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Abstract

Research on human computation and crowdsourcing has con-
centrated on tasks that can be accomplished remotely over the
Internet. We introduce a general class of problems we call
crowdphysics (CP)—crowdsourcing tasks that require peo-
ple to collaborate and synchronize both in time and physi-
cal space. As an illustrative example, we focus on a crowd-
powered delivery service—a specific CP instance where peo-
ple go about their daily lives, but have the opportunity to carry
packages to be delivered to specific locations or individuals.
Each package is handed off from person to person based on
overlaps in time and space until it is delivered. We formu-
late CP tasks by reduction to a graph-planning problem, and
analyze the performance using a large sample of geotagged
tweets as a proxy for people’s location. We show that pack-
ages can be delivered with remarkable speed and coverage.
These results hold for the case when we know people’s future
locations and also when routing without global knowledge,
making only local greedy decisions. To our knowledge, this
is the first empirical evidence that dynamic networks of mo-
bile individuals are highly navigable.

Introduction
Can we effectively deliver packages with the crowd? We
seek in this paper to answer this concrete question, and more
generally to explore the potential and limits of a broad class
of crowdsourcing problems that require people to synchro-
nize actions in time and physical space.

Research on crowdsourcing has been evolving on multi-
ple fronts. Studies have demonstrated that the crowd can
sometimes be harnessed to solve tasks more effectively and
accurately than a single expert. Successes with leveraging
the crowd has influenced thinking within a wide range of
disciplines, from psychology to machine learning, and in-
cludes work on crowdsourcing diverse tasks such as text
editing (Bernstein et al. 2010), image labeling (Von Ahn and
Dabbish 2004), speech transcription (Lasecki et al. 2012),
language translation (Shahaf and Horvitz 2010), software
development (Little and Miller 2006), and providing new
forms of accessibility for the disabled (Bigham et al. 2010).
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Figure 1: A package on its way to a destination in Seattle, routed
among geolocated Twitter users (colored pins).

Most work to date has concentrated on the solution of in-
tellectual challenges that can be accomplished in their en-
tirety remotely over the Internet. Moreover, workers have
been engaged largely to participate in tasks independently of
one another. We argue that computer-aware connectedness
among people has reached an inflection point that supports a
paradigm shift in thinking about coordination and collabora-
tion on physical activities. With this framing, we explore the
crowdsourcing of tasks that require people to sequence or
synchronize physical actions in time and space. We call this
broader class of problems crowdphysics (CP). CP solutions
harness programmatic access to people like other crowd-
sourcing, but draw upon sensing, inference, and prediction
to guide action in the physical world. We see great oppor-
tunities to leverage methods and results from graph theory,
optimization, and machine learning to solve CP challenges.

We introduce and explore a canonical example of CP with
a prototype delivery system we call TwedEx. We assume that
people go about their daily lives, but have the opportunity to
carry a package (e.g., mail) to be delivered to specific loca-
tions or individuals. Each package is handed off from person
to person based on overlaps in time and space until a target
location or person is reached.



Numerous tasks can be solved via harnessing synchro-
nized efforts of a dynamic mesh of people on the move.
Instances include building a sensor network of people to as-
sist in finding a missing child and summoning a team to a
location to help retrieve a lost object (e.g., a wallet). On a
larger-scale, CP systems could assist with such tasks as coor-
dinating humanitarian efforts in the developing world (e.g.,
distributing supplies or vaccines), providing search and res-
cue in times of crisis (e.g., assisting people affected by a nat-
ural disaster or amidst war), and protecting citizens from an
oppressive regime. Such efforts may leverage social connec-
tions of different degrees per preferences about trust. How-
ever, they can also be constructed from strangers, who may
not even be aware of the other parties in a coordinated task.

Another task from the CP class is disease containment.
Preventing an outbreak of an infectious disease is analogous
to package delivery with the cost function inverted. The
pathogen becomes the package,1 the contact network is in-
duced from all potential package handoffs, and we now want
to minimize the probability of effective spread. Coordinated
CP tasks may be used to fight the spread of disease by moti-
vating strategically selected people to change their patterns
of mobility, including changing the portion of time they stay
at home, avoiding global travel of certain types, making sub-
stitutions in destinations, and avoiding specific venues. Prior
work explored disease containment, but only at an aggregate
level and with simulated populations (Eubank et al. 2004),
but the increased level of detail of online data now enables us
to capture specific individuals at a population scale (Sadilek,
Kautz, and Silenzio 2012).

Our intuition is that if package delivery can be solved,
numerous other CP problems can be reduced to it. On the
specific example of package delivery, we have found that
the CP approach can actually be competitive with traditional
delivery services in several ways. However, we present the
delivery task primarily as a motivating example for research
on physical crowdsourcing and intelligent coordination of
the crowd.

A successful delivery requires a chain of correct handoffs
between pairs of workers. Each exchange requires the par-
ticipants to meet (i.e., to be synchronized in time and space).
There needs to be global synchrony across handoffs to create
the desired delivery path. The summon task is simpler: a set
of workers only have to arrive at a preset constant location.
A delivery task can be decomposed into a sequence of syn-
chronized summon tasks—one for each handoff, summon-
ing two workers—to locations that minimize a given cost
function. This function can trade off quantities such as task
cost, digression of workers from their intended paths or rou-
tines, reliability, and speed of task completion.

Significance of Results
Focusing on the crowdsourcing of package delivery as a
specific instance of CP, we show that the physical system
has permeability, which increases considerably as we al-
low longer wait times and larger geographic digressions of

1Unlike a package, the pathogen can “divide” and infect multi-
ple individuals at once.

Dataset Days Users Tweets Edges in G

NYC 21 47,713 544,606 740,489
SEA 21 10,424 125,620 140,075
US 2 371,481 3,434,898 3,931,884

Table 1: Summary statistics of the three datasets—New York City
(NYC), Seattle (SEA), and continental United States (US)—used
in experiments below after filtering out duplicate and questionable
tweets. Number of edges in routing graph G is for following pa-
rameter settings: δ = 100 meters and τ = 0.5 hours (see Method-
ology section for definition of G).

workers in defining feasible package handoffs. We explore
a novel setting of delivery to a moving person and find that
over 40% of all pairs of people are reachable within ten days
in Seattle alone. We distinguish between idealized global
routing for optimal handoffs, where we assume we know
where and when everyone will be in the future, and more re-
alistic routing under uncertainty, exploiting local routing. In
the latter setting, we assume we know basic statistics about
people’s past locations. We show that local routing algo-
rithms working under uncertainty do not significantly de-
grade performance as compared to an ideal global optimum.
Finally, we demonstrate that efficient global delivery is pos-
sible, with delivery times often comparable to direct travel
times among locations.

Dataset
To evaluate our approach on large-scale real-world data, we
leverage a sample of GPS-tagged tweets originating from the
United States over a period of 21 days (starting on March 1,
2012). The experiments below concentrate on three geo-
graphical areas that are subsets of the larger dataset: New
York City (NYC), Seattle (SEA), and the continental US.
For NYC and SEA, we use tweets from within a 60×60 kilo-
meter bounding box centered over each city.

Since we explore whether real individuals in a large popu-
lation can deliver packages collectively, we eliminate tweets
that are clearly anomalous or come from multiple accounts
(per removing likely robot-generated spam). Specifically,
we eliminate users that produce tweets too quickly and too
far apart given typical driving and flying speeds. Out of the
remaining users, we keep only those who tweeted at least
twice in the data collection period, as people with only one
data point cannot participate in package delivery. Table 1
summarizes three subsets of the dataset used in the experi-
ments. The statistics are computed after the above filtering
has been applied.

In agreement with previous work, we find that both the
length and duration of “flights” of Twitter users (i.e., two
consecutive tweets of a user) exhibit a consistent power-
law distribution in the form P (x) ∝ x−β with β ≈ 2.2.
This type of distribution with β ranging from 1.5 to 3 arises
in many natural systems that involve human activities, in-
cluding the behavior of cell phone subscribers and epack-
age users (Wu et al. 2004; González, Hidalgo, and Barabási
2008), academic citations (Leskovec, Kleinberg, and Falout-
sos 2005), dispersal of bank notes (Brockmann, Hufnagel,



and Geisel 2006), Internet connectivity (Faloutsos, Falout-
sos, and Faloutsos 1999), Web link structure (Barabási and
Albert 1999), Einstein’s correspondence patterns (Oliveira
and Barabási 2005), and a wide array of phenomena in on-
line social networks (Leskovec and Horvitz 2008; Cheng et
al. 2011).

Our observed distribution indicates that geotagged Twit-
ter activity can be accurately modeled at a high level as a
Lévy flight random walk characterized by a mixture of fre-
quent short displacements and relatively rare but long jumps
(Mandelbrot 1982). By contrast, networks that do not evolve
for locally navigability tend to have a significantly differ-
ent β. For instance, the node degree distribution of the US
power grid has β ≈ 4 (Barabási and Albert 1999).

The networks commonly seen in natural systems involv-
ing human activity often exhibit the “small world” phe-
nomenon, where the diameter is O(log n) for networks
with n nodes (Milgram 1967). This means that even large
networks contain very short (exponentially shorter) paths
among pairs of nodes. For the package delivery application,
the question is whether these short paths can be found and
leveraged by individual nodes in a dynamic network when
operating with only local knowledge. As we will see, this
frequently can be done.

Prior theoretical work has concentrated on quantifying the
navigability of static homogeneous networks with a clean,
repeated lattice structure, often of infinite size (Kleinberg
2000). In our setting, we grapple with dynamic, heteroge-
neous, real-world networks composed of a finite number of
mobile individuals. There is much work to be done on clar-
ifying the relationships between results on navigation found
for the canonical networks studied in theory and the naviga-
bility of real-world networks.

Limitations
We use the geocoded Twitter data as a proxy for the location
and movement of a large number of individuals. Twitter has
over 500 million active users who collectively write nearly
9,000 tweets per second, on average.2 We focus on a sub-
set of Twitter activity that includes hundreds of thousands of
individuals who geo-tag their tweets in specific geographi-
cal regions (see the Dataset section above). We estimate the
performance of our proposed delivery system in which these
users participate. While the deliveries are hypothetical, the
delivery routes are based on data generated by people as they
traverse and tweet from locations in the real world. Statis-
tical analysis shows that the patterns seen in the mobility
of the people in the dataset agree with results reported in
other domains, where researchers used other proxies (e.g.,
cellphone tower data, personal GPS loggers, and WiFi con-
nectivity) for people’s actual locations. Thus, we believe
that the experiments we shall describe below demonstrate
the level of performance that we can expect for a crowd de-
livery service, assuming that the users in the dataset who
“participated” in the experimental setting would be involved
in the actual routing of packages.

2http://www.statisticbrain.com/twitter-statistics/

People identified as contributors in our experiments might
not agree to participate in a live exercise. Thus, the rout-
ing results we describe can be viewed as an upper bound on
the performance of a deployed system. At the same time, a
live study would provide opportunities for influencing peo-
ples behaviors with incentives, with advantages in routing
coming with requested diversions from an intended path,
or even with confirmation that people would take their nor-
mal expected daily paths. For instance, if Joe is paid $5, he
will be happy to go to work on a Saturday instead of a Fri-
day, thereby increasing the permeability of the system, since
there would be otherwise a lack of workers along his com-
mute route on Saturday. As we will see, our experiments
explore the influence of local perturbations of people’s loca-
tion (e.g., What if Joe went 100 meters south in the next 10
minutes to be able to meet the current package carrier?), but
we do not modify intended paths beyond this. Additionally,
discrete tweets constitute a very sparse sample of a person’s
trajectory. A live system might motivate workers to share
their location at a higher sampling rate, potentially via an
automated heartbeat with known fixed or context-sensitive
frequency.

Related Work
We refer to much related work throughout the paper. We dis-
cuss in this section the broader context of related research.

Location plays a central role in our lives. With the ad-
vent of mobile Internet-enabled devices, fine-grained loca-
tion data is now captured at a population scale from peo-
ple who either implicitly or explicitly opt-in to share their
data with the public or with service providers in return for
enhanced services. This data has enabled multiple recent
studies of human mobility that leverage a wide variety of
data from GPS loggers, social networks, bank notes cir-
culation records, and call logs (Krumm and Horvitz 2006;
Brockmann, Hufnagel, and Geisel 2006; Liao et al. 2007;
Song et al. 2010; Cheng et al. 2011; Sadilek, Kautz, and
Bigham 2012).

Our work depends on a graph of spatial and temporal con-
nectedness among people. Following the pioneering work
of Milgram that gave rise to the notion of “six degrees of
separation,” researchers have shown that people are heav-
ily connected in a wide range of settings—both offline and
online (Milgram 1967; Dodds, Muhamad, and Watts 2003;
Adamic and Adar 2005; Leskovec and Horvitz 2008). Re-
markably, not only do short paths exist between arbitrary
pairs of individuals, but we can also efficiently find them
(Clauset and Moore 2003; Liben-Nowell et al. 2005; Lat-
tanzi, Panconesi, and Sivakumar 2011).

However, the models are based on a family of random
infinite graphs. In the CP domain, we deal with more com-
plex networks: dynamic agents with uncertain location and
connectivity, an inhomogeneous finite lattice, and a nonuni-
form population distribution. While researchers have pro-
posed theoretical formalisms that begin to address some
of these real-world challenges (Clauset and Moore 2003;
Liben-Nowell et al. 2005), the overall picture remains un-
clear. We hope that the empirical results presented here will
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Figure 2: Example of a routing graph G with two people (green
u and blue v). Each node represents user location at a given time.
Edges induce possible paths a package can follow by connecting
consecutive locations of a person (solid edges), and exchange op-
portunities between people (dashed). All edges are weighted by the
time it takes to travel between nodes and by wait time.

inspire additional theoretical efforts to elucidate multiple as-
pects of crowdphysics challenges.

Prior work on delay tolerant networks explored dis-
tributed routing schemes among mobile wireless devices
(Fall 2003; Yuan, Cardei, and Wu 2009). CP faces additional
challenges, however. Unlike data packets, workers and con-
tiguous physical objects cannot be arbitrarily cached, du-
plicated, and broadcasted. However, objects too heavy to
carry by individuals might be decomposed into lighter com-
ponents, separately transported to a destination, and then re-
assembled.

Researchers have begun to explore multi-agent crowd-
sourcing tasks as well (Zhang et al. 2012a; 2012b). For
example, the ReGroup system assists in creation of online
groups on the basis of individuals’ attributes (Amershi, Fog-
arty, and Weld 2012), and Scribe merges noisy and incom-
plete speech transcripts produced by a number of workers
typing in parallel into a single coherent caption (Lasecki et
al. 2012). However, such settings require only synchroniza-
tion in time, not in physical space.

Related efforts on computation for physical coordination
include efforts on ridesharing and on opportunistic planning.
The work on ridesharing demonstrates the value of meth-
ods that consider divergence in distance and time for partic-
ipants, and were tested with real-world commuting work-
loads for global optimization and streaming settings (Ka-
mar and Horvitz 2009). Work on opportunistic planning has
centered on the use of predictive models to recommend the
injection of waypoints into existing plans opportunistically,
considering the divergence from destinations under uncer-
tainty (Horvitz and Krumm 2012).

Methodology and Models
We now provide details about our approach, models, and
their application. We shall more crisply define terms that we
have been using qualitatively. We start with the dataset de-
scribed in the previous section, and induce a routing graph
from user IDs, locations, and timestamps associated with
the tweets. We then use an efficient graph search method
to plan globally optimal package routings, which are in turn
leveraged to model the expected performance of TwedEx in

terms of delivery times, number of routing hops needed, and
other statistics of interest. We then contrast this optimal up-
per bound with the performance of local routing algorithms
working under uncertainty and incomplete knowledge about
future locations. Finally, we explore mechanisms for a novel
form of delivery: delivering to and among people who are on
the move.

To quantify the performance of delivery within a geo-
graphical area, we divide the area into a uniform grid of 450
by 450 meter cells. Reachability (coverage) is defined as
the percentage of cell pairs for which a feasible path exists.
Delivery time c1  c2 is equal to the duration of the short-
est path of handoffs between the two cells, considering all
tweets in c1 as origins and all tweets in c2 as targets. (For n
cells, there are n(n− 1) different ordered pairs.)

Specifically, we explore the following research questions
and measures of delivery performance:

1. Coverage and reachability: How large is the geographical
area that the system can service, and which combinations
of package origin–destination locations are feasible?

2. Delivery time: How long does it take to deliver the pack-
age? We measure this period as the time elapsed between
pickup and final delivery (timestamps of the first and last
tweet on the path, respectively).

3. Optimality: How effective are local routing heuristics
working under uncertainty as compared to the optimal so-
lution?

4. Robustness: How do performance metrics change as we
strategically remove participants from the network?

5. Locale sensitivity: How do the metrics change across dif-
ferent cities and geographical scales?

We begin with the construction of the routing network.

Routing Graph
From a set of geotagged tweets, we induce a weighted di-
rected graph G—a routing network. The i-th tweet of user
u is represented as a node tui in G, and there is a directed
edge (tui , t

u
i+1) for all pairs of consecutive tweets of user u

(see Figure 2). Thus, each user contributes a directed path
(tu1 , . . . , t

u
N ) to G, where N is the total number of tweets

written by user u in the data collection period. Every edge
(tui , t

u
i+1) is weighted by the time elapsed between posting

ti and ti+1: w(tui ,t
u
i+1)

= time(tui+1)− time(tui ).
To model package handoffs, we add edges to the rout-

ing graph G that denote the potential exchange of a package
between two individuals. Before we do this, however, we
need to define a meeting between people. In this paper, we
say two users meet if they tweet within specified distance
and time thresholds. More precisely, users u and v meet if
there exist tui and tvj , such that distance(tui , t

v
j ) < δ and

|time(tui )− time(tvj )| < τ . δ and τ are parameters we vary
in the experiments below in order to explore the sensitivity
of routing performance to increasing the digressions people
make from their intended paths or dwell times. We seek
to understand how such changes—which might be achieved
through selective payments in a real-world system—can



lead to routing graphs with target levels of permeability and
coverage.

For a given setting of δ and τ , we add toG a set of possible
exchange edges{
(tui , t

v
j ) : distance(t

u
i , t

v
j ) < δ ∧

∣∣time(tui )− time(tvj )
∣∣ < τ

}
.

The weight of these exchange edges is equal to the expected
wait time or the time it takes to make the required digression,
whichever is greater:

w(tui ,tvj )
= max

(∣∣time(tui )− time(tvj )
∣∣ , distance(tui , tvj )

1.4m/s

)
,

where we divide the distance covered by the preferred walk-
ing speed of 1.4m/s to obtain the expected walk time. As
a result, all edges in G are weighted by time—measured
in seconds—that elapsed between the two incident nodes
(tweets). The exchange edge is added only if both users can
still arrive at their next location in time.

Global Planning
The induction of G is now complete and we can use the
graph to find the optimal delivery route among any pair of
locations by simply running any shortest-path search algo-
rithm, for example Dijkstra’s algorithm. The routes found
this way will be globally optimal, using all the available in-
formation, and will be useful to establish an upper bound
on the performance of the delivery system. However, in live
execution, the system’s knowledge will be incomplete: peo-
ple’s future location will be uncertain and a routing service
will need to use predictions about peoples future behavior.
We explore this scenario in the next section.

As we increase the slack parameters δ and τ for count-
ing meetings between people, G becomes denser. As a
result, computing shortest paths becomes computationally
more challenging. While the number of nodes in G is inde-
pendent of δ and τ , it is large to begin with (see Table 1).
This makes computation of paths between all pairs of nodes
difficult. For example, our US dataset spanning only 2 days
has over 3 million nodes and 10 million edges even for a
modest setting δ = 100 meters and τ = 1 hour.

Because of the addition of the handoff edges, the delivery
times computed usingG are approximate in some cases. For
instance, when we allow a person to wait longer by increas-
ing τ , his arrival at the next location may be delayed. Note
that this could impact the estimate of the delivery time only
if the person who is about to pick up the package is required
to wait, or if a person participates in multiple adjacent hand-
offs. Allowing this small imprecision enables us to plan all
optimal routes efficiently.

The standard Floyd-Warshall shortest-paths algorithm
runs in O(n3) time, where n is the number of nodes in G.
For sparse graphs, Johnson’s algorithm has a lower, but still
daunting, complexity of O(e2 log n + en), where e is the
number of edges (Cormen et al. 2001). To counteract these
difficulties, we apply the PHAST algorithm (Delling et al.
2012). PHAST performs a clever preprocessing step on G
after which shortest paths from any node to all other nodes
can be computed in O(n).
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Figure 3: Delivery times among all pairs of cells with sufficient
Twitter activity as we vary δ and τ in the Seattle dataset. We see
that only modest digressions and wait times are required to cover
all cell pairs that contain more than 10 tweets in both cells.

In the following section, we use the shortest paths to quan-
tify an upper bound on a variety of performance measures
important for a crowd-powered delivery service.

Local Opportunistic Routing
We seek to quantify the gap between theoretically possible
delivery times in our system using global search on retro-
spective data versus delivery times that can be realistically
expected in a live system operating under uncertainty. To
do this, we explore the power of employing local routing
policies that could be executed in real time, relying only on
simple statistics about future locations of people computed
from historical data. These statistics are then used in heuris-
tics that guide local routing decisions.

We take a large sample of Twitter activity in a 60×60
kilometer bounding box around Seattle over a period of six
months. The data is filtered by the same process as described
in the Dataset section. We consider the final 35 hours of
the data for testing, and all the preceding data for training.
The basic idea is to learn a simple model of people’s loca-
tions, and subsequently leverage the model to make routing
decisions using only local information. The model of user
activity can be made readily available to each worker.

We first extract the set of possible delivery locations L.
These are simply the time-stamped locations of all the tweets
in the test set. For each ` ∈ L, we construct a ranked list of
users based on the distances between them and `. Users who
often appear close to ` are ranked high, and individuals who
spend their time far away are ranked low.

The experimental setup for local routing is the same as
the approach we described earlier for global routing, except
that the shortest paths are not precomputed. We again divide
an area into uniform 450 by 450 meter cells. Then, for each
pair of cells (c1, c2), we simulate routing of package from
c1 to c2. Every time a person carrying a package encounters
another individual, he needs to make a routing decision. He
either keeps the package or hands it off to the other person.



Figure 4: Reachability for all pairs of active cells as we vary
the digression slack δ and wait time slack τ in the Seattle dataset,
showing phase transition as function of parameters. We say a cell
is active if it contains at least three tweets.

We use δ = 100 meter and τ = 0.5 hour thresholds to define
an encounter. The decision is made based on the ranking of
the users M who just met (M includes the current carrier
as well). Given that the package’s destination is `, the next
carrier u? is chosen by finding the highest ranked candidate
with respect to ` in M :

u?closest point = argmax
u∈M

rank(u, `).

Note that this algorithm requires only the knowledge of
one’s current location, package destination, and a simple
statistic extracted from historical data for each person in the
vicinity of a routing point.

Experiments and Results
This section reports our experimental results and closely fol-
lows the structure of the Methodology and Models section
above. For brevity, we will primarily focus on the Seattle
dataset, but we will contrast the three locales where interest-
ing differences emerge. Note that Twitter activity is roughly
4.7 times sparser in Seattle than in NYC, across all measures
in Table 1. As a result, the delivery performance is signif-
icantly higher in NYC. We will explore this difference as
well.

Leveraging the grid of 450 by 450 meter cells, TwedEx’s
coverage of a geographical area is defined as the percentage
of cell pairs for which a feasible path exists. Our measure of
reachability is strict. If the package ends up only one meter
away from the target cell boundary, it is counted as undeliv-
ered. A softer metric could be used to take into account the
continuous distance, and increasing cost of divergence could
be assigned to outcomes with longer distances with respect
to the target. However, the strict definition gives us a clean,
discrete measure of success.

Additionally, we can remove the constraint that the pack-
age has to always be carried by a participant. Designated
“geo caches” can be used for safe storage from which the
package is retrievable by a code sent to the best candidate

for performing the pickup. For clarity, we focus on the dis-
crete definition of reachability and direct handoffs among
workers throughout this paper.

Global Planning
Recall that we run PHAST on the routing graph G induced
from our data to obtain all pairs of shortest paths among all
points in space and time defined by the tweets. We then
measure the delivery times, coverage, and number of hops
required for each route, and compare the performance of de-
livery in three locales (NYC, SEA, and US). Delivery time
from cell c1 to cell c2 is equal to the duration of the shortest
path between the two cells, considering all tweets in c1 as
origins and all tweets in c2 as targets.

Figure 3 shows delivery times between all pairs of cells
as we vary δ and τ in the Seattle dataset. We see that only
modest geographic digressions and wait times are required
to cover all cell pairs that contain more than 10 tweets in
both cells (this threshold is shown with the leftmost straight
vertical line). For example, less than a 200 meter digression
and less than a 1.5 hour wait time are sufficient to achieve
this coverage (solid red curve). δ = 400 meters and τ = 0.5
hours is sufficient as well (dashed black curve).

Reachability—measured by the percentage of cell pairs
covered by the system—for all pairs of cells as we vary the
digression slack δ and wait time slack τ in the Seattle dataset
is displayed in Figure 4. Even large values of δ and τ indi-
vidually do not improve the coverage significantly. How-
ever, increasing both jointly results in a phase transition
at δ = 350 and τ = 0.5 after which the system becomes
significantly more permeable and ultimately approaches full
coverage with digressions up to 800 meters and wait times
bounded by 90 minutes.

Since NYC is considerably denser and has more Twitter
activity, it is nearly four times more permeable than Seattle
for any setting of δ and τ . We are interested in normaliz-
ing the delivery performance in different locales. Therefore,
we choose the top-100 cells with the most activity in each
respective city and concentrate on reachability and delivery
times only for pairs of cells from these sets. We observe that
the delivery time distribution among these cells does not sig-
nificantly differ across locales.

Figure 5a shows a typical distribution over delivery times
we find across locales and parameter settings. Looking more
closely at the patterns in delivery times, we perform fre-
quency analysis of the distribution using fast Fourier trans-
form (FFT) and find peaks corresponding to exactly 24 hours
and 5 days (a work week); see Figure 5. We believe that
these results reveal natural periods reflecting the modulation
of the lives of people and find it interesting that these natural
patterns show up strongly in joint human activities.

Delivery time is one measure the efficiency of a deliv-
ery system. We are also interested in the number of hops a
package makes as it is carried by the workers. A hop is a
jump of a package between two consecutive tweets, either
with or without changing hands between workers. We find
that the distribution is heavily skewed towards small num-
bers of hops. Specifically, the probability of observing a
certain number of hops k decreases exponentially with k.
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Figure 5: (a) Distribution of delivery times among all pairs of
origin-destination cells, for δ = 100 and τ = 0.5 in Seattle. A
large number of cell pairs are reachable in just a few hours. We
find that a disproportionate number of deliveries occurs at integer
multiples of 24 hours. (b) Frequency analysis of the distribution
using Fourier transform shows peaks corresponding to exactly 24
hours and a work week (5 days).

The most likely interval is k ∈ [1, . . . , 6). At the same time,
there several instances of a package making more than 400
hops.

We now turn to a study of the robustness of routing perfor-
mance while removing participants who share certain char-
acteristics. The sensitivity of coverage and performance to
removal of workers is shown in Figure 6. A person who
met (δ = 100 meters and τ = 0.5 hours) n different peo-
ple over the observation period has a node degree n. We
progressively remove users with degree 1, 2, etc.. Inter-
estingly, removing seemingly insignificant workers with de-
gree less than two has a considerable negative influence on
TwedEx, both in terms of coverage and expected delivery
times. We conclude that the sparse occasional activity of
low-rank users is essential for the entire system to be truly
permeable.

Figure 7 shows the relationship among geodesic distances
between cells scattered across the entire continental United
States, and the delivery times between the cells. The results
are for global routing with δ = 100 meters and τ = 0.5
hours for handoffs. The color represents the number of
occurrences with particular values of distance and delivery
time. We see that delivery between nearby cells requires
small amounts of time (typically under 5 hours), but even
distant locations can be reached in five hours (lower-right).
Delivery between many distant cell pairs is possible in an
amount of time only slightly higher than it takes to fly di-
rectly between the locations.

This holds even for cells that are not near airports and
therefore requires a planned route that takes the package to a
nearby airport, finds a worker who is about to fly to the target
city, and ultimately routes the package to its final non-airport
destination. We see that TwedEx takes advantage of people
moving around locally and flying around globally to deliver
packages quickly. It is not unusual to obtain a 5.5 hour deliv-
ery NYC Los Angeles or San Francisco NYC, where
the end points of the route are not airports.

It is not surprising that local deliveries take less time, but
it is interesting to see that some large distances are easier to
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Figure 6: Patterns in delivery times among cell pairs as partici-
pants are removed progressively based on their connectedness in
the meeting graph.

traverse than others. For example, delivering coast to coast
is much faster than between a coast and the center of the US.
2,000 kilometers from anywhere in the US seems to be the
worst distance to traverse. This number likely arises from
the geography of the country, where most people are con-
centrated along the coasts, the coasts are roughly 4,000 kilo-
meters apart, and each coast is shorter than 2,500 kilometers
(north to south).

Local Opportunistic Routing
So far we have focused on routing with global knowledge,
assuming there is an oracle that participants consult at each
decision point. The oracle has access to the full routing
graph and therefore can calculate and provide globally opti-
mal paths for any given pair of source-target locations. This
establishes a tight empirical upper bound on the expected
performance of a crowd delivery service. However, the per-
formance of such a delivery service running in real time—
where future locations are uncertain—remains an open ques-
tion. Our experiments in this section begin to answer this
question in the context of a dynamic heterogeneous system
composed of people moving in the real world. Therefore,
we now shift our attention to routing under uncertainty, in
the absence of deterministic knowledge about future loca-
tions.

Figure 8 compares the performance of the local, oppor-
tunistic routing algorithm described in the previous section
(we call it closest point routing) to a global optimum and
to a random baseline. The global optimum is determined
by finding shortest paths between all pairs of cells by exe-
cuting PHAST algorithm on a fully observed routing graph
G. The random baseline simply chooses the next carrier u?
uniformly at random from the set of available workers M at



Figure 7: Relationship between the geodesic distances among
cells scattered across the entire continental US, and the delivery
times between the cells.
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Figure 8: Comparison of coverage and delivery times for two lo-
cal routing algorithms to a globally optimal performance (PHAST
implementation of Dijkstra) for parameter settings δ = 100 meters
and τ = 0.5 hours.

each routing point:

u?random ∼ U(1, |M |).

We see that the closest-point heuristic results in a dis-
tribution of delivery times that is slightly skewed towards
longer times, but it closely follows the optimal distribution.
Closest-point routing achieves 58% of the coverage attained
by globally optimal routing, whereas the random strategy
achieves only 4% of the coverage. To our knowledge, this is
the first empirical result on local routing under uncertainty in
dynamic networks composed of mobile individuals. We find
that, even using very simple heuristics, such as aiming for
the person who is most likely to appear near the package’s
destination given historical data, is effective.
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Figure 9: Distribution over delivery times when setting people as
package “destinations”. This graph is for our Seattle dataset. We
see that for roughly half of the people-pairs, a delivery path that
takes less than 10 days exists and can be found. As in our previous
results for delivery times to fixed locations, we identify a strong
periodicity in the system.

Delivery to a Moving Target
Finally, the distributed nature of crowd physics enables ser-
vices that are currently unavailable, such as delivery to a
specific person who is on the move. Instead of routing to
a fixed street addres—the singular goal of todays delivery
services—we can leverage the crowd to deliver to a mov-
ing target. While expensive courier services will deliver to a
specific place (not necessarily one’s home address) at a spe-
cific time, we are interested whether the crowd can provide
more flexible delivery to people in motion at scale. Imag-
ine that you wish to send a gift to a friend. You write only
the friends unique identifier on the package and drop it into
the crowd substrate. The identifier can be a telephone num-
ber, email address, or Twitter handle. Workers then route
the package among themselves until one of them meets the
target person. Thus, the only constraint in this system is that
the package has to be delivered to the recipient as fast as
possible. Aside from that, the delivery can occur anywhere,
anytime. This is somewhat analogous to sending a text mes-
sage, which quickly reaches the recipient’s mobile phone re-
gardless of location. However, since packages are physical
objects and we do not know people’s location ahead of time,
things are more complicated.

For all users u, we take u’s first tweet that appears in the
dataset (tu1 ). For all other users v, we then find the fastest
path u v through the routing network G as we have been
doing all along, except v is now a moving target. This is
done for all pairs of users

{(u, v) : u, v ∈ U ∧ u 6= v} ,

where U is the set of all users in the dataset. Delivery is
considered successful if there exists a path u  v and the
delivery time is measured from tu1 to the first encounter of
u and v, where the package would have been delivered. If
no such path exists, we say u cannot reach v. Since u is de-
fined only by their first tweet tu1 , this method also shows the
reachability of people from locations, namely all locations
associated with the set of tweets {tu1 : u ∈ U}.

The histogram of delivery times that arise in this setup
with global routing is shown in Figure 9 for the Seattle
dataset with δ = 100 meters and τ = 0.5 hours (handoffs



are possible only if workers are no more than 100 meters
and 30 minutes apart). Even though the meeting matrix is
sparse, we can reach 41% of people-pairs. Again, we ob-
serve strong periodicity in the delivery times with large 24
hour and 7 day peaks in the FFT power spectrum.

Conclusions and Future Work
We introduce and explore a rich class of crowdphysics prob-
lems, which contains tasks that require coordination of peo-
ple in space and time, as distinct from existing crowdsourc-
ing research. We focus on a distributed package delivery
task as a representative instance of crowdphysics. We pro-
pose and evaluate two approaches to route planning in this
domain, using geotagged tweets as a proxy for people’s lo-
cations. We consider ideal global coordination using retro-
spective data, as well as local opportunistic routing under
uncertainty. Both approaches are expressed in a unified way
via a reduction to a graph search problem that can be solved
efficiently.

We find that delivery can have remarkable speed and cov-
erage. For example, with digressions δ smaller than 800 me-
ters and dwell times τ shorter than 90 minutes, the delivery
service covers 83% and 100% of source-target location pairs
within the greater Seattle and New York City metropolitan
areas, respectively. Even tight bounds on deviations result in
good coverage. For example, 100 meters and 30 minutes is
enough to cover 18% of source-origin location pairs in Seat-
tle and over 50% in NYC. We further show that even poorly
connected people in the network play, in aggregate, a major
role in the permeability of the system.

Similar results on reachability and performance hold even
when routing without global knowledge, relying only on lo-
cal greedy decisions. To our knowledge this is the first em-
pirical evidence that dynamic networks composed of people
in motion are highly navigable. Finally, we examine services
that are unavailable today, such as delivery to a specific per-
son (unconstrained by a street address) in a scalable way. We
show that a large fraction of package transmission among all
people-pairs can be completed within 21 days.

Future directions of research include exploring an array
of local decision policies, including routing based on the
composition of mixtures of factors weighted by parameters
learned from data. For example, an occasional biased ran-
domization could lead to better performance of local navi-
gation. We seek to better understand how a computed global
optimum might be surpassed with clever management of the
crowd with methods for learning predictive models and de-
cision making, as has been shown in other domains (Kamar,
Hacker, and Horvitz 2012).

Another direction is to aggregate probabilities on transi-
tions between nodes in our graph. This invites the use of
established theoretical results with random walks on graphs
for evaluating probabilistic expectations on delivery perfor-
mance, in terms of hitting times and stationary distributions.

Trust, motivation, incentives, and payments are important
considerations in crowdphysics problems. For example, a
sender may wish to constrain a delivery service to only route
between pairs of people who are within a certain distance
in the friendship graph, or assert trust requirements among

all people composing the chain of participants that touch a
package. Alternately, the system may learn on its own about
the trust relationships required to achieve levels of reliability
in safe and efficient transport. Such preferences will likely
need to be traded against speed of delivery; it will be inter-
esting to see which aspects of the structure of the underlying
routing network lead to increased robustness and permeabil-
ity, per consideration of critical components of the graph,
key connectors, and essential backbone of participants.

Beyond relying on assessed social connections, signals in
location data can be used to quantify the expected level of
trust among individuals. For example, two people who ap-
pear at several different venues together are often related in
some way (Crandall et al. 2010; Sadilek, Kautz, and Bigham
2012). Regarding incentives and payments, promising re-
search includes the study of solutions that allow for a trading
off of quality of solutions and the total cost required for is-
suing sets of payments, where targeted payments reimburse
participants for real-time or preplanned divergences in space
and time.

In other work, we are interested in the value of taking
a computational perspective on challenges in epidemiol-
ogy, seeking to understand how results on reachability and
performance in navigating graphs might be used to extend
traditional epidemiological approaches to modeling disease
transmission. As we mentioned earlier, computational pro-
cedures for designing ideal disruption of the spread of ill-
ness may yield new approaches in public health (Sadilek and
Kautz 2013).

We are interested in further exploring multiple scenarios
for engaging people to perform coordinated sensing and ac-
tion in the world. The applications span a broad spectrum
of tasks beyond package delivery, including search and res-
cue, epidemiology, sensing, creation of structures, and even
execution of large-scale social and political activities. There
are numerous opportunities to leverage human computation,
optimization, and machine learning to develop live crowd-
physics solutions that bring prototypes like TwedEx to life.
Constructing and fielding these services will undoubtedly
provide new insights.
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