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Abstract 

A spoken dialog system typically characterizes a domain task 
with multiple states interconnected by actions or thresholds as 
transitions between states. As the system attempts to solicit a 
piece of information from the user, it may have to engage in a 
hidden subdialog, or error handling within a particular state, 
before transitioning to a new state. Hidden subdialogs 
generally center on illocutionary repairs such as a request for 
repetition or confirmation of a heard utterance. We summarize 
what we believe to be the distinct advantages of representing 
error handling in a hidden subdialog as decision making under 
uncertainty. We motivate the discussion with examples drawn 
from dialog systems built within the Conversational 
Architectures Project at Microsoft Research. 

1. Introduction 

A task-oriented spoken dialog system typically considers 
multiple states represented in a graph, automata, or matrix 
with actions or thresholds as transitions between states. For 
any state, the system must solicit a piece of information from 
the user before transitioning to a new state. Error handling in 
any particular state has been called a hidden subdialog, as the 
dialog is self-contained and does not occur at the transitional 
level. Hidden subdialogs generally center on illocutionary 
repairs relating to the act of communication itself, and can 
occur anywhere. For example, if a dialog system receives a 
poor speech recognition result, it may request that the user 
repeat or confirm the heard utterance. Such requests concern 
only that particular utterance and constitute what 
sociolinguists have called a “side sequence” ([13]). 

We have been exploring decision-theoretic approaches to 
managing a hidden subdialog in the Conversational 
Architectures project. We summarize what we believe to be 
the distinct advantages of representing error handling in a 
hidden subdialog as a type of “decision making under 
uncertainty;” that is, representing in an explicit manner 
preferences about the costs and benefits of alternate repair 
actions. 

1.1. Applying decision theory 

Before outlining the distinct advantages of applying decision 
theory to managing a hidden subdialog, we begin with a brief 
primer on decision theory and its application to spoken 
dialog. 

The application of decision theory to any problem 
requires two components, each of which must be explicitly 
modeled: uncertainty and utility. With a hidden subdialog, 
critical uncertainties include the inputs a dialog system 
receives and its beliefs about their illocutionary and 

perlocutionary force ([1]). Since speech recognition is the 
primary mode of input, dialog systems can access credible 
confidence scores or “perplexity” metrics from a speech 
engine. These measures can serve as or inform one or more 
other measures of uncertainty about recognition accuracy or 
reliability. In decision theory, the level of uncertainty is 
represented as a probability distribution over states of 
recognition. 

Although most spoken dialog systems do not take for 
granted the reliability of recognition results, not all systems 
exploit the degree of uncertainty afforded by confidence 
metrics. When they do, confidence is typically handled in an 
ad-hoc fashion ([10]). For example, it is not uncommon for 
systems to use rules of the form:  
 
•  Rule: If the recognized utterance falls below some 

confidence threshold n, and the system has not asked a 
particular repair question more than m times, then ask the 
repair question.  

Such ad-hoc rules and approaches have poorly characterized 
performance; it is unclear how to determine what constituents, 
such as n and m, belong in these rules and how to tune them. 
While there is no easy solution to this problem, decision 
theory helps to mitigate the heuristic nature of leveraging 
measures of recognition uncertainty by setting decisions about 
what repair action to take within a principled mathematical 
framework, one that is guided by expected utility. Decision-
theoretic approaches center on representations and procedures 
for identifying real-world actions under uncertainty that have 
maximal expected utility. 

The process of performing a decision analysis includes 
expending effort to construct models that consider (1) feasible 
actions, (2) uncertainties about the current state of the world, 
and (3) preferences about taking each action given the truth of 
different states of the world. Scalar measures of preference 
that are consistent with the “Axioms of Utility Theory” are 
referred to as utilities. Utility Theory is comprised of 
compelling assertions about the nature of preferences under 
uncertainty ([18]). 

Over the past five years, we have worked to apply the 
power of decision theory to the challenge of building and 
refining dialog repair strategies ([4], [5], [10]). For managing 
a hidden subdialog, the actions to consider are the plausible 
repair strategies a dialog system can take, given its 
uncertainties about its inputs, internal beliefs, and the state of 
the dialog. For example, the utility of the “outcome” of asking 
the user to repeat an utterance, given a poor recognition 
result, is typically relatively high; although, that utility tends 
to drop with the number of times the system has previously 
engaged in the same repair within the hidden subdialog. 



In order to determine what actions constitute good 
actions, decisions are made according to the “Principle of 
Maximum Expected Utility” (MEU), a unifying policy on the 
choice of best action, following logically from the Axioms of 
Utility Theory. According to the MEU Principle, the principal 
agent should select the action A = a that maximizes expected 
utility, EU(a|ξ). If ξ denotes all background information and 
H represents all possible states of the world, then we select 
actions guided by the following optimization: 
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where u(a,h) expresses the utility of taking action a when the 
state of the world is h. Note that a cost or loss function can 
also serve as the utility. 

1.2. Building systems 

Although the MEU Principle can be implemented in a number 
of different computational architectures, we have found it 
valuable to employ an expressive representation called an 
influence diagram ([6],[14]). An influence diagram is a 
generalization of the more familiar Bayesian network 
representation, where the arcs and random variables in a 
Bayesian network are extended with utility and decision 
nodes ([11]). The influence-diagram representation allows a 
system builder to explicitly define actions, key uncertainties, 
and preferences about repair actions in a hidden subdialog, 
and to capture how these key factors are related. Figure 1 
displays a high-level influence diagram capturing some of the 
more detailed computations in the DeepListener system (see 
[5] for an extended treatment). The DeepListener research 
project has explored decision-theoretic models for guiding 
hidden subdialog in a command-and-control speech 
recognition setting. 
 

 

Figure 1: An influence diagram for dialog repair 

The Intention node in the above influence diagram 
contains a probability distribution of over possible intentions 
for the production of a sound input, such as: 
 
•  User is issuing a command 

•  User is signaling the need for more time 

•  Speech has been overheard 

These are explicitly represented as discrete states in the 
probability distribution for the Intention node. Likewise, the 
Repair node contains the set of all possible repair actions, 
including the following: 
 
•  Confirm the most likely command 

•  Confirm between the top two most likely commands 

•  Ask for a repetition 

•  Ask for a rephrase 

Since the Repair node is a decision node, no probability 
distribution over these states is required. Finally, the Utility 
node, whose parents are the Intention and Repair nodes as 
shown in the arcs, relates the utility of taking any repair action 
in the context of a given user intention, such as the utility of 
asking for a repetition if the user is issuing a command, or: 
 
•  u(Ask for a repetition, User is issuing a command) 

The utilities for the cross product of all repair actions by user 
intentions are expressed numerically. As far as scale is 
concerned, the numeric scale of the utilities is mathematically 
unique up to a positive affine transformation such that if u(x) 
is the utility, then a u(x) + b is equivalent for any constant a > 
0 and any constant b ([18]). 

The influence diagram in Figure 1 graphically depicts the 
notion that what the user intends is dependent on how likely it 
is that the system heard any particular command; this is 
expressed in the arc from Intention node to Command node, 
which maintains a probability distribution over all commands. 
The Command node also depends on any number of features 
f1 through fn, such as the confidence score and acoustic events 
exposed in the speech interface. The features can be anything, 
including unobserved features that depend on other features. 
The Command node in this influence diagram is effectively 
acting as a Naïve Bayes classifier over the feature set ([3]). 
Note that some of the features may also be dependent on the 
Intention node as shown in the arcs. 

As acoustic events are observed, the Command node 
infers a distribution over possible commands, and propagates 
its probabilities to the Intention node. Inferring a marginal 
distribution over all possible intentions is the same as 
determining P(H=h|ξ) in equation (1) above, which along 
with the utilities, facilitates the calculation of the expected 
utilities for all actions or repair strategies, the optimal action 
being that which has the highest expected utility. 

Instead of authoring an intractable list of ad-hoc rules that 
specify what thresholds must be met before any particular 
repair strategy can be engaged, the MEU Principle utilized by 
an influence diagram allows optimal actions to be selected in 
a mathematically principled manner. Rules are not explicitly 
stated, but they are implicit in the probability distributions 
that make up the influence diagram. In fact, if desired, 
influence diagrams can be converted into decision trees 
([14]), which subsequently, can be read off as production 
rules ([12]), though some behavioral robustness may be lost 
in the conversion. At run-time, procedures that maximize 
expected utility effectively compute just the “right” rules in a 
dynamic manner. 



1.3. Making successive decisions 

In a hidden subdialog, multiple repair sequences may be 
required in order to obtain requisite information from the 
user, in which case, an influence diagram can be used to make 
successive decisions. When an influence diagram carries over 
probability distributions from one time slice, such as a 
conversational turn, into the next time slice, the MEU 
Principle is applied successively to optimize each local 
decision. In Figure 2, the likelihood of hearing a particular 
command is influenced by its own previous likelihood, as 
shown in the arc from the Command node at time t-1 to time 
t. Decision making in a temporal influence diagram 
constitutes a Markov Decision Process (MDP), where the 
state space is constrained by the structure of the influence 
diagram and policies are evaluated locally. Since the Intention 
node is never observed but only inferred, the influence 
diagram in Figure 2 is considered to be partially observable 
(POMDP). 
 

 

Figure 2: Likelihood of a command depending on its 
likelihood in the previous turn. 

1.4. Reinforcement learning 

A related approach using notions of probability and utility in 
optimizing repair strategies is reinforcement learning ([16]). 
Reinforcement learning also construes decision making in 
spoken dialog as a MDP. Treating utterances as observations 
and applying a reward or utility function for reaching various 
outcome states, the objective is to derive a sequence of 
actions or policy that maximizes the expected reward in the 
long run ([7], [9], [15]). Unlike temporal influence diagrams, 
which optimize actions locally, model based reinforcement 
learning techniques typically seek to optimize globally over 
the entire search space, which is a space proportional to size 
|H| × |H| × |A| ([16]), though efforts have been made to 
approximate and compact that space ([9]). For an influence 
diagram with only one decision and one utility node, such as 
Figure 2, the space is proportional to |H| × |A|, where |H| 
comprises any uncertainty nodes that are parents of the utility 
node. 

1.5. Challenges 

While decision-theoretic approaches may be optimizing 
successive decisions about what repairs actions to take in a 

hidden subdialog, there is no guarantee that the optimal 
decision is the most ”natural” one. For both reinforcement 
learning and influence diagrams, the main challenges revolve 
around assessing uncertainties and utilities in a spoken dialog 
setting.  

In reinforcement learning, assessing uncertainties revolves 
around learning transition probabilities between dialog states, 
where each state comprises summary features for the dialog 
such as matched utterances and their confidence scores ([15]). 
Rewards are assigned to dialog outcomes such as termination 
using experimentally derived measures such as user 
satisfaction, and the expected cumulative reward or Q-value is 
computed for dialog policies ([15]). 

In an influence diagram, assessing uncertainties involves 
more local modeling of dialog dependencies; instead of 
summarizing features in a dialog state, the features themselves 
become uncertainty nodes, some of which may be observable 
such as confidence scores, and some of which are 
unobservable such as user intention. These uncertainty nodes 
are related to one another through conditional probability 
tables, which can be estimated using either decision analysis 
techniques for quantifying human expertise ([6]), or from 
collected data ([2], [3]). Utilities are not assigned to dialog 
outcomes, but rather to specific dialog actions taken in the 
context of a generalized dialog state, such as the Intention 
node in Figure 2 or “levels of grounding” ([10]). Currently, 
utilities can be assessed through decision analysis or user 
interface tools ([5]), though new techniques are being 
developed to learn utilities through operant conditioning. 
Despite the challenges facing any decision-theoretic approach 
to dialog, efforts have been made in both reinforcement 
learning and influence diagrams to improve uncertainty and 
utility assessment 

2. Advantages of a Decision-Theoretic 
Approach 

Despite the challenges, decision-theoretic approaches to dialog 
offer distinct advantages for managing a hidden subdialog. In 
this section, we describe three advantages: (1) the propagation 
of uncertainties over time to assist recognition, (2) the ability 
to leverage key contextual dependencies, such as the acoustic 
environment, and (3) the consideration of the stakes involved 
in taking real-world actions. These advantages are discussed 
with reference to real-time systems and authoring tools that 
utilize influence diagrams. Although other computational 
systems may be capable of reproducing all or some of the 
advantages, we maintain that influence diagrams are ideally 
suited for handling the specific issues that commonly arise in 
managing a hidden subdialog. 

2.1. Assisting recognition 

It goes without saying that in spoken dialog systems, hidden 
subdialogs often center on repairs caused by poor speech 
recognition. Most systems utilize the recognizer as a black-
box incapable of exploiting dialog features in its internal 
processing. However, they also unnecessarily leave the 
recognition results as is without any post-processing. As such, 
dialog systems treat each utterance of a hidden subdialog as if 
it was heard for the first time; that is, adjacent utterances, 
even in a clarification-dialog setting are considered to be 
probabilistically independent. This runs counter to common 



sense. For example, if an utterance is heard at a confidence 
level below a certain threshold, the system may ask for 
repetition. If the user produces the utterance again—or a 
different, but conceptually equivalent utterance with the same 
intention—at the same confidence level, the system may ask 
for a repetition again, despite the fact that the second 
utterance came in response to a request for repetition. 

With a decision-theoretic approach, the responses to 
clarifications would not be considered as independent 
utterances since uncertainties are propagated over time 
through Markovian dependencies. For example, consider the 
temporal influence diagram in Figure 2. Here, the likelihood 
of any command at time t depends on the likelihood of that 
command at t-1 as well as the repair action taken by the 
system at t-1. Hence, with respect to the previous example, 
even if the second utterance by the user had the same 
confidence level as the first, its likelihood could increase 
because it is conditioned on both its previous likelihood and 
the repair of asking for a repetition. In particular, the value of 
this temporal dependency rests on the following condition for 
the case where a user is following a request to clarify an 
utterance: 
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which states that the likelihood of the same command c is at 
least as great as that of all other commands given that c was 
the most likely command in the previous turn, and the system 
took a particular repair action r. These kinds of conditions, 
where the likelihood of a command increases or decreases 
based on events in the previous time slice, appear frequently 
in a hidden subdialog context because users often repeat the 
same information to a system given a speech recognition 
failure ([5]). 

Dialog systems without temporal modeling typically 
resort to ad-hoc rules specifying how often to engage in a 
repair if confidence scores do not reach a particular threshold. 
As we discussed earlier, this approach suffers from several 
disadvantages. Another approach is to try to predict when 
misrecognitions might occur and adjust dialog strategy 
accordingly ([8]). This approach is actually complementary to 
temporal modeling in that the predictive factors of a 
misrecognition can be incorporated in the influence diagram 
as key contextual dependencies. For example, the 
DeepListener system ([5]) incorporates features in the 
acoustic environment that tend to cause misrecognitions, as 
we discuss in this next section. 

2.2. Leveraging contextual dependencies 

Another advantage to applying decision theory to hidden 
subdialogs is the ability to model and leverage key contextual 
dependencies. These dependencies can relate to features of 
the domain task, the acoustic environment, the dialog in 
progress, and just about anything that allows for better 
estimates of the uncertainties in the model. Relevant 
contextual dependencies can be determined by collecting 
labeled feature data and learning predictive features ([3]), or 
by simply modeling noted dependencies in the research 
literature. We will discuss a key contextual dependency which 
we have found in our experience with the DeepListener 
project to be useful in managing a hidden subdialog: namely, 

consideration of the type of background acoustic 
environment. 

As researchers have long noted, the reliability of the 
speech recognizer is often the bottleneck in dialog success 
and user satisfaction ([17]). In attempting to extract the most 
amount of information from each speech recognition result, 
we found that classifying the type of background acoustic 
environment that speech was being produced in and 
incorporating that into the influence diagram allowed for 
more appropriate repairs. Basic types of background acoustic 
environments include the following:  
 
•  No noise detected 

•  Constant static or white noise detected 

•  Voices in the background 

The types included depend on the granularity of distinction 
needed for the application domain. Inferring the type of 
background acoustic environment in real-time allows the 
dialog system to anticipate problems that may occur in 
recognition. For example, before DeepListener considers the 
command a user may have uttered, it first considers whether 
the sound produced was intended for the system or for 
someone else. If the most likely background acoustic 
environment is “Voices in the background,” then the 
likelihood of “Speech has been overheard” increases. The 
system can then use this likelihood in a repair by suggesting 
that the user move to a more quiet area where there are less 
people and a better chance for a more accurate recognition. 
 

 

Figure 3: Utility assessment tool in DeepListener for 
setting the stakes of repair actions. 



2.3. Considering the stakes 

Every action has consequences, and in a hidden subdialog, 
depending on the stakes involved in those consequences, less 
uncertainty may be required for a repair. For example, if a 
dialog system is walking a user through a help document on 
reinstalling the operating system, the consequences of a false 
recognition to the question, “Would you like to view the next 
email message?” is quite different from that of “Would you 
like a clean install?” The consequences in the latter are almost 
irreversible and of high cost, whereas making a mistake in the 
former is correctable and of low cost. Figure 3 displays one of 
several pages of the utility assessment tool in DeepListener 
for specifying the cost of various repair actions.  The tool 
displays pages for considering outcomes in the context of 
particular user intentions for a given dialog state. For 
example, if the prompt for the dialog state is, “Would you like 
to view the next email message?” the user may want the 
action to be executed without engaging in repair sequences. In 
that case, the user specifies that for the intention of “Yes” as a 
response to the prompt, the best action to take is to “Do it.” 
All other actions, including repairs such as “Ask me for a 
repeat what I said” is very undesirable for the user, as 
expressed by the pointers in the slider bars are set to the right. 
By rank ordering actions and specifying relative preferences 
between actions using the slider bars, designers can 
automatically construct a utility function for the underlying 
influence diagram. 
 

 

Figure 4: Assessment tool for specifying how utilities 
may change over time. 

In an influence diagram, the stakes are represented in the 
utility node. So if the utility or cost of taking the wrong action 
is considerably great, the system is more likely to ask for 
confirmations before engaging in that action for that state. 
Rather than assigning a reward function to the entire dialog 
outcome, as is the case for reinforcement learning, the utilities 

for each state of a dialog may be changed if the stakes of 
making a mistake in one part of the dialog exceed that of 
other states. 

In addition to the stakes involved in taking real-world 
actions, even the stakes of engaging in repairs change over 
time in a hidden subdialog. For example, asking for a 
repetition costs very little the first time, but by the second or 
third time, the cost seems to grow nonlinearly as users 
become more frustrated. With an influence diagram, changing 
utilities can be specified by having a measure of time, such as 
the number of turns, be a parent of the utility node, or by 
specifying a transformation function for the utilities. In the 
DeepListener system, we created an interface that allowed 
users to specify the shape of the transformation function, as 
shown in Figure 4. Here, the user specifies that while the first 
three repairs for this particular state do not bother the user all 
that much, after the third repair however, frustration 
intensifies considerably. DeepListener maps the shape of this 
user preference into a nonlinear transformation function for 
the utilities. 

2.4. Real-time processing 

Putting all three advantages together, decision-theoretic 
approaches to hidden subdialog endow systems with the 
capability to fuse together in real-time all available evidence 
to infer the likelihoods of different intentions. The methods 
update probabilities as a dialog evolves over the interplay of 
turns. Such an inferred probability distribution over different 
intentions is combined with the values of different outcomes 
under uncertainty, to identify the action with the highest 
expected utility. 

Figures 5 and 6 (drawn from  [5]), display inferences, 
over a dialog session, of the likelihoods of intentions and 
expected utilities of alternate repair actions, respectively.  
Figure 5 shows a trace of probabilities over the course of an 
interactive session with DeepListener, given recognitions of a 
user’s response to a recent offer of an automated email 
scheduling service [5] that the system is attempting to 
confirm. The inferred intention of confirming the service 
dominates at turn 3 after briefly competing with the likelihood 
that the system had overheard a conversation at turn 1. 

Figure 6 displays the expected utilities of alternate 
actions, again computed at each turn. The expected utilities 
are computed based on a consideration of utilities about 
different outcomes and the updated probabilities as displayed 
in Figure 5. At each dialog turn, the action with the highest 
 

 

Figure 5: Probabilities of different intentions computed by 
DeepListener as a dialog progresses. 



 

Figure 6: Expected utilities of repair actions as dialog 
progresses, considering dynamic probabilities displayed in 

Figure 5. 

expected utility is selected. Given the initial acoustical signals 
that the system has analyzed at the outset of this interactive 
session, the best initial action to take is to relay to a user who 
may be present (in feedback encoded graphically as a 
“thought cloud” positioned over an animated agent’s head), 
that the system has likely heard noise or utterances directed 
elsewhere. After listening for a new attempt by a user to 
communicate, the system is still not confident enough to take 
action, given the inferred uncertainties and the preferences 
that have been encoded about alternate actions. The best 
action then is to actively seek clarification. Hence, the user is 
asked to repeat the utterance. After a repetition of the 
intention, now said in a different way, the likelihood that the 
user wishes to confirm a desire for an automated activity rises 
sufficiently to make performing the service the optimal action. 
The service is executed and the dialog session ends. 

Note that the expected utility of troubleshooting has 
continued to rise with additional repair actions undertaken 
during the session. If convergence had not been reached soon, 
the system would have initiated troubleshooting behaviors 
such as pausing to reflect with the user about the problem 
they have been experiencing during the communication, and 
revealing to the user its current uncertainties and some of its 
history of beliefs over the interaction. The system also relays 
to a user how to best communicate intentions by sharing out 
the phrases it recognizes well for the maximally likelihood 
intentions. 

3. Conclusion and Future Directions 

In managing a hidden subdialog, we have outlined three 
advantages to taking a decision-theoretic approach: (1) the 
propagation of uncertainties over time to assist recognition, 
(2) the ability to leverage key contextual dependencies, such 
as the acoustic environment, and (3) the consideration of the 
stakes involved in taking real-world actions. In discussing 
these advantages, we have argued that influence diagrams are 
ideally suited to handling the specific problems that come up 
in the context of a hidden subdialog. 

As far as future directions, the big challenge in decision-
theoretic approaches, as discussed in the primer on decision 
theory, is to automatically learn the model in a tractable 
fashion, while at the same time trying to achieve a 
“naturalistic” interaction with users. To accomplish this, one 
direction we are exploring is to try reducing the state space 

for assessment by collapsing multiple utterances into intention 
classes. Another direction is to learn key probabilities and 
preferences by watching users and to update predefined or 
“seed” models trained “at the factory” as starting points for a 
system. Seed models can be refined with usage with an 
explicit learning phase and/or in the stream of dialog 
operations; for instance, via user interface affordances that 
allow feedback for success and failures. 
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