
Detecting Devastating Diseases in Search Logs

John Paparrizos
∗

Columbia University
jopa@cs.columbia.edu

Ryen W. White
Microsoft Research

ryenw@microsoft.com

Eric Horvitz
Microsoft Research

horvitz@microsoft.com

ABSTRACT
Web search queries can offer a unique population-scale win-
dow onto streams of evidence that are useful for detecting
the emergence of health conditions. We explore the promise
of harnessing behavioral signals in search logs to provide
advance warning about the presence of devastating diseases
such as pancreatic cancer. Pancreatic cancer is often diag-
nosed too late to be treated effectively as the cancer has
usually metastasized by the time of diagnosis. Symptoms of
the early stages of the illness are often subtle and nonspe-
cific. We identify searchers who issue credible, first-person
diagnostic queries for pancreatic cancer and we learn mod-
els from prior search histories that predict which searchers
will later input such queries. We show that we can infer the
likelihood of seeing the rise of diagnostic queries months be-
fore they appear and characterize the tradeoff between pre-
dictivity and false positive rate. The findings highlight the
potential of harnessing search logs for the early detection of
pancreatic cancer and more generally for harnessing search
systems to reduce health risks for individuals.

Keywords
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ease detection; Pancreatic cancer; Temporal analysis

1. INTRODUCTION
Web search is a primary resource for people concerned

about the significance of health-related symptoms [16]. Re-
searchers have studied symptom and illness-related searches
in pursuit of insights about how people search about health
concerns, including patterns of querying and review of in-
formation in pursuit of diagnoses [54], healthcare utilization
signals [55], traces of therapeutic decision making for chal-
lenging illnesses [40], and identification of new adverse ef-
fects of medications [56, 57]. Prior studies have examined
how population-level signals in social media can be used to
detect the emergence of diseases [10, 19].
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Figure 1: Venn diagram depicting sets of users employed in
analyses: pancreatic cancer searchers (A), pancreatic cancer
searchers exhibiting experiential diagnostic queries (B), and
those who search for the symptoms of pancreatic cancer (C).
|A∪C| (i.e., number of users in original, pre-filtered dataset)
is 9.2 million. Positives and negatives are sourced from B∩C
and C \A, respectively. Relative set sizes are not to scale.

We explore the prospect of harnessing anonymized long-
term sequences of health-related search queries to yield in-
formation that could provide valuable signals for detection
of illness in advance of traditional diagnosis. Leveraging on-
line behavioral data to provide earlier detection of a disease
or of the raised risk of illness on a large scale can make sig-
nificant contributions to healthcare. Better outcomes can
be achieved by earlier confirmation of illnesses and risks via
gaining access to more timely diagnoses, treatments, and
other proactive interventions. As an example, such capabil-
ities might help to identify those at significant risk of suf-
fering the onset of advance of chronic disease processes such
as diabetes or heart disease or the rise of acute processes
such as atrial fibrillation or more severe cardiac arrhyth-
mias. Interventional programs ranging from changes in diet
or exercise to taking (or avoiding) certain medications can
yield significant health benefits.

The diagnosis for certain medical conditions can be par-
ticularly devastating if the chances of survival are typically
low at the time of diagnosis. Survival rates may be improved
significantly via earlier detection and treatment. With many
cancers, screening methods can be effective for early de-
tection and therapy [41], but they involve explicit testing
prompted by policies around risk factors such as family his-
tory [33] or medical history [14, 32]. Ideally, health screen-
ing systems would be able to observe people passively as
they engage in their normal activities and alert them (per
their preferences on vigilance) to potential health risks with-



out requiring the investment of time and effort in special
screening activities. Individual-level postings on social me-
dia have been mined for this purpose [10, 46], but may not
have representative coverage of symptoms associated with
social stigma [11].

We present a study of the feasibility of doing early de-
tection of devastating diseases based on large-scale logs of
health-related Web search activity. We consider the content
of queries over time, and the prospect that temporal rela-
tionships and patterns among queries over multiple sessions
over several months provide subtle fingerprints of lurking
illness. We focus on the early detection of the presence of
pancreatic cancer, a devastating diagnosis given the typical
progression of the disease to an inoperable situation by the
time it is found. Our work showcases the potential value of
innovative approaches for speeding up the time to diagnosis
of this deadly disease.

Pancreatic cancer is the fourth leading cause of cancer
death in men and women in the United States and the sixth
leading cause in Europe [36]. The illness is widely known
as being difficult to detect and is frequently diagnosed too
late to be treated effectively [22, 30]. A recent study found
that the progression of pancreatic cancer from stage I to
stage IV happens in just over one year [59]. Approximately
75% of pancreatic cancer patients die within a year of di-
agnosis, and only about 4% survive for five years post di-
agnosis. Exploration of the possibility that a patient has
pancreatic cancer involves a careful and costly considera-
tion of history, labwork, and imaging studies (in contrast to
the passive screening methods described in this paper) [45].
Screening is largely performed to detect the disease at an
early phase (pre-invasive or early invasive) when it is still
curable by surgical intervention and chemotherapy. Earlier
diagnosis of pancreatic cancer improves the feasibility of dis-
covering the illness at an earlier stage [7]. For patients diag-
nosed early who undergo curative surgery (e.g., a Whipple
procedure), five-year survival rate is higher, but it remains
less than 25% [58].

We take as a proxy for ground truth of a diagnosis of pan-
creatic cancer the detection of experiential diagnostic queries
issued by searchers. Experiential queries show strong evi-
dence of being linked to the actual presence of symptomatol-
ogy or conditions versus less directly involved, more distant
exploratory queries seeking information about symptoms or
diseases [40]. Experiential diagnostic queries for pancreatic
cancer are identified via consideration of the structure of
queries and of patterns of information gathering over mul-
tiple users in search logs. Experiential queries often include
first-person assertions such as [i was just diagnosed with pan-
creatic cancer ], which when associated with prior queries
about symptoms identifies the positive cases.

We construct models to predict the future rise of experi-
ential queries from longitudinal search data. Figure 1 shows
the different subsets of users in our analysis, including peo-
ple who search for pancreatic cancer (A), the subset of these
searchers who issue experiential diagnostic queries (B), and
those who search for a set of symptoms linked to pancreatic
cancer (C). Those who only search for one or more related
symptoms with no evidence of pancreatic cancer searching
constitute the negative cases. We find that our methods can
detect cases where people show evidence of being diagnosed
with pancreatic cancer many months in advance of their ex-
periential diagnostic queries.

We make the following contributions with this research:
• Introduce early detection of diseases as a promising new

application of search log mining and machine learning
that scales to millions of searchers.
• Present a case study on the early detection of pancre-

atic cancer from longitudinal individual search activity.
• Forecast with significant lead times that users will later

input experiential queries for pancreatic cancer.
• Explore the influence of different factors, such as the

lead time or the presence of specific symptoms in the
search activity, on the predictive performance of our
learned models, including true positive rates when false
positive rates are strictly controlled. Controlling false
positives is especially important to reduce unnecessary
costs and concerns given potential future applications
such as providing early warnings and suggestions to
searchers about undertaking more formal screenings.

We now describe related research in this important area.

2. RELATED WORK
Related research in a number of areas is relevant to our

work. These include (i) health searching; (ii) large-scale
analysis of search behavior; and (iii) methods for the early
detection of disease, with a focus on pancreatic cancer.

The Web is an important source of health-related infor-
mation for many people. To better understand how peo-
ple pursue health information, studies have examined online
health search using a variety of methods, including inter-
views [42], surveys [49], and analyses of large-scale search
log data [2, 5]. According to a 2013 survey, 59% of Amer-
ican adults had used the Web to find health information
in the year preceding the survey, 35% of those adults en-
gaged in self-diagnosis, and over half of these self-diagnosing
searchers then discussed the matter with a clinician follow-
ing the search [16]. Despite the potential benefits, concerns
have been raised about the quality of online health infor-
mation [8]. In a large-scale survey of the use of search for
self-diagnosis, White and Horvitz [53] found that almost 40%
of participants experienced increased anxiety from searching
health information online. Studies have characterized prob-
lems with symptom search, including the influence of poor
accounting for base rates of diseases and people’s bias to
focus on results covering serious illnesses versus more likely
benign explanations. Such biases can lead to inappropriate
anxiety [28, 53] and highlight the criticality of studying how
patients use the Web, including the nature and dynamics of
queries, and content delivered in response.

There has been a large amount of research on the analy-
sis of search behavior from search engine logs. Log analysis
provides insights to understand how people engage in in-
formation seeking in online settings [51], while also having
applications for tasks such as result ranking [1, 24], query
suggestion [25], prediction of future search actions and in-
terests [13, 27], and detection of real-world events and ac-
tivities [44]. Given access to population-scale data on how
people search for health information, this can be applied
for important tasks such as the detection of influenza [19],
the detection of adverse drug reactions [56], population-scale
studies of nutrition [50], epidemiology [19], and studies of
chronic medical conditions such as pregnancy [15]. Related
to this research, but focused on activity post-diagnosis, are
studies of cancer-related searching [3, 6, 21], some of which
have revealed strong similarities between temporal patterns



in search logs and those in practice [38, 40]. Studies have
leveraged online behavioral signals for early disease detec-
tion at the population level [19], and individually [11, 46].

Screening high-risk individuals for pancreatic cancer is the
only practical approach to detect precancerous or cancerous
changes in the pancreas at the phase in which surgical in-
tervention will have a high chance of cure [26]. Risk level
can be determined by factors such as race [9], family his-
tory [33], and a history of pancreatitis [32]. Imaging studies
via methods such as endoscopic ultrasound, computer to-
mography scans, and magnetic resonance imaging [35, 37]
have been useful to diagnose pancreatic cancer once the
tumor is large enough to cause unusual, salient symptoms
that induce people to seek medical attention (e.g., yellow
eyes, changes in stool), but at this point the disease is more
likely to be at an advanced and unresectable stage (i.e., lo-
cally advanced or metastatic, when it cannot be removed
by surgery) [29]. Common, seemingly innocuous symptoms
such as back pain, abdominal pain, itchy skin, unexplained
weight loss and nausea (and combinations and temporal pat-
terns of these and other symptoms) may also be observed in
the query stream. Such symptom searches can provide pat-
terns of symptoms that might one day be employed in new
kinds of health surveillance systems. Such systems could be
used to alert people who would otherwise not feel moved to
see a healthcare professional.

Active, explicit screening for early signs of pancreatic can-
cer is not cost effective unless there is a reasonable proba-
bility of detecting invasive or pre-invasive disease (at least
16% according to one study [45]). A log-based methodology
provides scale that is not achievable with more traditional
epidemiological studies, which tend to be on the order of
tens or hundreds of participants, e.g., [23, 43].

3. DATASET CREATION
We now describe the data used, starting with a description

of the logs (Section 3.1). We then discuss the creation of an
ontology with symptoms commonly experienced by people
with pancreatic cancer (Section 3.2) and provide details on
extracting pancreatic cancer and symptom searchers (Sec-
tion 3.3). We review the augmentation, tagging, and filter-
ing steps for our dataset (Section 3.4). Finally, we summa-
rize the creation of query timelines for the positive cases (i.e.,
experiential diagnostic searchers who also search for pancre-
atic cancer symptoms) and the negative cases (i.e., those
who only search for the symptoms) (Section 3.5). Since re-
liable labels cannot be determined for the non-experiential
pancreatic cancer searchers, we exclude them to create a
cleaner dataset for training and testing. We show later
(see Section 5.6) that predictive performance is largely un-
changed if these searchers are included as negative examples
during the application of the model in a realistic scenario.

3.1 Anonymized Web Search Engine Logs
Search engines track various characteristics during their

interaction with users so as to better capture information
needs, improve their responses, and personalize the content.
Every such interaction corresponds to a log entry that in-
cludes a unique, anonymized user identifier based on a Web
browser cookie. This enables the extraction of the search
history comprising queries and clicks from an identifier for
up to 18 months. Note that the identifier may comprise
the search activity of multiple users on shared machines and

does not consolidate activity from a user across multiple
machines. We use the logs of a randomly-selected subset
of Bing search engine users in the English-speaking United
States locale from October 2013 to May 2015 inclusive.

3.2 Symptoms and Risk Factors
Warning signs and symptoms for pancreatic cancer usu-

ally include generic, subtle signs and symptoms, such as
abdominal and back pain, loss of appetite, and unexplained
weight loss. We performed an extensive review of possible
signs, symptoms, and risk factors associated with pancre-
atic cancer and developed an ontology with 21 categories of
symptoms. This manually-curated ontology consists of two
levels. The first level includes the names of the symptoms
and the second level includes multiple names, synonyms, and
expressions with which the corresponding symptom in the
first level may appear in our data. We performed multiple
iterations of refinements of this ontology to remove noise and
to minimize erroneous query matches. Table 1 presents the
21 symptom categories with some representative examples
of associated query expressions. Also shown are 12 risk fac-
tors and associated synonyms, derived from the literature
(e.g., [31]), describing attributes, characteristics, or expo-
sures that may increase the likelihood of pancreatic cancer.
The symptoms and the risk factors are featurized in predic-
tive models, and they are also used in policies to determine
when predictive models should be applied (see Section 5.5).

3.3 Extraction of Searchers
In order to identify positive and negative cases for the

generation of our learned model, we built a dataset com-
prising two groups of users (Figure 1). The pancreatic can-
cer searchers group, denoted as A in the figure, includes
all searchers with at least one query explicitly on pancreatic
cancer (i.e., a query matches this expression [(‘pancreas’ OR
‘pancreatic’) AND ‘cancer’]). The symptom searchers group,
denoted as C, includes all users with at least one query re-
lated to symptoms linked to pancreatic cancer, as captured
by the symptoms and synonyms described in Section 3.2.

Having unique identifiers for each user in the union of A
and C (i.e., A ∪ C) permits the extraction of the full query
histories of 9.2 million searchers. We first sought to remove
searchers who are likely healthcare professionals (HCPs). To
do this, we employed a proprietary Bing classifier that iden-
tifies health-related queries to remove users from the study
for whom 20% or more of queries are health related. This
threshold was based on a prior analysis of identifying health
professionals in search logs [52].

3.4 Dataset Augmentation
Age and gender are important factors associated with de-

veloping pancreatic cancer [31, 36]. As such, we augmented
the dataset with demographic information from proprietary
search engine classifiers that estimate age (discretized as <
18, 18–24, 25–34, 35–50, or 50–85) and the gender for each
user. The classifiers are trained on data where ground truth
of demographic details are provided explicitly by users. The
predictions are based on signals derived from searchers’ long-
term search activity, including their search queries and Web
domains of their clicked results. Since pancreatic cancer in-
cidence rates vary by geographic location, we also annotated
searchers with the U.S. state from which they searched most
(based on reverse Internet provider (IP) lookup data).



Table 1: Ontology with symptoms, risk factors, and examples of associated synonyms for pancreatic cancer.

Type Name Example synonyms

Symptom

back pain pain in lower back, lowback pain
blood clot blood clots, thrombosis
dark or tarry stool dark poop, tarry feces
dark urine orange pee, brown urine
enlarged gall bladder swollen gallbladder, inflamed gallbladder
floating stool floating stool, floaters
greasy stool greasy poop, oily feces
high blood sugar frequent urination, sudden diabetes
itchy skin skin itching, hands itchy
yellow skin or eyes jaundice, yellow eyes
light stool pale stool, white crap
loss of appetite poor appetite, decreased appetite, not hungry
nausea or vomiting throwing up, nauseous
smelly stool stinky feces, smelly poop
sudden weight loss unexplained weight loss, weight loss sudden
taste changes changes in taste, dysgeusia
loose stool loose feces, loose stool, diarrhea
constipation constipated, backed up
indigestion acid reflux, heartburn
abdominal swelling or pressure swollen stomach, pressure abdomen
abdominal pain belly pain, stomach ache

Risk factor

alcoholism heavy drinking, alcoholics anonymous, alcoholic
hepatitis hep b, hep c
pancreatitis –
ulcers ulcer
obesity obese, very fat, extremely fat
smoking smoker, cigarette, cigar
chills or fever chills, fever
multiple endocrine neoplasia men1
hereditary nonpolyposis colorectal cancer lynch syndrome, hnpcc
von hippel-lindau syndrome hippel-lindau syndrome
hereditary intestinal polyposis syndrome peutz-jeghers syndrome
familial atypical multiple mole melanoma syndrome fammm, b-k mole syndrome

Beyond the demographic information, we are also inter-
ested in the subject matter of the queries and results that
were visited over searchers’ timelines. We augmented each
query and corresponding clicked websites with their esti-
mated Open Directory Project (ODP, dmoz.org) category.
We used a text-based classifier, similar to [4], that uses lo-
gistic regression to predict the ODP categories. When op-
timized for the score in each category, this classifier has a
micro-averaged F1 score of 0.60. For queries, the ODP cat-
egory is that of the top-ranked search result. The remaining
users after the augmentation and filtering steps total 7.4 mil-
lion, from which 479, 787 are pancreatic cancer searchers.

3.5 Positive and Negative Cases
We create query timelines for experiential pancreatic can-

cer searchers and experiential symptom searchers which we
then featurize for the early detection task. Figure 2 summa-
rizes the strategies for identifying positives and negatives.
To avoid including users with very short histories, we filter
out all users with less than five search sessions1 spanning five
different days. This reduced the population to 6.4 million
users, with a mean total duration (time from first to last
query for a user) of 210.32 days, standard deviation (SD) of
182.93 days, and interquartile range of 120 days.
Positive Cases: To identify experiential pancreatic cancer
users, we created a set of first-person diagnostic queries for
pancreatic cancer (denoted Exp0). Some examples of such
diagnostic queries are [just diagnosed with pancreatic can-
cer ], [why did i get cancer in pancreas], and [i was told i
have pancreatic cancer what to expect ].

From the set of 479, 787 pancreatic cancer searchers, 3, 203
match the pattern of diagnostic queries. In order to consider
them as experiential users, we require them to have searched
at least for one symptom prior to the diagnosis query. This

1
Session is a query sequence with ≤ 30 minutes between queries [51].
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Figure 2: Schematic illustration of the query timelines used
in the selection of positive and negative cases. S0 refers to
the first symptom query and Exp0 is the first experiential
diagnostic query. α is the duration of the symptom lookup
period, which was approximately equal in the aggregate for
the positives and negatives. β is the duration of the period
of diagnosis, set to one week in this study.

step generates a set of 1, 072 query timelines of experiential
searchers that contain periods of symptom lookup followed
by the diagnostic query. The symptom lookup period starts
when the first symptom is detected as matching terms rep-
resented in the symptom ontology. For positive cases, the
symptom lookup period completes at least one week before
diagnosis (i.e., we consider the week before the diagnostic
query as the period of diagnosis in real life and do not count
queries in that time since they may be polluted with ground
truth signals). For reliability, especially given the need to
compute Temporal features (Section 4.2), the minimum time
period for which our features are computed is four weeks.
Negative Cases: To generate the negative set, we sample
from the users who searched for pancreatic cancer symptoms
but did not search for pancreatic cancer anywhere in their
timeline (i.e., C \ A), either before or after the symptom
lookup period. Performing this additional check on data



Table 2: Summary statistics, namely, mean (M), standard
deviation (SD), and number of cases (N), of durations and
numbers of queries in positive and negative datasets.

Class Duration (days) Total # queries N
M SD M SD

Positives 109.34 49.66 380.66 150.83 1,072
Negatives 108.04 48.35 378.09 151.01 3,025,046

from outside the lookup period is required to increase the
likelihood that the negative cases are indeed negative. Users
who searched for pancreatic cancer and its symptoms, but
did not issue an experiential query (the gray subset in Fig-
ure 1 representing (A∩C) \B), were excluded since a label
could not be reliably determined. In Section 5.6 we describe
an additional experiment where pancreatic cancer searchers
were included during model testing.

We were concerned that rudimentary behavioral differ-
ences that may reflect artifacts in the data could invalidate
the learning task. For example, if our experiential users were
just more active generally, then a feature that computed the
total number of queries would have strong predictive value,
yet would be uninteresting scientifically. We sought to ad-
dress this by downsampling the negative cases to attain a
similar distribution of symptom lookup periods in terms of
the temporal duration and query volume as observed for
the positive cases.2 We did this by selecting users with a
symptom lookup period duration within three standard de-
viations of the mean of the positive cases. This reduces the
number of negative cases to 3,025,046. Table 2 presents the
summary statistics on the symptom lookup periods in terms
of the number of days and the number of queries in the two
datasets. The table shows that the distributions for positive
and negative cases (in terms of number of days and number
of queries) are similar. The distributions are statistically in-
distinguishable using two-sample Kolmogorov-Smirnov tests
for temporal duration (D = 0.005; p = 0.7017) and number
of queries (D = 0.003; p = 0.7681), even though the latter
was not a filtering criterion. We note that query timelines
are not aligned: the absolute point in time where people is-
sue the experiential diagnostic query, and the accompanying
symptom lookup period can differ between searchers.

4. EARLY DETECTION
We now present the problem, summarize features extracted

from query timelines, and review the prediction model.

4.1 Problem Description
We address the problem of early detection of experien-

tial searchers for pancreatic cancer via anonymized Web
search engine logs. We cast this as a binary classification
task, where the model is trained on features extracted from
search log query timelines of experiential pancreatic cancer
searchers and symptom-only searchers. We focus on main-
taining very low false-positive rates (i.e., 1 misprediction in
100k correctly identified cases) while keeping high the imbal-
ance ratio of positive and negative cases (i.e., one thousand
positives vs. millions of negative cases); these properties are
important for potential future large-scale real-world appli-
cations such as an alerting mechanism in search engines.

2
We could also have addressed this by making all features relative per-

centages. Sampling gave us more flexibility in feature construction.
As an additional check, we included features such as the number of
queries in the symptom lookup period; those were found to carry little
evidential weight in the learned model.

4.2 Features
We now describe the features extracted from query time-

lines. We group our features into five different categories:
(i) demographic information about the user; (ii) characteris-
tics about user sessions, query classes, and URL classes; (iii)
characteristics about symptoms; (iv) features that capture
the temporal dynamics, and (v) risk factors.
Demographics: Cancer statistics from the U.S. National
Cancer Institute3 show that pancreatic cancer is more com-
mon with increasing age, is slightly more common in men
than in women, and varies by geographic location. As such,
we develop features related to the demographics of the users.
In particular, we use the estimated age bucket and gender
(see Section 3.4) along with the classifier’s probabilities as
confidence values. The dominant location (U.S. state) of a
searcher is also included as a feature.
Search Characteristics: People express their information
needs and preferences through queries and click behavior
(i.e., the website visits). We extract various features to cap-
ture these search and retrieval activities. As we discussed
previously, the queries, as well as the visited websites, were
tagged with their ODP category in an attempt to identify
domains of interest (see Section 3.4). A first set of fea-
tures SearchHistory contains several generic statistics, such
as counts, ratios, and percentages, which are characteristics
of the global behavior of the user. For example, we compute
the number of queries, sessions, and clicks, as well as ratios
of clicks per query for each user. Then, we compute a large
number of features with respect to the ODP categories of
queries QueryTopic, clicked search results URLTopic, and
the combination QueryURLTopic. These include compute
counts and percentage of queries and sessions in each ODP
category, the average time until queries appear in the same
category, as well as the time of the day that queries appear
in each category. Similar features are also computed for each
category of the visited websites (e.g., counts, ratios, and per-
centages of visited websites that belong to each category).
We additionally compute features to characterize the user
sessions, including features that capture the click behavior
of users associated with queries. For example, we compute
counts and percentages of all the combinations of query cat-
egories that led to visits in website categories.
Symptoms: Features described above attempt to capture
generic characteristics from user sessions. However, for the
problem of interest, we seek to also leverage features from
queries containing terms captured in the symptom ontology
for pancreatic cancer (Section 3.2). The symptom features
are divided into two classes: (i) SymptomGeneric and (ii)
SymptomSpecific. Generic symptom features contain counts
and percentages for the queries and sessions matching symp-
toms in our ontology, the average time between symptom
queries, as well as the average number of symptom queries
that are issued daily. Specific symptom features are gener-
ated per symptom category. For example, for each symptom,
we compute counts and percentages of appearance, the time
between distinct symptoms, and the time of day such symp-
tom queries are issued. As with the user session features, we
combine symptoms to capture the click behavior and, hence,
we compute counts and percentages of each symptom query
leading to a visit on a website belonging to particular ODP
categories. Finally, we define features that capture the se-

3
http://seer.cancer.gov/statfacts/html/pancreas.html



Table 3: Performance at four-week intervals for users where
features can be computed from Exp0 – 1 week to Exp0 –
21 weeks. Values averaged across the ten folds of cross-
validation. The significance of differences in AUROC and
TPR using paired t-tests for each week versus Exp0 – 1
indicated * p < 0.01, ** p < 0.001, and *** p < 0.0001.
Weeks denote lead time before Exp0 (β in Figure 2).

Weeks
before

TPR (as %) at FPRs ranging from 0.00001–0.1 AUROC

Exp0 0.00001 0.0001 0.001 0.01 0.1

1 week 7.122 10.386 20.772 36.202 71.810 0.9112
5 weeks 7.122 10.979 20.178 34.421 70.620 0.9047
9 weeks 7.122 10.683 18.991* 33.234* 70.023 0.8854*
13 weeks 7.122 9.792 17.804* 32.937* 67.359* 0.8700*
17 weeks 6.825 9.199* 17.209* 32.640** 64.688** 0.8539**
21 weeks 6.528* 9.199* 16.319** 32.345** 61.424*** 0.8315**

quence in which symptoms appear in query timelines.
Temporal: All previous features produce aggregated statis-
tics over the full time window under consideration. Follow-
ing [34], we include a set of features to capture the temporal
variation of these statistics over misaligned query timelines
with noise and missing values. For every feature, we gen-
erate a time series with points that represent aggregated
values for intervals of the time window. For example, each
feature can be computed per month, per week, or per day,
depending on the level of granularity we seek to capture.
Since the occurrence of specific features can be sparse, we
set the time window to four weeks for temporal features. For
features that are not percentages or ratios, we also compute
the cumulative time series. For each time series, we use the
first coefficient of the linear least-square estimates to devise
features that capture the trend (i.e., increasing, decreasing,
and unchanged) and the rate of change (i.e., slope).
Risk Factors: This class contains features related to the
presence of terms representing risk factors in the symptom
lookup period. For each risk factor, we note its presence
or absence, and also the number of queries containing that
risk factor and the fraction of all queries from that user that
these risk factor queries represents. Total number of distinct
risk factors in the symptom lookup period is also a feature.

4.3 Prediction Model
The prediction model uses the features outlined in the

previous section, computed for each searcher, to make pre-
dictions about the future occurrence of experiential diag-
nostic searches in each searcher‘s query timeline. We use
gradient boosted trees [17], which employ an ensemble of
decision trees to construct a better learned model. Advan-
tages include the ability to capture non-linear relationships,
model interpretability (e.g., a ranked list of important fea-
tures is generated), facility for rapid training and testing,
and robustness against noisy labels and missing values. We
experimented with different learning algorithms, but gradi-
ent boosted trees yielded superior accuracy.

5. EXPERIMENTAL RESULTS
We now present the findings of our experiments. We re-

port the overall performance in Section 5.1 and the per-
formance as we increase the lead time before the first ex-
periential diagnostic query (Section 5.2). We then inspect
the model to understand the contributions that each fea-
ture makes towards early detection (Section 5.3) and the
performance of different feature classes (Section 5.4). We
examine the effect on model performance of conditioning on
symptoms and risk factors (Section 5.5) and consider a re-
alistic deployment scenario (Section 5.6). We use the area
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Figure 3: Average partial ROC curves in the FPR range
0–0.01, for models learned using data up to 21 weeks before
the first experiential diagnostic query (error bars excluded
for clarity). Variance in FPR and TPR is minor.

under the receiver operating characteristic curve (AUROC)
and recall (TPR, true positive rate) at fixed, extremely low
false positive rates (FPRs) as our primary evaluation met-
rics. We applied 10-fold cross validation, stratified by user
to evaluate the generalizability of the model when applied
to new users. Significance level is p < 0.05 unless stated.

5.1 Overall
The overall performance of the classifier in making pre-

dictions based on data up to the beginning of the period of
diagnosis (i.e., Exp0 – 1 week) in AUROC is 0.9003. Given
that low error rates would be vital in practice to avoid un-
necessary patient alarm, we focus on the true positive rate
(fraction of all positives that are recalled by the model) at
low false positive rates (FPR). Focusing on FPR in the range
0.00001–0.01, the model is able to recall 5–30% of the posi-
tive cases, depending on the specific FPR. We see this perfor-
mance as promising given the limited information (primarily
search-related activity) available to the model.

5.2 Performance by Week
A key part of early detection is being able to predict the

emergence of the disease well in advance. To understand how
prediction performance changed as we move further back
in time before the first experiential diagnostic query we se-
lected the set of 337 positive searchers and 945,394 negative
searchers who were still observed in the logs many weeks
prior to the experiential diagnostic query. We report results
from one week before the experiential diagnostic query, all
the way up to 21 weeks before the diagnostic query. To
count as being present at Exp0 – 21 weeks, a searcher needs
to have symptom queries extending back at least four weeks
before that point (i.e., to Exp0 – 25 weeks, or approximately
six months before the first experiential diagnostic query).

We trained a model for these users in the same way as
we did for Section 5.1. The ratio between positive and neg-
ative searchers remains similar to that for all users (i.e.,
approximately 1:3000). Table 3 reports the TPR at differ-
ent false positive rates for this same set of users at different
four-week increments, as well as the AUROC. The general
trend is that the performance drops fairly consistently as
we increase the lead time, but even 20 or so weeks before
the first experiential diagnostic query the predictive perfor-



Table 4: Top 10 features by evidential weight relative to the
top feature. “Positive” or “Negative” direction means that a
feature correlates positively or negatively, respectively, with
the rise of experiential queries.
Feature Weight Direction Class

NumOfDistinctSymptoms 1.0000 Positive SymptomGeneral
NumOfQueriesInHealthCategory 0.8253 Positive QueryTopic
NumOfDistinctSymptomsVariants 0.6899 Positive SymptomGeneral
AgeClassProbability 5085 0.6889 Positive Demographic
HasBackPain 0.6622 Negative SymptomSpecific
HasIndigestion 0.6432 Negative SymptomSpecific
HasIndigestionThenAbdominalPain 0.6349 Positive Temporal
SlopeNumOfDistinctSymptoms 0.6154 Positive Temporal
HasBackPainThenYellowSkinOrEyes 0.6004 Positive Temporal
AgeClassProbability LT18 0.5869 Negative Demographic

mance is still quite strong (AUROC=0.8315, TPR=6.528%
at FPR=0.00001). Assuming that pancreatic cancer pro-
gresses steadily from stage I to stage IV in just over one
year (as has been previously reported [59]), accurate predic-
tions 20 weeks in advance of the diagnostic period could lead
to a sizable increase in the five-year survival rate (e.g., mov-
ing the point of diagnosis from Stage III to Stage II could
increase the survival rate from 3% to 5–7% [47]).

Focusing on the FPR region from 0 to 0.01 (i.e., false pos-
itives occur less than 1 in 100 times) and visualizing that
part of the ROC curve (Figure 3) we observe some clear
differences in the performance of the models in this impor-
tant region. The average normalized partial AUROC ranges
from 0.292 (Exp0 – 1 week) to 0.231 (Exp0 – 21 weeks). All
differences in AUROC for Exp0 – 5 or more weeks versus
Exp0 – 1 week are significant (p < 0.01 using paired t-tests).

5.3 Feature Contributions
In addition to understanding the overall performance, we

are also interested in understanding the features that are
most important in the learned model for predicting the fu-
ture issuance of experiential queries. Table 4 shows the
top 10 features with the highest weight, along with their
weight relative to the top-ranked feature (NumOfDistinct-
Symptoms) and the feature class. The direction is based
on the correlation between the feature value and the labels
in the training data, using Pearson biserial correlation or
the phi coefficient, depending on whether or not the fea-
ture data is binary. Table 4 shows that there is a broad
range of features. The number of distinct pancreatic cancer
symptoms was the most important feature. Temporal fea-
tures representing changes over time and sequence ordering
of symptom pairs are also important. Age is important, and
it is positively correlated if the searcher is older and is neg-
atively correlated if they are younger. Individual symptom
features related to back pain and indigestion are important
but have a negative influence on predicting future experien-
tial queries, likely because (i) there are many explanations
for why these symptoms appear in a query timeline, and (ii)
they are positive for many negative cases (16.7% of negatives
search for back pain, 7.4% search for indigestion).

5.4 Feature Classes
Beyond the individual features, we can also consider the

accuracy of the models based on feature classes. This can
be particularly important when some classes of features are
easy to obtain in practice, e.g., the demographic features
may be available for all searchers without the need to per-
form temporal modeling of query patterns. Table 5 presents
the AUROC for models trained on each of the feature classes.
The findings show that the Temporal class is particularly im-
portant, signifying the key role of temporal dynamics for this
prediction task. The model is still accurate solely with access

Table 5: Performance of individual feature classes (as AU-
ROC and TPR at a FPR of 0.00001) averaged across the 10
experimental folds. The performance differences against the
Overall performance are statistically significant using paired
t-tests at * p < 0.01, ** p < 0.001, and *** p < 0.0001.

Feature Class AUROC TPR (as a %) at
FPR=0.00001

Demographic 0.6565*** 0.280%***
RiskFactor 0.6988*** 0.653%**
SearchHistory 0.7202*** 1.399%**
QueryURLTopic 0.7597** 2.052%**
SymptomGeneral 0.7672** 2.146%**
URLTopic 0.7753** 2.332%*
SymptomSpecific 0.8176* 2.800%*
QueryTopic 0.8137* 2.892%*
Temporal 0.8391* 2.985%*
Overall 0.9003 4.851%

to demographics and basic features about general searching.
However, performance improves considerably if we consider
the specifics of the symptoms searched (SymptomSpecific) or
the topics of the queries and results clicked (QueryTopic).

5.5 Symptoms and Risk Factors
We also considered the impact of the presence of symp-

toms and risk factors on the performance of the model.
• Symptoms: We filtered the positive and negative cases to

those where a symptom was present in query timelines.
• Risk factors: These are risk factors corresponding to the

presence of factors such as pancreatitis, smoking, and
obesity, as well as cancer syndromes such as hereditary
intestinal polyposis syndrome or familial atypical multi-
ple mole melanoma syndrome (i.e., genetic disorders that
predispose individuals to develop pancreatic cancer), all
of which have been shown to lead to increased likelihood
of developing pancreatic cancer [18, 20, 32, 48].

Recall that our cross-validation was stratified by user. Dur-
ing cross validation, we learned a model on the users in the
training folds and then for testing we limited to users with
evidence of the specific symptoms or risk factors in their
search history prior to the experiential diagnostic query. In
each case the number of positives and negatives is less than
the full set.4 Table 6 presents statistics on the performance
for each model where the number of positive examples was
at least 10 (to help ensure that AUROC calculations were
meaningful). The table also presents TPRs at different false
positive rates, as well as the percentage of positive or neg-
ative cases that have the symptom or risk factor searches.
Finally, the last three columns shows the estimated num-
ber of true positives (capture) and false positives (cost) that
would be observed, assuming a FPR of 0.00001, and the as-
sociated capture-cost ratio. Ideal targets for rates of capture
versus cost in a deployed service can be derived via a deci-
sion analysis that considers the net expected value of the
early detection and the expected costs of unnecessary anxi-
ety. Such an optimization would leverage a careful charac-
terization of the value of early intervention and details of
designs of methods for engaging people.

Table 6 shows that focusing on users who search for risk
factors such as smoking, hepatitis, and obesity leads to bet-
ter overall performance. There were fewer than ten users
searching for each of the cancer syndromes (e.g., hereditary
nonpolyposis colorectal cancer) and, hence, they were ex-
cluded from Table 6. Focusing on the percentage of posi-

4
An alternative would be to train a separate model for symptom or

risk factor. An issue with doing that is there are insufficient positive
examples about each dataset with which to train a robust model.



Table 6: Performance of the models conditioned on a variety of symptom (S) and risk factors (RF). Values below the dashed
line have a higher AUROC than Overall. Capture represents the number of TP cases in the cohort of positives ∪ negatives at
FPR=0.00001. Cost is computed as the target FPR (.00001) multiplied by the size of the negative set in each subgroup. Since
this exact FPR may not be attainable in each subgroup, cost may not be an integer.. A capture-cost ratio of > 1.0 means that
more people would benefit from an alert than would be mistakenly alerted. Statistically significant differences with Overall
model (DeLong’s test [12]) are marked ** p < 0.001 and *** p < 0.0001 (where α following a Bonferroni correction is 0.002).

Symptom or Risk Factor TPR at FPRs ranging from 0.00001–0.1 AUROC # pos (%) # neg (%) FPR = 0.00001
0.00001 0.0001 0.001 0.01 0.1 Capture Cost Capture/Cost

Dark or tarry stool (S) 7.692 7.692 23.077 38.462 46.154 0.7173*** 13 (1.2%) 58,597 (1.9%) 1 0.5860 1.7066
Abdominal swelling (S) 4.167 8.333 16.667 20.833 45.833 0.7735*** 24 (2.2%) 45083 (1.5%) 1 0.4508 2.2183
Ulcers (RF) 0.000 0.000 0.000 7.895 50.000 0.7894*** 38 (3.5%) 16,081 (0.5%) 0 0.1608 0.0000
Dark urine (S) 0.000 5.556 16.667 27.778 50.000 0.8129** 18 (1.7%) 51,236 (1.7%) 0 0.5124 0.0000
Pancreatitis (RF) 6.061 9.091 12.121 24.242 54.546 0.8220** 33 (3.1%) 34,184 (1.1%) 2 0.3418 5.8514
Abdominal pain (S) 5.385 10.000 16.923 32.308 60.000 0.8343** 130 (12.1%) 311,266 (10.3%) 7 3.1127 2.2489
Enlarged gallbladder (S) 0.885 2.655 9.735 25.664 53.982 0.8358** 113 (10.5%) 98,454 (3.3%) 1 0.9845 1.0157
Constipation (S) 3.529 7.059 9.412 22.353 57.647 0.8469** 85 (7.9%) 317,300 (10.5%) 3 3.1730 0.9455
Smoking (RF) 3.846 3.846 7.692 15.385 53.846 0.8585 26 (2.4%) 27,817 (0.9%) 1 0.2782 3.5945
Blood clot (S) 4.494 10.112 14.607 31.461 61.798 0.8589 89 (8.3%) 351,385 (11.6%) 4 3.5139 1.1383
High blood sugar (S) 6.135 8.896 16.564 31.595 60.429 0.8611 326 (30.4%) 429,543 (14.2%) 20 4.2954 4.6561
Nausea or vomiting (S) 3.200 8.800 17.600 30.400 63.200 0.8706 125 (11.7%) 639,502 (21.1%) 4 6.3950 0.6255
Chills or fever (RF) 3.636 7.273 20.909 30.909 65.455 0.8727 110 (10.3%) 357,536 (11.8%) 4 3.5754 1.1188
Loose stool (S) 4.615 7.692 18.462 35.385 72.308 0.8756 65 (6%) 74,720 (2.5%) 3 0.7472 4.0150
Indigestion (S) 7.547 12.264 20.755 38.679 68.868 0.8932 106 (9.9%) 504,462 (16.7%) 8 5.0446 1.5859
Itchy skin (S) 18.750 25.000 25.000 25.000 75.000 0.8982 16 (1.5%) 79,448 (2.6%) 3 0.7945 3.7760

Back pain (S) 7.801 14.184 19.858 34.752 69.504 0.9047 141 (13.2%) 223,586 (7.4%) 11 2.2359 4.9197
Yellow skin or eyes (S) 2.174 5.439 19.565 38.044 73.913 0.9217 92 (8.6%) 85,805 (2.8%) 2 0.8581 2.3307
Hepatitis (RF) 7.692 10.256 20.513 38.462 71.795 0.9275 39 (3.6%) 25,158 (0.8%) 3 0.2516 11.9237
Alcoholism (RF) 12.500 16.667 27.083 41.667 89.583 0.9494** 48 (4.5%) 32,333 (1.1%) 6 0.3233 18.5586
Obesity (RF) 20.690 20.690 37.931 62.069 82.7590 0.9572** 29 (2.7%) 22,153 (0.7%) 6 0.2215 27.0880

Overall 4.851 8.302 17.258 36.474 72.015 0.9003 1,072 (100%) 3,025,046 (100%) 52 30.2505 1.7190

tives and negatives that contain each of the symptoms or
risk factors, we observe that there are some that are much
more likely to occur in positives (e.g., pancreatitis and smok-
ing are 5.9 and 3.6 times as likely, respectively). Focusing
on the utility, we find that if we set the FPR to 0.00001,
overall we would find 52 positives in the union of positives
and negatives at the expense of 30 negatives, who would
be altered mistakenly. There are some symptoms and risk
factors for which the capture-cost is more favorable. For ex-
ample, in the case of alcoholism or obesity, we would find
20–30 times as many TPs as FPs. There are others symp-
toms such as nausea or vomiting, or chills or fever, where the
costs in mistakenly alerting users equal or outweigh the ben-
efits. Presence of symptoms or risk factors could help decide
whether to apply early detection models for a searcher.

5.6 Applying Learned Model in Practice
Up to now, our model considers experiential diagnostic

users as positives and symptom-only users as negatives. This
is a clean dataset for algorithm training and testing but it
ignores the symptom searchers who issue non-experiential
pancreatic cancer searches (gray region in Figure 1). These
users may have been diagnosed or may simply be exploring.
Regardless, they should be considered in practice.

We perform an additional experiment on a separate set of
symptom searchers that included non-experiential pancre-
atic cancer searchers as negatives. We trained a model on
all data described thus far and applied it to identify (i) expe-
riential and (ii) experiential+treatment users in a new held
out dataset in advance of their first experiential diagnostic
query. We generated the test set from logs of a separate
randomly selected subset of Bing users, over an 18-month
period from August 2014 to January 2016 inclusive. There
was no overlap in users with the set used for training. We
identified positive cases as earlier and expanded the defi-
nition of negatives to include pancreatic cancer searchers.
This resulted in 2.9 million negatives, including 48,221 non-
experiential pancreatic cancer searchers, and 945 experien-
tial searchers with preceding symptom searches. To help
target the identification of cases where experiential queries
are issued, we created a subset of the positives who issued
treatment-related queries following Exp0 (e.g., whipple pro-
cedure, 5-fu); in total, 494 users (52%) met this requirement.

Table 7: Average AUROC and average TPR (as %) at
FPR=0.00001 for identifying experiential users and experi-
ential+treatment users from held out dataset. Differences in
AUROC and TPR between Exp0 – 1 week and other weeks
noted (*** p < 0.001, ** p < 0.001, and * p < 0.01).

Weeks
before

Experiential Experiential+Treatment

Exp0 AUROC TPR (%) AUROC TPR (%)
1 week 0.9012 8.677 0.9225 12.145
5 weeks 0.8892 8.571 0.9089* 11.943
9 weeks 0.8754** 8.278* 0.8902** 11.343*
13 weeks 0.8611** 8.018** 0.8795** 10.738**
17 weeks 0.8456*** 7.666** 0.8683*** 10.400***
21 weeks 0.8330*** 7.438*** 0.8508*** 9.645***

The symptom lookup durations for positives and negatives
were similar to Section 3.5. We randomly split the test data
into ten equally-sized subsets for significance testing. Table
7 reports the predictive performance at different lead times.

Table 7 shows that the performance of the model remains
strong on this held-out set and is comparable to that re-
ported in the earlier sections. The performance decreases
with increased lead time as noted previously (see Table 3).
Interestingly, the performance in identifying the subset of
experiential diagnostic users who subsequently searched for
treatments is higher than for the experiential-only set. This
is promising confirmatory evidence as these users are as-
sumed to have experienced a cancer diagnosis, per defini-
tions of experiential queries [40].5

6. DISCUSSION AND CONCLUSIONS
We studied the potential feasibility of learning from search

engine logs to predict future issuance of experiential queries
about pancreatic cancer at a low error rate. The success
of these methods has implications for online methods that
would provide passive screening of searchers to provide early
warning about potential signs of pancreatic cancer and other
devastating diseases. We discovered that conditionalization
on different symptoms and risk factors can enhance predic-
tive power. We found capture-cost tradeoffs associated with

5
For completeness, we also trained a model on all data from earlier in

the paper, including the non-experiential pancreatic cancer searchers
as negative cases, and tested it on this held-out set. The performance
is around 5% lower than reported in Table 7, for both AUROC and
TPR, across all weeks. Including the non-experiential pancreatic can-
cer searchers may add noise to model training.



different symptoms and risk factors in terms of the total
number of truly positive cases identified versus the number
of searchers who would be mistakenly alerted. We charac-
terized model performance as we increase lead time and we
found that we can attain a TPR in region of 5–30%, while
controlling the FPR to 0.00001–0.01 months before a di-
agnostic query is observed. Looking forward, we seek to un-
derstand the costs and clinical significance of these methods,
including how they might offer early warning of devastating
disease onset to enhance outcomes (e.g., quality of life).

Despite the promising findings, we note several important
limitations. First, we lack explicit ground truth about di-
agnoses per the anonymity of our logs. We rely on models
of self-reporting in queries. We have found that streams of
queries following the experiential queries can provide confir-
matory evidence of pancreatic cancer diagnoses. Indeed, in
the weeks immediately following the experiential diagnostic
query, over 40% of searchers queried for treatment options,
with many using sophisticated terminology (e.g., Whipple
procedure, pancreaticoduodenectomy, neoadjuvant therapy)
and over 20% of searchers searched for pancreatic cancer
medications (e.g., gemcitabine, 5-fu). In contrast, only 0.5%
and 0.02% of searchers in our negative set searched for treat-
ments and medications, respectively, at any point in their
query timeline. We need to work with diagnosed patients to
understand (i) the relationship between experiential search-
ing and diagnosis; and (ii) the model performance with the
use of traditional data as ground truth about diagnoses (e.g.,
medical records). We also need to understand the role of
factors such as race [9], family history [33], medical his-
tories [32], diabetes [14], and other factors (e.g., smoking
[18]). Some of these can be crudely estimated from geo-
graphic and census data (race), whereas others (family and
medical histories) are best sought from searchers directly. To
reflect anticipated performance in a natural setting, we fo-
cused on our imbalanced dataset. We re-ran the analysis
with a balanced set, with highly similar results. Finally, we
note that this is a retrospective analysis for model train-
ing/testing and we need to consider its representativeness
for real-time screening, e.g., identifying negative cases in the
retrospective study relies on symptom lookup durations. Po-
tential additional analyses include explorations of predicting
on fixed dates versus at the end of the observation period.

We are interested in several research directions. We be-
lieve it would be valuable to collect ground truth data, e.g.,
via targeted surveys, where responses and electronic health
records could be linked (given consent) to long-term search
activity. There is opportunity to develop more sophisticated
time-series models and with applying our methods to other
diseases. We leave to future reflection and efforts the de-
sign of methods for fielding the methods. We seek to engage
with the medical community on directions for deploying the
technology. In a recent sister publication, we shared these
findings with practicing oncologists [39]. For real-world de-
ployment, we need to consider whether online services would
wish to provide individuals with early warnings about un-
diagnosed diseases given false positive rates, anxiety and
associated costs of ruling out illness, privacy implications,
and liability concerns. Beyond alerting searchers, a system
could provide summaries of symptom searches as talking
points for dialog with a medical professional, or contact a
physician on the individual’s behalf. One could imagine ser-
vices enabling users to opt-in to such screening programs

with appropriate education and caveats about false-positive
rates and their associated costs. In another approach, mod-
els could be trained from anonymized data yet fielded in
a private manner, e.g., as an application on a searcher’s
smartphone. Future work should consider the value of the
search-centric analyses in the context of more traditional
screening methods such as direct (active) cancer screening.
Larger designs would consider how the search-based meth-
ods could be integrated with traditional screening to develop
a more cost-effective screening program. Such work would
require a careful consideration of the accuracies and costs
of pre-screening and screening and the expected benefits of
increased rates of survival associated with different policies.
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