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ABSTRACT 

We present a methodology for automatically extracting and 

summarizing reports of significant local events from large-scale 

Twitter feeds.   While previous work has relied on an analysis of 

tweet text to identify local events, we show how to reliably detect 

events using only time series analysis of geotagged tweet volumes 

from localized regions. The algorithm sweeps through different 

spatial and temporal resolutions and finds events as anomalous 

spikes in the rate of geotagged tweets. We applied the approach to 

a corpus of over 733 million geotagged tweets. Using a panel of 

103 crowdsourced judges who tagged 2400 detected events, we 

achieved a local event detection precision of 70%. Using these 

judged events as ground truth, a decision tree classifier was able to 

raise the detection precision to 93%. 

Categories and Subject Descriptors 

I.5.3 [Pattern Recognition]: Clustering, I.5.4 [Pattern Recognition]: 

Applications, I.7 [Document and Text Processing] 

General Terms 

Algorithms, Experimentation. 

Keywords 

Local events, microblog, Twitter. 

1. INTRODUCTION 
The Twitter microblog service provides unprecedented access to 

accounts of local events from people at the scene. Eyewitnesses 

with connected devices can report on local events before any 

traditional news outlet could discover, interpret, and broadcast. 

Twitter readers and posters recognize the value of the service for 

providing access to information on local events as they break. 

Teevan et al. have shown that Twitter searches are more likely 

aimed at real-time content and breaking news compared to regular 

Web searches [1].  

We address the challenge of identifying when Twitter posts 

(tweets) reference the occurrence of interesting local events. The 

benefits and challenges of finding local events in Twitter data are 

framed by the enormous volume of tweets, which was estimated at 

500 million per day in a 2014 official Twitter blog [2]. With so 

many posts, it can be difficult to extract and cluster only those 

pertaining to a local event.   

We introduce methods for automatically extracting local events 

from a large-scale stream of tweets. The methods address the 

challenge that tweets from different locations may be about local or 

non-local topics. We consider the spatial statistics of tweets and 

employ machine learning to build a classifier for local interesting 

tweets. We envision the methods being harnessed in a system that 

lets users identify and review local events across wide regions of 

time and space, or to monitor specific regions, such as events from 

their home town, college, or vacation location. 

Typically, local events in Twitter are documented by multiple 

people, such as the multiple tweets about an anomalous traffic jam 

in northern Florida displayed in Figure 1. The tweets’ time stamps, 

location data, and text give the basic facts, but the text also gives a 

rich account of the event in terms of emotions, meaning, and 

consequences.  

We take our definition of a local event from Lee, who defines it as 

“something that happens at some specific time and place” [3], i.e. 

it is limited both temporally and geographically. We show that 

spikes in the rate of tweets over limited spans of time and space are 

usually associated with a local event. We verify this with human 

judges.  
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Figure 1: Twitter users’ geotagged tweets about a large 

traffic jam in northern Florida, US caused by a series of 

car accidents. We seek to automatically detect and extract 

relevant tweets on local events like this. 



Localizing a tweet in time is straightforward given that all tweets 

come with a time stamp. However, it is often challenging to 

pinpoint the location from which a tweet was posted. The user’s 

home location is sometimes available as a text string in their user 

profile, but this is imprecise. It is possible to infer a user’s location 

from locations of their friends, but this is only at the resolution of a 

city [4]. Some tweets come with a latitude/longitude geotag that is 

automatically sensed from the user’s device and attached to the 

post. Watanabe et al. estimate the percentage of geotagged tweets 

at 0.7% [5]. Both [5] and [6] assert that this low rate of geotagging 

is insufficient to support the detection of local events, and [3] 

claims the geotags are too imprecise for this purpose. We show, 

however, that using only geotagged tweets is sufficient for 

precision detection of local events. The traffic jam in Figure 1 is 

one such example. 

The algorithm presented here, called Eyewitness, looks through a 

corpus of geotagged tweets, systematically scanning over localized 

regions of time and space for unusual spikes in the volume of 

tweets. For a given region on the ground, the algorithm learns a 

regression model that predicts how many geotagged tweets to 

expect as a function of time in normal, default situations. If the 

actual volume of tweets in a time span exceeds the prediction by a 

significant amount, then we declare a local event. A simple text 

summarization algorithm serves to extract a handful of tweets 

describing the event. For evaluation, a panel of over 100 

anonymous, crowdsourced judges examined the extracted tweets 

and voted whether or not they represented a local event, giving an 

initial precision of 70% for the extraction process. Postprocessing 

with a machine learning classifier trained on the judging results 

increased local event detection precision to 93%, with a relative 

recall rate of 90%. This process provided insights about the features 

of events that people would consider a local event, including the 

event’s extent in space and time. 

2. PREVIOUS WORK 
Some especially important local events lead to wider-ranging 

commentary that spreads in space and lingers in time, including 

news reports. The unique advantage of Twitter is that it contains 

posts from eyewitnesses of the local event as it happens. These 

posts about local events have approximately the same time, 

location, and topic.  Previous work has looked at finding microblog 

posts that have one or more of these elements in common. 

Tweets that share an approximate topic and time often represent an 

event, but not necessarily a local event. As an example, TwiCal [7] 

finds events in Twitter that share a topic and date, characterizing 

them by a named entity, event phrase, and event type, but not a 

location. In [8], Lee et al. perform a detailed analysis of tweet text 

to find trending keywords, identifying events that evolve over time, 

but are not spatially coherent. Popescu and Pennacchiotti [9] look 

specifically for controversial events in Twitter that occur over a one 

day period and share a celebrity name, using machine learning to 

choose which tweets to include in the event. 

Looking at just the topic and location (but not time), Yin et al. 

examine geotagged Flickr comments [10]. Their clustering finds 

topics that are characteristic of a given location, but that are not 

necessarily synchronized, transient events like ours, because of the 

missing time dimension. 

Several researchers have built systems to detect local events by 

looking at clusters in time, location, and topic simultaneously. One 

example is NewsStand by Samet et al. [11]. Instead of microblogs, 

it monitors over 10,000 RSS news sources, inferring the relevant 

locations mentioned from each article’s text and providing a map-

based browser for finding stories in locations of interest to the user. 

Zhou [12] presented an algorithm to create a detailed clustering of 

tweets and tested it on two natural disasters. The system infers the 

event’s location from the tweet text and uses a sophisticated model 

to highlight tweets describing the evolution of the event. Sakaki et 

al. [13] developed a system to find tweets about earthquakes and 

typhoons, including an inference of the varying location of a 

typhoon based on Bayesian filtering of geotagged tweets. The 

EvenTweet system finds anomalous bursts in tweet keywords and 

then estimates the spatial extent of the bursts from those tweets that 

are geotagged [14]. 

Less directly related to our work are efforts to use Twitter in 

constructing a detailed analysis of a known event. An example is 

the effort by Hu et al. [15], who connect tweets to known events 

such as a political speech or debate. 

We shall discuss other previous work below as it pertains 

specifically to event detection. As will become apparent, the novel 

aspects of the work presented here are: 

 In contrast to assertions in [3, 5, 6], we find that geotagged tweets 

are sufficient for high-precision detection of local events  

Thus, it is not necessary to infer locations from tweet text or 

user profiles. 

 We do not need to examine tweet text to find local events. 

Instead, it is adequate to detect anomalous spikes in tweet 

volume in concentrated regions of space-time. Simple text 

summarization drawn from content of sets of such identified 

anomalous tweets can describe the event as a post-processing 

step. 

 We can reliably detect local events in a principled way by 

regression analysis on time series of tweet volume. 

 By scanning through different size space-time regions, we show 

which sizes are more likely to contain local events.. 

 We validate our results with over 100 human judges who assessed 

2400 candidate local events, which is the largest evaluation to 

date of such a system. 

Before explaining the event detection algorithm in detail, we 

describe the Twitter dataset at the core of our studies. 

3. TWITTER DATA 
Our experiments are based on 733,865,824 geotagged tweets 

collected over several months from mid-2013 to mid-2014. These 

came from the Twitter firehose via an agreement between Twitter 

and our institution. The tweets are limited approximately to the US 

 

Figure 2: Random subsample of tweets showing the 

locations of about 0.05% of the tweets that we examined. 

 



with a bounding rectangle. Figure 2 shows a random sample of the 

tweets’ locations based on their geotags. We excluded tweets 

whose text began with “I’m at”, because these are generally 

generated automatically and do not contain user-authored content. 

We excluded retweets and only included tweets marked as English 

language. If we found tweets with identical text, we only retained 

one of them. Eliminating retweets and repeats helped ensure that 

each local event tweet is a fresh observation. Each resulting tweet 

was represented with a time stamp, latitude/longitude, user ID, and 

tweet text. 

4. DISCRETIZING SPACE AND TIME 
Our algorithm for detecting local events is ultimately an exhaustive 

search over tweets through space and time. This search is made 

feasible by discretizing space and time into discrete pieces in space-

time denoted by a space-time ordered pair (𝑆, 𝑇). Space and time 

are discretized separately, as described next. 

4.1 Discretizing Space with the Hierarchical 

Triangular Mesh 
We discretize the surface of the earth with the hierarchical 

triangular mesh (HTM) [16]. This is a 2D tessellation of a sphere 

consisting of nearly equal size, nearly equilateral triangles. The 

mesh comes at discrete levels of resolution, and Figure 3 shows 

some triangles from HTM level 10. Moving up one level in 

resolution consists of dividing each triangle into four smaller 

triangles, as illustrated in Figure 5. For this work, we scanned 

through HTM levels 8 through 11. Their sizes are shown in Table 

1, with the levels’ areas spanning from 15.2 km2 to 972.9 km2. 

Table 1: Sizes of triangles in our spatial grid. 

HTM Level Side Length (km) Area (km2) 

8 62.4 972.9 

9 31.2 243.2 

10 15.6 60.8 

11 7.8 15.2 

 

Formally, we refer to the set of grid cells covering the earth at level 

𝐿 as the set S𝐿
. Thus, the spatial component of the space-time 

ordered pair (𝑆, 𝑇) is 𝑆 ∈ S𝐿
 for whichever level 𝐿 ∈ {8,9,10,11} 

we are working with. 

These triangle sizes are our initial guesses at the spatial scale over 

which people tweet about a local event. Since we are only looking 

for local events, we do not use larger triangles, which would stretch 

the definition of local to a large swath of area. In the results, we 

show that some triangle sizes are more likely to correspond to local 

events than others. 

Our uniform discretization stands in contrast to the Voronoi 

tessellation used by Lee and Sumiya for detecting local festivals 

[17]. They use k-means clustering, with a fixed k, to cluster tweets 

and form Voronoi regions that tend to be smaller for densely 

populated areas and larger otherwise. Our uniform tessellation 

make no implicit assumptions about how the extent of an event 

might vary with population nor any other factor. 

Note that this discretization of the earth’s surface does not account 

for altitude. It would be straightforward to do so by adding a 

discretized vertical component, but the geotags of tweets do not 

have an altitude component, so two spatial dimensions are 

sufficient. 

4.2 Discretizing Time 
Local events have different durations.  To capture a range of events 

of different duration, we discretize time into periods of length ∆𝑇, 

which yields a set of time periods. One set of discretized time 

periods is 

T𝑎
∆𝑇 ≝ {… , [−2∆𝑇, −∆𝑇), [−∆𝑇, 0), [0, ∆𝑇), [∆𝑇, 2∆𝑇), … }. 

These are simply disjoint time intervals with length ∆𝑇. Events 

likely will not fall neatly on these time boundaries, so we also use 

a set of discretized time periods offset by ∆𝑇 2⁄ . This set is  

T𝑏
∆𝑇 ≝ {… , [−

3∆𝑇

2
,
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2
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2
,

∆𝑇

2
) , [
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2
) , … }. 

T𝑎
∆𝑇

 and T𝑏
∆𝑇

, illustrated in Figure 4, are the same, except offset 

from each other by ∆𝑇 2⁄  in an effort to catch local events starting 

near even or odd multiples of ∆𝑇 2⁄ . Thus the temporal component 

of the space-time ordered pair (𝑆, 𝑇) is 𝑇 ∈ T𝑎
∆𝑇

 or 𝑇 ∈ T𝑏
∆𝑇

. For 

local events, we looked at six different time lengths, 

∆𝑇 ∈ {20 min, 1 hr, 3 hr, 6 hr, 12 hr, 24 hr}. 

The value of  ∆𝑇 corresponds roughly to our guesses for the length 

of time people will tweet in response to a local event. We capped 

the size of ∆𝑇 to 24 hours as a limit of the duration of local events 

we attempted to find. In the results section, we show that some 

durations are more likely to correspond to the rise of significant 

local events than others. 

4.3 Space-Time Prisms 
The HTM discretizes space into triangles, and we discretize time 

into uniform, disjoint intervals. Thus each space-time piece is a 

prism with one dimension representing the time period being 

 

Figure 3: Depiction of some of the triangles from the 

hierarchical triangular mesh (HTM) at level 10 around 

New York City. 
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Figure 4: Two sets of time discretizations, T𝒂
∆𝑻

 and T𝒃
∆𝑻

, 

that are the same except for a ∆𝑻 𝟐⁄  offset. 



considered. With four different spatial grid sizes 𝐿 and six different 

time lengths ∆𝑇, we examined 24 different combinations 𝐿 × ∆𝑇 of 

space-time discretizations. Finding an unusually large number of 

tweets in a space-time prism in indicative of a local event. 

5. FINDING SPACE-TIME ANOMALIES 
A key assumption we make is that significant local events are 

characterized by many people suddenly tweeting in a limited region 

for a limited time period. As an example, we examine tweets from 

an HTM triangle in northern Florida, USA shown as the center 

triangle in Figure 5, where our algorithm discovered a local event 

characterized by the tweets in Figure 1. This is a level 8 triangle 

(𝐿 = 8) whose ID happens to be 𝑆 = 831099. This anomaly was 

discovered after discretizing time into periods of 3 hours, i.e. ∆𝑇 =
3 hours. 

For each HTM triangle at level 𝐿, we construct a 

discrete time series of tweet volume from that triangle, 

where the volume is measured in tweets per time 

period ∆𝑇. The time series is denoted 𝑦𝑆,𝑡
(𝐿,∆𝑇)

, where 

(𝐿, ∆𝑇) refers to one of the 24 choices of spatial and 

temporal resolution, 𝑆 indexes over the triangles in the 

tessellation, 𝑡 indexes over the discrete time intervals, 

and 𝑦 is the count of geotagged tweets in triangle 𝑆 

over discrete time period 𝑡. For the example in Figure 

5, the time series would be denoted 𝑦831099,𝑡
(8,3 hours)

. For 

simplicity of notation, we will drop the (𝐿, ∆𝑇) 

superscript and 𝑆 subscript, remembering that there is 

a separate time series for each triangle 𝑆 in the 

tessellation, for each triangle size 𝐿, and for each time 

discretization ∆𝑇. Instead of complicating the notation 

to distinguish between the two offset time 

discretizations T𝑎
∆𝑇

 and T𝑏
∆𝑇

, we take it as implicit that 

we build time series for both offsets. Thus the time 

series representing the rate of geotagged tweets in a 

given triangle at some spatial and temporal resolution 

is simply 𝑦𝑡. 

A partial time series for this example in northern 

Florida is shown as the thick, black curve in Figure 6. 

The rate of tweets from inside the triangle follows a periodic, albeit 

noisy, daily pattern. There is also an obvious spike in the number 

of tweets, which our algorithm is designed to find. 

5.1 Finding Anomalies 
We find anomalies by first trying to predict the number of tweets 

from each triangle on the ground. If the prediction is significantly 

less than the actual number of tweets, we consider this an anomaly, 

likely corresponding to a local event. 

Our predictions come from a regression function that estimates the 

time series values based on a number of parameters: 

�̂�𝑡 = 𝑓(�̅�𝑡) 

where �̂�𝑡 is the estimate of the number of tweets, 𝑓(∙) is a learned 

regression function, and �̅�𝑡 is a vector of five numerical features. 

 

Figure 6: Time series for tweets in the example triangle from Figure 5. At the anomalous spike, there is a corresponding spike 

in regression error, as measured by both the error in the number of tweets and the multiplier of the regressor’s error standard 

deviation. 

 

 

Figure 5: In this center triangle in northern Florida, USA, there was an 

anomalous spike in the number of tweets. The tweets’ locations are shown 

as black dots, concentrated along U.S. interstate highway I-10. 

 



These features are the time of the day, the day of the week, and the 

tweet counts from the three neighboring triangles, i.e. 𝑦𝑡,(1), 𝑦𝑡,(2), 

and 𝑦𝑡,(3). Figure 5 shows the three neighboring triangles in the 

example. We chose to use the time of day and the day of week as 

features to capture the regular time-varying changes in tweet 

volume. For instance, if there is a consistent spike in the number of 

tweets on Saturday evenings, we wanted our regressor to predict 

this so it would not be mistaken as an anomaly. 

We chose to regress on tweet counts in neighboring triangles 

particularly to find local events represented by a spike in volume 

that is spatially isolated. If tweets in neighboring regions rise and 

correctly predict a rise in the center triangle, then the increased 

tweet volume is likely not limited to the center triangle. This means 

the associated event is at a larger spatial scale than the center 

triangle and should be detected by the same analysis performed at 

a lower spatial resolution. This is why we sweep through different 

resolutions of triangles. 

Looking for spatially isolated anomalies also means we avoid 

detecting large-scale news events such as a political election or 

celebrity news. These events are more likely to be captured by 

trending Twitter keywords, because the news quickly spreads from 

its source without regard for location. 

The regression function is implemented as a FastRank regression 

tree, which is an efficient version of the MART gradient boosting 

algorithm. It learns an ensemble of decision trees, where the next 

tree in the ensemble is designed to correct the mistakes of the earlier 

trees [18]. Our particular instance was set up with a maximum 

number of leaves per tree of 32, minimum number of training 

instances in each leaf of 20, and 500 trees per ensemble. There is 

one ensemble of trees learned for each time series across all 

triangles, triangle sizes 𝐿, and time periods ∆𝑇. By its nature, 

regression using decision trees produces a piecewise constant 

function. One convenient aspect of decision trees is that no 

normalizing nor preconditioning of the training data is necessary. 

In Figure 6, the estimated time series �̂�𝑡 is shown as a light gray 

curve. The prediction error at time 𝑡 is 𝑒𝑡 = �̂�𝑡 − 𝑦𝑡 , and a large 

negative error is indicative of a local event, because it means there 

were many more tweets than usual. The sample standard deviation 

of the prediction error, 𝑠𝑡, measures the precision of the regression 

function. The overall precision of the prediction varies from 

triangle to triangle. To account for this variation, we measure the 

prediction error as a multiple of the predictor’s precision, i.e. 𝑒𝑡 𝑠𝑡⁄ . 

This value is shown as the bottom curve in Figure 6, plotted against 

the vertical axis on the right side. It is apparent that this value dips 

dramatically at the point of the anomalous spike in the rate of 

tweets. We declare a local event whenever this normalized error 

drops below -3.0, which means the actual number of tweets 

exceeded the predicted number by at least three times the standard 

deviation of the prediction error. This threshold is somewhat 

arbitrary, and we use it in a more refined way in a subsequent 

process described later. Normalizing the prediction error by the 

prediction error standard deviation means we can reasonably apply 

one threshold to all the triangles, and that it will automatically 

account for the variation in the regressor’s prediction error from 

place to place. 

We find this approach to detecting local events to be valuable for 

the following reasons: 

 The detector concentrates on local events because the regression 

function is designed to find only spatially isolated anomalies. 

 By accounting for the effect of time of day and day of week, the 

detector ignores systematic temporal variations that do not 

indicate a local event. 

 The detector automatically adjusts its sensitivity based on the 

precision of the regressor by using a normalized error 

threshold. 

We refer to this portion of the Eyewitness algorithm as the time 

series component to distinguish from the local event classifier that 

we present in Section 7. 

5.2 Space-Time Parameter Sweep 
Some local events like earthquakes occur over a larger region than 

others, such as sports events in stadiums. Similarly, local events 

occur over different time durations. This is why we sweep over a 

set of different time periods, 

∆𝑇 ∈ {20 min, 1 hr, 3 hr, 6 hr, 12 hr, 24 hr} 

and different triangle levels, 

𝐿 ∈ {8,9,10,11}. 

As a reminder, ∆𝑇 is the time interval for each element of the tweet 

volume time series, which gives the count of tweets in each time 

interval. Our sweep of durations differs from [17] who looked at 

only 6-hour time periods for local festivals and from [19] and [20] 

who consider only 24-hour time periods. 

By varying the spatial and temporal resolution of the time series, 

we hope to detect local events at different scales of space and time. 

We look at all combinations of resolutions, 𝐿 × ∆𝑇, for a total of 
|𝐿| × |∆𝑇| = 24 different space-time resolutions. As we show in 

the results, this sweep shows which sizes of space-time prisms tend 

to capture significant local events. 

Ideally for each triangle size, our algorithm would look at all the 

triangles in our study area covering the U.S. To save processing 

time, however, we look at only those triangles that cumulatively 

contain 95% of the total tweets over our study period. This 

eliminates many regions where there is very little Twitter activity 

and significantly speeds up processing. 

5.3 Related Approaches 
Other approaches to detecting anomalous events in Twitter related 

to ours includes the work of Hongzhi et al. [21], who developed a 

probabilistic mixture model governing the temporal evolution of 

keywords for a given user. It balances stable keyword topics that 

do not change over time and temporarily popular keywords that 

grow and shrink in volume. They give an example showing a 

temporary spike in the keywords relating to the death of Michael 

Jackson. In contrast, our approach ignores keywords in detecting 

anomalies, focusing instead on spikes in tweet volume in space-

time prisms. 

In their work on earthquake detection from Twitter, Sakaki et al. 

[13] observed that tweet volumes from local events often follow a 

decaying exponential curve that is indicative of a homogenous 

Poisson process. From this they were able to compute the 

probability of an event occurrence. They also build a support vector 

machine classifier to detect events based on the text of tweets that 

contain a given query word. We instead detect events based purely 

on the count of tweets coming from a region without regard to the 

tweets’ content. This means we can find events of any type without 

requiring any explicit query words to target certain event types. 

Diao et al. [22] combine the idea of mixtures and the Poisson 

distribution to model tweets within a topic as a mixture of two 

Poisson distributions corresponding to the steady state background 



and bursts of volume. The mixture moves between full background 

mode and full burst mode as a Markov chain through time. 

Guille and Favre [23] detect events based on discovered keywords 

and “mentions” in Twitter, which are user names of other Twitter 

users. They build a probabilistic model of a tweet containing a 

keyword and a mention in a time slice. Their work is distinctive in 

that it exploits the social phenomenon of mentions and that it can 

also string together time slices for an event-specific estimate of the 

event’s duration. 

In their search for festivals based on tweets, Lee and Sumiya [17] 

make box plots of the number of tweets, users, and incoming users 

in a spatial region. They then declare a local event when 

combinations of these features exceed a permissible range. 

Lee [3] presents a method for finding real time event topics in 

Twitter. One of their features for weighting candidate events is the 

“burst score”, which is a function of the expected and actual arrival 

rate of key words. In [20], the authors model tweets from a topic as 

a binomial distribution of tweet frequencies and compute a “bursty 

probability” from a sigmoid function based on parameters of the 

distribution. 

TwitInfo [24] finds tweets with user-specified keywords and forms 

a time series giving the number of tweets per minute. Using a 

weighted average, the detection algorithm computes the expected 

frequency of tweets and the expected absolute deviation from the 

mean. TwitInfo declares an event around the keywords if the 

normalized absolute difference between the actual and expected 

frequency exceeds a threshold, where the normalization factor is 

the expected absolute deviation. 

The anomaly detection algorithm closest to ours comes from Chae 

et al. [19]. Based on an extracted topic phrase, they extract all 

matching tweets and compute a time series giving the number of 

tweets per day. Using a seasonal trend decomposition procedure, 

they decompose the time series into the sum of a seasonal part, a 

trend part, and a remainder. If the remainder is large enough, this 

indicates an unusual volume of tweets for that topic phrase. 

Compared to previous approaches to anomaly detection in Twitter, 

Eyewitness is novel in the following ways: 

 We examine several different spatial resolutions and time slice 

durations to find local events with different extents in space 

and time. 

 We detect anomalies without requiring any analysis of the tweet 

text, using only time stamps and geotagged locations. This 

eliminates the introduction of possible text-based bias. 

 By looking at neighboring regions, the detector is set up to find 

only anomalies from a limited region on the ground, ignoring 

events that are not local. 

5.4 Event Summary 
The detection of a local event gives a space-time prism (𝑆, 𝑇) that 

gives the event’s location and time. We expect that the tweets 

associated with the local event will give a meaningful summary of 

the event for human consumption. To summarize the event 

succinctly, we examine the text of constituent tweets and extract 

five for presenting. This stands in contrast to previous approaches 

for local event detection from Twitter, which normally examine the 

tweet text as part of the detection process. Instead, we look at the 

text only after the event is detected. 

The specific task at this stage is to take the text from a group of 

tweets and choose tweets that are most representative of the group. 

This problem has been addressed by Inouye and Kalita [25] who 

compared several summarization algorithms for tweets. They 

concluded: 

Overall, it seems from these results that the simple frequency 

based summarizers, namely SumBasic and Hybrid TFIDF, 

perform better than summarizers that incorporated more 

information or more complexity such as LexRank, TextRank 

or MEAD. 

Based on these results, we used SumBasic [26] to choose five 

tweets to summarize each local event detected by our algorithm. 

SumBasic was originally designed to pick out sentences to 

summarize a document. For our task, each tweet from the event is 

considered a sentence. After removing stop words from each tweet, 

SumBasic computes the frequency of each word in the collection 

of tweets. It then proceeds iteratively to choose those tweets with 

the highest frequency words. However, once a tweet is chosen, the 

frequency values of its constituent words are reduced, leading to a 

diversity of words in the choice of subsequent tweets. This is how 

we selected the tweets shown in the sample event in Figure 1. 

5.5 Real-Time Modifications 
Our detection algorithm is set up to process a corpus of stored 

tweets to find local events. As described, it is not capable of real 

time detection. Recall that we use a regression function �̂�𝑡 = 𝑓(�̅�𝑡) 

to predict the number of tweets at time 𝑡 inside a triangle. The 

vector of regression parameters �̅�𝑡 includes tweet counts from the 

three neighboring triangles at time 𝑡 (which are 𝑦𝑡,(𝑖) , 𝑖 ∈ {1,2,3}), 

meaning we have to wait for those counts to accumulate before 

making  the prediction.  This introduces a temporal lag of ∆𝑇. For 

real time detection, we propose using a modified regression 

function that replaces the current counts in neighboring triangles 

with counts from the previous time step (which would be 𝑦𝑡−1,(𝑖) , 

𝑖 ∈ {1,2,3} ). We leave this for future work. 

6. HUMAN EVALUATION 
Evaluating everyday event detection has traditionally been difficult 

due to a lack of ground truth. One of the best previous examples of 

such an evaluation is from Popescu and Pennacchiotti [9] who 

presented a method to detect controversial events in Twitter. They 

had two expert judges label 800 detected events for testing. Even 

then, however, it is difficult to estimate a recall rate, since there is 

no guarantee that the ground truth contains every relevant event. 

For our testing, we chose 100 detected events from the sweep 

through each of our 24 space-time resolutions, giving 2400 

candidate local events. We used a panel of 103 crowd-sourced 

judges from our institution’s human judging system, which is 

similar to Mechanical Turk [27]. Each judge was required to be an 

English-speaker in the U.S., corresponding to the U.S.-based, 

English language tweets we used in our experimental corpus. 

Each detected event was presented to its judges as an image and a 

multiple choice question as shown in Figure 7. The image shows 

the five summary tweets selected by the SumBasic algorithm along 

with a map showing the location of the event at three different zoom 

levels. Circles on the map approximate the triangle where the event 

was found. The maps were presented solely to make the judging 

task more interesting, which helps judges concentrate. 

For each candidate local event, each judge answered the question, 

“Do three or more of these tweets seem related to the same local 

event as each other?” The available answers were “Yes”, “No”, and 

“Unsure”. We formulated this question carefully to pick out those 

sets of tweets that, in aggregate, seemed to be related to the same 

local event, because this was the goal of our system. We did not ask 

the judges to verify the existence nor location of the event. Before 



any judging, each judge was presented with the following 

instructions: 

Tweets Related to Local Event 

Each task shows a group of tweets from the same general area on a map. 
Please read the tweets and tell us if at least three of them seem to be 
talking about the same local event. 

A local event is an event that draws attention from people nearby. For 
instance, an earthquake is a local event, because it covers a limited area. 

A presidential election is not a local event, because it covers such a wide 
area. Local events are often the types of stories you see on the local 
television news. 

We are interested in any type of local event, but some example local 
events we want to find are sports, extreme weather, natural disasters, 
crimes, accidents, protests, gatherings, concerts, festivals, sports games, 
conventions, and conferences. 

We are only interested in tweets that look like they came from someone 
who is actually experienced the event, either at the event’s location or on 
TV, radio, or the Web. 

You will likely see tweets related to a team sporting event, like football, 
basketball, baseball, soccer, etc. Commonly, the maps shows the location 
of the game, which is often the home field of one of the teams or else the 
home of the visiting team. 

Even though the tweeters may be watching on TV, it should be considered 
a local event, because the event is being experienced by people in a limited 
region who are especially interested in the event. 

The green circles on the maps show the location of the tweets at three 
different zoom levels. You do not have to tell us if the tweets came from 
the green circles. 

The maps are there just for your curiosity to see the reported location of 
the event. You can ignore the maps if you like. 

Do three or more of these tweets seem related to the same local event as each other? ⃝ Yes   ⃝ No   ⃝ Unsure 

 

Figure 7: Example of query presented to judges. 

 



The judges were paid $US 0.05 per answer, and we limited each 

judge to a maximum of 200 event judgments. Each candidate event 

was judged by three different judges.  

Figure 1 is an example of tweets from an event that was 

unanimously judged as a local event. 

Out of 2400 candidate events that were judged, 2339 received a 

majority of “Yes” or “No” votes. The remainder were less 

determinant with the addition of “Unsure” votes. Of these 2339, 

about 70% had a majority of votes confirming it as a local event, 

with the remainder rejected as not a local event with a majority 

“No” vote. The distribution of votes is shown in Figure 8. 

We might expect that local events occur over relatively small 

extents in space and time. The votes from human judges give 

insight into which size space-time prisms are more likely to host a 

local event. Figure 9 plots the number of “Yes” votes for each for 

each triangle size 𝐿 and time duration ∆𝑇 that our judges evaluated. 

Note that the triangle sizes and time durations were distributed 

uniformly over the 2400 test events, so each was fairly represented 

in the judged candidates. We see from the plots that smaller spatial 

regions and shorter temporal extents tend to account for relatively 

more local events. 

A precision level of 70% is likely acceptable for many applications. 

However, this figure can be improved with a machine learning 

classifier, which we describe next. 

7. LEARNING TO DETECT EVENTS 
Our local event detector works by finding space-time prisms where 

the number of actual tweets exceeds the number of predicted tweets 

by three times the standard deviation of the prediction error. This 

straightforward approach achieves 70% precision as explained 

above. However, the results of human judging give a ground truth 

set of positive and negative instances of local events that we can 

use for training and testing a local event classifier. Specifically, we 

can compute a feature vector for each candidate local event and 

learn a binary classifier that estimates the probability of the 

candidate actually being a local event. This has the potential of 

increasing precision beyond the 70% achieved with the time series 

part of the algorithm. 

From the human judgments in Section 6, we have 1209 events that 

were unanimously judged as a local event by the human judges (i.e.  

three “Yes” votes) and another 374 with a unanimous “No” vote. 

From these we trained and tested a binary classifier. As with our 

regression function, we again used a FastRank classifier that results 

in an ensemble of decision trees, this time with the aim of producing 

a probability indicating the likelihood that a candidate local event 

is actually a local event. The features that we used for the candidate 

event in the space-time prism (𝑆, 𝑇) are: 

1. Spatial size of space-time samples, from 𝐿 ∈ {8,9,10,11} 

2. Duration of space-time samples, from ∆𝑇 ∈
{20 min, 1 hr, 3 hr, 6 hr, 12 hr, 24 hr} 

3. Day of week, 0-6 

4. Weekend or weekday, binary 

5. Number of tweets in space-time prism, i.e. 𝑦𝑡 

6. Tweet count prediction error, i.e. 𝑒𝑡 = �̂�𝑡 − 𝑦𝑡 

7. Prediction error divided by number of tweets, i.e. 𝑒𝑡 𝑦𝑡⁄  

8. Prediction error divided by standard deviation of error of 

regression function, i.e. 𝑒𝑡 𝑠⁄  

Training and testing with 10-fold cross validation, we swept 

through different parameter settings of the decision tree ensemble. 

Optimizing for area under the ROC curve (AUC), the best 

parameters were a maximum number of leaves per tree of 32, 

minimum number of training instances in each leaf of 50, and 20 

trees per ensemble. This lead to an AUC of 0.92. The ROC curve 

is shown in Figure 10. 

The classifier returns a class probability, and the final classification 

is based on thresholding this probability. This gives flexibility in 

adjusting the sensitivity of the classifier. A low threshold will lead 

to more local event detections. This corresponds to operating 

farther to the right on the ROC curve (more false positives and more 

true positives). 

 

Figure 8: 70% of detected local events were judged as local 

events by a majority of our human judges. 
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Human Judges on Local Events

 

(a) Positive votes vs. triangle size 

 

(b) Positive votes vs. time duration 

Figure 9: Rise in number of positive votes with smaller 

region sizes and sorter time intervals. 
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Another way to evaluate our algorithm is in terms of precision and 

recall. Precision is the same as the true positive rate. Recall 

measures the fraction of actual local events detected out of all local 

events. Clearly this is difficult to measure, for the list of actual local 

events is practically unknowable. This is because there is not an 

unambiguous definition of a local event, and because there is no 

ground truth repository of all local events against which to 

compare. Many local events go unreported in any formal way. (This 

is one reason that a system like Eyewitness is important: we can 

extract local events from Twitter that might otherwise be missed.) 

Our universe of local events are those detected in the signal 

processing phase of our algorithm and then unanimously judged as 

a local event by our anonymous judges. Thus we cannot report 

recall in the traditional sense. Instead, our “recall” measures the 

ability of our algorithm to pick out those local events from a limited 

universe. To avoid confusion, we will use the term “relative recall” 

to convey this more limited measure of recall. Figure 10 shows the 

precision-relative recall curve. One feasible operating point gives a 

relative recall of 90% and a precision of 93%. Recalling that the 

signal processing phase of our algorithm achieved 70% precision, 

the use of a classifier in this phase raised the precision by 23 

percentage points. 

The relative importance of the eight classification features is shown 

in Figure 11. Importance is measured based on how many times the 

feature is used in the ensemble of learned decision trees. The three 

leading features are all related to the number of tweets in the space-

time prism, led by the raw number of tweets (𝑦𝑡) and then two ways 

of measuring the size of the anomaly: the time series prediction 

error normalized by the standard deviation of the time series 

prediction error (𝑒𝑡 𝑠⁄ ) and the time series prediction error 

normalized by the number of tweets (𝑒𝑡 𝑦𝑡⁄ ). The size of the 

triangles (𝐿) is the fourth most important feature. The fifth most 

important is the raw prediction error (𝑒𝑡), followed by the day of 

the week, weekday vs. weekend, and finally the sampling time of 

the time series (∆𝑇). 

The classifier from this section is the second major stage of our 

algorithm, following the signal processing step described earlier. 

The signal processing step can be considered a filter to select only 

those space-time prisms that have a high likelihood of hosting a 

local event. However, the classifier stage works on features from 

any space-time prism, not just those that passed the first stage. This 

means the classifier could serve as a stand-alone local event 

detector. In our experiment, however, the first stage was important 

to extract an adequate proportion of positive candidate events 

(70%) to give our human judges and subsequent classifier training 

enough positive samples. 

8. LOCAL EVENT TYPES 
A cursory look at the events detected by our system showed they 

fell into a relatively small number of well-defined categories. We 

employed a professional linguist to categorize 200 randomly 

chosen local events from the 2339 that were voted to be an actual 

local event by our judges. The linguist’s categories and fractions of 

events in each category are shown in Figure 12. One notable 

category is “gunman” at 3%, which came from armed criminals on 

college campuses. 

 

(a) Receiver operator characteristic curve 

 

(b) Precision-relative recall curve 

Figure 10: ROC and precision-relative relative recall 

curves for detecting local events based on machine-

learned classifier. 
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Figure 11: Relative frequency with which the eight features 

are used for classifying local events in the ensemble of 

learned decision trees. 
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Figure 12: Fractions of local event types in categories. 
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9. CONCLUSIONS 
We have presented our Eyewitness system for detecting local 

events from geotagged tweets. Although only a small fraction of 

tweets are geotagged, we showed that this fraction is adequate for 

detecting local events based only on finding spatially localized 

anomalies in the rate of geotagged tweets. The detection system 

does not require any analysis of the tweets’ text. The algorithm was 

tested on time series of tweets from different spatial and temporal 

resolutions. A panel of human judges determined that 70% of 2400 

detected events were local events. A decision tree classifier was 

able to boost the precision to 93% while maintaining a relative 

recall rate of 90%. 

Eyewitness is a retrospective tool for finding local events. For 

future work, it should be feasible to make small changes to detect 

events in real time. With more work, it may be possible to detect 

local events even as they evolve based on a careful examination of 

the trajectory of tweet volumes in localized areas. 
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