dj . Let the feature
vectors for (q, di) and (q, dj) be xi and xj , respectively. If
di has a higher (or better) grade than dj , we include the
preference xi � xj while if dj has a higher grade than di, we
include the preference xj � xi.

The training data involve a set of queries Q = {q1, . . . , qQ},
their associated documents and their relevance judgments.
We use x1, . . . , xN to represent the feature vectors for all
the query-document pairs in the training set, and denote
the associated set of preferences (or converted preferences)
as a subset S ⊂ PN . We write the training set concisely as

T = {〈xi, xj〉 | xi � xj , (i, j) ∈ S}, (1)

which can also be written as T = ∪Qi=1Sqi . Notice that each
preference involves two query-document pairs corresponding
to the same query.

4. MINIMUM EFFORT OPTIMIZATION
Given a query q and the associated d1, . . . , dn, a ranking
function ranks those documents according to the functions
values h(x1), . . . , h(xn), say, di should be ranked higher than
dj if h(xi) ≥ h(xj). For a ranking function h, how do learn
such a ranking function from the training set T ?

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 10

4.1 Functional iterative methods
Our strategy for learning to rank from T is based on func-
tional iterative methods. We assume we have a function
class H which is closed under summation. We start with
an initial guess h0(x) ∈ H, and at each step m = 1, 2, . . . ,
we compute an update gm(x) ∈ H to obtain the next iter-
ate hm+1 = hm(x) + gm(x). The basic idea for computing
gm(x) is the following: for the current iterate hm(x), when
considering all the query q ∈ Q, some of the pairs in S are
consistent, i.e., hm(xi) ≥ hm(xj), and the rest becomes con-
tradicting pairs, i.e, h(xi) < h(xj). We modify the functions
values at xi from

h(xi)⇒ h(xi) + δi, i = 1, . . . , N

so that the new set of values h(xi) + δi are consistent with
T , i.e.,

h(xi) + δi ≥ h(xj) + δj , (i, j) ∈ S.

We then find gm(x) ∈ H so that gm(xi) ≈ δi, i = 1, . . . , N
in the least squares sense, for example. This least square
fitting can be done by using the gradient boosting trees [11].

4.2 Computing updates using isotonic regres-
sion

Generally, there are many ways to make the values h(xi)+δi
be consistent with T . But large values of δi may give rise
to gm(x) that result in problems in the convergence of the
functional iterative algorithm (generally, one needs to con-
trol the step size at each iteration in an iterative algorithm
in order for the algorithm to converge [5]). Our basic idea
is to achieve consistency with T with as small as possible a
set of δi.

Recall that the set of preferences are always among doc-
uments for the same query, documents are not compara-
ble across queries. Therefore, the computation of δi decou-
ples into several subproblems each for a single query in Q,
i.e., each based on one Sq. Without loss of generality, let
x1, . . . , xn belong to a single query q, and xi � xj where
(i, j) ∈ Sq and Sq is a subset of Pn. Given the current it-
erate hm(x), we update hm(xi) to hm(xi) + δi and compute
the δi by solving the following optimization problem,

min
δi

nX
i=1

δ2i (2)

subject to

hm(xi) + δi ≥ hm(xj) + δj (i, j) ∈ Sq.

This quadratic programming problem is known as isotonic
regression in the statistic literature [2]. It is generally used
for computing isotonic regression functions. Several special
numerical methods have been proposed for solving (2), in
particular, when Sq ≡ Pn, i.e., we have constraints such as

hm(x1) + δ1 ≥ hm(x2) + δ2 ≥ · · · ≥ hm(xn) + δn,

(2) can be solved with computational complexity O(n) using
the so-called Pool-Adjacent-Violator (PAV) Algorithm [2].
This is important because for the preference data converted
from labeled data, the constraints for each query is of the
above form (see section 4.1.1). For general Sq, (2) can be
solved with computational complexity O(n2) [3].

4.3 Incorporating margins
In case the grade difference for each preference pair is avail-
able, we can use it as margin to enhance the constraints in
(2). We now have the following optimization problem,

min
δi

nX
i=1

δ2i + λnζ2 (3)

subject to

h(xi) + δi ≥ h(xj) + δj + ∆Gij(1− ζ), (i, j) ∈ Sq.

ζ ≥ 0.

Here ∆Gij is the margin, set to be the grade difference be-
tween xi and xj when we have the corresponding labels and
simply 1.0 otherwise;1 We also use ζ as a slack variable al-
lowing softening the constraints imposed by Gij ; λ is the
regularization parameter balancing the two requirements in
the objective function. We suspect that methods in [3] can
be extended to solve (3) with complexity O(n2), but for
the present we treat (3) as a convex quadratic program-
ming problem which can be solved with complexity O(n3)
[5]. Fortunately, in our context n is relatively small and all
the quadratic programming problems across the queries can
be solved in parallel.

4.4 IsoRank
We choose the function classH to be sums of regression trees
which has been widely used in gradient boosting methods
[11]. Once δi are computed, we fit a regression tree gm(x) to

minimize
PN
i=1(gm(xi)− δi)2 [11]. We call the overall algo-

rithm ranking with isotonic regression (IsoRank) and sum-
marize it in the following

Algorithm 1 IsoRank

Input: A set of pairwise preference data T in (1).
Output: A ranking function hmax(x).
Start with an initial guess h0, for m = 1, 2, . . . ,mmax,

1. Compute δi, i = 1, . . . , N by solving the isotonic re-
gression problem (3).
2. Fit a regression tree gm(x) so that gm(xi) ≈ δi.
3. Update hm+1 = hm(x) + ηgm(x).

There are mainly three parameters in this algorithm: the
number of trees mmax, the number of leaf nodes for each
regression tree, and the shrinkage factor η. The number of
leaf nodes is related to number of features to use in each
regression and is usually set to be a small integer number
around 5-20. The shrinkage factor η controls the step size
along the direction gm(x) in the iterative step and is set to
be small real number around 0.05-0.1. The iteration number
mmax is computed by cross-validation.

Remark. A theoretical analysis of the convergence behavior
of IsoRank is out of the scope of the current paper. Intu-
itively, if gm(x) fits the data (xi, δi), i = 1, . . . , N with high
accuracy, then hm+1(x) will be consistent with many of the
pairs in T . Empirically, we have also observed almost mono-
tonic decreasing of the total number of contradicting pairs
on the training set as m increases (see section 4.3).

1For example, we can map the set of labels {Perfect, Excel-
lent, Good, Fair, Bad} to the set of grades {5, 4, 3, 2, 1}.

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 11

5. EXPERIMENTAL RESULTS
In this section, we describe the results of an experimental
study. We carry out several experiments illustrating the
properties and effectiveness of IsoRank. We also compare
its performance with some existing algorithms for learning
ranking functions. We use LETOR, which is a publicly avail-
able benchmark data collection used for comparing learning
to rank algorithms [19].

LETOR was derived from the existing data sets widely used
in IR, namely, OHSUMED and TREC data sets. The data
contain queries, the contents of the retrieved documents,
and human judgments on the relevance of the documents
with respect to the queries. Various features have been ex-
tracted including both conventional features, such as term
frequency, inverse document frequency, BM25 scores, and
language models for IR, and features proposed recently such
as HostRank, feature propagation, and topical PageRank.
The package of LETOR contains the extracted features,
queries, and relevance judgments. The results of several
state-of-the-arts learning to rank algorithms, e.g., RankSVM,
RankBoost, AdaRank, Multiple hyperline ranker, FRank,
and ListNet, on the data sets are also included in that pack-
age.

5.1 Letor data collection
OHSUMED. The OHSUMED data set is a subset of the
MEDLINE database, which is popular in the information
retrieval community. This data set contains 106 queries.
The documents are manually labeled with absolute rele-
vance judgements with respect to the queries. There are
three levels of relevance judgments in the data set: def-
initely relevant, possibly relevant and not relevant. Each
query-document pair is represented by a 25-dimensional fea-
ture vector. The total number of query-document pairs is
16,140, among which 11,303 are not relevant, 2585 are pos-
sibly relevant, and 2252 are definitely relevant.

TREC2003. This data set is extracted from the topic dis-
tillation task of TREC20032. The goal of the topic distil-
lation task is to find good websites about the query topic.
There are 50 queries in this data set. For each query, the
human assessors decide whether a web page is an relevant
result for the query, so two levels of relevance are used: rel-
evant and not relevant. The documents in the TREC2003
data set are crawled from the .gov websites, so the fea-
tures extracted by link analysis are also used to represent
the query-document pair in addition to the content features
used in the OHSUMED data set. The total number of fea-
tures are 44 and total number of query-document pairs is
49,171: 516 relevant examples and 48,655 non-relevant ex-
amples.

TREC2004. This data set is extracted from the data set of
the topic distillation task of TREC2004, so it is very similar
to the TREC2003 data set. This data set contains 75 queries
and 74,170 documents (444 are relevant and 73,726 non-
relevant) with 44 features.

Since TREC data have only two distinct labels with very
skewed distribution, the ranking on that data is more like

2http://trec.nist.gov/

a binary classification problem on imbalanced data, and
thus less interesting than commercial search egnine data and
OHSUMED data from a ranking point of view.

5.2 Evaluation Metrics
To be consistent with Letor evaluation we use the three per-
formance metrics: Precision, Mean average precision and
Normalized Discount Cumulative Gain. All these evalua-
tion measures are widely used for comparing information
retrieval systems.

Precision. Given the binary relevance judgment, the pre-
cision of a ranked list is measured by the fraction of the
retrieved documents that are relevant. We use precision at
position n (P@n) is used to measure the quality of the top
n results of the ranking list.

P@n =
No. of relevant docs in top n results

n
(4)

Mean Average Precision. The average precision of a
query is the average of the precision scores after each rele-
vant document retrieved. Formally, average precision (AP)
is defined as follows,

AP =

P
i P@i× reli

No. of relevant documents
(5)

where reli is the indicator function whether the i-th doc-
ument of the ranking list is relevant to the query. Mean
Average Precision (MAP) is obtained by the mean of the
average precision over a set of queries. Compared with P@n
measure, the MAP score is sensitive to the entire ranking
list and contains the aspects of recall as well as precision.

Normalized Discount Cumulative Gain. Since P@n
and MAP are defined based on binary judgements: relevant
and irrelevant. In the case of multiple levels of judgements,
a more sophisticated evaluation measure called Normalized
Discount Cumulative Gain (NDCG) is used [15]. Unlike
P@n and MAP, NDCG has the capability to deal with mul-
tiple levels of relevance. The NDCG value of a ranking list
is calculated by the following equation:

NDCG@n = Zn

nX
i=1

(2ri − 1)/ log(i+ 1) (6)

where ri is the grade assigned to the i-th document of the
ranking list. In our experiments, ri takes value of 0, 1 and
2 in OHSUMED data set for not, possibly and definitely
relevant documents respectively. For data sets with binary
judgments, such as TREC2003 and TREC2004 data set, ri
is set to 1 if the document is relevant and 0 otherwise. The
constant Zn is chosen so that the perfect ranking gives an
NDCG value of 1.

We apply QBrank and IsoRank to LETOR data and com-
pare them with other state-of-the-arts learning to rank algo-
rithms reported in LETOR package. Since this data are sig-
nificantly different from the commercial search engine data
in term of features, grades, etc, we re-tune the base regres-
sion tree parameters on their corresponding validation data.
Unlike on the commercial search engine data where we plot
DCGs for different methods against iterations (or number of
trees), we tune the number of trees as well for QBrank and

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 12

Table 1: NDCG, MAP, and Precision at position n on OHSUMED data(average over 5 folds)

Methods NDCG@1 NDCG@2 NDCG@3 NDCG@4 NDCG@5 P@1 P@2 P@3 P@4 P@5 MAP

RankBoost 0.498 0.483 0.473 0.461 0.450 0.605 0.595 0.586 0.562 0.545 0.440
RankSVM 0.495 0.476 0.465 0.459 0.458 0.634 0.619 0.592 0.579 0.577 0.447
FRank-c4.2 0.545 0.510 0.499 0.478 0.469 0.671 0.619 0.617 0.581 0.560 0.446
ListNet 0.523 0.497 0.478 0.468 0.466 0.643 0.629 0.602 0.577 0.575 0.450
AdaRank.MAP 0.542 0.496 0.480 0.471 0.455 0.661 0.605 0.583 0.567 0.537 0.442
AdaRank.NDCG 0.514 0.474 0.462 0.456 0.442 0.633 0.605 0.570 0.562 0.533 0.442
MHR-BC 0.552 0.490 0.485 0.480 0.467 0.652 0.615 0.612 0.591 0.566 0.440
QBRank 0.563 0.536 0.483 0.471 0.463 0.708 0.676 0.624 0.589 0.570 0.452
IsoRank 0.565 0.556 0.520 0.505 0.488 0.653 0.676 0.643 0.617 0.588 0.457

Table 2: NDCG, MAP, and Precision at position n on TD2003 data(average over 5 folds)

Methods NDCG@1 NDCG@2 NDCG@3 NDCG@4 NDCG@5 P@1 P@2 P@3 P@4 P@5 MAP

RankBoost 0.260 0.280 0.270 0.272 0.279 0.260 0.270 0.240 0.230 0.220 0.212
RankSVM 0.420 0.370 0.379 0.363 0.347 0.420 0.350 0.340 0.300 0.264 0.256
FRank-c4.2 0.440 0.390 0.369 0.342 0.330 0.440 0.370 0.320 0.260 0.232 0.245
ListNet 0.460 0.430 0.408 0.386 0.382 0.460 0.420 0.360 0.310 0.292 0.273
AdaRank.MAP 0.420 0.320 0.291 0.268 0.242 0.420 0.310 0.267 0.230 0.188 0.137
AdaRank.NDCG 0.520 0.410 0.374 0.347 0.326 0.520 0.400 0.347 0.305 0.268 0.185
QBRank 0.540 0.460 0.418 0.384 0.360 0.540 0.460 0.393 0.330 0.284 0.231
IsoRank 0.520 0.450 0.421 0.392 0.367 0.520 0.450 0.373 0.325 0.288 0.248

IsoRank on the validation set. For IsoRank, we simply set
the regularization parameter λ in (4) to be 10 without much
tuning.

Table 2-4 list the experimental results for IsoRank, QBrank,
and other seven methods on OHSUMED, TD2003 and TD2004
respectively.3 Overall speaking, IsoRank outperforms QBrank
in more cases. Both are comparable with the other existing
models.

6. CONCLUSIONS AND FUTURE WORK
In this paper we propose a new method for learning rank-
ing functions for information retrieval and Web search: we
use the total number of contradicting pairs as the objective
function and develop a novel functional iterative method
to minimize the objective function. It turns out that the
computation of the updates in the iterative method can in-
corporate all the preferences within a query using Isotonic
regression. This more global approach result in improve-
ment in the performance of the learned ranking functions.
We could also include in IsoRank tied pairs, e.g. pairs of
urls 〈xi, xj〉 with same grades. We denote the set of (i, j)
in those tied pairs as Vq. Accordingly, we would have the
following optimization problem,

min
δi

nX
i=1

δ2i + λ1nζ
2
1 + λ2nζ

2
2 (7)

3The performance of MHR-BC on TREC2003 and
TREC2004 data is missing from the Letor package.

subject to

h(xi) + δi ≥ h(xj) + δj + ∆Gij(1− ζ1), (i, j) ∈ Sq.

|h(xi) + δi − h(xj)− δj | ≤ ζ2, (i, j) ∈ Vq.

ζ1, ζ2 ≥ 0.

As future research directions, we plan to provide more rig-
orous analysis of IsoRank, characterize theoretical as well
as computational properties of the computed updates and
their relations to gradient descent directions. We will also
seek to provide better understanding on the characteristics
of the data sets that influence the performance of various
existing methods for learning ranking functions, those can
include the levels of relevance judgment, the heterogeneity
of the features and the noise levels of the preference data.

7. REFERENCES
[1] R. Atterer, M. Wunk, and A. Schmidt. Knowing the

user’s every move: user activity tracking for website
usability evaluation and implicit interaction.
Proceedings of the 15th International Conference on
World Wide Web, 203-212, 2006.

[2] R.E. Barlow, D.J. Bartholomew, J.M. Bremner, H.D.
Brunk. Statistical inference under order restrictions.
Wiley, New York, 1972.

[3] O. Burdakov, A. Grimvall and O. Sysoev. Data
preordering in generalized PAV algorithm for
monotonic regression. Journal of Computational
Mathematics, 24:771-790, 2006.

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 13

Table 3: NDCG, MAP, and Precision at position n on TD2004 data(average over 5 folds)

Methods NDCG@1 NDCG@2 NDCG@3 NDCG@4 NDCG@5 P@1 P@2 P@3 P@4 P@5 MAP

RankBoost 0.480 0.473 0.464 0.439 0.437 0.480 0.447 0.404 0.347 0.323 0.384
RankSVM 0.440 0.433 0.409 0.406 0.393 0.440 0.407 0.351 0.327 0.291 0.350
FRank-c4.2 0.440 0.467 0.448 0.435 0.436 0.440 0.433 0.387 0.340 0.323 0.381
ListNet 0.440 0.427 0.437 0.422 0.421 0.440 0.407 0.400 0.357 0.331 0.372
AdaRank.MAP 0.413 0.393 0.402 0.387 0.393 0.413 0.353 0.342 0.300 0.293 0.331
AdaRank.NDCG 0.360 0.360 0.384 0.377 0.377 0.360 0.320 0.329 0.300 0.280 0.299
QBRank 0.400 0.373 0.372 0.365 0.359 0.400 0.340 0.311 0.287 0.256 0.294
IsoRank 0.453 0.440 0.425 0.407 0.396 0.453 0.413 0.360 0.317 0.283 0.336

[4] A. Berger. Statistical machine learning for information
retrieval. Ph.D. Thesis, CMU, 2001.

[5] D. Bertsekas. Nonlinear programming. Athena
Scientific, second edition, 1999.

[6] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M.

Deeds, N. Hamilton, Êand G. Hullender. Learning to
rank using gradient descent. Proceedings of
international conference on Machine learning, 89–96,
2005.

[7] C. Burges, R. Ragno and Q. Le. Learning to rank with
nonsmooth cost functions. Advances in Neural
Information Processing Systems 19, MIT Press,
Cambridge, MA, 2007.

[8] Z. Cao, T. Qin, T-Y Liu, M-F Tsai and H. Li.
Learning to rank: from pairwise to listwise approach.
Proceedings of international conference on Machine
learning, 2007.

[9] W. Cooper, F. Gey and A. Chen. Probabilistic
retrieval in the TIPSTER collections: an application
of staged logistic regression. Proceedings of TREC,
73-88, 1992.

[10] Y. Freund, R. Iyer, R. Schapire and Y. Singer. An
efficient boosting algorithm for combining preferences.
J. Machine Learning Research, 4:933–969, 2003.

[11] J. Friedman. Greedy function approximation: a
gradient boosting machine. Ann. Statist., 29:1189 -
1232, 2001.

[12] N. Fuhr. Optimum polynomial retrieval functions
based on probability ranking principle. ACM
Transactions on Information Systems, 7:183-204, 1989.

[13] N. Fuhr and C. Buckley. A probabilistic learning
approach for document indexing. ACM Transactions
on Information Systems, 9:223-248, 1991.

[14] N. Fuhr and U. Pfeifer. Probabilistic information
retrieval as a combination of abstraction, inductive
learning, and probablistic assumptions. ACM
Transactions on Information Systems, 12:92-115, 1994.

[15] K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of IR techniques. ACM Transactions on
Information Systems, 20:422-446, 2002.

[16] T. Joachims. Optimizing search engines using
clickthrough data. Proceedings of the ACM Conference
on Knowledge Discovery and Data Mining, 2002.

[17] T. Joachims. Evaluating retrieval performance using
clickthrough data. Proceedings of the SIGIR Workshop
on Mathematical/Formal Methods in Information

Retrieval, 2002.

[18] T. Joachims, L. Granka, B. Pang, H. Hembrooke, and
G. Gay. Accurately interpreting clickthrough data as
implicit feedback. Proceedings of the Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, 2005.

[19] Learning to rank in information retrieval. SIGIR
Workshop, 2007.

[20] J. Ponte and W. Croft. A language modeling approach
to information retrieval. In Proceedings of the ACM
Conference on Research and Development in
Information Retrieval, 1998.

[21] G. Salton. Automatic Text Processing. Addison
Wesley, Reading, MA, 1989.

[22] F. Radlinski and T. Joachims. Query chains: learning
to rank from implicit feedback. Proceedings of the
ACM Conference on Knowledge Discovery and Data
Mining (KDD) , 2005.

[23] M-F. Tsai, T-Y Liu, T. Qin, H-H Chen and W-Y Ma.
FRank: a ranking method with fidelity loss.
Proceedings of the Annual International ACM SIGIR
Conference on Research and Development in
Information Retrieval, 2007.

[24] J. Xu and H. Li. A boosting algorithm for information
retrieval. Proceedings of the Annual International
ACM SIGIR Conference on Research and
Development in Information Retrieval, 2007.

[25] Y. Yue, T. Finley, F. Radlinksi and T. Joachims. A
Support vector method for optimizing average
precision. Proceedings of the Annual International
ACM SIGIR Conference on Research and
Development in Information Retrieval, 2007.

[26] H. Zha, Z. Zheng, H. Fu and G. Sun. Incorporating
query difference for learning retrieval functions in
Proceedings of the 15th ACM Conference on
Information and Knowledge Management, 2006.

[27] Z. Zheng, H. Zha, K. Chen and G. Sun. A Regression
framework for learning ranking functions using relative
relevance judgments. Proceedings of the Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, 2007.

[28] Z. Zheng, H. Zha, T. Zhang, O. Chapelle, K. Chen
and G. Sun. A General boosting method and its
application to learning ranking functions for Web
search. In Advances in Neural Information Processing
Systems 20, MIT Press, Cambridge, MA, 2008.

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 14

A Meta-Learning Approach for Robust Rank Learning

Vitor R. Carvalho, Jonathan L. Elsas, William W. Cohen and Jaime G. Carbonell
Language Technologies Institute

Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA

{vitor,jelsas,wcohen,jgc}@cs.cmu.edu

ABSTRACT
Learning effective feature-based ranking functions is a fun-
damental task for search engines, and has recently become
an active area of research [10, 3, 2]. Many of these recent al-
gorithms are based on the pairwise preference framework,
in which instead of taking documents in isolation, docu-
ment pairs are used as instances in the learning process.
One disadvantage of this process is that a noisy relevance
judgment on a single document can lead to a large number
of mis-labeled document pairs. This can jeopardize robust-
ness and deteriorate overall ranking performance. In this
paper we study the effects of outlying pairs in rank learning
with pairwise preferences and introduce a new meta-learning
algorithm capable of suppressing these undesirable effects.
This algorithm works as a second optimization step in which
any linear baseline ranker can be used as input. Experiments
on eight different ranking datasets show that this optimiza-
tion step produces statistically significant performance gains
over various state-of-the-art baseline rankers.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models; H.3.4 [Systems and Software]: Performance eval-
uation (efficiency and effectiveness)

General Terms
Algorithms, Design, Experimentation

Keywords
Learning to rank, Empirical Risk

1. INTRODUCTION
The “Learning to Rank” problem has gained much atten-

tion from the information retrieval research and industry
communities recently. This is the problem of using queries
previously submitted to a search engine and relevance in-
formation on the retrieved results to improve performance

SIGIR 2008 LR4IR - Workshop on Learning to Rank for Information Re-
trieval Singapore

of a document ranking algorithm. One goal of this machine
learning task is to automatically adjust the parameters in
the ranking algorithm to return more relevant documents
higher in the results list for future queries.

Much of the recent research in rank learning has focused
on document ranking, but Learning to Rank (LETOR) is
a widely applicable machine learning task. Ranking (or
re-ranking) has long been important in machine transla-
tion [20], named-entity extraction [7] and expert finding [6]
to name just a few areas. In all of these tasks, objects
(named entity labels, target-language translations, candi-
date experts) are ranked in response to some “query” (text
span, source-language sentences, keyword query).

One popular approach to learning ranking functions is to
learn a preference function over pairs of documents given a
query. This preference function indicates to which degree
one document is expected to be more relevant than another
with respect to the query. When these preference functions
are transitive, as is typically the case, the document collec-
tion can be ranked in descending order of preference.

There is evidence that assessment of pairwise preferences
is easier for assessors and yields higher inter-annotator
agreement [5]. There are also many practical advantages
in adopting a pairwise preference approach for automatic
learning of feature-based ranking functions. First, most
classification methods can be easily adapted to this formu-
lation of the ranking problem. Second, this framework can
be generalized to any graded relevance levels (e.g. definitely
relevant, somewhat relevant, non-relevant). Third, in many
scenarios it is easier to obtain large amounts of pairwise
preference data [14].

Using pairwise preferences, however, does pose some risks.
In the presence of labeling errors or other “noise” in the doc-
ument relevance information, creating a training set by pair-
ing documents causes a quadratic increase in the number of
noisy outlier observations. As we will show, this can have a
strong negative impact on the quality of the learned ranking
function.

In this paper, we propose a two-stage optimization strat-
egy for learning ranking functions that is robust to outliers
and applicable to any method that learns a linear ranking
function. This meta-ranker is computationally economical
and, although developed for document ranking, this method
generalizes across many ranking tasks. Experimental results
on eight different ranking collections show consistent and
significant improvements over a range of baseline ranking
functions.

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 15

2. LEARNING TO RANK

2.1 Related Work
Learning feature-based ranking functions has become an

active area of research, with the recent introduction of sev-
eral new ranking algorithms. RankNet [2] learns a ranking
function by minimizing the number of mis-ranked pairs via
gradient descent on a probabilistic loss function. RankBoost
[11] and AdaRank [25] are examples of algorithms that use
the boosting framework to learn feature-based ranking func-
tions. Various methods based on the Perceptron algorithm
have also been proposed to learn ranking functions for appli-
cations such as information retrieval [12, 10], reranking for
named-entity extraction [7] and machine translation [20].

One limitation of these algorithms is that they do not di-
rectly maximize information retrieval performance metrics,
such as NDCG (Normalized Discounted Cumulative Gain)
[13] or MAP (Mean Average Precision) [1]. Instead, different
approximations for these metrics have been used as proxies
in the learning procedure. Matveeva et al. [17] and Taylor
et al. [22] present two distinct ways to tailor RankNet to op-
timize NDCG. The first approach iteratively reranks smaller
and smaller portions of an originally produced ranked list of
documents in order to focus on the portion of the ranked list
that has a higher likelihood of being relevant. The second
adapts RankNet’s cost function to directly optimize parame-
ters in the BM25 ranking function while maximizing NDCG
on a held-out set. In recent work, Yue et al. [26] presented
a method for adapting RankSVM to maximize an approxi-
mation of average precision. More recently, Taylor et al.[21]
described SoftRank, a method that optimizes “softNDCG”,
an approximation of the NDCG metric.

Other common approaches to optimizing specific retrieval
performance metrics include grid-search, coordinate ascent
and line-search [18]. These methods perform heuristic ex-
ploration of ranking function parameters (the hypothesis
space), evaluating sampled hypotheses against the target
performance measure. Although these methods directly op-
timize any given performance metric on the training set,
they are generally very expensive when applied to ranking
functions with more than just a few parameters.

2.2 Pairwise-preference Ranking
Many of the recently proposed approaches to learn

feature-based ranking functions take a pairwise preference
approach [2, 3, 14, 10, 26]. In the pairwise framework,
instead of taking documents in isolation, document pairs
are taken as instances in the learning process. The goal in
this setting is to learn a preference function over document
pairs, where the output of the learned function indicates
the degree to which one document is preferred over another
for a given query.

This approach is appealing for several reasons. First,
learning a preference function on pairs of documents reduces
the ranking problem to a binary classification problem: a
correct (or incorrect) classification corresponds to correctly
(or incorrectly) ordering a document pair. Many classifica-
tion algorithms have been adapted to this task, including
support vector machines [14], perceptron algorithms [10, 12]
as well as gradient descent algorithms [2].

Second, this approach imposes very few assumptions on
the structure of the training data — only that preferences
among documents are somehow expressed. Explicit docu-

ment preferences assessment [5] can clearly be used with this
learning approach. Additionally, traditional absolute rele-
vance judgements (binary or graded relevance) can be easily
converted to a pairwise preference training set by taking
all pairs of document with differing relevance levels. Click-
through data has also been used by assuming that a clicked-
on document expresses a preference for that document over
documents occurring higher in the document ranking [14].

We represent our learning setting as follow: a ranking
dataset consists of a set of queries q ∈ Q, and a set of docu-
ments for each query di ∈ Dq with some associated relevance
judgement of document d for query q, yqi. Our training set
for a single query is then Sq = {(dq1, yq1) , (dq2, yq2) , ...}.
The relevance judgements y are discrete and ordered, with
values such as {Probably Relevant, Possibly Relevant, Not
Relevant}, and a total ordering . exists between relevance
levels, e.g. Probably Relevant . Possibly Relevant . Not Rel-
evant.

Documents are represented by a vector of query-
dependent feature weights fk. For instance, document
di given query q is represented as:

dqi = [f0(di, q), f1(di, q), ..., fm(di, q)] (1)

where each feature scoring functions fk represents some mea-
sure of similarity between the document and query. These
can be derived from low-level features typically used in in-
formation retrieval systems (such as query term frequency
or inverse document frequency), higher-level features such as
the score assigned by a baseline ranking algorithm for docu-
ment di on query q (such as BM25), or even query indepen-
dent document quality measurements (such as PageRank).

The goal of the learning procedure in the pairwise frame-
work is to induce a document score function s(•) such that

yqi . yqj ⇐⇒ s(dqi) > s(dqj) (2)

i.e., whenever document dqi is preferred over (.) dqj , the
scoring function s will return a larger value for dqi than for
dqj . This formulation makes clear the connection between
pairwise-preference learning and binary classification: given
the preference relationship on the left in Equation 2 a correct
(or incorrect) classification corresponds to maintaining (or
violating) the inequality on the right.

It is often useful to explicitly model this task as bi-
nary classification. In this view, one can build a new
“paired” dataset S′ for each query q by creating docu-
ment pairs from documents with different relevant levels
(dqi, dqj)l and associated preference labels zl. That is,
S′

q = {((dqi, dqj)l, zql) |yqi 6= yqj ,∀i, j} and

zql =

�
+1 if yqi . yqj ;
−1 if yqi / yqj .

Analogously, we can write Equation 2 with this notation,
letting Pl be the pairwise score of document pair (dqi, dqj)l

Pl = zql × (s(diq)− s(djq)) > 0. (3)

Minimizing the number of misranks, i.e. incorrectly or-
dered document pairs, is in principle a good criterion for
rank optimization. It has been shown that minimizing the
number of misranks is equivalent to maximizing a lower-
bound on various information retrieval performance metrics,
such as average precision and reciprocal rank [10]. However,
the direct optimization of the number of misranks is an NP-
hard problem [14], so approximations are necessary. We will

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 16

show below several approaches to approximating this mini-
mization.

In this paper we are concerned with linear score functions
s(•) that can be parameterized by a single weight vector
w = [w1, w2, ..., wm]. Thus the learning algorithms out-
put scoring functions can be expressed as s(dqi) = 〈dqi, w〉,
where 〈•, •〉 is the inner product operation. After learn-
ing this score function, the final document rankings can be
derived from this function by ranking in descending order
according to their score1.

2.3 Outliers in Pairwise Preference Ranking
Creating pairwise training data from absolute judgements

may have some undesirable consequences. Specifically, mis-
labeling of a single document’s absolute judgement will lead
to many “mis-labeled” document pair preferences. When
using graded relevance levels, confusion or inconsistencies
between different relevance levels may make mis-labeling a
common problem. If we consider each mis-labeled document
a noisy observation or outlier, the process of pairing each
document with all others of differing relevance levels yields
a quadratic increase in the number of outliers in the training
data. This increase can have a serious detrimental effect on
performance, as we will show below.

Mis-labeling the absolute relevance level of a document is
not the only source of outliers. Due to the nature of key-
word search, we have an extremely impoverished view of the
information need — typically only 2-3 terms per query. For
this reason, the query-document features (fi in Equation
1) may not be expressive enough to truly distinguish rele-
vant from non-relevant documents. This may result in many
non-relevant documents “looking similar” to relevant in the
query-document feature space. These non-relevant docu-
ments can also be considered outliers, and similar to mis-
judged documents, yield a quadratic increase in the number
of pairwise outliers.

To illustrate the effect of outliers on rank learning, we
trained a RankSVM model (see Section 3.1) on SEAL-1, a
subset of the Set Expansion ranking dataset described in
Section 4.1. Given the model learned w, we calculated the
pairwise decision scores Pl (Equation 3) for all training data
instances and constructed a histogram, as shown in the top
of Figure 1. Most pairwise instances had positive scores
Pl (top right in the figure), showing that the learned rank-
ing model correctly ordered most of the training instances.
Some instances, however, had negative scores and the few
having the most negative scores may be outliers (top left,
Figure 1).

In order to measure the previously mentioned outlier ef-
fect, we then retrained our model on a smaller training set
after removing increasing numbers of outlier instances. That
is, we trained the same RankSVM model excluding from the
training data a few instances whose scores were below a cut-
off value, P ′

l , and then evaluated the learned model on the
same test set. The bottom of Figure 1 shows test MAP
results when training is performed excluding outliers with
pairwise score below a threshold from the training data. In
this figure, the dashed horizontal line shows performance
when all instances are used for training. The leftmost point
shows the performance when instances with score below −15
were removed from training. As the removal cuttoff increases

1Notice that the score function s(•) takes a single document
as argument, and not the document pair.

●

●

●

●
●

●
●
●●●●

●

●
●
●●

●

●

●●

●

●●

●●
●
●

●

●

●
●
●

●
●●

●●
●●

●●

●

●●●●
●
●
●
●
●●●

●●
●●

●
●●●

●●●●
●●

●●
●●

●
●
●●●●

●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●●●●
●

●●●
●●●
●●
●
●

●

●

●
●
●●

●

●
●

●

●
●●
●●●
●●
●●
●
●
●
●
●●●●
●
●●
●
●

●

●

●

●

●

1
10

10
0

10
00

F
re

qu
en

cy

−15 −10 −5 0 10 20
Pairwise Score Pl

correctly rankedincorrectly ranked

●
●

●

●

●

●

●

●

●

0.
86

16
0.

86
22

0.
86

28

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

−15 −10 −8 −6 −4 −2

Cutoff on Pairwise Score Pl′′

Figure 1: Example of outliers in pairwise Ranking.
(top) Histogram of pairwise scores. (bottom) Mean
Average Precision on the same test collection when
excluding training instances whose scores were be-
low cutoff.

up to −4, performance goes up, indicating that the removal
of outliers improves the ranker’s performance. For larger
cutoffs, this effect is curtailed by the larger numbers of in-
stances being discarded and performance drops.

Empirical evidence from several studies also suggests
that performance of pairwise learning algorithms can be
improved by removing or down-weighting these outliers. In
perceptron-based learning algorithms, outliers were identi-
fied as document pairs that were consistently mis-ranked in
several iterations through the training data, and removal of
these document-pairs improved the performance and stabil-
ity of the learned ranking function [10, 12]. This technique,
known as the α-bound [15], limits the influence of potential
outlier observations on the final learned hypothesis.

Although the α-bound is reported to work well with
perceptron-based learners, it is unclear how it generalizes to
other learning algorithms. In this work we develop a general
mechanism to down-weight the influence of these outliers
in pairwise preference learning and apply this technique to
a variety of learning algorithms. Results show significantly
improved performance of learned ranking functions across a
variety of ranking tasks.

3. ROBUST PAIRWISE RANKING
In this section we propose a new learning algorithm to

counteract the effect of outliers in pairwise rank learning.
The algorithm takes as input the linear model learned by
any linear ranker (a base model), and uses a non-convex op-
timization procedure to output a more robust and effective
final linear ranking model. To help explain the algorithm,
we start with a brief explanation of RankSVM.

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 17

3.1 RankSVM
One of the most successful algorithms for classification,

Support Vector Machines (SVM), has recently been success-
fully adapted to ranking using the pairwise framework [14].
Given a binary paired dataset S′ from a set of queries, an
SVM classifier can be naturally adapted to model this prob-
lem. The SVM model will attempt to solve the following
quadratic optimization problem:

min
w

1

2
‖w‖2 + C

X
q,l

ξql (4)

subject to

ξql > 0, zql 〈w, dqi − dqj〉 ≥ 1− ξql ∀q, l

where non-negative slack variables ξql were introduced, and
the tradeoff between margin size and training error [14] is
controlled by the parameter C.

The optimization problem in equation 4 is equivalent to:

min
w

λ ‖w‖2 +
X
q,l

[1− zql 〈w, dqi − dqj〉]+ (5)

where λ = 1
2C

and []+ is hinge operator:

[x]+ =

(
x if x > 0

0 otherwise.
(6)

The first term in Equation 5 is a regularization term, and
the second is frequently referred to as the hinge loss[3]. The
hinge loss, a convex function, is an approximation to the
empirical 0/1 loss of minimizing all misranks. Minimization
of the hinge loss places an upper bound on the number of
misranks in the paired dataset [14]. An illustration of the
hinge loss function can be seen in Figure 2, the dashed line.

3.2 Sigmoid Approximation
One of the disadvantages of the hinge loss function is its

sensitivity to outliers. Outlier points produce large negative
scores (the far left of the score range in Figure 2). Because
the hinge loss linearly increases with larger negative scores,
these outliers have a strong contribution to the global loss.
This large loss contribution in turn gives these outliers an
important role in determining the final learned hypothesis.

To address this problem, we propose to approximate the
number of misranks (the empirical 0/1 loss) using a non-
linear sigmoidal function. This function can be expressed
as g(σ, Pl) = 1 − sigmoid(σ, Pl), where Pl is the pairwise
score (Equation 3), and σ is a parameter that determines
the steepness of the sigmoid function. The sigmoid function
is defined as:

sigmoid(σ, x) =
1

1 + e−σx
.

The sigmoid loss with several values of σ is illustrated as the
solid lines in Figure 2.

There are at least two advantages in using this particu-
lar loss function. First, this non-linear penalty suppresses
the effect of outliers, i.e., not giving larger loss values to
instances with very large negative pairwise scores. Second,
this penalty can arbitrarily approximate the empirical 0/1
loss by increasing the σ parameter.

−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

2.
0

Score

Lo
ss

Hinge Loss

Sigmoid Losses

Figure 2: Loss Functions

Base Ranker

eg. Perceptron,
RankSVM,
ListNet, etc.

Sigmoid
Meta Ranker

Non−Convex
Optimization

Input Data Seed Model Final Model

Figure 3: Meta ranking scheme: non-convex opti-
mization procedure is seeded with the output of a
base ranking model.

Similar to equation 5, the optimization problem with the
sigmoid-based loss function can then be expressed as:

min
w

L(w) = λ ‖w‖2+
X
q,l

[1− sigmoid(σ, zql 〈w, dqi − dqj〉)] .

(7)
The sigmoid loss function is not convex, thus the learn-

ing procedure is only guaranteed to reach a local maximum.
To avoid learning poor locally optimal solutions, the sig-
moid ranker is used as a second optimization step, refining
the hypothesis produced by another ranker. Specifically,
sigmoid-based optimization is seeded with the hypothesis
learned from a base ranker, such as RankSVM, and then
it converges to a local optimum close to the (presumably
good) seed hypothesis. The complete meta learning scheme
is illustrated in Figure 3.

This sigmoidal meta-ranker is closely related to the two-
stage optimization scheme proposed by Perez-Cruz et al.
[19]. These researchers presented different loss functions, in-
cluding a sigmoidal one, to be applied for classification tasks
after being seeded by a traditional SVM classifier model.
Their main goal was to better approximate the empirical
classification loss (number of classification mistakes), and
not to suppress outliers[19].

Tsai et. al. [23] also found that substituting a sub-linear
fidelity loss function for RankNet’s asymptotically linear
cross-entropy loss improved ranking performance. In this
regard, their algorithm, FRank, bears some similarity to
the sigmoid meta-ranker proposed here. Although these two
algorithms share a similar motivation, the algorithm pre-
sented here acts as a general-purpose meta-ranker for any
linear seed ranker and provides added flexibility of the σ pa-

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 18

rameter, controlling the steepness of the loss. Additionally,
the FRank algorithm uses a boosting framework to opti-
mize the fidelity loss, whereas the algorithm presented here
is optimized through gradient descent (see below). Boost-
ing tends to have slower convergence properties, taking sev-
eral hundred iterations through the dataset to converge [23].
As we describe below, even when seeded with a weak base
learner, the gradient descent approach typically converges
much faster.

3.3 Learning
We utilized a gradient descent technique to learn the fi-

nal ranking model w. Specifically, we can differentiate the
sigmoid-based loss function (Equation 7) with respect to the
parameter vector w to obtain:

∂L(w)

∂w
= 2wλ−

X
q,l

σF (σ, q, l) [1− F (σ, q, l)] (8)

where F (σ, q, l) = sigmoid(σ, zql 〈w, dqi − dqj〉).
The gradient descent algorithm can then be written as:

w(k+1) = w(k) − ηk
∂L(w(k))

∂w
(9)

where, the index k defines the number of iterations (epochs)
and the step size ηk in principle can be chosen based on a
line search along the descent direction, i.e.,

ηk = argmin
η≥0

L(w(k) − η
∂L(w(k))

∂w
).

In practice, however, we used a step-size-halving heuristic
for η, initially setting η = 0.05. Whenever η was too large
to yield a decrease in the loss function, η was set to η/2,
and learning stops when the relative decrease in loss was
less than 10−8.

4. EXPERIMENTS

4.1 Datasets
We performed experiments on eight different ranking

datasets. The first three ranking datasets are part of the
Learning to Rank (LETOR) Benchmark dataset [16]. This
dataset attempts to provide a standard set of document-
query features over several test collections. These features
were extracted from all the query-document pairs in the
OHSUMED collection and the .GOV test collection us-
ing the queries and judgments from the TREC 2003 and
2004 web track topic distillation tasks [9, 8]. The rele-
vance judgments in the TREC collections are binary and
in the OHSUMED collection are graded in three levels:
“definitely relevant”, “possibly relevant” and “not rele-
vant”. The LETOR dataset also contains standardized
train/validation/test splits for 5-fold cross validation. The
OHSUMED collection contains 106 queries and 25 features,
TREC 2003 has 50 documents and 44 features, and there
are 75 queries and 44 features in the TREC 2004 collection.
Please refer to the original reference [16] for a detailed
explanation of the feature sets. In our experiments, the
query-document feature values were normalized on a per
query basis to the [0, 1] interval using the linear scaling
suggested by the producers of the LETOR dataset and no
additional feature selection or processing was done.

The next two ranking datasets were collected from the
Recipient Recommendation task [6], where the goal is to
find persons who are potential recipients of an email mes-
sage under composition given its current contents and its
previously-specified recipients. This is a ranking task in a
sense that, compared to traditional document retrieval, the
email under composition is the equivalent of a query, and
the email addresses in the address book are the analogous
of documents.

The TOCCBCC prediction subtask aims at predicting all
recipients of a message being composed, while the CCBCC
subtask ranks all recipients inserted in the CC or BCC fields
of the message under composition. Thus the CCBCC task,
in addition to the text, can use information extracted from
the recipients already specified in the TO field of the email.
The collection contains more than 44000 queries from 36 dif-
ferent users, where an average of 1267 queries per user are
used for training. For testing, the TOCCBCC tasks uses an
average of 144 queries per user, while 20 queries per user
are used for CCBCC testing. The number of documents
(email addresses) to be ranked averages 377 per user [6].
The TOCCBCC task utilizes four different features for rank-
ing (derived from frequency, recency and summarized tex-
tual scores). The CCBCC task dataset contains 7 features:
the same 4 features from the TOCCBCC task, and three
additional co-occurrence features (derived from the already-
specified addresses in the TO field of the message).

The last three ranking datasets were derived from SEAL,
a Set Expander for Any Language system [24]. Set Expan-
sion is the task of expanding an initial set of objects into a
larger and more complete set2 of objects of the same type.
More specifically, SEAL expands textual seeds (such as“Cal-
ifornia”, “Colorado” and “Florida”) by automatically finding
semi-structured web pages having lists of items, and then ag-
gregating these lists and ranking the “most promising” items
higher. The ranking then considers different set of features
such as the ones derived from proximity metrics, suffixes
and prefixes extracted from wrappers, and similarity scores
calculated from random walks in an entity graph [24]. Our
sample dataset from SEAL contains queries in three differ-
ent languages. Each language contained approximately 60
queries, and each document (entity) was represented with 18
features. Experiments were carried out with a 3-fold cross-
validation split with two of the languages used for training,
and the remaining language use for testing.

4.2 Performance
In this section we describe experiments conducted with

the sigmoid ranker using three baseline rankers: RankSVM,
the averaged ranking perceptron [10] and ListNet [4].

The averaged perceptron ranking algorithm [10] is a sim-
ple and fast online ranking algorithm that scales linearly
with the number of training examples. Although recent re-
sults suggested that this algorithm may require thousands
of iterations to produce reasonable performance [10], in this
paper we trained it with five iterations only. By crippling
the algorithm we produced a low quality input model to the
meta ranker, and investigated how the meta ranker responds
to a weak initialization.

ListNet is a recent feature-based ranking algorithm [4]
that instead of learning by minimizing a document pair loss

2Google Sets is a well-known example of a set expansion
system on the web.

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 19

functions, it minimizes a probabilistic listwise loss function.
That is, it utilizes document lists, instead of document pairs,
as instances in the learning procedure. Although it is not a
pairwise ranking algorithm, ListNet outputs a linear ranking
model that can be used as input in the sigmoid optimiza-
tion. Hence, not only can we investigate how ListNet com-
pares with other pairwise baseline learners, but also study
if the sigmoid meta ranker can improve a non-pairwise base
ranking model.

Unless otherwise noted, in all experiments the sigmoid σ
parameter was set to 1.0, and the regularization parameter C
for RankSVM was selected from a search within the discrete
set C ∈

�
10−5, 10−4, .., 101

	
using a holdout set.

We start with experimental results from the largest rank-
ing collection, the two recipient recommendation tasks. Per-
formance results for these ranking tasks are illustrated in
Figures 4, showing AUC (Area Under the ROC Curve), R-
Precision and Mean Average Precision results for both TOC-
CBCC and CCBCC ranking tasks.

It is noticeable from these figures the large performance
gains that the sigmoid optimization achieves with the per-
ceptron algorithm baseline. On both tasks, the meta ranker
produced significantly better results than the averaged per-
ceptron ranker. There are also visible performance gains for
sigmoid ranker applied to RankSVM, although more mod-
est. The sigmoid optimization applied after ListNet did not
seem to improve performance on the TOCCBCC tasks, even
though it boosted results for the CCBCC task.

Performance on the LETOR collections are illustrated in
Figure 5, showing MAP for each test collection and base
learner. Mean average precision results are shown for each
one of the LETOR collections (TREC-04, TREC-03 and
OHSUMED) and for each ranker. In all tasks, the sigmoid
optimization significantly improved results for the averaged
perceptron ranker. For RankSVM, the sigmoid ranker pro-
duced improvements in all collections, with the largest gain
for TREC-03. The ListNet + sigmoid ranker, on the other
hand, experienced its largest performance improvement on
the TREC-04 collection, although a small gain was also ob-
served in TREC-03 as well.

Experimental results on the Set Expansion ranking collec-
tions are pictured in Figure 6. Again, visible MAP improve-
ments in all three datasets can be observed for the sigmoid
ranker on the top of the averaged perceptron. More surpris-
ing perhaps are the even larger performance gains obtained
on the top of ListNet for all three datasets. Although smaller
in magnitude, the sigmoid ranker also produced visible per-
formance gains for all three SEAL datasets when applied to
RankSVM.

Full results for Mean Average Precision are given in Table
1. Statistical significance tests of the “+sigmoid” columns
over the values on the previous columns are indicated with
? or ?? (for paired t-test with p < 0.05 or 0.01, respectively)
and † or †† (for the Wilcoxon Matched-Pairs Signed-Ranks
test with p < 0.05 or 0.01, respectively).

Improvements provided by the sigmoid ranker were sta-
tistically significant for all base learners on all three SEAL
ranking datasets. The sigmoid optimization also increases
average perceptron in all ranking problems. MAP values
obtained by ListNet+Sigmoid were also significantly better
for the TREC-04 and CCBCC ranking tasks. Additionally,
the meta ranker significantly improved RankSVM on the
TOCCBCC ranking task.

OHSUMED TREC−03 TREC−04

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

0.
0

0.
1

0.
2

0.
3

0.
4 Perceptron

RankSVM
ListNet

Figure 5: Performance (MAP) on LETOR Dataset.
Whisker shows baseline + sigmoid.

It is interesting to note how significantly the perceptron
ranker can be improved by the meta ranker. Its final per-
formance numbers were comparable, and sometimes slightly
better, than those obtained using the sigmoid optimization
on top of the stronger base rankers. Although the sigmoid
meta-ranker is only guaranteed to find a local optima, this
local optima is sometimes better when the learner is seeded
with a relatively weak ranking model. This may be an in-
dication that initially using a method that is sensitive to
outliers can lead the learner astray, yielding a seed model
that is too strongly influenced by those outliers. The per-
ceptron learner, however, was intentionally crippled, only
making a small number of passes through the data. This
training process doesn’t allow the outliers to have such a
strong influence on the seed model, potentially yielding a
better final model.

Overall, the sigmoid meta ranker significantly improved
ranking performances for most test cases in Table 1. In the
LETOR datasets, however, this was not the case — although
the meta ranker improved performance on average, these
improvements were not statistically significant. Because the
LETOR collections have a relatively larger number of fea-
tures and a smaller number of queries, we speculate that
these ranking models are overfitting the training data. In
fact, we observed that very small changes in the RankSVM
regularization parameter C produced very different ranking
performance on these three collections.

These results also highlight that the sigmoid ranker is in
fact a general purpose linear meta ranker. Not only can it
improve pairwise ranking functions, but also fine-tune any
linear ranking model — as attested by the ListNet + sigmoid
performance.

4.3 Learning Curve
Typical sigmoid ranker learning curves can be seen in Fig-

ure 7. This curve illustrates training set AUC (i.e., perfor-
mance on the training set in terms of Area Under the ROC
Curve) versus the number of sigmoid gradient descent iter-
ations for a particular CCBCC prediction task 3.

The initial points (epoch=0) in Figure 7 show the AUC
values obtained by the base rankers. This is the starting
point of the sigmoid rank optimization. In this particular
example, RankSVM provides a higher initial AUC than List-
Net, which in turn outperforms the averaged perceptron.

3The training set AUC was shown here because it corre-
sponds directly to minimizing the number of misranks in
the training set [26].

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 20

TOCCBCC CCBCC

A
re

a
U

nd
er

 th
e

R
O

C
 C

ur
ve

0.
6

0.
7

0.
8

0.
9

1.
0

TOCCBCC CCBCC

R
−

P
re

ci
si

on

0.
30

0.
35

0.
40

0.
45

0.
50

Perceptron
RankSVM
Listnet

TOCCBCC CCBCC

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

0.
40

0.
44

0.
48

0.
52

Figure 4: Performance for the recipient recommendation ranking tasks. Whisker shows baseline + sigmoid.

Collection Perceptron +Sigmoid RankSVM +Sigmoid ListNet +Sigmoid

OHSUMED 0.318 0.451??†† 0.447 0.448 0.450 0.449
TREC-03 0.067 0.254??†† 0.203 0.244 0.235 0.248
TREC-04 0.324 0.385?† 0.385 0.393 0.312 0.377??††

SEAL-1 0.851 0.866??†† 0.862 0.866†† 0.843 0.866??††

SEAL-2 0.869 0.893??†† 0.890 0.894†† 0.864 0.893??††

SEAL-3 0.906 0.924??†† 0.916 0.920?† 0.901 0.923??††

TOCCBCC 0.425 0.479??†† 0.472 0.480??†† 0.480 0.479
CCBCC 0.463 0.524??†† 0.516 0.521 0.513 0.524??††

Table 1: Mean Average Precision values for experiments in all collections. Statistical significance tests over the
values on the previous column are indicated with ? or ?? (for paired t-test with p < 0.05 or 0.01, respectively)
and † or †† (for the Wilcoxon Matched-Pairs Signed-Ranks test with p < 0.05 or 0.01, respectively).

SEAL−1 SEAL−2 SEAL−3

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

0.
80

0.
84

0.
88

0.
92

Perceptron
RankSVM
ListNet

Figure 6: Performance (MAP) on Set Expansion Ex-
periments. Whisker shows baseline + sigmoid.

The RankSVM+Sigmoid optimization then proceeds
smoothly, with performance values reaching a plateau
around 13 gradient descent iterations. ListNet+Sigmoid
and Perceptron+Sigmoid start from different hypotheses,
but are able to reach relatively high performance levels
in less than three gradient descent iterations, and then
converge to approximately the same plateau in less than 17
iterations. For comparison, one more curve was included in
Figure 7: a sigmoid ranker with a random initial model. As
expected, it takes considerably longer to reach reasonable
AUC values, and converges to plateau levels in less than 30
iterations.

Figure 7 illustrates two reasons why the sigmoid meta
ranker can provide robust pairwise ranking with a small ex-
tra computational cost. First, the number iterations neces-
sary for convergence in the sigmoid ranker was usually small,
since the starting point (the output of base learner) was al-

0 5 10 15 20 25 30 35

0.
82

0.
84

0.
86

0.
88

0.
90

0.
92

Epoch (gradient descent iteration)

A
U

C
 (

tr
ai

n)

●

● ●

●

Baseline Learners

Perceptron
RankSVM
ListNet
Random Initialization

Figure 7: Learning curve of sigmoid ranker for sev-
eral baseline algorithms.

ready a well-tuned model. Second, the first few gradient
steps were usually responsible for most of the performance
gains observed. It is also important to note that this opti-
mization step is powerful even as a stand-alone rank learner
— the performance with a random initialization approaches
the maximum performance of the best seeded rankers in less
than 30 gradient descent steps.

4.4 Sigma Parameter
The steepness of the sigmoid function is controlled by the

parameter σ. In principle, one can arbitrarily approximate
the true 0/1 empirical loss function by increasing the values
for this parameter. Experiments below showed, however,
that increasing values of σ do not correspond to better over-
all ranking performance.

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 21

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

sigma (σσ)

R
el

at
iv

e
Im

pr
ov

em
en

t o
ve

r
R

an
kS

V
M

 (
%

)

0.1 1.0 2.0 5.0 7.0 10.0

●

●

●

●

●

●

● TOCCBCC
Linear (R2=0.95)

CCBCC
Linear (R2=0.61)

Figure 8: Relative Improvements in MAP over
RankSVM for different sigma (σ) values.

Figure 8 shows, for both recipient prediction tasks, the
relative improvements in MAP over RankSVM obtained by
the sigmoid optimization, versus different values for the σ
parameter in the sigmoid function. The values of σ consid-
ered were {0.1, 1, 2, 5, 7, 10}. Figure 8 clearly shows a trend
that smaller values of σ produce better ranking performance
for both ranking tasks.

Arbitrarily increasing the σ parameter generates steeper
loss curves whose gradient information is largely concen-
trated around the decision region. We speculate that, for
large σ values, this lack or reduction of gradient information
from other regions of the loss function is responsible for the
observed lower performance.

5. CONCLUSIONS
We considered the effects of outliers in learning pairwise

feature-based ranking functions. In pairwise ranking, pairs
of documents with different label levels are taken as in-
stances in the learning process. While this process is known
to bring advantages to rank learning, it can also produce
many outliers, particularly when arbitrary label level judg-
ments are used or simply when human labelers make mis-
takes. Outliers in the learning procedure can compromise
ranking function robustness, and consequently deteriorate
ranking performance.

We illustrated the effects of outliers in pairwise ranking
functions, and then introduced a new meta-learning algo-
rithm able to suppress the undesirable outlier effects. The
algorithm is a non-convex optimization procedure using a
sigmoid loss, in which any linear baseline ranking function
can be used as input. Experiments on several different rank-
ing datasets showed that this meta ranker produced statisti-
cally significant performance gains over various state-of-the-
art baseline rankers.

This sigmoid meta-learning algorithm provided consistent
and significant performance improvements when seeded
by a weak rank learner, the average perceptron. When
seeded by strong baseline rankers, RankSVM and ListNet,
the meta-learning algorithm improved performance 88% of
the time, with 64% of those performance gains statistically
significant.

6. REFERENCES
[1] R. A. Baeza-Yates and B. Ribeiro-Neto. Modern

Information Retrieval. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1999.

[2] C. Burges, T. Shaked, E. Renshaw, A. Lazier,
M. Deeds, N. Hamilton, and G. Hullender. Learning to
rank using gradient descent. In ICML ’05: Proceedings
of the 22nd international conference on Machine
learning, pages 89–96, New York, NY, USA, 2005.
ACM Press.

[3] Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y. Huang, and H.-W.
Hon. Adapting ranking svm to document retrieval. In
SIGIR, pages 186–193, New York, NY, USA, 2006.

[4] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li.
Learning to rank: from pairwise approach to listwise
approach. In ICML. ACM, 2007.

[5] B. Carterette, P. N. Bennett, D. M. Chickering, and
S. T. Dumais. Here or there: Preference judgments for
relevance. In European Conference on Information
Retrieval, 2008.

[6] V. R. Carvalho and W. W. Cohen. Ranking users for
intelligent message addressing. In European
Conference on Information Retrieval, 2008.

[7] M. Collins. Ranking algorithms for named-entity
extraction: boosting and the voted perceptron. In
ACL ’02: Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, pages
489–496, Morristown, NJ, USA, 2001. Association for
Computational Linguistics.

[8] N. Craswell and D. Hawking. Overview of the trec
2004 web track. In 13th Text REtrieval Conference
(TREC 2004), November 2004.

[9] N. Craswell, D. Hawking, R. Wilkinson, and M. Wu.
Overview of the trec 2003 web track. In 12th Text
REtrieval Conference (TREC 2003), November 2003.

[10] J. Elsas, V. R. Carvalho, and J. G. Carbonell. Fast
learning of document ranking functions with the
committee perceptron. In ACM International
Conference on Web Search and Data Mining, 2008.

[11] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An
efficient boosting algorithm for combining preferences.
J. Mach. Learn. Res., 4:933–969, 2003.

[12] J. Gao, H. Qi, X. Xia, and J.-Y. Nie. Linear
discriminant model for information retrieval. In SIGIR
’05: Proceedings of the 28th annual international
ACM SIGIR conference on Research and development
in information retrieval, pages 290–297, New York,
NY, USA, 2005. ACM Press.

[13] K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of ir techniques. ACM Trans. Inf. Syst.,
20(4):422–446, 2002.

[14] T. Joachims. Optimizing search engines using
clickthrough data. In KDD ’02: Proceedings of the
eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 133–142,
New York, NY, USA, 2002. ACM Press.

[15] R. Khardon and G. Wachman. Noise tolerant variants
of the perceptron algorithm. Journal of Machine
Learning Research, 8:227–248, 2007.

[16] T.-Y. Liu, J. Xu, T. Qin, W. Xiong, and H. Li. Letor:
Benchmark dataset for research on learning to rank
for information retrieval. In SIGIR ’07: Proceedings of

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 22

the Learning to Rank Workshop, 2007.

[17] I. Matveeva, C. Burges, T. Burkard, A. Laucius, and
L. Wong. High accuracy retrieval with multiple nested
ranker. In SIGIR ’06: Proceedings of the 29th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 437–444,
New York, NY, USA, 2006. ACM Press.

[18] D. Metzler and B. W. Croft. Linear feature-based
models for information retrieval. Information
Retrieval, 10(3):257–274, June 2007.

[19] F. Perez-Cruz, A. Navia-Vazquez, A. R.
Figueiras-Vidal, and A. Artes-Rodriguez. Empirical
risk minimization for support vector classifiers. IEEE
Transactions on Neural Networks, 14:296–303, Mar
2003.

[20] L. Shen and A. K. Joshi. Ranking and reranking with
perceptron. Mach. Learn., 60(1-3):73–96, 2005.

[21] M. Taylor, J. Guiver, S. Robertson, and T. Minka.
Softrank: Optimizing non-smooth rank metrics. In
ACM WSDM, 2008.

[22] M. Taylor, H. Zaragoza, N. Craswell, S. Robertson,
and C. Burges. Optimisation methods for ranking
functions with multiple parameters. In CIKM ’06:
Proceedings of the 15th ACM international conference
on Information and knowledge management, pages
585–593, New York, NY, USA, 2006. ACM Press.

[23] M.-F. Tsai, T.-Y. Liu, T. Qin, H.-H. Chen, and W.-Y.
Ma. FRank: a ranking method with fidelity loss. In
SIGIR ’07: Proceedings of the 30th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 383–390,
New York, NY, USA, 2007. ACM Press.

[24] R. C. Wang and W. W. Cohen. Language-independent
set expansion of named entities using the web. In
IEEE International Conference on Data Mining
(ICDM), 2007.

[25] J. Xu and H. Li. Adarank: a boosting algorithm for
information retrieval. In SIGIR 2007: Proceedings of
the 30th Annual International ACM SIGIR
Conference on Research and Development in
Information Retrieval, Amsterdam, The Netherlands,
July 23-27, 2007. ACM, 2007.

[26] Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A
support vector method for optimizing average
precision. In SIGIR ’07: Proceedings of the 30th
annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 271–278, New York, NY, USA, 2007. ACM
Press.

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 23

A Decision Theoretic Framework for Ranking
using Implicit Feedback

Onno Zoeter Michael Taylor Ed Snelson John Guiver Nick Craswell Martin Szummer
Microsoft Research Cambridge

7 J J Thomson Avenue
Cambridge, United Kingdom

{onnoz,mitaylor,esnelson,joguiver,nickcr,szummer}@microsoft.com

ABSTRACT
This paper presents a decision theoretic ranking system that
incorporates both explicit and implicit feedback. The sys-
tem has a model that predicts, given all available data at
query time, different interactions a person might have with
search results. Possible interactions include relevance la-
belling and clicking. We define a utility function that takes
as input the outputs of the interaction model to provide a
real valued score to the user’s session. The optimal rank-
ing is the list of documents that, in expectation under the
model, maximizes the utility for a user session.

The system presented is based on a simple example util-
ity function that combines both click behavior and labelling.
The click prediction model is a Bayesian generalized linear
model. Its notable characteristic is that it incorporates both
weights for explanatory features and weights for each query-
document pair. This allows the model to generalize to un-
seen queries but makes it at the same time flexible enough
to keep in a ‘memory’ where the model should deviate from
its feature based prediction. Such a click-predicting model
could be particularly useful in an application such as en-
terprise search, allowing on-site adaptation to local docu-
ments and user behaviour. The example utility function has
a parameter that controls the tradeoff between optimizing
for clicks and optimizing for labels. Experimental results
in the context of enterprise search show that a balance in
the tradeoff leads to the best NDCG and good (predicted)
clickthrough.

Categories and Subject Descriptors
H.3.3 [Information Systems Applications]:

Keywords
clickthrough, learning, ranking, metrics

1. INTRODUCTION

Presented at LR4IR Workshop at SIGIR 2008, Singapore

This paper presents a system for learning to rank in a
decision-theoretic framework. In such a framework each po-
tential top-k ranking is thought of as an action that could be
made by the search engine. Then retrieval is a decision pro-
cedure, of choosing an optimal action according to a given
utility function.

The decision theoretic view of IR has a long-standing tra-
dition (see e.g. [12, 4, 8] for succesful uses). In this paper
we explore the idea of using it to learn a ranker based on
multiple streams of feedback. The utility function is then
not only based on judge labels, but also on characteristics of
a user’s session. A model is learned on historic data to pre-
dict the user’s interaction with a result list. Although many
characteristics of the user’s session could be incorporated in
such a utility function, we will mainly concentrate on one
particular and important one, namely clicks.

The reason to consider both labels and clicks in the utility
function is that each provides a different sort of relevance
information:

• Quantity and cost. Click information is available at
zero cost as long as the system has some users, and
the quantity depends on the level of user activity. Rel-
evance judges are usually paid, so the quantity of labels
depends on budget.

• Explicitness. Judges give explicit relevance labels. With
clicks, dwell-time, and abandonment, relevance infor-
mation must be inferred.

• Real user population. Clicks come from the true user
population, so may reflect real relevance. Relevance
judges in laboratory conditions may disagree with the
real users.

• Deep/negative judgments. Relevance judges can be
paid to label a large pool of documents per query, in-
cluding many bad documents. Clicks tend to happen
only on top-ranked documents, and gathering negative
click information has a detrimental effect on users, be-
cause the bad documents must be retrieved near the
top.

The question is how to build a model that works well,
incorporating explicit and implicit relevance information.
One approach (Figure 1a) is to choose an evaluation mea-
sure as the gold standard for relevance, such as the label-
based metric DCG [6], and build a model to optimize it
such as LambdaRank [2] or SoftRank [13]. The inputs may
be features characterizing the quality of the query-document

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 24

R

x, yold x

y

U(y, x)

a) b)

Figure 1: Two different approaches to the incor-
poration of implicit feedback into a ranker; a) uses
historic user behavior as input to predict a single
relevance score R. Approach b), proposed in this
paper, constructs the best possible model to explain
outputs y from inputs x and separately defines a
utility function U that puts a preference ordering
on possible explicit and implicit behaviors.

match. Historical implicit feedback can be incorporated as
additional input features [1]. The output of the model gives
a scalar-valued score by which documents are ranked via a
sort. Note here that the value of an individual document’s
score has no practical interpretation.

Our approach (Figure 1b) is different and based on an
extension of the decision theoretic framework for IR, as de-
scribed in [14, 8]. The inputs and outputs of the model are
all observable: inputs are query-document features and out-
puts are implicit/explicit relevance information. The sole
task of the model is predicting outputs. We then define
a utility U which is a function of these predicted outputs,
namely both implicit and explicit judgments and behaviors.
Ranking is then a decision procedure, to find the results list
with maximum utility.

The specific contributions of this paper are as follows.

• We propose to construct rankers that combine many
sources of information using the decision theoretic frame-
work for IR. We discuss what an ideal setup would
look like and how it would add diversity to result lists,
correctly incorporate real world characteristics such as
position bias, balance authoritiveness and popularity,
and more.

• As an initial implementation of the approach, we present
a Bayesian logistic regression model that predicts both
relevance judgments and click rates. The model has
one weight per query-document pair that acts as a
“memory” of the historic click rate that is not already
explained by the other features. We combine it with a
crude utility function that is far from the ideal sketched
setting, but already introduces many of the potential
benefits the combination of two datastreams can bring.

• We evaluate the decision theoretic system in an en-
terprise search scenario, demonstrating that the click-
predicting part of the model can adapt to a new enter-
prise.

2. RANKING AS A DECISION THEORY
PROBLEM

Decision theory is a very well established field which dates
back at least to the works of Daniel Bernoulli in the 18th
century. The information retrieval problem of presenting a
list of results given a specific user query has been interpreted
as a decision theory problem in several studies in the past.
The probability relevance principle [12] for instance can be
motivated from such a view. Interesting and successful ap-
plications can also be found in amongst others [8, 4]. In this
section we first review the abstract decision problem in its
general form, and then move on to describe how it can be
applied to incorporate both explicit and implicit feedback in
a common framework.

At the basis of the decision theoretic view is a utility func-
tion. It represents user satisfaction in a single scalar, larger
being better. Formally it is a mapping of all relevant quan-
tities of interest (searcher charteristics, query, clicks, dwell
time, etc.) to the real line. In the remaining we will make a
distinction between two sets of information: inputs and out-
puts. Inputs are those quantities that are available before a
result list needs to be compiled, outputs are those quantities
that have become available in the user session after the re-
sult list is presented to the user. This includes clicks, dwell
time, click backs, etc., but also explicit labels if we ask the
user to act as a human judge.

The ideal utility function could be very complex incorpo-
rating detailed characteristics of a user, intent of the query,
etc. It would increase if interesting results were found, de-
crease as more and more effort is needed to find them. We
will discuss some of the potential properties of an ideal util-
ity function in Section 2.1. In real world use we will have to
make simplifications, such as is done in Section 2.2.

If we would know ahead of time exactly how a user would
interact with a particular search result list it would be easy
to select the optimal one. It would simply be that result
list that maximizes user satisfaction. Since at query time
we do not know the user’s response, we need to construct
a model that predicts user behavior. The optimal decision
(the optimal list) is then the list that in expectation under
the model maximizes the users utility.

In summary and formally we can represent the decision
theoretic view of IR as follows. Given a set of inputs (query-
document features) x ∈ X the ranker is asked to select an
action (result list) a ∈ A. After performing the action we
observe outputs (judgments, user behaviour etc.) y ∈ Y. A
utility function U : X × A × Y 7→ R assigns a scalar utility
to the observed x, a, y-triple1. The outputs y in general do
not follow deterministically from the inputs x and action a.
A model p(y|x, a) gives the probability of observing y after
selecting a when x is observed. The optimal action a∗ is the
action that leads to the maximal expected utility

a∗ = argmax
a

Ep(y|x,a) [U (x, a, y)] . (1)

We propose to use the traditional decision theoretic in-
terpretation of IR to combine multiple sources of data in a
principled way. We treat the different sources of implicit
feedback as extra dimensions in the output vector y.

2.1 Utility functions
The utility function gives a real valued score to a user ses-

1Note that alternatively we could include x and a into the
observation y, but this notation emphasizes the flexibility of
the approach.

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 25

sion that represents his satisfaction. Thinking about what
the ideal utility function would look like can easily be daz-
zling. For a well defined navigational query such as“What is
the next train connection between Cambridge and London
Kings Cross?” we might argue that finding the answer gives
a fixed utility and any work that needs to be done to get
to that point (reading snippets, clicking on potential answer
pages, clicking back, etc.) will lead to deductions. But what
about informational queries? What is the utility for one,
two, or three interesting documents in the result list. Do
three interesting documents have three times as much util-
ity as a single one, or is there a law of diminishing returns?
What is the“cost”of a misleading snippet? Some sources are
very authoritive, some have very fresh content. How should
these two properties be traded-off? Should that be done in
the same way in all contexts? A small time spent think-
ing about these things leads easily to an extremely complex
function.

Even coming up with a procedure of going about con-
structing a utility function is a difficult problem. Here we
discuss briefly two approaches. A first approach would be to
conduct lab experiments with users where they are asked to
explicitly score their satisfaction with a session. The exper-
iments in [5] form a fascinating approach in that direction
for instance. Assume for simplicity that we have a binary
satisfaction signal

t ∈ {thumbs up, thumbs down} ,

and a simple utility function

U(t = thumbs up) = 1 and U(t = thumbs down) = 0 .

In daily use the explicit satisfaction scores t are not available.
To overcome this we could learn, based on {t, y}-pairs, a
special model p(t|y) (not to be confused with the output
prediction model) and work with a “learned utility”

Ũ(x, y, a) = Ep(t|x,y,a) [U (t)] . (2)

Combined with an output prediction model p(y|x, a) we could
then use Equation (1) for ranking.

In a second approach we ask experts to craft a simple
utility U(x, y, a) and iteratively improve it. Perhaps in the
first version only a few sources of feedback are modelled in
y and this is expanded in the next, or we find that certain
tradeoffs looked good on paper but used in practice leads to
complaints from real users.

In both approaches constructing the model p(y|x, a) is a
classical machine learning problem. Using historical {x, y, a}-
triplets we can train and select the appropriate user behavior
prediction model. An important benefit in practice is then
that the problem of designing a reasonable utility function
and constructing a good prediction model can be decoupled.
The prediction can be tested on historic data. Adjusting and
tuning the utility function can be done incrementally over
time without the need of retraining the model with each new
attempt.

To summarize: constructing a utility function is a very
difficult problem and can leave one with the awkward feel-
ing that a golden standard or ground truth is not available.
We would argue that the IR problem simply is this complex.
Any choice in a real world system will make some approx-
imation and is likely to require changes and improvements
over time.

In the Section 2.1.3 we introduce what arguably is the
simplest possible utility function that combines both a signal
stream of explicit label feedbacks and a stream of implicit
user clicks. It is a simple convex combination of a label based
utility and a click based utility intoduced in Sections 2.1.1
and 2.1.2 respectively.

2.1.1 Discounted Cumulative Gain
In some approaches to ranking the aim is to maximize

a function of the labels in the result set. It is easy to see
that these approaches form a special case of the framework
considered here. If we look at the discounted cumulative
gain (DCG) [6] for instance we see that it is an example
of a utility function that only takes into account the hu-
man relevance judgments at every position. It is based on
a discount function d(p) over positions p ∈ {1, . . . , n}, and
a gain function g(s) over human relevance judgments, e.g.
s ∈ {1, . . . , 5}. The position discount function is monotoni-
cally decreasing from the top position p = 1, to the bottom
position p = n: d(1) > d(2) > · · · d(n), and a gain func-
tion g(s) that is increasing for better relevance judgments:
g(1) ≤ g(2) ≤ · · · ≤ g(5). If s[1], . . . , s[n] are the scores
received for the documents selected by a, the discounted
cumulative gain is given by

DCG (s[1], . . . , s[n]) =

n∑
p=1

d(p)g(s[p]) . (3)

To maximize the DCG we would select and rank such that
the expected DCG is highest. The expectation is then with
respect to the observation model p(y|x, a) = p(s[1], . . . , s[n]|x, a)
which represents the best estimate of the human relevance
judgments for the documents selected by a given x

a∗ = argmax
a

Ep(s[1],...,s[n]|x,a)

[
n∑

p=1

d(p)g(s[p])

]
.

Different choices of g(s) lead to different ranking principles
(decision rules). If g(s) is convex in s the resulting prin-
ciple is risk seeking : for two documents with the same ex-
pected judgment but different variances the document with
the larger variance is preferred. This is because a larger than
expected judgment leads to a bigger rise in utility than the
decrease in utility that results if a lower than expected judg-
ment is encountered. We could say that such a convex gain
function leads to a “going for the jackpot” effect. The often
used exponential function g(s) = 2s − 1 has this effect. It is
important to realize that this is not a conservative ranking
principle.

If we have a linear gain g(s) = s, the expected utility only
involves the expectations of judgments:

a∗ = argmax
a

Ep(s[1],...,s[n]|x,a)

[
n∑

p=1

d(p)g(s[p])

]

= argmax
a

n∑
p=1

d(p)Ep(s[1],...,s[n]|x,a) [s[p]] .

hence we get a ranking principle that simply orders docu-
ments according to their expected human relevance judg-
ment:

a∗ = argmax
a

n∑
p=1

d(p)Ep(s[p]|x,a) [s[p]] .

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 26

This utility function is an example where the optimal ac-
tion can be found in O (|D|) time, where |D| is the number
of documents in the corpus. This is despite the fact that the
space of all possible selections and rankings is |D|n. This is
due to the fact that the judgment probability p(s[p]|x, a) is
not explicitly a function of position (the judge is presented
with each document independently). This means that the
expected judgment can be computed for each document and
the documents simply sorted to obtain the optimal rank-
ing. There are many interesting utility functions that lead
to O (|D|) ranking principles, but in general approximations
might be necessary.

Note that, since there is no element in the utility function
that encourages diversity in the results, we need to explic-
itly add the constraint that links to documents cannot be
replicated. Otherwise a∗ would be n duplications of the link
with the highest expected relevance judgments.

2.1.2 Clicks
An analogous utility function that only takes into account

whether or not a user clicked on a document could be given
by a “click-DCG” utility

Uclicks(c[1], . . . , c[n]) =

n∑
p=1

d(p)c[p] . (4)

If p(c[p] = 1|x, a) (the probability of a click on the document
that was put in position p by a) is modeled based on a link
specific and position specific contribution it will in general
not simplify to an O(|D|) ordering rule. This is because now
p(c[p]|x, a) is explicitly a function of p — any given docu-
ment will be clicked with a different probability depending
on where it is placed. It can be that position and link ef-
fects combine in complex non-linear ways. However there
are suitable heuristics for ordering in O(|D|), e.g. compute
the probability a document will be clicked if it were placed
in position 1, and order by that.

This click-DCG assigns a positive utility to the act of click-
ing itself. Philosophically this is not really sound, since the
act of clicking is actually a nuisance, and only from the ac-
tual reading of an interesting document is utility obtained.
So in order to motivate (4) we need to appeal to an argu-
ment along the lines of the learned utility in (2): because
we have established in the past that the act of clicking on
an interesting link leads to an interesting page we can assign
an (expected) utility to the act of clicking. However, from a
more practical point of view (4) then still has problems. If
we motivate the value of a click from an apparent interest
in the result page, we assume that all interesting snippets
point to interesting landing pages. This will unfortunately
not always be the case in practice. To overcome this the
utility can be extended by incorporating a minimal dwell
time as proxy for an endorsement of the landing page.

To encourage diversity, one simple approach would be to
introduce a concave function f of the simple DCG-like sum
of clicks:

Uclicks page(c[1], . . . , c[n]) = f

(
n∑

p=1

d(p)c[p]

)
. (5)

This captures the notion that the step from 0 clicks to 1
click on a page is bigger than that from 1 to 2. The trans-
formed utility would penalize systems with click-DCG near
zero. For an ambiguous query with several types of result,

a ranking optimized to avoid zero click-DCG could poten-
tially present results of each type, hedging its bets by giving
a more diverse results list.

To take advantage of this type of diversity-encouraging
utility, one must combine it with a model that can cap-
ture correlations between click events on different docu-
ments on a page. For instance, for ambiguous queries, clicks
on links to two different interpretations will in general be
anti-correlated: someone clicking on a link of one type will
be less likely to also click on a link of the other type, presum-
ing they have one interpretation of the query in mind when
searching. To do this requires a model for the joint distribu-
tion p(c[1], . . . , c[n]|x, a), which is in general a difficult mod-
eling task. An independence assumption p(c[1], . . . , c[n]|x, a) =∏n

p=1 p(c[p]|x, a) does not capture these correlations, but is
a reasonable simplifying modeling assumption if one is using
the more straight-forward click-DCG utility of (4).

2.1.3 Combinations of basic utilities
The decision theoretic framework allows for a principled

trade-off between desired behavior of the searcher and rele-
vance cues from a selected set of human judges. In general
the utility function should depend on both. A straightfor-
ward scheme is to take a weighted combination of the basic
utility functions presented in Section 2.1.1 and 2.1.2.

2.2 Properties of the basic click-label utility
In the experiments in Section 3 we will use a utility func-

tion as sketched in Section 2.1.3:

U(y) = (1− λ)UDCG(y) + λUclicks(y) . (6)

The parameter λ is still a design choice in this parametric
form.

As argued in Section 2.1.2 the click part in the utility func-
tion (6) is only weakly motivated by the guiding principles,
but it forms a good starting point since it captures already
a few interesting characteristics from the two data streams.

• If there is noise in the labeled set, or if the model
makes poor label predictions for a query, a suboptimal
ordering can be corrected by clicks.

• If the model correctly predicts labels but there are ties,
a top three of only good documents say, users effec-
tively vote with their mouse which one they prefer.

• Since the framework consists of a model that predicts
clicks based on features, an improvement in the rank-
ing for popular queries also extends to unseen queries.
For instance if Excel documents prove to be popular
in a particular search context, they can be boosted for
all queries in that context.

• Effectively the click based component in the utility
will boost results that are predicted to be popular.
If judges are instructed to label according to author-
ity, the λ parameter allows us to trade-off popularity
and authority. For instance in experiments with web-
search data we found for instance that for the query
“adobe” the url www.adobe.com is predicted to get the
highest label, but the acrobat reader download page
is the most popular. One could argue that the ideal
result list has www.adobe.com at the top position and
the link to the reader as the second link. This was the
list returned in our experiments with λ = 0.5.

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 27

judgment
model

click
model

x

p(l | x, w) p(c | x, w)

Figure 2: The model implemented in this paper sets
out to predict two things: namely the probability of
a click event p(yc|x,w) and the probability of a partic-
ular relevance judgment p(yj |x,w). The GLM model
implies that the two sub-models factorize, and thus
can be learned independently.

• By having the position of a document as part of the
inputs x and fitting appropriate weights in the model,
a position bias is automatically accounted for.

• If x contains characteristics of the user, the ranker au-
tomatically gives a personalized result.

• If the model is sophisticated enough such that it cap-
tures the interaction between documents, e.g. predict-
ing that the probability of being clicked for near du-
plicate documents is anti-correlated, the ranker will,
with a click-utility component from (5) automatically
diversify the result list.

3. ON-SITE ADAPTATION OF INTRANET
SEARCH SYSTEMS

An interesting application of the decision theoretic frame-
work is in enterprise search. When a search system is in-
stalled out-of-the-box its ranker is based on a generic train-
ing set. Since intranets and their user bases can be quite
diverse, it makes sense to use implicit feedback to adapt the
ranker to the specific site for which it will be used.

It is generally difficult to obtain judged queries complete
with clickthrough data from external organizations. Hence
for this work, we were obliged to test the adaptation frame-
work using an artificial corpus split created from data ob-
tained from the Intranet of a single large multinational soft-
ware corporation.

To reflect a significant change from the train set to the
adaptation set, we created a split of our queries. For train-
ing, we use all queries and documents concerning the general
areas of administration and marketing. For the adaptation
set, simulating a potentially very different Intranet site, we
use queries and documents of a technical nature.

The admin/marketing dataset used to train the out-of-
the-box model consists of 546 queries. For each query, about
100 documents from the top of a ranked list from a base-
line ranker were judged, and some of them had click infor-
mation. The click-prediction part of the model is further
trained using the adaptation query set, consisting of 201
technical queries. This simulates the on-site adaptation of
the system to the user’s clicks in the enterprise. In this case,
the explicit judgments are not used for adapting the model,
but instead used for evaluation only.

The click data we use is noteworthy in the following sense.
We record not only the clicked documents, but also the doc-
uments that are skipped, or passed over, on the way to a
click. In this work, inspired by [7], we assume a sequential
scan of the result list, and as a consequence, that any doc-
ument that is above the last click on the list is examined.
In this way, we can aggregate the number of clicks and the
number of examinations for a given query-document pair: a
document which is clicked each time it is examined is intu-
itively good, and a document that is rarely clicked having
been examined is probably a poor result. Importantly, we
cannot infer much about the relevance of documents that
have few examinations. This can happen if a result is either
low in the ranking, or near the top yet just below a very
good result.

3.1 A Bayesian generalized linear model
In this first illustration we use a generalized linear model

(GLM) [9] for p(y|x, a). A GLM consists of a likelihood
model p(y|θ), a linear combination of inputs x and model
weights w: x>w, and a link function g(θ) that maps the
parameter θ to the real line. In this section we will use
building blocks that have a binomial likelihood model and
a probit link function. In a generative model interpretation
the inverse probit link function

g−1(s) = Φ

(
s; 0,

1

π

)
plays a central role. This inverse link function is the well
known cumulative normal function that maps the outcome
of the inner product x>w ∈ R to the [0, 1] space of the
success parameter θ in the binomial. The inverse precision
π can be set to an arbitrary number to fix the scale of the
s-space. Here we will put a Gamma prior on π and integrate
it out to obtain a robust model. If we have N examples in
our training set for which the inputs have value x, and we
observe c positive outcomes, the likelihood becomes:

p(c|x,w) = Bin
(
c; g−1

(
x>w

)
, N
)

. (7)

In Figure 2 we show a more detailed version of Figure 1b,
where we are more explicit about what we set out to predict
with the model. In this initial implementation, the output y
in the model describes for each position p = 1, . . . , n a single
implicit feedback: the click event yc, and a single explicit
feedback: the relevance judgment yj .

Figure 4 shows the ordinal regression submodel p(l|x, w)
which is a generalization of the click model. Instead of one
of two outcomes it has one of five possible label values it
can output. Along with the other weights we therefore also
learn four boundary values b1, . . . , b4 that mark the edges in
s-space of the five categories. Each has a Gaussian prior.
The IsBetween factor in the figure represents two stepfunc-
tions that bound the interval for label l. Added to the sum

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 28

wt1

wt2

wt3

…

1
0
0
0
0
0

wtypextype

fil

e
ty

pe
s

wd1

wd2

wd3

…

0
1
0
0
0
0
0
0

wurl

U

R
L

le
ng

th

wp1

wp2

wp3

…

1
0
0
0
0
0
0

wposxpos

ra

nk
in

g
po

si
tio

ns

wq1

wq2

wq3

…

0
0
0
0
1
0
…

0
0
0
0

wqueryxquery

qu

er
ie

s

wqd1

wqd2

wqd3

…

0
0
0
0
0
0
0
0
1
0
…

0

wquery-docxquery-doc

qu

er
y-

do
cu

m
en

t p
ai

rs

xurl

× ×

×
×

×

×+

p(c | x, w)

wBM25xBM25

s

Figure 3: Indicator binary features and the GLM. This is a specific example of the click model shown on the
right in Figure 2. Here the inputs x are made explicit as one real-valued feature (BM25) and five bags of
binary features. The output is the predicted probability of click.

s is a Gaussian disturbance with inverse precision π. This
disturbance can be interpreted as a softening of the step-
function such that some noise in the label is supported by
the model. It is the direct analog of the choice of probit link
function instead of a hard step function in the discrete click
prediction case.

3.2 Features
Figure 3 takes a more detailed look at the inputs (features)

used for just the click model GLM. The input x contains
parts that are query specific, parts that are document spe-
cific, and parts that are derived from the query-document
pair. A BM25F score [11] is used as a general input that
indicates the match between query and document.

Document specific features include the document file type
(e.g. Html, Pdf, Excel etc) and the length of the url. Apart
from these basic descriptive features, the vector x includes
binary indicators for the query ID and the query-document
ID, and also the rank (position) of the document in the list
for which the click event was observed or is to be predicted.

The descriptive features give the model the ability to gen-
eralize between queries and documents, and the identifier
(ID) weights effectively serve as an instance-specific mem-
ory. For frequently seen documents for popular queries the
model can store, using the identifier weights, very accurate
click predictions, even if they are far from the general trend
predicted by the descriptive features. A bias term that is
always 1 is included to capture a grand average.

3.3 Training

To learn the distributions of w we use the approximate
Bayesian inference procedure from [15] with a factorized
Gaussian prior. The ordinal regression part is treated as
in [3] with the difference that here we do not resort to an
ML-II approximation of π but integrate it out.

The main benefit of the Bayesian procedure is that with
each individual weight in w a notion of the uncertainty
about its optimal value is maintained. This results in a
learning algorithm that correctly updates imprecisely deter-
mined weights more than precisely determined ones, which
is essential for our model. The weights for descriptive fea-
tures effectively see a lot more data than the query and
document specific identifier weights. The Bayesian update
rules ensure that each get updated at the right rate — in
particular, a small number of examinations will not change
the weight distributions nearly as much as a large number.
This is something that could not easily be handled in for
example maximum likelihood approaches.

3.4 Results
Before any implicit feedback data is available the ranker is

based on a model that predicts clicks and labels. The utility
we used in the experiments is a simple weighted combination
between DCG and click-DCG as given in Equation 6. The
specific setting of λ in this utility is a design choice. The
dotted line in Figure 5 shows, for the out-of-the-box model,
the NDCG@10 on the adaptation set as a function of λ. We
see that using the click utility (λ = 1) actually reduces the
NDCG@10 score. This is to be expected, since the NDCG
score does not depend on observed clicks. The utility in (6)

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 29

p(l | x, w)

s

Gam N(y; s,1/p)

y

+

as with GLM Model

IsBetween

bl -1 blobserved label l... ...

......

N N

Figure 4: This is a specific example of the label
model shown on the left in Figure 2. The inputs
are the same as for the click model. However the
output is handled differently. First noise is added
to the variable s; the result is then constrained to
lie between the two threshold variables which corre-
spond to the observed label. Thresholds and noise
precision are learnt in addition to the weights.

with λ = 0 is equivalent to DCG, and setting λ to another
value encourages the ranker to optimize a different metric
than NDCG@10 shown on the y-axis in Figure 5.

If we use two months of adaptation data, i.e. the site spe-
cific click feedback, we get the analogous solid/crossed curve
in Figure 5. Here we see that incorporating clicks leads to
an improvement of NDCG@10. A value for λ other than 0
and 1 leads effectively to the combination of the two datasets
(the train set and the adaptation set). This improves perfor-
mance, even if we measure the performance of the resulting
system with NDCG, an evaluation metric that does not re-
ward clicks.

The lower dashed line in Figure 5 represents a BM25F
baseline, with no click data. We note that it is a horizontal
line since ranking by BM25F does not involve a λ parameter.
We see a 1 point NDCG@10 gain from the features alone
(λ = 0) and an additional 2 points gain if we set λ = 0.5).

3.4.1 A proxy for a click-metric
The NDCG metric reported in Figure 5 is a well-known

metric, but if λ 6= 0 it is strictly speaking not the metric
that the ranker seeks to optimize. If it is decided that (6)
with a particular value for λ is the utility that represents
end user satisfaction the best, then that utility should be
the final evaluation metric. Ideally we would like to test a
ranker in an on-line setting where it can control the results
lists. In such a setting we could monitor the accumulated
utility by the ranker. However, since we only have historic

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
D

C
G

@
1

0
 o

n
 t

e
s
t

s
e

t

λ

BM25F No test set clicks Adapted with clicks

Judgement

Utility

Click

Utility

Figure 5: NDCG@10 scores for the different rankers
as function of λ, the relative weight given to the
click-part in a combined utility function.

0.1

0.105

0.11

0.115

0.12

0.125

0.13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
li

c
k

 M
e

t
r
ic

 o
n

 h
o

ld
-o

u
t
 s

e
t

λ
Judgement

Utility

Click

Utility

Figure 6: The click based scores from Equation (8)
for the different rankers as function of λ.

data available we use the following proxy click metric:

Sclicks =

∑n
p=1 d(p)Nc(p)∑n

p=1 Ne(p)
(8)

where we denote the total number of clicks for the document
on position p with Nc(p) and the number of examinations
with Ne(p). The numerator in (8) uses the same discount
function d(p) as used in (3). Extra in this proxy evaluation
metric is the normalization represented by the denominator.
This ensures that documents that were not shown to users in
the dataset (and hence have 0 clicks and 0 examinations) are
properly disregarded. The score above is for a single query,
and the total score would be the average over all queries.

Figure 6 shows a plot analogous to Figure 5, but now with
the click-based evaluation metric from (8). We note that this
new metric gets better with increasing λ. This is to be ex-
pected: a ranking formed from a utility based predominantly
upon predicted click rate should do better when evaluated
with a click-based metric. This provides further orthogo-
nal evidence that combining implicit and explicit feedback
improves search results.

To get a feel for the qualitative changes that the different
choices of utility function imply it is instructive to look at

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 30

Relevance Judgments Utility (DCG)

1.: http://vsts
2.: http://develop/vs2005field
3.: http://msdnprod/vstudio

Click Utility

1.: http://devdiv
2.: http://msdnprod/vstudio
3.: http://infoweb/c16/visualstudiodotnet

Mixed Utility (λ = 0.5)

1.: http://msdnprod/vstudio
2.: http://vsts
3.: http://devdiv

Table 1: Reorderings of the top-ranked positions for
the “Visual Studio” query

a specific example. Table 1 shows the top three results for
the query “Visual studio” for λ = 0 (DCG ranking), λ = 1
(click ranking) and λ = 0.5 (balanced ranking). In this
example the DCG based top three are all documents that
could claim to be a definitive result for searchers interested
in using the Visual Studio product. They were all labeled
“good” by human assessors. If the ranker is using the click-
only utility (λ = 1) we see that the top three changes. Of
the three “good” results in the DCG list, the msdnprod link
and snippet is apparently the most appealing to the users in
the adaptation phase, containing technical information. The
other two documents that have entered the top three reflect
different interpretations of the query “Visual studio”: the
devdiv page gives information about the team that creates
Visual studio, and the infoweb provides marketing data.

This example demonstrates that there is no unique def-
inition of relevance. If we deem the most popular page to
be the most relevant, we should pick the click utility. How-
ever, if we want the result list to be more authoritative, a
utility based upon explicit judgments might promote pages
that are more likely to have been overlooked in a straight
snippet-based popularity contest. This advantage of an in-
creased reliability of explicit judgment usually comes with
the disadvantage of a single user interpretation of relevance:
there is a natural tradeoff between judgment accuracy and
result diversity. As Table 1 shows a mixed utility allows us
to find a balance between these two extremes.

Including click feedback has had two qualitative effects
for the Visual Studio query: (i) a rearrangement of, from
the external perspective equally good, documents according
to local preferences, and (ii) a promotion of alternative in-
terpretations of the query that are common at the specific
intranet. Although we present a single example here, we
have seen these effects in many other queries, together with
a third major effect: (iii) the correction of erroneous human
judgments.

4. SUMMARY
In this paper we have explored the decision theoretic frame-

work for IR and studied how it can be used to combine sev-
eral sources of feedback into a single ranker. The approach
is based on a utility function that describeses the user sat-
isfaction after a search session, and a model that predicts

user actions such as clicking and labelling based on known
quantities at query time. Constructing a model and formu-
lating a utility function are both difficult problems. But we
observe that in the case of label and click stream data the
simplest possible utility function and a reasonable predic-
tion model already give many of the potential benefits that
the combination of the two streams can bring.

In experiments in an enterprise search setting, we see that
the approach leads to increased performance. Qualitatively
we see that mislabelled queries get filtered out, result lists
for ambiguous queries change to better reflect the most often
intended interpretation by users, and tie breaking of identi-
cally labelled results is done according to population prefer-
ence. In terms of NDCG@10 including the click stream in
the decision theoretic ranker leads to a two point gain. This
is despite the fact that the ranker does not aim to optimize
this metric. Given the qualitative results we expect that
end user experience improves even more than the two point
NDCG gain indicates.

5. REFERENCES
[1] E. Agichtein, E. Brill, and S. Dumais. Improving web

search ranking by incorporating user behavior
information. In SIGIR, 2006.

[2] C. Burges, R. Ragno, and Q. V. L. Le. Learning to
rank with nonsmooth cost functions. In NIPS, 2006.

[3] W. Chu and Z. Ghahramani. Gaussian processes for
ordinal regression. JMLR, 6:1019–1041, 2005.

[4] I. J. Cox, M. L. Miller, T. P. Minka, T. Papathomas,
and P. N. Yianilos. The Bayesian image retrieval
system, pichunter: Theory, implementation and
psychophysical experiments. IEEE Transactions on
Image Processing, Special Issue on Image and Video
Processing for Digital Libraries, 9(1):20–37, 2000.

[5] S. Fox, K. Karnawat, M. Mydland, S. T. Dumais, and
T. White. Evaluating implicit measures to improve the
search experience. ACM Transactions on Information
Systems, 23:147–168, 2005.

[6] Järvelin and J. Kekäläinen. IR evaluation methods for
retrieving highly relevant documents. In SIGIR, 2000.

[7] T. Joachims. Optimizing search engines using
clickthrough data. In Proceedings of Knowledge
Discovery in Databases, 2002.

[8] J. Lafferty and C. Zhai. Document language models,
query models, and risk minimization for information
retrieval. In SIGIR, pages 111–119, 2001.

[9] P. McCullagh and J. A. Nelder. Generalized Linear
Models. CRC Press, 2nd edition, 1990.

[10] S. Robertson, H. Zaragoza, and M. Taylor. A simple
BM 25 extension to multiple weighted fields. In
CIKM, pages 42–29, 2004.

[11] S. E. Robertson. The probability ranking principle in
IR. Journal of Documentation, 33:294–304, 1977.

[12] M. Taylor, J. Guiver, S. Robertson, and T. Minka.
SoftRank: optimizing non-smooth rank metrics. In
WSDM ’08, pages 77–86. ACM, 2008.

[13] S. K. M. Wong, P. Bollmann, and Y. Y. Yao.
Information retrieval based on axiomatic decision
theory. General Systems, 19(2), 23(2):101–117, 1991.

[14] O. Zoeter. Bayesian generalized linear models in a
terabyte world. In IEEE Conference on Image and
Signal Processing and Analysis, 2007.

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 31

A Framework for Unsupervised Rank Aggregation

Alexandre Klementiev, Dan Roth, and Kevin Small
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801

{klementi,danr,ksmall}@uiuc.edu

ABSTRACT
The need to meaningfully combine sets of rankings often
comes up when one deals with ranked data. Although a
number of heuristic and supervised learning approaches to
rank aggregation exist, they generally require either domain
knowledge or supervised ranked data, both of which are ex-
pensive to acquire. To address these limitations, we pro-
pose1 a mathematical and algorithmic framework for learn-
ing to aggregate (partial) rankings in an unsupervised set-
ting, and instantiate it for the cases of combining permu-
tations and combining top-k lists. Furthermore, we also
derive an unsupervised learning algorithm for rank aggre-
gation (ULARA), which approximates the behavior of this
framework by directly optimizing the weighted Borda count.
We experimentally demonstrate the effectiveness of both ap-
proaches on the data fusion task.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models

General Terms
Algorithms, Theory

Keywords
Ranking, Rank Aggregation, Distance-Based Models

1. INTRODUCTION
Consider the scenario where each member of a panel of

judges independently generates a (partial) ranking over a
set of items while attempting to reproduce a true underly-
ing ranking according to their level of expertise. This setting
motivates a fundamental machine learning and information

1This paper unifies and extends work from [18] and [19]

SIGIR’08 LR4IR Workshop, July 24, 2008, Singapore.

retrieval (IR) problem - the necessity to meaningfully aggre-
gate preference rankings into a joint ranking. The IR com-
munity refers to this as data fusion, where a joint ranking
is derived from the outputs of multiple retrieval systems,
possibly from several heterogeneous sources. A canonical
data fusion task is meta-search where the aim is to aggre-
gate Web search query results from several engines into a
more accurate ranking.

One impediment to solving rank aggregation tasks is the
high cost associated with acquiring full or partial preference
information, making supervised approaches (e.g. [22, 23])
of limited utility. For data fusion, efforts to overcome this
difficulty include applying domain specific heuristics [26] or
collecting such preference information indirectly (e.g. using
clickthrough data [15]). In order to address this limitation,
we consider the task of learning to aggregate (partial) rank-
ings without supervision.

Analyzing ranked data is an extensively studied problem
in statistics [25], economics [2], information retrieval [26],
and machine learning literature [1]. Mallows [24] introduced
a distance-based model for fully ranked data and investi-
gated its use with Kendall’s and Spearman’s metrics. The
model was later generalized to other distance functions and
for use with partially ranked data [4]. [20] proposed a multi-
parameter extension, where multiple modal rankings (e.g.
expert opinions) are available and use their formalism for su-
pervised ensemble learning; they also analyzed their model
for partially ranked data [21].

The first key contribution of our work is the derivation
of an EM-based algorithm for learning the parameters of
the extended Mallows model without supervision. We in-
stantiate the model with appropriate distance functions for
two important scenarios: combining permutations and com-
bining top-k lists. In the context of defining distances be-
tween rankings, various metrics have been proposed and ana-
lyzed [4, 9]. Distances over top-k lists, i.e. rankings over the
k most preferable objects, receive particular attention in the
IR community [10]. [12] show that a class of distance func-
tions between full rankings, such as Kendall’s and Cayley’s
metrics, decompose into a sum of independent components
allowing for efficient parameter estimation of the standard
Mallows model.

The second key contribution of our work is the derivation
of a novel decomposable distance function for top-k lists.
We show it to be a generalization of the Kendall metric
and demonstrate that it can be decomposed, enabling us
to estimate the parameters of the extended Mallows model
efficiently.

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 32

The third contribution is the derivation of an unsupervised
learning algorithm for rank aggregation (ULARA), which
approximates the learning of the parameters of this model by
directly learning the parameters of a weighted Borda count
through an optimization procedure.

The remainder of the paper is organized as follows: section
2 formalizes distance-based ranking models and introduces
relevant notation. Section 3 derives our EM-based algorithm
for learning model parameters and specifies the requirements
for efficient learning and inference. Section 4 instantiates the
framework for two common scenarios: permutations (full
rankings) and top-k lists. Section 5 describes our approx-
imation method based on an optimization of the weighted
Borda count. Section 6 experimentally demonstrates the
model’s effectiveness in both cases. Finally, section 7 con-
cludes the work and gives ideas for future directions.

2. DISTANCE-BASED RANKING MODELS

2.1 Notation and Definitions
Let {x1, . . . , xn} be a set of objects to be ranked, i.e. as-

signed rank-positions 1, . . . , n, by a judge. We denote the
resulting permutation π = (π(1), . . . , π(n)), where π(i) is
the rank assigned to object xi. Correspondingly, we use
π−1(j) to denote the index of the object assigned to rank j.

Let Sn be the set of all n! permutations over n items, and
let d : Sn × Sn → R be a distance function between two
permutations. We will require d(·, ·) to be a right-invariant
metric [6]: in addition to the usual properties of a metric, we
will also require that the value of d(·, ·) does not depend on
how the set of objects is indexed. In other words, d(π, σ) =
d(πτ, στ) ∀π, σ, τ ∈ Sn, where πτ is defined by πτ(i) =
π(τ(i)).

In particular, note that the right-invariance property im-
plies that d(π, σ) = d(ππ−1, σπ−1) = d(e, σπ−1), where
e = (1, . . . , n) is the identity permutation. That is, the value
of d does not change if we re-index the objects such that
one of the permutations becomes e and the other ν = σπ−1.
Borrowing the notation from [12] we abbreviate d(e, ν) as
D(ν). In a later section, when we define ν as a random vari-
able, we may treat D(ν) = D as a random variable as well:
whether it is a distance function or a r.v. will be clear from
the context.

2.2 Mallows Models
While a large body of work on ranking models exists in

statistics literature, of particular interest to us are the dis-
tance based conditional models first introduced in [24]. Let
us give a brief review of the formalism and elucidate some of
the its properties relevant to our work. The model generates
a judge’s rankings according to:

p(π|θ, σ) =
1

Z(θ, σ)
exp(θ d(π, σ)) (1)

where Z(θ, σ) =
P
π∈Sn

exp(θ d(π, σ)) is a normalizing con-
stant. The parameters of the model are θ ∈ R, θ ≤ 0 and
σ ∈ Sn, referred to as the dispersion and the location pa-
rameters, respectively. The distribution’s single mode is the
modal ranking σ; the probability of ranking π decreases ex-
ponentially with distance from σ. When θ = 0, the distri-
bution is uniform, and it becomes more concentrated at σ
as θ decreases.

One property of (1) is that the normalizing constant Z(θ, σ)
does not depend on σ due to the right invariance of the dis-
tance function:

Z(θ, σ) = Z(θ) (2)

Let us denote the moment generating function of D under
(1) as MD,θ(t), and as MD,0(t) under the uniform distribu-
tion (θ = 0). Since (1) is an exponential family,

MD,θ(t) =
MD,0(t+ θ)

MD,0(θ)

Therefore,

Eθ(D) =
1

MD,0(θ)

dMD,0(t+ θ)

dt

˛̨̨̨
t=0

=
d ln(MD,0(t))

dt

˛̨̨̨
t=θ

(3)

[12] note that if a distance function can be expressed as
D(π) =

Pm
i=1 Vi(π), where Vi(π) are independent (with π

uniformly distributed) with m.-g.f. Mi(t), then MD,0(t) =Qm
i=1Mi(t). Consequently, (3) gives:

Eθ(D) =
d

dt

mX
i=1

lnMi(t)

˛̨̨̨
˛
t=θ

(4)

We will call such distance functions decomposable and will
later use (4) in section 4 in order to estimate θ efficiently.

2.3 Extended Mallows Models
[20] propose a natural generalization of the Mallows model

to the following conditional model:

p(π|θ,σ) =
1

Z(θ,σ)
p(π) exp

KX
i=1

θi d(π, σi)

!
(5)

where σ = (σ1, . . . , σK) ∈ SKn , θ = (θ1, . . . , θK) ∈ RK ,
θ ≤ 0, p(π) is a prior, and normalizing constant Z(θ,σ) =P
π∈Sn

p(π) exp(
PK
i=1 θi d(π, σi)).

The rankings σi may be thought of as votes of K individ-
ual judges, e.g. rankings returned by multiple search engines
for a particular query in the meta-search setting. The free
parameters θi represent the degree of expertise of the indi-
vidual judges: the closer the value of θi to zero, the less the
vote of the i-th judge affects the assignment of probability.

Under the right-invariance assumption on d, we can use
property (2) to derive the following generative story under-
lying the extended Mallows model:

p(π,σ|θ) = p(π)

KY
i=1

p(σi|θi, π) (6)

That is, π is first drawn from prior p(π). σ is then
made up by drawing σ1 . . . σK independently from K Mal-
lows models p(σi|θi, π) with the same location parameter
π.

It is straightforward to generalize both Mallows models
[4], and the extended Mallows models to partial rankings by
constructing appropriate distance functions. We will assume
this more general setting in the following section.

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 33

3. LEARNING AND INFERENCE
In this section, we derive the general formulation of Ex-

pectation Maximization algorithm for parameter estimation
of the extended Mallows models (5), and suggest a class of
distance functions for which learning can be done efficiently.
We then describe an inference procedure for the model.

3.1 EM Background and Notation
Let us start with a brief overview of Expectation Maxi-

mization (EM) [5], mostly to introduce some notation. EM
is a general method of finding maximum likelihood estimate
of parameters of models which depend on unobserved vari-
ables. The EM procedure iterates between:

E step: estimate the expected value of complete data log-
likelihood with respect to unknown data Y, observed data
X , and current parameter estimates θ′:

T (θ, θ′) = E[log p(X ,Y|θ)|X , θ′]

M step: choose parameters that maximize the expectation
computed in the E step:

θ′ ← argmax
θ

T (θ, θ′)

In our setting, the K > 2 experts generate votes σ corre-
sponding to the unobserved true ranking π. We will see mul-
tiple instances of σ so the observed data we get are ranking
vectors X = {σ(j)}Qj=1 with the corresponding true (unob-

served) rankings Y = {π(j)}Qj=1.

In the meta-search example, σ
(j)
i is the ranking of the i-th

(of the total of K) search engine for the j-th (of the total
of Q) query. The (unknown) true ranking corresponding to

the j-th query is denoted as π(j).

3.2 EM Derivation
We now use the generative story (6) to derive the following

propositions (proofs omitted due to space constraints):

Proposition 1. The expected value of the complete data
log-likelihood under (5) is:

T (θ,θ′) =
X

(π(1),...,π(Q))∈SQ
n

Lθ Uθ′ (7)

where the complete data log-likelihood Lθ is:

Lθ =

QX
j=1

log p(π(j))−Q
KX
i=1

logZ(θi)+

QX
j=1

KX
i=1

θi d(π(j), σ
(j)
i)

and the marginal distribution of the unobserved data Uθ′

is:

Uθ′ =

QY
j=1

p
“
π(j)|θ′,σ(j)

”
Proposition 2. T (θ,θ′) is maximized by θ = (θ1, . . . , θK)

such that:

Eθi(D) =
X

(π(1),...,π(Q))

∈SQ
n

1

Q

QX
q=1

d(π(q), σ
(q)
i)

!
Uθ′ (8)

That is, on each iteration of EM, we need to evaluate the
right-hand side (RHS) of (8) and solve the LHS for θi for
each of the K components.

3.3 Model Learning and Inference
At first, both evaluating the RHS of (8) and solving the

LHS for θi seem quite expensive (> n!). While true in gen-
eral, we can make the learning tractable for a certain type
of distance functions.

In particular, if a distance function can be decomposed
into a sum of independent components under the uniform
distribution of π (see section 2.2), property (4) may enable
us to make the estimation of the LHS efficient. In Section
4, we show two examples of such distance functions (for
permutations and top-k lists).

In order to estimate the RHS, we use the Metropolis al-
gorithm [14] to sample from (5). The chain proceeds as
follows: denoting the most recent value sampled as πt, two
indices i, j ∈ {1, . . . , n} are chosen at random and the ob-
jects π−1

t (i) and π−1
t (j) are transposed forming π′t. If a =

p(π′t|θ,σ)/p(πt|θ,σ) ≥ 1 the chain moves to π′t. If a < 1,
the chain moves to π′t with probability a; otherwise, it stays
at πt. [7] demonstrates rapid convergence for Mallows model
with Cayley’s distance. While no convergence results are
known for the extended Mallows model with arbitrary dis-
tance, we found experimentally that the MC chain converges
rapidly with the two distance functions used in this work
(10n steps in experiments of Section 6). As the chain pro-
ceeds, we update the distance value with the incremental
change due to a single transposition, instead of recomputing
it from scratch, resulting in substantial savings in computa-
tion.

Alternatively, we also found (Section 6.1) that combin-
ing rankings σi with the Borda count weighted by exp(−θi)
provides a reasonable and quick estimate for evaluating the
RHS.

Sampling or the suggested alternative RHS estimation
used during training is also used for model inference.

4. MODEL APPLICATION
Overcoming the remaining hurdle (the LHS estimation) in

learning the model efficiently depends on the definition of a
distance function. We now consider two particular types of
(partial) rankings: permutations, and top-k lists. The latter
is the case when each judge specifies a ranking over k most
preferable objects out of n. For instance, a top-10 list may
be associated with the 10 items on the first page of results
returned by a web search engine. For both permutations
and top-k lists, we show distance functions which satisfy
the decomposability property (Section 2.2), which, in turn,
allows us to estimate the LHS of (8) efficiently.

4.1 Combining Permutations
Kendall’s tau distance [16] between permutations π and σ

is a right-invariant metric defined as the minimum number
of pairwise adjacent transpositions needed to turn one per-
mutation into the other. Assuming that one of the permu-
tations, say σ, is the identity permutation e (we can always
turn one of the permutations into e by re-indexing the ob-
jects without changing the value of the distance, see Section
2.1), it can be written as:

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 34

DK(π) =

n−1X
i=1

Vi(π)

where2 Vi(π) =
P
j>i I(π−1(i) − π−1(j)). Vi are inde-

pendent and uniform over integers [0, n− i] [11] with m.-g.f.

Mi(t) = 1
n−i+1

Pn−i
k=0 e

tk. Following [12], equation (4) gives:

Eθ(DK) =
neθ

1− eθ −
nX
j=1

jeθj

1− eθj (9)

Eθ(DK) is monotone decreasing, so line search for θ will
converge quickly.

4.2 Combining Top-k Lists
We now propose an extension of the Kendall’s tau dis-

tance to top-k lists, i.e. the case where π and σ indicate
preferences over different (possibly, overlapping) subsets of
k ≤ n objects.

Let us denote by Fπ and Fσ the elements in π and σ
respectively, noting that |Fπ| = |Fσ| = k. We define Z =
Fπ ∩ Fσ, |Z| = z, P = Fπ \ Fσ, and S = Fσ \ Fπ (note that
|P | = |S| = k−z = r). We treat π and σ as rankings, which
in our case means that the smallest index will indicate the
top, i.e. contain the most preferred object. For notational
convenience, let us now define the augmented ranking π̃ as π
augmented with the elements of S assigned the same index
(k + 1), one past the bottom of the ranking as shown on
Figure 1 (σ̃ is defined similarly). We will slightly abuse our
notation and denote π̃−1(k+ 1) to be the set of elements in
position (k + 1).

Kendall’s tau distance DK is naturally extended from per-
mutations to augmented rankings.

Definition 1. Distance D̃K(π̃, σ̃) between augmented rank-
ings π̃ and σ̃ is the minimum number of adjacent transposi-
tions needed to turn π̃ into σ̃.

It can be shown that D̃K(π̃, σ̃) is a right-invariant met-
ric, thus we will again simplify the notation denoting it as
D̃K(π̃). This distance can be decomposed as:

D̃K(π̃) =

kX
i=1

π̃−1(i)∈Z

Ṽi(π̃) +

kX
i=1

π̃−1(i)/∈Z

Ũi(π̃) +
r(r + 1)

2

where

Ṽi(π̃) =

kX
j=i

π̃−1(j)∈Z

I(π̃−1(i)− π̃−1(j)) +

X
j∈π̃−1(k+1)

I(π̃−1(i)− j)

Ũi(π̃) =

kX
j=i

π̃−1(j)∈Z

1

2I(x) = 1 if the variable x > 0 or a predicate x is true, and
0 otherwise.

k−1

7

k

3

k+1

1

k+1

k+1

k

k−1

k−2

4

3

1

2

2 4 k−1k+1

k

k−1

k−2

4

3

1

2

k+1 k+1k+1

σ~π~

k−2

k

1

k+1

2

3

4

Figure 1: An example of augmented permutations π̃ (left)
and identity augmented permutation σ̃ (right, in natural

order). Grey boxes are objects in π but not in σ. D̃K(π̃) is
the minimum number of adjacent transpositions needed to
turn π̃ into σ̃: namely, bring all grey boxes into the position
k+1 and put the remaining k objects in their natural order.

Decomposing D̃K(π̃), the second term is the minimum
number of adjacent transpositions necessary to bring the r
elements not in Z (grey boxes on Figure 1) to the bottom
of the ranking. The third term is the minimum number
of adjacent transpositions needed to switch them with the
elements in π̃−1(k + 1), which would then appear in the
correct order in the bottom r positions. Finally, the first
term is the adjacent transpositions necessary to put the k
elements now in the list in the natural order.

It can be shown that the random variable summands com-
prising D̃K(π̃) are independent when π̃ is uniformly dis-

tributed. Furthermore, Ṽi and Ũj are uniform over inte-
gers [0, k − i] and [0, z], with moment generating functions

1
k−i+1

Pk−i
j=0 e

tj and 1
z+1

Pz
j=0 e

tj , respectively. Assuming

z > 0, and r > 0 equation (4) gives:

Eθ(D̃K) =
keθ

1− eθ −
kX

j=r+1

jejθ

1− ejθ +

r(r + 1)

2
− r(z + 1)

eθ(z+1)

1− eθ(z+1)
(10)

If r = 0 (i.e. the augmented rankings are over the same
objects), both the distance and the expected value reduce
to the Kendall distance results. Also, if z = 0 (i.e. the

augmented rankings have no objects in common), D̃K =

Eθ(D̃K) = k(k + 1)/2, which is the smallest number of ad-
jacent transpositions needed to move the r = k objects in
π̃−1(k + 1) into the top k positions.

Eθ(D̃K) decreases monotonically, so we can again use
line search to find the value of θ. Notice that the expected
value depends on the value of z (the number of common
elements between the two permutations). We will compute
the average value of z as we estimate the RHS of (8) and
use it to solve the LHS for θ.

5. DIRECTLY OPTIMIZING THE WEIGHTED
BORDA COUNT

A common approach to aggregate a single set of votes is
to find a permutation with the minimum average Kendall
tau distance to those votes. Computing such a ranking,

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 35

Algorithm 1 Training

1: Input: {σ(q)}Qq=1, {κi}Ki=1, λ, ν
2: w← 0
3: t← 1
4: for q ← 1, . . . , Q do
5: for j ← 1, . . . , n do

6: if K
(q)
j ≥ ν then

7: µ(q)(j) =

P
i∈K(q)

j

σ
(q)
i (j)

K
(q)
j

8: for i← 1, . . . ,K do

9: if σ
(q)
i (j) ≤ κi then

10: ∇i ←
h
σ

(q)
i (j)− µ(q)(j)

i2
11: else

12: ∇i ←
h
κi + 1− µ(q)(j)

i2
13: wti ← wt−1

i + λ · ∇i
14: t← t+ 1
15: Normalize(w)

16: Output: w ∈ [0, 1]K

Figure 2: An unsupervised algorithm for rank aggregation:
Training.

known as the Kemeny-optimal aggregation, is known to be
NP-hard [8]. However, the well known Borda count method
provides a good approximation [3] and is known to mini-
mize the average Spearman’s distance (11) to the constituent
rankings.

dS(σ, π) =

nX
i=1

(σ(i)− π(i))2 (11)

Empirically, we found (see Section 6.1) the Borda count
method augmented with weights representing relative ranker
quality to be a good alternative in the inference step of
Section 3.3. Here, we explore this idea further and pro-
pose a simple unsupervised algorithm (ULARA) to learn
these weights directly by minimizing the empirical average
(weighted) Spearman’s distance between the votes of the
constituent rankers and a surrogate true ranking. As be-
fore, we extend the algorithm to handle the top-k setting.

More formally, for an item xj and a given query, let ρB(j) =PK
i=1 σi(j); ∀j = 1, . . . , n be the Borda count yielding a

predicted true ranking π̂B = argsortj=1,...,n ρB(j). Corre-

spondingly, let ρW (j) =
PK
i=1 wi · σi(j);∀j = 1, . . . , n be

the weighted Borda count yielding a predicted true ranking
π̂W = argsortj=1,...,n ρW (j). Furthermore, denote Kj as the
set of rankers which placed the item xj above their respective

set threshold values κi, and |Kj | = Kj =
PK
i=1 I(σi(j) ≤

κi). Finally, let µ(j) =

P
i∈Kj

σi(j)

Kj
denote the mean ranking

of xj . The values µ = (µ(1), . . . , µ(n)) will be used in com-
puting the distance (11) and will play the role of a surrogate
true ranking. Slightly abusing the notation, we will use µ in
place of a permutation when computing distance dS(σ, µ).

We aim to learn the weights w minimizing the average
weighted Spearman’s distance with the additional restriction
that they are positive and add up to one, i.e.

Algorithm 2 Evaluation

1: Input: w,σ, {κi}Ki=1

2: for j ← 1, . . . , n do
3: ρW (j)← 0
4: for i← 1, . . . ,K do
5: if σi(j) ≤ κi then
6: ρW (j)← ρW (j) + wi · σi(j)
7: else
8: ρW (j)← ρW (j) + wi · (κi + 1)
9: π̂W ← argsortj=1,...,n ρW (j)

10: Output: π̂W

Figure 3: An unsupervised algorithm for rank aggregation:
Evaluation.

argmin
w

PQ
q=1

PK
i=1 wi dS(σ

(q)
i , µ(q)) (12)

s.t.
PK
i=1 wi = 1; ∀i, wi ≥ 0. (13)

Informally, the weights should be small for rankers which
tend to disagree with the others, and vice versa.

5.1 The algorithm
As opposed to optimizing this problem directly, we use

iterative gradient descent [17] to derive an online learning
algorithm 1. It takes as input a set of rankings for each
query {σ(q)}Qq=1 along with the associated ranking function

threshold values {κi}Ki=1, a learning rate λ, and a significance
threshold value ν, all discussed in greater detail below. For

each query q and item xj , the rankings (σ
(q)
1 (j), . . . , σ

(q)
K (j))

are used to calculate the mean µ(q)(j) (line 7), the gradient
is determined (line 10), and the weight update is made (line
13). Once all of these updates are completed, the weight
vector is normalized (line 15) to generate a probability vec-
tor for evaluation in algorithm 2. The remaining discussion
entails algorithmic details for practical situations:

• Missing Rankings (κi) - For most settings, there are
more items in the instance space than the individual
ranking functions will return. In the top-k setting,
for instance, systems return rankings over a subset
of documents and most corpus documents remain un-
ranked. We denote this threshold value as κi, noting
that rankers may have different thresholds. If an item
does not appear in a ranking, we substitute κi + 1
for update calculations (line 12), assuming unranked
items are ranked just below the last ranked item.

• Variable Number of Rankers (ν) - Some items may
only appear in the rankings of a subset of judges. If
less than ν rankers, as defined by the user, rank an
item, no updates are made for this item (line 6).

6. EXPERIMENTAL EVALUATION
We demonstrate the effectiveness of our approach for per-

mutations and top-k lists considered in Section 4, as well
the performance of the alternative algorithm proposed in
Section 5.

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 36

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 D
k

to
 tr

ue
 p

er
m

ut
at

io
n

EM Iteration

Sampling
Weighted

True

Figure 4: Permutations: learning performance of the model
(averaged over 5 runs) when RHS is estimated using sam-
pling (Sampling), the proposed weighted Borda count ap-
proximation (Weighted), or the true permutation (True).
As expected, the model trained with the sampling method
achieves better performance, but the approximation method
performs quite well too and converges faster.

6.1 Permutations
We first consider the scenario of aggregating permuta-

tions. For this set of experiments, the votes of K = 10
individual experts were produced by sampling standard Mal-
lows models (1), with the same location parameter σ∗ = e
(an identity permutation over n = 30 objects), and concen-
tration parameters θ∗1,2 = −1.0, θ∗3,..,9 = −0.05, and θ∗10 = 0
(the latter generating all permutations uniformly randomly).
The models were sampled 10 times, resulting in Q = 10 lists
of permutations (one for each “query”), which constituted
the training data.

In addition to the sampling procedure described in Section
3.3 to estimate the RHS of (8), we also tried the following ap-
proximation. For each “query” q, K constituent votes were
combined into a single permutation σ̂q with the weighted
Borda method (defined in Section 5). The weights are com-
puted using the current values of the model parameters as
exp(−θi). The rationale is that the smaller the absolute
value of θi, the lower the relative quality of the ranker, and
the less it should contribute to the aggregate vote. Finally,
the RHS for the i-th component is computed as the distance
from its vote to σ̂q averaged over all Q queries.

We also tried using the true permutation σ∗ in place of
σ̂q to see how well the learning procedure can do.

At the end of each EM iteration, we sampled the cur-
rent model (5), and computed the Kendall’s tau distance
between the generated permutation to the true σ∗. Fig-
ure 4 shows the model performance when sampling and the
proposed approximation are used to estimate the RHS. Al-
though the convergence is much faster with the approxima-
tion, the model trained with the sampling method achieves
better performance approaching the case when the true per-
mutation is known.

6.2 Top-k lists
In order to estimate the model’s performance in the top-k

list combination scenario, we performed data fusion experi-

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 20 22 24 26 28 30 32 34 36 38

P
re

ci
si

on

Number of random rankers Kr

Aggregation (Top-10)
CombMNZrank (Top-10)

Aggregation (Top-30)
CombMNZrank (Top-30)

Figure 5: Top-k lists: precision of the aggregate ranker as
a function of the number of random component rankers Kr

in top 10 and top 30 documents. Our algorithm learns to
discount the random components without supervision sub-
stantially improving over CombMNZrank.

ments using the data from the ad-hoc retrieval shared task
of the TREC-3 conference [13]. Our goal here is to examine
the behavior of our approach as we introduce poor judges
into the constituent ranker pool. In this shared task, 40 par-
ticipants submitted top-1000 ranking over a large document
collection for each of the 50 queries. For our experiments,
we used top-100 (k = 100) rankings from K = 38 of the par-
ticipants (two of the participants generated shorter rankings
for some of the queries and were not used) for all Q = 50
queries. We replaced a specific number Kr ∈ [0,K] of the
participants with random rankers (drawing permutations of
k documents from the set of documents returned by all par-
ticipants for a given query uniformly randomly). We then
used our algorithm to combine top-k lists from Kr random
rankers and (K −Kr) participants chosen at random.

We measure performance using the precision in top-{10, 30}
documents as computed by trec eval3 from the TREC con-
ference series. As a baseline, we use CombMNZrank, a vari-
ant of a commonly used CombMNZ [26]. Given a query q
for each document xj in the collection it computes a score

ρMNZ(j) = Kj ·
PK
i=1(k+1−σ(q)

i (j)), where σ
(q)
i (j) = (k+1)

if the document doesn’t appear in the ranking. Kj is the
total number of participants which place xj in their top-k
rankings. The aggregate ranking is obtained by sorting doc-
uments according to their scores in descending order. Essen-
tially, CombMNZrank is a weighted Borda count method
where the weighting is determined by the number of judges
that rank the given document. Intuitively, the more judges
rank a document highly, the higher it appears in the aggre-
gate ranking.

Figure 5 shows that our algorithm learns to discount the
random components without supervision substantially im-
proving over the baseline as Kr → K.

6.3 Model Dispersion Parameters
In order to demonstrate the relationship between the learned

dispersion parameters of the model, θ, and the relative per-

3Available at http://trec.nist.gov/

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 37

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

P
re

ci
si

on

Recall

BlankName
CombMNZrank

citya1
INQ101
CrnlEA
westp1
pircs1

ETH002

Figure 6: Experimental results for data fusion of the re-
trieval systems submitted to the TREC-3 shared task. While
CombMNZrank only negligibly outperforms the top system,
ULARA performs significantly better than any component
system at multiple recall levels.

Table 1: MRPR of the four search engines and their corre-
sponding model parameters; the results suggest a correlation
between the magnitude of the dispersion parameters and the
relative system performance.

S1 S2 S3 S4
θ -0.065 0.0 -0.066 -0.049
MRPR 0.86 0.43 0.82 0.78

formance of the constituent rankers, we also conducted a
meta-search experiment. First, we generated Q = 50 queries
which result in an unambiguous most relevant document
and submitted them to K = 4 commercial search engines.
For each engine, we kept the 100 highest ranked documents
(10 pages of 10 documents each) after removing duplicates,
and unified URL formatting differences between engines.
We measure performance with Mean Reciprocal Page Rank
(MRPR), which we define as mean reciprocal rank of the
page number on which the correct document appears.

Table 1 shows MRPR of the four search engines and
their corresponding model parameters. As expected, the
results suggest a correlation between the magnitude of the
dispersion parameters and the relative system performance,
implying that their values may also be used for unsuper-
vised search engine evaluation. Finally, our model achieves
MRPR = 0.92 beating all of the constituent rankers.

6.4 Top-k lists with ULARA
We also studied the ad-hoc retrieval shared task of the

TREC-3 conference with the alternative algorithm we pro-
posed in Sect. 5, demonstrating competitive behavior with
significantly faster running times. In this experiment, we
used the top-1000 rankings for each of the 50 queries from all
K = 40 participants, setting κ = 1000. ULARA was used to
combine the rankings of the individual research groups into
an aggregate ranking π̂W . As previously, performance is
quantified by the precision/recall curves and mean average
precision metric as provided by the software (trec_eval)
from the TREC conference series.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 5 10 15 20 25 30 35 40

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

Number of random rankings

BlankName, ν = 10
BlankName, ν = 20
BlankName, ν = 30

CombMNZrank

Figure 7: Experimental results where a number of TREC-
3 systems are replaced with random rankings, demonstrat-
ing robustness of ULARA. While the performance of the
CombMNZrank algorithm deteriorates rapidly, ULARA
performs well even when more than half of the systems are
replaced.

Figure 6 shows the results of the top individual submis-
sions, CombMNZrank, and ULARA for the data fusion
task. We observe that ULARA outperforms all component
ranking functions as well as CombMNZrank. More signifi-
cantly, while CombMNZrank performs slightly better than
the top system, ULARA achieves a relative increase in aver-
age precision of 4.0% at the top ranking, 6.4% at 0.1 recall,
and 6.0% at 0.2 recall over CombMNZrank.

In the second experiment, as in Sec. 6.2, we demon-
strate the robustness properties of ULARA by adding poor
judges to constituent ranker pool. As before, we replaced
a specified number of the K = 40 systems with a rankings
drawn uniformly from all documents returned by all sys-
tems for a given query, denoted as random rankings. As
figure 7 shows, the mean average precision of ULARA ver-
sus CombMNZrank is consistently superior, becoming more
pronounced as the number of random rankings is increased.
To further explore this effect, we varied ν and observe that
as more noise is added, ν must be lowered to accommodate
the lack of agreement between rankers. Even under rela-
tively extreme cicumstances, ULARA produces an aggregate
ranking competitive with a noise free system; however, un-
like the approach in Section 4, it does require manual setting
of additional parameters.

7. CONCLUSIONS AND FUTURE WORK
We propose a formal mathematical and algorithmic frame-

work for aggregating (partial) rankings without supervision.
We derive an EM-based algorithm for the extended Mallows
model and show that it can be made efficient for the right-
invariant decomposable distance functions. We instantiate
the framework and experimentally demonstrate its effective-
ness for the important cases of combining permutations and
combining top-k lists. In the latter case, we introduce the
notion of augmented permutation and a novel decompos-
able distance function for efficient learning. In addition,
we present an unsupervised algorithm for rank aggregation
(ULARA) which approximates the mathematical framework

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 38

by directly optimizing a weighted Borda count.
A natural extension of the current work is to instantiate

our framework for other types of partial rankings, as well as
to cases where ranking data is not of the same type. The
latter is of practical significance since often preference infor-
mation available is expressed differently by different judges
(e.g. top-k rankings of different lengths).

Another direction for future work is to extend the rank ag-
gregation model to accommodate position dependence. In
IR, more importance is generally given to results appear-
ing higher in the rankings. Within our framework one may
be able to design a distance function reflecting this require-
ment. Additionally, the quality of votes produced by in-
dividual components may depend on the rank, e.g. in the
top-k scenario some rankers may be better at choosing few
most relevant objects, while others may tend to have more
relevant objects in the k selected but may not rank them
well relative to one another. This case may be modeled by
adding a dependency on rank to the dispersion parameters
of the model.

Acknowledgments
We would like to thank Ming-Wei Chang, Sariel Har-Peled,
Vivek Srikumar, and the anonymous reviewers for their valu-
able suggestions. This work is supported by NSF grant ITR
IIS-0428472, DARPA funding under the Bootstrap Learning
Program and by MIAS, a DHS-IDS Center for Multimodal
Information Access and Synthesis at UIUC.

8. REFERENCES
[1] W. W. Cohen, R. E. Schapire, and Y. Singer.

Learning to order things. Journal of Artificial
Intelligence Research, 10:243–270, 1999.

[2] V. Conitzer. Computational Aspects of Preference
Aggregation. PhD thesis, Carnegie Mellon University,
2006.

[3] D. Coppersmith, L. Fleischer, and A. Rudra. Ordering
by weighted number of wins gives a good ranking for
weighted tournaments. In Proc of the Annual ACM
Symposium on Discrete Algorithms, pages 776–782,
2006.

[4] D. E. Critchlow. Metric Methods for Analyzing
Partially Ranked Data, volume 34 of Lecture Notes in
Statistics. Springer-Verlag, 1985.

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society,
39:1–38, 1977.

[6] P. Diaconis and R. L. Graham. Spearman’s footrule as
a measure of disarray. Journal of the Royal Statistical
Society, 39:262–268, 1977.

[7] P. Diaconis and L. Saloff-Coste. What do we know
about the Metropolis algorithm? Journal of Computer
and System Sciences, 57:20–36, 1998.

[8] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar.
Rank aggregation methods for the web. In Proc. of the
International World Wide Web Conference (WWW),
pages 613–622, 2001.

[9] V. Estivill-Castro, H. Mannila, and D. Wood. Right
invariant metrics and measures of presortedness.
Discrete Applied Mathematics, 42:1–16, 1993.

[10] R. Fagin, R. Kumar, and D. Sivakumar. Comparing
top k lists. SIAM Journal on Discrete Mathematics,
17:134–160, 2003.

[11] W. Feller. An Introduction to Probability Theory and
Its Applications, volume 1. John Wiley and Sons, Inc.,
1968.

[12] M. A. Fligner and J. S. Verducci. Distance based
ranking models. Journal of the Royal Statistical
Society, 48:359–369, 1986.

[13] D. Harman. Overview of the third Text REtrieval
Conference (TREC-3), 1994.

[14] W. K. Hastings. Monte carlo sampling methods using
markov chains and their applications. Biometrika,
57(1):97–109, April 1970.

[15] T. Joachims. Unbiased evaluation of retrieval quality
using clickthrough data. In SIGIR Workshop on
Mathematical/Formal Methods in Information
Retrieval, 2002.

[16] M. G. Kendall. A new measure of rank correlation.
Biometrika, 30(1/2):81–93, Jun. 1938.

[17] J. Kivinen and M. K. Warmuth. Additive versus
exponentiated gradient updates for linear prediction.
In Proc, of the Annual ACM Symposium on Theory of
Computing, pages 209–218, 1995.

[18] A. Klementiev, D. Roth, , and K. Small. An
unsupervised learning algorithm for rank aggregation.
In Proc. of the European Conference on Machine
Learning (ECML), pages 616–623, 2007.

[19] A. Klementiev, D. Roth, , and K. Small. Unsupervised
rank aggregation with distance-based models. In Proc.
of the International Conference on Machine Learning
(ICML), 2008.

[20] G. Lebanon and J. Lafferty. Cranking: Combining
rankings using conditional probability models on
permutations. In Proc. of the International Conference
on Machine Learning (ICML), 2002.

[21] G. Lebanon and J. Lafferty. Conditional models on the
ranking poset. In The Conference on Advances in
Neural Information Processing Systems (NIPS),
volume 15, pages 431–438, 2003.

[22] D. Lillis, F. Toolan, R. Collier, and J. Dunnion.
Probfuse: A probabilistic approach to data fusion. In
Proc. of the International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 139–146, 2006.

[23] Y.-T. Liu, T.-Y. Liu, T. Qin, Z.-M. Ma, and H. Li.
Supervised rank aggregation. In Proc. of the
International World Wide Web Conference (WWW),
2007.

[24] C. L. Mallows. Non-null ranking models. Biometrika,
44:114–130, 1957.

[25] J. I. Marden. Analyzing and Modeling Rank Data.
CRC Press, 1995.

[26] J. A. Shaw and E. A. Fox. Combination of multiple
searches. In Text REtrieval Conference (TREC), pages
243–252, 1994.

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 39

Machine Learned Sentence Selection Strategies for
Query-Biased Summarization

Donald Metzler
metzler@yahoo-inc.com

Yahoo! Research
2821 Mission College Blvd.

Santa Clara, CA 95054

Tapas Kanungo
kanungo@yahoo-inc.com

Yahoo! Labs
2821 Mission College Blvd.

Santa Clara, CA 95054

ABSTRACT
It has become standard for search engines to augment result
lists with document summaries. Each document summary
consists of a title, abstract, and a URL. In this work, we
focus on the task of selecting relevant sentences for inclu-
sion in the abstract. In particular, we investigate how ma-
chine learning-based approaches can effectively be applied
to the problem. We analyze and evaluate several learn-
ing to rank approaches, such as ranking support vector ma-
chines (SVMs), support vector regression (SVR), and gradi-
ent boosted decision trees (GBDTs). Our work is the first
to evaluate SVR and GBDTs for the sentence selection task.
Using standard TREC test collections, we rigorously evalu-
ate various aspects of the sentence selection problem. Our
results show that the effectiveness of the machine learning
approaches varies across collections with different character-
istics. Furthermore, the results show that GBDTs provide
a robust and powerful framework for the sentence selection
task and significantly outperform SVR and ranking SVMs
on several data sets.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Experimentation, Theory

Keywords
sentence selection, learning to rank, gradient boosted deci-
sion trees

1. INTRODUCTION
Search engines have become popular and are widely used

for many different tasks, such as web search, desktop search,

SIGIR 2008 LR4IR Workshop, Singapore.

enterprise search, and various domain-specific verticals. It
has become almost standard for search engines to augment
result lists with document summaries. It is important to
produce high quality summaries, since the summaries can
bias the perceived relevance of a document. For example,
if the summary for a highly relevant document is poorly
constructed, the user may perceive the document as non-
relevant and may never view the document. Since users
implicitly infer relevance from these summaries, it is im-
portant to construct high quality summaries that align the
user’s perceived relevance of the document with the actual
relevance of the document.

Document summaries can either be query independent [8,
15] or query dependent [26, 29]. A query independent sum-
mary conveys general information about the document, and
typically includes a title, static abstract, and URL, if ap-
plicable. Here, titles and static abstracts can either be ex-
tracted from the document, manually constructed, or auto-
matically generated. These types of summaries can be com-
puted offline and cached for fast access. The main problem
with query independent summaries is that the summary for
a document never changes across queries. This is one of the
problems that query dependent summarization algorithms
attempt to address, by biasing the summary towards the
query. These summaries typically consist of a title, dynamic
abstract, and URL. Since these summaries are dynamically
generated, they are typically constructed at query time.

In this paper, we focus on the task of automatically gener-
ating abstracts for query dependent summarization. Given
a query and a document, a query dependent abstract is gen-
erated as follows. First, relevant (with respect to the query)
sentences or passages within the document must be identi-
fied. This is referred to as the sentence selection problem.
After the relevant sentences have been identified, the com-
position phase begins. When composing an abstract, it is
important to take into account how many sentences to in-
clude, and how to compress the sentences to fit within a
fixed bounding box [14]. Furthermore, notions of readability
and novelty also play a role during composition. Since the
composition process can quickly become overly complex due
factors involving presentation, user interaction, and novelty,
we focus on the sentence selection problem in the remainder
of this paper and leave composition as future work.

We propose using machine learning techniques to solve
the sentence selection problem. There are several benefits
to using such techniques. First, they provide an easy means
of incorporating a wide range of features. It is often difficult

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 40

to incorporate arbitrary features into standard information
retrieval models, such as language modeling and BM25. Sec-
ond, depending on the machine learning technique used, the
model can be learned over a rich function space. Manually
constructing such a function would require a great deal of
effort. Finally, machine learning techniques provide a mech-
anism for learning from explicit (e.g., human judgments) or
implicit (e.g., click data) training data. Of course, this may
also be one of the biggest disadvantages to using machine
learning, as well, as it is often difficult or expensive to ob-
tain training data. All of the techniques we explore are fully
supervised, and therefore require some form of training data.

A recent study has shown the feasibility of using machine
learning approaches for sentence selection [29]. Wang et
al. showed that ranking support vector machines (SVMs)
outperform SVM classifiers and BM25 on a very small test
collection of only 10 queries. In this paper, we augment
the observations presented by Wang et al. and undertake
a more comprehensive view of the problem from multiple
perspectives.

Our work has four key contributions. First, we propose
using regression-based models, such as support vector re-
gression (SVR) and gradient boosted decision trees (GB-
DTs) for the sentence selection problem. Regression mod-
els, and GBDTs, in particular, have recently been shown
to be highly effective for learning ranking functions for web
search [17, 32]. We hypothesize the same will be true for
sentence selection. Second, we carry out a rigorous set of ex-
periments over three TREC data sets that, combined, have
200 queries associated with them. The results of these ex-
periments provide unique insights into the applicability of
the various learning techniques to data sets with different
characteristics. Third, we show that performance is quite
sensitive to how sentences are actually selected by compar-
ing and contrasting the effectiveness of retrieving a fixed
number of sentences per query/document pair versus using
a global score threshold. While this topic is often ignored,
it is important when using these algorithms in practice. Fi-
nally, we plan to release our data set for possible inclusion in
the LETOR benchmark suite. This would allow researchers
to explore various aspects of learning to rank in the context
of an interesting application that has many unique charac-
teristics that differentiates it from ad hoc retrieval and web
search.

The remainder of this paper is laid out as follows. First, in
Section 2, we detail related work in both summarization and
machine learning approaches to ranking. Then, in Section 3,
we describe the three machine learning models used, the
features used with the models, and the different strategies
for choosing the number of sentences to select. In Section 4
we describe our experimental evaluation. Section 5 discusses
miscellaneous sentence selection issues. Finally, in Section 6,
we conclude and describe possible areas of future work.

2. RELATED WORK
Automatic text summarization has been explored in many

research areas including artificial intelligence, natural lan-
guage processing, and information retrieval [21, 19]. While
research in AI and NLP has focused on analyzing well-written
text and generating large summaries (5-10 sentences), web
search and information retrieval has focused on generating
very small summaries. In fact, in web search, the role of
the summary is to give an idea to the user whether or not

the destination page is relevant for the user’s query. Since
a search result page typically has 10 or more URLs, the
summary associated with an individual URL can not exceed
more than 2-3 lines.

Kupiec, Pedersen and Chen [15] first addressed the sen-
tence selection problem by using a binary Näıve Bayes clas-
sifier that learned if a given sentence should be part of the
summary or not. The features used within the model were
query independent, and therefore the goal of the model was
to generate static abstracts. The model was trained using
a corpus where human judges selected sentences that they
thought should be part of the summary.

Tombros and Sanderson [26] conducted user studies using
query-biased summaries. Their experiments suggest that
query-biased summaries improve the ability of users to ac-
curately judge relevance. Clarke et al. [3] studied the corre-
lation of various attributes of summaries with click behavior.
Goldstein et al. proposed various features and scored sen-
tences in newspaper articles according to a specific scoring
function. The function itself was not learned, however. In
addition, Turpin et al. recently described techniques for ef-
ficiently compressing summaries [27]. However, this work
does not take quality/relevance of the summary into ac-
count, which is the primary focus of our work.

More recently, initiatives, such as the Document Under-
standing Conference (DUC) and the Text Retrieval Con-
ference (TREC) have conducted quantitative evaluations of
various summarization algorithms and sentence retrieval tasks.
In particular, the TREC Novelty Track, which ran from 2002
to 2004 included a sentence retrieval sub-task that required
participants to retrieve relevant sentences, rather than rele-
vant documents. A majority of the groups participating used
standard information retrieval models for the task, such as
language modeling and BM25. It is important to note that
sentence selection is very closely related to sentence retrieval.
The primary difference is that in sentence retrieval, a ranked
list of sentences is returned for a set of documents, whereas
the sentence selection task only returns a ranked list of sen-
tences for a single document. Since the two tasks are so
similar, it is likely that techniques developed for sentence
retrieval will also work well for sentence selection, and vice
versa.

The problem of learning to rank for information retrieval
has become a topic of great interest in recent years. Many
different techniques have been proposed, including logistic
regression [7], SVMs [2, 12, 20], neural networks [1], and
perceptrons [6]. These techniques have been adapted to opti-
mize information retrieval-specific metrics, such as precision
at K [13], mean average precision [30], nDCG [16], among
others. While benchmark data sets exist for ad hoc and web
retrieval [18], none currently exist for sentence selection.

Regression-based models, and in particular, gradient boosted
decision trees, have recently been explored for learning to
rank and and have been shown to be highly effective for
web search [32, 17]. In this work, we apply regression-based
techniques to the sentence selection problem, which has very
different characteristics than web search, both in terms of
features and in terms of context.

The work done by Wang et al. [29] is the most closely
related to ours. The authors propose using SVMs and rank-
ing SVMs to model the relevance of sentences to queries.
Their results show that ranking SVMs outperformed stan-
dard SVMs on a small test collection of 10 queries. In their

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 41

experiments, they do not have a methodology for select-
ing the number of sentences. Instead, they always retrieve
three sentences per document. In our work, we use ranking
SVMs as a baseline against which we compare regression-
based models, such as SVR and GBDTs. In addition, we
analyze two different strategies for choosing the number of
sentences to retrieve and carry out experiments out on three
different test collections with over 200 queries, which allows
us to draw inferences about the influence of various data set
characteristics on effectiveness.

3. SENTENCE SELECTION USING MACHINE
LEARNING

In this section, we describe the three machine learning
techniques that we use for sentence selection, the set of
features that we consider, and strategies for automatically
choosing the number of sentences to return.

3.1 Models
There are numerous approaches to estimating the value

of a categorical or continuous response variable (the hu-
man judgments) from measurements of explanatory variables
(the extracted features). This problem has been studied un-
der the names of statistical inference [28], pattern recogni-
tion [11] and more recently statistical machine learning [10].
Logistic regression, support vector machines, neural net-
works, and decision trees are some of the popular techniques.
In this section, we briefly describe the three machine learn-
ing algorithms that we use for sentence selection.

3.1.1 Ranking SVMs
Ranking SVMs are a generalization of the classical SVM

formulation that learns over pairwise preferences, rather than
binary labeled data [12]. The motivation behind ranking
SVMs is that for ranking problems, it is inappropriate to
learn a classification model, since it does not take the struc-
ture of the problem into account. Instead, pairwise prefer-
ences can implicitly encode the structure of ranking prob-
lems, and therefore learning an SVM over such pairwise pref-
erences is typically more effective when used for ranking
since its objective function tends to be more in line with
standard information retrieval metrics, such as precision,
mean average precision, and F1.

Formally, the ranking SVM is formulated as a quadratic
programming problem that has the following form:

min 1

2
||w||2 + C

P

i,j
ξi,j

s.t. (w · xi − w · xj) ≥ 1 − ξi,j ∀(i, j) ∈ P

ξi,j ≥ 0 ∀(i, j) ∈ P (1)

where w is the weight vector being fit, P is the set of pairwise
preferences used for training, and C is a tunable parameter
that penalizes misclassified input pairs. Once a weight vec-
tor w is learned, we can score unseen sentences by computing
w ·xs, where xS is the feature vector for the sentence. These
scores can then be used to rank sentences.

Ranking SVMs have been shown to significantly outper-
form standard SVMs for the sentence selection task and are
currently the state of the art [29].

3.1.2 Support Vector Regression
Another generalization of the classical SVM formulation

is support vector regression, which attempts to learn a re-

gression model, rather than a classification or pairwise pref-
erence classification model. In our work, we fit a regression
model directly to the human judgments, which typically cor-
responds to a target of +1 for relevant documents and -1 for
non-relevant documents.

Support vector regression is formulated as follows:

min 1

2
||w||2 + C+

P

i:yi=1
(ξi + ξ∗i) + C−

P

i:yi=−1
(ξi + ξ∗i)

s.t.

yi − w · xi − b ≤ ǫ + ξi

w · xi + b − yi ≤ ǫ + ξ∗i

ξi, ξ
∗

i ≥ 0 (2)

where w is the weight vector being fit, C− controls the cost
associated with errors on non-relevant documents, C+ con-
trols the cost associated with errors on relevant documents,
and ǫ is a free parameter controlling the amount of error tol-
erated for each input. In our experiments, we use ǫ = 0.1.

Notice that the formulation we use allows for different
costs for the relevant (+1 target) and non-relevant (-1 tar-
get) inputs. This is very important, since there are typically
many more non-relevant sentences than there are relevant
sentences. Therefore, it typically makes sense to ensure that
the ratio of C+ to C− is greater than 1 in order to learn an
effective model in the presence of such an imbalance.

3.1.3 Gradient Boosted Decision Trees
Gradient boosted decision trees are another technique that

can be used for estimating a regression model [4]. Here,
we use the stochastic variant of GBDTs [5]. GBDTs are a
promising new machine learning approach that computes a
function approximation by performing a numerical optimiza-
tion in the function space instead of the parameter space.
We provide a brief overview of the the GBDT algorithm and
the parameters that influence the algorithm.

A basic regression tree f(x), x ∈ RN , partitions the space
of explanatory variable values into disjoint regions Rj , j =
1, 2, . . . , J associated with the terminal nodes of the tree.
Each region is assigned a value φj such that f(x) = φj if
x ∈ Rj . Thus the complete tree is represented as:

T (x; Θ) =
J
X

j=1

φjI(x ∈ Rj), (3)

where Θ = {Rj , φj}
J
1 , and I is the indicator function. For

a given loss function L(yi, φj) the parameters are estimated
by minimizing the the total loss:

Θ̂ = arg min
Θ

J
X

j=1

X

xi∈Rj

L(yi, φj). (4)

Numerous heuristics are used to solve the above minimiza-
tion problem.

A boosted tree is an aggregate of such trees, each of which
is computed in a sequence of stages. That is,

fM (x) =
M
X

m=1

T (x; Θm), (5)

where at each stage m, Θm is estimated to fit the residuals
from the m − 1th stage:

Θ̂m = arg min
Θm

N
X

i=1

L(yi, fm−1(xi) + φjm). (6)

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 42

In practice, instead of adding fm(x) at the mth stage, one
adds ρfm(x) where ρ is the learning rate. This is similar
to a “line search” where one moves in the direction of the
gradient, but the step size need not be equal to the gradient.
In the stochastic version of GBDT, instead of using the entire
data set to compute to loss function, one sub-samples the
data and then finds the function values φj such that the
loss on the test set is minimized. The stochastic variant
minimizes overfitting issues.

The depth of the trees in each stage is another algorithm
parameter of importance. Interestingly, making the trees
in each stage very shallow while increasing the number of
boosted trees tends to yield good function approximations.
In fact, even with depth 1 trees, often called stubs, it possible
to achieve good results. Interaction amongst explanatory
variables is modeled by trees of depth greater than 1.

Finally, the GBDT algorithm also provides what is called
feature importance [4]. The importance is computed by keep-
ing track of the reduction in the loss function at each feature
variable split and then computing the total reduction of loss
function along each explanatory feature variable. The im-
portance is useful for analyzing which features contribute
most to the model.

3.2 Features
Features play an important role in any machine learning

algorithm. Since it is not the goal of this paper to under-
take a comprehensive exploration of features for sentence
selection, we use a relatively simple, yet representative set
of features in our models. The features that we consider can
be divided into those that are query dependent and those
that are query independent. We now briefly describe how
each is computed.

3.2.1 Query Dependent Features
Query dependent features attempt to capture how rele-

vant a given sentence S is to the query Q. We use four
different query dependent features that model relevance at
different levels of granularity and expressiveness.

The first feature is exact match. It is a binary feature
that returns 1 if there is an exact lexical match of the query
string within the sentence. It is computed as:

fEXACT (Q, S) = I(Q substring of S) (7)

where I is the indicator function that returns 1 if its argu-
ment is satisfied.

The next feature is overlap, which is simply the fraction
of query terms that occur, after stopping and stemming, in
the sentence. Mathematically, it is computed as:

fOV ERLAP (Q, S) =

P

w∈Q
I(w ∈ S)

|Q|
(8)

where |Q| is the number of non-stopword terms that occur
in Q.

The next feature, overlap-syn, generalizes the overlap fea-
ture by also considering synonyms of query terms. It is
computed as the fraction of query terms that either match
Q or have a synonym that matches Q. It is computed as:

fOV ERLAP−SY N (Q, S) =

P

w∈Q
I(SY N(w) ∈ S)

|Q|
(9)

where SY N(w) denotes the set of synonyms of w. Note that
SY N(w) also includes w itself.

The last query dependent feature, LM, is based on the
language modeling approach to information retrieval [25].
It is computed as the log likelihood of the query being gen-
erated from the sentence. The sentence language model is
smoothed using Dirichlet smoothing [31]. The feature is
computed as:

fLM (Q, S) =
X

w∈Q

tfw,Q log
tfw,S + µP (w|C)

|S| + µ
(10)

where tfw,Q is the number of times that w occurs in the
query, tfw,S is the number of times w occurs in the sentence,
|S| is the number of terms in the sentence, P (w|C) is the
background language model, and µ is a tunable smoothing
parameter.

Although approaches such as language modeling and BM25
are well known to be highly effective text retrieval models,
we include all of the simpler query dependent features be-
cause they may provide additional useful information to the
classifier when learning a sentence selection model. In fact,
the features do end up playing an important role, as we will
show in Section 5.

3.2.2 Query Independent Features
The goal of query independent features is to encode any a

prior knowledge we have about individual sentences. Here,
we use two very simple query independent features.

We expect that very short sentences and, possibly, very
long sentences are less likely to be relevant, therefore our
first query independent feature is length, which is the to-
tal number of terms in the sentence after stopping. It is
computed as:

fLENGTH(S) = |S| (11)

The other query independent feature we consider is loca-
tion, which is the relative location of the sentence within the
document. The feature is computed according to:

fLOCATION (S, D) =
sentnumD(S)

maxS′ sentnumD(S′)
(12)

where sentnumD(S) is the sentence number for S in D and
maxS′ sentnumD(S′) is the total number of sentences in D.

Although not explored here, other query independent fea-
tures are possible, such as readability, formatting, among
others.

3.3 Result Set Filtering
Each of the machine learning methods described produce a

real-valued score for every query/sentence pair. For a given
document, these scores can be used to produce a ranked
list of the sentences within the document. However, when
constructing a summary, we only want to consider the most
relevant sentences in the document. This requires using a
decision mechanism that filters the ranked list of sentences,
eliminating the least relevant sentences, and keeping the
most relevant ones. We now briefly describe two solutions
to this problem that have been used in the past. In our eval-
uation, we compare the effectiveness of the two approaches.

3.3.1 Fixed Depth
Perhaps the most simple and straightforward way of filter-

ing the result set is to only return the top k ranked sentences
for every document. Filtering in this way is useful if the un-

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 43

N2002 N2003 N2004
Query / Doc. Pairs 597 1187 1214
Avg. Sentences per
Pair

52.1 31.9 30.5

Avg. Relevant Sen-
tences per Pair

2.3 13.1 6.9

Table 1: Overview of the TREC Novelty Track data
sets used in the experimental evaluation.

derlying summary construction algorithm requires a fixed
number of sentences as input.

However, fixed depth filtering has several disadvantages.
For example, if k = 5, but the document only contains a sin-
gle relevant sentence, then we would end up returning four
non-relevant sentences. At the opposite end of the spectrum,
if the document contained ten relevant sentences, then we
would miss out on returning five of them. Therefore, the
fixed depth filtering scheme is very rigid and fails to adapt
to documents with very few or very many relevant sentences.

3.3.2 Global Score Threshold
One way to overcome the rigid nature of fixed depth fil-

tering is to filter based on the scores of the sentences. If
we assume that the scores returned by the machine learning
algorithm are reasonable, then it is fair to believe that sen-
tences with higher scores will be more likely to be relevant
than those with lower scores. Therefore, in order to filter,
we can set a global score threshold, where sentences with
scores above the threshold are returned, and sentences with
scores below the threshold are not returned.

Of course, there are also issues concerned with global
thresholding, such as the fact that scores may not be com-
parable across queries. However, our evaluation shows that
this may actually not be an issue for the machine learning
techniques used here. In fact, we will show that the optimal
global score threshold, particularly for SVR and GBDTs, is
not only comparable across queries, but also across data sets,
meaning that it is very easy to choose such a threshold.

4. EXPERIMENTAL RESULTS
In this section, we evaluate the effectiveness of ranking

SVMs, SVR, and GBDTs. We also analyze the effectiveness
of two result set filtering techniques just described. All of
our experiments are carried out on the 2002, 2003, and 2004
TREC Novelty Track data sets. These data sets include
human relevance judgments for query / sentence pairs, and
therefore can be used to evaluate sentence selection algo-
rithms. Note that we do not use any of the novelty-related
judgments associated with these data sets, only the rele-
vance judgments. For more information on the details of
these data sets, please refer to the TREC Novelty Track
overview papers [9, 24, 23]. For our purposes, we throw out
all query / document pairs that have no relevant sentences
associated with them, since these are uninteresting from a
learning and evaluation perspective. Summary statistics for
the data sets are provided in Table 1. Notice that the char-
acteristics of the data sets are quite varied, both in terms of
average number of sentences per pair, as well as the propor-
tion of relevant sentences per document. This allows us to
analyze how the various learning algorithms perform over a
range of data sets.

Algorithm 1 Evaluation Algorithm

for i = 1 to 5 do
(TRAIN, V ALIDATE) ← split(TRAINi, p)
utilitymax ← −∞
for θ ∈ Θ do

model ← train(TRAIN ; θ)
utility ← eval(model, V ALIDATE)
if utility > utilitymax then

utilitymax ← utility

modelmax ← model

end if
end for
output rank(TESTi, modelmax)

end for

We use 5-folds cross validation for evaluation. All of the
learning techniques have a number of hyperparameters that
control various aspects of the learning algorithm. In order
to properly tune the models, we must consider all reason-
able settings of these hyperparameters. Therefore, we use
a slightly modified version of 5-folds cross validation. The
details of our evaluation algorithm are provided in Algo-
rithm 1. In the algorithm, Θ is the set of hyperparameters
that we will train over and eval is some evaluation measure
that we are trying to maximize, such as precision, recall, or
F1. As we see, during each training fold, the algorithm at-
tempts to find the setting of the hyperparameters that max-
imizes the metric of interest by doing a brute force sweep
over all reasonable settings. In order to control for overfit-
ting, the effectiveness is measured on a held-out validation
set.

For ranking SVMs, our algorithm sweeps over values for
C (misclassification cost) and γ (RBF kernel variance). For
SVR, we try various values for C− and C+ (misclassification
costs), as well as γ. Finally, for GBDTs, we sweep over var-
ious weight values for the positive instances and tree depths
(1, 2, 3). Additionally, for ranking SVMs and SVR, we only
report results using the radial basis kernel, which provided
the best results. Results for other kernels are omitted due
to space constraints.

We use the SVMlight1 implementation of ranking SVMs
and SVR. We construct P, the set of pairwise preferences
used for training the ranking SVM, as the cross product
of the relevant sentences and the non-relevant sentences for
each query / document pair. For GBDTs, we use the GBM
package for R [22].

Although none of the algorithms considered here directly
maximize the metrics of interest to us, such as precision,
recall, or F1, by training in this way we are implicitly op-
timizing for these measures by choosing the setting of the
hyperparameters that maximizes the final measure we are
interested in.

4.1 Sentence Selection
We now evaluate the effectiveness of the various machine

learning algorithms for the sentence selection task within
our experimental framework. There are many different ways
to measure retrieval effectiveness, but most of the standard
measures commonly used are inappropriate for the sentence
selection task. From our perspective, R-Precision, computed

1http://svmlight.joachims.org/

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 44

N2002 N2003 N2004
LM .2602 .5566 .3944

Ranking SVM .3792α .6904α .4771α

SVR .3587α .7005αβ .4757α

GBDT .4047αβδ .7060αβ .4806α

Table 2: R-Precision for each data set and sentence
selection approach. The α, β, and δ subscripts in-
dicate a statistically significant improvement over
language modeling, ranking SVMs, and SVR, re-
spectively, according to a one-tailed pair t-test with
p < 0.05.

over query/document pairs is one of the most meaningful
measures. For a given query / document pair, R-Precision
is computed as the precision at rank R, where R is the total
number of relevant sentences in the document. This measure
is appropriate because we ideally would like to return only
the relevant sentences. Therefore, if a document has 10 rel-
evant sentences, but we only retrieve 3 relevant sentences in
the top 10, we have done a bad job for that document. Mea-
sures, such as precision at rank 10 do not take the number
of relevant items per document into account, and therefore
are not appropriate here.

Table 2 lists the R-Precision values of each learning method
on each data set. For the sake of comparison, we also com-
pare against language modeling (LM), which is a state of
the art “bag of words” information retrieval model. The
superscripts in the table indicate statistically significant im-
provements in R-Precision, as described in the caption.

The results indicate that all of the machine learned meth-
ods are better than language modeling, which is not sur-
prising, since the language modeling score is a feature used
by the learning algorithms that only considers term occur-
rences. This suggests that the other features we consider
add considerable value.

Furthermore, we see that SVR is significantly better than
ranking SVMs on the 2003 data set (1.5% improvement),
and that GBDTs are significantly better than ranking SVMs
on the 2002 (6.7% improvement) and 2003 (2.3% improve-
ment) data sets. Therefore, the regression-based techniques
are more effective than ranking SVMs, which is the current
state of the art for sentence selection [29]. Lastly, we note
that GBDTs are significantly better than SVR on the 2002
(12.8% improvement) data set. Thus, for the sentence selec-
tion problem, GBDTs are robust and highly effective across
the different collections.

Interestingly, as the data set size grows, the effectiveness
of ranking SVMs, SVR, and GBDTs seems to converge. This
suggests that GBDTs, and SVR to a lesser extent, generalize
better when the training data is sparse. It would be interest-
ing to see if this behavior would persist if a larger feature set
was used, as it would take more training examples to learn a
good fit. This is an interesting area for future investigation.

4.2 Fixed Depth vs. Threshold Filtering
In our previous experiments, we always retrieved R sen-

tences per query/document pair. While this was useful for
comparing the effectiveness of the various techniques, it is
not something that can be done in practice, since we do not
know, a priori, how many sentences are relevant. There-
fore, we must use one of the filtering techniques described

earlier. When using these techniques, it is possible to re-
trieve a variable number of results per query/document pair.
Therefore, R-Precision is no longer an appropriate measure.
Instead, we use the F1 measure, which is the harmonic mean
of precision and recall. This measure emphasizes the impor-
tance of both precision and recall and is comparable across
query/document pairs that return different numbers of sen-
tences.

In order to compare the effectiveness of fixed depth fil-
tering and threshold filtering, we conduct an “upper bound”
experiment. For each data set, we find the depth that results
in the best F1, as well as the threshold setting that results
in the best F1. We then can compare these two numbers to
see which filtering technique, in the best case, would result
in the best effectiveness. The results of this experiment are
given in Table 3.

The results show that using fixed depth filtering is more
effective on the 2002 data and threshold filtering yields bet-
ter results on the 2003 and 2004 data sets. These results
indicate that when there are very few relevant sentences per
document, as is the case for the 2002 data set, a very shal-
low fixed depth filtering is better than using a global score
threshold. Conversely, when there are many relevant sen-
tences per document, as with the 2003 and 2004 data sets,
fixed depth filtering is much worse than global thresholding.

In addition, the results show that GBDT have the most
potential in terms of real world applicability, since the tech-
nique outperforms the others for both fixed depth and thresh-
old filtering in a majority of cases. However, as we indicated,
these results are upper bounds on the actual effectiveness
that can be achieved using these filtering techniques.

In practice, one would have to either automatically learn
the correct depth or threshold to use or use some robust“de-
fault” setting. Typically, it is difficult to define one setting
that will work well across multiple data sets. However, as
Figure 1 shows, the optimal threshold setting for GBDTs
is very stable across the collections, more so than for rank-
ing SVMs, and SVR. In fact, choosing -0.55 as a “default”
threshold for GBDT yields an F1 that is within 2% of the
optimal F1 for all three data sets.

Therefore, based on the sentence selection and filtering re-
sults, GBDTs appear to be the best choice of models to use
out of the three that we explored. When using GBDTs, we
recommend using fixed depth filtering for tasks with few rele-
vant sentences per document, and that threshold filtering be
used for tasks with many relevant sentences per document.
Furthermore, if a threshold setting can not be reasonably es-
timated for the given task, then empirical evidence suggests
that using -0.55 is a reasonable “default”.

5. DISCUSSION
We now briefly discuss miscellaneous issues concerned with

the approaches we explored in this paper.

5.1 Loss Functions
One theoretically interesting aspect of our work is the fact

that regression-based models do not directly maximize the
retrieval metric under consideration. Instead, they try to
find a model that best fits the target labels. Ranking SVMs
do not directly maximize general metrics, either, but they at
least take the structure of the problem into account, more
so, it seems, than simple regression models. However, as
our results and the results of others indicate [17, 32], using

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 45

N2002 N2003 N2004
Depth F1 Thresh. F1 Depth F1 Thresh. F1 Depth F1 Thresh. F1

Ranking SVM 2 .3411 -0.9 .2474 22 .5794 1.2 .6330 11 .4416 1.0 .4736
SVR 2 .3350 -0.9 .2880 22 .5791 -0.9 .6503 8 .4407 -0.2 .4637

GBDT 2 .3576 -0.55 .3302 20 .5771 -0.2 .6691 11 .4389 -0.5 .4745

Table 3: Comparison of result set filtering methods. For each data set, the optimal F1 measure for each
technique is reported. The optimal depth and threshold settings are also reported.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-1.5 -1 -0.5 0 0.5 1 1.5

F
1

Threshold

GBDT
SVR

Ranking SVM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

-1.5 -1 -0.5 0 0.5 1 1.5

F
1

Threshold

GBDT
SVR

Ranking SVM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

-1.5 -1 -0.5 0 0.5 1 1.5

F
1

Threshold

GBDT
SVR

Ranking SVM

Figure 1: Effectiveness, measured in terms of F1, as a function of threshold value for the TREC 2002, 2003,
and 2004 Novelty data sets (left to right).

these GBDT models prove to be highly effective. However,
it is not yet clear as to exactly why this is the case. It
would be interesting, as part of future work, to compare the
effectiveness of regression-based techniques with those that
directly optimize the metric of interest for this task.

5.2 Feature Importance
As discussed in Section 3, GBDTs provide a mechanism

for reporting the relative importance of each feature. By
analyzing the relative importances, we can gain insights into
the importance of each feature for a given data set.

As an example, Figure 2 plots the relative feature impor-
tances of the features for the 2002 (top) and 2003 (bottom)
data sets. It is interesting to note that the ordering of the
importances is different for the two data sets. The two fea-
tures with the highest importance for the 2002 data set are
overlap− syn (query/sentence overlap with synonyms) and
overlap (query/sentence overlap), whereas the two features
with the highest importance for the 2003 data set are length

(sentence length) and lm (language modeling score). The
ordering is also different for the 2004 data set, which indi-
cates it may be difficult to manually construct a heuristic
rule-based method that works well for all data sets. Al-
though such rule-based methods may work well for a single
task, such as web search, we are primarily interested in de-
veloping approaches that work well across a wide range of
application domains.

5.3 Efficiency
Although our primary focus in this work is on effective-

ness, we briefly describe our general observations on the ef-
ficiency of the three machine learning approaches explored
here. First, the ranking SVM model was the least efficient
of the techniques. This is due to the fact that the model
is trained over pairwise preferences, which are inherently
quadratic in nature. The SVR did not suffer from this prob-
lem, however. Second, SVR and ranking SVM models took
even longer to train when the RBF kernel was used. Train-

ex
ac

tm
atc

h
se

ntl
oc

lm
sc

or
e

se
ntl

en
ov

er
lap

ov
er

lap
sy

n

Relative influence

0 5 10 15 20 25

ex
ac

tm
atc

h
ov

er
lap

ov
er

lap
sy

n
se

ntl
oc

lm
sc

or
e

se
ntl

en

Relative influence

0 10 20 30 40

Figure 2: Relative feature importances, as com-
puted by gradient boosted decision trees, for the
Novelty 2002 (top) and 2003 (bottom) data sets.

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 46

ing time was significantly reduced when the “linear” kernel
was used instead, but effectiveness was reduced. Finally, the
GBDTs took significantly less time to train than the SVR
and ranking SVMs (with and without kernels). The GBDTs
were boosted for up to 1500 iterations. However, retrospec-
tive analysis shows that the optimal number of trees (iter-
ations) for a model was always less than 200, which means
that the training time could have been sped up even more.
Therefore, in addition to the advantages GBDTs provide
with respect to effectiveness, they also provide a number of
benefits in terms of efficiency, as well.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed using regression-based machine

learning techniques, such as support vector regression (SVR)
and gradient boosted decision trees (GBDTs), for the sen-
tence selection task, which is an important sub-task of con-
structing query-biased abstracts and summaries.

Our experimental results showed that SVR and GBDTs
significantly outperform a simple language modeling base-
line and ranking SVMs, which are considered to be the cur-
rent state of the art. Our results also show that GBDTs
are very robust and achieve strong effectiveness across three
data sets of varying characteristics.

We also investigated two result set filtering techniques, in-
cluding fixed depth and global score threshold filtering. Our
results showed that fixed depth filtering is effective when
there are few relevant sentences per document and that
threshold filtering is more effective when there are many
relevant sentences per document. Furthermore, our results
indicated that threshold-based filtering for GBDTs is much
more stable across data sets than ranking SVMs or SVR.

As part of future work, we plan to compare SVR and GB-
DTs to methods that directly maximize R-Precision or F1
to better understand the impact of the underlying loss func-
tion. We would also like to investigate set-based ranking
algorithms in order to incorporate notions of novelty and
sub-topic coverage. In addition, we would like to make our
feature sets available as part of the growing LETOR bench-
mark [18] so that other researchers can develop and evaluate
learning to rank techniques for the sentence selection task,
which has very different characteristics than the typical ad
hoc and web retrieval tasks.

7. REFERENCES
[1] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds,

N. Hamilton, and G. Hullender. Learning to rank using
gradient descent. In Proc. 22nd Proc. Intl. Conference on
Machine Learning, pages 89–96, 2005.

[2] Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y. Huang, and H.-W. Hon.
Adapting ranking svm to document retrieval. In Proc. 29th
Ann. Intl. ACM SIGIR Conf. on Research and Development
in Information Retrieval, pages 186–193, 2006.

[3] C. Clarke, E. Agchtein, S. Dumais, and R. White. The
influence of caption features on clickthrough patterns in web
search. In Proc. of SIGIR, 2007.

[4] J. H. Friedman. Greedy function approximation: A graidient
boosting machine. Annals of Statistics, 29:1189–1232, 2001.

[5] J. H. Friedman. Stochastic gradient boosting. Computational
Statistics and Data Analysis, 38:367–378, 2001.

[6] J. Gao, H. Qi, X. Xia, and J. Nie. Linear discriminant model
for information retrieval. In Proc. 28th Ann. Intl. ACM SIGIR
Conf. on Research and Development in Information
Retrieval, pages 290–297, 2005.

[7] F. Gey. Inferring probability of relevance using the method of
logistic regression. In Proc. 17th Ann. Intl. ACM SIGIR Conf.
on Research and Development in Information Retrieval, 1994.

[8] J. Goldstein, M. Kantrowitz, V. Mittal, and J. Carbonell.
Summarizing text documents: sentence selection and evaluation
metrics. In Proc. 22nd Ann. Intl. ACM SIGIR Conf. on
Research and Development in Information Retrieval, pages
121–128, 1999.

[9] D. Harman. Overview of the trec 2002 novelty track. In Proc.
11th Text REtrieval Conference, 2002.

[10] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of
Statistical Learning. Sringer-Verlag, New York, NY, 2001.

[11] A. K. Jain, R. P. W. Duin, and J. Mao. Statistical pattern
recogntion: A review. IEEE Transactions on Pattern Analysis
and Machine Learning, 22:4–37, 2000.

[12] T. Joachims. Optimizing search engines using clickthrough
data. In Proc. 8th Ann. Intl. ACM SIGKDD Conf. on
Knowledge Discovery and Data Mining, pages 133–142, 2002.

[13] T. Joachims. A support vector method for multivariate
performance measures. In Proc. 22nd Proc. Intl. Conference
on Machine Learning, pages 377–384, 2005.

[14] K. Knight and D. Marcu. Statistics-based summarization —
step one: Sentence compression. In Proc. of AAAI, 2000.

[15] J. Kupiec, J. Pedersen, and F. Chen. A trainable document
summarizer. In Proc. 18th Ann. Intl. ACM SIGIR Conf. on
Research and Development in Information Retrieval, pages
68–73, 1995.

[16] Q. Le and A. Smola. Direct optimization of ranking measures.
http://www.citebase.org/abstract?id=oai:arXiv.org:0704.3359,
2007.

[17] P. Li, C. J. Burges, and Q. Wu. Mcrank: Learning to rank
using multiple classification and gradient boosting. In Proc.
21st Proc. of Advances in Neural Information Processing
Systems, 2007.

[18] T.-Y. Liu, J. Xu, T. Qin, W. Xiong, and H. Li. LETOR:
Benchmark dataset for research on learning to rank for
information retrieval. In SIGIR 2007 workshop: Learning to
Rank for Information Retrieval, 2007.

[19] I. Mani and M. T. Maybury. Advances in Automatic Text
Summarization. MIT Press, Cambridge, MA, 1999.

[20] R. Nallapati. Discriminative models for information retrieval.
In Proc. 27th Ann. Intl. ACM SIGIR Conf. on Research and
Development in Information Retrieval, pages 64–71, 2004.

[21] D. R. Radev and E. Hovy. Intelligent Text Summarization.
AAAI, 1998.

[22] G. Ridgeway. The state of boosting. Computing Science and
Statistics, 31:172–181, 1999.

[23] I. Soboroff. Overview of the trec 2004 novelty track. In Proc.
13th Text REtrieval Conference, 2004.

[24] I. Soboroff and D. Harman. Overview of the trec 2003 novelty
track. In Proc. 12th Text REtrieval Conference, 2003.

[25] F. Song and W. B. Croft. A general language model for
information retrieval. In Proc. 8th Intl. Conf. on Information
and Knowledge Management, pages 316–321, 1999.

[26] A. Tombros and M. Sanderson. Advantages of query biased
summaries in information retrieval. In Proc. 21st Ann. Intl.
ACM SIGIR Conf. on Research and Development in
Information Retrieval, pages 2–10, 1998.

[27] A. Turpin, Y. Tsegay, D. Hawking, and H. E. Williams. Fast
generation of result snippets in web search. In Proc. 30th Ann.
Intl. ACM SIGIR Conf. on Research and Development in
Information Retrieval, pages 127–134, 2007.

[28] W. N. Venables and B. D. Ripley. Modern Applied Statistics
with S. Sringer-Verlag, New York, NY, 2002.

[29] C. Wang, F. Jing, L. Zhang, and H.-J. Zhang. Learning
query-biased web page summarization. In Proc. 16th Intl.
Conf. on Information and Knowledge Management, pages
555–562, 2007.

[30] Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support
vector method for optimizing average precision. In Proc. 30th
Ann. Intl. ACM SIGIR Conf. on Research and Development
in Information Retrieval, page To appear, 2007.

[31] C. Zhai and J. Lafferty. A study of smoothing methods for
language models applied to ad hoc information retrieval. In
Proc. 24th Ann. Intl. ACM SIGIR Conf. on Research and
Development in Information Retrieval, pages 334–342, 2001.

[32] Z. Zheng, H. Zha, T. Zhang, O. Chapelle, K. Chen, and
G. Sun. A general boosting method and its application to
learning ranking functions for web search. In Proc. 21st Proc.
of Advances in Neural Information Processing Systems, 2007.

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 47

Selection bias in the LETOR datasets

Tom Minka
Microsoft Research

7 JJ Thomson Avenue
Cambridge, U.K.

minka@microsoft.com

Stephen Robertson
Microsoft Research

7 JJ Thomson Avenue
Cambridge, U.K.

ser@microsoft.com

ABSTRACT
The LETOR datasets consist of data extracted from tradi-
tional IR test corpora. For each of a number of test top-
ics, a set of documents has been extracted, in the form of
features of each document-query pair, for use by a ranker.
An examination of the ways in which documents were se-
lected for each topic shows that the selection has (for each
of the three corpora) a particular bias or skewness. This has
some unexpected effects which may considerably influence
any learning-to-rank exercise conducted on these datasets.
The problems may be resolvable by modifying the datasets.

1. INTRODUCTION
For the Learning to Rank workshop at SIGIR 2007, a

dataset (actually a group of three datasets) was released
for experimental purposes [6]. The intention was to provide
some set of standard benchmarks, and to encourage par-
ticipants to conduct comparable experiments (comparable
to the benchmarks and to each other). The benchmark re-
sults provided in the cited paper are for Ranking SVM and
RankBoost.

The three LETOR datasets were extracted from two TREC
datasets (TDT2003, TDT2004) and from the OHSUMED
corpus. Each dataset consists of a set of topics, together
with extracted features for each of a set of query-document
pairs, and associated relevance judgements. A number of
different features are provided, both low-level and relatively
high-level (features which might themselves serve as simple
ranking algorithms). For the purpose of this paper, we note
that one of the provided features is the BM25 score, which is
a well-established ranking algorithm in its own right [7]. Al-
though there is clearly no guarantee to this effect, we might
expect the BM25 score on its own to give at least a reason-
ably effective ranking.

The set of documents associated with each topic is a se-
lection, not the whole original corpus. There are obvious
practical reasons for this procedure; however, the selection
methods have given rise to a skew in the judgements which
calls into question the validity of at least some of the re-
sults obtained on this dataset. This selection bias is present
not only in the LETOR training data but also the test data.
Therefore the algorithms which give the best test results are
the ones which output rankings consistent with this bias. As
a result, performance on the LETOR datasets is not an accu-
rate guide for choosing a ranking algorithm for a real-world
problem.

There are two issues here. On the one hand, we are con-
cerned with ranking algorithms, and with evaluating such

algorithms. On the other, we are concerned with learning
algorithms, and their use in learning ranking algorithms. We
discuss the effects of the skewed selection methods on both
tasks. We note also that the LETOR datasets come with
pre-defined training and test splits, and evaluation scripts.
These scripts evaluate a ranker (possibly but not necessar-
ily one trained or learnt using the training data) on the test
data. They encode assumptions about (for example) how to
deal with unjudged documents in evaluation.

1.1 Related work
The issue raised in the present paper can be seen as relat-

ing to the issue of evaluation with incomplete judgements,
which has been the subject of much recent work (e.g. [8]).
The traditional way to deal with incomplete judgements has
been to regard unjudged documents as not relevant; this is
probably a fair assumption if the original judgements were
obtained from complete assessment of large pools, obtained
from a wide variety of systems/runs. Some proposals in-
volve leaving out the unjudged documents altogether. Re-
cent work has addressed the issue of evaluation where this
assumption is not good, and also the case where documents
can be selected for judgement (so the task is to select for
judgement those documents that are most likely to be infor-
mative, e.g. [3]). Some work has also addressed the possible
bias in judgements (e.g. [2]). The approach in the paper just
cited, as in [1], is to estimate the relevance of the unjudged
documents, and include them in the evaluation.

Generally this work has not yet addressed the question of
learning or training with incomplete or biased judgements
(a recent exception is [4]). In constructing the LETOR
datasets, a prior selection of documents has been made, with
the effect that some assumptions about appropriate ways to
deal with incomplete or biased judgements have been built
into the datasets. The particular selection methods, and
therefore the built-in assumptions, differ between the differ-
ent LETOR datasets.

We note also that there has been some work in the ma-
chine learning literature on learning with ‘imbalanced’ or
‘skewed’ datasets. However, this is a different problem: typ-
ically learning a binary classifier in the case where one of the
two classes occurs very much more frequently than the other
(again typically, both in training-and-test datasets and in
the real world). The problem discussed in the present paper
has to do with the selection of data, for training-and-test,
from real world data with different characteristics. (One
rather obvious form of solution to the problem, that may be
discovered in the machine learning literature, is discussed in
section 4.1.)

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 48

2. THE DATASETS

2.1 TDT
In the LETOR TDT dataset, the documents selected for

each topic include (a) the top 1000 documents ranked by
BM25, with relevance judgements where these are available,
plus (b) any other documents judged relevant. An immedi-
ate bias is evident: documents with high BM25 scores are
selected anyway, irrespective of relevance; but documents
with low BM25 scores are selected only if they are relevant.

The effect of this selection policy on the apparent effec-
tiveness of BM25 as a ranking algorithm/feature is dramatic.
It means that within these extractions, BM25 is negatively
correlated with relevance. If using BM25 on its own as a
ranking algorithm, it is best to select documents with low
BM25 over documents with high BM25 scores. A ranking in
reverse BM25 order is not only more effective than a rank-
ing in positive BM25 order, it is also more effective at early
ranks than either of the other benchmarks (Ranking SVM or
RankBoost) in [6] – see table 1 for the TDT2003 dataset. All
the tables and results below are as reported by the LETOR
evaluation scripts, and in particular on the test split of the
datasets.

Reverse
BM25 RankBoost RankSVM BM25

P@1 0.52 0.26 0.42 0.12
P@2 0.40 0.27 0.35 0.13
P@3 0.35 0.24 0.34 0.16
P@5 0.27 0.22 0.26 0.15

NDCG@5 0.326 0.279 0.347 0.183
MAP 0.185 0.212 0.256 0.126

Table 1: Results for ranking in reverse BM25 order,
compared to baselines, on the LETOR TDT2003
dataset

Any learning algorithm which chooses to rank in reverse
order of BM25 is therefore being rewarded in the LETOR
evaluation. In general, we have no way of knowing whether a
learning algorithm acquired this bias from the training data
or whether it is inherent to the algorithm. If the bias is
inherent to the algorithm, then applying the same learning
algorithm to real data may give very different results than
those observed on LETOR.

Another way of reading the results in the table is as fol-
lows: if all the relevant documents are contained in the top
1000, then it is very unlikely that the 1000th is relevant; thus
a topic with this condition probably contributes zero to the
P@1 figure for reverse BM25. From which it follows that up
to 52% of the test topics have at least one relevant outside
the top 1000. The P@2 row suggests that a much smaller
proportion, probably around 28% (because 40% is the aver-
age of 52% and 28%), have at least two relevant outside the
top 1000. In fact, these figures are exactly correct: 26 out of
50 topics have at least 1001 documents, while 14 out of 50
have at least 1002. For NDCG@5, Reverse BM25 does less
well than RankingSVM (although still better than Rank-
Boost); this probably has to do with the distribution of total
numbers of relevant documents per topic, which correlates
differently with effectiveness for the different methods. Re-
verse BM25 does worse than either baseline on MAP, which
takes account of the entire curve, although its early-rank

performance is enough to keep it above BM25 itself.
In the case of TDT2004, regular BM25 does much better

and Reverse BM25 not nearly so well. The incidence of
extra relevant documents outside the top 1000 (by BM25)
is very much lower: the proportion of test topics with at least
1001 documents is 14/75 = 19%, and for 1002 is 6/75 = 8%
(average 13%). Again, these figures are reflected exactly in
the early-rank results for Reverse BM25 – see table 2. The
effect is still enough to give Reverse BM25 a non-negligible
early-rank precision.

Reverse BM25 BM25
P@1 0.19 0.31
P@2 0.13 0.29
P@3 0.10 0.26
P@5 0.06 0.23

NDCG@5 0.097 0.319
MAP 0.060 0.282

Table 2: Results for ranking in reverse BM25 order,
compared to baselines, on the LETOR TDT2004
dataset

2.2 OHSUMED
The OHSUMED dataset presents different issues. The

documents selected for each topic were just those for which
relevance judgements were available. When the original
OHSUMED dataset was constructed [5], expert searchers
conducted the searches for each topic, using a traditional
Boolean search system. Subsequently, relevance assessment
was done by another set of expert physicians. The pools of
documents provided for assessment were constructed from
those items viewed by the expert searchers, together with
those items retrieved by searchers’ final refined Boolean search
statements.

This selection meant that documents in the pool had a
high chance of being relevant. This is evident from the pro-
portion of non-relevants among the selected documents –
nine topics have less than 40% in the non-relevant category.
Furthermore, every document in the pool matched some ver-
sion of the query very well. Thus these non-relevant docu-
ments are highly atypical. Examples of the wider range of
non-relevant documents that clearly exist in the full collec-
tion are missing in the dataset. In particular, there are likely
to be many other documents that could be scored relatively
highly by a ranking algorithm (which one would particularly
like the algorithm to learn to distinguish).

3. LEARNING
As indicated, the LETOR datasets contain a number of

features for each topic-document pair. The objective is to
allow a learning method to learn how these features should
be combined in order to provide optimal ranking according
to some measure of search effectiveness. Such combination
might for example be a linear function with learnt weights,
or some more complex combination. In this section we dis-
cuss the impact of the skewed judgements on learning.

Suppose that, in addition to the BM25 feature, we add
the log of BM25 to the TDT dataset as a separate feature
(this feature is already present in the OHSUMED data for
example). This means that even a simple linear model can
actually learn a class of non-linear functions of BM25, by

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 49

combining these two features linearly. We note that BM25
itself with a positive weight, combined with log BM25 with
a negative weight, can yield a U-shaped function where very
low as well as high BM25 scores are rewarded. We have
indeed found this kind of effect when adding log BM25 as
a new feature and then fitting a linear model on the TDT
datasets. It seems clear that the effect is an artefact of the
dataset.

This artefact can arise even without explicitly adding non-
linear functions of BM25. This is because many standard IR
features are correlated with BM25. In the TDT dataset, the
features “sitemap based score propagation” and “sitemap
based feature propagation” have a correlation coefficient
with BM25 exceeding 0.98. Like BM25, these features per-
form best when given negative weights on TDT2003. How-
ever, a linear combination of BM25 with these features,
using weights of opposite signs, provides increased perfor-
mance due to the effective nonlinearity. Language mod-
elling functions would presumably also have a high corre-
lation with BM25, although in the TDT dataset these were
not included at the whole-document level.

It may be argued that the LETOR dataset is intended
to compare learning algorithms, and that it may serve this
purpose even if the resulting learnt ranker is not a useful one.
In this sense, it may serve a similar purpose to a purely
artificial dataset, for which one has no guarantee that it
reflects any real-world data. However, this seems a very
limited aspiration for LETOR, and one that would indeed
be better served by generating purely artificial data from
known distributions. The fact that some attempt has been
made to draw LETOR data from realistic datasets should be
one of its advantages. We note also that it is difficult to draw
useful conclusions about the value of learning algorithms in
discovering good rankers for search, if what the learning
algorithm learns is so dominated by selection biases in the
dataset.

4. POSSIBLE SOLUTIONS
It is clear that in order to learn how to rank for real, or

even to test ideas about learning properly, we need more
realistic datasets. Results on the present LETOR datasets
cannot be relied upon to yield believable research conclu-
sions.

But the challenge of designing really good datasets for
the learning to rank task is not simple. We may be able to
suggest some modifications to the LETOR datasets which
have some chance of making them more useful, but we also
suggest that some serious investigation of the validity of re-
sults from any proposed dataset is required. The danger (as
revealed above) is that a learning system will succeed only
in learning artefactual characteristics of the dataset.

4.1 TDT
A simple way to remove the bias in the TDT datasets

is to remove the relevant documents outside the top 1000
of BM25. This redefines the learning task as ‘learning to
rank within the results returned by another search engine’,
defined for these purposes as the top 1000 retrieved by a
BM25 search engine. The effect of this on reverse BM25
is dramatic: its P@5 and NDCG@5 drop to zero and its
MAP is nearly zero. Regular BM25 has its NDCG and MAP
slightly increased. One problem with this approach is that it
still gives special status to BM25, and indeed by extension to

any ranking algorithm that is highly correlated with BM25.
Rather than remove relevant documents, we could also

add more non-relevants from the original TDT collection.
How many such documents should be included, and where
should they be sampled from? For the number, we might
assume that precision declines with rank in the BM25 rank-
ing (again, this seems to be loading too much onto BM25,
but again it’s hard to see an alternative). This assumption
would imply that (for example) the total number of non-
relevant beyond rank 1000 should be fixed to ensure that
the precision of this set alone is less than (say) the precision
of ranks 900-1000 alone.

In order for the declining-precision argument to apply
at any rank, it would be necessary to generate a much
larger ranking in BM25 order, locate the relevant documents
within it, and sample non-relevants from each interval be-
tween relevant documents. Such a procedure could probably
be worked out, but would have to deal with some special
cases:

• two relevant documents occurring close together in the
ranking, or even tied;

• relevant documents with zero BM25.

The latter case does indeed occur in the LETOR datasets.

4.2 OHSUMED
The OHSUMED dataset is somewhat more tricky, since

we have very little idea (certainly no formal definition) of
how the included documents were selected for judgement in
the first place. It might be better to replicate the TDT pro-
cedure, and introduce an algorithmic ranking such as BM25
as the basis for selection. Once again, we would have to sam-
ple in some systematic way in the gaps between the selected
documents. In this case the selection includes non-relevant
documents already; we would assume that the additional
random documents are also non-relevant. This is perhaps
a questionable assumption in the case of the OHSUMED
data.

4.3 Redefining the test set
One of the issues that led to the construction of the LETOR

datasets, and in particular the selection of documents for
each topic, is that training on a full-size corpus is often
not feasible. Many learning algorithms from the machine
learning domain would be impossible to scale to operate on
complete collections of documents (even TREC collections,
let alone the web). However, this constraint does not apply
to testing/evaluation. Most reasonable ranking algorithms
could without difficulty be applied to a full-sized TREC col-
lection.

This suggests that we should have different kinds of train-
ing and test collection: the test collection should be the en-
tire original document set (TDT or OHSUMED as appropri-
ate). This would ensure that a learning algorithm would not
be rewarded for learning the biases of the selection process
(as is currently the case). On the contrary, there would be
benefit to be gained by designing a learning algorithm which
could take proper account of these biases in training, and
thereby produce a ranking algorithm which would work well
with unselected data. Furthermore, the tests would have
similar validity to many current experiments on TREC-like
test collections outside the LETOR context, which they do
not currently have.

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 50

5. CONCLUSIONS
We have shown that the LETOR datasets exhibit skewed

judgements which cast doubt on any results derived from
them. The TDT datasets can be fixed in a simple way by
excluding relevant documents outside the top 1000. It may
also be possible to improve all the datasets by including
some additional sampled documents, assumed non-relevant,
in the per-topic extractions. A more radical suggestion is
to redefine the test part of LETOR to match much more
closely the way in which ranking algorithms are normally
tested on TREC-like corpora, using the entire corpus.

6. REFERENCES
[1] J. A. Aslam and E. Yilmaz. Inferring document

relevance from incomplete information. In CIKM ’07:
Proceedings of the sixteenth ACM conference on
Conference on information and knowledge management,
pages 633–642, New York, NY, USA, 2007. ACM.

[2] S. Buttcher, C. L. A. Clarke, P. C. K. Yeung, and
I. Soboroff. Reliable information retrieval evaluation
with incomplete and biased judgements. In SIGIR
2007, pages 63–70. ACM Press, 2007.

[3] B. Carterette, J. Allan, and R. Sitaraman. Minimal test
collections for retrieval evaluation. In E. N.
Efthimiadis, S. T. Dumais, D. Hawking, and
K. Järvelin, editors, SIGIR 2006: Proceedings of the
29th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 268–275, New York, 2006. ACM Press.

[4] B. He, C. Macdonald, and I. Ounis. Retrieval
sensitivity under training using different measures.
2008. To appear in SIGIR 2008.

[5] W. R. Hersh, C. Buckley, T. J. Leone, and D. H.
Hickam. OHSUMED: an interactive retrieval evaluation
and new large test collection for research. In W. B.
Croft and C. J. van Rijsbergen, editors, SIGIR ’94:
Proceedings of the 17th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 192–201. Springer-Verlag,
1994.

[6] T.-Y. Liu, J. Xu, T. Qin, W. Xiong, and H. Li. Letor:
Benchmark dataset for research on learning to rank for
information retrieval. Technical report, 2007. LR4IR
2007, in conjunction with SIGIR 2007.

[7] K. Sparck Jones, S. Walker, and S. E. Robertson. A
probabilistic model of information retrieval:
development and comparative experiments.
Information Processing and Management, 36:779–808
(Part 1) and 809–840 (Part 2), 2000.
http://www.soi.city.ac.uk/~ser/blockbuster.html.

[8] E. Yilmaz and J. A. Aslam. Estimating average
precision with incomplete and imperfect judgements. In
P. S. Yu, V. J. Tsotras, E. A. Fox, and B. Liu, editors,
CIKM 2006: Proceedings of the 13th ACM Conference
on Information and Knowledge Management, pages
102–111, New York, 2006. ACM Press.

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 51

http://www.soi.city.ac.uk/~ser/blockbuster.html

How to Make LETOR More Useful and Reliable

Tao Qin, Tie-Yan Liu, Jun Xu, Hang Li
Microsoft Research Asia

No.49 Zhichun Road, Haidian District
Beijing 100190, P.R. China

tsintao@gmail.com,
{tyliu, junxu, hangli}@microsoft.com

ABSTRACT

Learning to rank has attracted great attention recently in
both information retrieval and machine learning communi-
ties. However, the lack of public dataset had stood in its way
until the LETOR benchmark dataset (actually a group of
three datasets) was released in the SIGIR 2007 workshop on
Learning to Rank for Information Retrieval (LR4IR 2007).
Since then, this dataset has been widely used in many learn-
ing to rank papers, and has greatly speeded up the corre-
sponding research. In this paper, we discuss how to further
improve LETOR to make it more useful and reliable. First,
we notice that some low-level information, such as the term
frequency in each stream (title, body, url, anchor, etc.) and
the stream length, are missing in the current feature set of
LETOR. We propose adding the information to LETOR, so
as to enable the reproduction or optimization of models like
BM25. Second, we find that the sampling of documents as-
sociated with each query in LETOR was somehow biased.
We therefore propose a new document sampling strategy to
reduce the bias. Third, the scale (less than 100 queries)
of LETOR is relatively small for real world ranking appli-
cations. We propose adding more queries to the current
datasets in LETOR, and/or building even larger datasets
by leveraging the effort of the entire information retrieval
community.

1. INTRODUCTION
Ranking is the central problem for many information re-

trieval (IR) applications, including document retrieval, col-
laborative filtering, key term extraction, definition finding,
important email routing, sentiment analysis, product rat-
ing, and anti web spam. In the task, given a set of objects,
a ranking model (function) is used to calculate a score for
each object and the objects are sorted in the descending
order of the scores.

Learning to rank has attracted great attention recently in
both information retrieval and machine learning communi-
ties. Many algorithms have been proposed for learning to

Appearing in the proceedings of SIGIR 2008 Workshop on Learning to
Rank for Information Retrieval (LR4IR 2008).
Copyright is reserved by the authors of the paper.

rank, such as the pointwise approach [12], the pairwise ap-
proach [8, 9, 5, 2] and the listwise approach [3, 17]. The
lack of public dataset had stood in the way of research on
learning to rank until the LETOR benchkmar dataset was
released in the SIGIR 2007 Workshop on Learning to Rank
for Information Retrieval (LR4IR 2007). Since then, this
dataset has been widely used in many learning to rank pa-
pers [16, 21, 4, 10, 25, 23, 7, 6].

Although the release of LETOR has greatly speeded up
the research on learning to rank, we also notice several issues
in it. To make LETOR more useful and reliable, in this
paper, we discuss how to improve it from three aspects:

(1) Some low-level information is missing in the current
feature set of LETOR, such as the term frequency in
each stream (title, body, url, anchor et. al.) and the
stream length. This makes it difficult to reproduce
and/or optimize models like BM25. We suggest adding
these low-level features to the new version of LETOR
to solve the problem.

(2) The sampling of documents associated with each query
in LETOR was somehow biased because of the specific
document selection strategy. We consider three new
document selection strategies in this paper to avoid or
reduce the bias, and discuss their feasibility and costs.

(3) The scale (less than 100 queries) of LETOR is not
large enough for real-world ranking applications. We
propose adding more queries to the current datasets
in LETOR. We also suggest leveraging the efforts of
the entire IR community to collect larger-scale data
for learning to rank research.

The remaining part of this paper is organized as follows:
a brief introduction to LETOR is given in Section 2; the de-
tails of the proposed ways of improving the existing datasets
in LETOR are discussed in Section 3; In Section 4, we pro-
pose creating larger-scale training data; and conclusions are
given in the last section.

2. ANALYSIS ON THE LETOR DATASET

2.1 Overview of LETOR
LETOR was built based on two widely-used data collec-

tions in information retrieval: the OHSUMED collection
used in the information filtering task of TREC 2000, and the
“.gov” collection used in the topic distillation tasks of TREC
2003 and 2004. Accordingly, there are three sub datasets in
LETOR, namely OHSUMED, TD2003, and TD2004.

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 52

Table 1: Statistics of three datasets in LETOR
Dataset #Query #Doc #Doc/#Query #Feature

OHSUMED 106 16140 152.26 25
TD2003 50 49171 983.42 44
TD2004 75 74170 988.93 44

Both ‘low level’ and ‘high level’ features have been ex-
tracted for each query-document pair in the OHSUMED
collection. Low-level features include term frequency (tf),
inverse document frequency (idf), document length (dl) and
their combinations [1]. High-level features include the out-
puts of BM25 [18] and language model for IR [26].

Four kinds of features have been extracted for each query-
document pair in the “.gov” collections: low-level content
features, high-level content features, hyperlink features, and
hybrid features. The low-level and high-level content fea-
tures are similar to that in the OHSUMED dataset. Hyper-
link features include PageRank [14], HITS [11], and their
variations (HostRank [24], topical PageRank and topical
HITS [13]). Hybrid features refer to those features con-
taining both content and hyperlink information, including
“hyperlink-based relevance propagation” [19] and “sitemap-
based relevance propagation” [15].

Since there are too many documents in the OHSUMED
and “.gov” collections, when building LETOR, documents
are sampled for each query to facilitate the experiments
on ranking, according to the following strategy. For the
OHSUMED dataset, all judged documents were selected,
and all un-judged documents were neglected. In this way,
about 150 documents per query were eventually selected,
as shown in Table 1. The sampling strategy for the “.gov”
collection is a little different. First, BM25 was used as the
model to rank all the documents with respect to each query,
and then the top 1000 documents (if there are such number
of documents containing the query) were selected. Consid-
ering that some relevant documents may not appear in the
top 1000 results, all the relevant documents for each query
were also added to the selected document pool. The statis-
tics on the TD2003 and TD2004 datasets can also be found
in Table 1.

The value of the LETOR dataset lies in the following two
aspects:

(1) LETOR contains a set of standard features, and so re-
searchers can directly use them to test the effectiveness
of their ranking algorithms, without the necessity of
creating a dataset by their own. Because the dataset
creation is very costly (including collection hunting,
query selection, feature extraction, etc.), LETOR has
greatly reduced the barrier of the research on learning
to rank.

(2) LETOR makes the fair comparison among different
learning to rank algorithms possible. Before the re-
lease of LETOR, different datasets (i.e. different query
sets, different document collections, different features,
or different evaluation tools) were used in different pa-
pers. As a result, it is not easy to get conclusive ob-
servations on the effectiveness of the learning to rank
algorithms, by comparing the performances reported
in different papers. LETOR has made it possible to
compare the algorithms, since a standard dataset and

a set of standard evaluation tools are used. Further-
more, in the current version of LETOR (version 2.0),
several state-of-the-art baselines have been included,
which even further ease the algorithm comparison: re-
searchers even do not need to implement some of the
baselines to be compared by their own.

2.2 Aspects of LETOR to Be Improved
Although LETOR has achieved great success, there are

also problems with it. While using the LETOR dataset, we
find that there are several aspects that should be improved,
in order to make it more useful and reliable.

First, some “low-level” information is missing in the fea-
ture extraction process of LETOR.

One of the goals of LETOR is to provide standard fea-
tures so that researchers using LETOR do not need to deal
with the raw documents. However, the current features pro-
vided in LETOR may limit people’s research. For example,
a BM25 score is provided which was computed with default
parameters. If one wants to further tune this model and get
a more effective feature, he/she will find that there is no
sufficient information to perform the task.

To better understand the problem, let us look at one of
the most prominent instantiations of BM25 as follows.

Given a query Q, containing keywords q1, ..., qt, the BM25
score of a document D is computed as:

BM25(D, Q) =
tX

i=1

idf(qi)·
f(qi, D) · (k1 + 1)

f(qi, D) + k1 · (1 − b + b · |D|
avgdl

)
,

where f(qi, D) is the occurrences of qi in the document D,
|D| is the length of the document D (i.e., the number of
words), and avgdl is the average document length in the en-
tire document collection from which documents are drawn.
k1 and b are free parameters. idf(qi) is the IDF (inverse doc-
ument frequency) weight of the query term qi. It is usually
computed as:

idf(qi) = log
N − n(qi) + 0.5

n(qi) + 0.5
,

where N is the total number of documents in the collection,
and n(qi) is the number of documents containing qi.

As can be seen, to compute the BM25 score, we need to
know the term frequency f(qi, D) in document D and the
document frequency n(qi) in the entire collection containing
each query term qi. Besides, we also need to know the doc-
ument length |D| and the average document length of the
entire collection. In the current version of LETOR, how-
ever, only |D| is provided as a feature. f(qi, D) and n(qi)
are missing1. This prevents researchers from tuning the pa-
rameters of BM25 (e.g. k1 and b) and/or creating other
strong features based on such low level information.

Second, the document sampling strategy used in LETOR
is somehow biased.

For the OHSUMED dataset, only judged query-document
pairs were selected. The judgments are “highly relevant”,
“partially relevant” or “irrelevant”. However, this setting is
not consistent with real world applications. For a IR system,
when a user issues a query, the system does not know which

1Pt
i=1 f(qi, D) and

Pt
i=1 n(qi) are provides in LETOR2.0

instead. One cannot use the sum of term frequency and
document frequency to reproduce the BM25 score.

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 53

document is judged or not. That is, we cannot get only
judged documents for ranking.

For TD2003 and TD2004 datasets, for each query, both
top 1000 documents based on their BM25 scores and the rel-
evant documents which are not ranked in top 1000 positions
were selected. It is clear that such a sampling strategy is not
consistent with the ranking process in real search scenarios
either. Given a query, we can get its top 1000 documents by
BM25, but we do not know which documents ranked out of
top 1000 are relevant.

Third, the scale of the dataset in LETOR is not large
enough.

Some statistics of the three datasets are listed in Table
1. As can be seen, there are only 50 and 75 queries in
TD2003 and TD2004 separately, and about 100 queries in
OHSUMED. After the 5-fold partitioning, each validation
(testing) set only contains 10/15/21 queries in TD2003/TD2004
/OHSUMED. The small number of queries may make the
experimental results got on these datasets not reliable. Fail-
ing in one single query may lead to significant performance
drop.

From the view of machine learning, a larger-scale dataset
will be better for a learning algorithm. From the view of real
world ranking applications (e.g. web search), a ranking al-
gorithm should also handle large-scale dataset. Considering
these, it is important and necessary to add large datasets to
LETOR.

3. IMPROVING EXISTING DATASETS IN

LETOR
In this section, we discuss how to improve the existing

datasets in LETOR. We mainly focus on the first and second
aspects mentioned in the previous section.

3.1 Adding More Raw Features
For the OHSUMED dataset, besides the 25 features in

the current version of LETOR, we suggest adding more fea-
tures for learning. Specifically, we suggest extracting 20 new
features from the fields of ‘title’, ‘abstract’, and ‘title + ab-
stract’: 10 ‘low level features’ from ‘title + abstract’, 5 ‘high
level’ features from ‘title’, and 5 ‘high level’ features from
‘abstract’. The entire feature set can be found in Table 3.

we also suggest providing ‘meta features’ on the OHSUMED
dataset. Term frequency and document frequency of each
query term, and document lengths etc. are important meta
features. Some statistics on the corpus, such as the average
document length, the total number of documents in the cor-
pus etc., are also important and should be included. These
meta features may not be directly used by a learning algo-
rithm. However, based on these meta features, people can
construct their own features, reproduce and tune BM25 and
other strong features. Table 3 lists all of the proposed meta
features.

For TD2003 and TD2004, besides the 44 features in the
current version of LETOR, we suggest adding in-link num-
ber, out-link number, length of URL, number of slashes in
the URL, etc. as new features. Also, we suggest extract-
ing those existing features in all streams (URL, title, anchor
and body), while features in some streams are missing in the
current version of LETOR. Overall, there will be 64 features
(Table. 4) which can be directly used by learning algorithms.

We also propose adding the term frequency in each stream

Table 2: Features for OHSUMED
ID Feature Description
1

P
qi∈q∩d c(qi, d) in ‘title’

2
P

qi∈q∩d log (c(qi, d) + 1) in ‘title’

3
P

qi∈q∩d
c(qi,d)

|d| in ‘title’

4
P

qi∈q∩d log
�

c(qi,d)
|d| + 1

�
in ‘title’

5
P

qi∈q∩d log
�

|C|
df(qi)

�
in ‘title’

6
P

qi∈q∩d log
�
log
�

|C|
df(qi)

��
in ‘title’

7
P

qi∈q∩d log
�

|C|
c(qi,C)

+ 1
�

in ‘title’

8
P

qi∈q∩d log
�

c(qi,d)
|d| · log

�
|C|

df(qi)

�
+ 1
�

in ‘title’

9
P

qi∈q∩d c(qi, d) · log
�

|C|
df(qi)

�
in ‘title’

10
P

qi∈q∩d log
�

c(qi,d)
|d| · |C|

c(qi,C)
+ 1
�

in ‘title’

11 BM25 score in ‘title’
12 log(BM25 score) in ‘title’
13 LMIR with DIR smoothing in ‘title’
14 LMIR with JM smoothing in ‘title’
15 LMIR with ABS smoothing in ‘title’
16

P
qi∈q∩d c(qi, d) in ‘abstract’

17
P

qi∈q∩d log (c(qi, d) + 1) in ‘abstract’

18
P

qi∈q∩d
c(qi,d)

|d| in ‘abstract’

19
P

qi∈q∩d log
�

c(qi,d)
|d| + 1

�
in ‘abstract’

20
P

qi∈q∩d log
�

|C|
df(qi)

�
in ‘abstract’

21
P

qi∈q∩d log
�
log
�

|C|
df(qi)

��
in ‘abstract’

22
P

qi∈q∩d log
�

|C|
c(qi,C)

+ 1
�

in ‘abstract’

23
P

qi∈q∩d log
�

c(qi,d)
|d| · log

�
|C|

df(qi)

�
+ 1
�

in ‘abstract’

24
P

qi∈q∩d c(qi, d) · log
�

|C|
df(qi)

�
in ‘abstract’

25
P

qi∈q∩d log
�

c(qi,d)
|d| · |C|

c(qi,C)
+ 1
�

in ‘abstract’

26 BM25 score in ‘abstract’
27 log(BM25 score) ‘abstract’
28 LMIR with DIR smoothing in ‘abstract’
29 LMIR with JM smoothing in ‘abstract’
30 LMIR with ABS smoothing in ‘abstract’
31

P
qi∈q∩d c(qi, d) in ‘title + abstract’

32
P

qi∈q∩d log (c(qi, d) + 1) in ‘title + abstract’

33
P

qi∈q∩d
c(qi,d)

|d| in ‘title + abstract’

34
P

qi∈q∩d log
�

c(qi,d)
|d| + 1

�
in ‘title + abstract’

35
P

qi∈q∩d log
�

|C|
df(qi)

�
in ‘title + abstract’

36
P

qi∈q∩d log
�
log
�

|C|
df(qi)

��
in ‘title + abstract’

37
P

qi∈q∩d log
�

|C|
c(qi,C)

+ 1
�

in ‘title + abstract’

38
P

qi∈q∩d log
�

c(qi,d)
|d| · log

�
|C|

df(qi)

�
+ 1
�

in ‘title + abstract’

39
P

qi∈q∩d c(qi, d) · log
�

|C|
df(qi)

�
in ‘title + abstract’

40
P

qi∈q∩d log
�

c(qi,d)
|d| · |C|

c(qi,C)
+ 1
�

in ‘title + abstract’

41 BM25 score in ‘title + abstract’
42 log(BM25 score) ‘title + abstract’
43 LMIR with DIR smoothing ‘title + abstract’
44 LMIR with JM smoothing in ‘title + abstract’
45 LMIR with ABS smoothing in ‘title + abstract’

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 54

Table 3: Meta Features for OHSUMED
ID Feature Description
1 Term frequency (TF) of a single query term in ‘title’
2 Term frequency (TF) of a single query term in ‘abstract’
3 Term frequency (TF) of a single query term

in ‘title + abstract’
4 Document frequency (DF) of a single query term

in terms of ‘title’
5 Document frequency (DF) of a single query term

in terms of ‘abstract’
6 Document frequency (DF) of a single query term

in terms of ‘title + abstract’
7 Document length in terms of ‘title’
8 Document length in terms of ‘abstract’
9 Document length in terms of ‘title + abstract’
10 Average document length in terms of ‘title’
11 Average document length in terms of ‘abstract’
12 Average document length in terms of ‘title + abstract’
13 Corpus size

(body, anchor, title and url) and document frequency of
each query term as meta features. Note that different from
OHSUMED, the stream length of each document is already
included in LETOR 2.0. The meta features are listed in Ta-
ble. 5. They can be used to derive new strong features or
tuning the parameters in existing features like BM25.

3.2 Adopting New Sampling Strategy
Here we discuss how to better sample documents for a

query from the original document collection to make LETOR
more consistent with real world applications.

As we have pointed out, for the OHSUMED dataset, it
might not be reasonable to only look at the small number of
judged documents. A possible solution is that for a query,
we include all the documents containing at least one query
term. By doing so, we can signicantly increase the number
of documents to be ranked. However, there are also some
concerns with this method because we have introduced a
number of unjudgment document into the dataset. First, in
training, it is not clear how to use these un-judged docu-
ments. Simply regarding them as irrelevant may or may not
be reasonable. In fact, this is a research problem by itself:
how to make good use of unlabeled documents in learning.
Second, in testing, it is difficult to evaluate the accuracy of a
ranking algorithm. At least the current evaluation measures
used in LETOR, MAP and NDCG, cannot be computed in
this case. Considering the two issues, we suggest keeping
the sampling of the current version of OHSUMED dataset
unchanged.

For the TD2003 and TD2004 datasets, it is a different
story. The judgments in these datasets only include the“rel-
evant” documents. In other words, all unjudged documents
are regarded as irrelevant [22, 17, 3, 20]. In this case, if
we introduce more documents, there are no such confusions
on the labels as for the OHSUMED dataset. Note that, in
TD2003 and TD2004 datasets, all the relevant documents
were added to the datasets, while no enough unjudged doc-
uments were added at the same time. As a result, the doc-
ument distribution is changed significantly as compared to
the original collection. To solve the problem, we suggest
making one of the following changes.

Table 4: Features for TD2003 and TD2004
ID Feature Description
1 Term frequency (TF) of body
2 TF of anchor
3 TF of title
4 TF of URL
5 TF of whole document
6 Inverse document frequency (IDF) of body
7 IDF of anchor
8 IDF of title
9 IDF of URL
10 IDF of whole document
11 TD*IDF of body
12 TD*IDF of anchor
13 TD*IDF of title
14 TD*IDF of URL
15 TD*IDF of whole document
16 Document length (DL) of body
17 DL of anchor
18 DL of title
19 DL of URL
20 DL of whole document
21 BM25 of body
22 BM25 of anchor
23 BM25 of title
24 BM25 of URL
25 BM25 of whole document
26 LMIR.ABS of body
27 LMIR.ABS of anchor
28 LMIR.ABS of title
29 LMIR.ABS of URL
30 LMIR.ABS of whole document
31 LMIR.DIR of body
32 LMIR.DIR of anchor
33 LMIR.DIR of title
34 LMIR.DIR of URL
35 LMIR.DIR of whole document
36 LMIR.JM of body
37 LMIR.JM of anchor
38 LMIR.JM of title
39 LMIR.JM of URL
40 LMIR.JM of whole document
41 Sitemap based feature propagation
42 Sitemap based score propagation
43 Hyperlink base score propagation: weighted in-link
44 Hyperlink base score propagation: weighted out-link
45 Hyperlink base score propagation: uniform out-link
46 Hyperlink base feature propagation: weighted in-link
47 Hyperlink base feature propagation: weighted out-link
48 Hyperlink base feature propagation: uniform out-link
49 HITS authority
50 HITS hub
51 PageRank
52 HostRank
53 Topical PageRank
54 Topical HITS authority
55 Topical HITS hub
56 Inlink number
57 Outlink number
58 Number of slash in URL
59 Length of URL
60 Number of child page
61 BM25 of extracted title
62 LMIR.ABS of extracted title
63 LMIR.DIR of extracted title
64 LMIR.JM of extracted title

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 55

Table 5: Meta Features for TREC
ID Feature Description
1 Term frequency (TF) of a single query term in body
2 TF of a single query term in anchor
3 TF of a single query term in title
4 TF of a single query term in URL
5 TF of a single query term in whole document
6 Inverse document frequency (IDF) of a single query

term in body
7 IDF of a single query term in anchor
8 IDF of a single query term in title
9 IDF of a single query term in URL
10 IDF of a single query term in whole document
11 TD*IDF of a single query term in body
12 TD*IDF of a single query term in anchor
13 TD*IDF of a single query term in title
14 TD*IDF of a single query term in URL
15 TD*IDF of a single query term in whole document
16 Average length of body
17 Average length of anchor
18 Average length of title
19 Average length of URL
20 Average length of whole document
21 Corpus size

(1) For each query, we can create a document pool with
all documents containing at least one query term in it.
The problem is that, however, there are too many doc-
uments in the pool for a query to rank. Table 6 shows
the number of documents containing at least one query
term for each query (|D(q)|). As can be seen, there are
about 5 millon documents for TD20032 which need to
be considered for feature extraction. Note that the
size (with zip compression) of LETOR 2.0 with about
50000 documents in TD2003 dataset and 75000 doc-
uments in TD2004 dataset is about 44M bytes. The
number of documents w.r.t. this new sampling strat-
egy is about 100 times the number in the current ver-
sion of TD2003 and TD2004. Then the size of the new
TD2003 and TD2004 datasets will be about 4G bytes
without considering the new features added. Such a
dataset would be too large to download and to use3.

(2) For a query, we first create a pool with all the doc-
uments containing at least one query term. Then we
rank the documents in this pool in the descending or-
der of their BM25 scores. Let p = max(pos(rd)) be
the rank position of the last relevant document. We
select p + 1000 documents for this query for feature
extraction. In this way, we will get about 0.6 million
documents for TD20034 as shown in Table 6. This
is about 10 times the current version of TD2003 and
TD2004.

(3) We only change the current version of LETOR slightly.

2There are about 10 millon documents for TD2004, which
are not listed here.
3Someone may argue that 4.4G is not very large for down-
load. However, it would take a lot of training time for a
learning algorithm.
4And about 0.8 million documents for TD2004.

We remove all the relevant documents that are ranked
out of the top 1000 positions according to their BM25
scores. In this way, the data distribution will not be
as biased as before either.

4. CREATINGLARGERSCALEDATASETS
There are only about (or less than) 100 queries in each

dataset of LETOR. These datasets are relatively small. Large
scale datasets are desired for the research on learning to
rank. Here we suggest three possible solutions.

(1) Note that there are three tasks in TREC web track
2003 and 2004: topic distillation (TD), homepage find-
ing (HP) and named page finding (NP). In LETOR 2.0,
only topic distillation task was used for data creation.
The first solution we suggest is to add the queries of
the other two tasks into LETOR. There are two ben-
efits to include all the three tasks. First, by doing
so, we can enlarge the data to hundreds of queries, as
shown in Table 7. Second, since there are three differ-
ent types of queries, some other research topics can be
conducted based on LETOR, such as query classifica-
tion and query dependent ranking.

(2) Considering that hundreds of queries may be still not
large enough, another possible data source is the Mil-
lion Query Track at TREC 20075, which contains about
10000 queries (about 1700 queries are labeled in the
track last year, and more queries are expected to be
labeled this year.). The documents associated with
these queries are retrieved from the “.gov2” collection.
It would be great to create a large dataset based on
this source. The creation process can be very simi-
lar to that of the current version of LETOR: indexing
the “.gov2” dataset, extracting standard features, and
making the data files publicly available.

(3) In addition, we make a even wilder proposal on lever-
aging the efforts of the entire IR community (and even
web users) for data collection. The basic idea is to
develop a meta search engine, which mixes the re-
sults from multiple search engines. We will collect
the search log of this meta search engine to mine the
ground truth. Of course, the one who uses this engine
should be aware that we are recording the search log
for research purpose. After mining the ground truth
from the search log, we can extract features for query-
document pairs and release the dataset.

The advantages of using this solution are as follows.
First, it is easy for data collection. One only need
to use the engine like some other search engines with-
out any other effort. Second, the number of available
queries can increase along with time, and thus can be
extremely large eventually. Third, the documents are
up-to-date webpages indexed by the search engines,
while the documents in the “.gov” and “.gov2” collec-
tions are pretty old.

There are also concerns with this solution. First, we
need to filter the logs to delete some privacy related
queries. Second, the ground truth mining from log

5We would like to thank the reviewer for the recommenda-
tion on this data source.

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 56

Table 6: Statistics on sampled documents of TD2003
dataset

QueryID |D(q)| max(pos(rd))
1 47360 16435
2 11263 1247
3 38852 22
4 196651 1917
5 220930 3685
6 81253 193
7 115902 66641
8 117876 12
9 301335 286648
10 101552 512
11 45090 255
12 68896 166
13 1010 2
14 87993 560
15 139505 560
16 219321 1896
17 525 3
18 533 5
19 109707 316
20 79393 44112
21 1619 737
22 106215 532
23 7536 268
24 181882 7
25 46414 116
26 141552 1676
27 112917 783
28 182231 1798
29 3149 45
30 41912 409
31 68912 526
32 61599 20485
33 148548 1078
34 6694 444
35 63765 47773
36 72125 2657
37 125920 1250
38 134569 19881
39 536840 37821
40 111526 253
41 52267 1351
42 6035 250
43 64461 5340
44 28141 3004
45 19445 517
46 19856 1058
47 132448 53441
48 7609 529
49 179907 69
50 2885 80

total 4653926 629365

Table 7: Number of queries in TREC web track
Task TREC2003 TREC2004
TD 50 75

HP+NP 300 150

data may not be very easy because it is still a research
topic by its own. Alternatively, we can also release the
log data directly for research.

5. CONCLUSIONS
LETOR is a public dataset for learning to rank, which

eases the research in this direction. Since benchmark dataset
is always very important for a research direction, continuous
discussions and efforts should be given to the construction
of such datasets. In this paper, we discussed how to make
LETOR more useful and reliable from three aspects, i.e.,
adding more raw features, adopting new document sampling
strategies, and creating larger scale datasets. We hope with
the joint efforts of the learning to rank research community,
a better benchmark dataset can be built shortly and our
research work can benefit from it.

6. REFERENCES
[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern

Information Retrieval. Addison Wesley, May 1999.

[2] C. Burges, T. Shaked, E. Renshaw, A. Lazier,
M. Deeds, N. Hamilton, and G. Hullender. Learning to
rank using gradient descent. In ICML ’05: Proceedings
of the 22nd international conference on Machine
learning, pages 89–96, New York, NY, USA, 2005.
ACM Press.

[3] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li.
Learning to rank: from pairwise approach to listwise
approach. In ICML ’07: Proceedings of the 24th
international conference on Machine learning, pages
129–136, New York, NY, USA, 2007. ACM Press.

[4] J. Elsas, V. Carvalho, and J. Carbonell. Fast learning
of document ranking functions with the committee
perceptron. Proceedings of the international conference
on Web search and web data mining, pages 55–64,
2008.

[5] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An
efficient boosting algorithm for combining preferences.
J. Mach. Learn. Res., 4:933–969, 2003.

[6] X. Geng, T.-Y. Liu, T. Qin, A. Arnold, H. Li, and
H.-Y. Shum. Query dependent ranking using k-nearest
neighbor. In SIGIR ’08: Proceedings of the 31th
annual international ACM SIGIR conference on
Research and development in information retrieval,
New York, NY, USA, 2008. ACM.

[7] J. Guiver and E. Snelson. Learning to rank with
softrank and gaussian processes. In SIGIR ’08:
Proceedings of the 31th annual international ACM
SIGIR conference on Research and development in
information retrieval, New York, NY, USA, 2008.
ACM Press.

[8] R. Herbrich, T. Graepel, and K. Obermayer. Support
vector learning for ordinal regression. In ICANN1999,
pages 97–102, 1999.

[9] R. Herbrich, T. Graepel, and K. Obermayer. Large
margin rank boundaries for ordinal regression. MIT
Press, Cambridge, MA, 2000.

[10] R. Jin, H. Valizadegan, and H. Li. Ranking refinement
and its application to information retrieval. In WWW
’08: Proceeding of the 17th international conference on
World Wide Web, pages 397–406, New York, NY,
USA, 2008. ACM.

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 57

[11] J. M. Kleinberg. Authoritative sources in a
hyperlinked environment. J. ACM, 46(5):604–632,
1999.

[12] P. Li, C. Burges, and Q. Wu. Mcrank: Learning to
rank using multiple classification and gradient
boosting. In NIPS2007, 2007.

[13] L. Nie, B. D. Davison, and X. Qi. Topical link analysis
for web search. In SIGIR ’06: Proceedings of the 29th
annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 91–98, New York, NY, USA, 2006. ACM.

[14] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical report, Stanford Digital Library
Technologies Project, 1998.

[15] T. Qin, T.-Y. Liu, X.-D. Zhang, Z. Chen, and W.-Y.
Ma. A study of relevance propagation for web search.
In SIGIR ’05: Proceedings of the 28th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 408–415,
New York, NY, USA, 2005. ACM.

[16] T. Qin, T.-Y. Liu, X.-D. Zhang, D.-S. Wang, W.-Y.
Xiong, and H. Li. Learning to rank relational objects
and its application to web search. In WWW ’08:
Proceeding of the 17th international conference on
World Wide Web, pages 407–416, New York, NY,
USA, 2008. ACM.

[17] T. Qin, X.-D. Zhang, M.-F. Tsai, D.-S. Wang, T.-Y.
Liu, and H. Li. Query-level loss functions for
information retrieval. Information Processing &
Management, 2007.

[18] S. J. M. M. H.-B. M. G. S. E. Robertson, S. Walker.
Okapi at TREC-3. In Text REtrieval Conference,
pages 109–126, 1994.

[19] A. Shakery and C. Zhai. Relevance propagation for
topic distillation uiuc trec 2003 web track
experiments. In TREC, pages 673–677, 2003.

[20] M.-F. Tsai, T.-Y. Liu, T. Qin, H.-H. Chen, and W.-Y.
Ma. Frank: a ranking method with fidelity loss. In
SIGIR ’07: Proceedings of the 30th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 383–390,
New York, NY, USA, 2007. ACM.

[21] F. Xia, T.-Y. Liu, J. Wang, W. Zhang, and H. Li.
Listwise approach to learning to rank - theory and
algorithm. In ICML ’08: Proceedings of the 25th
international conference on Machine learning, New
York, NY, USA, 2008. ACM Press.

[22] J. Xu and H. Li. Adarank: a boosting algorithm for
information retrieval.

[23] J. Xu, T.-Y. Liu, M. Lu, H. Li, and W.-Y. Ma.
Directly optimizing evaluation measures in learning to
rank. In SIGIR ’08: Proceedings of the 31th annual
international ACM SIGIR conference on Research and
development in information retrieval, New York, NY,
USA, 2008. ACM Press.

[24] G.-R. Xue, Q. Yang, H.-J. Zeng, Y. Yu, and Z. Chen.
Exploiting the hierarchical structure for link analysis.
In SIGIR ’05: Proceedings of the 28th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 186–193,
New York, NY, USA, 2005. ACM.

[25] J. Yeh, J. Lin, H. Ke, and W. Yang. Learning to rank
for information retrieval using genetic programming.
In Proceedings of SIGIR 2007 Workshop on Learning
to Rank for Information Retrieval, 2007.

[26] C. Zhai and J. Lafferty. A study of smoothing
methods for language models applied to information
retrieval. ACM Trans. Inf. Syst., 22(2):179–214, 2004.

SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008)

http://research.microsoft.com/users/LR4IR-2008/ 58

