
Reading Between the Lines: Modeling User Behavior and Costs in
AI-Assisted Programming

Hussein Mozannar Gagan Bansal
mozannar@mit.edu gaganbansal@microsoft.com

Massachusetts Institute of Technology Microsoft Research
Boston, USA Redmond, USA

Adam Fourney Eric Horvitz
adamfo@microsoft.com horvitz@microsoft.com
Microsoft Research Microsoft Research
Redmond, USA Redmond, USA

Thinking/
Verifying

Suggestion
22.4%

Deferring
thought
for later
1.39%

Looking up
Documentation

7.45%

Debugging/
Testing Code

11.31%

Prompt
crafting
11.56%

Writing
Documentation

0.53%Editing Last
Suggestion

11.90%

Editing
Written Code

4.28%

Writing New
Functionality

14.05%

Waiting For
Suggestion

4.20%

Not Thinking
0.01%

Thinking
about New

Code to Write
10.91%

import numpy as np
class LogisticRegression:

def __init(self):
self.w = None
self.b = None

implement the fit method
def fit(self, X, y):

initialize the parameters
self.w = np.zeros(X.shape[1])
self.b = 0
for i in range(100):

calculate the gradient
dw = (1/X.shape[0]) * np.dot(X.T,

(self.sigmoid(np.dot(X, self.w) + self.b) - y))
db = (1/X.shape[0]) *

np.sum(self.sigmoid(np.dot(X, self.w) + self.b)
- y)

update the parameters
self.w = self.w - dw
self.b = self.b - db

| # implement the predict method suggestion

prompt

shown shown shownrejected acceptedshown rejected

1

2

4

3

5

7

6

(a) (b)

(c)

21 43 5 76

Figure 1: Profling a coding session with the CodeRec User Programming States (CUPS). In (a) we show the operating mode of
CodeRec inside Visual Studio Code. In (b) we show the CUPS taxonomy used to describe CodeRec related programmer activities.
A coding session can be summarized as a timeline in (c) where the programmer transitions between states.

This work is licensed under a Creative Commons Attribution International
4.0 License.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0330-0/24/05
https://doi.org/10.1145/3613904.3641936

ABSTRACT
Code-recommendation systems, such as Copilot and CodeWhis-
perer, have the potential to improve programmer productivity by
suggesting and auto-completing code. However, to fully realize their
potential, we must understand how programmers interact with
these systems and identify ways to improve that interaction. To
seek insights about human-AI collaboration with code recommenda-
tions systems, we studied GitHub Copilot, a code-recommendation
system used by millions of programmers daily. We developed CUPS,
a taxonomy of common programmer activities when interacting

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3613904.3641936
mailto:horvitz@microsoft.com
mailto:gaganbansal@microsoft.com
mailto:adamfo@microsoft.com
mailto:mozannar@mit.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3613904.3641936&domain=pdf&date_stamp=2024-05-11

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Mozannar et al.

with Copilot. Our study of 21 programmers, who completed coding
tasks and retrospectively labeled their sessions with CUPS, showed
that CUPS can help us understand how programmers interact with
code-recommendation systems, revealing inefciencies and time
costs. Our insights reveal how programmers interact with Copilot
and motivate new interface designs and metrics.

CCS CONCEPTS
• Human-centered computing → User models; User studies; •
Software and its engineering → Automatic programming.

KEYWORDS
AI-assisted Programming, Copilot, User State Model

ACM Reference Format:
Hussein Mozannar, Gagan Bansal, Adam Fourney, and Eric Horvitz. 2024.
Reading Between the Lines: Modeling User Behavior and Costs in AI-
Assisted Programming. In Proceedings of the CHI Conference on Human
Factors in Computing Systems (CHI ’24), May 11–16, 2024, Honolulu, HI, USA.
ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/3613904.3641936

1 INTRODUCTION
Programming-assistance systems based on the adaptation of large
language models (LLMs) to code recommendations have been re-
cently introduced to the public. Popular systems, including Copilot
[14], CodeWhisperer [1], and AlphaCode[21], signal a potential
shift in how software is developed. Though there are diferences in
specifc interaction mechanisms, the programming-assistance sys-
tems generally extend existing IDE code completion mechanisms
(e.g., IntelliSense 1) by producing suggestions using neural models
trained on billions of lines of code [8]. The LLM-based completion
models can suggest sentence-level completions to entire functions
and classes in a wide array of programming languages. These large
neural models are deployed with the goal of accelerating the eforts
of software engineers, reducing their workloads, and improving
their productivity.

Early assessments suggest that programmers do feel more pro-
ductive when assisted by the code recommendation models [40]
and that they prefer these systems to earlier code completion en-
gines [34]. In fact, a recent study from GitHub, found that Copilot
could potentially reduce task completion time by a factor of two
[28]. While these studies help us understand the benefts of code-
recommendation systems, they do not allow us to identify avenues
to improve and understand the nature of interaction with these
systems.

In particular, the neural models introduce new tasks into a devel-
oper’s workfow, such as writing AI prompts [17] and verifying AI
suggestions [34], which can be lengthy. Existing interaction metrics,
such as suggestion acceptance rates, time to accept (i.e., the time a
suggestion remains onscreen), and reduction of tokens typed, tell
only part of this interaction story. For example, when suggestions
are presented in monochrome popups (Figure 1), programmers may
choose to accept them into their codebases so that they can be read
with code highlighting enabled. Likewise, when models suggest
only one line of code at a time, programmers may accept sequences

1https://code.visualstudio.com/docs/editor/intellisense

before evaluating them together as a unit. In both scenarios, con-
siderable work verifying and editing suggestions occurs after the
programmer has accepted the recommended code. Prior interac-
tion metrics also largely miss user efort invested in devising and
refning prompts used to query the models. When code completion
tools are evaluated using coarser task-level metrics such as task
completion time [20], we begin to see signals of the benefts of AI-
driven code completion but lack sufcient detail to understand the
nature of these gains, as well as possible remaining inefciencies.
We argue that an ideal approach would be sufciently low level to
support interaction profling while sufciently high level to capture
meaningful programmer activities.

Given the nascent nature of these systems, numerous questions
exist regarding the behavior of their users:

• What activities do users undertake in anticipation for, or to
trigger a suggestion?

• What mental processes occur while the suggestions are on-
screen, and, do people double-check suggestions before or
after acceptance?

• How costly for users are these various new tasks, and which
take the most time?

To answer these and related questions in a systematic manner,
we apply a mixed-methods approach to analyze interactions with a
popular code suggestion model, GiHub Copilot2 which has more
than a million users. To emphasize that our analysis is not restricted
to the specifcs of Copilot, we use the term CodeRec to refer to any
instance of code suggestion models, including Copilot. Through
small-scale pilot studies and our frst-hand experience using Copilot
for development, we develop a novel taxonomy of common states
of a programmer when interacting with CodeRec models (such as
Copilot), which we refer to as CodeRec User Programming States
(CUPS). The CUPS taxonomy serves as the main tool to answer our
research questions.

Given the initial taxonomy, we conducted a user study with 21
developers who were asked to retrospectively review videos of their
coding sessions and explicitly label their intents and actions using
this model, with an option to add new states if necessary. The study
participants labeled a total of 3137 coding segments and interacted
with 1096 suggestions. The study confrmed that the taxonomy was
sufciently expressive, and we further learned transition weights
and state dwell times —something we could not do without this
experimental setting. Together, these data can be assembled into
various instruments, such as the CUPS diagram (Figure 1), to facili-
tate profling interactions and identify inefciencies. Moreover, we
show that such analysis nearly doubles our estimates for how much
developer time can be attributed to interactions with code sugges-
tion systems, as compared with existing metrics. We believe that
identifying the current CUPS state during a programming session
can help serve programmer needs. This can be accomplished using
custom keyboard macros or automated prediction of CUPS states,
as discussed in our future work section and the Appendix. Overall,
we leverage the CUPS diagram to identify some opportunities to
address inefciencies in the current version of Copilot.

In sum, our main contributions are the following:

2https://github.com/features/copilot

https://doi.org/10.1145/3613904.3641936
https://code.visualstudio.com/docs/editor/intellisense
https://github.com/features/copilot

Reading Between the Lines: Modeling User Behavior and Costs in AI-Assisted Programming CHI ’24, May 11–16, 2024, Honolulu, HI, USA

• A novel taxonomy of common activities of programmers
(called CUPS) when interacting with code recommendation
systems (Section 4)

• A dataset of coding sessions annotated with user actions,
CUPS, and video recordings of programmers coding with
Copilot (Section 5).

• Analysis of which CUPS states programmers spend their
time in when completing coding tasks (Subsection 6.1).

• An instrument to analyze programmer behavior (and pat-
terns in behavior) based on a fnite-state machine on CUPS
states (Subsection 6.2).

• An adjustment formula to properly account for how much
time do programmers spend verifying CodeRec suggestions
(Subsection 6.4) inspired by the CUPS state of deferring
thought (Subsection 6.3).

The remainder of this paper is structured as follows: We frst
review related work on AI-assisted programming (Section 2) and
formally describe Copilot, along with a high-level overview of
programmer-CodeRec interaction (Section 3). To further understand
this interaction, we defne our model of CodeRec User Programming
States (CUPS) (Section 3) and then describe a user study designed to
collect programmer annotations of their states (Section 5). We use
the collected data to analyze the interactions using CUPS diagram
revealing new insights into programmer behavior (Section 6). We
then discuss limitations and future work and conclude in (Section
7).

2 BACKGROUND AND RELATED WORK
Large language models based on the Transformer network [36],
such as GPT-3 [6], have found numerous applications in natural
language processing. Codex [8], a GPT model trained on 54 million
GitHub repositories, demonstrates that LLMs can very efectively
solve various programming tasks. Specifcally, Codex was initially
tested on the HumanEval dataset containing 164 programming
problems, where it is asked to write the function body from a
docstring [8] and achieves 37.7% accuracy with a single generation.
Various metrics and datasets have been proposed to measure the
performance of code generation models [9, 11, 16, 21]. However, in
each case, these metrics test how well the model can complete code
in an ofine setting without developer input rather than evaluating
how well such recommendations assist programmers in situ. This
issue has also been noted in earlier work on non-LLM based code
completion models where performance on completion benchmarks
overestimates the model’s utility to developers [15]. Importantly,
however, these results may not hold to LLM-based approaches,
which are radically diferent [30].

One straightforward approach to understanding the utility of
neural code completion services, including their propensity to de-
liver incomplete or imperfect suggestions, is to simply ask devel-
opers. To this end, Weisz et al. interviewed developers and found
that they did not require a perfect recommendation model for the
model to be useful [38]. Likewise, Ziegler et al. surveyed over 2,000
Copilot users [40] and asked about perceived productivity gains
using a survey instrument based on the SPACE framework [13] –
we incorporate the same survey design for our own study. They
found both that developers felt more productive using Copilot and

that these self-reported perceptions were reasonably correlated
with suggestion acceptance rates. Liang et al. [22] administered a
survey to 410 programmers who use various AI programming assis-
tants, including Copilot, and highlighted why the programmers use
the AI assistants and numerous usability issues. Similarly, Prather
et al. [29] surveyed how introductory programming students utilize
Copilot.

While these self-reported measures of utility and preference are
promising, we would expect gains to be refected in objective met-
rics of productivity. Indeed, one ideal method would be to conduct
randomized control trials where one set of participants writes code
with a recommendation engine while another set codes without it.
GitHub performed such an experiment where 95 participants were
split into two groups and asked to write a web server. The study
concluded by fnding that task completion was reduced by 55.8% in
the Copilot condition [28]. Likewise, a study by Google showed that
an internal CodeRec model had a 6% reduction in ’coding iteration
time’ [33]. On the other hand, Vaithilingam et al. [34] showed in
a study of 24 participants showed no signifcant improvement in
task completion time – yet participants stated a clear preference for
Copilot. An interesting comparison to Copilot is Human-Human
pair programming, which Wu et al. [39] details.

A signifcant amount of work has tried to understand the behav-
ior of programmers[4, 5, 23, 31] using structured user studies under
the name of "psychology of programming." This line of work tries
to understand the efect of programming tools on the time to solve
a task or ease of writing code and how programmers read and write
code. Researchers often use telemetry with detailed logging on
keystrokes [19, 37] to understand behavior. Moreover, eye-tracking
is also used to understand how programmers read code[24, 27].
Our research uses raw telemetry alongside user-labeled states to
understand behavior; future research could also utilize eye-tracking
and raw video to get deeper insights into behavior.

This wide dispersion of results raises interesting questions about
the nature of the utility aforded by neural code completion engines:
how, and when, are such systems most helpful; and conversely,
when do they add additional overhead? This is the central ques-
tion to our work. The related work closest to answering this
question is that of Barke et al. [3], who showed that interaction
with Copilot falls into two broad categories: the programmer is
either in “acceleration mode” where they know what they want
to do, and Copilot serves to make them faster; or they are in “ex-
ploration mode”, where they are unsure what code to write and
Copilot helps them explore. The taxonomy we present in this paper,
CUPS, enriches this further with granular labels for programmers’
intents. Moreover, the data collected in this work was labeled by
the participants themselves rather than by the researchers inter-
preting their actions, allowing for more faithful intent and activity
labeling and the data collected in our study can also be used to build
predictive models as in [32]. The next section describes the Copilot
system formally and describes the data collected when interacting
with Copilot.

3 COPILOT SYSTEM DESCRIPTION
To better understand how code recommendation systems infuence
the efort of programming, we focus on GiHub Copilot, a popular

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Mozannar et al.

…

shown

t0=0

accepted shown rejected shown browse accepted

t1 t2 t3 t4 t5 t6 t7

A1 A2 A3 A4 A5 A6 A7

Figure 2: Schematic of interaction telemetry with Copilot as a
timeline. For a given coding session, the telemetry contains a
sequence of timestamps and actions with associated prompt
and suggestion features (not shown).

and representative example of this class of tools. Copilot3 is based
on a Large Language Model (LLM) and assists programmers inside
an IDE by recommending code suggestions any time the program-
mer pauses their typing. Figure 1 shows an example of Copilot
recommending a code snippet as an inline, monochrome popup,
which the programmer can accept using a keyboard shortcut (e.g.,
<tab>).

To serve suggestions, Copilot uses a portion of the code writ-
ten so far as a prompt, � , which it passes to the underlying LLM.
The model then generates a suggestion, � , which it deems to be a
likely completion. In this regime, programmers can engineer the
prompt to generate better suggestions by carefully authoring nat-
ural language comments in the code such as “# split the data
into train and test sets.” In response to a Copilot suggestion,
the programmer can then take one of several actions �, where
� ∈ {browse, accept, reject}. The latter of these actions, reject, is
triggered implicitly by continuing to type something that difers
from the suggestion or by pressing the escape key. The browse
action enables the programmer to change the suggestion shown
with a keyboard shortcut from a set of at most three suggestions.
Copilot logs aspects of the interactions via telemetry. We leverage
this telemetry in the studies described in this paper. Specifcally,
whenever a suggestion is shown, accepted, rejected, or browsed,
we record a tuple to the telemetry database, (�� , �� , �� , ��), where ��
represents the within-session timestamp of the �th event (�0 = 0),
�� details the action taken (augmented to include ‘shown’), and ��
and �� capture features of the prompt and suggestion, respectively.
Figure 2 displays telemetry of a coding session, and Figure 1a shows
Copilot implemented as a VSCode plugin. We have the ability to
capture telemetry for any programmer interacting with Copilot;
this is used to collect data for a user study in section 5.

3.1 Infuences of CodeRec on Programmer’s
Activities

Despite the limited changes that Copilot introduces to an IDE’s
repertoire of actions, LLM-based code suggestions can signifcantly
infuence how programmers author code. Specifcally, Copilot lever-
ages LLMs to stochastically generate novel code to ft the arbitrary
current context. As such, the suggestions may contain errors (and
can appear to be unpredictable) and require that programmers
double-check and edit them for correctness. Furthermore, program-
mers may have to refne the prompts to get the best suggestions.
These novel activities associated with the AI system introduce new
eforts and potential disruptions to the fow of programming. We

3The version of Copilot that this manuscript refers to is Copilot as of August 2022.

use time as a proxy to study the new costs of interaction
introduced by the AI system. We recognize that this approach is
incomplete: the costs associated with solving programming tasks
are multi-dimensional, and it can be challenging to assign a single
real-valued number to cover all facets of the task [12]. Nevertheless,
we argue that, like accuracy, efciency-capturing measures of time
are an important dimension of the cost that is relevant to most
programmers.

3.2 Programmer Activities in Telemetry
Segments

Copilot’s telemetry captures only instantaneous user actions (e.g.,
accept, reject, browser), as well as the suggestion display event. By
themselves, these entries do not reveal such programmer’s activ-
ities as double-checking and prompt engineering, as such activ-
ities happen between two consecutive instantaneous events. We
argue that the regions between events, which we refer to as
telemetry segments, contain important user intentions and
activities unique to programmer-CodeRec interaction, which
we need to understand in order to answer how Copilot afects
programmers—and where and when Copilot suggestions are useful
to programmers.

Building on this idea, telemetry segments can be split into two
groups (Figure 2). The frst group includes segments that start with
a suggestion shown event and end with an action (accept, reject, or
browse). Here, the programmer is paused and has yet to take action.
We refer to this as ‘User Before Action’. The second group includes
segments that start with an action event and end with a display
event. During this period, the programmer can be either typing or
paused; hence we denote it as ‘User Typing or Paused’. These two
groups form the foundation of a deeper taxonomy of programmers’
activities, which we will further develop in the next section.

4 A TAXONOMY FOR UNDERSTANDING
PROGRAMMER-CODEREC INTERACTION:
CUPS

4.1 Creating the Taxonomy
Our objective is to create an extensive, but not complete, taxonomy
of programmer activities when interacting with CodeRec that en-
ables a useful study of the interaction. To refne the taxonomy of
programmers’ activities, we developed a labeling tool and popu-
lated it with an initial set of activities based on our own experiences
from extensive interactions with Copilot (Figure 4). The tool enables
users to watch a recently captured screen recording of them solving
a programming task with Copilot’s assistance and to retrospectively
annotate each telemetry segment with an activity label. We use this
tool to frst refne our taxonomy with a small pilot study (described
below) and then to collect data in Section 5.

The labeling tool (Figure 4) contains three main sections: a) A
navigation panel on the left, which displays and allows navigating
between telemetry segments and highlights the current segment
being labeled in blue. The mouse or arrow keys are used to navigate
between segments. b) A video player on the right, which plays the
corresponding video segments in a loop. The participant can watch
the video segments any number of times. c) Buttons on the bottom

Reading Between the Lines: Modeling User Behavior and Costs in AI-Assisted Programming CHI ’24, May 11–16, 2024, Honolulu, HI, USA

…

shown

t0=0

accepted shown rejected shown browse accepted

t1 t2 t3 t4 t5 t6 t7

User
Typing

or
Paused

User
Typing

or
Paused

User Typing
or Paused

User
Before
Action

User
Before
Action

User
Before
Action

User
Before
Action

A1 A2 A3 A4 A5 A6 A7

Typing Paused

Thinking Verifying
Suggestion

Deferring thought
for later

Thinking about
New Code to write

Prompt crafting Looking up
Documentation

Not Thinking

Waiting For
Suggestion

Writing New
Functionality

Editing Last
Suggestion

Editing Written
Code

Writing
Documentation

Debugging/
Testing Code

ti ti+1

User Before
Action

shown accepted

…

Figure 3: Taxonomy of programmer’s activities when interacting with CodeRec– CUPS.

81 (353.25,353.52) 0.27 Prompt_Crafting_(V)

82 (353.52,359.36) 5.84 Prompt_Crafting_(V)

83 (359.36,361.22) 1.86 Thinking/Verifying_Suggestion_(

A)

84 (261.22,370.84) 9.62 Debugging/Testing_Code_(H)

85 (3708437161) 077 Debugging/Testing_Code_(H)

86 (371.61,397.57) 25.9

6

Debugging/Testing_Code_(H)

87 (397.57,410.46) 12.8

9

Thinking/Verifying_Suggestion_(

A

88 (410.46,459.95) 49.4

9

Edditing_Last_Suggestion_()

89 (459.94,499.29) 38.3

4

Edditing_Last_Suggestion_()

90 (498.29,500.58) 2.29 Writing_New_Functionality(Z)

91 (50058,505.83) 5.25 Edditing_Last_Suggestion_()

92 (505.83,515.51) 9.68 Writing_New_Functionality_(Z)

93 (51551,517.29) 178 Writing_New_Functionality_(Z)

94 (517.29,517.45) 0.16 Writing_New_Functionality_(Z)

You are given a data matrix X, the goal is to plot the

two most correlated features in X.

Step 1

Compute correlations between all features in X

Step 2

Pick out the two features that are the most highly

correlated

Step 3

Plot on a graph, where one axis is one feature, and

the other axis is the other feature.

Step 4

Plot a linear trend between the two features.

Thinking Verifying
Suggestion (A)

Deferring thought for
later (D)

Thinking about New
Code to Write (F)

Prompt crafting
(V)

Looking up
Documentation (N)

Not Thinking
(S)

Waiting For
Suggestion (G)

Writing New
Functionality (Z)

Editing Suggestion
(X)

Editing Written Code
(C)

Writing
Documentation (B)

Debugging/ Testing
Code (H)

IDK
(I)Type Custom State

Submit Custom
State

Playback Speed Navigate Events Stop Replay< >

Show Shortcut Keys Definition

Current Suggestion:

corr[i][i]=0

import numpy as np
import pickle

with open('data.pkl', 'rb') as file:
X, Y = pickle.load(file)
#print out first column of X
print(X[:,0])

#computer correlations between all columns of X
corr = np.corrcoef(X)
print(corr)

#print the max value of all the rows in corr
maxval = np.amax(corr, axis=1)
print(maxval)

print out the two features that are most correlated
maxcor = np.where(corr == np.amax(corr))
print(maxcor)

maxval = 0
for i in range(len(corr)):

(a) (b)

(c)

Figure 4: Screenshot of retrospective labeling tool for coding sessions. Left: Navigation panel for telemetry segments. Right:
Video player for reviewing video of a coding session. Bottom: Buttons and text box for labeling states.

corresponding to the CUPS taxonomy, along with an “IDK” button and a free-form text box to write custom state labels. Buttons also
have associated keyboard bindings for easy annotation.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Table 1: Description of each state in CodeRec User Program-
ming States (CUPS).

State Description

Thinking/Verifying Actively thinking about and verifying a
Suggestion shown or accepted suggestion
Not Thinking Not thinking about suggestion or code,

programmer away from keyboard
Deferring Thought For Programmer accepts suggestion with-
Later out completely verifying it, but plans to

verify it after
Thinking About New Thinking about what code or function-
Code To Write ality to implement and write
Waiting For Suggestion Waiting for CodeRec suggestion to be

shown
Writing New Code Writing code that implements new func-

tionality
Editing Last Suggestion Editing the last accepted suggestion
Editing (Personally) Editing code written by a programmer
Written Code that is not a CodeRec suggestion for the

purpose of fxing existing functionality
Prompt Crafting Writing prompt in the form of comment

or code to obtain desired CodeRec sug-
gestion

Writing Documentation Writing comments or docstring for pur-
pose of documentation

Debugging/Testing Running or debugging code to check
Code functionality may include writing tests

or debugging statements
Looking up Documenta- Checking an external source for the pur-
tion pose of understanding code functional-

ity (e.g. Stack Overfow)
Accepted Accepted a CodeRec suggestion
Rejected Rejected a CodeRec suggestion

To label a particular video segment, we asked participants to
consider the hierarchical structure of CUPS in Figure 3. The hierar-
chical structure frst distinguishes segments by whether a typing
segment occurred in that segment and then decides based on the
typing or non-typing states. For example, in a segment where a
participant was initially double-checking a suggestion and then
wrote new code to accomplish a task, the appropriate label would
be "Writing New Functionality" as the user eventually typed in
the segment. In cases where there are two states that are appro-
priate and fall under the same hierarchy, e.g., if the participant
double-checked a suggestion and then looked up documentation,
they were asked to pick the state in which they spent the majority
of the time. These issues arise because we collect a single state for
each telemetry segment.

Pilot. Through a series of pilots involving the authors of the
paper, as well as three other participants drawn from our organi-
zation, we iteratively applied the tool to our own coding sessions
and to the user study tasks described in section 5. We then ex-
panded and refned the taxonomy by incorporating any “custom
state” (using the text feld) written by the pilot participants. The
states ’Debugging/Testing Code’, ’Looking up Documentation’, and

Mozannar et al.

’Writing Documentation’ were added through the pilots. By the last
pilot participant, the code book was stable and saturated as they
did not write a state that was not yet covered. We observed in our
study that the custom text feld was rarely used. We describe the
resultant taxonomy in the sections below.

4.2 Taxonomy of Telemetry Segments
Figure 3 shows the fnalized taxonomy of programmer activities for
individual telemetry segments with Copilot. As noted earlier, the
taxonomy is rooted in two segment types: ‘User Typing or Paused’,
and ‘User Before Action’. We frst detail the ‘User Typing or Paused’
segments, which precede shown events (Figure 2) and are distin-
guished by the fact that no suggestions are displayed during this
time. As the name implies, users can fnd themselves in this state if
they are either actively ’Typing’4, or have ’paused’ but have not yet
been presented with a suggestion. In cases where the programmer
is actively typing, they could be completing any of a number of
tasks such as: ‘writing new functionality,’ ’editing existing code,’
’editing prior (CodeRec) suggestions,’ ‘debugging code,’ or author-
ing natural language comments, including both documentation and
prompts directed at CodeRec (i.e., ‘prompt crafting’). When the user
pauses, they may simply be “waiting for a suggestion” or can be in
any number of states common to ‘User Before Action’ segments.

In every ‘User Before Action’ segment, CodeRec is displaying
a suggestion, and the programmer is paused and not typing. They
could be refecting and verifying that suggestion, or they may not
be paying attention to the suggestion and thinking about other code
to write instead. The programmer can also defer their eforts on the
suggestion for a later time period by accepting it immediately, then
pausing to review the code at a later time. This can occur, for ex-
ample, because the programmer desires syntax highlighting rather
than grey text or because the suggestion is incomplete, and the
programmer wants to allow Copilot to complete its implementation
before evaluating the code as a cohesive unit. The latter situation
tends to arise when Copilot displays code suggestions line by line
(e.g., Figure 7).

The leaf nodes of the fnalized taxonomy represent 12 distinct
states that programmers can fnd themselves in. These states are
illustrated in Figure 3 and are further described in Table 1. While
the states are meant to be distinct, siblings may share many traits.
For example, "Writing New Functionality" and "Editing Written
Code" are conceptually very similar. This taxonomy also bears re-
semblance to the keystroke level model in that it assigns a time cost
to mental processes as well as typing [7, 18]. As evidenced by the
user study—which we describe in the next section—these 12 states
provide a language that is both general enough to capture most
activities (at this level of abstraction), and specifc enough to mean-
ingfully capture activities unique to LLM-based code suggestion
systems.

5 CUPS DATA COLLECTION STUDY
To study CodeRec-programmer interaction in terms of CodeRec
User Programming States, we designed a user study where program-
mers perform a coding task, then review and label videos of their
coding session using the telemetry segment-labeling tool described

4Active typing allows for brief pauses between keystrokes.

Reading Between the Lines: Modeling User Behavior and Costs in AI-Assisted Programming CHI ’24, May 11–16, 2024, Honolulu, HI, USA

earlier. We describe the procedure, the participants, and the results
in the sections that follow.

5.1 Procedure
We conducted the study over a video call and asked participants
to use a remote desktop application to access a virtual machine
(VM). Upon connecting, participants were greeted with the study
environment consisting of Windows 10, together with Visual Studio
Code (VS Code) augmented with the Copilot plugin.

Participants were then presented with a programming task drawn
randomly from a set of eight pre-selected tasks (Table 2). If the par-
ticipant was unfamiliar with the task content, we ofered them a
diferent random task. The task set was designed during the pilot
phase so that individual tasks ft within a 20-minute block and so
that, together, the collection of tasks surfaces a sufcient diversity
of programmer activities. It is crucial that the task is of reasonable
duration so that participants are able to remember all their activi-
ties since they will be required to label their session immediately
afterward. Since the CUPS taxonomy includes states of thought,
participants must label their session immediately after coding, and
each study took approximately 60 minutes in total. To further im-
prove diversity, task instructions were presented to participants
as images to encourage participants to author their own Copilot
prompts rather than copying and pasting from the problem de-
scription. The full set of tasks and instructions is provided as an
Appendix.

Upon completing the task (or reaching the 20-minute mark), we
loaded the participant’s screen recording and telemetry into the
labeling tool (previously detailed in Section 4.1). The researcher
then briefy demonstrated the correct operation of the tool and
explained the CUPS taxonomy. Participants were then asked to an-
notate their coding session with CUPS labels. Self-labeling allows
us to easily scale such a study and enables more accurate labels
for each participant, but may cause inconsistent labeling across
participants. Critically, this labeling occurred within minutes of
completing the programming task so as to ensure accurate recall.
We do not include a baseline condition where participants perform
the coding task without Copilot, as this work focuses on under-
standing and modeling the interaction with the current version of
Copilot.

Finally, participants completed a post-study questionnaire about
their experience mimicking the one in [40]. The entire experiment
was designed to last 60 minutes. The study was approved by our
institutional review board (IRB), and participants received a $50.00
gift card as remuneration for their participation.

5.2 Participants
To recruit participants, we posted invitations to developer-focused
email distribution lists within our large organization. We recruited
21 participants with varying degrees of experience using Copilot: 7
used Copilot more than a few times a week, 3 used it once a month
or less, and 11 had never used it before. For participants who had
never used it before, the experimenter gave a short oral tutorial
on Copilot explaining how it can be invoked and how to accept
suggestions. Participants’ roles in the organization ranged from
software engineers (with diferent levels of seniority) to researchers

and graduate student interns. In terms of programming expertise,
only 6 participants had less than 2 years of professional program-
ming experience (i.e., excluding years spent learning to program),
5 had between 3 to 5 years, 7 had between 6 to 10 years, and 3 had
more than 11 years of experience. Participants used a language in
which they stated profciency (defned as language in which they
were comfortable designing and implementing whole programs).
Here, 19 of the 21 participants used Python, one used C++, and the
fnal participant used JavaScript.

On average, participants took 12.23 minutes (sample standard
deviation, �� = 3.98 minutes) to complete the coding task, with a
maximum session length of 20.80 minutes. This task completion
time is measured from the frst line of code written for the task
until the end of the allocated time. During the coding tasks, Copilot
showed participants a total of 1024 suggestions, out of which they
accepted 34.0%. The average acceptance rate for participants was
36.5% (averaging over the acceptance rate of each participant), and
the median was 33.8% with a standard error of 11.9%; the minimum
acceptance rate was 14.3%, and the maximum was 60.7%. In the
labeling phase, each participant labeled an average of 149.38 (�� =
57.43) segments with CUPS, resulting in a total of 3137 CUPS labels.
The participants used the ‘custom state’ text feld only three times
total, twice a participant wrote ‘write a few letters and expect
suggestion’ which can be considered as ‘prompt crafting’ and once
a participant wrote ‘I was expecting the function skeleton to show
up[..]’ which was mapped to ’waiting for suggestion’. The IDK
button was used a total of 353 times, this sums to 3137 CUPS + 353
IDKs = 3490 labels, the majority of its use was from two participants
(244 times) where the video recording was not clear enough during
consecutive spans, and was used by only fve other participants
more than once with the majority of the use also being due to
the video not being clear or the segment being too short. The IDK
segments represent 6.5% of total session time across all participants,
mostly contributed by fve participants. Therefore, we remove the
IDK segments from the analysis and do not attempt to re-label
them.

Together, these CUPS labels enable us to investigate various ques-
tions about programmer-CodeRec interaction systematically, such
as exploring which activities programmers perform most frequently
and how they spend most of their time. We study programmer-
CodeRec interaction using the data derived from this study in the
following Section 6 and derive various insights and interventions.

6 UNDERSTANDING PROGRAMMER
BEHAVIOR WITH CUPS: MAIN RESULTS

The study in the previous section allows us to collect telemetry
with CUPS labels for each telemetry segment. We now analyze the
collected data and highlight suggestions for 1) metrics to measure
the programmer-CodeRec interaction, 2) design improvements
for the Copilot interface, and fnally 3) insights into programmer
behavior. Each subsection below presents a specifc result or analy-
sis which can be read independently. Code and Data is available at
5.

5https://github.com/microsoft/coderec_programming_states

https://github.com/microsoft/coderec_programming_states

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Mozannar et al.

1 21 30 41 68 77 86 12
1

9 59 64 77 10
7

11
1

13
3

14
1

17
0

1 56 65 72 79 88 10
3

10
7

11
7

12
4

13
1

13
7

14
2

17
5

1 32 93 11
9

14
3

17
2

1 8 21 25 44 58 11
4

12
1

14
5

15
8

16
4

Time (s)

Suggestion Rejected Suggestion Accepted Suggestion Shown

(a) Individual CUPS timelines for 5/21 study participants for the frst 180 secs show the richness of and variance in programmer-CodeRec
interaction.

0
5

10
15

20
25

%
of

S
es

si
on

sp
en

t
in

S
ta

te

N
ot

T
hi

nk
in

g
(S

)

W
ri

ti
ng

D
oc

um
en

ta
ti

on
(B

)

D
ef

er
ri

ng
T

ho
ug

ht
F

or
L

at
er

(D
)

E
di

ti
ng

W
ri

tt
en

C
od

e(
C

)

W
ai

ti
ng

F
or

S
ug

ge
st

io
n

(G
)

L
oo

ki
ng

up
D

oc
um

en
ta

ti
on

(N
)

P
ro

m
pt

C
ra

ft
in

g
(V

)

E
dd

it
in

g
L

as
t

S
ug

ge
st

io
n

(X
)

D
eb

ug
gi

ng
/T

es
ti

ng
C

od
e

(H
)

T
hi

nk
in

g
A

b
ou

t
N

ew
C

od
e

T
o

W
ri

te
(F

)

W
ri

ti
ng

N
ew

F
un

ct
io

na
lit

y
(Z

)

T
hi

nk
in

g/
V

er
if

yi
ng

S
ug

ge
st

io
n

(A
)

Debugging/Testing
Code

Deferring Thought
For Later

Edditing Last
Suggestion

Editing Written
Code

Looking up
Documentation

Not Thinking

Prompt Crafting

Thinking About
New Code To Write

Thinking/Verifying
Suggestion

Waiting For
Suggestion

Writing
Documentation

Writing New
Functionality

(b) The percentage of total session time spent in each state
during a coding session. On average, verifying Copilot
suggestions occupies a large portion of session time.

(c) CUPS diagram showing 12 CUPS states (nodes) and the transitions among
the states (arcs). Transitions occur when a suggestion is shown, accepted, or
rejected. We hide self-transitions and low-probability transitions for simplicity

Figure 5: Visualization of CUPS labels from our study as timelines, a histogram, and a state machine.

−

−

−

Reading Between the Lines: Modeling User Behavior and Costs in AI-Assisted Programming CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Table 2: Description of the coding tasks given to user study participants and task assignment. Participants were randomly
allocated to tasks for tasks which they had familiarity with.

Task Name Participants Description

Algorithmic Problem P4,P17,P18 Implementation of TwoSum, ThreeSum and FourSum
Data Manipulation P1,P2,P11,P20 Imputing data with average feature value and feature engineering for quadratic terms
Data Analysis P5,P8 Computing data correlations in a matrix and plotting of most highly correlated features
Machine Learning P3,P7,P12,P15 Training and Evaluation of models using sklearn on given dataset
Classes and Boilerplate Code P6,P9 Creating diferent classes that build on each other
Writing Tests P16 Writing tests for a black box function that checks if a string has valid formatting
Editing Code P10,P14,P21 Adding functionality to an existing class that implements a nearest neighbor retriever
Logistic Regression P13,P19 Implementing a custom Logistic Regression from scratch with weight regularization

6.1 Aggregated Time Spent in Various CUPSs
In Figure 5a, we visualize the coding sessions of individual partici-
pants as CUPS timelines, where each telemetry segment is labeled
with its CUPS label. At frst glance, CUPS timelines show the rich-
ness in patterns of interaction with Copilot, as well as the variance
in usage patterns across settings and people. CUPS timelines allow
us to inspect individual behaviors and identify patterns, which we
later aggregate to form general insights into user behavior.

Figure 5b shows the average time spent in each state as a per-
centage normalized to a user’s session duration.

Metric Suggestion: Time spent in CUPS states as a high-
level diagnosis of the interaction

For example, time spent ‘Waiting For Suggestion’ (4.2%, �� =
4.46) measures the real impact of latency, and time spent
‘Editing Last Suggestion’ provides feedback on the quality
of suggestions.

We fnd that averaged across all users, the ‘verifying sugges-
tion’ state takes up the most time at 22.4% (�� = 12.97), it is the
top state for 6 participants and in the top 3 states for 14 out of 21
participants taking up at least 10% of session time for all but one
participant. Notably, this is a new programmer task introduced by
Copilot. The second-lengthiest state is writing new functionality’
14.05% (�� = 8.36), all but 6 participants spend more than 9% of
session time in this state.

More generally, the states that are specifc to interaction with
Copilot include: ‘Verifying Suggestions’, ‘Deferring Thought for
Later’, ‘Waiting for Suggestion’, ‘Prompt Crafting’, and ‘Editing
Suggestion’. We found that the total time participants spend
in these states is 51.5 % (�� = 19.3) of the average session
duration. In fact, half of the participants spend more than 47%
of their session in these Copilot states, and all participants spend
more than 21% of their time in these states.

By Programmer Expertise and Copilot Experience. We in-
vestigate if there are any diferences in how programmers interacted
with Copilot based on their programming expertise and their previ-
ous experience with Copilot. First, we split participants based on
whether they have professional programming experience of more

than 6 years (10 out of 21) and who have less than 6 years (11 out
of 21). We notice the acceptance rate for those with substantial
programming experience is 30.0% ± 14.5 while for those without is
37.6% ± 14.6. Second, we split participants based on whether they
had used Copilot previously (10 out of 21) and those who had never
used it before (11 out of 21). The acceptance rate for those who have
previously used Copilot is 37.6 % ± 15.3, and for those who have not,
it is 29.3 ± 13.7. Due to the limited number of participants, these
results are not sufcient to determine the infuence of programmer
experience or Copilot experience on behavior. We also include in
Appendix a breakdown of programmer behavior by task solved.

6.2 Patterns in Behavior as Transitions Between
CUPS States

To understand if there was a pattern in participant behavior, we
modeled transitions between two states as a state machine. We re-
fer to the state machine-based model of programmer behavior as
a CUPS diagram. In contrast to the timelines in Figure 5a, which
visualize state transitions with changes of colors, the CUPS dia-
gram Figure 5c explicitly visualizes transitions using directed edges,
where the thickness of arrows is proportional to the likelihood of
transition. For simplicity, Figure 5c only shows transitions with
an average probability higher than 0.17 (90th quantile, selected for
graph visibility).

The transitions in Figure 5c revealed many expected patterns.
For example, one of the most likely transitions (excluding self-
transitions from the diagram), ‘Prompt Crafting

0 −−
.54 → Verifying

Suggestion’ showed that when programmers were engineering
prompts, they were then likely to immediately transition to verify-
ing the resultant suggestions (probability of 0.54). Likewise, Another
probable transition was ‘Deferring Thought

0 −−
.54 →Verifying Sugges-

tion’, indicating that if a programmer previously deferred their
thought for an accepted suggestion, they would, with high
probability, return to verify that suggestion. Stated diferently:
deference incurs verifcation dept, and this debt often “catches up”
with the programmer. Finally, the single-most probable transition,
‘Writing New Functionality

0 −−
.59 → Verifying Suggestion’, echos the

observation from the previous section, indicating that program-
mers often see suggestions while writing code (rather than prompt
crafting), then spend time verifying it. If suggestions are unhelpful,
they could easily be seen as interrupting the fow of writing.

−

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Mozannar et al.

The CUPS diagram also revealed some unexpected transitions.
Notably, the second-most probable transition from the ‘Prompt
Crafting’ state is ‘Prompt Crafting

0 −−
.25 → Waiting for Suggestion’.

This potentially reveals an unexpected and unnecessary delay and is
a possible target for refnement (e.g., by reducing latency in Copilot).
Importantly, each of these transitions occurs with a probability that
is much higher than the lower bound/uniform baseline probability
of transitioning to a random state in the CUPS diagram (1/12=0.083).
In fact, when we compute the entropy rate (a measure of random-
ness) of the resulting Markov Chain [10] from the CUPS diagram
we obtain a rate of 2.24; if the transitions were completely random
the rate would be 3.58, and if the transitions were deterministic
then the rate is 0.

Interface Design Suggestion: Identifying current CUPS
state can help serve programmer needs

If we are able to know the current programmer CUPS state
during a coding session we can better serve the programmer,
for example,

• If the programmer is observed to have been defer-
ring their thought on the last few suggestions, group
successive Copilot suggestions and display them to-
gether.

• If the programmer is waiting for the suggestion, we
can prioritize resources for them at that moment

• While a user is prompt crafting, Copilot suggestions
are often ignored and may be distracting; however, af-
ter a user is done with their prompt, they may expect
high-quality suggestions. We could suppress sugges-
tions during prompt crafting, but after the prompt
crafting process is done, display multiple suggestions
to the user and encourage them to browse through
them.

Future work can, for example, realize these design sugges-
tions by allowing custom keyboard macros for the pro-
grammer to signal their current CUPS state, or a more auto-
mated approach by predicting their CUPS state.

We also investigated longer patterns in state transitions by search-
ing for the most common sequence of states of varying lengths.
We achieved this by searching over all possible segment n-grams
and counting their occurrence over all sessions. We analyzed pat-
terns in two ways: in Figure 6a, we merged consecutive segments
that have the same state label into a single state (thus removing
self-transitions), and in Figure 6b we looked at n-grams in the user
timelines (including self-transitions) where we include both states
and participants actions (shown, accepted and rejected). The most
common pattern (#1) in Figure 6a was a cycle where programmers
repeatedly wrote new code functionality and then spent time veri-
fying shown suggestions, indicating a new mode for programmers
to solve coding tasks. At the same time, when we look at pattern
(#B) in Figure 6b, which takes a closer look into when program-
mers are writing new functionality, we observe that they don’t stop

to verify suggestions and reject them as they continue to write.
Other long patterns include (#2) (also shown as pattern #D), where
programmers repeatedly accepted successive Copilot suggestions
after verifying each of them. Finally, we observe in (#3) and (#A)
programmers iterating on the prompt for Copilot until they obtain
the suggestion they want. We elaborate more on this in the next
subsection.

6.3 Programmers Often Defer Thought About
Suggestions

An interesting CUPS state is that of ’Deferring Thought About
A Suggestion’. This is illustrated in Figure 7, where programmers
accept a suggestion or series of suggestions without sufciently ver-
ifying them beforehand. This occurs either because programmers
wish to see the suggestion with code highlighting, or because they
want to see where Copilot suggestions leads to. Figure 5b shows
that programmers do in fact, frequently defer thought– we counted
61 states labeled as such. What drives the programmer to defer
their thought about a suggestion rather than immediately verifying
it? We initially conjectured that the act of deferring may be par-
tially explained by the length of the suggestions. So, we compared
the number of characters and the number of lines for suggestions
depending on the programmer’s state. We fnd that there is no
statistical diference according to a two-sample independent t-test
(� = −0.58, � = 0.56)6 in the average number of characters between
deferred thought and suggestions (75.81 compared to 69.06) that
were verifed previously. The same holds for the average number
of lines.

However, when we look at the likelihood of editing an accepted
suggestion, we fnd that it is 0.18 if it was verifed before, but it is
0.53 if it was deferred. This diference is signifcant according to a
chi-square test (�2 = 29.2, � = 0). In fact, the programmer CUPS
state has a big efect on their future actions. In Table 3, we show
the probability of the programmer accepting a suggestion given the
CUPS state the programmer was in while the suggestion is being
shown. We also show the probability of the programmer accepting
a suggestion as a function of the CUPS state the programmer was
in just before the suggestion was displayed. We observe there is a
big variation in the suggestion acceptance rate by the CUPS state.
For example, if the programmer was in the "Deferring Thought For
Later" state, the probability of acceptance is 0.98 ± 0.02 compared
to when a programmer is thinking about new code to write, where
the probability is 0.12 ± 0.04. Note that the average probability of
accepting a suggestion was 0.34.

What are the programmers doing before they accept a suggestion?
We found that the average probability of accepting a suggestion
was 0.34. However, we observed that when the programmer was
verifying a suggestion their likelihood of accepting was 0.70. In
contrast, if the programmer was thinking about new code to write,
the probability dropped to 0.20. This diference was statistically
signifcant according to Pearson’s chi-squared test (�2 = 12.25, � =
0). Conversely, when programmers are engineering prompts, the
likelihood of accepting a suggestion drops to 0.16. One reason for
this might be that programmers want to write the prompt on their

6All p-values reported are corrected for multiple hypothesis testing with the Benjam-
in/Hochberg procedure with � = 0.05.

Reading Between the Lines: Modeling User Behavior and Costs in AI-Assisted Programming CHI ’24, May 11–16, 2024, Honolulu, HI, USA

#1.

Writing new functionality Verifying suggestion Verifying suggestionWriting new functionality

n=31

#2.

Waiting for suggestion Verifying suggestion Verifying suggestionWaiting for suggestion

#3.

Prompt Crafting Verifying suggestion Verifying suggestionPrompt Crafting

#4.

Deferring Thought Verifying suggestion

5.

Thinking about code to write Writing new functionality

n=104 n=52

n=12n=49 n=19

n=11n=52 n=14

n=33 n=37

(a) Common patterns of transitions between distinct states. In individual participant timelines, the patterns visually appear as a change of
color, but here we measure how often they appear across all participants (n=).

#A.

#B.

#C.

#D.

shown shown

shown

shown

shownaccepted accepted

accepted

rejected rejected

rejected rejected

n=88

n=56

n=43

n=16

Writing new functionality

Prompt Crafting

Verifying suggestion Verifying suggestion

Verifying suggestion Verifying suggestion

Prompt CraftingPrompt Crafting

Writing new functionalityWriting new functionality

Waiting for suggestion

(b) Common patterns of states and actions (including self transitions). Each pattern is extracted from user timelines and we count how often it
appears in total (n=)

Figure 6: Myriad of CUPS patterns observed in our study.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Mozannar et al.

class LogisticRegression:
def __init__(self,X,y,alpha=0.01):

self.X = X
self.y = y
self.alpha = alpha
self.theta = np.zeros(X.shape[1])
self.cost = []
self.theta_history = [

class LogisticRegression:
def __init__(self,X,y,alpha=0.01):

self.X = X
self.y = y
self.alpha = alpha
self.theta = np.zeros(X.shape[1])
self.cost = []
self.theta_history = [

self.theta
]
self.cost_history = [

self.cost()

class LogisticRegression:
def __init__(self,X,y,alpha=0.01):

self.X = X
self.y = y
self.alpha = alpha
self.theta = np.zeros(X.shape[1])
self.cost = []
self.theta_history = [

self.theta
]
self.cost_history = [

self.cost()
]

def cost(self):
return (-1 / len(self.y)) *

np.sum(self.y * np.log(self.hypothesis())) + …

4 single line
Accepts
later

3 single line
Accepts
later

Open left brace [indicates
that suggestion is not a
complete code segment

Suggestion references a
method cost() not yet
implemented

The function cost references a
method hypothesis() not yet
implemented

Figure 7: Illustration of a coding scenario with Copilot where the programmer may choose to defer verifying a suggestion
(‘Deferring Thought’). Here, Copilot suggests an implementation for the class Logistic Regression line-by-line (illustrated
from left to right). And the programmer may need to defer verifying intermediate suggestion of self.cost (middle screenshot)
because the method that implemented it is suggested later (right screenshot).

own without suggestions, and Copilot interrupts them. We show
the full results in the Appendix for the other states.

Table 3: We compute the percentage of suggestions accepted
given the programmer was in the CUPS state while the sugges-
tion is being shown (% Ss accepted while shown). We compute
the percentage of suggestions accepted given the program-
mer was in the CUPS state before the suggestion is shown,
the state just before the one where the suggestion is shown
(% Ss accepted before S is shown). We compute the standard
error for the acceptance rate (%).

State % Ss accepted % Ss accepted
while shown before S is

shown

Thinking/Verifying 0.80 ± 0.02 0.56 ± 0.04
Suggestion
Prompt Crafting 0.11 ± 0.02 0.22 ±0.03
Looking up Documenta- 0.00 ± 0.00 0.29 ± 0.17
tion
Writing New Function- 0.07 ± 0.02 0.31 ± 0.03
ality
Thinking About New 0.12 ± 0.04 0.27 ± 0.04
Code To Write
Editing Last Suggestion 0.03 ± 0.03 0.23 ± 0.05
Waiting For Suggestion 0.10 ± 0.05 0.58 ± 0.06
Editing Written Code 0.07 ± 0.04 0.17 ± 0.07
Writing Documentation 0.40 ± 0.22 0.33 ± 0.19
Debugging/Testing 0.23 ± 0.07 0.26 ± 0.06
Code
Deferring Thought For 0.98 ± 0.02 1.0 ± 0.0
Later

6.4 CUPS Attributes Signifcantly More Time
Verifying Suggestions than Simpler Metrics

We observed that programmers continued verifying the suggestions
after they accepted them. This happens by defnition for ’deferred
thought’ states before accepting suggestions, but we fnd it also
happens when programmers verify the suggestion before accepting
it and this leads to a signifcant increase in the total time verifying
suggestions. First, when participants defer their thought about a
suggestion they accepted, 53.2% of the time they verify the sug-
gestion immediately afterward. When we adjust for the post-hoc
time spent verifying, we compute a mean time of 15.21 (�� = 20.68)
seconds of verifcation and a median time of 6.48s. This is nearly
a fve-times increase in average time and a three-time increase
in median time for the pre-adjustment scores of 3.25 (�� = 3.33)
mean and 1.99 median time. These results are illustrated in Figure 8
and is a statistically signifcant increase according to a two-sample
paired t-test (� = −4.88, � = 1.33 · 10−5). This phenomenon also
occurs when programmers are in a ’Thinking/Verifying Suggestion’
state before accepting a suggestion where 19% of the time they
posthoc verify the suggestion which increases total verifcation
time from 3.96 (�� = 8.63) to 7.03 (�� = 14.43) on average which is
statistically signifcant (� = −4.17, � = 5� − 5). On the other hand,
programmers often have to wait for suggestions to show up due to
either latency or Copilot not kicking in to provide a suggestion. If
we sum the time between when a suggestion is shown and the pro-
grammer accepts or rejects this in addition to the time they spend
waiting for the suggestion (this is indicated in the state ’Waiting
for suggestion’), then we get an increase from 6.11s (�� = 15.52) to
6.51s (�� = 15.61) which is minor on average but adds 2.5 seconds
of delay when programmers have to explicitly wait for suggestions.

Reading Between the Lines: Modeling User Behavior and Costs in AI-Assisted Programming CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Metric Suggestion: Adjust verifcation time metrics and
acceptance rates to include suggestions that are veri-
fed after acceptance

The previous analysis showed that the time to accept a sug-
gestion cannot be simply measured as the time spent from the
instance a suggestion is shown until a suggestion is accepted–
this misses the time programmers spend verifying a sugges-
tion after acceptance. Similarly, since deferring thought is
a frequent behavior observed, it leads to an infation of ac-
ceptance rates. We recommend using measures such as the
fraction of suggestions accepted that survive in the codebase
after a certain time period (e.g. 10 minutes).

6.5 Insights About Prompt Crafting
Insights about Prompt Crafting. We take a closer look into how

participants craft prompts to obtain Copilot suggestions. Our frst
insight is that programmers consistently ignore suggestions while
prompt crafting. Among 234 suggestions that were shown while par-
ticipants were actively prompt crafting, defned as a suggestion where
a programmer was prompt crafting while the suggestion was being
displayed, only 10.7% were accepted. We hypothesize this behavior
could be due to programmers wanting to craft the prompt in their
own language rather than relying on Copilot to help them prompt
craft. This also indicates that Copilot is unnecessarily interrupting
participants’ prompt crafting attempts.

However, programmers often iterate on their prompts until they
obtain the suggestion they desire and often do not abandon prompt
crafting without accepting a suggestion. We defne a prompt craft-
ing attempt as a segment of the coding session that starts from
when the programmer frst enters the CUPS "prompt crafting" state
and lasts until the programmer enters a non-Copilot centric state 7.
We count 59 such prompt crafting attempts wherein 81.3% of them
a suggestion is accepted.

Prompt crafting is often an iterative process, where the program-
mer writes an initial prompt, observes the resulting suggestion, then
iterates on the prompt by adding additional information about the
desired code or by rewording the prompt. For example, P5 wanted to
retrieve the index of the maximum element in a correlation matrix
and wrote this initial prompt and got the suggestion:
print the indices of the max value excluding 1 in corr
maxval = np.amax(corr, axis=1) # Copilot suggestion

This code snipped returns the value of the maximum value rather
than the index, so it was not accepted by the participant. They then
re-wrote the prompt to be:
print the two features most correlated
Copilot suggestion
maxcor = np.where(corr == np.amax(corr))

and accepted the above suggestion.

7The non-Copilot centric states are: ’Writing New Functionality,’ ’Editing Written
Code,”Thinking About New Code To Write,”DebuggingTesting Code,’ ’Looking up
Documentation,’ ’Writing Documentation.’

Finally, we observe that there are three main ways participants
craft prompts:
1) through writing a single line comment with natural language
instructions, although the comment may resemble pseudo-code
[17], an example:

impute missing values in X_train as average of column
where missinggn value is -1

2) through writing a docstring for the function:

def distance(self, query):
'''
query: single numpy arrray
return: l2 distances from query to the vectors
'''

and fnally, 3) through writing function signatures (or variable
names) e.g., writing "def add_time" then pausing to wait for a sug-
gestion. Often, programmers combine the three prompt crafting
strategies to get better code suggestions.

6.6 Post-Study Survey Answers
After completing the study, participants were asked to complete
a survey based on the productivity survey in [40], which focuses
on the SPACE framework of programmer productivity [13]. We
also included a free-form text box at the end of the survey where
participants can add any additional thoughts about their experience
using Copilot for the task assigned. The full results of the survey
can be found in the Appendix.

We found that 6/21 participants agreed or strongly agreed with
the statement that they were concerned about the quality of their
code when using Copilot. Participant #9 noted, "I worry that bugs
can sneak-in and go unnoticed, especially in weakly-dynamically
typed languages" and Participant #19 noted that "My main concern
with Copilot is whether it is teaching me to do things the wrong
(or old) way (e.g. showing me a Python 3.6 way instead of a Python
3.10 way and so on)". On the other hand, 14/21 participants agreed
that using Copilot helped them stay in fow and spend less time
searching for information. Participant #3 noted that "Collaborating
with Copilot felt like I was googling what I wanted to do except
instead of going through several stack overfow links that Google
would show me, the code just appeared inline saving me time and
keeping my fow of coding" and Participant #6 "Going into the
exercise I genuinely thought there would be a point when I pull up
stack overfow. Because that’s the kind of tiny stuf you sometimes
need to search for. With copilot, it really reduced my worry of doing
so." Finally, 17/21 participants agreed with the statement that by
using Copilot, they completed the task faster, and 16/21 participants
agreed that they were more productive using Copilot. These survey
responses highlight the costs and benefts of writing code with
Copilot and reinforcing existing results in [40].

7 LIMITATIONS, FUTURE WORK AND
CONCLUSION

7.1 Limitations
The observations from our study are limited by several decisions
that we made. First, our participants solved time-limited coding

2.5s ± 3.1,
occurs only 16%

22.5s ± 21.2
occurs only 53%

Waiting for
suggestion

Deferring Thought Verifying suggestion

3.3s ± 3.3

shown accepted

15.21s ± 20.68

Pre-adjustment Adjustment

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Mozannar et al.

Figure 8: Illustration of one of the adjustments required for measuring the total time a programmer spends to verify a suggestion.
Here, when a programmer defers thought for a suggestion, they spend time verifying it after accepting it and may also have to
wait beforehand for the suggestion to be shown.

tasks that were provided by us instead of real tasks they may per-
form in the real world. Furthermore, the selection of tasks was
limited and did not cover all tasks programmers might perform.
We mostly conducted experiments with Python with only two
participants using C++ and JavaScript when Copilot is capable of
completing suggestions for myriads of other languages. We also
made an assumption about the granularity of telemetry where each
segment at most contained one state when, in a more general set-
ting, programmers may perform multiple activities within a single
segment. We also did not capture longer-term costs of interacting,
e.g., from accepting code with security vulnerabilities or longer
horizon costs. To this end, security vulnerabilities and possible
overreliance issues [2, 25, 26], are important areas of research that
we do not address in this paper.

7.2 Future Work
We only investigated a limited number of programmer behaviors
using the CUPS timelines and diagrams. There are many other
aspects future work could investigate.

Predicting CUPS states. To enable our insights derived in Sec-
tion 6, we need to be able to identify the current programmer’s
CUPS state. An avenue towards that is building predictive mod-
els using labeled telemetry data that is collected from our user
study. Ideally, we can leverage this labeled data to further label
telemetry data from other coding sessions or other participants so
that we can perform such analyses more broadly. Specifcally, the
input to such a model would be the current session context, for
example, whether the programmer accepted the last suggestion, the
current suggestion being surfaced, and the current prompt. We can
leverage supervised learning methods to build such a model from
collected data. Such models would need to run in real-time during
programming and predict at each instance of time the current user
CUPS state. This would enable the design suggestions proposed
to serve to compute various metrics proposed. For example, if the
model predicts that the programmer is deferring thought about a
suggestion, we can group suggestions together to display them to
the programmer. In the Appendix, we built small predictive models
of programmers CUPS state using labeled study data. However,
the current amount of labeled data is not sufcient to build highly
accurate models. There are multiple avenues to improve the per-
formance of these models: 1) simply collecting a larger amount

of labeled data which would be expensive, 2) using methods from
semi-supervised learning that leverage unlabeled telemetry to in-
crease sample efciency [35], and 3) collecting data beyond what is
captured from telemetry such as video footage of the programmer
screen (e.g. cursor movement) to be able to better predict with the
same amount of data.

Assessing Individual Diferences. There is an opportunity to apply
the CUPS diagram to compare diferent user groups and compare
how individuals difer from an average user. Does the nature of
inefciencies difer between user groups? Can we personalize inter-
ventions? Finally, we could also compare how the CUPS diagram
evolves over time for the same set of users.

Efect of Conditions and Tasks on Behavior. We only studied the
behavior of programmers with the current version of Copilot. Fu-
ture work could study how behavior difers with diferent versions
of Copilot– especially when versions use diferent models. In the
extreme, we could study behavior when Copilot is turned of. The
latter could help assess the counterfactual cost of completing the
task without AI assistance and help establish whether and where
Copilot suggestions add net value for programmers. For example,
maybe the system did not add enough value because the program-
mer kept getting into prompt crafting rabbit holes instead of moving
on and completing the functions manually or with the assistance
of web search.

Likewise, if developers create a faster version of Copilot with
less latency, the CUPS diagram could be used to establish whether
it leads to reductions in time spent in the "Waiting for Suggestion"
state.

Informing New Metrics. Since programmers’ value may be multi-
dimensional, how can we go beyond code correctness and measure
added value for users? If Copilot improves productivity, which
aspects were improved? Conversely, if it didn’t, where are the ef-
ciencies? One option is to conduct a new study where we compare
the CUPS diagram with Copilot assistance with a counterfactual
condition where the programmers don’t have access to Copilot.
And use the two diagrams to determine where the system adds
value or could have added value. For example, the analysis might
reveal that some code snippets are too hard for programmers to
complete by themselves but much faster with Copilot because the
cost of double-checking and editing the suggestion is much less

Reading Between the Lines: Modeling User Behavior and Costs in AI-Assisted Programming CHI ’24, May 11–16, 2024, Honolulu, HI, USA

than the cost of spending efort on it by themselves. Conversely, the
analysis might reveal that a new intervention for helping engineer
prompts greatly reduced people’s times in “Prompt Crafting”.

Another option is to design ofine metrics based on these insights
that developers can use during the model selection and training
phase. For example, given that programmers spent a large fraction
of the time verifying suggestions, ofine metrics that can estimate
this (e.g., based on code length and complexity) may be useful
indicators of which models developers should select for deploy-
ment. Future work will aim to test the efectiveness of these design
suggestions as well.

Beyond Programming. We also hope our methodology is applied
to study other forms of AI assistants that are rapidly being de-
ployed. For example, one can make an analogous CUPS taxonomy
for writing assistants for creative writers or lawyers.

7.3 Conclusion
We developed and proposed a taxonomy of common programmer
activities (CUPS) and combined it with real-time telemetry data
to profle the interaction. At present, CUPS contains 12 mutually
unique activities that programmers perform between consecutive
Copilot actions (e.g., such as accepting, rejecting, and viewing sug-
gestions). We gathered real-world instance data of CUPS by con-
ducting a user study with 21 programmers within our organization,
where they solved coding tasks with Copilot and retrospectively
labeled CUPS for their coding session. We collected over 3137 in-
stances of CUPS and analyzed them to generate CUPS timelines
that show individual behavior and CUPS diagrams that show aggre-
gate insights into the behavior of our participants. We also studied
the time spent in these states, patterns in user behavior, and better
estimates of the cost (in terms of time) of interacting with Copilot.

Our studies with CUPS labels revealed that when solving a coding
task with Copilot, programmers may spend a large fraction of total
session time (34.3%) on just double-checking and editing Copilot
suggestions, and spend more than half of the task time on Copilot
related activities, together indicating that introducing Copilot into
an IDE can signifcantly change user behavior. We proposed new
metrics to measure the interaction by computing the time spent in
each CUPS state and modifcation to existing time and acceptance
metrics by accounting for suggestions that get verifed only after
they get accepted. We proposed a new interface design suggestion:
if we allow programmers to signal their current state, then we can
better serve their needs, for example, by reducing latency if they
are waiting for a suggestion.

ACKNOWLEDGMENTS
HM partly conducted this work during an internship at Microsoft
Research (MSR). We acknowledge valuable feedback from colleagues
across MSR and GitHub including Saleema Amershi, Victor Dibia,
Forough Poursabzi, Andrew Rice, Eirini Kalliamvakou, and Edward
Aftandilian.

REFERENCES
[1] Amazon. 2022. ML-powered coding companion – Amazon CodeWhisperer.

https://aws.amazon.com/codewhisperer/

[2] Owura Asare, Meiyappan Nagappan, and N Asokan. 2023. Is github’s copilot
as bad as humans at introducing vulnerabilities in code? Empirical Software
Engineering 28, 6 (2023), 1–24.

[3] Shraddha Barke, Michael B James, and Nadia Polikarpova. 2023. Grounded
copilot: How programmers interact with code-generating models. Proceedings of
the ACM on Programming Languages 7, OOPSLA1 (2023), 85–111.

[4] Ruven Brooks. 1977. Towards a theory of the cognitive processes in computer
programming. International Journal of Man-Machine Studies 9, 6 (1977), 737–751.

[5] Ruven E Brooks. 1980. Studying programmer behavior experimentally: The
problems of proper methodology. Commun. ACM 23, 4 (1980), 207–213.

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[7] Stuart K Card, Thomas P Moran, and Allen Newell. 1980. The keystroke-level
model for user performance time with interactive systems. Commun. ACM 23, 7
(1980), 396–410.

[8] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 1, 1 (2021), 1–2.

[9] Arghavan Moradi Dakhel, Vahid Majdinasab, Amin Nikanjam, Foutse Khomh,
Michel C Desmarais, and Zhen Ming Jack Jiang. 2023. Github copilot ai pair
programmer: Asset or liability? Journal of Systems and Software 203 (2023),
111734.

[10] Laura Ekroot and Thomas M Cover. 1993. The entropy of Markov trajectories.
IEEE Transactions on Information Theory 39, 4 (1993), 1418–1421.

[11] Mikhail Evtikhiev, Egor Bogomolov, Yaroslav Sokolov, and Timofey Bryksin. 2023.
Out of the bleu: how should we assess quality of the code generation models?
Journal of Systems and Software 203 (2023), 111741.

[12] Nicole Forsgren, Margaret-Anne Storey, Chandra Maddila, Thomas Zimmermann,
Brian Houck, and Jenna Butler. 2021. The SPACE of developer productivity.
Commun. ACM 64, 6 (2021), 46–53.

[13] Nicole Forsgren, Margaret-Anne Storey, Chandra Maddila, Thomas Zimmermann,
Brian Houck, and Jenna Butler. 2021. The SPACE of Developer Productivity:
There’s more to it than you think. Queue 19, 1 (2021), 20–48.

[14] Github. 2022. GitHub copilot - your AI pair programmer. https://github.com/
features/copilot

[15] Vincent J Hellendoorn, Sebastian Proksch, Harald C Gall, and Alberto Bacchelli.
2019. When code completion fails: A case study on real-world completions. In
2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE,
., ., 960–970.

[16] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora,
Ethan Guo, Collin Burns, Samir Puranik, Horace He, Dawn Song, et al. 2021.
Measuring Coding Challenge Competence With APPS. In Thirty-ffth Conference
on Neural Information Processing Systems Datasets and Benchmarks Track (Round
2). ., ., 1–2.

[17] Ellen Jiang, Edwin Toh, Alejandra Molina, Kristen Olson, Claire Kayacik, Aaron
Donsbach, Carrie J Cai, and Michael Terry. 2022. Discovering the Syntax and
Strategies of Natural Language Programming with Generative Language Models.
In CHI Conference on Human Factors in Computing Systems. ., ., 1–19.

[18] Bonnie E John and David E Kieras. 1996. The GOMS family of user interface
analysis techniques: Comparison and contrast. ACM Transactions on Computer-
Human Interaction (TOCHI) 3, 4 (1996), 320–351.

[19] An Ju and Armando Fox. 2018. TEAMSCOPE: measuring software engineering
processes with teamwork telemetry. In Proceedings of the 23rd Annual ACM
Conference on Innovation and Technology in Computer Science Education. ., ., 123–
128.

[20] Eirini Kalliamvakou. 2022. Research: Quantifying github copilot’s impact
on developer productivity and happiness. https://github.blog/2022-09-07-
research-quantifying-github-copilots-impact-on-developer-productivity-and-
happiness/

[21] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser,
Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022. Competition-level code generation with alphacode. arXiv preprint
arXiv:2203.07814 1, 1 (2022), 1–2.

[22] Jenny T Liang, Chenyang Yang, and Brad A Myers. 2023. Understanding the
Usability of AI Programming Assistants. arXiv preprint arXiv:2303.17125 1, 1
(2023), 1–2.

[23] Henry Lieberman and Christopher Fry. 1995. Bridging the gulf between code
and behavior in programming. In Proceedings of the SIGCHI conference on Human
factors in computing systems. ., ., 480–486.

[24] Unaizah Obaidellah, Mohammed Al Haek, and Peter C-H Cheng. 2018. A survey
on the usage of eye-tracking in computer programming. ACM Computing Surveys
(CSUR) 51, 1 (2018), 1–58.

[25] Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and
Ramesh Karri. 2022. Asleep at the keyboard? assessing the security of github
copilot’s code contributions. In 2022 IEEE Symposium on Security and Privacy

https://aws.amazon.com/codewhisperer/
https://github.com/features/copilot
https://github.com/features/copilot
https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

CHI ’24, May 11–16, 2024, Honolulu, HI, USA

(SP). IEEE, ., ., 754–768.
[26] Hammond Pearce, Benjamin Tan, Baleegh Ahmad, Ramesh Karri, and Brendan

Dolan-Gavitt. 2021. Can OpenAI Codex and Other Large Language Models Help
Us Fix Security Bugs? arXiv preprint arXiv:2112.02125 1, 1 (2021), 1–2.

[27] Norman Peitek, Janet Siegmund, and Sven Apel. 2020. What drives the read-
ing order of programmers? an eye tracking study. In Proceedings of the 28th
International Conference on Program Comprehension. ., ., 342–353.

[28] Sida Peng, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer. 2023. The impact
of ai on developer productivity: Evidence from github copilot. arXiv preprint
arXiv:2302.06590 1, 1 (2023), 1–2.

[29] James Prather, Brent N Reeves, Paul Denny, Brett A Becker, Juho Leinonen,
Andrew Luxton-Reilly, Garrett Powell, James Finnie-Ansley, and Eddie Antonio
Santos. 2023. " It’s Weird That it Knows What I Want": Usability and Interactions
with Copilot for Novice Programmers. arXiv preprint arXiv:2304.02491 1, 1 (2023),
1–2.

[30] Advait Sarkar, Andrew D Gordon, Carina Negreanu, Christian Poelitz, Sruti Srini-
vasa Ragavan, and Ben Zorn. 2022. What is it like to program with artifcial
intelligence? arXiv preprint arXiv:2208.06213 1, 1 (2022), 1–2.

[31] Beau A Sheil. 1981. The psychological study of programming. ACM Computing
Surveys (CSUR) 13, 1 (1981), 101–120.

[32] Zhensu Sun, Xiaoning Du, Fu Song, Shangwen Wang, Mingze Ni, and Li Li.
2023. Don’t Complete It! Preventing Unhelpful Code Completion for Produc-
tive and Sustainable Neural Code Completion Systems. In 2023 IEEE/ACM 45th
International Conference on Software Engineering: Companion Proceedings (ICSE-
Companion). IEEE, ., ., 324–325.

Mozannar et al.

[33] Maxim Tabachnyk Tabachnyk and Stoyan Nikolov. 2022. ML-enhanced code
completion improves developer productivity. https://ai.googleblog.com/2022/
07/ml-enhanced-code-completion-improves

[34] Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. 2022. Expectation vs.
Experience: Evaluating the Usability of Code Generation Tools Powered by Large
Language Models. In CHI Conference on Human Factors in Computing Systems
Extended Abstracts. ., ., 1–7.

[35] Jesper E Van Engelen and Holger H Hoos. 2020. A survey on semi-supervised
learning. Machine learning 109, 2 (2020), 373–440.

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017), 1–2.

[37] Zdenek Velart and Petr Šaloun. 2006. User behavior patterns in the course
of programming in C++. In Proceedings of the joint international workshop on
Adaptivity, personalization & the semantic web. ., ., 41–44.

[38] Justin D Weisz, Michael Muller, Stephanie Houde, John Richards, Steven I Ross,
Fernando Martinez, Mayank Agarwal, and Kartik Talamadupula. 2021. Perfection
not required? Human-AI partnerships in code translation. In 26th International
Conference on Intelligent User Interfaces. IUI, IUI, 402–412.

[39] Tongshuang Wu, Kenneth Koedinger, et al. 2023. Is AI the better programming
partner? Human-Human Pair Programming vs. Human-AI pAIr Programming.
arXiv preprint arXiv:2306.05153 1, 1 (2023), 1–2.

[40] Albert Ziegler, Eirini Kalliamvakou, X Alice Li, Andrew Rice, Devon Rifkin,
Shawn Simister, Ganesh Sittampalam, and Edward Aftandilian. 2022. Productivity
assessment of neural code completion. In Proceedings of the 6th ACM SIGPLAN
International Symposium on Machine Programming. ACM, ACM, 21–29.

https://ai.googleblog.com/2022/07/ml-enhanced-code-completion-improves
https://ai.googleblog.com/2022/07/ml-enhanced-code-completion-improves

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Copilot System Description
	3.1 Influences of CodeRec on Programmer's Activities
	3.2 Programmer Activities in Telemetry Segments

	4 A Taxonomy for Understanding Programmer-CodeRec Interaction: CUPS
	4.1 Creating the Taxonomy
	4.2 Taxonomy of Telemetry Segments

	5 CUPS Data Collection Study
	5.1 Procedure
	5.2 Participants

	6 Understanding Programmer Behavior with CUPS: Main Results
	6.1 Aggregated Time Spent in Various CUPSs
	6.2 Patterns in Behavior as Transitions Between CUPS States
	6.3 Programmers Often Defer Thought About Suggestions
	6.4 CUPS Attributes Significantly More Time Verifying Suggestions than Simpler Metrics
	6.5 Insights About Prompt Crafting
	6.6 Post-Study Survey Answers

	7 Limitations, Future Work and Conclusion
	7.1 Limitations
	7.2 Future Work
	7.3 Conclusion

	Acknowledgments
	References

