
International Journal of Parallel Programming. Vol. 22, No, 1 . 1994

Scalable, Parallel Computers:
Alternatives, Issues, and Challenges

Gordon Bell

Received February 1993; revised December 1993

The 1990s will be the era of scalable computers. By giving up uniform memory
access, computers can be built that scale over a range of several thousand. These
provide high peak announcedperformance (PAP), by using powerful, distributed
CMOS microprocessor-primary memory pairs interconnected by a high perfor-
mance switch (network). The parameters that determine these structures and
their utility include: whether hardware (a multiprocessor) or software (a multi-
computer) is used to maintain a distributed, or shared virtual memory (DSM)
environment; the power of computing nodes (these improve at 60% per year);
the size and scalability of the switch; distributability (the ability to connect to
geographically dispersed computers including workstations); and all forms of
software to exploit their inherent parallelism. To a great extent, viability is
determined by a computer's generality-the ability to efficiently handle a range
of work that requires varying processing (from serial to fully parallel), memory,
and 110 resources. A taxonomy and evolutionary time line outlines the next
decade of computer evolution, included distributed workstations, based on
scalability and parallelism. Workstations can be the best scalables.

KEY WORDS: Scalable multiprocessors and multicomputers; massive
parallelism; distributed or shared virtual memory; high performance computers;
computer architecture.

1. INTRODUCTION

In this decade, computer engineers, computer and computational scientists,
and users will focus on understanding and exploiting the parallelism
inherent in computers formed by interconnecting many low-priced,
extremely fast, "killer" CMOS microprocessors. A computer using at least
1000 processing elements, processors, or computers in parallel is "massively

3

0885-7458,94/0200-0003$07.00/0 (0 1994 Plenum Publishing Corporation

4 Bell

parallel." In principle, ultracomputers (Bell'')) with 1000s of processors and
costing .$3&$250 million could be built. However, based on results,
an aggressive target for 1995 or 1998 (i.e., one or two generations) is
applications (apps) that routinely achieve 10 to 100-fold parallelism.

Two, massively parallel computer structures have been introduced in
a race to provide a "peak" teraflop of computing power (Bell")) by 1995:
the scalable, shared memory multiprocessor (smP) and the scalable multi-
computer (smC). In order to make a large, scalable, general purpose com-
puter, computer modules, i.e., processor-memory pairs, are interconnected
by a high performance, low latency switch, i.e., network; and performance,
using an appropriate measure, grows in proportion to 'the amount of
resources.

Multiprocessors (Fig. l a) communicate by accessing a single, shared
common memory. Multicomputers (Fig. l b) are independent computers
that communicate by passing messages to one another through the switch.
A software library layer for an smC creates a single address space creating
a distributed shared virtual memory (DSM), hence mPs and mCs converge.
An smP has one address space and message passing is facilitated by simply
passing pointers. Nitzberg and Lo") provide a survey of mP and mC
DSMs', including the issue of maintaining a single, coherent memory.

Two, basic programming paradigms are used: data parallel using
a dialect of FORTRAN, such as FORTRAN90, High Performance
FORTRAN (HPF), or just FORTRAN 77-multiple copies of a Single
Program that operate on Multiple Data items in parallel (SPMD); multi-

Fig. 1. Programming views of a shared memory multiprocessor (a) and a multicomputer (b)
a distributed multicomputer.

Scalable, Parallel Computers: Alternatives, Issues, and Challenges 5

process using a program that is divided into sub-problems and distributed
among the nodes that communicate by explicit message passing. Multi-
process apps can be divided by function (i.e. different processes handle
different types of tasks) or by data (i.e., different processes handle different
data). Ordinary operating system mechanisms such as pipes, sockets, and
threads facilitate parallelism by providing communication among and
within processes. Programming environments that operate on all computer
structures, including networks, have been developed for multi-processing,
such as the Parallel Virtual Machine (PVM), Linda, and Parasoft.

Computer size scalability is defined pragmatically, as a computer
designed from a small number of basic components, with no single
bottleneck component, such that the computer can be incrementaly
expanded over its designed scaling range, delivering linear incremental per-
formance for a well-defined set of scalable apps. The components include:
computers (i.e., a processor-memory pair), secondary memory, com-
munication links and terminals, switches, cabinets, and especially the
computer's programming environment (operating system, compilers,
performance monitoring, etc.). Researchers have posited several definitions
of scalable computers (Hill(3); Nussbaum and A g a r ~ a l ' ~) ; and Scott"').

Evolvability, i.e., generation or technology scalability is the ability to
implement a subsequent computer of the same family using faster com-
ponents. Evolvability is an essential property of a scalable computer
because of the long time and large investment required to develop parallel
programs. Evolvability requires that all rate and size metrics such as
processing, memory and I/O bandwidth, memory size, and especially
interconnection bandwidth must increase proportionally from generation
to generation.

Program or problem scalability, first observed by Gustafson et is
a property of a program/machine combination that determines the ability
of a problem to operate at various scales (sizes) on a given scale computer
using goodness measures of constant efficiency (Kumar and Gupta'')), or
constant speed (Sun and Rover")) or simply increased speedup (K a r ~ ' ~ ') .
By scaling a problem to a sufficiently large size to reduce the computation
to communication ratio, overhead can be reduced to increase processing
rates.

The IBM 360 (~1964) and VAX (~1978) series of compatible general
purpose computers were successful during eras where evolving and varied
technologies could be used to provide some scalability with a range of
models at a given time and over time. VAX evolved to a factor of 100
performance range in 10 years, not including LAN workstation multi-
computers. Workstations provide size scalability (large installations
have 10,000 workstations) and evolvability to some degree, although LAN

6 Bell

communication rates have remained constant at 10 Mbitslsec, while
processor power increased a factor of 100 between 1982 and 1992.

In 1993, Cray Research offers a range of products from $300,000 to
over $30 million spanning a performance range of 100, using both CMOS
and ECL implementations of the Cray supercomputer architecture. Cray
supers evolved from a 120 Mflops processor and 1 Megaword memory
(1976) to sixteen 1000 Mflops processors and 4 Gigaword memory (1992).
A cluster of 4-C90s increases the range to 400. This amounts to a factor of
17% and 36% per year performance increase for processor and system
(including multiprocessor), respectively. In contrast, 1994 scalable com-
puters offer a factor of 1000 practical range of performance using just one
component type. However, only limited scalable products (8-1024) are
offered.

In 1994 an ideal, scalable computer should be useful as a single pro-
cessor, and extend to 1000s of processors, with correspondingly scalable
110. It should be able to handle a wide range of scalable parallel apps,
including a general workload. The interconnect network must be genera-
tion scalable over at least a decade to support binary compatibility of apps
among generations! Furthermore, since the processor-memory pairs are
independent, the ideal scalable computer should be distributable beyond a
single room to include a campus. By solving many problems in security
and fault-tolerance, a distributed computer that would occupy a building
or even a large campus can be designed.

While scalable computers provide a factor of 5-8 more peak
announced performance, or PAP (W~rl ton"~)) and performance/price as
compared with traditional supercomputers, their position as a "main line"
computer structure is by no means assured. For example, while parallel
programs with little coupling among the computational threads approach
PAP for all computers, the Cray C90 supercomputer provided both the
greatest performance and best performancelprice for a mix of computa-
tional fluid dynamics apps characterized by the NAS benchmarks, causing
the CFD computational scientists to warn (Bailey et al.(ll)):

"Some scientists have suggested that the answer to obtaining high performance
rates on highly parallel computers is to substitute alternative algorithms that
have lower inter processor communication requirements. However, it has been
the experience of the scientists in our research group that a certain amount of
long-distance communication is unavoidable for these types of applications.
Alternative algorithms that have higher computation rates usually require more
iterations to converge to a solution and thus require more overall run time.
Clearly it is pointless to employ numerically ineficient algorithms merely to
exhibit artificially high performance rates on a particular parallel architecture
(Bailey"2')."

Scalable , Parallel Computers: Alternatives, Issues, and Challenges 7

Whether ECL supercomputers should "cost" so much more than
CMOS microprocessors is unclear, but based on 20% manufacturing
learning curves,* a product with 512 times the unit volume (say 50 K
versus 100 unitslyear) costs one-eighth as much. Furthermore, the design
cost for a vector processor is high for a very low volume computer. This
helps account for the difference in price per PAP of the two computers. On
the other hand, ARPA, as part of the High Performance Computer and
Communications (HPCC) program, has provided "massive funding" equal
to the market's annual revenues over the last decade to "State Computer
Companies3" for development and mandated purchases without
benchmarking or acceptance testing. Funding this small, overcrowded
computer market has distorted cost structures, creating both a weakened
supercomputer industry and poor, unprofitable "State" ventures. Still,
hardware design is small in comparison to system software costs. Custom
and specific market apps are the true "Achilles Heel" of massive parallelism.
Apps costs dwarf design, purchase, and operational costs.

Viability of computers, i.e., commercial success, has historically
favored generality, including software compatibility among a variety of
different sized hardware platforms over a long time period, ability to
handle a variety of job sizes, application types, degree of parallelism, and
mix of computational resources (processing, primary and secondary
memory, network and human interface communications, etc.) Not every
scalable computer formed by interconnecting processor-memory pairs
is equally general, or able to work on a variety of application types:
commercial, doing batch processing, and database for decision support and
transaction processing; real-time, such as communications; and
technical, operating on floating-point data that usually require large files,
interactivity, and visualization. The evolution to scalable computers will
be defined and limited by one factor, ease of programming; this in turn is
influenced by the degree of granularity each structure can achieve for
parallel apps. As a minimum condition for viability, distributed computers
must run existing supercomputer apps competitively. The lesson of poor
scalar capability on the CDC Star, that begot the CDC 205, that begot the
ETA 11 is an important one for scalable computers: in order to be a viable
challenger, the challenger must completely cover the incumbent.

W ~ r l t o n " ~ ' accurately describes massive parallelism as a clear example
of the "bandwagon effect" where we make the biggest mistakes in manag-
ing technology. A bandwagon is "a propaganda device by which the

For each doubling of the number of units produced, the cost of the units is reduced by 20%.
' Cray Research T3D, Intel iPSC2, and Paragon. Teracomputer. Thinking Machines CM1, 2,

200. and CM5.

8 Bell

purported acceptance of an idea, product or the like by a large number of
people is claimed in order to win further public acceptance." The massively
parallel bandwagon is drawn by: vendors, computer science researchers,
and bureaucrats who gain power by increased budgets to dole out.
Innovators and early adopters are the riders. The bandwagon's four flat
tires are caused by the lack of: systems software, skilled programmers,
guideposts (heuristics about design and use), and parallelizable applica-
tions.

Independent of supercomputers and massive parallelism, most techni-
cal computing is carried out on high volume PCs and workstations with 20
and 0.6 million units delivered in 1992. By 1995, if each workstation
delivers 100 M f l o p ~ , ~ then 1 million workstations will provide 100 teraflops
of power, and a large installation of 10,000 workstations would provide a
PAP of one teraflop. For example, Nakanishi, Rego, and Vaidy-Sunderam
were the cost-effective winner of the 1992 Gordon Bell Prize (Karp et
~ 1 . " ~ ') using 192 workstations to solve to solve a single problem in parallel.
This potential power, at no extra cost, argues that R&Ds' greatest payoff
is using workstations in parallel, enabled by high bandwidth, low
latency/low overhead switches. The HPCC program should focus on this
goal, based on standards, to make the greatest impact.

The focus of scalable computers (measured by HPCC funding) has
been on parallelism in order to deliver the greatest number of floating-
point operations. HPCCs' goal is to stimulate the design of a large
computer that can provide a peak announced performance (PAP) of one
teraflop (lo1* floating point operations per second), with the eventual goal
of applying these computers to several targeted "Grand Challenge" apps.
True supercomputers are not in the teraflops race because they are less
likely to be able to provide a PAP terilop soon enough for HPCC funders,
and have been disqualified from the race. In 1993, traditional supercom-
puters are likely to provide most of the supercomputing capacity until 1995
and probably one generation beyond (~1998) since the Real Application
Performance (RAP) for equally priced supers and scalables is equal, since
the PAP-to-RAP ratio has been a factor of 5-8 worse for scalables.

The paper will first give a taxonomy of scalable computers and a com-
parison of their strength and weakness. The next section presents a descrip-
tion of various functions that future scalables must handle together with
how the mC will converge to include the mP. Key benchmarks and
machine parameters are provided in order to order to evaluate the alter-
natives. The final section examines the design issues in future scalables.

Leading edge workstations will provide 400-800 Mflops.

Scalable, Parallel Computers: Alternatives, Issues, and Challenges 9

2. COMPUTER SPACE TAXONOMY AND SCALABLE
COMPUTERS

A computer space taxonomy given in Fig. 2 will be used to provide a
perspective on the evolution and challenges of building parallel computers.
Uniprocessors will be described as components for scalable computers. The
MasPar SIMD is given, and while it does not provide the peak power or
a great scaling range of a supercomputer, it is important as measured by
performance, performance/cost, mean time before answers (mtba) and is an
alternative "server" for massively parallel processing.

MIMD computers are the focus of the paper because they are scalable
and offer the greatest opportunity for exploiting parallelism of all kinds
from multiple jobs to a single job. Four dimensions have been used to
structure the MIMD taxonomy:

1. multiprocessor (mP) versus multicomputer (mC) forms the first
branch;

Single Sin e data stream:
,instruction 71 RlSC SPARC, RSWm, PA-RISC. UPS,

Superscalar a VLIW nrsc.vo*nron

streams:
Digital Signal Processors Am, TI, etc.

SISD 6 SIMD
Multi-threaded n , instmction StfeamS

Multiple datastreams: vector tray 1

SiMD SIMD, massive data CMl-Xml, Maspar 2

Cacheonly KSR 1
Non-unlform.

Memory coherent (small cache)
ConvaxSCI, Cmy T3D7, DASH

Shared memory No cache BEN Butteffly, Cedar, Cm'

access. Limit& Supers & mainframes Cmy, Fbyitw,
~ H i t a ~ h i , IBM, NEC

~nstruction I Bus multi DEC, Encore, Seqmt.
Sequoia, SGI, Stratus, SUN, .PC.

streams:
b r d

Central 6 w I Finegrained smC COSMIC

Mediumgrain smC
IBM Intel Pemgon, Wlko CS-2, NCUBE

Inhomogeneous smc Fulltw, CM5
medium gain

10 W O M

LAN-connected workstations & PCS

paral&lism
DEC, HP, IBM, SGI, SUN, etC.

Fig. 2. Computer taxonomy showing parallel and scalable structures.

Bell

2. scalability determines the second branch, note that every mC
should be scalable, subject to switch and distributability limita-
tions; Uniformity of memory access could be an alternative
characterization of the dimension.

3. distributability inter-node latency, covering the range: backpanel,
room (1 p sec), building, campus (10-100 p sec), and wide area
(milliseconds); This dimension affects apps granularity.

4. homogeneity (symmetry) of nodes and the need of, or coupling to,
host processors.

A final attribute, ease or likelihood of evolvabiliry is critical, albeit
difficult to assess. Every computer has some "bottleneck" such as 110,
communications or its interconnection network that is difficult to increase
from generation to generation.

Distributability determines latency and whether a fully computer can
be applied to a single workload or problem. While LAN-based worksta-
tions within a campus can potentially provide enormous power, it is
unlikely that a collection of computers acting on a single workload will be
distributed outside of a building because of long latencies (milliseconds),
low bandwidth (1 Mbytelsec), and high message overhead (1 millisecond).
The human organizational aspects usually confine or associate a cluster of
computers with a group. Thus, the latency of a single system is required to
be only a few microseconds in order to provide medium grain parallelism
(< 1000 instructions per computational thread). For efficient operation
using 100 Mflops/sec microprocessors and task-to-task communication
overhead of 10 psec., relatively large grain problems (i.e., program threads
that carry out at least 1000 operations) are required in order to obtain
half-peak performance of a single node. Table I shows the distribution and

Table 1. 1995 Distributed Scalable Computers Distance and
Latency Characteristics

Board Cabinet Room Building Campus Continental

distance (m) 0.5 3 30 300 3 Km 10,000 Km
delay (P) 0.01 0.1 <1 6-10 &I00 200 ms
LAN bandwidths . 10-100 Mbit
link bandwidths . . . 100 Mbytes-1 GByte Gbit 1.5422 Mbit
ATM bandwidth . , , ,155422 Mbit
m P & smP . . . multis Cray, KSP ? ?? ???
smC fine grain Meiko, Paragon, TMC . . . workstation-based

Scalable, Parallel Computers: Alternatives, issues, and Challenges 1:

latency characteristics that next generation scalable computers could
achieve. Note that high bandwidth network switches can provide the
switching characteristics of 1992 generation multicomputers, while 1995
generation microprocessors will improve by a factor of 2-4.

2.1. Single Instruction Streams

The SISD alternatives are shown at the top of the taxonomy, and
include the range of CISC to very long instruction word processors. While
conventional processors are important, the average amount of parallelism
is one instruction per clock tick in the early 1990s, but could approach four
by 2000 if longer instruction word architectures and parallel interpretation
of a single instruction stream become more prevalent, and higher
bandwidth memories are available. The extra-long instruction word pro-
cessors can be viewed as a RISC or microprogrammed vector processor;
various portions of the instruction word control what is fundamentally the
address and data registers of a vector processor. Clearly, research
challenges exist in architectures and compilers to increase parallelism for a
single processor. As architectures become more complex, processor
implementation times increase, making coarser grain scalable computers
based on simple microprocessors a more attractive alternative.

The multi-threaded processor provides the best solution to hide longer
latency inherent in the memory hierarchy and for scalable distributed
memory computers. The multi-threaded processor appears as a unipro-
cessor, since one processor interprets several, independent instructionldata
streams as a multiprocessor. This structure also appears as a multipro-
cessor. Tera, is building a large mP consisting of many, multi-threaded
mPs that interconnect to many memories through a large, central cross-
point switch. In this fashion, the apparent access time for a processor can
be reduced to a single clock. Caltech's Mosiac-C and other research
projects are based on multi-threaded processors.

2.1. I . "Killer" CMOS Microprocessors are the Basis of Scalable
Computers

Progress toward the affordable teraflop using "killer" CMOS micros is
determined by advances in microprocessor speed. The projection (Bell''*')
that microprocessors would improve at a 60% per year rate following
Moore's Law, providing a quadrupling of performance each three years,
still appears to be possible (Bell'')). Since clock speed improves at 25 % per
year (a doubling in 3 years), the additional speed comes from architecture
(e.g., superscalar, wider words, cache memories, and vector processing).

12 Bell

The leading edge microprocessors described at the 1992 International
Solid State Circuits Conference included a microprocessor based on
Digital's Alpha architecture with a 150 or 200 Mhz clock rate and the
Fujitsu 108 Mflop vector processor chip used in Meiko's CS 2. The most
important improvement to enhance parallelism is the 64-bit address in
order that a computer can have a global address space. By 1995, using
64-bit addresses, the ease of addressing and lack of global address
limitations of multicomputers can be overcome.

In 1995, $20,000 microprocessors with peak speeds of 4 0 0 0 Mflops
would provide 20,00&40,000 flops/$ or 4-8 times greater peak perfor-
mance/$ than in 1992. Table I1 shows the evolution of various performance
metrics. At 60% yearly increases, a teraflop will be reached in 1998.

One of the important arguments for a MIMD computer is that it is
based on a standard, high volume CMOS microprocessor. Only Convex, to
use HPs PA RISC operating system, and Meiko using SPARC, Fujitsu
Vector processor, and Solaris, use standard microprocessors and software
such that apps run without recompilation. The ability to create the leading
edge microprocessor is not held with a single manufacturer. MIPS
introduced the first and fastest commercial RISC micro in 1985. Over
time the speed lead shifted to IBM, HP, and DEC.

2.1.2. S IMD: Vector and Data Parallel

The SIMD vector processor is the core of the supercomputer and used
for floating-point intense apps including graphics transformations. Vector
processors have been largely ignored for study or use by the computer
science community. A vector processor derives its PAP from several
sources:

Table II. "Killer" CMOS Microprocessor and Supercomputer Clock
and Performance Evolution#

Clock SPEC Linpack Lapeak LFK(.hm) Pk
Micro Year (Mhz) (SPECmarks) (Mflops)

VAX780 1978.2 5* 1 0.15 0.16 1
Fujistu-VP 1992.4 50 >50 95 12.5 108
HP PA 1992.2 100 138 56 67 - 200
1995est. 1995 200400 300 400-800
2000est. 2000 3W500
2000 est. 2000 1000 (supercomputer clock, using custon bipolar or GaAs chips)

-- - -

" CISC architecture. A comparable RISC architecture would operate at approx. 2 Mhz. 1995
designers at DEC, HP, SGI, and SUN; 2000 consensus at IEEE Computer Elements
Workshop, Phoenix, January 1993.

Sca:ab!e, Para!le! Computers: Alternatives, Issues, and Challenges 13

1. single instructions specify operations on 16 vector registers each
with 32-128 elements; In addition to load-store, and operations on
vector registers; a vector architecture operates on data that is
gathered from memory via pointers held in a vector register,
allowing it to operate on sparse data and sets of data in parallel.

2. the registers are fundamentally a program controlled cache of
typically 16, 64 elements (8 Kbytes) that permits a program to
exploit locality;

3. instructions are both overlapped and chained together for parallel
and pipelined execution;

5. vector processors have high bandwidths to load/store registers
from/to memory.

Supercomputers will be described next as limited scalability MIMDs.
The "array," or massively data parallel SIMD provides outstanding

performance for highly data parallel apps including SPMD by using 1 K to
16K processing elements. Thinking Machines abandoned the SIMD
architecture because of its inability to handle sequential tasks, and limited
multiprogramming capability. A powerful SIMD is simply a server for data
parallel apps. Few apps are only data parallel.

2.1.2.1. MasPar' MP-2 . MP-2 is a cost-effective computer with a
price range of a $100,000 to $1.5 million using the massive SIMD formula
and 1 K to 16 K processing elements. In order to get parallelism, proces-
sing elements controlled by a single instruction are placed with distributed
memory. Data is moved among the processing elements through a high
speed switching network. MP-2 has a high bandwidth memory that can
access 2.5 words of memory for each floating-point operation. The MP-2
SIMD has several advantages over its MIMD counterparts: since only one
instruction is executed at a time, it is inherently fine grain and syn-
chronized, permitting SPMD programming; the fast, low-latency network
interconnecting the processing nodes means that inter-node communication
delays are small, such that memory can almost be treated as centralized; it
has a fast I/O system for disks and real time data, such as video or radar
data.

2.2. Multiple Instruction Streams: Multicomputers

2.2.1. Workstations and other Distributed, Scalable Multicomputers

Since 1975 Tandem has sold clusters of a few (16) computers for
redundancy and increased capacity; DEC introduced VAX clusters in 1982

14 Bell

with the additional function of providing access to shared disk servers and
allowing each of the computers to operate in a diskless fast LAN-connected
environment. LAN connected workstations are the predominant form of
scalable computers since they scale over a range of a few dozen for a single
work group to several thousand for a building and campus. Workstations
are the purest and simplest computer structure able to exploit micro-
processors since they contain little more than a processor, memory, frame
buffer for the CRT, network connection, and disk. Furthermore, their
CRTs solve a significant part of the I/O problem. A given workstation or
server node (usually just a workstation without a CRT, but with large
memory and a large collection of disks) can also become the basic
component of the IBM multicomputers, for example.

Lawrence Livermore National Laboratory (LLNL) made the observa-
tion that it spends about three times as much on workstations that are only
15 % utilized, as it does on supercomputers. By 1995, microprocessor based
workstations with a PAP of 500 Mflops, (25,000 flops per dollar) are
10 times the projected cost-effectiveness of a super. This would mean that
inherent in its spending, a lab would have 25 times more unused peak
power in its workstations than it has in its central supercomputer or
specialized massively parallel computer. Note, the workstations deliver five
times the power of the super during the 15% of the time they are being
utilized.

In 1993, the inhibitor to using workstations as a scalable multicom-
puter (smC) is the low bandwidth communication links that limit them to
very coarse grain apps. A process-to-process message overhead and latency
of 250-500 psec for a 100 Mflops workstation would imply grains of
computation of at least 25 K operations in order to sustain half peak app
performance. While being geographically distributed, workstations could in
principle, be brought together in a single computer room in order to reduce
switch latency to a psec just like specialized multicomputers. In a central
facility, encoded video could be sent to terminals at each user's desk.
Alternatively, distributed workstations using ATM switches operating at
155-622 Mbits/sec (2C80 MB/sec) with well designed communications
interfaces would have latency, bandwidth, and communication overhead
comparable to multicomputers, e.g., CM5. Centralized workstations would
be advantageous in terms of power, cost-effectiveness, and administration
compared with LAN connected workstations and coarse grain multi-
computers. However, unlike traditional timeshared facilities, processors
must be dedicated to individuals to provide guaranteed service. With the
arrival of HDTV, low cost video can be distributed directly to the desktop,
and as a by-product, users would have video conferencing.

In 1993 and 1994, the Cornell Theory Center will use IBM's scalable

Scalable. Parallel Computers: Alternatives, Issues, and Challenges 15

parallel systems that will provide 8 and 125 Gigaflops using 64, 125 Mflops
and 512, 250 Mflops RS 6000 workstations. Up to 1 K workstations can be
interconnected using IBM's high speed, low-latency switch to provide a
scalable, multicomputer.

2.2.2. Medium Grain, Scalable Multicomputers

Two types of smCs will be described:

1. homogeneous or symmetric smCs where every node is under
control of the same operating system and can be used for any
function, e.g. IBM switch-connected workstations, Intel Paragon,
Meiko CS-2, and NCUBE; and

2. host-based inhomogeneous smCs where an array of computers
operate under control of a host i.e. Thinking Machines' CM5, and
Fujitsu's VPP500.

The Intel Paragon and Thinking Machines CM5 are described briefly.
The Meiko CS-2 is given in more detail.

2.2.2.1. Intel Paragon. Intel Paragon is a homogeneous multicom-
puter with up to 1 K nodes interconnected by a 2D mesh. A given node
currently consists of i860 microprocessors5: one carries out computation
operating at a 75 Mflops peak rate and a second is to handle communication.
Memory is only 16 Mbytes. The message passing processor and the 2D
mesh topology provides communication at 200 Mbyteslsec. The mesh
provides primitives for synchronization and broadcasting.

Paragon is formed as a collection of nodes that are controlled by the
OSFl (Mach) operating system with micro kernels that support message
passing among the nodes. Each node can, in principle, be dynamically
configured to be a service processor for general purpose timesharing, or
part of a parallel processing partition, or an 110 computer because it
attaches to a particular device. Software could, in principle, allow a single
node to run a single, large program that would "borrow" physical memory
from other nodes using memory to memory paging, however, this
capability is not supported and large programs page to disk. These
characteristics of a homogeneous multicomputer illustrate its limitation,
versus a multiprocessor, for flexible resource utilization.

The Intel i860 was introduced as a desktop supercomputer, and initially sold to do graphics
processing and highly tuned applications that could carried out with small cache and
tolerate long context switching times. It has been withdrawn as a mainline computer by
Intel. Hence, evolvability is questionable.

828 2 2 I - ?

16 Be!!

Paragons support one basic forms of parallelism using a shared virtual
memory software layer and MIMD. Memory consistency is maintained on
a page basis. With MIMD, a program is optimized to provide the highest
performance within a node using i860 vector-like processing. Messages are
explicitly passed among the nodes. Each node can also operate independently
within its own virtual memory address space. Although introduced in 1991,
little benchmark, apps, or message passing rates, latency, and overhead
data are available since the computer only began to operate effectively in
late 1993.

2.2.2.2. Thinking Machines CM5. CM5 is an asymmetrical or
inhomogeneous multicomputer consisting of: 1-32 Sun server control
computers that "host" user programs and control an array of 32 to 1024
computational computers, each of which have four 32 Mflop floating point
arithmetic units and 32 or 128 Mbytes of memory; Sparc-based 110 server
nodes; and a tree-structured switch to interconnect nodes. The system is
divided into a statically assigned, independent partitions with at least 32
computational nodes managed by a control computer. Each computation
node runs a small kernel. The Sun server host and I/O computers run
variants of Sun O/S and handle networking, file system, and graphical user
interfaces and act as the "Amdahl bottleneck" for workloads with scalar,
and nonparallel tasks. Conceptually, the CM5 is an evolution of a SIMD
(CM1, CM2, CM200) with a single SPMD program residing in each com-
putation node and a main control program in the control computer. By
being inhomogeneous, independent jobs can not run in the computational
computers; thus, a CM5 perpetuates the fundamental flaw of SIMD by
being unable to process scalar, moderately parallel, and workloads effec-
tively. The CM5 is for large, data parallel batch apps.

The CM5 switch has three parts: diagnosis and re-configuration; data
message passing; and control. Control network messages include: broad-
casting (e.g., sending a scalar or vector) to all selected nodes, results recom-
bining (carrying out arithmetic and logical operations on data from each
node), and global signaling, and synchronization for controlling parallel
programs. Lin et have measured the data switch operating at between
2-10 Mbytes per second, with latencies of 7.8 or 167 psec plus data-
transmission time, and overhead times of 3.4 or 302 p sec, depending on the
message passing library. With high message passing overhead and long
latencies a computer is limited to coarse grain apps since each psec of
overhead loses the opportunity to carry out 100+ floating-point
operations. While subsequent computational nodes can evolve to higher
performance such as those provided by Meiko and greater memory size, a
next generation CM5 requires a proportional increase in the communica-

Scalab!e, Parallel Computers: Alternatives, !awesi and Challenges 17

tion network. It's unclear whether CM5s' wire limited switch can evolve as
rapidly as its microprocessor-based nodes to provide generation scalability.

2.2.2.3. Meiko CS-2. CS-2 is an exemplary medium grain multi-
computer. Meiko, founded in 1985 by the INMOS Transputer develop-
ment team, has the most experience with multicomputers, having delivered
the largest number of computers as a profitable start up. The CS-2 is
important for several reasons, and is likely to outperform other medium
grain multicomputers. Each processing element is a SPARC computer
running SUNS' standard Solaris operating system. Existing apps without
recompilation. Program compatibility is important because it determines
whether a computer has initial utility, synergy with other markets, and a
basis for evolution to parallel processing. Meiko has designed a general
purpose computer for the commercial and technical markets, depending on
which processing elements are bought, subject to multicomputer limita-
tions-ach node is independent and cannot easily share memory resour-
ces. The network design addresses these important problems: task-to-task
bandwidth, latency, and processor overhead; direct addressing of remote
node memories to load-store data; n + 1 redundancy and fault tolerance.

The CS-2 is a symmetrical (homogeneous) multicomputer with up to
1024 processing elements (a large, printed circuit board) in 4 expandable
configurations of 16, 64, 256 or 1 K elements. An element can be one of
three types: a SPARC processor and two, 100 Mflops (200 Mflops single
precision) true vector processors, a SPARC processor and 110 channels,
or four SPARC processors. A SPARC processor operating at 50 MHz
provides a peak of 150 Mips, 50 Mflops, or 80 SPECmarks. Four elements
are interconnected to form a module (a small cabinet) and modules are
interconnected using a backplane network switch. Subsequent processing
elements, CS-2, include a SPARC processor with 4 vector processors,
giving a peak of 500 Mflops.

The CS-2 network switch operates at 70 Mhz providing 100 MbytesJ
sec full-duplex using a multyi-stage network consisting of 8 x 8 cross-point
switches. The worse case path in a 256 node system requires 7 hops
introducing 1.4 psec of node-to-noide latency. The time required for a user
process to transfer 1 byte of data to or form a user process on another
node is 10 psec with 1 psec of processor overhead. The data transfer is
carried out entirely by hardware with no processor intervention once the
transfer is initiated. The latency to send and received a message is
2 x 4.3 + 1.4 psec + the message transmission time at 0.02 psec/byte with
only 2 x 0.5 p sec of lost time.

The CS-2 programming environment is determined by Solaris. The
parallel processing is carried out using both data parallel (SPMD model

18 Beii

using HPF) and multi-process programming. Higher level primitives
include a global memory model (virtual shared memory-DSM), and
various standard low level and high level application libraries.

The CS-2 commercial environment is an Oracle Parallel Server using
a parallel file server and parallel lock manager. The load balancer allocates
incoming requests for service (instances) to the database, transaction
processing, and various apps, e.g., report generation. The CS-2 exhibited
linear speed-up on Oracle apps.

2.2.2.4. Fujitsu's VPPSOO supercomputer. The VPP5OO is a
medium-coarse grain, inhomogeneous multicomputer with 7 to 222 1.5
Gflops vector supercomputer nodes, each with 256 Mbyte memories, that
connect to a Fujitsu VP2000 supercomputer. Because nodes are so power-
ful, a factor of 10-20 fewer nodes achieve the same level of performance as
a computer using CMOS micros, thus lessening the effect of Amdahl's Law.
Only 64 nodes achieve 100 Gflops. On the other hand, fast nodes require
a lower latency, lower overhead switch as compared to microprocessor
based multicomputers. The 400 Mbyteslsec, low latency cross-point switch
and interface manage process-to-process data transmission without
processor intervention. VPPs principal advantage is that it can achieve
incredibly high throughput by using a single node, thus it can be used
effectively as a workload computer that requires little or no parallelization
beyond vectorization. A 140 node VPP operated at over 100 Gflops in
1993.

2.2.3. Scalable, Fine Grained Multicomputers

The Seitz, Caltech group that invented the first Hypercube multicom-
puters and 2D routing chips used by the Paragon and DASH computers,
has been following a fine grain approach. The 500 K, transistors Mosaic-C
chip contains a 64 KB DRAM, a 16-bit 11 Mips multi-threaded processor,
and a 60 MByte/sec 2D router. Mosaic-C operates with two threads, one
for computation, and the second to control the router and memory
interface. An 8 by 8 array of chips is mounted on an 8" x 8" board. The
focus of the research is to assemble large, dense 2D and 3D arrays that
provide substantially more power and bandwidth than coarse grain multi-
computers. The fine grain aspect requires a reduction of communication
overhead by completely overlapped with execution. The latency for a
20 Byte packet to only 44 instructions for a 16 K node configuration, using
the chips no overhead, high bandwidth switch. The next generation Mosaic
has an additional thread for controlling peripherals, such as memory or
another processor, a 32-bit processor operating 40 Mips, a 128 KByte
memo, and 200 MByte/sec channels.

Scalable. Parallel Computers: Alternatives, Issues, and Challenges 19

While this approach is radical departure from off-the-shelf micro-
processors, it tailors silicon to the task. By having several threads, it will
be possible to provide various computational structures including multi-
processors that require substantial computation for memory management.
Mosaic will be successful, and most likely change the direction of multi-
computers. One of the first applications for the Mosaic is an AT? switch
that uses nodes to interface the communication lines and to route the
packets among the nodes.

A similar effort at MIT, by Daly, formerly of Caltech, on the
J-Machine with 64 K nodes provides further impetus for the fine grain,
large numbers of nodes approach. nCUBE also follows this line.

2.3. Multiple Instruction Streams: Multiprocessors

The author believes that multiprocessors are the main line of computer
systems development (Bell'')) based on history and because they offer the
most flexible use of resources by providing all the resources in a single,
fungible, pool. Furthermore, 1992 multicomputers operate as limited
multiprocessors with limited capability, distributed shared memory DSM
software. The following section will elaborate this reasoning about this
evolution.

2.3.1. Traditional Supercomputers and Limited-Scalability
Multiprocessors

Two alternative switches, the bus and cross-point switch, are used to
build limited-scalability multiprocessors. A single bus is the simplest way to
build a multiple microprocessor or "multi" With the evolution of
microprocessors to support "multis" any computer from the simplest PC
becomes a multiprocessor. The bus that's formed by printed wiring limits
size scalability to roughly 30 and generation scalability. Multis "work"
because each processor has a cache that serves three functions: it provides
fast memory for the local processor, assuming the data or instructions are
in the cache; by being in the cache, the switch (bus) is not required, and
other processors may use it; and finally, as data is moved between the
processor and memory, each processor can observe or "snoop" on the bus
transactions in order to invalidate any data that the cache may hold,
thereby providing a coherent shared memory. Cache size, data-ownership,
and protocols to invalidate and control data-ownership in limited
scalability multiprocessors are relatively well-understood (Hennessy and
Patterson'")). In 1993, nearly all microprocessors are capable of being
components for a "multi." All manufacturers offer "multis"!

20 Bell

In the future, the bus could be replaced by a ring, providing the essen-
tial features of a bus, but scales automatically with generation, i.e. clock
speed since each processor only drives a neighbor. Although the bandwidth
for a "ring mufti' is fixed by the number of bits that flow through a given
node, the number of nodes can be increased arbitrarily, but at the expense
of increased latency. Increased latency is an unfortunate by-product of
scalability that has to be dealt with in operating systems, compilers, and
apps-hence, the ring could be a "natural" structure.

"True" supercomputers from Cray Research, Fujitsu, Hitachi, IBM
(for accelerating mainframes) and NEC use the Cray design formula: ECL
circuits and dense packaging technology to reduce size, use the fastest
clock; one or more pipelined vector units with each processor provide peak
floating-point processing for FORTRAN programs; and multiple vector
processors communicate via a switch to a common, shared memory to
handle large workloads and parallel processing. Because of the dense physi-
cal packaging of high power chips and relatively low density of the 100,000
gate ECL chips, the cost per operation for a supercomputer is roughly
5W1000 peak flops/$ or 4-10 times greater than simply packaged,
2 million transistors CMOS microprocessors used in workstations (5000
peak flop/$). Future supers may evolve to GaAs or bipolar circuits with
better performance and power dissipation characteristics.

Mainframes and supercomputers use high-bandwidth, cross-points
and multi-stage networks (the "dance hall" structure) to interconnect
processors and memories (Fig. 3). The high cost switch, back panel, and

Fig. 3. Multiple vector processor
supercomputers (c.g. Cray, IBM,
Fujifsu, Hirachi, NEC).

Scalable, Parallel Computers: Alternatives, Issues, and Challenges 21

power supplies for the processor and memory increase the fixed cost,
thereby limiting the scaling range to 4-6. Cray offers three models with
varying ranges of expandability in its C90 line to cover 1-16 processors.
Increasing the switch bandwidth increases the latency between processor
and memory which in turn reduces the scalar performance, making a
computer less general purpose. For example, the memory access time has
remained relatively constant at about 100 nanoseconds over three genera-
tions (XMP, YMP, and C90), even though the cycle time has been halved
to 4.1 ns. In order to sustain the pipelined execution of independent, worst
case statements such as A i = B,+ Ck that compute one floating-point
operations per second (flops), three memory accesses (aps) are second
required. The switch, together with the market size for a computer costing
over $30M, limits how large a super can be.

Mainframes are essentially supercomputers without vector units,
although IBM's mainframes with 1-6 processors do have vector processor
attachment options. Since mainframes have lower latency and higher scalar
performance than supers, they are "more" general. Mainframes require less
bandwidth compared to supers, and maintain memory coherence using
processors with caches and directories.

2.3.2. Non-Uniform Memory Access (NUMA), Memory Coherent,
Scalable Multiprocessors

The taxonomy and evolutionary time line show (Figs. 2 and 4) the
scalable mP evolution starting with the CMU Cm* (~1975). This first
scalable computer was constructed as a hierarchy of buses that inter-
connected computer modules formed from DEC LSI-11 microprocessor
and memory nodes. Since the computer nodes had no caches, memory
coherence was maintained automatically because only copy of a memory
existed. The BBN Butterfly (~1985) computer nodes were interconnected
using a high speed switch enabling a processor to access data in any node
via the switch. Both computers reverted to static allocation of programs
that communicating by passing messages. The CEDAR project at the
University of Illinois on CEDAR, based on a distributed hierarchy of
Alliant vector multiprocessors, showed that an efficient compiler could
automatically control data migration. These multiprocessors had a single
global address space and nonuniform memory access architecture
(NUMA), where remote nodes required several times longer access times
than local nodes. The common finding was the difficulty of statistically
allocating programs and memory to nodes, and communicating results
among computational threads.

The "multis" structure appeared to be a solution to the static binding

limited
scalability: mP,
uniform
memory access -u 0 muni

\ . \
\

~ l n f n m s a 6

scalable, mP: smP,
florruniform memory access

some

/ ' KSR1.

a d r r ('w CR~MW?,
m * ~ . g n P

/ B n h ..a
WY. DASH+

experimental,
scalable,
multicomputer: smC,
non uniform memory
access

networked
workstations:
smC

Fig. 4. Evolution and projected evolution of scalable multiprocessors, multicomputers and
workstations.

problem. The small processor cache could provide locality to hide latency
caused by accessing remote memories inherent in a non-uniform memory
access computer. Stanford's DASH is the first scalable computer to use the
cache in this fashion.

2.3.2.1. The Stanford DASH. DASH (Henne~sy"~'; Lenoski et
U I . (~ ~ ') has up to 64 processors arranged in a grid of 4 x 4 nodes inter-
connected by Caltech's routing chips. Each node consists of a four
processor Silicon Graphics multiprocessor. The access time for various
accesses is roughly 1 (local cache), 10 (second level cache), 20 (local
memory), 60 (remote memory), and 80 (remote memory with data located
in another module) clock cycles depending on the location of the data.

DASH demonstrated linear speedups for a wide range of algorithms,
and is used for compiler research, including positing the SPLASH parallel
benchmark suite (Singh et ~1 . '~ ' ') . Some apps ran at over 100 Mflops for 16
processors, roughly equal to a four vector processor system with 112 the
PAP.

Scalable. Parallel Computers: Alternatives, Issues, and Challenges 23

2.3.2.2. The IEEE Scalable Coherent Interface (SCI). SCI is a
protocol and IEEE standard to interconnect computers to operate as a
single, shared memory multiprocessor. The SCI communication protocol
can be carried on a ring, like KSR, or through a central switch. Pointers
in each memory track data as copies migrate among nodes, causjng much
traflic to maintain coherence when a large amount of sharing occurs.
Although the standard is well documented and interface chips are
available, the SCI scheme has yet to be implemented in a system.

2.3.2.3. Convex MPP. The Convex MPP will be introduced in 1994
using a fast switch to interconnected hundreds of off-the-shelf HP PA RISC
processors. Convex will use some form of the SCI work to interconnect
nodes and maintain memory coherence. The design has four goals: provide
a fast switch such that the nodes appear to have a single memory with the
lowest possible inter-node memory latency; to be able to run dusty deck
FORTRAN 77 programs without modification through automatic paral-
lelization-to not force users to convert programs to HPF; offer a scalable
system that is no more than 15 % more expensive than comparably priced
workstations; and to use unmodified, single-threaded application programs
that run on the HP RISC. In 1993, an HP RISC processor provides
150 SPECmarks of performance. By 1995, the leading edge microprocessors
such as HPs' RISC are expected to follow Moore's Law6 and deliver
300-500 SPECmarks7 and peak Megaflops.

2.3.3. The Cache-Only Architecture: Evolution from No Cache and
Some Cache

It should be clear from the evolution of scalable computers, that the
greatest problem in a distributed memory computer, independent of
whether it is an mP or mC, is the need to constantly move data and
programs in the distributed memory to correspond to the static and
dynamic loading of a workload or a particular job. Also, to be able to use
any collection of resources (i.e., processors, memory, or 110) for a single
job or workload. Ideally, the entire distributed memory is viewed as a
single virtual memory.

Moore's Law states that semiconductor density doubles every 1.5 years, or 60% yearly
improvment. For RISC microprocessors, it has been observed that performance has also
increased at 60% per year.

' A benchmark consisting of two parts that measure integer and floating-point performance.
A Specmark is measured in terms of the performance of the first VAX 11/780 computer that
was introduced in 1978!

24 Bell

For example, High Performance FORTRAN introduces directives that
require a user to control locality by causing just-in-time, pipelined move-
ment of data from node-to-node for subsequent use. These primitives force
apps programmers to become machine language coders who are required
to understand machine idiosyncrasies and express pipelining in FORTRAN
syntax. While explicit mechanisms to pipeline data to a remote node for
processing are better dealt with by compiler technology, they provide an
excellent motivation for a programming model based on a single, shared
memory. In order to efficiently use multicomputers, it may be necessary
for programmers to manage the allocation of work using a message
passing programming model. Intel, Meiko, and nCUBE mainly support
this programming style.

The situation of programmer-managed memory is similar to the situa-
tion in 1960. The belief was that programmers, and eventually compilers or
their run time systems should be able to move data around in an "overlay"
fashion between a secondary and primary memory in order to reuse
memory and have data in the right place at the right time. This condition
stimulated the invention of Atlas's one level store and virtual memory that
allowed a smaller physical memory to hold just the active portion of a
user's much larger virtual memory. The Atlas paging mechanism also
provided for sharing of programs and data, and efficient multi-
programming. Even with large physical memories, virtual memories are
still much larger than physical memories as they hold files and the operat-
ing system. A paged memory is important for allocating memory among
jobs. However, the most important part of virtual memory is locality as
embodied in the concept of the working sets (Denning'22') and hardware
managed caches. These aspects of virtual memory and caches are what the
all cache architecture uses to "cache" the active portion of a program and
automatically exploit temporal and spatial locality.

'Figure 5 shows the structure of a distributed shared memory computer
and the sharing and replication of data among various nodes. The cache
only architecture, also known as COMA, is a generalization of virtual
memory, and essential for a distributed memory architecture. Like virtual
memory, it first eliminates the notion of a physical memory location that
a program uses to address data items; the distributed physical memory is
a place(s) to hold (map) virtual memory locations. When only a single
physical memory is used to map a virtual memory (usually held on disk),
a coherent view of memory is easily maintained. However, when multiple
copies of the virtual memory are replicated, several problems arise:
maintaining a single view for all processors (like multiprocessor caches),
and moving data among the various nodes that require access.

Cache only, a natural extension of virtual memory and multiprocessor

Scalable, Parallel Computers: Alternatives, Issues, and Challenges 25

caching, first permits a single data item to exist in more than one location
at a time. Once a memory page is brought from secondary memory to one
of the nodes, hardware and software automatically move, replicate, and
control data flow with other nodes on an element basis e.g. the KSR 1
moves subpages of 128 bytes. This element by element movement is not

Distributed processor, processor cache,
and primary memory (all cache memory)
nodes

All Cache Memory Systemvirtual
(primary memory Memow
structure) (on disk structure) - sub-page 128 bytes I I page or segment

Fig. 5. Structure of a distributed shared memory "all cache" architecture.

76 -- Bell

possible without fundamental changes to the hardware and software paging
mechanisms. A conventional paged virtual memory mechanism moves
pages between one physical primary and one secondary memory, whereas
the cache only architecture moves smaller elements among the distributed
nodes in response to each processor's needs. Thus, unlike an mP with some
cache, e.g., DASH, the memory of a cache only computer node will
automatically and gradually be replaced on an element by element basis as
needed in order to be associated with the processor.

Gupta et show the cache only architecture outperforms the
DASH architecture, and describe a variant of the KSR 1 hierarchical
multiprocessor based on interconnecting processor-memory pairs through
a central switch. Hager~en'*~' gives an excellent description, motivation,
and simulated performance characteristics of the cache only architecture,
together with a description of the experimental Data Diffusion Machine
being built at the Swedish Institute of Computer Science.

2.3.3.7. KendaN Square Research (KSR). The KSR 2 is a size and
generation scalable, shared memory multiprocessor computer (Frank et
U I . (~ ~) ; KSR(26)). It is formed as a hierarchy of interconnected "ring multis."
Scalability is achieved by connecting 32 processors to form a "ring multi"
operating at one gigabyte/second (128 Million accesses per second). This
current generation ring has roughly the capacity of a typical cross-point
switch found in a supercomputer room that interconnects 8-16,
100 Mbyteslsec HIPPI channels. The KSR 2 uses a 2 level hierarchy to
interconnect 34 rings (1088 processors). The ring design supports an
arbitrary number of levels, permitting computers with 1000s of processors
to be built.

Each node is comprised of a primary cache, acting as what would
normally be a 32 Mbyte primary memory, and a 64-bit superscalar pro-
cessor with roughly the same performance as an IBM RS6000 operating at
the same clock-rate. The superscalar processors containing 64 floating
point and 32 fixed point registers of 64 bits are designed for both scalar
and vector operation. Sub-pages of 128 bytes, corresponding to the size of
all cache elements can be prefetched at one time. A processor also has a
0.5 Mbyte sub-cache supplying 40 Million accesses per second to the pro-
cessor. The processor, sans caches, contains 3.9 million transistors in 6
types of 12 custom chips. Three-quarters of each processor consists of the
Search Engine responsible for migrating data elements to and from other
nodes, maintaining memory coherence throughout the system using
distributed directories, and ring control.

The KSR 2 is significant because it provides: size (including 110) and
generation scalable smP where every node is identical; an efficient environ-
ment for both arbitrary workloads (from transaction processing to

Scalable. Parallel Computers: Alternatives, Issues, and Challenges 27

timesharing and batch) and sequential to parallel processing through a
large, hardware supported address space with an unlimited number of pro-
cessors; a strictly sequential consistent programming model; and dynamic
management of memory through hardware migration and replication of
data throughout the distributed, processor-memory nodes using its
ALL CACHE'^ mechanism.

With sequential consistency, every processor returns the latest value of
a written value, and results of an execution on multiple processors appear
as some interleaving of operations of individual nodes when executed on a
multi-threaded machine. With ALLCACHETM, an address becomes a
name and this name automatically migrates throughout the system and is
associated with a processor in a cache-like fashion as needed. Copies of a
given cell are made by the hardware and sent to other nodes to reduce
access time. A processor can pre-fetch data into a local cache and post-
store data for other cells. The hardware is designed to exploit spatial and
temporal locality. For example, in the SPMD programming model, copies
of the program move dynamically and are cached in each of the operating
node's primary and processor caches. Data such as elements of a matrix
move t o the nodes as required simply by accessing the data, and the
processor has instructions that pre-fetch data to the processor's registers.
When a processor writes to an address, all cells are updated and memory
coherence is maintained. Automatic data movement occurs in sub-page
elements of 128 bytes (16 words) of its 16 K byte pages.

Every known form of parallelism is supported by KSR's Mach-based
operating system. Multiple users may run multiple sessions, comprising
multiple apps, comprising multiple processes (each with independent
address spaces), each of which may comprise multiple threads of control
running simultaneously sharing a common address space.

KSR also provides a commercial programming environment for
transaction processing that accesses relational databases in parallel
with unlimited scalability, as an alternative to multicomputers formed from
multiprocessor mainframes. A 1 K node system provides almost thirty
times more processing power, primary memory, I/O bandwidth, and mass
storage capacity than a multiprocessor mainframe. The 32 and 320 node
systems are projected to deliver over 1000 and 10,000 transactions per
second, respectively, giving it five to ten times the throughput of the most
Powerful multiprocessor mainframe.

2.4. T h e Al te rna t ives a n d Trade-off

Table 111 lists the alternative structures together with their advantages
and limitations.

28 Be::

Table Ill. Computer Alternatives, Advantages and Limitations

Which Grain Advantages Problems

SIMD MasPor f //dusty decks, vector apps scalability, scalar,
non-//

Supers Crux, Fujitsu, ... NEC f > scalar, workload, vector apps, PAP, perf/$, PR
existing apps, understanding, user base

smP.all cache KSR 1 m PAP, perf/$, >workload fine grain apps
smP Cray T3D?, Conuex f-m PAP, perf/$, workload entry cost
smP.multi-thread Mosaic C f >PAP, >perf/$ poor scalar fp,

workload
smC.mt (Tera) f PAP, perf/$, fast mPsimulator no experience

smC.homogeneous* m-c PAP, per/$

smC.inhomogeneous* m-c PAP, perf/$

doesn't exist
fine gr. apps,
workload
fine gr. apps, nil
workload

A SIMD is perhaps the easiest computer to use since programs have
a single thread of control. A SIMD can take advantage of existing highly
parallel, e.g., two-dimensional arrays for images, and is a highly tuned
server for massive data parallelism. While such a computer could scale to
32-64, its single program, slow scalar and inability to handle a general
workload, limits it to a highly parallel apps server.

Supercomputers provide the highest performance for apps that are not
fully (i.e., ~ 9 9 % parallel) including scalar problems. In 1993, users have
over 15 years of experience with five generations of vector supercomputers,
algorithms, and libraries of highly turned apps. The supercomputer lacks
having the highest PAP by a factor of 8. The Public Relations budget for
supercomputers is small in comparison to the hype associated with HPCC
and massive parallelism with 1000s of processors, 100s of Gflops, and the
race to be first with a PAP of one teraflop. In 1993, based on a look at
delivered performance, measured in flops or solutions per month, there is
no alternative to a super for a wide range of workloads and apps. A C90
processor delivers a harmonic mean of 64 Mflops on Livermore's
FORTRAN Kernels (LFKhm) for a total workload capability of over one
Gflops.

The KSR 2 smP has a PAP of 1088 x 80, or 87 Gflops. This is 5.4
times the PAP of a C90, and is a factor of 6 times more cost-effective based
on PAP. A KSR 2 processor delivers 13 Mflops, or one-fifth a C90
processor for LFKhm. However, the aggregate workload capacity is 14.1

Scalable, Parallel Computers: Alternatives, Issues, and Challenges 29

Gflops, or 14 times the C90 provided all 1088 processors can operate
individually on a workload. The KSR 2 appears to provide superior
performance and workload characteristics for the NAS benchmarks.

The Convex and Cray MPP multiprocessors are likely to have very
high PAP and exceptional performance/$, although no results are available
in early 1933. How well each performs for large jobs and dusty decks will
depend on how closely each is to an evolved multiprocessor that can
provide a single, large shared memory with fast inter-node communication,
at low latency and low overhead. Clearly these computers will evolve to the
all cache structure.

All of the multicomputers have very high PAP and PAP/$ because
they consist of a collection of an appropriate number of floating-point unit.
The greatest problem for multicomputers is their inability to process a
workload with varying processing (from scalar to partially parallel) and
memory greater than a single node. Inhomogeneous computers, like
SIMDs have negligible workload capacity, making them unsuitable,
general purpose computers. They are batch machines for large jobs.

Multicomputers have yet to provide uniquely high performance on a
diverse range of existing or real apps, benchmarks, or kernels beyond
matrix multiplication and linear equation solving (Linpack), despite their
high PAP and 10 year existence. For example, since 1991 Intel's Delta, a
prototype for its 1993 Paragon, has operated at Caltech to serve about 150
users. Delta's availability was 90 %, operating half time in debug mode and
half time in production mode serving a dozen and 1 4 users, respectively.
Production programs run at 1-5 Gigaflops, out of 30 Gigaflops PAP, using
a limited I/O and file system. The user load on Delta could be satisfied by
2-4 processors of a 16 processor Cray C90, and users would have been
spared the rewriting of programs. What each multicomputer appears to
provide in PAP, it loses in communication, imbalance, inadequate
secondary memory, and programming environment. The greatest loss is
that users must search for new algorithms and rewrite programs for an
experimental computer.

Networked workstations offer the greatest potential because they
already exist in an environment, and do not require additional
expenditures. In 1993, networked workstations provide inherent, very
coarse grain parallelism. However, today's workstations are inadequate for
main line parallel processing because of the high overheads and latencies of
their interconnections. These can best be characterized as very coarse grain
because the fastest networks are 100 Mbitslsecond, with message latencies
and overheads of 5W1000psec. The fact that Meiko uses SUN work-
stations and the Solaris operating system is an existence proof that

workstations can evolve to become medium grain smCs. The HPCC
program should begin to carry out the R&D to utilize our workstations,
great untapped resources.

3. EVOLUTION OF smPs, NETWORKS, AND smCs TO smPs

Multiprocessors, networked workstations, and experimental scalable
multicomputers will follow three, distinct evolutionary paths (Fig. 4). First,
the main line of super, mainframe, and minicomputers will continue to be
the multiprocessor. A major transition can only occur if limited scalability
mPs can be replaced by fully scalable mPs for a significant number of apps,
including commercial transaction processing and databases. This requires a
commitment by suppliers and users to understand and handle the latency
that scalability implies. Second, the smP will evolve to the cache-only
scalable architecture. Networked, distributed workstations will evolve to
support finer grain apps ranging from shared objects and servers, to
parallel processing as fast, low latency networks replace slow, high over-
head LANs. The payoff for this transition is immense because it allows
existing workstations to be used in parallel. Finally, the plethora of
experimental multicomputers will bifurcate to become either smPs (using
more hardware and software) or fully distributed, networked workstations.
The Caltech fine grain multicomputers provide opportunities for switches,
computer components, and parallel computing even though they are
unlikely to influence existing multicomputers in the near term.

3.1. Multiprocessor Evolution: Supercomputers, Mainframes,
and Minicomputers

In 1993, multiprocessor computers in these computer classes comprise
1.8 %, 22%, and 23 % respectively of the computer market (by $s).
Multiprocessors will evolve as follows:

1. limited scalability multiprocessors with more processors and
greater scaling range including fully scalable computers

2. bus-based multis may evolve to ring-based multis
3. next smP computers evolve to the all cache architecture, like the

KSR for efficiency

4. mainframes and supercomputers slowly transition to be an smP.
The supercomputer will be replaced slowly because it has no
inherent communication latency or overhead and has infinite

_cca!nble, Parallel Computers: Alternatives, Issues, and Challenges 31

bandwidth among processors. Convex's or Cray's MPP could be
the archetype for future supers. The scalable mainframe will be
replaced slowly, constrained because by lethargic designers and
''code museum" system software.

3.2. Workstation Evolution

In 1993, workstations and PCs, comprise 9 % and 45% of the
computer expenditures. These computers present the greatest untapped
resource for using a single set of resources and parallel processing.
Networked workstations and PCs interconnected by LANs such as
Ethernet of FDDI (100 bits/second) and providing very coarse grain
parallelism with 500-1000 psec latency and overhead are likely to follow
these evolutionary paths using:

1. faster LANs or ATM switches to provide bandwidths of 155622
Mbitslsec. Interconnecting networks using faster LANs and
switches with lower latency, lower overhead (100 psec), could
support coarse grain parallelism thereby increasing workstation
utility for a range of apps, including executing distributed, shared
objects.

2. workstation clusters. IBM is delivering their SPI multicomputer
with up to 1 K workstations, sans CRT, in 1994 using a switch
with < 10 psec overheadjatency. Meiko's CS-2 is an archetype. A
well-designed "ATM" switch, e.g., Digital Equipment Corp., and
interface provides this capability.

3. direct evolution to an smP. SGI has announced a 32-processor
mP with limited scalability. Stanford's DASH that uses SGI
workstations provides a feasible prototype for an smP.

3.3. Experimental Scalable Multicomputers for Parallel
Processing

The future of multicomputer is unclear because they are a complete
artifact of federal HPCC funding, and remain experimental with no
infrastructure or motivation for attracting standard software apps. In 1992,
they constituted 0.250% of the computer marketplace despite the fact their
funding support level has exceeded their market value for a decade. These
research funds for APRAs' State Computers constitute about 25% of
federal computer engineering and computer science research.

Chuck Seitz,'"' the inventor of the multicomputers has expressed
reservations about the viability of commercial multicomputers:

"I believe that the commercial, medium grained multicomputers aimed at ultra-
supercomputer performance have adopted a relatively unprofitable scaling
track, and are doomed to extinction. With their relatively modest number of
nodes, they may as Gordon Bell believes be displaced over the next several
years by shared memory multiprocessors. For loosely coupled computations at
which they excel, ultra-super multicomputers will, in any case, be more
economically implemented as networks of high-performance workstations
connected by high-bandwidth, local area networks such as ATOMIC.8"

I concur. Experimental, multicomputers must evolve to multipro-
cessors using hardware or hardwarelsoftware and solve the basic problems
(see Table 111) inherent in special purpose computers. These computers
offer little compared to existing very coarse grain workstations that users
already have. As described earlier, workstations interconnected by faster
LAN-based switches such as ATM or the Scalable Coherent Interface will
eliminate smC as such. The evolution of scalable multiprocessors described
above provides the template as to the motivation for main line parallel
computing evolution that will co-exist with distributed workstation
evolution.

Figure 4 shows several evolutionary paths for experimental smCs:

1. straight-forward evolution to either a scalable mC using next
generation microprocessors. This is an evolutionary path based on
improved design of 64-bit micros and lower latency, lower over-
head, higher bandwidth switches. With better nodes and much
software, the program environment may gradually approach an
smP.

2. direct transition to smP with a DSM is the most likely scenario
using 64-bit micros. The DASH distributed directory scheme
provides a prototype for this transition.

3. revolution, following the work of Seitz and Daly to a custom,
truly fine grain multicomputer that would permit much higher
density with at least an order of magnitude more processors.
Unfortunately, none of the State Computer companies are likely
to be able to afford to move very far off their evoluationary paths
because of microprocessor, software, and organizational (NIH)
constraints. To follow this potentially high payoff path would
require a substantial increase in parallelism, new software, and
perhaps more user retraining.

ATOMIC, for ATM over Mosaic, is a switch built by Danny Cohen at the University of
Southern California Information Sciences Institute (USC/ISI) from Seitz's Mosaic fine-grain,
multicomputer modules.

gcs:eb!e, Pa:a!!e! C~mputers: Alternatives, Issues, and Cha!!enges 33

4. APPLICATIONS PARALLELISM, BENCHMARKS, AND
COMPUTER CHARACTERISTICS

Before trying to understand computer performance, it is critical to
look at the various forms of parallelism that computers can and must
exploit for generality and viability. The most basic form is at the workload
level using multiprogramming where a common pool of computational
resources (processing, primary and secondary memory, networking) is
available to trade-off among a large job mix with varying degrees of
parallelization (including completely scalar operation). A computer's
resources should be fungible on an instantaneous basis in order to use any
resource for work. A workload should be processable by multi-processing
a common job queue with a common, parallelized file system. The greatest
potential parallelism is available at very coarse grain through: batch
processing and on-line report generation (analysis) against a parallelized
database time-shared, multi-programmed servers for LAN-based,
X-windows clients and arbitrarily large transaction-processing systems
using a common parallelized database and transaction apps servers for
1000s of on line users.

For peak performance of a single job, two forms of parallelism may be
required: transparent (or implicit); and explicit, multi-process parallelism
where the user is required to formulate a job in terms of both functional
and data parallelism. Ideally, a parallelizing compiler such as FORTRAN,
processes dusty decks from supercomputers in an implicit fashion. Like
supercomputer apps, such programs must be properly structured to exploit
the parallelism. To support these environments requires multiple threading
or light weight process that share a single address space. For multicom-
puters, this implies a DSM. Multiple job streams and multi-processing of
jobs that operating system mechanisms allow, using the pipes and sockets
mechanisms, provides great opportunities for parallelism. Shared memory
facilitates these mechanisms in conventional single memory computers.

Figure 6 shows the structure of a basic unit of multi-threaded com-
putation independent of whether it's run on a SIMD, multiprocessor or
multicomputer, or has distributed or shared components. The computation
starts with a sequential thread (1) that includes job scheduling and other
serial computation. A basic loop starts with supervisory scheduling (2)
following by threads of the computation (3) and inter-computer message
(4) phases of a thread. The synchronization part (5) occurs prior to
returning to scheduling the next unit of parallel work (2).

Multicomputers have networks to assist scheduling and synchroniza-
tion. Multiprocessors use various semaphores implicit in shared memory to
facilitate scheduling and synchronization. Multicomputers may provide

Geii

initiallization
& scheduling
overhead

\

thread
synchronization
overhead,

threads of parallel computation
(with inter-thread communication

....
- - -

computation

1-
(dist'd memories)

1 I
Fig. 6. Structure of multi-threaded, parallel computation

hardware, including multi-threaded processors, to transmit messages to
reduce processor overhead and allow for covering latency. Multiprocessors
take negligible time to send messages because these are just load store
instructions, but they must have pre-fetch and post-store operations to
cover the delays (latency) inherent in waiting for responses through an
intercommunication network. Furthermore, since message-passing libraries
are likely to repeatedly copy messages, using a multiprocessor that passes
pointers to messages dramatically reduces message passing overhead. Each
of these machinelapp parameters will be described here as they limit grain
size.

4.1. Benchmarks and Real Application Performance (RAP)

The benchmarking process has been a key to understanding computer
performance until the teraflop race started and PAP replaced reality as a
selection criterion. Computer performance for an installation can be
estimated by looking at various benchmarks of similar programs, and
collections of benchmarks that represent a workload (Berry et
Benchmarks can be synthetic (e.g., Dhrystones and Whetstones), kernels
that represent real code such as Livermore FORTRAN Kernels (i.e.,
Loops), NASAs' National Aerodynamic Simulation (NAS), numerical
libraries (e.g., Linpack for matrix solvers, FFT), or fuller apps such as
SPECmarks for workstations, Illinois' Perfect Club, Stanford's SPLASH,
and Los Alamos Benchmarks.

scalable, Parallel Computers: Alternatives. Issues, and Challenges 35

Livermore Loop metrics provide a range of performance indicators:
the arithmetic mean-the best case for apps (0.97 vector ops), the
arithmetic mean-optimized apps (0.89 vector ops), geometric mean-
tuned workload (0.74 vector ops), harmonic mean-untuned workload
(0.45 vector ops), and harmonic mean compiled scalar-all scalar opera-
tion (no vector ops). The NAS benchmarks (Bailey et al.(l l)) indicate the
difficulty of running benchmarks, since NAS benchmark results are only
available in late 1993, despite the fact State multicomputers have been
announced since October 199 1. Three Linpack measurements are impor-
tant: Linpack 100 x 100, Linpack 1,000 x 1000 for typical supercomputing
applications, and Linpeak (for an unconstrained sized matrix). Matrix
multiply and Linpeak benchmarks provide best case results for large,
scalable multicomputers because they can perform efficiently, given a large
matrix and enough running time.

Montry conjectures that the degree of parallelism in a program varies
with problem size and inversely with program size. This characterizes the
dilemma for running large benchmarks and existing apps. For example,
assume with modest effort on 1 % of a large program, taking 95% of the
running time, can be completely parallelized to run infinitely fast to give a
factor of 20 speed-up. It is likely that the remaining 5 % of the time and
99 % of the code size will slow down a factor of 10 because of slower scalar
operations. Overall speedup is two.

Massive multicomputers rarely run an existing supercomputer app
(i.e., dusty decks) without a new algorithm and new program including the
necessity to use a multi-process model. Thus RAP is almost impossible to
characterize. This flaw, together with the lack of understanding about app
scalability for scalable machine characteristics, guarantees a negligible app
market using existing, third party software vendors.

N o matter what measure is used to understand a computer, the only
way to understand how a computer will perform is to benchmark the com-
puter with the applications that will be used. This also measures the mean
time before answers (mtba), the most important measure of productivity
for all computers. The fastest benchmark to run on any computer is
whether a manufacture can and is willing to benchmark a program.

4.2. Metrics and Balance for Scalable Computers

Although it is dangerous to examine the basic characteristics of a
computer such as PAP, useful conclusions can be drawn by considering
machine characteristics. Some characteristics such as secondary memory
size and speed are needed simply to size whether a computer can store or
transfer data in time. Table IV shows resources estimates for several Grand

36 Be!!

Table IV . Resources, Time, and Secondary Memory for Solving Several
Grand Challenge Problems on a Computer with a PAP of 128 Gflops PAP

and RAP of 20 Gflops
- - - - - - - - - ---- - - - -

Project Tera-ops time* Mp.By Ms.By Ms/.Mp ops/By S.8mm S.Ms
- - - - - -- - - - - - - - - - - -

Global Ocean 0.1M 170d 4G 20T 5000 500K S100.K $40.M
Porous Media 1M 1700d 1T 4T 4 250K S8.M
Ductile Materials 1M - 20G 3T 150 330K

1M - -T 20G 20 50M
Plasma phys~cs 1M - 1T l00T 100 l00K S500.K S200.M
Brain Topology 100 1/6d 15G 1G 1/15 6K
Q c D 1M 1700d 8G 8G 1 125M

Challenge problems that are being addressed by Department of Energy's
Los Alamos and Oak Ridge Laboratories. The following section describes
key parameters.

4.2.7. Workload, Generality, and Number of Users: Real Application
Performance (RAP)

The simple test for generality is to look at the these benchmarks,
including file I/O and transaction processing rates. Each of the benchmarks
gives an indication of performance. While highly unbalanced machines can
have very high PAP, the best case RAP is substantially less. For example,
Bailey et al.'"' site supercomputers providing 50% of PAP; whereas
multicomputers deliver 2 % to 5 %. As a minimum users must look at the
Linpack, Livermore Loops, Los Alamos, and NAS benchmarks together
with app benchmarks for their domain.

If the computer is to be used in a general purpose environment, it
must have the ability to handle a wide range of work and accept many
users. The inhomogeneous computers are fundamentally special purpose,
limited by their host. Along with handling a very large workload, scalable
terminal access is critical, using workstations and Xterminals.

The final single test for a general computer is: Can a variety of users
place work, requiring varying degrees of parallelism (including none),
amounts of memory, and I/O and have this work run efficiently?

4.2.2. PAP: Peak Advertising Performance (PAP) Measures

When ARPAs' program was initiated the metric was operations per
second, but as it became clear that high visibility apps were scientific, float-

Scalable, Parallel Computers: Alternatives, Issues, and Challenges 37

ing-point ops became the metric. Occasionally instructions per second are
important because MIMDs execute large numbers of instructions. A high
Mips measure rewards RISC and penalizes vector processors designed for
floating-point.

Hockney and Je~shope(*~' posit performance parameters for vector
and distributed memory computers, including several that depend on
program characteristics. These allow estimates of performance under
varying conditions, and include peak processing rates for various vector
lengths, and scheduling, synchronization and communication overhead
times.

4.2.3. Primary Memory per PAP

In the 1960s, IBM engineers posited the heuristic that a 1 Maps com-
puter required 1 Mbyte of memory for batch processing environments
before multiprogramming and virtual memory. In 1993 balance heuristics
are nonexistent. It's hard to believe the requirements shown in Table IV are
typical. The C90, KSR 2, and CM5 computers provide 32 Gigabyte
memories for PAP of 16, 80, and 128 Gflops, (2, 0.8, and 0.25 bytes per
flop) respectively.

Supercomputers have large, lower cost buffer memories built from
dynamic random-access memories (DRAM) that are used for swapping,
whereas primary memory is built from small, expensive, static random-
access memory (SRAM). Scalable computers use DRAM memories.

4.2.4. Memory Bandwidth

No matter how much PAP a computer can claim, the bandwidth
between the primary memory and arithmetic units limits many programs.
Computational intensity is the number of memory access (map) per
floating point operation (flop) required for a statement(s) or a program.
For example, the computational intensity of the expression A i = Bj + C,
is 3, since 3 memory accesses are required for every flop.,The inner loop of
Linpack is a DAXPY (Ax, + y,) instruction that requires 3 maps per 2 flops
(CI = 1.5). For example, a C90 provides 1.5 maps per 1 flop allowing a C90
to run at full speed on the worst case Linpack benchmark, whereas a CM5
with 0.5 Maps/Mflop will operate at 113 of PAP.

4.2.5. Secondary Memory Size, 110 Bandwidth including Network
and Terminals

In addition to secondary memory size, I/O bandwidth is likely to limit
some applications. On the basis of Grand Challenge problem estimates

(Table IV) a wide range of memory sizes are required. Concurrent with
scalability measured in terminals (or simultaneous users), terminal
bandwidth must be scalable in size and with generation. By the end of the
decade, the terminal of choice will undoubtedly be the HDTV, requiring
architecture changes to support high bandwidth digital video.

4.2.6. Granularity Parameters: Scheduling-Synchronization, and
Message Latenc yloverhead

Figure 6 illustrated the basic times that determine the performance for
parallel apps of a given granularity and number of processors. The times
come from the computer and application. The time to schedule a new
computational thread (2) and synchronize the completion of threads (5)
before scheduling the next thread can be combined into one scheduling-
synchronization overhead time. Unless specialized scheduling hardware is
present, this time grows as log(p). The scheduling-synchronization over-
head (expressed in time or in operations) determines the half-peak power
scheduling-synchronization granularity, assuming that no inter-processor
communication is required.

Three inter-communication parameters that affect performance are
inherent in distributed computers with inter-node communication:
bandwidth (the rate a message can be transferred from application to
application), latency (time between when an app sends a message and
when it is received by an app in another node), and overhead (processor
lost time for sending and receiving the message). Latency is a function of
the network delay and message-lengthlbandwidth. Assuming a computer
has adequate bandwidth and that latency can be hidden by doing other
work, processor overhead is the most important parameter and a function
of the app. For a given app, the communication network latency (that
cannot be covered within the grain) plus overhead (expressed in time or in
operations) determines the half peak power communication granularity,
assuming no scheduling and synchronization overhead.

Table V. Degrees of Application Granularity for a Microprocessor of
100 Mflops/50 Mips PAP

Granularity Structure mesg. latency/ovhd(ps.) inst'ns/mesg* flops/mesg*

WAN network 100,000/2000 5M/50,00 10DM/100,000
very coarse LAN 1000 50,000 100,000
coarse smCs 100 %000 10.000
medium tuned smC 10 500 1 ,000
fine grain smP, fine grain.smC 0.2-2 1&100 20-200

~ ~ e ! a b ! a : Parallel Computers: Alternatives, Issues, and Challenges 39

Table V posits degrees of granularity, assuming communication is the
limiter. The basic assumption is that a processor is tied up for

a message and loses the opportunity to do useful work. For example, for
a thread efficiency of 50°%, the amount of computation in a thread is equal
to the message latency and processor overhead; for efficiencies of 90%, the
computation per thread must be increased by a factor of 9.

5. FUTURE SCALABLE, DISTRIBUTED GENERAL
PURPOSE COMPUTERS

The physical structure of scalable, distributed multicomputers and
multiprocessors have nearly converged. Furthermore, with increased
hardware support for a single address space and software, including
parallel libraries, they will continue to converge to the multiprocessor. As
in the CISC versus RISC debate, the key design decisions will be around
placing functions in hardware versus software. Functions can be provided
either in software in a flexible and open-ended fashion, requiring additional
time, or rapidly in hardware in an inflexible fashion. It is still easy to detect
whether a computer is an mP, simply by asking whether it is general: i.e.,
can jobs within an arbitrary workload efficiently use any combination of a
computer resources?

5.1. The Computing Nodes

This section will look at the fundamental capabilities of scalable,
general purpose computers.

5.1. 1. Naming Items Within a Memory

,The number one computer design flaw is a lack of address bits to
directly address the entire physical or virtual memory of a computer in
order to access every item with a unique name. Hardware must provide
this fundamental ability to access data without having to create addresses
that are a concatenation of node number and address within a node. By
not having system-wide names for memory locations, more instructions are
required for system wide addressing. While modern microprocessors use
64 bit addresses, experimental multicomputers use 32-bit microprocessors
with 32-bit registers, data-paths, and addresses, requiring further changes
in the next generation. The biggest gain in next generation multicomputers
will come about by having a single address space that does not require
software operations and bookkeeping.

40 Ra!!

5.1.2. Accessing Distributed Data: Load-Store, Message-Passing,
and Latency

Traditional programming is based on a sequential control stream and
load-store data access; that is, programs "pull" data to a computation, and
then store the result. Message passing requires a "push" or store/load
model; that is, a computation occurs and data is broadcast to a node(s)
that may ultimately need the data. This two-phase model (computation
and communication) has been observed to degrade because of congestion
in the communication phase (Zhou er ~ 1 . ' ~ ~ ') ; communication needs to
occur continuously within a thread.

All distributed computers use a message9 to access remote nodes
whether it be for messages or individually addressed data items. For a
remote store (or message send), a message consisting of a node and local
address, and data item are composed, then sent to the remote node using
the switching network. The remote node receives the message, looks at the
address and stores the data. Three delays are present: composing the
address and data (the same delay as a local memory store operation a
multiprocessor); the data transmission delay consisting of network latency
plus message transmission (message lengthlbandwidth), followed by the
local store (identical to a store in an mP). Providing direct access to
other nodes using addresses will provide the greatest improvement to
multicomputers. Caltech's Mosaic C addressed this fundamental problem
by a multi-threaded processor for computation, local memory and
co-processor access, and communication to other nodes.

Message passing is best carried out by not moving data at all. Instead,
data is passed by passing a pointer such that the message consumer is free
to take all or any of the data. Passing messages in this fashion reduces or
eliminates the overhead that is typical of a message passing library that
moves data several times (pack, send, receive, unpack).

The multicomputers overhead occurs because all data transfers require
explicit programs, in multiprocessors only the network latency can cause
delay. The latency can be dealt with in three ways: reducing access time by
increasing spatial and temporal locality by caching; the processor can be
multi-threaded or use supplementary hardware so that a process is run
while sending messages to a remote node; and having pre-fetch and post-
store instructions that do not wait on completion. For example the KSR 1
can issue up to 3 pre-fetch instructions without waiting for completion and
the processor is only stalled when the datum fetched is unavailable and
needed for an operation.

Multicomputers pass explicit messages, and multiprocessors send hardware controlled
messages that are implicit in the operation, e.g. load or store, being requested.

Scz!&!a, Parallel Computers: Alternatives. Issues, and Challenges 41

By far, the most important latency reducing technique is to reduce
latency by eliminating it through a very large cache, provided that other
overhead is not incurred by such an increase. The all cache architecture
appears to significantly increase the likelihood of having the required data
because every data item is moved to the memory of the processing node
that requires it.

5.1.3. The Distributed or Shared Virtual Memory (DSM)

The first task of a DSM is to create a single address space for the
entire set of distributed computers. This can be as simple as using a com-
puter's large address as the global address. Apollo's Domain (~1982)
provided a large, 64-bit system-wide, address even though 32-bit micros
were used. Distributed file systems such as NFS operate by creating a
single address space for networked workstations. Li and Shafer"') have
implemented a shared virtual memory, or DSM, consisting of a software
layer to convert a set of independent address spaces on a distributed collec-
tion of computers (i.e., a multicompter) into a single, shared memory space
with the ability to replicate pages in various memories. DSM (Nitzberg and
Lo(Z)) provides for page replication e.g., pages marked as read only that
can reside in several hosts, and multiple writers-while a page is being
written it can only reside in a single host.

Fundamentally, DSM is a limited, software version of KSRs
ALL CACHE^^ architecture, with two critical differences; software carries
out the movement and readlwrite control of the pages; and instead of con-
trolling data at a page level, the KSR ALL CACHE^^ architecture moves
small data elements such as few cache lines (16, 64-bit words).

Researchers found that software provided DSM on LAN workstations
and multicomputers is competitive or superior to message passing for most
apps, since data is moved among nodes in large blocks for some algorithms
and in small, on-demand basis for other cases. Zhou et ~ 1 . ' ~ " have created
software versions of this "all cache" architecture for a heterogeneous
multicomputer based on Li's work.

5.1.4. Memory Coherence

The degree of a system's ability to maintain a single, unified view of
a memory for a number of independent observers (processors) that are
sequentially reading and writing a distributed memory that holds multiple
copies of the same address, is the domain of memory coherence. Most all
programs are based on "strict coherence" where a load instruction returns
the most recent value of memory that a processor stores. As additional pro-

cessors are added to a system with a single, centralized memory, "sequen-
tial consistency" is what programmers might expect; the state of the system
is determined by some interleaved execution of programs on each of the
processing nodes. As memory and processor nodes are distributed, main-
taining a single, coherent memory becomes difficult (i.e., time- and
network-consuming) any time multiple nodes share (read or write)
multiple copies of data in any of the virtual memory. In order to reduce the
need for "sequential consistency," multiprocessor designers have introduced
weaker forms of consistency, beginning with "rnultis." "Release
consistency" using processor instructions to control when data can be
viewed by other processors has been posited as sufficient for parallel
programming. Zucker and Baer(32) described various degrees of memory
coherence ranging from sequential to release consistency and show the
performance impacts on Stanford's Parallel benchmark suite. The degree
of coherence that programs require depends on the granularity and
inter-thread communication requirements. Providing weaker forms of
consistency may trade-off ease of porting large apps and reliability for a
slight increase in performance.

5.7.5. Microprocessor Architecture and Technology: CMOS,
Multi- Threading, Wide- Word

On the basis of CMOS microprocessor learning curves, the main line
of scalable computers are most likely to be CMOS with only Fujitsu
deviating from this main line. Main line microprocessors will evolve to
carry out more operations per clock tick. In 1993, the best microprocessors
carry out two arithmetic operations per clock, and this may increase to >4
by the late 1990s. The alternative is for microprocessors to embrace the
vector architecture that enables Meiko's CS-2. The advantage of a wider
word versus vector approach is more flexibility at the expense of finer grain
apps that exploit vectorization.

The architecture of future scalable computer nodes is based on the
main line of microprocessor development used in workstations, e.g., DEC,
HP, IBM, and SUN, and it is unclear that this is a sound strategy for
evolvability. Convex (H P PA-RISC), Cray (DECs Alpha, but is not
guaranteeing next generation compatibility), Intel Paragon (the last of the
i860 product line), and Meiko (adds a Fujitsu vector processor chip) use
unmodified, compatible off-the-shelf microprocessors. Convex and Meiko
use manufacturer software.

scalabie, Paraiiei Computers: Aiternatives, issues, and Ckaiienges 43

On the basis of Caltech work and looking at the requirements for
scalable computers, it is unclear that microprocessors designed for

workstations make the best scalable computers. For example, multicom-
puters need multi-threaded microprocessors to over the latency inherent in
distributed memory computers, and to carry out overhead functions that
convert a multicomputer into a multiprocessor such as the Mosaic C (com-
puting, communication, and memory management and access). Worksta-
tions do not clearly benefit from being multi-threaded. Caltech's Mosaic C
is a good indication that specialized microprocessors designed for multi-
computers significantly out-perform off-the-self microprocessors used in
workstations. KSR provides functions in hardware for managing the
memory environment, for example.

Another requirement for evolvability is that the network must be
improved to have reduced overhead and latency in proportion to the
processor speedup. This could be a severe limitation in future scalable
computers. Without generation scalability, apps will not be transportable
from generation to generation, further impeding the adoption of scalable
computers.

5.7.7. The Network

The interconnection network's most important dimension is dis-
tributability over a range of distances. This will come through understand-
ing granularity to deal with longer latencies as described in Table I. In this
way, geographically distributed, scalable computers are by-products of
existing computers.

5.1.8. Controlling and Assisting Parallelism:
Scheduling-Synchronization Functions

Multiprocessors use a central memory to control the scheduling and
synchronization of work. Multicomputers either simulate mPs or statically
assign work or use a special network such as the CM5 provides to syn-
chronize processor completion and carry out reduction operations that
require results from each computer. As mCs evolve to directly access one
another's memory, these functions are likely to become more like the mP.
Similarly, in order to reduce synchronization time, an mP could benefit
from special hardware, such as global interrupts, or barriers that would
suspend work until all processors have finished a thread, accurate timers,
etc. Cray's T3D provides hardware for these functions.

44 Bell

6. Summary

Scalable, distributed, shared memory multiprocessors based on rapidly
evolving CMOS microprocessors are likely to emerge as the main line of
single system structures. For example, limited scalability supercomputers
will be supplemented by scalable mPs in 1994, thus scalable computers
have clearly not replaced the need for supers.

In 1993, switches and other overhead limit scalable multicomputers
(i.e., they have low efficiency for real app performance). Even though
PAP/$ is up to eight times higher for multicomputers than supercomputers,
RAP/$ is about constant for the two for a real workload. Multicomputers
have not demonstrated an ability to handle a general purpose workload.
By 1998, ie., two, three-year generations, all multicomputers developed as
part of the HPCC program that use 32-bit microprocessors and distributed
scalable memory (DSM) software for addressing and virtual memory
management will converge to have the capabilities of a scalable mP with a
single 64-bit, addressable, coherent memory. Switches pose the greatest
risk to generation scalability where every component of a system must
improve at the same rate. Switches must improve in latency, bandwidth,
and overhead at 60% per year to track microprocessor evolution and
insure generation to generation portability of apps.

LAN-based workstations, i.e. multicomputers, will evolve to be
interconnected by fast, switches such as ATM, operating at 100 Mbytes
per second and have the capability of 1992 multicomputers. Thus, parallel
processing can exist as a by-product of a normal, highly distributed
workstation environment without the need for specialized multicomputers.
The HPCC must focus R&D on this approach to leverage these
tremendous, existing resources.

The future of parallelism using scalable computers will continue to be
slow and steady, limited by the fundamental understanding of computer,
application characteristics, and standard programming environments.

REFERENCES

1. G. Bell, Ultracomputers: A Teraflop Before Its Time, Comm. of the ACM 35(8):2745
(August 1992).

2. B. Nitzberg and V. Lo, Distributed Shared Memory: A Survey of Issues and Algorithms,
Computer, pp. 5 2 4 (August 1991).

3. M. D. Hill, What is Scalability? Computer Architecture News 18(4):18-21 (December
1990).

4. D. ~ussbaum and A. Agarwal, Scalability of Parallel Machines, Contm. of the ACM
34(3):57-61 (March 1991).

5. S. L. Scott, A Cache coherence Mechanism for Scalable. Shared-Memory Multi-

s ca l ab le , Parallel c o m p u t e r s : Alternatives, Issues, and Challenges 45

processors, Proc. Int'l. Symp. of Shared Memory Multiprocessing, Information Processing
Society of Japan, Tokyo, April, pp. 49-59 (1991).

6. J. L. Gustafson, G. R. Montry, and R. E. Benner, Development of Parallel Methods for
a 1024 Processor Hypercube, SIAM J. Sci. Stat. Comput. 9(4):609-638 (July 1988).

7. V. Kumar and A. Gupta, Analyzing Scalabilty of Parallel Algorithms and Architectures,
TR 91-18, Department of Computer Science, University of Minnesota (January 1992).

8. X. Sun and D. T. Rover, Scalability of Parallel Algorithm-Machine Combinations,
Technical Report of the Ames Laboratory, Iowa State, IS 5057, UC 32 (April 1991).

9. A. H. Karp, Programming for Parallelism, Computer, pp. 43-57 (May 1987).
10. J. Worlton, MPP: All Things Considered, is it More Cost-Effective?, Worlton and

Associates Technical Report No. 42, Salt Lake City, Utah (May 1992).
11. D. H. Bailey, E. Barscz, L. Dagun, and H. D. Simon, NAS Parallel Benchmark Result,

RNR Technical Report RNR-92-002, NASA Ame Research Center (December 1992).
12. D. H. Bailey, Twelve Ways to Fool the Masses When Giving Performance Result on

Parallel Computers, Supercomputing Review, pp. 54-55 (August 1991).
13. J. Worlton, Be Sure The MPP Bandwagon is going Somewhere Before You Jump on

Board, High Performance Computing Review,, p. 41 (Winter 1992).
14. A. H. Karp, K. Miura, and H. Simon, 1992 Gordon Bell Prize Winners, Computer

26(1):77-82 (January 1993).
15. G. Bell, The Future of High Performance Computers in Science and Engineering, Comm.

of the ACM 32(9):1091-1101 (September 1989).
16. M. Lin, R. Tsang, D. H. C. Du, A. E. Kleitz, and S. Saraoff, Performance Evaluation of

the CM5 Interconnect Network, IEEE CompCon (Spring 1993).
17. G. Bell, Three Decades of Multiprocessors, Richard Rashid (ed.), CMU Computer

Science: 25th Anniversary Commemorative, ACM Press, Addison-Wesley Publishing,
Reading, Massachusetts, pp. S 2 7 (1991).

18. J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach,
Morgan Kaufman, San Mateo, California (1990).

19. J. L. Hennessy, Scalable Multiprocessors and the DASH Approach, University Video Com-
munication, Stanford, California (1992).

20. D. Lenoski, K. Gharacharloo, J. Laudon, A. Gupta, .I. Hennessy, M. Horowitz, and
M. Lam, Design of Scalable Shared-Memory Multiprocessors: The DASH Approach,
ACM COMPCON (February 1990).

21. J. P. Singh, W. D. Weber, and A. Gupta, SPLASH: Stanford Parallel Applications for
Shared-Memory, Computer Architecture News 20(1);5-44 (March 1992).

22. P. J. Denning, Working Sets Past and Present, IEEE Transactions on Software Engineer-
ing SE4(1):64-84 (January 1980).

23. A. Gupta, T. Joe, and Per Stenstrom, Comparative Performance Evaluation of Cache-
Coherent NUMA and COMA Architectures, Computer Systems Laboratory, Stanford
California (1993).

24. E. Hagersten, Toward Scalable Cache Only Memory Architectures, Ph.D. Dissertation,
The Royal Institute of Technology, Stockholm Sweden (October 1992).

25. S. Frank, H. Burkhardt, L. Lee, N. Goodman, B. I. Marguilies, and D. D. Weber, Multi-
processor Digital Data Processing System, U.S. Patent No. 5,055,999 (December 27,
1987).

26. KSR-1 Technical Summary, Kendall Square Research, Waltham, Massachusetts (1992).
27. C. Sietz, Mosaic C: AQn Experimental Fine-Grain Multicomputer, 25th Anniversary of

rhe Founding of INRIA, Springer-Verlag (to be published).
28. M. Berry, G. Cybenko, and J. Larson, Scientific Benchmark Characterizations, Parallel

Computing 17:1173-1194 (1991).

46 Bell

29. R. W. Hockney and C. R. Jesshope. Parallel Computers 2, Adam Hilger, Bristol (1988).
30. S. Zhou, J. Strumm, L. Li, and D. U'ortman, Heterogeneous Dstributed Shared Memory,

IEEE Transactions on Parallel and Distributed Systems 3(5):-Wl-554 (September 1992).
31. K. Li and R. Schafer, A Hypercube Shared Virtual Memop System, Int'l. Coni on

Parallel System (1989).
32. R. N. Zucker and J. L. Baer, A Performance Study of Memory Consistency Models, Proc.

of the 19th Annual Inti Symp. on Computer Architecture, pp. 2-12 (1992).

