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Location data from mobile devices is a sensitive yet valuable commodity for location-based services and

advertising. We investigate the intrinsic value of location data in the context of strong privacy, where location

information is only available from end users via purchase. We present an algorithm to compute the expected

value of location data from a user, without access to the specific coordinates of the location data point. We use

decision-theoretic techniques to provide a principled way for a potential buyer to make purchasing decisions

about private user location data. We illustrate our approach in three scenarios: the delivery of targeted ads

specific to a user’s home location, the estimation of traffic speed, and location prediction. In all three cases,

the methodology leads to quantifiably better purchasing decisions than competing methods.
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1 INTRODUCTION

As people carry and interact with their connected devices, they create spatiotemporal data that
can be harnessed by them and others to generate a variety of insights. Proposals have been made
for creating markets for personal data (Adar and Huberman 2001) rather than for people to either
provide their behavioral data freely or to block sharing. Some of these proposals are specific to
location data (Kanza and Samet 2015). Several studies have explored the price that people would
seek for sharing their GPS data (Cvrcek et al. 2006; Micro 2015; Staiano et al. 2014). However, little
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has been published on determining the value of location data from a buyer’s point of view. For
instance, a Wall Street Journal blog says (Monga 2014).

“What groceries you buy, what Facebook posts you ‘like’ and how you use GPS in
your car: Companies are building their entire businesses around the collection and
sale of such data. The problem is that no one really knows what all that information
is worth. Data isn’t a physical asset like a factory or cash, and there aren’t any
official guidelines for assessing its value.”

We present a principled method for computing the value of spatiotemporal data from the per-
spective of a buyer. Knowledge of this value could guide pursuit of the most informative data and
would provide insights about potential markets for location data.

We consider situations where a buyer is presented with a variety of location data points for
sale, and we provide estimates of the value of information (VOI) for these points. Even when the
coordinates of the location data points are unknown, we compute the VOI based on the prior
knowledge that is available to the buyer and on side-information that a user may provide (e.g.,
the time of day or location granularity). The VOI computation is customized to the specific goals
of the buyer, such as targeting ad delivery for home services, offering efficient driving routes, or
predicting a person’s location in advance. We account for the fact that location data and user state
are both uncertain. Additional data purchases can help reduce this uncertainty, and we quantify
this reduction as well.

We discuss related work in the next section. Then, in Section 3, we introduce a decision-making
framework with a detailed analysis of geo-targeted advertising. We focus on the buyer’s goal of
delivering ads to people living within a certain region. We show that our method performs better
than alternate approaches in terms of inferential accuracy, data efficiency, and cost. In Section 4,
we present a general method for computing the VOI for spatiotemporal data, abstracting away
the specific application to reveal the essential elements of the approach. In Section 5, we apply
the methodology to a traffic estimation scenario using real and simulated spatiotemporal data. We
present our last scenario in Section 6, where we show how to make good data-buying decisions
for predicting a person’s future location.

Our contributions are as follows:

—We present a methodology to calculate the expected monetary value of a user’s location
coordinates, even when the detailed coordinates are unknown to the buyer a priori.

—We provide an algorithm for a buyer to make purchasing decisions about location data that
may be sold by owners of the data, despite the specific location uncertainty.

—We demonstrate how the algorithm behaves in three scenarios: targeted ad delivery, crowd-
sourced traffic information, and location prediction.

To the best of our knowledge, this is the first principled method to compute the value of unseen
crowdsourced location data from a buyer’s point of view.

This article is an expanded version of our conference paper on the same topic (Aly et al. 2018).
In addition to minor clarifications and a notation table, this article adds an illustrative scenario
for location prediction in Section 6 and an expanded discussion in Section 7. The new section
on location prediction introduces the idea of a continuous payoff matrix, showing how it can be
incorporated into the value of information calculation in closed form (Equation (17)).

Table 1 explains the main mathematical notations used in this article.

2 RELATED WORK

We review related work on crowdsourcing, optimal sensing, and data pricing.
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Table 1. Notation Table

Notation Explanation First Section

bi j entry in payoff matrix 3.1

R region on ground for home-targeted ad 3.1

pR probability of home in R 3.1

h two-dimensional vector giving home location 3.1

PH (h) probability distribution of home location 3.1

E[V ] expected revenue 3.1

li seller location vector 3.2

(xi ,yi ) seller location, part of li 3.2

ti seller timestamp, part of li 3.2

σi seller location standard deviation, part of li 3.2

ci seller location price, part of li 3.2

n number of points purchased so far 3.2

ln1 sequence of points purchased so far 3.2

PH |Ln
1

(h) probability distribution of home location given purchased points 1 . . . n 3.2

ln+1 unseen point for sale 3.2

D random variable with home’s residents location relative to home 3.3

σ 2
H (t ) variance of seller location relative to home at time t 3.3

σ 2
GPS variance of GPS measurement 3.3

PLn+1 (ln+1) probability distribution of next location measurement 3.4

PD (ln+1) probability distribution of next location measurement relative to home 3.4

γ cost of delivering ad to home not in target region 3.6.2

β cost of not delivering ad to home in target region 3.6.2

di decision i 4

d∗ optimal decision 4

Rj state space region j 4

s state 4

u vehicle speed 5.1

r , y, д red, yellow, and green speed intervals 5.1

μi seller location (xi ,yi ) 5.2

vi vehicle velocity 5.2

ûn Kalman speed estimate 5.2

σ̂u
n standard deviation of Kalman speed estimate 5.2

Kn Kalman gain 5.2

lf future location 6.1

σ 2
f

standard deviation of future location 6.1

b base payoff for correct future location prediction 6.3

l∗
f

predicted location 6.3

2.1 Crowdsourcing

In geographic crowdsourcing, a large group of people is harnessed to supply spatial data. The
crowd can be active participants in gathering the data, e.g., OpenStreetMap mapping parties
(Haklay and Weber 2008). Shahabi et al. have done extensive work on assigning crowd work-
ers to efficiently complete tasks at specified locations (e.g., Kazemi and Shahabi (2012)). The crowd
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can also serve as passive participants who engage in their normal travels, such as data provided in
Nokia’s Mobile Data Challenge (Laurila et al. 2012). Sometimes the crowd gives away their loca-
tion data at no cost, which has been explored in literature on Volunteered Geographic Information,
starting with a paper by Goodchild (Goodchild 2007). For other spatial data-gathering tasks, work-
ers can earn money via sharing their location information, e.g., with Gigwalk (Chang et al. 2014).

Our scenarios assume participants passively collect location data during their normal activities.
As an example, the location data collected from Waze users helps compute driving routes that are
sensitive to traffic.

2.2 Optimal Spatial Sensing

Our work on the valuation of location data is related to methods for choosing sensors for efficient
spatial inferences. Krause et al. exploited submodularity to find a near-optimal placement of spa-
tial sensors with the goal of maximizing the mutual information between sensed and unsensed
locations (Krause et al. 2008b). Singh et al. considered the problem of directing the paths of multi-
ple mobile robots to increase their collective information return (Singh et al. 2007). For Gaussian
process regression, Seo et al. introduced heuristics for choosing sensed points that seek to mini-
mize the variance of the inferred result, for individual points and as averaged over the whole space
(Seo et al. 2000). In Zhao et al. (2002), introduced a formalization for considering both the value of
information and cost of information for selecting sensors in a sensor network.

The work most closely related to ours is Krause et al., who developed a model for sensing an
entire system, such as a traffic network, from sensors with unknown locations, such as vehicles,
while minimizing the number of sensor readings (Krause et al. 2008a). Our work differs in that we
introduce a decision space where the data buyer must infer the state of a random variable subject
to a payoff matrix. The payoff matrix becomes important not only in optimizing which sensor
readings to use, but also for estimating their value.

2.3 Buying and Selling Location Data

Markets for private data have been proposed, such as Adar and Huberman’s “Market for Secrets,”
aimed at accessing anonymous data (Adar and Huberman 2001). Kanza and Samet propose a mar-
ketplace for geosocial data (Kanza and Samet 2015). Our work builds on these ideas by demon-
strating how to price location data depending on its intended use.

We know from a variety of surveys that buyers and sellers attach very different values to lo-
cation data. Research on the sale of location data includes investigations of the price that people
would demand in return for giving up their location privacy. For example, in Cvrcek et al. (2006),
researchers surveyed over 1,200 people in five European countries. The median asking price for
1 month of location data was approximately €50 (US$40 at the time) for academic use. The data
was assumed sampled every 5 minutes at cell tower resolution. The price rose to €100 (US$80) for
1 month of data for commercial use and €250 for 1 year of data.

In Staiano et al. (2014), 60 volunteers were asked to price 6 weeks of their location data. Their
median price for one GPS point was €3 (about US$4 at the time). Their median price for all 6 weeks
was €22.5 (US$30). The authors found that location data was priced higher than data on commu-
nications, application usage, and media such as photos.

Trend Micro surveyed over 1,000 consumers from around the world, asking about the value they
attributed to different types of their personal data (Micro 2015). Although the amount of location
data was unspecified, the average price for their location data was US$16.10, and the average price
for their home address was US$12.90.

Location data appears to be priced lower by buyers than the valuation provided in studies with
end users. For instance, based on industry pricing data, a 2013 Financial Times article says “General
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Fig. 1. The three test regions for the home-targeted ads experiments. Three examples for users’ homes are
highlighted (u1, u2, and u3).

information about a person, such as their age, gender and location is worth a mere $0.0005 per
person, or $0.50 per 1,000 people.” (Steel 2013).

We address the potential disparity in valuation of location data by sellers and buyers by com-
puting the expected value of information of location information in different scenarios.

More generally, the value of information in economics was introduced in a 1961 paper by Stigler
at the University of Chicago (Stigler 1961), who looked at the value of knowing a diverse set of
prices for a given product. Another study looked at what type of information consumers are will-
ing to share in return for shopping benefits (Phelps et al. 2000). Tucker (2012) examines the tradeoff
between the consumer benefits of targeted advertising and the privacy concerns of tracking con-
sumer behavior. Beals confirms that, for advertising, targeted ads based on consumer information
are both more costly (2.96 times) and more effective than non-targeted ads (Beales 2010).

3 SCENARIO 1: HOME-TARGETED ADS

We now describe methods and case studies to compute the expected value of gaining access to
location points. We provide an example scenario to demonstrate the relevance and effectiveness
of our framework. We call this scenario “Home-Targeted Ads,” because it focuses on a business
that wants to deliver ads to people whose home is in a certain geospatial region. For instance, a
local roofing business may be licensed only in a certain geographic area and wish their ads to only
be delivered to people who live in that area. A mobile dog grooming service may want to limit its
advertising to a region that they can reach efficiently. We will refer to this target region as R. It
can be any closed region on the ground, as per the examples displayed in Figure 1.

The buyer in this case could be the business itself or an advertising specialist who can find the
best recipients for the ads. In either case, the buyer seeks to find the home locations of potential
ad recipients. There are multiple ways to find a person’s home location: a telephone directory
usually gives names and addresses, and many people give their home city as part of their social
media profiles. However, the telephone directory can be incomplete and/or out-of-date, and social
media profiles usually give only city-level resolution. Location measurements, such as those from
GPS, are usually very precise, and they can be used to infer the location of a person’s home, as we
illustrate below. In this scenario, the buyer will seek to buy a small number of timestamped location
measurements from potential ad recipients and use the measurements to decide who should receive
the ad.
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22:6 H. Aly et al.

Table 2. The Payoff Matrix for Home-Targeted Ads

3.1 Decision to Deliver an Advertisement

In this scenario, a buyer must choose whether or not to deliver an ad to a potential recipient,
and the crux of this decision depends on whether or not the potential recipient lives in the tar-
geted region. We model the costs to the buyer with a payoff matrix. The matrix describes the
monetary gain or loss depending on the decision of whether or not to deliver an ad to the poten-
tial recipient and depending on whether or not the recipient lives in the region R, as shown in
Table 2.

The four cases in Table 2 represent the following scenarios:

—Ad not delivered when home is not in regionR (payoff b11): This is a neutral outcome,
because an ad was correctly withheld from a person who does not live in the targeted region.
The cost (and benefit) is normally zero in this case, thus b11 = 0.

—Ad not delivered when home is in region R (payoff b12): This is a negative outcome,
because the ad should have been delivered, but was not. The cost is the lost opportunity
and the possibility that a competitor may acquire the person as a customer, thus b12 ≤ 0.

—Ad delivered when home is not in region R (payoff b21): This is a negative outcome,
because the ad was mistakenly delivered to a person whose home is not in the target region.
The cost is the wasted cost of the ad plus the annoyance caused to the targeted person, so
b21 ≤ 0.

—Ad delivered when home is in regionR (payoff b22): This is a positive outcome, because
it could generate a purchase from the business. The value would be the expected profit from
a successful ad minus the cost of the ad, so b22 ≥ 0.

We assume the payoff matrix values are given or can be learned (North 1968). Learning the payoff
matrix can be accomplished through simple experimentation in taking different actions (i.e., ad vs.
no ad) in different states (i.e., home not in region vs. home in region) and measuring the actual
payoff. In some situations, this experimentation can be efficiently focused, such as the work by Jain
et al. on how a wireless sensor network can adjust its node locations to maximize signal strength
between neighbors (Jain et al. 2009).

Based on location data collected from the potential ad recipient, the buyer computes a probabil-
ity distribution PH (h), where h is a two-dimensional vector, [x ,y]T , that describes the location of
the potential recipient’s home. We give a method to compute this distribution in Section 3.3. From
this distribution, we can compute the probability pR that the home is inside the targeted region R:

pR =

∫
R
PH (h)dh. (1)
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Based on this, we can compute the expected value of the revenue, V , given our decision on ad-
delivery:

E[V | no ad] = (1 − pR )b11 + pRb12,

E[V | ad] = (1 − pR )b21 + pRb22.

Here we assume that the advertiser has a linear utility function, e.g., gaining (or losing) $100 is
100 times as good (or bad) as gaining (or losing) $1. The advertiser would choose whichever alter-
native has the largest expected revenue:

E[V ] = max(E[V | no ad],E[V | ad]). (2)

3.2 Decision to Buy a GPS Point

We consider the case where the buyer is presented with a list of points to evaluate buying, where
each of these points has been recorded at a different time. The buyer is allowed to see the times-
tamps, but not the points’ spatial coordinates.

The buyer will compute VOI to decide whether or not to buy a measured location point, having
knowledge of only the point’s timestamp. The buyer has already purchased n points, denoted by
the random variables L1,L2, . . . ,Ln or as the collection Ln

1 . An instance of this random location

variable is li = [xi ,yi , ti ,σl , ci ]
T , which is a 5D vector with [xi ,yi ]

T representing the point’s 2D
location at time ti and the location precision represented as the standard deviation σl . We could
optionally represent a varying precision for each measurement, but we assume all the users have
similar location sensors with the same precision. The price of the point is ci , which is the amount
the buyer would have to pay the seller (potential ad recipient) to know (xi ,yi ). This price is de-
termined by the seller. Using these points, the buyer computes PH |Ln

1
(h), which is a probability

distribution of the home location based on location measurements 1 through n. We give a method
for this computation below in Section 3.3. The buyer then computes the probability that the home
is in the target region (Equation (1)) and the expected revenue (E[V |Ln

1 ]), as described above.
The buyer has the option of buying another location measurement Ln+1. The location of this

new point is unknown to the buyer, but it follows a distribution PLn+1 (�n+1), which we describe in
Section 3.4.

The VOI at time n can then be defined as the gain in revenue by receiving the n + 1-th location
Ln+1 = �n+1:

VOI
(
�n+1 | Ln

1 = �
n
1

)
= E

[
V | Ln+1

1 = �n+1
1

]
− E

[
V | Ln

1 = �
n
1

]
. (3)

Hence, the expected VOI for the n + 1-th location is given by the expected value of Equation (3):

EVOI
(
Ln+1 | Ln

1 = �
n
1

)

=

∫
�n+1

VOI
(
�n+1 | Ln

1 = �
n
1

)
· PLn+1

(
�n+1 | Ln

1 = �
n
1

)
d�n+1, (4)

where �n+1 ∈ R
2 and the integral is taken over the full domain of �n+1.

The decision to buy the n + 1-th point will be based on whether the value of the point in expec-
tation, i.e., EVOI(Ln+1 | Ln

1 = �
n
1 ), is larger than the cost of the point, cn+1. Thus, we will buy the

point that maximizes the expected profit below:

E
[
Profit | Ln+1

1 = �n+1
1

]
= EVOI

(
Ln+1 | Ln

1 = �
n
1

)
− cn+1. (5)

Here we assume that the potential ad recipient has placed a price on their location data. This price
could also be set by a location broker who acts as a representative of the potential ad recipient.
We note that while this equation accounts for the price of the location point, the price of the ad
has already been accounted for in the values of the payoff matrix.
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If we assume zero expected profit for the buyer, Equation (5) can be rearranged to show a fair
price for the location point as

cn+1 = EVOI
(
Ln+1 | Ln

1 = �
n
1

)
. (6)

Note that the price is independent of the actual location of the data. However, since the seller
knows the location, a deeper analysis could adjust the price based on location. However, this price
adjustment could in turn convey extra information to the seller about the potential value of the
point, i.e., if it is near the seller’s home.

3.3 Estimating Home Location

In our pricing model, we assume the buyer will use location measurements from the potential ad
recipient to compute a distribution describing the potential recipient’s home location. The buyer
will then use this to help decide whether to deliver an ad and whether to buy more location points.
This section presents a principled way for a buyer to use location measurements to estimate a
home location. We present this first scenario to define our approach. Thus, we do not make any
comparisons to other methods (e.g., Krumm et al. (2015)) for computing a person’s home location.
Our particular approach has the advantage of producing a probability distribution for the home’s
location, rather than a single point estimate, which is used to compute the probability that the
home is in region R from Equation (1).

The distribution of home location after processing n points, PH |Ln
1

(h), is updated by the buyer
after the purchase of the location measurement �n+1 from a potential ad recipient. The update
equation is Bayes rule:

PH |Ln+1
1

(h) =
PH |Ln

1
(h)PLn+1 |H (�n+1)

PLn+1 |Ln
1

(�n+1)
. (7)

The prior distribution, PH |Ln
1

(h), is the posterior after processing the n-th location measurement.
The likelihood term is PLn+1 |H (�n+1). This is the distribution of the measured point Ln+1 given

the home location. We model this using knowledge of where people are usually located in relation
to their home. This data comes from a travel survey conducted by the Puget Sound Regional
Council in 2015 (Council 2016). The survey data consists of day-long travel diaries from 4,235
people in 2,324 different households. Each participant kept track of their trips for their survey
day, including the street addresses of their destinations. From this, we computed a bivariate,
symmetric normal distribution giving the location of each participant relative to their home. As
expected, the shape of the distribution varies with the time of day, with a tighter distribution at
night when people are normally home. Figure 2 shows the standard deviation of the bivariate
normal as a function of the hour of the day. The random variable D describes the coordinates of
the home’s residents relative to the home’s location:

D ∼ N
(
0,σ 2

H (t ) I
)
.

Here 0 = [0, 0]T , and σh (t ) is the time-varying standard deviation as in Figure 2, and I is the 2 × 2
identity matrix. Given this, we have

PLn+1 |H (�n+1) ∼ N (H ,σH (t )I ).

This is the same as D, but translated to the home location xh .
The denominator of Equation (7) provides the conditional probability of the new point Ln+1

given the previous points Ln
1 . This is a scalar normalization factor, and we can compute it by

integrating the numerator.
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Fig. 2. The deviation from home (dotted line) and the expected value of information (VOI) throughout the
day. The VOI is calculated for payoff matrix with values [b11,b12;b21,b22] = [0,−0.9;−0.9, 1].

Before buying any points, we need a prior distribution PH (h), which is the distribution for home
locations before seeing any location measurements from the potential ad recipient. We take this
from a database of home locations in the U.S. maintained at our institution. It is a simple list of
latitude/longitude pairs measured with GPS. As such, each home point carries the same uncer-
tainty as a GPS measurement. We model the GPS uncertainty as a 2D symmetric normal distri-
bution N (0,σ 2

GPSI ), as suggested in Diggelen (2007). The value of σGPS represents the amount of
uncertainty for a GPS measurement, and we set it to 3 meters as a generally acceptable approxi-
mation. Assuming the home is somewhere in the U.S., the prior on home locations is then

PH (h) =
1

2Nπσ 2
GPS

N∑
i=1

exp
(
− 1

2
(h − hi )T (σ 2

GPSI )
−1 (h − hi )

)
. (8)

Here, hi are the coordinates of each home location from our database, and N is the total number
of homes in the database. This prior represents the initial uncertainty about the potential ad re-
cipient’s home location. The prior helps limit home inferences to places where homes are actually
located, eliminating regions like bodies of water.

3.4 Distribution of Next Location Measurement

Equation (4) computes the expected revenue from the new point Ln+1, and it includes the distribu-
tion PLn+1 (�n+1), which captures the buyer’s knowledge of the location of the next, unknown point.
To compute PLn+1 (�n+1), we again exploit the deviation from home D, saying the location measure-
ment Ln+1 is the vector sum of the home location H and the home deviation D. The distribution
of a sum of random variables is the convolution of their addends, so we have

Ln+1 = H + D,

PLn+1 (�n+1) = PH |Ln
1

(�n+1) ∗ PD (�n+1).

As a reminder, D comes from the travel survey described in Section 3.3. Intuitively, PLn+1 (�n+1) is
the same as the inferred distribution of the home location, but spread out by PD (·) to represent
that the potential ad recipient might have been away from home. The amount of spread is σH (t ),
which varies with the time of day.

3.5 Algorithm for Decisions

The final algorithm followed by the data requester and illustrated in Figure 3 consists of repeated
computations of the expected profit from Equation (5) over all the available points from the user.
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Fig. 3. Proposed data-sharing mechanism and decision framework: Users offer their passively crowdsourced,
timestamped data with a certain location accuracy for a fixed price, while hiding the actual coordinates. Data
buyers estimate the value of the offered data, buy points with the maximum expected profit, and make a
business decision based on the points they have purchased.

The buyer repeatedly buys the point with the maximum expected profit (Equation (5)) as long as
at least one point has an expected profit greater than zero, and as long as the number of points
purchased does not exceed a preset threshold. When there are no more profitable points, or if
the threshold has been exceeded, the buyer harnesses the information collected to deliver the
advertisement with the largest expected revenue (Equation (2)).

3.6 Evaluation Experiments

To evaluate the proposed decision framework, we used a GPS dataset of 66 participants living
in the Seattle, Washington area, shown in Figure 1. The participants represent employees of our
institution, family, friends, and paid study participants, all of whom are adults. The trajectories
were collected for an average of 40.12 days (σ = 24.43) and have an average sampling rate of
0.77 samples/minute. The trajectories represent data offered by the user to the data buyer. We
define three regions to test our framework (Figure 1). We have 13, 14, and 18 users living in R1, R2,
andR3, respectively. To find the ground truth home location for each user, we leveraged each user’s
full trajectory and the American Time Use Survey (of Labor Statistics 2016) (ATUS). ATUS points
out that users are most likely to be at their homes at midnight. Thus, we applied density-based
clustering (DBSCAN) on the user’s timestamped location trajectory. Then, the largest collection
of data points (cluster) at midnight was identified as this user’s home (Lv et al. 2012).

We compared our decision framework to two other techniques that represent simple, practical
methods to decide whether or not to send an ad to a user. For the first of these techniques, the
advertiser simply makes a random decision to send the ad or not, with the probability of sending
the ad set to 0.5. This represents the typical method if there is no information available about the
users to guide the decision maker, and it serves as our baseline method. We call this technique “Buy
no points, random ad decision” or “No points” for short. In the second comparison technique, the
data requester buys a number of points from the user at random times of day. Then, the ad is sent to
the user only if the majority of the purchased points are inside the region. This method reflects an
assumption that users tend to spend most of their time around their homes. Using our default price
of 0.01 per point, our new, proposed method recommends buying no more than 20 points in about
85% of the cases, when the expected profit per point reaches zero. Thus, in our second comparison
method, we have the data requester buy 20 points regardless of their expected benefit. We call this
second technique “Buy 20 random points” or “20 points” for short. In addition, for our proposed
new method, we set a maximum threshold of 20 points in the evaluation to represent a realistic
case where the buyer is interested in buying a bounded amount of data. Note that decreasing
the threshold should decrease the buyer’s confidence in making the decisions, and choosing a
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Fig. 4. Effect of the user defined cost on the proposed framework for the home-targeted ads scenario
(Scenario 1).

lower threshold makes the framework more conservative in sending ads. Similarly, increasing
the threshold leads to more confidence in making the decisions and potentially improving the
performance. We refer to our proposed method as “VOI decision.”

3.6.1 Evaluation Metrics. To evaluate the proposed decision framework, we employ three met-
rics: (1) The true positive rate (TPR) measures the proportion of correctly sent ads (i.e., ads sent to
people with homes in the region); (2) the false positive rate (FPR) measures the proportion of in-
correctly sent ads (i.e., ads sent to people with homes outside the region); and (3) the revenue ratio

which measures the ratio of the revenue gained to the maximum revenue the advertiser can gain
by making perfectly correct decisions about which users should receive the ad without buying any
location points.

3.6.2 Results. To test our proposed framework for different payoff matrices, we created a payoff
matrix with the values in parentheses shown in Table 2. Here we have b11 = 0, which represents
the neutral result of not sending an ad to someone whose home is outside the region R. To reduce
the size of the parameter space, we normalize by setting b22 = 1, which represents the reward for
correctly delivering an ad to someone whose home is inside the region. The other two outcomes
are negative: b21 = γ represents the penalty for delivering an ad to someone not in the region, and
b12 = β represents the penalty for not delivering an ad to someone who does live in the region. We
let both γ and β vary over [0.0,−0.9]. These normalizations mean we can show results over just
two payoff parameters (γ and β) rather than four.

Figure 4 shows the effect of the point cost on the average performance of the proposed frame-
work over the three test regions for the different payoff matrices. Figure 4(a) shows the true positive
rate for point costs of 0.1, 0.02, and 0.01. Lower costs lead to generally higher TPR across almost the
whole (β,γ ) space, because the buyer is willing to purchase more points, increasing their chances
of making the right decision. As γ increases (moving toward zero), the TPR of the 0.1 cost case (red
surface) improves dramatically. This is because γ is the penalty for delivering an ad outside the
target region. As this penalty decreases, the system becomes more willing to send ads, increasing
its true positive rate. This effect is also apparent in Figure 4(b), where the FPR also increases as
the γ penalty moves toward zero. We note the false-positive rate is fairly insensitive to our sample
price points, because all three surfaces in Figure 4(b) are nearly coincident. The revenue ratio in
Figure 4(c) is best (higher) for the lowest-priced points, as expected. We note that the TPR, FPR,
and revenue ratio are one when γ is zero, because there is no penalty for sending ads to users
outside the region. Hence, it makes sense to send ads to all users in this unrealistic case. These
plots confirm that our VOI decision algorithm is working in a sensible, intuitive way.

Next, we compare the performance of our method to other methods in Figure 5. The figure shows
the average results over the three regions for the different payoff matrices for a GPS point cost of
0.01. The two comparative methods’ (“No points” and “20 points”) TPR and FPR are independent
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Fig. 5. Home-targeted ads (Scenario 1) experiment results using the proposed framework (“VOI decision”)
as compared to two other methods (“No points” and “20 points”).

Table 3. General Payoff Matrix for Decisions and States

of the payoff matrix values, because they are not considering the costs and benefits of buying
points nor of making ad decisions. The algorithm “No points” (red surface) has a TPR and FPR of
around 0.5. The algorithm “20 points” (yellow surface) generally performs better for both TPR and
FPR, but comes with the penalty of buying 20 points for every decision. Our price sensitive “VOI
decision” algorithm (blue surface) is superior to both the comparison algorithms for TPR. For FPR
in Figure 5(b), the “VOI decision” algorithm (blue surface) is superior over most of the payoff range.
Its FPR rises dramatically when γ is zero, where the penalty for sending an ad outside the region
is zero. Finally, Figure 5(c) shows the revenue ratios of the three methods, where “VOI decision” is
again significantly superior. The other two algorithms actually lose money in some regions of the
payoff matrix, while the “VOI decision” algorithm is always positive. Specifically, “VOI decision”
relatively improves the TPR on average by 80.2% and 20.9% and up to 107.9% (when γ = 0 and
β = −0.6) and 43.7% (when γ = 0) as compared to the “No points” and “20 points,” respectively.
Also, “VOI decision” relatively improves the FPR on average by 38.2% and 15.8% and up to 91.1%
(when γ = −0.9 and β = 0) and 78.7% (when γ = −0.9 and β = 0) as compared to the “No points”
and “20 points,” respectively. Moreover, “VOI decision” reduces the number of points bought to
make the decision on average by 60% as compared to “20 points.”

4 GENERAL FRAMEWORK FOR DECISION MAKING

While we illustrated in the previous section the value of information calculations in one example,
this section presents a general framework for making purchasing decisions about location data.

We start with a general payoff matrix with a set K of possible decisions over a set S of possible
states as shown in Table 3. In the previous scenario, we had set sizes |K | = |S | = 2. The two possible
decisions were to deliver the ad or not, and the two possible states were whether or not the user’s
home was in the target area. In general, taking decision i under state j results in a payoff of bi j ,
which can be any real value, positive or negative. These are represented in Table 3.

ACM Transactions on Spatial Algorithms and Systems, Vol. 5, No. 4, Article 22. Publication date: September 2019.



To Buy or Not to Buy: Computing Value of Spatiotemporal Information 22:13

Based on already-purchased data (or a prior if no data has been purchased yet), the decision
maker computes the probability of each possible state of the user, pj for j ∈ [1 . . . |S |]. Often there
is a PDF PS (s), s ∈ S , describing the continuous vector state s and a region Rj in the continuous
state space corresponding to state j. Then

pj =

∫
Rj

PS (s )ds .

In the first scenario, the state PDF gave the distribution of the home location. One of the two re-
gions was the advertiser’s region of interest R, and the other was, implicitly, the complement of R.

The expected payoff for making decision di is

E[V | di ] =

|S |∑
j=1

pjbi j ,

d∗ = arg max
di

E[V | di ]. (9)

There is a continuous version of the payoff matrix where the decisions and actions are both
continuous variables. The payoff is represented asb (d, s ). An example is given in Section 6, where s
represents the future location of a person andd represents an inference of that location. Paralleling
the discrete case, the expected payoff for making decision d is

E[V | d] =

∫
s

PS (s )b (d, s )ds,

where s ∈ R and the integral is taken over the full domain of s . Here PS (s ) represents an inferred
distribution over possible states. The best decision d∗ is

d∗ = arg max
d

E[V | d].

We illustrate this case in our third scenario on location prediction in Section 6. For the remainder
of the discussion in this section, we will assume a discrete payoff matrix.

In general, we are interested in understanding when to make a certain decision, di , and when
to buy more information. For this, we need to understand whether buying more information has
value. Paralleling the example we have already discussed, the crux of this will lie in computing
the value of information for each of the GPS locations that are offered by the user. This value of
information is computed as in Equation (4).

A key component of evaluating this value of information is understanding PLn+1 (�n+1), which is
the distribution of the n + 1th location, which has not yet been seen by the buyer. We model this
as a noisy version of the best estimate of the current location of interest. In Scenario 1, this was
the home location.

With the expected VOI, EVOI, it is straightforward to compute the expected profit of point n + 1
with Equation (5).

Once we have the expected profit, our algorithm suggests buying points as long as the expected
profit is positive. Note that the stopping point for the algorithm can be altered by maintaining a
minimum profit that we would like to achieve, since this would impose a tighter constraint on the
number of points we would like to buy.

Finally, the decisions will be made based on the probability of being in a certain state sj which
must be computed given the location data that has been purchased so far. This is done by com-
puting the conditional distribution PS (S = sj | Ln

1 ), where Ln
1 represents all the location points

purchased so far. The algorithm is illustrated in Figure 3.
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Table 4. Payoff Matrix for
Traffic State Estimation

5 SCENARIO 2: TRAFFIC STATE ESTIMATION

We now focus on a second scenario, which is a service that provides traffic state estimates for a
given road segment using crowdsourced spatiotemporal data. In particular, the traffic state esti-
mator service buys timestamped location data from people traveling through the road network,
and uses it to estimate their speed. Then this uncertain speed estimate is used to infer the road
segment’s discrete traffic state. For instance, we assume three levels for a highway road segment:
green representing free flow/smooth traffic with speed greater than 60km/hr, red representing
congested traffic with speed less than 30km/hr, and yellow representing medium congested traf-
fic with speed between 30 and 60km/hr. The service uses the points it buys to decide which level
to assign to the road segment.

For clarity of illustration, we assume that the vehicle is on a single road segment for the duration
of the analysis. The procedure described below can be generalized to the use of data from multiple
vehicles traversing multiple road segments. In steady state, we assume the service has at least one
previously purchased location measurement from the vehicle. This purchased data is used to place
the vehicle on the road segment of interest, and it means that any subsequent point purchased
from the vehicle can be used to estimate the speed of the segment using the points’ timestamps.
The service provider must decide whether or not to buy a new location point from the vehicle as
well as which point to buy with only knowledge of the points’ timestamps and location precision.
While crowdsourcing traffic speeds is a familiar idea, we show how to choose intelligently which
points to buy and to compute their value. Throughout the rest of the section, we will describe how
the service provider will use the proposed framework to make two decisions: (1) congestion-level
descriptor (color) for the road segment and (2) whether to buy a new point from travelers.

5.1 Congestion-Level Decision

As in the first scenario, we model the decision costs of the data-buyer using a payoff matrix. The
matrix describes the monetary gain and loss depending on the provider’s choice of which color to
display and the road segment’s actual traffic state, as shown in Table 4. There are nine different
possible cases: brr,byy,bgg represent positive outcomes where the service provider is choosing the
correct traffic congestion level (red, yellow, and green, respectively), thus brr,byy,bgg > 0. The re-
maining cases represent negative outcomes as the service provider is choosing a wrong congestion
level descriptor. For example, payoff bgr represents choosing smooth traffic (green) while actually
it is congested (red). Thus, these payoffs are less than brr,byy,bgg and are generally less than zero.
When the actual road speed is red (severely congested), choosing green (free-flowing) would have
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a relatively large cost, bgr < 0, because it could mistakenly entice drivers toward the segment only
to find slow speeds. We assume the payoff matrix is given or can be learned (North 1968).

To choose the congestion level from the noisy location data, we again employ decision theory
principles (North 1968). Specifically, the service provider uses the purchased location data to model
their belief about the traffic segment’s speed. This distribution is PU (u), whereu represents the ve-
hicle’s speed. We give a method to compute this distribution in Section 5.2. From this distribution,
we can compute the probability that the road segment’s congestion level is green as follows:

pд =

∫
R (д)

PU (u)du,

where R (д) represents the range of speeds for the green road coloring, which is [60,∞] in our
scenario. Similar equations are used to compute the probabilities of the yellow and red states, py

and pr .
With these probabilities, we can compute the expected revenue V for any congestion-level dis-

play choice from the payoff matrix in Table 4. This is as below for the decision “r,” and the decisions
“g” and “y” can be evaluated similarly.

E[V | decision is r ] = prbr r + pybry + pдbrд .

We assume the service provider will choose to display the congestion level that gives maximum
revenue, and thus the expected revenue (E[V ]) will be

E[V ] = max(E[V | r ],E[V | y],E[V | д]).

In the next sections, we discuss how the service provider computes PU (u) and decisions can be
made about the location points to buy.

5.2 Speed Estimation Using Crowdsourced Data

We now present a principled way for the service provider to use previously purchased location
measurements to estimate the road segment speed belief PU (u). Let Ln

1 = {L1,L2, . . . ,Ln } denote
random variables representing the already-purchased locations. An instance of this random vari-
able is li = [xi ,yi , ti ,σl , ci ]

T , which is the same as the location vector described in Section 3.2.
We follow the standard convention of representing location measurements, including GPS

(Diggelen 2007), as normal distributions in space. Thus, the spatial part of each location mea-
surement is distributed asN ([xi ,yi ]

T ,σ 2
l
I ). The velocity vector from two adjacent measurements

in time is

vi =
μi − μi−1

Δti
,

where Δti = ti − ti−1, μi = [xi ,yi ]
T , and μi−1 = [xi−1,yi−1]T . Since the two location measurements

used to compute speed are independent, their variances will add, and the distribution of the ve-
locity vector will be

vi ∼ N
(
μi − μi−1

Δti
, 2

(
σl

Δti

)2

I

)
,

where I is the 2 × 2 identity matrix.
We now have a distribution for the velocity vector. However, we are ultimately interested in the

distribution for scalar speed, which is the magnitude of velocity. For the case of a bivariate normal
with a diagonal covariance matrix, the distribution of the magnitude follows a Rician distribution
(Rice 1945):

ui ∼ Rice

(
| |μi − μi−1 | |

Δti
,

√
2σl

Δti

)
.
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When the magnitude of the speed sufficiently exceeds the speed’s standard deviation, the Rician
distribution can be accurately approximated by a normal distribution (Rice 1945; Sijbers et al. 1999),
leading to

ui ∼ N
(
| |μi − μi−1 | |

Δti
, 2

(
σl

Δti

)2)
.

This approximation breaks down somewhat when the speed is low, such as in the red region. Our
experiments in Section 5.4 show the approximation ultimately works well in our application.

The buyer estimates the road’s speed from a sequence of purchased points l1, l2, . . . , ln−1. We
assume the buyer uses a Kalman filter (Grewal 2011) to update the uncertain speed estimate after
buying each point. In the steady state, after buying point ln , the buyer computes an uncertain
instantaneous speed distribution from ln and ln−1 as described above, giving an instantaneous
estimate of

zn =
| |[xn ,yn]T − [xn−1,yn−1]T | |

Δtn

and a standard deviation of σu
n =
√

2 σl

Δtn
. The scalar Kalman update equations show how the new

measurement and its standard deviation are incorporated into the speed estimate ûn and standard
deviation σ̂u

n :

ûn = ûn−1 + Kn (zn − ûn−1),

σ̂u
n = (1 − Kn )σ̂u

n−1,

Kn =
σ̂u

n−1

σ̂u
n−1 + σ

u
n

.

(10)

The initial state of the Kalman update can be computed from the segment’s traffic state history
with a high value for the uncertainty σ̂u

1 . The distribution of speed is PU |Ln
1

(u) is thenN (ûn , (σ̂
u
n )2).

The Kalman filter could be replaced by other estimation techniques. We present it here as an
example, and we use it in our experiments.

5.3 Decision to Buy a GPS Point

The buyer must decide whether to buy a new point based on its timestamp and accuracy. In this
scenario, we will formulate the decision as one of buying a new speed estimate, where each new
speed estimate comes from the magnitude of the velocity from the two previous location points,
as we described in Section 5.2. We leverage value of information to compute the value of knowing
the traveler’s unknown speed and use it to make the buying decision. Having already purchased n
speed estimates, this data forms a list of speeds, denoted by the random variablesU1,U2, . . . ,Un or
as U n

1 . Using these speeds, the data requester uses the Kalman filter from Section 5.2 to compute
PU |U n

1
(u), which is a probability distribution of the road segment speed based on speed measure-

ments 1 through n. The buyer also computes their expected revenue E[V |U n
1 ], as described in

Section 5.1, using PU |U n
1

(u) ∼ N (ûn , (σ̂
u
n )2) as the speed distribution. The mean ûn and variance

(σ̂u
n )2 of this normal distribution are predicted by the Kalman filter. Since we are assuming the user

is traveling at a locally constant speed, the Kalman estimate serves as the anticipated distribution
of the as yet unknown next speed that the buyer is considering.

The value of information at time n can then be defined as the gain in revenue by receiving the
n + 1 speed measurement Un+1 = un+1:

VOI
(
un+1 | U n

1 = u
n
1

)
= E

[
V | U n+1

1 = un+1
1

]
− E

[
V | U n

1 = u
n
1

]
. (11)
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Fig. 6. Average number of points bought at different possible speeds for location points with an accuracy
of 3m, 10m, and 20m. Our model buys more points near the traffic state boundaries. The payoff matrix is [1
−0.1 −0.1; −0.1 1 −0.1; −0.1 −0.1 1], cost = 0.01, and Δt = 3sec.

Hence, the expected value of information for the n + 1-th speed is given by the expected value
of Equation (11):

EVOI
(
Un+1 | U n

1 = u
n
1

)
=

∫
u

VOI
(
u | U n

1 = u
n
1

)
· PUn+1

(
u | U n

1 = u
n
1

)
du, (12)

where u ∈ R and the integral is taken over the full domain of u.
The decision to buy the n + 1-th speed will be based on whether the value of the point in ex-

pectation, i.e., EVOI(Un+1 | U n
1 = u

n
1 ), is larger than the cost of the speed (cn+1), i.e., has a positive

expected profit as below:

E [Profit] = EVOI
(
Un+1 | U n

1 = u
n
1

)
− cn+1. (13)

Here we are assuming that the driver/data-provider has placed a price on their location (speed)
data.

We give results of detailed experiments in the next section. To build intuition about these com-
putations, we present results of a simple simulation experiment in Figure 6. For different vehicle
speeds, the figure displays the number of points purchased using the methodology. Note that we
buy more points whose speeds are near the congestion level thresholds, i.e., 30 and 60. In effect,
the method is trying to resolve the ambiguity of speeds near the speed boundaries to avoid the cost
of mistakes as expressed in the payoff matrix. In addition, as the location precision σl decreases,
the method buys points as needed to resolve the speed uncertainty.

5.4 Evaluation Experiments

We evaluated our proposed framework in two ways: First, we used simulation studies to evaluate
the effect of points’ cost on the performance of the proposed methodology across the entire speed
spectrum (0–140km/hr). In addition, we show the effect of the payoff matrix on the accuracy and
compare the performance to a mean filter with different window sizes as our baseline technique.
For each speed in a range from 0 to 140km/hr with an increment of 1km/hr, we ran 500 experiments.
We estimate speeds from noisy location data with precision σl as described in the experiments,
and we sample locations every 3 seconds. We report the average results of the experiments for
each speed in the experimental range. The default payoff matrix is [br r bry brд ; byr byy byд ; bдr

bдy bдд] = [1 −0.1 −0.1; −0.1 1 −0.1; −0.1 −0.1 1], and the default point cost is ci = 0.001. We
show the effect of the point cost, point precision, and the decision maker’s payoff matrix on the
proposed framework as compared to the baseline technique. Second, we test the performance of
our framework against real driving traces.
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Fig. 7. Effect of point cost on congestion level/color decision accuracy while users are driving at different
possible speeds (0–140km/hr) for location points with a precision of 3m, 10m, and 20m.

Fig. 8. The black squares show the average number of points bought while users are driving at different
possible speeds for location points with randomly varying precision in the ranges 3m–20m and 3m–100m.
This is compared to a mean filter with window sizes of 4, 8, and 35 location points. The payoff matrix for
VOI decision-1 is [br r bry brд ; byr byy byд ; bдr bдy bдд] = [1 −0.9 −0.9; −0.9 1 −0.9; −0.9 −0.9 1], for VOI
decision-2 is [1 −0.4 −0.9; −0.4 1 −0.9; −0.9 −0.4 1], and for VOI decision-3 is [1 −0.1 −0.1; −0.1 1 −0.1; −0.1

−0.1 1].

5.4.1 Effect of Point Cost and Precision. Using simulated data, Figure 7 shows the effect of the
point cost on the performance of the proposed framework in terms of congestion-level decision
accuracy for different location precisions, i.e., σl ∈ {3m, 10m, 20m} in parts a, b, and c of the figure,
respectively. The blue bars show the percentage of correct speed interval inferences. We see that
less expensive points lead to higher system accuracy, because the blue bars grow as the points
become less expensive. This is because the system is more willing to buy additional points. As the
price of the location points exceed their value, the buyer refrains from buying. Comparing parts
(a), (b), and (c) of this figure, we also see that lower precision (larger σl ) leads to more error, as the
blue bars generally shrink from a to b to c. In this figure, the error assigned to choosing the correct
speed interval for the road segment is zero, represented by the blue bars. Choosing an adjacent
interval (e.g., red instead of yellow) has an error of one, and choosing the interval at the other end
of the spectrum (e.g., green instead of red) has an error of two.

5.4.2 Comparative Analysis. Figure 8(a) compares the performance of our framework to the
mean window filter over different window sizes (baseline technique). The bars in this figure show
the error rates in the same way as Figure 7. We also show the mean number of points purchased in
these figures as small, black boxes. For relatively accurate location points (with precisionσl varying
uniformly at random from 3 to 20m), Figure 8(a) shows that our proposed framework identifies
the exact traffic congestion level at least 84.6% of the time (“VOI decision-3” bar in the figure);
this is better than the baseline technique with window 4 points by 3.4% and with a reduction
in the average number of purchased points by 20%. In addition, our approach has comparable
performance to the baseline technique with window sizes 8 and 35 points along with a reduction
in the number of purchased points by 60% and 90.9%, respectively.

For more noisy location estimates (with σl varying uniformly at random from 3 to 100m), our
proposed framework estimates the exact traffic congestion level at least 63.9% of the time (“VOI
decision-3” bar), as shown in Figure 8(b). This is better than the baseline technique with windows
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4, 8, and 35 points by 7.3%, 7.10%, and 10.8%, respectively. Moreover, this comes with a reduction
in the number of purchased points of 15%, 57.5%, and 90.2%, respectively. Our framework gives
higher accuracy with fewer location points. The figure also shows that varying the payoff matrix
resulted in a small change in the accuracy and the average number of purchased points as seen in
the first three bars. With a larger penalty for making a wrong decision, the framework buys more
points and gives higher accuracy.

5.4.3 Validation Experiments with Real Data. Using the same GPS data as we did for the exper-
iments in Section 3.6, we extracted 20 traces from drivers on the I-90 interstate highway and State
Route 520 in Seattle, Washington at different dates and times of day. All 20 traces had more than 8
points on the road in order to compare with a mean filter with window size 8. The traces’ speeds
varied from 10 to 133km/hr (μ = 89.4km/hr and σ = 36.5), covering the three congestion levels. We
estimate the road congestion-level ground truth by applying an alpha-trimmed filter to remove
speed outliers and estimate the speed from the full traces. Using the default payoff matrix, our
framework was able to identify the road segment’s congestion levels accurately (with zero error)
95% of the time and within one level error 100% of the time. This is better than the mean filter
which gave accurate prediction (with zero error) 90% of the time. In addition, our framework buys
50% fewer points as compared to the mean filter.

6 SCENARIO 3: LOCATION PREDICTION

Our third scenario targets location prediction. The buyer in this case is interested in the future lo-
cation of someone. For example, the buyer may want to know if a person will be near the buyer’s
business place, which may prompt an ad delivery. A traffic authority may want to anticipate de-
mand for the road network. In addition to introducing a new scenario, this section demonstrates
a different form of the payoff matrix where the states and actions are continuous.

6.1 Location Prediction

There are many existing techniques for predicting a person’s location based on location history.
These include methods based on a Markov model (Ashbrook and Starner 2003) and based on ef-
ficient driving and other cues (Krumm and Horvitz 2006). We introduce a new technique here
that produces a continuous probability distribution over future locations, which meshes with our
mathematical framework.

Using a single historical point �i taken at time ti , the predicted location for a future time tf is
�f , given by the normal distribution

PLf |Li
∼ N

(
�i ,σ

2
f (ti , tf − ti )

)
.

This implies that the normal distribution of future locations is centered around the measured lo-
cation �i with a variance of σ 2

f
(ti , tf − ti ). This variance is a function of the current time ti and the

offset time into the future, tf − ti . Parameterizing the variance this way is intended to model the
facts that (1) a person’s future location is a strong function of their current location, especially for
the near future, and (2) prediction uncertainty changes with the current time and the time offset
into the future. We computed a tabular approximation of σ 2

f
(ti , tf − ti ) from the data of all our test

users, discretizing both ti and tf − ti to 30-minute intervals.
Predicting �f from multiple purchased points �n1 gives a mixture of Gaussians.

PLf |Ln
1

(�f ) =
1

n

n∑
i=1

д
(
�f |�i ,σ 2

f (ti , tf − ti )I
)
. (14)
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Here д(x|μ,σI ) represents a two-dimensional Gaussian, centered at μ with a diagonal 2 × 2 covari-
ance matrix σI . The accuracy of this prediction technique is given in Section 6.5.

6.2 Distribution of Next Location Measurement

Computing the VOI depends on anticipating the location of the next purchased point, Ln+1. We
make a direct prediction of the location of the next purchased point, which is conveniently given
by Equation (14), notated as PLn+1 |Ln

1
(�).

A buyer will typically have purchased multiple points before evaluating an unseen candidate
point for the next purchase. Some of the already-purchased points could have timestamps that
are greater than the candidate point, meaning the “prediction” of the location of the unseen point
could be made from points measured both before and after. Thus, our table of σ 2

f
(ti , tf − ti ) must

cover both tf − ti ≥ 0 (present and future) and tf − ti < 0 (past).

6.3 Payoff and Decision

The buyer can make a decision based on a location prediction from the previously purchased
points. The payoff for this decision depends on the specific application. For instance, we could
repeat a version of the payoff matrix from Section 3.1, where the payoff depends on whether or
not the person of interest was, or will be, inside a predefined region. Instead we introduce a generic,
continuous payoff function that depends on the distance between the predicted and actual future
locations. If the buyer decides that the predicted location is �∗

f
, but the actual location is �f , then

the payoff for this decision is b2 − ‖�f − �∗f ‖
2. Here b2 is some base payoff for making an exact

prediction, and the payoff decreases as the prediction error grows. This payoff function leads to a
closed form for the expected revenue.

We can compute the expected payoff (expected revenue) of predicting �∗
f

from the location pre-

diction. This is

E
[
V | �∗f

]
=

∫
�f

(
b2 − ����f − �∗f ���2)

PLn+1 |Ln
1

(�f )d�f

=

∫
�f

(
b2 − ����f − �∗f ���2) 1

n

n∑
i=1

д
(
�f |�i ,σ 2

f (ti , tf − ti )
)
d�f

=
b2

n

n∑
i=1

∫
�f

д
(
�f |�i ,σ 2

f (ti , tf − ti )
)
d�f −

1

n

n∑
i=1

∫
�f

����f − �∗f ���2
д
(
�f |�i ,σ 2

f (ti , tf − ti )
)
d�f

= b2 − 1

n

n∑
i=1

Eдi

[����f − �∗f ���2]
, (15)

where lf ∈ R
2 and the integral is taken over the full domain of lf .

The term Eдi
[‖�f − �∗f ‖

2] is the expectation of the squared prediction error taken over

the Gaussian дi . Transforming so �′
f
= �f − �∗f , we have д′i = д(�′

f
|�i − �∗f ,σ

2
f

(ti , tf − ti )). Now

‖
�′

f

σf (ti ,tf −ti ) ‖
2 is distributed according to the noncentral chi-squared distribution with degrees

of freedom equal to the dimension of � (v = 2) and λi = ‖
�i−�∗f

σf (ti ,tf −ti ) ‖
2. The expected value of

‖
�′

f

σf (ti ,tf −ti ) ‖
2 is v + λi , and the expected value of ‖�f − �∗f ‖

2 is

Eдi

[����f − �∗f ���2]
= σ 2

f (ti , tf − ti ) (2 + λi ).
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The expected revenue for deciding a future location of �∗
f

then simplifies to

E
[
V | �∗f

]
= b2 − 1

n

n∑
i=1

(
2σ 2

f (ti , tf − ti ) + ����i − �∗f ���2)
. (16)

The buyer will want to maximize expected revenue by choosing the best value for �∗
f
. Differen-

tiating the expected revenue with respect to �∗
f

gives

dE[V | �∗
f
]

d�∗
f

=
2

n

n∑
i=1

(�i − �∗f ).

Setting this derivative to zero gives the optimal location prediction as

�∗f =
1

n

n∑
i=1

�i .

This shows the predicted location is simply the mean of the already-purchased location points.

6.4 Value of Information

By making the optimal prediction above, the expected revenue from previously purchased points
�n1 would be

E
[
V | Ln

1 = �
n
1

]
= b2 − 1

n

n∑
i=1

���
�
2σ 2

f (ti , tf − ti ) +

�������
�i −

1

n

n∑
j=1

�j

�������
2�		


.

This shows that expected revenue decreases with larger prediction variances and when the pur-
chased points are more dispersed from their mean.

The VOI of an additional point �n+1 is

VOI(�n+1 | Ln
1 = �

n
1 ) = E

[
V | Ln+1

1 = �n+1
1

]
− E

[
V | Ln

1 = �
n
1

]

=
2

n

n∑
i=1

σ 2
f (ti , tf − ti ) − 2

n + 1

n+1∑
i=1

σ 2
f (ti , tf − ti ) (17)

+
1

n

n∑
i=1

�������
�i −

1

n

n∑
j=1

�j

�������
2

− 1

n + 1

n+1∑
i=1

�������
�i −

1

n + 1

n+1∑
j=1

�j

�������
2

.

Two of the main terms in the equation above are independent of �n+1, i.e., 2
n

∑n
i=1 σ

2
f

(ti , tf − ti ) and
1
n

∑n
i=1 ‖�i − 1

n

∑n
j=1 �j ‖2. The other two main terms depend on �n+1, and thus affect the choice of

which is the best point to buy next. The first of these terms, − 2
n+1

∑n+1
i=1 σ 2

f
(ti , tf − ti ), encourages

buying points that have a small associated prediction variance, σ 2
f

(tn+1, tf − tn+1). The second of

these terms, − 1
n+1

∑n+1
i=1 ‖�i − 1

n+1

∑n+1
j=1 �j ‖2, encourages buying points that help reduce the dis-

persion of the purchased points. Note that for choosing the first point, i.e., for n = 0, only the
second main term is non-zero. It indicates buying the point with the minimum prediction vari-
ance, σ 2

f
(ti , tf − ti ).

The expected value of information, given the uncertainty in the location of point �n+1, is given by
Equation (4), where PLn+1 (�n+1 | Ln

1 = �
n
1 ) comes from Equation (14), which gives the distribution

of the location of point �n+1. The expected profit is given by Equation (5).
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Fig. 9. Using VOI to choose points to purchase is generally better than random choices in terms of prediction
accuracy.

6.5 Evaluation Experiments

To test our prediction scenario, we used GPS data from the same 66 subjects as the ad delivery
scenario described in Section 3.6. We used the temporal first half of each person’s data to compute
one set of prediction variances, σ 2

f
(ti , tf − ti ), that pertain to all subjects. We represented ti as

the amount of time since the day’s previous midnight, discretized into 30-minute intervals. The
quantity tf − ti represents the amount of time predicted into the future. We limited this to 24 hours
and also discretized it to 30-minute intervals.

For each subject, we randomly selected 100 test location points to predict from the temporal last
half of their data. For each of these points, we randomly chose 20 prior points that were within
our 24-hour prediction window as candidates for buying. With 66 subjects and 100 test predictions
per subject, we tested our algorithm on 6,600 different location prediction tasks.

Our primary test is to see if the algorithm is choosing good points to buy for making predictions.
The next best point to buy is the one that maximized the expected VOI. As a comparison technique,
we chose points randomly from the 20 available for each trial, repeating this 10 times for each of
the 6,600 prediction tasks.

Figure 9 shows the mean prediction error based on buying 1, 2, and 3 points. The solid lines
show our VOI approach, and the correspondingly colored dashed lines show the random approach.
From 0 to 7 hours into the future, the VOI technique has noticeably smaller error than the random
technique, after which the two techniques are approximately equal in error. Predicting ahead 0–30
minutes, the VOI technique reduces prediction error by 54%, 47%, and 40%, respectively, for 1, 2,
and 3 purchased points. This large reduction in error shows that the VOI technique is much better
at choosing which location points to buy for increased location prediction accuracy.

7 DISCUSSION

Here we make some observations that apply to all our scenarios.

7.1 Optimality

In deciding which points to buy, we presented a greedy technique, where the buying decision
depends on which points have been already purchased. This is optimal in the sense that it is maxi-
mizing the value of information for the next point. An interesting alternative would be to evaluate
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batches of points for sale and purchase multiple points at the same time. This may lead to better
buying decisions, but at the cost of more computation.

7.2 Measurement Uncertainty

We have assumed that all location data for purchase comes with the same uncertainty. However,
different measurement methods (e.g., GPS vs. reverse IP) come with different certainties. Also,
sellers may want to intentionally add noise to their data for privacy reasons, including spatial and
temporal noise. An extension of this work could look at how to incorporate these measurement
uncertainties in a principled way.

7.3 Data Cost

For convenience in our testing, we have assumed that the cost of each location point, ci , is equal.
The mathematical and algorithmic development do not require this, however. Sellers may want to
set a price that corresponds to their perceived worth of the data. For example, in the targeted ad
scenario, location data from the middle of the night might have a higher price, because it is more
likely to pinpoint the seller’s home. Equation (6) shows the fair price for an unseen location point,
assuming there is zero profit for the buyer.

7.4 Computational Considerations

Several of the computations necessary for evaluating the next best point to purchase are trivial,
such as the expected profit (Equation (5)). The bulk of the necessary computations are numerical
integrals that change depending on the scenario. For scenarios 1 and 2, with discrete payoff ma-
trices, we must compute the probability of each state. For scenario 1 (home-targeted ads), this is
shown in Equation (1). The integrand is a probability distribution describing the home location
which, as described in Section 3.3, uses the mixture of Gaussians in Equation (8) as a prior that
covers the entire United States with each home location. Thus, at the extreme, we must spatially
integrate a Gaussian mixture with N ≈ 170 million elements (one for each U.S. home in our data-
base) over the target region. However, this prior distribution can be pre-computed. Then, the home
distribution gets updated as we purchase more data using Equation (7) and the integral is com-
puted numerically on a spatial grid of size M ×M . This is combined with the EVOI computation
for n offered data points for purchase, requiring O (nM2) computational time.

In scenario 2 (traffic state estimation), there are the same two types of numerical integrals, but
this time the integration variable is a single-dimensional speed, so the computations are much
faster than the two-dimensional locations in the other two scenarios.

In scenario 3 (location prediction), we have a continuous payoff matrix. The state estimate is the
future location of the seller. We showed that the optimal decision for this location, given our ap-
proach, is simply the mean of the n already purchased points, giving a small computational burden
of O (n). The main computational bottleneck of this scenario is the expected VOI in Equation (4).
The VOI computations inside the integral are O (n) (Equation (17)), but the next point probability
distribution, PLn+1 (�n+1 | Ln

1 = �
n
1 ), is a mixture of Gaussians with n components (Equation (14)).

We compute this integral numerically on a spatial grid of size M ×M . Combined with the VOI
computation in the integrand, numerically integrating Equation (4) requires O (nM2) time for the
third scenario.

In general, the integrals for state estimation and EVOI have no closed form. Efficient ap-
proaches to these computations would go far in making our techniques more practical for real time
computation.
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8 CONCLUSION

We presented a principled method for buyers of location data to compute the value of users’ un-
seen location data. The approach relies on algorithms that consider probability distributions over
locations based on data that has already been purchased, as well as the buyer’s payoff matrix, to
anticipate the value of future, as yet unpurchased data. As a byproduct of the quantitative valua-
tions, the methodology identifies which unseen data is likely the most valuable for the buyer. We
considered three scenarios: home-targeted ads, traffic congestion inference, and location predic-
tion, to illustrate how we estimate the value of location data obtained from end users in different
settings. These techniques work significantly better than competing inference approaches, both
by using less data and inferring more accurate results. We believe this the work fills a gap in the
pricing of location data and that the methods can help inform decisions by buyers and sellers of
location data.

REFERENCES

Eytan Adar and Bernardo A. Huberman. 2001. A market for secrets. First Monday 6, 8 (2001).

Heba Aly, John Krumm, Gireeja Ranade, and Eric Horvitz. 2018. On the value of spatiotemporal information: Principles and

scenarios. In Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information

Systems. ACM, 179–188.

Daniel Ashbrook and Thad Starner. 2003. Using GPS to learn significant locations and predict movement across multiple

users. Personal and Ubiquitous Computing 7, 5 (2003), 275–286.

Howard Beales. 2010. The value of behavioral targeting. Network Advertising Initiative 1 (2010).

Anna Marie Chang, Alison C. Leung, Olivia Saynisch, Heather Griffis, Shawndra Hill, John C. Hershey, Lance B. Becker,

David A. Asch, Ariel Seidman, and Raina Martha Merchant. 2014. Using a mobile app and mobile workforce to validate

data about emergency public health resources. Emergency Medicine Journal 31, 7 (2014), 545–548.

Puget Sound Regional Council. 2016. Travel Surveys: Spring 2015 Household Survey. Retrieved on 5 September, 2019 from

https://www.psrc.org/travel-surveys-2015-household-survey.

Dan Cvrcek, Marek Kumpost, Vashek Matyas, and George Danezis. 2006. A study on the value of location privacy. In

Proceedings of the 5th ACM Workshop on Privacy in Electronic Society. ACM, 109–118.

Frank Van Diggelen. 2007. Update: GNSS accuracy: Lies, damn lies, and statistics. GPS World 18, 1 (2007), 26–33.

Michael F. Goodchild. 2007. Citizens as sensors: The world of volunteered geography. GeoJournal 69, 4 (2007), 211–221.

Mohinder S. Grewal. 2011. Kalman filtering. In International Encyclopedia of Statistical Science. Springer, 705–708.

Mordechai Haklay and Patrick Weber. 2008. Openstreetmap: User-generated street maps. Pervasive Computing 7, 4 (2008),

12–18.

Manish Jain, Matthew Taylor, Milind Tambe, and Makoto Yokoo. 2009. DCOPs meet the real world: Exploring un-

known reward matrices with applications to mobile sensor networks. In 21st International Joint Conference on Artificial

Intelligence.

Yaron Kanza and Hanan Samet. 2015. An online marketplace for geosocial data. In SIGSPATIAL. ACM, 10.

Leyla Kazemi and Cyrus Shahabi. 2012. Geocrowd: Enabling query answering with spatial crowdsourcing. In Proceedings

of the 20th International Conference on Advances in Geographic Information Systems. ACM, 189–198.

Andreas Krause, Eric Horvitz, Aman Kansal, and Feng Zhao. 2008a. Toward community sensing. In 2008 International

Conference on Information Processing in Sensor Networks (IPSN’08). IEEE, 481–492.

Andreas Krause, Ajit Singh, and Carlos Guestrin. 2008b. Near-optimal sensor placements in Gaussian processes: Theory,

efficient algorithms and empirical studies. Journal of Machine Learning Research 9, (Feb. 2008), 235–284.

John Krumm and Eric Horvitz. 2006. Predestination: Inferring destinations from partial trajectories. In International Con-

ference on Ubiquitous Computing. Springer, 243–260.

John Krumm, Dany Rouhana, and Ming-Wei Chang. 2015. Placer++: Semantic place labels beyond the visit. In Proceedings

of the 2015 IEEE International Conference on Pervasive Computing and Communications (PerCom’15). IEEE, 11–19.

Juha K. Laurila, Daniel Gatica-Perez, Imad Aad, Olivier Bornet, Trinh-Minh-Tri Do, Olivier Dousse, Julien Eberle, Markus

Miettinen, et al. 2012. The mobile data challenge: Big data for mobile computing research. In Pervasive Computing.

Mingqi Lv, Ling Chen, and Gencai Chen. 2012. Discovering personally semantic places from GPS trajectories. In CIKM.

ACM, 1552–1556.

ACM Transactions on Spatial Algorithms and Systems, Vol. 5, No. 4, Article 22. Publication date: September 2019.

https://www.psrc.org/travel-surveys-2015-household-survey


To Buy or Not to Buy: Computing Value of Spatiotemporal Information 22:25

Trend Micro. 2015. How Much is Your Personal Data Worth? Survey Says . . . Retrieved on 5 September, 2019 from

https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/how-much-is-your-personal-data-worth-

survey-says.

Vipal Monga. 2014. The Big Mystery: What’s Big Data Really Worth? Retrieved on 5 September, 2019 from https://blogs.

wsj.com/cfo/2014/10/13/the-big-mystery-whats-big-data-really-worth/.

D. Warner North. 1968. A tutorial introduction to decision theory. IEEE Transactions on Systems Science and Cybernetics 4,

3 (1968), 200–210.

U.S. Bureau of Labor Statistics. 2016. American Time Use Survey. Retrieved on 5 September, 2019 from https://www.bls.

gov/tus/.

Joseph Phelps, Glen Nowak, and Elizabeth Ferrell. 2000. Privacy concerns and consumer willingness to provide personal

information. Journal of Public Policy & Marketing 19, 1 (2000), 27–41.

Stephen O. Rice. 1945. Mathematical analysis of random noise. The Bell System Technical Journal 24, 1 (1945), 46–156.

Sambu Seo, Marko Wallat, Thore Graepel, and Klaus Obermayer. 2000. Gaussian process regression: Active data selection

and test point rejection. In Mustererkennung 2000. Springer, 27–34.

Jan Sijbers, Arnold Jan den Dekker, Erik Raman, and Dirk Van Dyck. 1999. Parameter estimation from magnitude MR

images. International Journal of Imaging Systems and Technology 10, 2 (1999), 109–114.

Amarjeet Singh, Andreas Krause, Carlos Guestrin, William J. Kaiser, and Maxim A. Batalin. 2007. Efficient planning of

informative paths for multiple robots. In International Joint Conferences on Artificial Intelligence, Vol. 7. 2204–2211.

Jacopo Staiano, Nuria Oliver, Bruno Lepri, Rodrigo de Oliveira, Michele Caraviello, and Nicu Sebe. 2014. Money walks:

A human-centric study on the economics of personal mobile data. In Proceedings of the 2014 ACM International Joint

Conference on Pervasive and Ubiquitous Computing. ACM, 583–594.

Emily Steel. 2013. Financial worth of data comes in at under a penny a piece. Retrieved on 5 September, 2019 from https:

//www.ft.com/content/3cb056c6-d343-11e2-b3ff-00144feab7de.

George J. Stigler. 1961. The economics of information. Journal of Political Economy 69, 3 (1961), 213–225.

Catherine E. Tucker. 2012. The economics of advertising and privacy. International Journal of Industrial Organization 30, 3

(2012), 326–329.

Feng Zhao, Jaewon Shin, and James Reich. 2002. Information-driven dynamic sensor collaboration for tracking applications.

IEEE Signal Processing Magazine 19, 2 (2002), 61–72.

Received December 2018; revised March 2019; accepted March 2019

ACM Transactions on Spatial Algorithms and Systems, Vol. 5, No. 4, Article 22. Publication date: September 2019.

https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/how-much-is-your-personal-data-worth-survey-says
https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/how-much-is-your-personal-data-worth-survey-says
https://blogs.wsj.com/cfo/2014/10/13/the-big-mystery-whats-big-data-really-worth/
https://blogs.wsj.com/cfo/2014/10/13/the-big-mystery-whats-big-data-really-worth/
https://www.bls.gov/tus/
https://www.bls.gov/tus/
https://www.ft.com/content/3cb056c6-d343-11e2-b3ff-00144feab7de
https://www.ft.com/content/3cb056c6-d343-11e2-b3ff-00144feab7de

