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Abstract 

Inspired by studies of human-human con-

versations, we present methods for incre-

mentally coordinating speech production 

with listeners’ visual foci of attention. We 

introduce a model that considers the de-

mands and availability of listeners’ atten-

tion at the onset and throughout the pro-

duction of system utterances, and that in-

crementally coordinates speech synthesis 

with the listener’s gaze. We present an im-

plementation and deployment of the 

model in a physically situated dialog sys-

tem and discuss lessons learned.  

1 Introduction 

Participants in a conversation coordinate with one 

another on producing turns, and often co-produce 

language by using verbal and non-verbal signals, 

including gaze, gestures, prosody and grammati-

cal structures. Among these signals, patterns of at-

tention play an important role. 

Goodwin (1981) highlights a variety of coordi-

nation mechanisms that speakers use to achieve 

mutual orientation at the beginning and through-

out turns, such as pausing, adding phrasal breaks, 

lengthening spoken units, and even changing the 

structure of the sentence on the fly to secure the 

listener’s attention. His work suggests that, be-

yond a simple errors-in-production view, “disflu-

encies” help to coordinate on turns, and generally 

facilitate co-production among speakers and lis-

teners. Goodwin (1981) presents sample snippets 

of conversations recorded in the wild, annotated 

to show when the gaze of a listener turns to meet 
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the gaze of the speaker (marked with *) and when 

mutual gaze is maintained (marked with an under-

line). In the examples reproduced below from 

Goodwin’s work, pauses and repeats are used to 

align grammatical sentences with a listener’s 

gaze: 
 

Anyway, Uh:, We went *t- I went ta bed 
 

Restarts can be used as a means of aligning the 

timing of a full grammatical utterance with the 

start of the process by which gaze is moving to-

wards the speaker (process indicated by the bro-

ken underline), as in the following: 
 

She- she’s reaching the p- she’s at the *point I’m 
 

While most work to date in spoken dialog sys-

tems has focused on the acoustic channel in phys-

ically situated multimodal systems, an oppor-

tunity arises to use vision to take the participants’ 

attention into account when coordinating on the 

production of system utterances. We investigate 

this direction and introduce a model that incre-

mentally coordinates language production and 

speech synthesis with the listeners’ foci of atten-

tion. The model centers on computing whether the 

listener’s attention matches a set of attentional de-

mands for the utterance at hand. When attentional 

demands are not met, the model triggers a se-

quence of linguistic devices in an attempt to re-

cover the listener’s attention and to coordinate the 

system’s speech with it. We introduce and demon-

strate the promise of incremental coordination of 

language production with attention in situated 

systems.  

Following a brief review of related work, we 

describe the proposed approach in more detail in 

Section 3. In Section 4, we discuss lessons learned 



from an in-the-wild deployment of this approach 

in a directions-giving robot.  

2 Related work 

The critical role of gaze in coordinating turns in 

dialog is well known and has been previously 

studied (i.a., Duncan, 1972; Goodwin, 1981). 

Kendon (1967) found that speakers signal their 

wish to release the turn by gazing to the interloc-

utor. Vertegaal et al. (2003) found evidence that 

lack of eye contact decreases the efficiency of 

turn-taking in video conferencing. 

Most previous work on incremental processing 

in dialog has focused on the acoustic channel, in-

cluding efforts on recognizing, generating, and 

synthesizing language incrementally. For in-

stance, Skantze and Hjalmarsson (2010) showed 

that an incremental generator using filled pauses 

and self-corrections achieved (in a wizard of Oz 

experiment) shorter response times and was per-

ceived as more efficient than a non-incremental 

generator. Guhe and Schilder (2002) have also 

used incremental generation for self-corrections.  

Situated and multiparty systems often incorpo-

rate attention and gaze in their models for turn tak-

ing and interaction planning (Traum and Rickel, 

2002; Bohus and Horvitz, 2011). Sciutti et al. 

(2015) used gaze as an implicit signal for turn tak-

ing in a robotic teaching context. In an in-car nav-

igation setting, incremental speech synthesis that 

accommodates user’s cognitive load was shown 

to improve user experience but not users’ perfor-

mance on tasks (Kousidis, et al., 2015).  

3 Model 

Motivated by observations from human-human 

communication dynamics, we propose a model to 

coordinate speech production with the listeners’ 

focus of attention in a physically situated dialog 

system. We believe that close coordination be-

tween language production and listeners’ atten-

tion is important in creating more effective and 

natural interactions. 

The proposed model subsumes three subcom-

ponents. The first component defines attentional 

demands on each system output. For successful 

collaboration, certain utterances require the lis-

tener’s focus of attention to be on the system or on 

task-relevant locations (e.g., the direction the ro-

bot is pointing towards), while other utterances do 

not carry high attentional demands. The second 

component is an inference model that tracks the 

listener’s focus of attention, i.e., the attentional 

supply. The third component alters the system’s 

speech production in an incremental manner to 

coordinate in stream with the listeners’ attention. 

The component regulates production based on 

identifying when the attention supply does not 

match the demands.  

In the following subsections, we discuss the 

model’s components in more detail, and their im-

plementation in the context of Directions Robot, a 

physically situated humanoid (Nao) robotic sys-

tem that interacts with people and provides direc-

tions inside our building (Bohus, Saw and 

Horvitz, 2014). Figure 1 shows a sample dialog 

with the robot. The proposed coordination model 

can be adapted to other multimodal dialog sys-

tems with adjustments based on the task and the 

situational context. 

3.1 Attentional demands 

We consider two types of attentional demand. The 

first one, which we refer to as onset demand, en-

capsulates Goodwin’s observation (1981) that 

participants in a conversation generally aim to 

achieve mutual orientation at the beginnings of 

turns. The model specifies that, at each system 

phrase onset, the listeners’ attention must be on 

the system. In our implementation, we require that 

at least one of the addressees of the current utter-

ance is attending. The system infers attention un-

der uncertainty from visual scene analysis, and we 

express the attentional demand by means of a 

probability threshold. In the current implementa-

tion, this threshold was set to 0.6: the onset atten-

tional demand is satisfied if the probability that at 

least one of the addressees is attending to the robot 

is greater than 0.6 when the system is launching a 

phrase.  

In addition, a second type of attentional de-

mand, denoted production demand, is defined at 

the level of the dialog act by the system developer. 

During certain system acts, for instance ones that 

1 S: Hi there! 

2 S: Do you need help finding something? 

3 U: Yes 

4 S: Where are you trying to get to? 

5 U: Room 4505 

6 S: To get to room 4505, ● walk along that hallway, 
● turn left and keep on walking down the hall-
way. ● Room 4505 will be the 1st room on your 
right.  

7 S: By the way, ● would you guys mind swiping your 
badge on the reader below so I know who I’ve 
been interacting with? 

 
Figure 1. Sample interaction  

with the Directions Robot. 



carry important content or that are deemed as un-

expected for the listeners, it is important for ad-

dressees to attend to the system or to certain task-

relevant objects. The production demand defines 

where the listeners’ attention is expected during 

the production of the system’s utterances, i.e., it 

defines a set of permitted targets. For instance, 

when the robot is giving directions in turn 6 from 

Figure 1, the production demand is set to Robot or 

PointingDirections—the locations that the robot 

points to via its gestures as it renders directions. 

Similarly, when the robot asks users to swipe their 

badge in turn 7, the production demand is set to 

Robot and Badge indicating that these are the ap-

propriate targets of attention throughout that par-

ticular utterance. In contrast, other dialog acts, 

such as the robot asking “Where are you trying to 

get to?” in turn 4, are naturally expected at that 

point in the conversation, do not impose high cog-

nitive demands, and can be conveyed without re-

quiring attention on the robot throughout the ut-

terance.  

3.2 Attention supply 

The Directions Robot is deployed in front of a 

bank of elevators. In this environment, the atten-

tion of engaged participants can shift between a 

variety of targets including the robot, other task-

related attractors (e.g., the direction that the robot 

is pointing, the sign next to the robot, the user’s 

badge, and the badge reader), personal devices 

such as smartphones and notepads, and other peo-

ple in the environment. To simplify, in the imple-

mentation we describe here, we model attention 

supply only over the three targets already men-

tioned above: Robot, PointingDirection, Badge, 

and we cluster all other attentional foci as Else-

where.  

The robot tracks the (geometric) direction of 

visual attention for each participant in the scene 

via a model constructed using supervised machine 

learning methods. The model leverages features 

from visual subsystems (e.g., face detection and 

tracking, head-pose detection, etc.) and infers the 

probability that a participant’s visual attention is 

directed to the robot, or to the left, right, up, down, 

or back of the scene. These probabilities are then 

combined via a heuristic rule that takes into ac-

count the dialog state and the robot’s pointing to 

infer whether the participant’s attention is on Ro-

bot, PointingDirection, Badge, or Elsewhere.  

3.3 Coordinative policy 

The third component in the proposed model, the 

coordinative policy controls the speech synthesis 

engine and deploys various mechanisms, such as 

pauses, restarts, interjections, to coordinate the 

system’s speech with the listeners’ attention.  

Figure 2 shows a diagram of the currently im-

plemented coordinative policy for onset atten-

tional demand. If the listeners’ attention does not 

meet the attentional demand at the beginning of a 

phrase, the system will perform a sequence of ac-

tions, starting with a wait (pause), followed by an 

attention drawing interjection such as “Excuse 

me!”, followed by another wait action, followed 

by launching the phrase. If the onset attentional 

demand is still not satisfied the phrase is inter-

rupted after 2 words, then another wait action is 

taken, followed finally by launching the entire 

phrase. The wait actions are chosen with a random 

duration between 1.5 and 2.5 seconds. The inter-

jection is skipped if it was already produced once 

in this utterance, or if the preceding phrase or the 

remainder of the utterance contains only one 

word. As soon as the attention supply matches the 

onset demand, the system launches the phrase. If 

the demand is met during the interjection, the in-

terjection will still be completed. In addition, the 

policy will not switch from a wait action to a ver-

bal action if the system detects that the user is 

likely speaking.  

We set both onset and production attentional 

demands on a per dialog act basis. The surface re-

alization of a single dialog act can however in-

volve multiple phrases, defined here as continu-

ous speech units separated by a pause longer than 

250 ms, as signaled by runtime events generated 

by the speech synthesis engine (● is used to de-

mark phrases in the example from Figure 1.) The 

coordinative policy uses the attentional demand 

Figure 2. Actions taken to coordinate with attentional demands at phrase onset. 

Excuse me! Wait Wait Speak 2 words Wait Speak Phrase 

Attention supply meets onset demand? 

Figure 3. Actions taken to coordinate produc-

tion with attentional demands. 

Re-speak Phrase Wait 

Attention supply  
meets onset demand? 



information specified on the dialog act, but oper-

ates at the phrase level. In other words, the onset 

demand is checked at the beginning of every 

phrase in the dialog act.  

In addition to reasoning about onset attention, 

the proposed model also assesses if production de-

mand is met at the end of phrases, i.e. if the accu-

mulated attention throughout the phrase matched 

the production demand specified for the dialog 

act. If this is not the case, a wait is triggered (to 

re-acquire onset attention), and then the phrase is 

repeated. If the onset demand is met at any point 

during the wait, the system immediately repeats 

the phrase. The variability of the wait durations, 

coupled with variability in the attention estimates 

and the times when the specified onset or produc-

tion attentional demand is met, leads to a variety 

of production behaviors in the robot. 

4 Deployment and lessons learned 

We implemented the model described above in 

the Directions Robot system and deployed it on 

three robots situated in front of the bank of eleva-

tors on floors 2, 3, and 4 of a four-story building. 

Appendix A contains an annotated demonstrative 

trace of the system’s behaviors. Additional videos 

and snippets of interactions are available at: 

http://1drv.ms/1GQ1ori. While a comprehensive 

evaluation of the model is pending further im-

provements, we discuss below several lessons 

learned from observing natural interactions with 

the robots running the current implementation. 

A first observation is that the usefulness and 

naturalness of the behaviors triggered by the robot 

hinges critically on the accuracy of the inferences 

about attention. When the model incorrectly con-

cludes that the participants’ attention is not on the 

robot (false-negative errors), the coordinative pol-

icy triggers unnecessary pauses, interjections and 

phrase repeats that can be disruptive and unnatu-

ral. The attention inference challenge includes the 

need to recognize both the participants’ visual fo-

cus of attention (which in itself is a difficult task 

in the wild) and cognitive attention as being on 

task. Cognitive attention does not overlap with 

visual attention all the time. For example, at times 

participants would shift their visual attention 

away from the robot as they leaned in and cocked 

their ear to listen closely. Problems in inferring at-

tention are compounded by lower-level vision and 

tracking problems.   

Second, we believe that there is a need for bet-

ter integration of the coordinative policy with cur-

rent existing models for language generation, ges-

ture production, multiparty turn-taking and en-

gagement. Beyond the number of words in a 

phrase, the current policy does not leverage infor-

mation about the contents of phrases that are about 

to be generated. This sometimes leads to unnatu-

ral sequences, such as “Excuse me! By the way, 

would you mind […]” Another important question 

is how to automatically coordinate the robot’s 

physical pointing gestures when repeating phrases 

or when phrases are interrupted. With respect to 

turn taking, problems detected in early experi-

mentation led to an adjustment of the coordinative 

policy that we described earlier: the system does 

not move from a wait to a verbal action if it detects 

that the user is likely speaking. Beyond this sim-

ple rule, we believe that the floor dynamics in the 

turn-taking model need to take into account the 

system’s discontinuous production, e.g., take into 

account the fact that the pauses injected within ut-

terances might be perceived by the participants as 

floor releases. Further tuning of the timings of the 

pauses, contingent on the dialog state and expec-

tations about when the attention might return, as 

well as a tighter integration with the engagement 

model might be required. For instance, we ob-

served cases where the robot’s decision to pause 

to wait for a participant’s attention to return from 

the direction that the robot was pointing (before 

continuing to the next phrase) was interpreted as 

the end of the utterance and the participant walked 

away before session completion. 

Third, we find that the definition of attentional 

demands (both onset and production) need to be 

further refined (in some cases on a per-dialog state 

basis) and modeled at a finer level of granularity, 

down to the phrase level. In an utterance like “By 

the way, would you mind swiping your badge?”, 

the “By the way” phrase is in fact an attention at-

tractor, and itself does not require attentional de-

mands and thus should be modeled separately.  

5 Conclusion 

We presented a model for incrementally coordi-

nating language production with listeners’ foci of 

attention in a multimodal dialog systems. An ini-

tial implementation and in-the-wild deployment 

of the proposed model has highlighted a number 

of areas for improvement. While further investi-

gation and refinements are needed, the interac-

tions collected highlight the potential and promise 

of the proposed approach for creating more natu-

ral and more effective interactions in physically 

situated settings. 

http://1drv.ms/1GQ1ori


Appendix A: Description of demonstrative 

sample trace (video at http://1drv.ms/1GQ1ori): At 

time 𝑡1 the participant’s (𝑃11) attention is on the 

robot and the robot begins giving directions. At 

the end of the first phrase (𝑡2), 𝑃11’s attention has 

switched to the other participant as they discuss 

whether 4800 is really the room they’re looking 

for. Overall the production attention supply (mean 

of instantaneous attention level over the duration 

of the phrase, shown in plot A) has exceeded pro-

duction demand on the initial phrase, so the sys-

tem deems that no repetition of the phrase is nec-

essary. At the same time, instead of launching the 

next phrase, the system waits because onset atten-

tional demand is not met. At 𝑡3, onset demand is 

still not met. Thus, the system launches an inter-

jection followed by launching the first two words 

at 𝑡4. At 𝑡5, 𝑃11’s attention is still not on the robot 

(according to the inference model, displayed in 

plot B), and the robot pauses. At 𝑡6, the onset at-

tentional demand is met and the robot re-launches 

the phrase “go along that hallway”. At the end of 

the phrase (𝑡7), both the production demand for 

this phrase and the onset demand for the next 

phrase are met. However the system has detected 

that 𝑃11 is speaking and, instead of launching the 

next phrase, it waits, allowing 𝑃11  to finish his 

contribution. Next, at 𝑡8, the robot provides direc-

tions to the new room while 𝑃11 is attending.  
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