

Performance and Preferences:

Interactive Refinement of Machine Learning Procedures

Ashish Kapoor, Bongshin Lee, Desney Tan and Eric Horvitz

Microsoft Research
{akapoor, bongshin, desney, horvitz}@microsoft.com

Abstract

Problem-solving procedures have been typically aimed at
achieving well-defined goals or satisfying straightforward
preferences. However, learners and solvers may often
generate rich multiattribute results with procedures guided
by sets of controls that define different dimensions of
quality. We explore methods that enable people to explore
and express preferences about the operation of classification
models in supervised multiclass learning. We leverage a
leave-one-out confusion matrix that provides users with
views and real-time controls of a model space. The
approach allows people to consider in an interactive manner
the global implications of local changes in decision
boundaries. We focus on kernel classifiers and show the
effectiveness of the methodology on a variety of tasks.

Introduction

To date, preferences about the operation of learning and

reasoning procedures have been expressed in relatively

simple forms, such as “achieve the highest classification

accuracy” for a learning task. However, computational

procedures for learning and reasoning may generate rich,

multiattribute partial and final results (Horvitz 1988),

providing opportunities for control and design of learning

and reasoning in accordance with human preferences.

Rather than seeking to predefine preferences, human

assessments of the multiattribute utility of results and

behaviors of an automated reasoning system may best be

defined in terms of an interactive exploration of tradeoffs

in the operation of a solver or classifier.

We explore the use of interactive procedures to give

system designers or end users the ability to control

multiple dimensions of details of the performance of

multiclass learning. As an example, in a multiclass setting

misclassification costs are often asymmetric and depend on

user and task. For example, people may have different

preferences about the operation of a junk email filter where

a classifier with a low false-positive rate may be preferred

Copyright © 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

over other models given equivalent overall performance.

Details about this preference may vary by person.

In general, the performance of classifiers can be

described with multiple attributes. The preferences about

the performance of classifiers can be encoded as a

multiattribute utility function, and can dictate the selection

of best models and parameters. When a predefined utility

function over different attributes is available, it can guide

automated optimization of models and parameters.

However, system designers or users may not have access to

such assessed preferences. In many cases, detailed

preferences might be first defined in the context of specific

classification tasks and data: details of the performance of

classifiers may interact with goals in unforeseen ways. In

such cases, traditional numerical optimization methods

cannot help to identify optimal parameters a priori.

Preferred behavior might be selected most efficiently via

an interactive “dialog” where people have a conversation

with a learning procedure about alternate solutions.

We explore methods for allowing people to directly

manipulate the operation of machine-learning procedures

via a human-in-the-loop methodology. We seek to provide

people with tools for exploring tradeoffs that arise with

algorithmic procedures, and to give them the ability to

refine the operation of learning using an end-to-end

analytical pipeline that learns, infers, and provides

visualizations about changes in settings at interactive rates.

Such assessment of utility or refinements of a prior,

coarsely specified utility model in the context of an active

learning cycle provides a means of focusing scarce

cognitive resources on assessment and control, as relevant

choices and tradeoffs are dynamically framed by the

operation of the learning algorithm at each cycle.

We focus, as an example, on learning the kernel and

hyperparameters for multiclass classification that leverages

human guidance. The method enables people to prune the

model space via interactive exploration, reducing

computational needs. Starting with an initial model, users

can interact with a visual representation of a leave-one-out

confusion matrix, allowing them to search among a space

of models to identify a model whose cross-validation

Figure 1: Interactive confusion matrix. Users click up/down
arrows. Solid arrows indicate desire to increase/decrease a result.
Arrows with bar (bias cue) indicate constraints on changes.

performance is favorably aligned with the desired output.

Core technical challenges with developing such interactive

methods include composing efficient numerical algorithms

that infer settings of hyperparameters at interactive rates.

Background

The performance of a classifier depends on several design

choices including the feature set, parametric family, and

parameter settings. In the context of kernel-based

classification, such choices translate into selecting the

appropriate kernel, hyperparameter setting, and choice of

regularization parameters. Richer models have been

proposed for kernel-based learning with additional

hyperparameters, e.g., classification with asymmetric loss

(Bach, Heckerman and Horvitz 2006) and automatic

relevance detection (Mackay 1992, Neal 1996).

When the utility function is known and easily

computable, we can employ techniques such as cross

validation to determine the appropriate settings. Cross

validation can be used to perform model selection for any

kind of classifier and is commonly used given its appealing

statistical properties (Evgeniou, Pontil and Elisseeff 2004).

However, cross validation can also be prohibitively

expensive as it requires classification studies on hold-out

sets for all possible models. Further, maximizing simple

cross-validation accuracy may not correctly reflect the

desired classification output. Consider the case where cross

validation shows that multiple models achieve the same

best possible performance. In such situations, a model

might be selected based on heuristics, such as by the order

in which the models are evaluated, where the first model

that achieved the best result is selected. Such heuristics

may often fail to select an optimal model.

The second set of methods attempts to overcome the

computational intensiveness of cross validation by

maximizing surrogate functions that reflect appropriateness

of the kernel to the observed data. Examples include kernel

target alignment for learning SVMs (Cristianini et al.

2001), multiple kernel learning (Lanckriet et al. 2004,

Varma and Ray 2007), and evidence maximization using a

Bayesian perspective on kernel machines (Girolami and

Rogers 2005, Gold, Holub and Sollich 2005, Kapoor et al.

2009). Most of these methods attempt to learn a linear

combination of existing kernels and provide no guidance

about other parameters. Finally, none of these methods

would work when the utility function is unknown,

incomputable, or has multiple competing objectives.

We seek to circumvent these challenges via interaction

and visualization. The key idea is to harness user

interactions to explore the space of solutions without cross

validating the entire space in an exhaustive manner. By

visualizing the possible solutions and guiding the search,

users can both gain a sense of the capabilities of the

classifier and choose a model aligned with his goal.

This work comes in the spirit of efforts in mixed-

initiative interaction, where a computational procedure and

user each take initiatives to jointly solve a task (Horvitz

1999, 2007). We extend prior research on interactive

machine learning (Fails and Olsen 2003), including studies

exploring the value of taking hints from people to optimize

the operation of decision trees (Ankerst et al. 1999), naïve-

Bayes classifiers (Becker, Kohavi and Sommerfield 2001),

SVMs (Caragea, Cook and Honavar 2001), and HMMs

(Dai and Cheng 2008). Beyond supervised learning,

interactive clustering (Bilenko, Basu and Mooney 2004,

Bekkerman et al. 2007) and feature discovery using human

input (Raghavan, Madani and Jones 2005) have been

proposed. Closest to our work are studies of the use of

tools to visualize the performance of specific learning

algorithms along with controls for modifying parameters

(Ware et al. 2001, Talbot et al. 2008, Kapoor et al. 2010).

Approach

The interactive system consists of two critical components:

(1) a user interface (or UI) that provides informative

visualizations and enables efficient, intuitive interactions,

and (2) a numerical procedure that translates interactions

into valid choices of the hyperparameters.

Interactive Confusion Matrix

We employ an interface used in a prior study (Kapoor at al.

2010) that was effective for guiding a simpler interactive

machine-learning task. The interactive visualization is a

graphical display of a confusion matrix (see Figure 1), that

enables users to explore the model space using leave-one-

out cross-validation results. The confusion matrix

represents leave-one-out classification results, where the

row represents an instance’s true class and the column

predicted one. Depending on the goal, users can increase or

decrease the number of instances classified in each cell.

The interface allows users to directly interact with this

confusion matrix to specify their desire. A click on the up

or down arrow that appears on a mouse over a cell

corresponds to the desire to increment or decrement the

cell value by one. A change in one cell often influences

one or more other cells. As it is necessary to control the

values in these cells, the system allows users to specify

biases (with a ctrl+click) that encourage a specific

direction in cell value change. In contrast to the strong

constraint of incrementing or decrementing a cell, these

biases only define the set of feasible directions until the

user clears them.

Given a user’s input via the tool, the numerical

procedure attempts to find a solution accommodating the

request. If a feasible solution is found, the state of the

classification is modified and the visualization is updated;

otherwise, a notification of difficulty is provided. The

changes in the confusion matrix are reflected using colors

(green for increase and red for decrease) and opacity (for

the magnitude of change). The interface also supports undo

(ctrl+z) and redo (ctrl+y). A previous user study on such a

confusion matrix showed that users could recover the

required parameters faster and more effectively to estimate

misclassification risks (Kapoor et al. 2010). We decided to

apply the same UI for kernel and hyperparameter learning.

Numerical Procedure to Explore Model Space
Assume that our training set consists of data points
{ } , with class labels { } , and

represents the set of hyperparameters that describe our

model choice (e.g., kernel width for an RBF kernel,

regularization parameters, weights in a linear combination

of kernels, etc.). The goal is to determine an updated model

 based on user interaction. Given the current model

choice, we can run the training algorithm and produce

leave-one-out classification results for our training set. We

assume a one-versus-all multiclass classification setting;

for an input point , the leave-one-out multiclass

classification results in an M-dimensional vector
[]

 . Here, denotes the classification score for the

class and the leave-one-out classification procedure will

assign the label that has the highest score among all of the

M classes. Note that computing these leave-one-out scores

for all the training points is an expensive procedure. We

address this computational cost in Section 2.3.

As determining a label is performed by max operation,

we introduce the notion of an M-dimensional current state

vector denoted as () []
 , corresponding to the

input point and given the model . Formally,

 ()

∑

The state vector is simply a softmax transformation of

the scores and for a sufficient high value of the scaling

parameter will approximate an indicator vector that is

zero everywhere except at the position corresponding to

the maximum component of .

The leave-one-out confusion matrix can be computed

and displayed given the scores for all the training points.

A click on the up or down arrow in the confusion matrix

expresses the desire for the number of instances in that

particular cell to change. In other words, each interaction

represents a local intention, leading to the shift of labels for

some data points. Clicking on the up arrow on a cell at row

 and column means that at least one more data point

with true class , not already classified as , needs to be

classified as so. Similarly, a down arrow input means that

at least one of the points with true class , and classified

as , needs to be labeled something other than .

Every interaction defines a set, denoted as of data

points for which the classification need to change. Further,

for every data point , the interaction also defines the

desired target state , which is a -dimensional vector and

encodes the desired moves. The desire to classify a point as

class b is encoded using a vector, denoted as

 () comprising of all zeros except the b
th

 component,

which is set to one. Similarly, the desire to not classify a

point as b is encoded using () which is an M-

dimensional vector with all entries set to () except

the b
th

 component which is set to zero. Thus, given the user

interaction, we derive the sets and the target as:

 Click/Bias Up:
 { };
 ()

 Click/Bias Down:
 { };
 ()

 For rest of the data points unaffected by interaction
 , ()

The goal is to minimize the difference between the

current and the target states. Consequently, our strategy is

to derive an updated model that is aligned with user

desires. Note that assigning () for all unaffected

acts as a regularizer by implying that we seek a

configuration that satisfies the user’s preferences but is

closest to the original state. Formally, we consider

minimization of an objective function that measures

discrepancy between the targets and the current state using

the KL divergence:

 () ∑ (‖ ())

 ∑∑

 ()

Other choices, such as squared or absolute difference
between targets and current state, could be used to measure
the disparity. KL divergence is a natural choice as both
 and are valid probability distributions. The gradient
of this function can be succinctly written as:

 ∑[()]
 [()

]

Here, () denotes the Jacobian matrix comprising of
the partial derivation of the score vector with respect

to (row and column is

), and is a vector of all

ones. Since, one click is interpreted as a user’s desire to
increment the count in the specific cell by one; it is not
desirable that we fully minimize the above objective.
Consequently, we employ binary search to determine the
minimum step-size that would change the count of the
cell where the user incremented the key by one. In case a
valid step size is found, we update:

Figure 2: Illustrative example demonstrating learning RBF kernel width and regularization parameter using interactive confusion matrix.

Top: Evolution of decision boundary. Bottom: Corresponding state of the confusion matrix.

This procedure can be viewed as a human-in-the-loop

search, where the human input determines the descent

direction, and the system carries out optimization and

computes the correct step size to take. This numerical

procedure coupled with interactive visualization and

feedback provides a system that users can use to explore

the model space. The key to a compelling experience is

real-time feedback. Thus, it is imperative to employ

numerical operations that allow for updates that are

perceived as occurring immediately. The most

computationally expensive parts of the numerical

procedure are computing the leave-one-out scores and

the Jacobian () that encodes the gradient of scores.

Computational Issues

Many kernel based classification algorithms can be

formulated as an optimization problem of finding a

solution, () ∑ ()

 . Here, () is the

kernel that depends upon our model choice . In general,

the optimization problem takes the follow form:

∑ (())

 (()) represents a loss-function, is the kernel

matrix where the entry, () , and is the

regularization parameter. Different choices of the loss

functions lead to different flavors of methods: e.g., hinge

loss (()) for SVMs and squares loss

(())
 for regularized least-square classification

(RLSC). Although solving such optimization problems is

feasible for large datasets at interactive rates, our

requirement goes beyond that. As mentioned earlier, we

seek leave-one-out scores, which, if done naïvely require

training a classifier different times. In addition to the

leave-one-out scores we need the gradients of these leave-

one-out scores with respect to the model . For the case of

regularized least square classification such leave-one-out

scores can be computed efficiently without the need to

optimize for different classifiers. Formally, the leave-

one-out outputs and their gradients with respect to are:

 ()
[]
[]

 ()

[

]

[]

[] [

]

[]

Here, []
 is the vector of all training labels.

These computations depend on computing the inverse of ,

which is (). Consequently, the overhead of computing

the leave-one-out scores and their gradients is fairly small.

We can also use certain numerical tricks for Gaussian

Process (GP) based classifiers (Rasmussen and Williams

2006) in order to compute leave-one-out estimates. Instead

of performing an optimization, we perform Bayesian

integration and obtain a probability distribution over the set

of all possible classifiers. Expectation Propagation (EP)

(Minka 2001) is one such approximate inference technique

that approximates the distribution of classifiers as a

Gaussian whose mean again can be represented as ()
∑ ()

 . One of the advantages of using EP is

that estimates of leave-one-out classification are

estimated during the inference process and are available

for free. For our interactive procedure we also need the

gradients of the leave-one-out estimates. While there is

no obvious approximation to these using EP, estimation

is numerically feasible due to low dimensionality of the

model space.

We ran the system on a 3.00 GHz dual Intel Xeon

processor Windows machine with 8 GB RAM. We are

able to achieve interactive rates on problems with 3000

data points using RLSC and 400 points for EP. The

procedure can be applied to larger problems if the user

is willing to tolerate latency in system responses.

Table 1: Interactively learning 𝜎 and 𝜆 on UCI datasets.

 RBF width

𝜎

Regu. Const.

𝝀

Test

Accuracy

Ionosphere
Interactive 3.48 (0.17) 0.64 (0.06) 92.55 (0.8)

Grid Search 3.95 (0.24) 0.22 (0.04) 91.63 (0.5)

Sonar
Interactive 3.54 (0.24) 0.46 (0.31) 86.90 (1.8)

Grid Search 3.02 (0.31) 0.31 (0.09) 86.31 (1.1)

Heart
Interactive 3.12 (0.69) 0.86 (0.25) 82.48 (0.9)

Grid Search 3.20 (0.43) 1.71 (0.15) 82.22 (0.9)

Figure 3: Learning linear combination of kernels. Left: Synthetic classification task, where the evolution of the decision boundary is shown.

Middle: Evolution of relative weights of combination in the simplex starting from the bottom-center (equal weights for linear and RBF). P0

to P4 in both left and middle figure correspond to the same four models encountered along the red path. Right: Performance on Caltech-101.

Experiments

We now demonstrate the performance of the interactive

model exploration system in context of different model

selection tasks relevant for multiclass classification. The

first two tasks have a well-defined utility function (overall

accuracy), thus the experiments show that interactive

method is at par with the numerical methods. The third

task (asymmetric loss) consists of preferences and

performance, highlighting the operation of the method.

Learning Hyperparameters for an Individual Kernel:
We first highlight the proposed framework on a non-linear

classification task using an RBF kernel. The RBF

kernel () (‖ ‖

 ⁄) with the

kernel width parameter is a popular choice for non-linear

kernel-based classification. However, the kernel width is

an important parameter and the success of the method

depends on choosing it correctly. Thus, the model selection

task in the context of RLSC is to choose appropriate

settings of the hyperparameters { }, where is the

regularization parameter. Although a popular choice is

cross validation with grid search, we show how we can

avoid that using the interactive method.

Figure 2 illustrates application of interactive model

search on a synthetic dataset. Starting with a suboptimal

choice of hyperparameters (), the user

continues to interact with the system until achieving a

satisfactory leave-one-out performance. In Figure 2, the

top row shows the evolution of the decision boundary as

the user interacts, while the bottom row displays the state

of the leave-one-out confusion matrix at that instant. Note

that the user only sees the confusion matrix and does not

have access to views of the decision boundary. The

interactive procedure smoothly morphs the initial incorrect

model to a correct one which provides a good classification

boundary. All this is achieved with just a few clicks from

the user and without the overhead of exhaustive search.
We also explore how well interactive model search

compares to exhaustive grid search over the model space

on real-world data. Table 1 highlights such a comparison

with exhaustive grid search on three UCI datasets. We

performed exhaustive search on a 2D grid (for kernel width

and the regularization parameter) in the range from 0.05 to

5 with a step size for 0.05, where the exhaustive search

choose hyperparameters for which leave-one-out accuracy

was found to be maximum. Each dataset was split

randomly 10 times into a training (60%) and test set (40%).

In each trial, the features are normalized to have zero mean

and a unit variance using the training set. We report results

averaged over 10 different splits (standard error in

parenthesis). From the table, we can see that the interactive

approach is able to select models that have better or

comparable test accuracy to the models found using the

grid search: 92.55% vs. 91.63% (Ionosphere), 86.90% vs.

86.31% (Sonar) and 82.48% vs. 82.22% (Heart). Note that

grid search only explores model choices at a discrete set of

hyperparameter settings (defined by the grid) and there is

no such constraint in the interactive procedure.

Consequently, we can explain the gain in performance by

noting that the interactive procedure can discover models

that performed best but were not part of the grid search.

Although it is possible to choose a very small step-size for

the grid parameter, such finer choices lead to a

considerable increase in computational overhead. Table 1

also shows the average of discovered hyperparameters

using the two methods. We observe that the solutions

discovered by both procedures are fairly close to each

other showing that the interactive method can discover

better or comparable models without performing

exhaustive search. Finally, the interactive method provides

significant benefits in terms of time requirements. While

Figure 4: Handling asymmetric misclassification cost. Interactive confusion matrix helps users find parameter settings that result in decision

boundaries aligned with misclassification risks. We depict training points, associated confusion matrices converged upon, and resulting

decision boundaries. Red circles highlight how users maximized most preferred class.

the exhaustive search took mean times of 111.38, 39.46,

and 54.26 seconds (over the 10 splits) for the Ionosphere,

Sonar and Heart data, the interactive method only required

mean times of 38.12, 20.45, and 32.15 secs, respectively.

Learning Linear Combinations of Kernels: Learning a

linear combination of kernels is an extensively studied task

(Lanckriet et al. 2004, Varma and Ray 2007, Girolami and

Rogers 2005). Formally, given multiple kernels ,

we seek a linear combination of the base kernels such that

the resulting kernel ∑

 has a good

discriminatory power. Besides the regularization

constant , we also wish to learn the weights { }.
Figure 3 illustrates the utility of the interactive approach

on such tasks. In particular, we generated a synthetic

binary classification problem (Figure 3 left) and considered

three different basis kernels: a linear kernel, a polynomial

kernel, and an RBF kernel with width 0.1. Note, that this

synthetic data is perfectly classifiable using a polynomial

of degree 2 (a circle). Hence, the ideal kernel combination

should assign a high weight on the polynomial kernel.

First, we start with weights that had equal weight on the

linear and the RBF kernel (1/2 for each) and zero weight

on the polynomial kernel. Clearly, such weights are not

going to provide good boundary (as data is not linearly

separable and the width of 0.1 for RBF kernel is not big

enough to provide perfect classification).

Figure 3 (left) also shows how the actual decision

boundary evolves with such interactions. The shades of the

boundaries represent their recentness, with the darkest

boundary representing the final solution; we can observe

the smooth transition from earlier solutions as the user

interacts with the confusion matrix. Figure 3 (middle)

highlights the evolution of weights as the user interacts

with the matrix in order to drive the solution aligned with

his preference. We illustrate a simplex in Figure 3

(middle), where the vertices correspond to each of the three

base level kernels and the interior of the triangle represent

relative weights (i.e. ∑

 ⁄) of the kernels. The red

line illustrates the evolution of the weights with each user

interaction starting from the center of the triangle. Note

that, naïve cross validation would have required us to

explore the whole interior of the simplex. However, with

the interactive approach, we can avoid the extra overhead

and just follow the user preferences to track a path (red

line) leading to the desirable model. We also plot the

solutions found by Hierarchic Bayesian learning (Girolami

and Rogers 2005), evidence maximization of GP

regression (Kapoor et al. 2009), and multi-kernel learning

of Varma and Ray 2007. The red line highlights the

smooth morphing of the weights to the correct solution,

where most of the weight is given to the polynomial

kernel. Further, notice that the solution recovered by the

interactive procedure is fairly close to the ones found by

other techniques, which highlights such interactive

methods can are at par with existing methods.

We tested the interactive scheme on learning linear

combinations of classifiers for the Caltech-101 task. We

considered four different base kernels (see Kapoor et al.

2009): Pyramid Match Kernel (PMK), spatial PMK,

Geometric Blur (GB) and GB with the distortion. Since

interacting with a 101 class confusion matrix is hard, we

only considered classification among 10 classes, which

were chosen randomly at each iteration. We consider 15

randomly selected training images per class and use the

rest for testing and repeat the process ten times. Table 1

shows the average recognition performance obtained using

different methods (standard error in parenthesis). We

observe that the kernel combination provides better

performance than any classifier based on an individual

kernel. Further, the rates obtained by the interactive

method (86.87%) are better than other combinations

(84.53% for GPR Kapoor et al. 2009 and 82.47% for

Varma and Ray 2007). We hypothesize that this results

from the fact that, during interactive model selection, we

are directly optimizing for leave-one-out error instead of a

surrogate function. Also, the mean number of clicks to

solve the task over the 10 runs was 10.3 (1.87). This result

is even more compelling as the user input only a few clicks

to produce classifiers that perform well.

Asymmetric Misclassification Cost and Unbalanced

Data: Another flavor of model selection task occurs when

misclassification costs vary greatly depending on the

outcome (e.g., spam filtering). Such scenarios are

addressed by considering separate regularization constants

for different classes (Bach, Heckerman and Horvitz 2006).

However, given the asymmetric there is no easy way to

estimate the settings of regularization parameters. Grid

search is again an option, but becomes infeasible as the

number of classes increase. Similarly, the unbalanced data

scenario can also be handled by considering separate

regularization parameters, where estimating such

parameterization is non-trivial. However, we can use the

interactive procedure to tackle these difficult cases. Figure

4 demonstrates application of interactive model selection

on a three-class problem, where the confusion matrix has

been guided in three different scenarios that consider each

of the three classes as the class with highest

misclassification cost. The training points corresponding to

the three classes are shown as yellow triangles, blue

circles, and magenta squares, and the shading corresponds

to the resulting classification boundaries. We observe that

by guiding the confusion matrix to the preferred operating

point (red circle highlights the entries maximized during

interaction), the user can discover models that are aligned

with his personal perferences. Rather than searching

through changes in the regularization parameters, the user

can employ the interactive procedure to translate abstract

parameters into real-world consequences.

Summary

We presented methods and results on the interactive

optimization of models in the context of kernel-based

classification. We showed via a set of experiments how

approach can be used to incorporate the preferences of

people to prune the search over the large space of possible

models. We are excited about the possibilities for

developing new forms of interactive optimization of

learning and reasoning procedures. We hope the methods

we presented will stimulate others to pursue opportunities

to develop expressive visualizations coupled with

interactive controls that enable people to explore models

and parameters for guiding learning and reasoning in

accordance with human preferences.

References

Ankerst, M., Elsen, C., Ester, M. and Kriegel, H. P. 1999. Visual
classification: an interactive approach to decision tree
construction. KDD.

Bach, F., Heckerman, D. and Horvitz, E. 2006. Considering cost
asymmetry in learning classifiers. Journal of Machine Learning
Research (7).

Becker, B., Kohavi, R. and Sommerfield, D. 2001. Visualizing
the simple Bayesian classifier. Information Visualization in Data
Mining and Knowledge Discovery. Eds. Fayyad et al.

Bekkerman, R., Raghavan, H., Allan, J. and Eguchi, K. 2007.
Interactive clustering of text collections According to a User-
Specified Criterion. IJCAI.

Bilenko, M., Basu, S. and Mooney, R. J. 2004. Integrating
constraints and metric learning in semi-supervised clustering.
ICML.

Caragea, D., Cook, D. and Honavar, V. G. 2001. Gaining Insights
into Support Vector Machine Pattern Classifiers using Projection
Based Tour Methods. KDD.

Cristianini, N., Shawe-Taylor, J., Elisseeff, A. and Kandola, J.
2001. On kernel-target alignment. NIPS.

Dai, J. and Cheng, J. 2008. HMM Editor: a visual editing tool for
profile hidden Markov models. BMC Genomics 9.

Evgeniou, T., Pontil, M. and Elisseeff, A. 2004. Leave one out
error, stability, and generalization of voting combinations of
classifiers. Machine Learning 55.

Fails, J. A. and Olsen, D. R. J. 2003. Interactive machine
learning. IUI.

Girolami, M. and Rogers, S. 2005. Hierarchic Bayesian models
for kernel learning. ICML.

Gold, C., Holub, A. and Sollich, P. 2005. Bayesian approach to
feature selection and parameter tuning for Support Vector
Machine classifiers. Neural Networks, 18(5-6).

Horvitz, E. 1988. Reasoning under varying and uncertain
resource constraints. National Conference on Artificial
Intelligence.

Horvitz, E. 1999. Principles of Mixed-Initiative User Interfaces.
CHI.

Horvitz, E. 2007. Reflections on Challenges and Promises of
Mixed-Initiative Interaction, AAAI Magazine 28. pp. 19-22.

Kapoor, A., Grauman, K., Urtasun, R. and Darrell, T. 2009.
Gaussian processes for object categorization. International
Journal of Computer Vision 88(2).

Kapoor, A., Lee, B., Tan, D. and Horvitz, E. 2010. Interactive
optimization for steering machine classification. CHI.

Lanckriet,G., Cristianini, N., El Ghaoui, L., Bartlett, P. and
Jordan, M. 2004. Learning the kernel matrix with semi-definite
programming. Journal of Machine Learning Research (5).

MacKay, D. J. 1992. Bayesian interpolation. Neural Computation
(4).

Minka, T. P. 2001. Expectation propagation for approximate
Bayesian inference. UAI.

Neal, R. M. 1996. Bayesian learning for neural networks. Lecture
Notes in Statistics (118) New York: Springer.

Raghavan, H., Madani, O. and Jones, R. 2005. InterActive feature
selection. IJCAI.

Rasmussen, C. E. and Williams, C. K. I. 2006. Gaussian
processes for machine learning. The MIT Press.

Talbot, J., Lee, B., Kapoor, A. and Tan, D. 2008.
EnsembleMatrix: interactive visualization to support machine
learning with multiple classifiers. CHI.

Varma, M. and Ray, D. 2007. Learning the discriminative power-
invariance trade-off. ICCV

Ware, M., Frank, E., Holmes, G., Hall, M. and Witten, I. 2001.
Interactive machine learning: letting users build classifiers.
International Journal of Human-Computer Studies 56(3).

