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Abstract
Online offerings such as web search face the challenge of providing high-quality service to
a large, heterogeneous user base. Recent efforts have highighted the potential to improve
performance by introducing methods to personalize services based on special knowledge
about users. For example, a user’s location, demographics, and past search and browsing
may be useful in enhancing the efficiency and accuracy of web search. However, reason-
able concerns about privacy by both users and providers limit access by services to such
information. We explore the rich space of possibility where people can opt to share, in a
standing or a real-time manner, personal information in return for expected enhancements
in the quality of an online service. We present methods and studies on addressing such
tradeoffs between privacy and utility in online services. We introduce concrete and real-
istic objective functions for efficacy and privacy and demonstrate how we can efficiently
find a provably near-optimal optimization of the utility-privacy tradeoff. We evaluate our
methodology on data drawn from a large-scale web search log of people who volunteered
to have their logs explored so as to contribute to enhancing search performance. In order to
incorporate personal preferences about privacy and utility, and the willingness to trade off
revealing some quantity of personal data to a search system in returns for gains in efficiency,
we performed a user study with 1400 participants. Employing utility and preferences esti-
mated from the real-world data, we show that a significant level of personalization can be
achieved using only a small amount of information about users.

1 Introduction
Information about people searching the web can be used to enhance web search. For example,
knowing a searcher’s location can help identify their informational goals when confronted with
queries like “sports” “movies,” or ”pizza.” Researchers and organizations have pursued explicit
and implicit methods for personalizing search. Explicit personalization procedures include such
methods as storing sets of topics of interest on a server or client. Richer implicitly mined data can
also be employed. Studies have demonstrated how personal data about individual users, such as
information captured by the index of desktop search services, and used only in privately-held, local
analyses, can be used in order to provide personalization of web search [23, 25]. These techniques
have demonstrated the potential of greatly improving the relevance of displayed search results by
disambiguating queries based on personal information about the users. On the implicit side, Web
search services have relied on the logging of data in order to enhance and audit their performance.
Search services have access to great amounts of data about people, both individually and in aggre-
grate, including such attributes as how people specify and reformulate queries and click, dwell, and
navigate on results and links over time, and the coarse location of people (available via IP lookup).

Information about people can enhance the accuracy of search engines, but the sensing and storage of
such information may also conflict with personal preferences about privacy. Indeed, there has been
increasing discussion about potential privacy concerns implied by the general logging and storing
of such data by online services [2]. Beyond general anxieties with sharing personal information,
people may more specifically have concerns about becoming increasingly identifiable; As increas-
ing amounts of personal data are acquired, users become more and more identifiable as they are
in increasingly smaller sets of others associated with the same attributes. A fundamental utility-
privacy tradeoff exists where the more information that is acquired, the higher the utility via, e.g.,
personalization, but, at the same time, the greater the privacy concerns.

1Work performed during an Internship at Microsoft Research
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Previous work either has ignored privacy problems and focused efforts on maximizing utility [21],
or has tried to avoid privacy incursion by using no personal data or only using data available on the
local machine [23, 25].

We shall explicitly examine the promise of methods that allow for a smooth tradeoff between
privacy and the utility of enhanced personalization of online services by taking a decision-theoretic
perspective. We characterize the utility of sharing attributes of private data via value-of-information
analyses, that take into consideration the preferences to users about the sharing of personal infor-
mation. We explicitly quantify preferences about utility and privacy, and, subsequently, solve an
optimization problem to find the best trade. Our approach is based on two fundamental observations.
The first is that, for practical applications, the utility gained with sharing of personal data may
often have a diminishing returns property; acquiring more information about a user adds decreasing
amounts to utility given what is already known about the user’s intent. On the contrary, privacy
behaves the opposite way; typically, the more information that is acquired about a user, the more
concerning the breach of privacy becomes. For example, a set of individually non-identifying pieces
of information may, when combined, hone down the user to membership in a small group, or even
identify an individual. We can bring together the properties of diminishing-returns on utility and the
concommitant accelerating costs of revelation via the combinatorial concepts of submodularity and
supermodularity, respectively.

We shall apply these concepts for the case of personalized search. We employ a probabilistic model
to predict the website that a searcher is going to visit given the search query and the attributes
describing the user. We define the utility of a set of personal attributes by the focusing power of
the information gained with respect to the prediction task. Similarly, we use the same probabilistic
model to predict, given a set of personal attributes, the users who matches the same attributes. Our
privacy objective is chosen to favor sets of attributes that make the prediction of the users as difficult
as possible. We then combine our utility and cost functions into a single objective function, which
we use to find a small set of attributes which maximally increases the likelihood of predicting the
target website, while making identification of the user as difficult as possible.

Unfortunately, solving for the best set of attributes (and hence for the optimal setting of the
utility-privacy tradeoff) is NP-hard, and hence an intractable computation for large sets of attributes.
We demonstrate how we can use the submodularity of the utility and supermodularity of privacy
in order to find a near-optimal tradeoff efficiently. The approximation is guaranteed to be close
to the optimal solution. To our knowledge no existing approach (such as [16, 12]) has such strong
approximation guarantees. We shall evaluate our approach on real-world search log data, and
demonstrate the existence of prominent “sweet spots” in the utility-privacy tradeoff curve, at which
most of the utility can be achieved, with the sharing of a minimal amount of private information.

In addition to identifiability considerations, people often have preferences about revealing different
attributes of personal data. For example, knowledge of whether a person is interested in adult
websites poses very low risk to identifiability, but may nevertheless be considered highly sensitive
information by a searcher. On the other hand, knowledge about the searcher’s country may
be far more identifying, but potentially less sensitive . In order to elicit sensitivity of different
demographic attributes and other personal information relevant to web search, we conducted a user
study including over 1400 participants. Beyond providing a rich view into preferences about the
sharing of private information, the data allowed us to calibrate the utility-privacy tradeoff based on
perceived sensitivities.

2 Privacy-aware personalization
We consider the challenge of personalization as diagnosis under uncertainty. We seek to predict a
searcher’s information goals, given such clues as query terms and potentially additional attributes
that describe users and their interests and activities. We frame the problem probabilistically (as
done, e.g., by [5, 6] in the search context), by modeling a joint distribution P over random variables,
which comprise the target intention X , some request-specific attributes (e.g., the query term) Q, the
identity of the user Y , and several attributes V = {V1, V2, . . . , Vm} containing private information.
Such attributes include user-specific variables (such as demographic information, search history,
word frequencies on the local machine, etc.) and request-specific variables (such as the period of
time since an identical query was submitted). We describe the concrete attributes used in this work
for the web search context in Section 5.2. Additional examples can be found in [6] or [23]. We
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use statistical techniques to learn such a model P from training data for frequent queries. Then, we
present methods for trading off utility and privacy in the context of this probabilistic model.

Utility of private data. Upon receiving a new request Q, and given a subset A ⊆ V of the
attributes, we can use the probabilistic model to predict the target intention by performing inference,
computing the conditional distribution P (X | Q,A). Then, we use this distribution to inform
the decision of, e.g., which search results to present to the user. The hope in personalization
is that additional knowledge about the user (i.e., the observed set of attributes A) will help to
simplify the prediction task, via reducing the uncertainty in P (X | Q,A). Based on this intuition,
we quantify the uncertainty in our prediction using the conditional Shannon entropy (c.f., [4])
H(X | Q,A) = −

∑
x,q,a P (x, q,a) log2 P (x | q,a). Hence, for any subset A ⊆ V , we define its

utility U(A) to be the information gain, i.e., expected entropy reduction achieved by observing A:
U(A) = H(X | Q)−H(X | Q,A). Click entropy has been previously studied by [5].

Cost of private data. There is a large amount of work on mathematically modeling privacy (c.f.,
[1, 22, 17, 7]). Our cost function is motivated by the consideration that sets of attributes A ⊆ V
should be preferred, which make identification of an individual user as difficult as possible. We
can consider the observed attributes A as noisy observations of the (unobserved) identity Y = y
of the user. Intuitively, we want to associate high cost C(A) with sets A which allow accurate
prediction of Y givenA, and low cost for setsA for which the conditional distributions P (Y | A) are
highly uncertain. For a distribution P (Y ) over users, we hence define an identifiability loss function
L(P (Y )) which maps probability distributions over users Y to the real numbers. L is chosen in a
way, such that if there exists a user y such that P (Y = y) is close to 1, then the loss L(P (Y )) is very
large. If P (Y ) is the uniform distribution, then L(P (Y )) is close to 0. In our experiments we use the
maxprob loss, Lm(P (Y )) = maxy P (y). Other losses, e.g., based on k-anonymity [22] are possible
as well. Based on the loss function, we define the identifiability cost I(A) as the expected loss of the
conditional distributions P (Y | A = a), where the expectation is taken over the observationsA = a.

In addition to identifiability, we introduce an additional additive cost component S(A) =∑
a∈A s(a), where s(a) ≥ 0 is a nonnegative quantity modeling the subjective sensitivity of attribute

a, and other additive costs, such as data acquisition cost etc. The final cost function C(A) is a convex
combination of the identifiability cost I(A) and sensitivity S(A), i.e., C(A) = ρI(A)+(1−ρ)S(A).

2.1 Optimizing the utility-privacy tradeoff
Previously, we described how we can quantify the utility U(A) for any given set of attributesA, and
its associated privacy cost C(A). Our goal is to find a set A, for which U(A) is as large as possible,
while keeping C(A) as small as possible. In order to solve for this tradeoff, we use scalarization
[3], by defining a new, scalar objective Fλ(A) = U(A) − λC(A). Hereby, λ can be considered a
Langrangean multiplier which controls the privacy-to-utility conversion factor. The goal is to solve
the following optimization problem:

A∗
λ = argmax

A
Fλ(A) (2.1)

By varying λ, we can find different solutionsA∗
λ. If we choose a very small λ, we find solutions with

higher utility and higher cost; large values of λ will lead to lower utility, but also lower privacy cost.

If the set of attributes V is large, then (2.1) is a difficult (NP-hard) search problem, as the number
of subsets A grows exponentially in the size of V . Given the complexity, we cannot expect to
efficiently find an optimal solution A∗. However, as we show in the following, we can find a
solution which is guaranteed to achieve at least 1/3 of the optimal score.

3 Theoretical properties of the utility-privacy tradeoff
As mentioned above, we would expect intuitively that the more information we already have about
a user (i.e., the larger |A|), the less the observation of a new, previously unobserved, attribute
would help. The combinatorial notion of submodularity formalizes this intuition. A set function
G : 2V → R mapping subsets A ⊆ V into the real numbers is called submodular [18], if for all
A ⊆ B ⊆ V , and V ′ ∈ V \B, it holds that G(A∪{V ′})−G(A) ≥ G(B∪{V ′}−G(B), i.e., adding
V ′ to a set A increases G more than adding V ′ to a superset B of A. G is called nondecreasing, if
for all A ⊆ B ⊆ V it holds that G(A) ≤ G(B).

In [14], it was shown that, under certain conditional independence conditions, the click entropy
reduction is submodular and nondecreasing:
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Theorem 3.1 ([14]). Assume, the attributes A are conditionally independent given X . Then U(A)
is submodular in A.

We discussed earlier how we expect the privacy cost to behave differently: Adding a new attribute
would likely make a stronger incursion into personal privacy when we know a great deal about
a user, and less if we know little. This “increasing costs” property naturally corresponds to the
combinatorial notion of supermodularity: A set function G : 2V → R is called supermodular [18],
if for all A ⊆ B ⊆ V , and V ′ ∈ V \ V , it holds that G(A∪ {V ′})−G(A) ≤ G(B ∪ {V ′} −G(B),
i.e., adding V ′ to a large set B increases G more than adding V ′ to a subset A of B.
Theorem 3.2. Assume, the attributes V are marginally independent, and the user Y is completely
characterized by the attributes, i.e., Y = (V). Then the maxprob loss Im(A) is supermodular in A.

All proofs are available in [15]. Note that the attribute sensitivity S(A) is per definition additive
and hence supermodular as well. Thus, as a positive linear combination of supermodular functions,
C(A) = ρI(A) + (1 − ρ)S(A) is supermodular in A, for both choices of Ii(A) or Im(A). In
our empirical evaluation, we verify the submodularity of U(A) and supermodularity C(A) even
without the assumptions made by Theorem 3.1 and Theorem 3.2.

Motivated by the above insights about the combinatorial properties of utility and privacy, in the
following we present a general approach for trading off utility and privacy. We only assume that the
utility U(A) is a submodular set function, whereas C(A) is a supermodular set function. We define
the general utility-privacy tradeoff problem as follows:
Problem 3.3. Given a set V of possible attributes to select, a nondecreasing submodular utility
function U(A), a nondecreasing supermodular cost function C(A), and a constant λ ≥ 0, our goal
is to find a set A∗ such that

A∗ = argmax
A

Fλ(A) = argmax
A

U(A)− λC(A) (3.1)

Since C(A) is supermodular if and only if −C(A) is submodular, and since nonnegative lin-
ear combinations of submodular set functions are submodular as well, the scalarized objective
Fλ(A) = U(A) − λC(A) is submodular as well. Hence, problem (3.1) requires the maximization
of a submodular set function.

4 Optimization Algorithms
As the number of subsets A ⊆ V grows exponentially with the size of V , and because of the
NP-hardness of Problem (2.1), we cannot expect to find the optimal solution A∗ efficiently. A
fundamental result by Nemhauser et.al. [18] characterized the performance of the simple greedy
algorithm, which starts with the empty setA = ∅ and greedily adds the attribute which increases the
score the most, i.e., A ← A∪ argmaxV ′ F (A∪ {V ′}), until k elements have been selected (where
k is a specified constant). It was shown that, if F is nondecreasing, submodular and F (∅) = 0, then
the greedy solution AG satisfies F (AG) ≥ (1 − 1/e) max|A|=k F (A), i.e., the greedy solution is
at most a factor of 1 − 1/e away from the optimal solution. While this result would allow to, e.g.,
select a near-optimal set of k private attributes maximizing the utility U(A) (which satisfies the
conditions of the result from [18]), it unfortunately does not apply in our more general case, where
our objective Fλ(A) is not nondecreasing.

The problem of maximizing such non-monotone submodular functions has been resolved recently
[8]. A local search algorithm, named LS, was proved to guarantee a near-optimal solution ALS , if
F is an nonnegative2 (but not necessarily nondecreasing) submodular function:

1. Let V ∗ ← argmaxV ′∈V F ({V ′}) and init. A ← {V ∗}
2. If there exists an element V ′ ∈ V \ A such that F (A ∪ {V ′}) > (1 + ε

n2 )F (A), then let
A ← A∪ {V ′}, and repeat step 2.

3. If there exists an element V ′ ∈ A such that F (A \ {V ′}) > (1 + ε
n2 )F (A), then let

A ← A \ {V ′}, and go back to step 2.
4. Return ALS ← argmax{F (A), F (V \ A)}.

In [8], it is proven that the local search is a polynomial time algorithm using at most
O( 1

εn3 log n) function evaluations, and, for the solution ALS returned by LS, it holds that

2If F takes negative values, then it can be normalized by considering F ′(A) = F (A) − F (V), which
however can impact the approximation guarantees.
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Figure 1: (a) Sensitivity of individual attributes (with 95% confidence intervals). (b) Sensitivity of
sharing location under different levels of discretization. (c) Sensitivity of k-discriminability levels
(right). Plots show 95% confidence intervals.

F (ALS) ≥
(

1
3 −

ε
n

)
maxA F (A). In [15], we show how LS can be significantly sped up by using

a lazy evaluation technique.

Evaluating utility and cost. To run LS, we need to be able to efficiently evaluate the utility
U(A) and cost C(A). In principle, we can compute the objective functions from the empirical
distribution of the training data, by explicitly evaluating the sums defining U(A) and C(A) (c.f.,
Section 2). However, this approach is very inefficient – Ω(N2) where N is the number of training
examples. Instead, we can estimate U(A) and C(A) by sampling. In [15], we show, how we can
use Hoeffding’s inequality [11] in order to bound the number of samples required to approximate
U(A) and C(A) to arbitrary precision ε, with high probability 1 − δ. We also show, how we can
generalize the result from [8] to also hold in the case where utility and cost are estimated only up
to small constant error ε. The following theorem summarizes our analysis:

Theorem 4.1. If λ such that Fλ(V) ≥ 0, then LS, using sampling to estimate C(A) and U(A),
computes a solution AELS such that Fλ(AELS) ≥

(
1
3 −

ε
n

)
maxA Fλ(A)− nεS , with probability

at least 1− δ. The algorithm uses at most O
(

1
εn3 log n

(
log2(#intents)

εS

)2

log 1
δn3

)
samples.

Finding the optimal solution. While LS allows us to find a near-optimal solution in polynomial
time, submodularity of Fλ can also be exploited to find an optimal solution in a more informed
way, allowing us to bypass an exhaustive search through all exponentially many subsetsA. Existing
algorithms for optimizing submodular functions include branch and bound search, e.g., in the
data-correcting algorithm [9], as well as mixed-integer programming [19].

5 Experimental results
5.1 Survey on Privacy Preferences
Although identifiability is an important part of privacy, people have different preferences about
sharing individual attributes [20]. Related work has explored elicitation of private information (c.f.,
[13, 24, 10]). We are not familiar with a similar study for the context of web search. Our survey
was designed specifically to probe preferences about revealing different attributes of private data in
return for increases in the utility of a service (in this case, in terms of enhanced search efficiency).
As previous studies show [20], willingness to share information greatly depends on the type of
information being shared, with whom the information is shared, and how the information is going
to be used. In designing the survey, we tried to be as specific as possible, by specifying a low-risk
situation, in which the “personal information would be shared and used only with respect to a single
specified query, and discarded immediately thereafter.” Our survey contained questions both on the
sensitivity of individual attributes and on concerns about identifiability. The survey was distributed
within Microsoft Corporation via an online survey tool. We motivated people to take the survey by
giving participants a chance to win a media player via a random drawing . The survey was open to
worldwide entries, and we received a total of 1451 responses.

Questions about individual attributes. We first asked the participants to classify the sensitivity
of the attributes on a Likert scale from 1 (not very sensitive) to 5 (highly sensitive). The order of
the questions was randomized. Figure 1(a) presents the results. As might be expected, frequency of
search engine usage (AFRQ), as well as very general topic interests, e.g., in news pages (TNWS),
are considered to be of low sensitivity. Interestingly, we found that there are significant differences
among participants even for sharing with a service interests in different topics; participants showed
significantly greater sensitivity to sharing interest in health or society related websites (THEA,
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TSOC) than in news or science-related pages (TNWS, TSCI). The biggest “jump” in sensitivity
occurs between attributes ACLK, referring to sharing a repeated visit to same website, and ACRY,
referring to having recently traveled internationally . We found that participants were most sensitive
to sharing whether they are at work while performing a query (AWHR).

Questions about identifiability. We also asked questions in order to elicit sensitivity about dif-
ferent levels of data aggregation and identifiability. First, we sought to identify how different levels
of detail, or granularity (and hence, risk of being identified) affect sensitivity. More specifically, we
asked, how sensitive the participant was to sharing their location at the region, country, state, city, zip
code or address level. Figure 1(b) presents the mean sensitivity with 95% confidence intervals for this
experiment. We also asked the participants about how sensitive they would be if, in spite of sharing
the information, they would be guaranteed to remain indistinguishable from at least k other people
(thereby eliciting preferences about k of k-anonymity). Here, we varied k among 1, 10, 100, 1,000,
10,000, 100,000 and 1 million. Figure 1(c) presents the results of this experiment. The experiment
shows that study participants have strong preferences about the granularity of the shared informa-
tion. Moreover, as explained below in Section 5.4, we can use the information obtained from this
experiment to explicitly take into account peoples’ preferences when trading off privacy and utility.

Questions about utility. In addition to assessing the sensitivity of sharing different kinds of per-
sonal information, we asked the participants, what kind of improvement they would require in order
to share attributes of a given sensitivity level. More specifically, we asked: “How much would a
search engine have to improve its performance, such that you would be willing to share information
you consider 1/2/...”. As response options, we offered average improvements by 25%, 50%, 100%,
as well as immediately presenting the desired page 95% of the time (which we associated with a
speedup by a factor of 4). We also allowed the participant the option of selecting to opt for never shar-
ing information at the specified sensitivity level. Using the responses of this experiment, in addition
to the sensitivity assessments, we can establish sensitivity as a common currency of utility and cost.

5.2 Search log data and attributes
Our experiments are based on a total of 247,684 queries performed by 9,523 users from 14 months
between December 2005 and January 2007. The data was obtained from users who had volunteered
to participate in a data sharing program that would make use of information about their search
activities to enhance search. Our data contains only frequent queries which have been performed
by at least 30 different users, resulting in a total of 914 different queries. From the demographic
information and the search logs, we compute 28 different user / query specific attributes. In selecting
our attributes, we chose very coarse-granular discretization. No attribute is represented by more
than 2 bits, and most attributes are binary.

For demographic information, only location was available in the search log data (by inverse IP
lookup). We discretized the location into four broad regions (DREG).

The next set of attributes contains features extracted from search history data. For each query, we
determine whether the same query has been performed before (AQRY), as well as whether the
searcher has visited the same webpage (ACLK) before. The attribute AFRQ describes whether the
user performed at least one query each day. We also log the top-level domain (ATLV), determined
by reverse DNS lookup of the query IP address, and used only the domains .net, .com, .org and
.edu. In addition, we determined if a user ever performs queries from at least 2 different zip codes
(AZIP), cities (ACTY) and countries (ACRY), by performing reverse DNS lookup of the query IP
addresses. For each query, we also store whether the query was performed during working hours
(AWHR; between 7 am and 6 pm) and during workdays (AWDY; Mon-Fri) or weekend (Sat, Sun).

We also looked up all websites visited by the user during 2006 in the 16 top-level category of the
Open Directory Project directory (www.dmoz.org). For each category, we use a binary attribute
(acronyms start with T) indicating whether the user has ever visited a website in the category.

5.3 Computing Utility and Cost
We evaluate utility and cost based on the empirical distribution of the data. In order to avoid
overfitting with sparse data, we applied Dirichlet smoothing. In our experiments, we used 1000
independent samples in order to estimate U(A) and I(A).

We first used the greedy algorithm to select an increasing number of attributes, maximizing the utility
and ignoring the cost. Figure 2(a) presents the greedy ordering and the achieved entropy reductions.
The greedy algorithm selects the attributes ATLV, THOM, ACTY, TGAM, TSPT, AQRY, ACLK,
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Figure 2: Utility (a, top) and cost (a, bottom) for an increasing number of greedily chosen attributes.
(b) Tradeoff-curve for varying λ. (c) Calibrating the tradeoff.

AWDY, AWHR, TCIN, TADT, DREG, TKID, AFRQ in this order. After selecting these attributes,
the utility does not increase significantly anymore. The entropy reduction levels off at roughly 1.92
bits. Figure 2(a) clearly indicates the diminishing-returns property of click entropy reduction.

Similarly, we generate a greedy ordering of the attributes, in order of minimum incremental cost.
Figure 2(a) presents the results of this experiment, using the maxprob cost metric. As expected,
the curve looks convex (apart from small variations due to the sampling process). The cost initially
increases very slowly, and the growth increases as more attributes are selected. This behavior
empirically corroborates the supermodularity assumption for the cost metric.

5.4 Calibrating the tradeoff with the survey
In Section 5.3 we optimized utility and cost separately. We now use the scalarization (3.1) in order
to trade off utility and cost. In order to do that, we need to choose a particular tradeoff-parameter
λ. Instead of committing to a single value of λ, we use LS to generate solutions for increasing
values of λ, and plot their utility and cost. Figure 2(b) shows the tradeoff curve obtained from this
experiment. We can see that this curve exhibits a prominent knee: For values 1 ≤ λ ≤ 10, small
increases of the utility lead of big increases in cost, and vice versa. Hence, at this knee, one achieves
near-maximal utility at near-minimum cost, which is very encouraging.

In order to take into account people’s preferences in determining the tradeoff, we performed
the following calibration procedure. From the search log data, we determined, how increasing
details about a person’s location increase the privacy cost. As levels of detail, we vary the location
granularity from region (coarsest) to zip code (finest). For example, we computed the values
Im({zip code}), Im({city}), etc. from data. We compared these values with responses from the
survey as follows. As explained in Section 5.1, we asked the subjects to assess the sensitivity of
sharing the different location granularities. Similarly, we asked, which improvement in search
performance would be required in order to share attributes of a given sensitivity. With each level
of improvement, we associated a number of bits: A speedup by a factor of x would require log2 x
bits (i.e., doubling the search performance would require 1 bit, etc.). We then concatenated the
mappings from location granularity to sensitivity, and from sensitivity to utility (bits), and computed
the median number of bits required for sharing each location granularity.

We now perform linear regression analysis to align the identifiability cost curve estimated from data
with the curve obtained from the survey. The least-squares alignment is presented in Figure 2(c),
and obtained for a value of λ ≈ 5.12. Note that this value of λ maps exactly into the sweet spot
1 ≤ λ ≤ 10 of the tradeoff curve of Figure 2(b).

5.5 Optimizing the utility-privacy tradeoff
Based on the calibration described in Section 5.4, our goal is to find a set of attributes A maxi-
mizing the calibrated objective Fλ(A) according to (3.1). We use LS to approximately solve this
optimization problem. The algorithm returns the solution TSPT, AQRY, ATLV, AWHR, AFRQ,
AWDY TGMS, ACLK.

We also compared the optimized solution Aopt to various heuristic solutions. For example, we
compared it to the candidate solution Atopic where we select all topic interest attributes (starting
with T); Asearch including all search statistics (ATLV, AWDY, AWHR, AFRQ); AIP , the entire IP
address or AIP2, the first 2 bytes of the IP address. Figure 3 presents the results of this comparison.
The optimized solution Aopt obtains the best score of 0.90, achieving a click entropy reduction of
≈ 1.5. The search statistics Asearch performs second best, with a score of 0.57, but achieving a
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Figure 3: Comparison with heuristics

drastically lower utility of only 0.8. Perhaps surprisingly, the collection of topic interests, Atopic

results in a negative total score of -1.73, achieving less utility than the optimized solution. The
reason for this is that knowledge of the exact topic interest profile frequently suffices to uniquely
identify a searcher. As expected, the IP address (even the first 2 bytes) is quite identifying in this
data set, and hence has very high cost. This experiment shows that the optimization problem is
non-trivial, and the optimized solution outperforms heuristic choices.

6 Conclusions
We presented an approach for explicitly optimizing the utility-privacy tradeoff in personalized ser-
vices such as web search. We showed that utility functions like click entropy reduction satisfy sub-
modularity, an intuitive diminishing returns property. In contrast, privacy concerns behave super-
modularly; the more private information we combine, the higher sensitivity and risk of identifiability.
Based on these submodular utility and supermodular cost functions, we demonstrated how we can
efficiently find a provably near-optimal utility-privacy tradeoff. We evaluated our methodology on
real-world web search data. We demonstrated how the quantitative tradeoff can be calibrated accord-
ing to personal preferences, obtained from a user study with 1400 participants. Overall, we found that
significant personalization can be achieved using only a small amount of information about users.
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