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import numpy as np
class LogisticRegression:

def __init(self):
self.w = None
self.b = None

# implement the fit method
def fit(self, X, y):

# initialize the parameters
self.w = np.zeros(X.shape[1])
self.b = 0
for i in range(100):

# calculate the gradient
dw = (1/X.shape[0]) * np.dot(X.T, 

(self.sigmoid(np.dot(X, self.w) + self.b) - y))
db = (1/X.shape[0]) * 

np.sum(self.sigmoid(np.dot(X, self.w) + self.b) 
- y)

# update the parameters
self.w = self.w - dw
self.b = self.b - db

| # implement the predict method suggestion
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Figure 1: Profling a coding session with the CodeRec User Programming States (CUPS). In (a) we show the operating mode of 
CodeRec inside Visual Studio Code. In (b) we show the CUPS taxonomy used to describe CodeRec related programmer activities. 
A coding session can be summarized as a timeline in (c) where the programmer transitions between states. 
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ABSTRACT 
Code-recommendation systems, such as Copilot and CodeWhis-
perer, have the potential to improve programmer productivity by 
suggesting and auto-completing code. However, to fully realize their 
potential, we must understand how programmers interact with 
these systems and identify ways to improve that interaction. To 
seek insights about human-AI collaboration with code recommenda-
tions systems, we studied GitHub Copilot, a code-recommendation 
system used by millions of programmers daily. We developed CUPS, 
a taxonomy of common programmer activities when interacting 
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with Copilot. Our study of 21 programmers, who completed coding 
tasks and retrospectively labeled their sessions with CUPS, showed 
that CUPS can help us understand how programmers interact with 
code-recommendation systems, revealing inefciencies and time 
costs. Our insights reveal how programmers interact with Copilot 
and motivate new interface designs and metrics. 

CCS CONCEPTS 
• Human-centered computing → User models; User studies; • 
Software and its engineering → Automatic programming. 
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1 INTRODUCTION 
Programming-assistance systems based on the adaptation of large 
language models (LLMs) to code recommendations have been re-
cently introduced to the public. Popular systems, including Copilot 
[14], CodeWhisperer [1], and AlphaCode[21], signal a potential 
shift in how software is developed. Though there are diferences in 
specifc interaction mechanisms, the programming-assistance sys-
tems generally extend existing IDE code completion mechanisms 
(e.g., IntelliSense 1) by producing suggestions using neural models 
trained on billions of lines of code [8]. The LLM-based completion 
models can suggest sentence-level completions to entire functions 
and classes in a wide array of programming languages. These large 
neural models are deployed with the goal of accelerating the eforts 
of software engineers, reducing their workloads, and improving 
their productivity. 

Early assessments suggest that programmers do feel more pro-
ductive when assisted by the code recommendation models [40] 
and that they prefer these systems to earlier code completion en-
gines [34]. In fact, a recent study from GitHub, found that Copilot 
could potentially reduce task completion time by a factor of two 
[28]. While these studies help us understand the benefts of code-
recommendation systems, they do not allow us to identify avenues 
to improve and understand the nature of interaction with these 
systems. 

In particular, the neural models introduce new tasks into a devel-
oper’s workfow, such as writing AI prompts [17] and verifying AI 
suggestions [34], which can be lengthy. Existing interaction metrics, 
such as suggestion acceptance rates, time to accept (i.e., the time a 
suggestion remains onscreen), and reduction of tokens typed, tell 
only part of this interaction story. For example, when suggestions 
are presented in monochrome popups (Figure 1), programmers may 
choose to accept them into their codebases so that they can be read 
with code highlighting enabled. Likewise, when models suggest 
only one line of code at a time, programmers may accept sequences 

1https://code.visualstudio.com/docs/editor/intellisense 

before evaluating them together as a unit. In both scenarios, con-
siderable work verifying and editing suggestions occurs after the 
programmer has accepted the recommended code. Prior interac-
tion metrics also largely miss user efort invested in devising and 
refning prompts used to query the models. When code completion 
tools are evaluated using coarser task-level metrics such as task 
completion time [20], we begin to see signals of the benefts of AI-
driven code completion but lack sufcient detail to understand the 
nature of these gains, as well as possible remaining inefciencies. 
We argue that an ideal approach would be sufciently low level to 
support interaction profling while sufciently high level to capture 
meaningful programmer activities. 

Given the nascent nature of these systems, numerous questions 
exist regarding the behavior of their users: 

• What activities do users undertake in anticipation for, or to 
trigger a suggestion? 

• What mental processes occur while the suggestions are on-
screen, and, do people double-check suggestions before or 
after acceptance? 

• How costly for users are these various new tasks, and which 
take the most time? 

To answer these and related questions in a systematic manner, 
we apply a mixed-methods approach to analyze interactions with a 
popular code suggestion model, GiHub Copilot2 which has more 
than a million users. To emphasize that our analysis is not restricted 
to the specifcs of Copilot, we use the term CodeRec to refer to any 
instance of code suggestion models, including Copilot. Through 
small-scale pilot studies and our frst-hand experience using Copilot 
for development, we develop a novel taxonomy of common states 
of a programmer when interacting with CodeRec models (such as 
Copilot), which we refer to as CodeRec User Programming States 
(CUPS). The CUPS taxonomy serves as the main tool to answer our 
research questions. 

Given the initial taxonomy, we conducted a user study with 21 
developers who were asked to retrospectively review videos of their 
coding sessions and explicitly label their intents and actions using 
this model, with an option to add new states if necessary. The study 
participants labeled a total of 3137 coding segments and interacted 
with 1096 suggestions. The study confrmed that the taxonomy was 
sufciently expressive, and we further learned transition weights 
and state dwell times —something we could not do without this 
experimental setting. Together, these data can be assembled into 
various instruments, such as the CUPS diagram (Figure 1), to facili-
tate profling interactions and identify inefciencies. Moreover, we 
show that such analysis nearly doubles our estimates for how much 
developer time can be attributed to interactions with code sugges-
tion systems, as compared with existing metrics. We believe that 
identifying the current CUPS state during a programming session 
can help serve programmer needs. This can be accomplished using 
custom keyboard macros or automated prediction of CUPS states, 
as discussed in our future work section and the Appendix. Overall, 
we leverage the CUPS diagram to identify some opportunities to 
address inefciencies in the current version of Copilot. 

In sum, our main contributions are the following: 

2https://github.com/features/copilot 
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• A novel taxonomy of common activities of programmers 
(called CUPS) when interacting with code recommendation 
systems (Section 4) 

• A dataset of coding sessions annotated with user actions, 
CUPS, and video recordings of programmers coding with 
Copilot (Section 5). 

• Analysis of which CUPS states programmers spend their 
time in when completing coding tasks (Subsection 6.1). 

• An instrument to analyze programmer behavior (and pat-
terns in behavior) based on a fnite-state machine on CUPS 
states (Subsection 6.2). 

• An adjustment formula to properly account for how much 
time do programmers spend verifying CodeRec suggestions 
(Subsection 6.4) inspired by the CUPS state of deferring 
thought (Subsection 6.3). 

The remainder of this paper is structured as follows: We frst 
review related work on AI-assisted programming (Section 2) and 
formally describe Copilot, along with a high-level overview of 
programmer-CodeRec interaction (Section 3). To further understand 
this interaction, we defne our model of CodeRec User Programming 
States (CUPS) (Section 3) and then describe a user study designed to 
collect programmer annotations of their states (Section 5). We use 
the collected data to analyze the interactions using CUPS diagram 
revealing new insights into programmer behavior (Section 6). We 
then discuss limitations and future work and conclude in (Section 
7). 

2 BACKGROUND AND RELATED WORK 
Large language models based on the Transformer network [36], 
such as GPT-3 [6], have found numerous applications in natural 
language processing. Codex [8], a GPT model trained on 54 million 
GitHub repositories, demonstrates that LLMs can very efectively 
solve various programming tasks. Specifcally, Codex was initially 
tested on the HumanEval dataset containing 164 programming 
problems, where it is asked to write the function body from a 
docstring [8] and achieves 37.7% accuracy with a single generation. 
Various metrics and datasets have been proposed to measure the 
performance of code generation models [9, 11, 16, 21]. However, in 
each case, these metrics test how well the model can complete code 
in an ofine setting without developer input rather than evaluating 
how well such recommendations assist programmers in situ. This 
issue has also been noted in earlier work on non-LLM based code 
completion models where performance on completion benchmarks 
overestimates the model’s utility to developers [15]. Importantly, 
however, these results may not hold to LLM-based approaches, 
which are radically diferent [30]. 

One straightforward approach to understanding the utility of 
neural code completion services, including their propensity to de-
liver incomplete or imperfect suggestions, is to simply ask devel-
opers. To this end, Weisz et al. interviewed developers and found 
that they did not require a perfect recommendation model for the 
model to be useful [38]. Likewise, Ziegler et al. surveyed over 2,000 
Copilot users [40] and asked about perceived productivity gains 
using a survey instrument based on the SPACE framework [13] – 
we incorporate the same survey design for our own study. They 
found both that developers felt more productive using Copilot and 

that these self-reported perceptions were reasonably correlated 
with suggestion acceptance rates. Liang et al. [22] administered a 
survey to 410 programmers who use various AI programming assis-
tants, including Copilot, and highlighted why the programmers use 
the AI assistants and numerous usability issues. Similarly, Prather 
et al. [29] surveyed how introductory programming students utilize 
Copilot. 

While these self-reported measures of utility and preference are 
promising, we would expect gains to be refected in objective met-
rics of productivity. Indeed, one ideal method would be to conduct 
randomized control trials where one set of participants writes code 
with a recommendation engine while another set codes without it. 
GitHub performed such an experiment where 95 participants were 
split into two groups and asked to write a web server. The study 
concluded by fnding that task completion was reduced by 55.8% in 
the Copilot condition [28]. Likewise, a study by Google showed that 
an internal CodeRec model had a 6% reduction in ’coding iteration 
time’ [33]. On the other hand, Vaithilingam et al. [34] showed in 
a study of 24 participants showed no signifcant improvement in 
task completion time – yet participants stated a clear preference for 
Copilot. An interesting comparison to Copilot is Human-Human 
pair programming, which Wu et al. [39] details. 

A signifcant amount of work has tried to understand the behav-
ior of programmers[4, 5, 23, 31] using structured user studies under 
the name of "psychology of programming." This line of work tries 
to understand the efect of programming tools on the time to solve 
a task or ease of writing code and how programmers read and write 
code. Researchers often use telemetry with detailed logging on 
keystrokes [19, 37] to understand behavior. Moreover, eye-tracking 
is also used to understand how programmers read code[24, 27]. 
Our research uses raw telemetry alongside user-labeled states to 
understand behavior; future research could also utilize eye-tracking 
and raw video to get deeper insights into behavior. 

This wide dispersion of results raises interesting questions about 
the nature of the utility aforded by neural code completion engines: 
how, and when, are such systems most helpful; and conversely, 
when do they add additional overhead? This is the central ques-
tion to our work. The related work closest to answering this 
question is that of Barke et al. [3], who showed that interaction 
with Copilot falls into two broad categories: the programmer is 
either in “acceleration mode” where they know what they want 
to do, and Copilot serves to make them faster; or they are in “ex-
ploration mode”, where they are unsure what code to write and 
Copilot helps them explore. The taxonomy we present in this paper, 
CUPS, enriches this further with granular labels for programmers’ 
intents. Moreover, the data collected in this work was labeled by 
the participants themselves rather than by the researchers inter-
preting their actions, allowing for more faithful intent and activity 
labeling and the data collected in our study can also be used to build 
predictive models as in [32]. The next section describes the Copilot 
system formally and describes the data collected when interacting 
with Copilot. 

3 COPILOT SYSTEM DESCRIPTION 
To better understand how code recommendation systems infuence 
the efort of programming, we focus on GiHub Copilot, a popular 
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Figure 2: Schematic of interaction telemetry with Copilot as a 
timeline. For a given coding session, the telemetry contains a 
sequence of timestamps and actions with associated prompt 
and suggestion features (not shown). 

and representative example of this class of tools. Copilot3 is based 
on a Large Language Model (LLM) and assists programmers inside 
an IDE by recommending code suggestions any time the program-
mer pauses their typing. Figure 1 shows an example of Copilot 
recommending a code snippet as an inline, monochrome popup, 
which the programmer can accept using a keyboard shortcut (e.g., 
<tab>). 

To serve suggestions, Copilot uses a portion of the code writ-
ten so far as a prompt, � , which it passes to the underlying LLM. 
The model then generates a suggestion, � , which it deems to be a 
likely completion. In this regime, programmers can engineer the 
prompt to generate better suggestions by carefully authoring nat-
ural language comments in the code such as “# split the data 
into train and test sets.” In response to a Copilot suggestion, 
the programmer can then take one of several actions �, where 
� ∈ {browse, accept, reject}. The latter of these actions, reject, is 
triggered implicitly by continuing to type something that difers 
from the suggestion or by pressing the escape key. The browse 
action enables the programmer to change the suggestion shown 
with a keyboard shortcut from a set of at most three suggestions. 
Copilot logs aspects of the interactions via telemetry. We leverage 
this telemetry in the studies described in this paper. Specifcally, 
whenever a suggestion is shown, accepted, rejected, or browsed, 
we record a tuple to the telemetry database, (�� , �� , �� , �� ), where �� 
represents the within-session timestamp of the �th event (�0 = 0), 
�� details the action taken (augmented to include ‘shown’), and �� 
and �� capture features of the prompt and suggestion, respectively. 
Figure 2 displays telemetry of a coding session, and Figure 1a shows 
Copilot implemented as a VSCode plugin. We have the ability to 
capture telemetry for any programmer interacting with Copilot; 
this is used to collect data for a user study in section 5. 

3.1 Infuences of CodeRec on Programmer’s 
Activities 

Despite the limited changes that Copilot introduces to an IDE’s 
repertoire of actions, LLM-based code suggestions can signifcantly 
infuence how programmers author code. Specifcally, Copilot lever-
ages LLMs to stochastically generate novel code to ft the arbitrary 
current context. As such, the suggestions may contain errors (and 
can appear to be unpredictable) and require that programmers 
double-check and edit them for correctness. Furthermore, program-
mers may have to refne the prompts to get the best suggestions. 
These novel activities associated with the AI system introduce new 
eforts and potential disruptions to the fow of programming. We 

3The version of Copilot that this manuscript refers to is Copilot as of August 2022. 

use time as a proxy to study the new costs of interaction 
introduced by the AI system. We recognize that this approach is 
incomplete: the costs associated with solving programming tasks 
are multi-dimensional, and it can be challenging to assign a single 
real-valued number to cover all facets of the task [12]. Nevertheless, 
we argue that, like accuracy, efciency-capturing measures of time 
are an important dimension of the cost that is relevant to most 
programmers. 

3.2 Programmer Activities in Telemetry 
Segments 

Copilot’s telemetry captures only instantaneous user actions (e.g., 
accept, reject, browser), as well as the suggestion display event. By 
themselves, these entries do not reveal such programmer’s activ-
ities as double-checking and prompt engineering, as such activ-
ities happen between two consecutive instantaneous events. We 
argue that the regions between events, which we refer to as 
telemetry segments, contain important user intentions and 
activities unique to programmer-CodeRec interaction, which 
we need to understand in order to answer how Copilot afects 
programmers—and where and when Copilot suggestions are useful 
to programmers. 

Building on this idea, telemetry segments can be split into two 
groups (Figure 2). The frst group includes segments that start with 
a suggestion shown event and end with an action (accept, reject, or 
browse). Here, the programmer is paused and has yet to take action. 
We refer to this as ‘User Before Action’. The second group includes 
segments that start with an action event and end with a display 
event. During this period, the programmer can be either typing or 
paused; hence we denote it as ‘User Typing or Paused’. These two 
groups form the foundation of a deeper taxonomy of programmers’ 
activities, which we will further develop in the next section. 

4 A TAXONOMY FOR UNDERSTANDING 
PROGRAMMER-CODEREC INTERACTION: 
CUPS 

4.1 Creating the Taxonomy 
Our objective is to create an extensive, but not complete, taxonomy 
of programmer activities when interacting with CodeRec that en-
ables a useful study of the interaction. To refne the taxonomy of 
programmers’ activities, we developed a labeling tool and popu-
lated it with an initial set of activities based on our own experiences 
from extensive interactions with Copilot (Figure 4). The tool enables 
users to watch a recently captured screen recording of them solving 
a programming task with Copilot’s assistance and to retrospectively 
annotate each telemetry segment with an activity label. We use this 
tool to frst refne our taxonomy with a small pilot study (described 
below) and then to collect data in Section 5. 

The labeling tool (Figure 4) contains three main sections: a) A 
navigation panel on the left, which displays and allows navigating 
between telemetry segments and highlights the current segment 
being labeled in blue. The mouse or arrow keys are used to navigate 
between segments. b) A video player on the right, which plays the 
corresponding video segments in a loop. The participant can watch 
the video segments any number of times. c) Buttons on the bottom 
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import numpy as np
import pickle

with open('data.pkl', 'rb') as file:
X, Y = pickle.load(file)
#print out first column of X
# print(X[:,0])

#computer correlations between all columns of X
corr = np.corrcoef(X)
print(corr)

#print the max value of all the rows in corr
maxval = np.amax(corr, axis=1)
# print(maxval)

# print out the two features that are most correlated
maxcor = np.where(corr == np.amax(corr))
# print(maxcor)

maxval = 0
for i in range(len(corr)):

(a) (b)

(c)

Figure 4: Screenshot of retrospective labeling tool for coding sessions. Left: Navigation panel for telemetry segments. Right: 
Video player for reviewing video of a coding session. Bottom: Buttons and text box for labeling states. 

corresponding to the CUPS taxonomy, along with an “IDK” button and a free-form text box to write custom state labels. Buttons also 
have associated keyboard bindings for easy annotation. 
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Table 1: Description of each state in CodeRec User Program-
ming States (CUPS). 

State Description 

Thinking/Verifying Actively thinking about and verifying a 
Suggestion shown or accepted suggestion 
Not Thinking Not thinking about suggestion or code, 

programmer away from keyboard 
Deferring Thought For Programmer accepts suggestion with-
Later out completely verifying it, but plans to 

verify it after 
Thinking About New Thinking about what code or function-
Code To Write ality to implement and write 
Waiting For Suggestion Waiting for CodeRec suggestion to be 

shown 
Writing New Code Writing code that implements new func-

tionality 
Editing Last Suggestion Editing the last accepted suggestion 
Editing (Personally) Editing code written by a programmer 
Written Code that is not a CodeRec suggestion for the 

purpose of fxing existing functionality 
Prompt Crafting Writing prompt in the form of comment 

or code to obtain desired CodeRec sug-
gestion 

Writing Documentation Writing comments or docstring for pur-
pose of documentation 

Debugging/Testing Running or debugging code to check 
Code functionality may include writing tests 

or debugging statements 
Looking up Documenta- Checking an external source for the pur-
tion pose of understanding code functional-

ity (e.g. Stack Overfow) 
Accepted Accepted a CodeRec suggestion 
Rejected Rejected a CodeRec suggestion 

To label a particular video segment, we asked participants to 
consider the hierarchical structure of CUPS in Figure 3. The hierar-
chical structure frst distinguishes segments by whether a typing 
segment occurred in that segment and then decides based on the 
typing or non-typing states. For example, in a segment where a 
participant was initially double-checking a suggestion and then 
wrote new code to accomplish a task, the appropriate label would 
be "Writing New Functionality" as the user eventually typed in 
the segment. In cases where there are two states that are appro-
priate and fall under the same hierarchy, e.g., if the participant 
double-checked a suggestion and then looked up documentation, 
they were asked to pick the state in which they spent the majority 
of the time. These issues arise because we collect a single state for 
each telemetry segment. 

Pilot. Through a series of pilots involving the authors of the 
paper, as well as three other participants drawn from our organi-
zation, we iteratively applied the tool to our own coding sessions 
and to the user study tasks described in section 5. We then ex-
panded and refned the taxonomy by incorporating any “custom 
state” (using the text feld) written by the pilot participants. The 
states ’Debugging/Testing Code’, ’Looking up Documentation’, and 

Mozannar et al. 

’Writing Documentation’ were added through the pilots. By the last 
pilot participant, the code book was stable and saturated as they 
did not write a state that was not yet covered. We observed in our 
study that the custom text feld was rarely used. We describe the 
resultant taxonomy in the sections below. 

4.2 Taxonomy of Telemetry Segments 
Figure 3 shows the fnalized taxonomy of programmer activities for 
individual telemetry segments with Copilot. As noted earlier, the 
taxonomy is rooted in two segment types: ‘User Typing or Paused’, 
and ‘User Before Action’. We frst detail the ‘User Typing or Paused’ 
segments, which precede shown events (Figure 2) and are distin-
guished by the fact that no suggestions are displayed during this 
time. As the name implies, users can fnd themselves in this state if 
they are either actively ’Typing’4, or have ’paused’ but have not yet 
been presented with a suggestion. In cases where the programmer 
is actively typing, they could be completing any of a number of 
tasks such as: ‘writing new functionality,’ ’editing existing code,’ 
’editing prior (CodeRec) suggestions,’ ‘debugging code,’ or author-
ing natural language comments, including both documentation and 
prompts directed at CodeRec (i.e., ‘prompt crafting’). When the user 
pauses, they may simply be “waiting for a suggestion” or can be in 
any number of states common to ‘User Before Action’ segments. 

In every ‘User Before Action’ segment, CodeRec is displaying 
a suggestion, and the programmer is paused and not typing. They 
could be refecting and verifying that suggestion, or they may not 
be paying attention to the suggestion and thinking about other code 
to write instead. The programmer can also defer their eforts on the 
suggestion for a later time period by accepting it immediately, then 
pausing to review the code at a later time. This can occur, for ex-
ample, because the programmer desires syntax highlighting rather 
than grey text or because the suggestion is incomplete, and the 
programmer wants to allow Copilot to complete its implementation 
before evaluating the code as a cohesive unit. The latter situation 
tends to arise when Copilot displays code suggestions line by line 
(e.g., Figure 7). 

The leaf nodes of the fnalized taxonomy represent 12 distinct 
states that programmers can fnd themselves in. These states are 
illustrated in Figure 3 and are further described in Table 1. While 
the states are meant to be distinct, siblings may share many traits. 
For example, "Writing New Functionality" and "Editing Written 
Code" are conceptually very similar. This taxonomy also bears re-
semblance to the keystroke level model in that it assigns a time cost 
to mental processes as well as typing [7, 18]. As evidenced by the 
user study—which we describe in the next section—these 12 states 
provide a language that is both general enough to capture most 
activities (at this level of abstraction), and specifc enough to mean-
ingfully capture activities unique to LLM-based code suggestion 
systems. 

5 CUPS DATA COLLECTION STUDY 
To study CodeRec-programmer interaction in terms of CodeRec 
User Programming States, we designed a user study where program-
mers perform a coding task, then review and label videos of their 
coding session using the telemetry segment-labeling tool described 

4Active typing allows for brief pauses between keystrokes. 
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earlier. We describe the procedure, the participants, and the results 
in the sections that follow. 

5.1 Procedure 
We conducted the study over a video call and asked participants 
to use a remote desktop application to access a virtual machine 
(VM). Upon connecting, participants were greeted with the study 
environment consisting of Windows 10, together with Visual Studio 
Code (VS Code) augmented with the Copilot plugin. 

Participants were then presented with a programming task drawn 
randomly from a set of eight pre-selected tasks (Table 2). If the par-
ticipant was unfamiliar with the task content, we ofered them a 
diferent random task. The task set was designed during the pilot 
phase so that individual tasks ft within a 20-minute block and so 
that, together, the collection of tasks surfaces a sufcient diversity 
of programmer activities. It is crucial that the task is of reasonable 
duration so that participants are able to remember all their activi-
ties since they will be required to label their session immediately 
afterward. Since the CUPS taxonomy includes states of thought, 
participants must label their session immediately after coding, and 
each study took approximately 60 minutes in total. To further im-
prove diversity, task instructions were presented to participants 
as images to encourage participants to author their own Copilot 
prompts rather than copying and pasting from the problem de-
scription. The full set of tasks and instructions is provided as an 
Appendix. 

Upon completing the task (or reaching the 20-minute mark), we 
loaded the participant’s screen recording and telemetry into the 
labeling tool (previously detailed in Section 4.1). The researcher 
then briefy demonstrated the correct operation of the tool and 
explained the CUPS taxonomy. Participants were then asked to an-
notate their coding session with CUPS labels. Self-labeling allows 
us to easily scale such a study and enables more accurate labels 
for each participant, but may cause inconsistent labeling across 
participants. Critically, this labeling occurred within minutes of 
completing the programming task so as to ensure accurate recall. 
We do not include a baseline condition where participants perform 
the coding task without Copilot, as this work focuses on under-
standing and modeling the interaction with the current version of 
Copilot. 

Finally, participants completed a post-study questionnaire about 
their experience mimicking the one in [40]. The entire experiment 
was designed to last 60 minutes. The study was approved by our 
institutional review board (IRB), and participants received a $50.00 
gift card as remuneration for their participation. 

5.2 Participants 
To recruit participants, we posted invitations to developer-focused 
email distribution lists within our large organization. We recruited 
21 participants with varying degrees of experience using Copilot: 7 
used Copilot more than a few times a week, 3 used it once a month 
or less, and 11 had never used it before. For participants who had 
never used it before, the experimenter gave a short oral tutorial 
on Copilot explaining how it can be invoked and how to accept 
suggestions. Participants’ roles in the organization ranged from 
software engineers (with diferent levels of seniority) to researchers 

and graduate student interns. In terms of programming expertise, 
only 6 participants had less than 2 years of professional program-
ming experience (i.e., excluding years spent learning to program), 
5 had between 3 to 5 years, 7 had between 6 to 10 years, and 3 had 
more than 11 years of experience. Participants used a language in 
which they stated profciency (defned as language in which they 
were comfortable designing and implementing whole programs). 
Here, 19 of the 21 participants used Python, one used C++, and the 
fnal participant used JavaScript. 

On average, participants took 12.23 minutes (sample standard 
deviation, �� = 3.98 minutes) to complete the coding task, with a 
maximum session length of 20.80 minutes. This task completion 
time is measured from the frst line of code written for the task 
until the end of the allocated time. During the coding tasks, Copilot 
showed participants a total of 1024 suggestions, out of which they 
accepted 34.0%. The average acceptance rate for participants was 
36.5% (averaging over the acceptance rate of each participant), and 
the median was 33.8% with a standard error of 11.9%; the minimum 
acceptance rate was 14.3%, and the maximum was 60.7%. In the 
labeling phase, each participant labeled an average of 149.38 (�� = 
57.43) segments with CUPS, resulting in a total of 3137 CUPS labels. 
The participants used the ‘custom state’ text feld only three times 
total, twice a participant wrote ‘write a few letters and expect 
suggestion’ which can be considered as ‘prompt crafting’ and once 
a participant wrote ‘I was expecting the function skeleton to show 
up[..]’ which was mapped to ’waiting for suggestion’. The IDK 
button was used a total of 353 times, this sums to 3137 CUPS + 353 
IDKs = 3490 labels, the majority of its use was from two participants 
(244 times) where the video recording was not clear enough during 
consecutive spans, and was used by only fve other participants 
more than once with the majority of the use also being due to 
the video not being clear or the segment being too short. The IDK 
segments represent 6.5% of total session time across all participants, 
mostly contributed by fve participants. Therefore, we remove the 
IDK segments from the analysis and do not attempt to re-label 
them. 

Together, these CUPS labels enable us to investigate various ques-
tions about programmer-CodeRec interaction systematically, such 
as exploring which activities programmers perform most frequently 
and how they spend most of their time. We study programmer-
CodeRec interaction using the data derived from this study in the 
following Section 6 and derive various insights and interventions. 

6 UNDERSTANDING PROGRAMMER 
BEHAVIOR WITH CUPS: MAIN RESULTS 

The study in the previous section allows us to collect telemetry 
with CUPS labels for each telemetry segment. We now analyze the 
collected data and highlight suggestions for 1) metrics to measure 
the programmer-CodeRec interaction, 2) design improvements 
for the Copilot interface, and fnally 3) insights into programmer 
behavior. Each subsection below presents a specifc result or analy-
sis which can be read independently. Code and Data is available at 
5. 

5https://github.com/microsoft/coderec_programming_states 

https://github.com/microsoft/coderec_programming_states
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during a coding session. On average, verifying Copilot 
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(c) CUPS diagram showing 12 CUPS states (nodes) and the transitions among 
the states (arcs). Transitions occur when a suggestion is shown, accepted, or 
rejected. We hide self-transitions and low-probability transitions for simplicity 

Figure 5: Visualization of CUPS labels from our study as timelines, a histogram, and a state machine. 
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Table 2: Description of the coding tasks given to user study participants and task assignment. Participants were randomly 
allocated to tasks for tasks which they had familiarity with. 

Task Name Participants Description 

Algorithmic Problem P4,P17,P18 Implementation of TwoSum, ThreeSum and FourSum 
Data Manipulation P1,P2,P11,P20 Imputing data with average feature value and feature engineering for quadratic terms 
Data Analysis P5,P8 Computing data correlations in a matrix and plotting of most highly correlated features 
Machine Learning P3,P7,P12,P15 Training and Evaluation of models using sklearn on given dataset 
Classes and Boilerplate Code P6,P9 Creating diferent classes that build on each other 
Writing Tests P16 Writing tests for a black box function that checks if a string has valid formatting 
Editing Code P10,P14,P21 Adding functionality to an existing class that implements a nearest neighbor retriever 
Logistic Regression P13,P19 Implementing a custom Logistic Regression from scratch with weight regularization 

6.1 Aggregated Time Spent in Various CUPSs 
In Figure 5a, we visualize the coding sessions of individual partici-
pants as CUPS timelines, where each telemetry segment is labeled 
with its CUPS label. At frst glance, CUPS timelines show the rich-
ness in patterns of interaction with Copilot, as well as the variance 
in usage patterns across settings and people. CUPS timelines allow 
us to inspect individual behaviors and identify patterns, which we 
later aggregate to form general insights into user behavior. 

Figure 5b shows the average time spent in each state as a per-
centage normalized to a user’s session duration. 

Metric Suggestion: Time spent in CUPS states as a high-
level diagnosis of the interaction 

For example, time spent ‘Waiting For Suggestion’ (4.2%, �� = 
4.46 ) measures the real impact of latency, and time spent 
‘Editing Last Suggestion’ provides feedback on the quality 
of suggestions. 

We fnd that averaged across all users, the ‘verifying sugges-
tion’ state takes up the most time at 22.4% (�� = 12.97), it is the 
top state for 6 participants and in the top 3 states for 14 out of 21 
participants taking up at least 10% of session time for all but one 
participant. Notably, this is a new programmer task introduced by 
Copilot. The second-lengthiest state is writing new functionality’ 
14.05% (�� = 8.36), all but 6 participants spend more than 9% of 
session time in this state. 

More generally, the states that are specifc to interaction with 
Copilot include: ‘Verifying Suggestions’, ‘Deferring Thought for 
Later’, ‘Waiting for Suggestion’, ‘Prompt Crafting’, and ‘Editing 
Suggestion’. We found that the total time participants spend 
in these states is 51.5 % (�� = 19.3) of the average session 
duration. In fact, half of the participants spend more than 47% 
of their session in these Copilot states, and all participants spend 
more than 21% of their time in these states. 

By Programmer Expertise and Copilot Experience. We in-
vestigate if there are any diferences in how programmers interacted 
with Copilot based on their programming expertise and their previ-
ous experience with Copilot. First, we split participants based on 
whether they have professional programming experience of more 

than 6 years (10 out of 21) and who have less than 6 years (11 out 
of 21). We notice the acceptance rate for those with substantial 
programming experience is 30.0% ± 14.5 while for those without is 
37.6% ± 14.6. Second, we split participants based on whether they 
had used Copilot previously (10 out of 21) and those who had never 
used it before (11 out of 21). The acceptance rate for those who have 
previously used Copilot is 37.6 % ± 15.3, and for those who have not, 
it is 29.3 ± 13.7. Due to the limited number of participants, these 
results are not sufcient to determine the infuence of programmer 
experience or Copilot experience on behavior. We also include in 
Appendix a breakdown of programmer behavior by task solved. 

6.2 Patterns in Behavior as Transitions Between 
CUPS States 

To understand if there was a pattern in participant behavior, we 
modeled transitions between two states as a state machine. We re-
fer to the state machine-based model of programmer behavior as 
a CUPS diagram. In contrast to the timelines in Figure 5a, which 
visualize state transitions with changes of colors, the CUPS dia-
gram Figure 5c explicitly visualizes transitions using directed edges, 
where the thickness of arrows is proportional to the likelihood of 
transition. For simplicity, Figure 5c only shows transitions with 
an average probability higher than 0.17 (90th quantile, selected for 
graph visibility). 

The transitions in Figure 5c revealed many expected patterns. 
For example, one of the most likely transitions (excluding self-
transitions from the diagram), ‘Prompt Crafting 

0 −− 
.54 → Verifying 

Suggestion’ showed that when programmers were engineering 
prompts, they were then likely to immediately transition to verify-
ing the resultant suggestions (probability of 0.54). Likewise, Another 
probable transition was ‘Deferring Thought 

0 −− 
.54 →Verifying Sugges-

tion’, indicating that if a programmer previously deferred their 
thought for an accepted suggestion, they would, with high 
probability, return to verify that suggestion. Stated diferently: 
deference incurs verifcation dept, and this debt often “catches up” 
with the programmer. Finally, the single-most probable transition, 
‘Writing New Functionality 

0 −− 
.59 → Verifying Suggestion’, echos the 

observation from the previous section, indicating that program-
mers often see suggestions while writing code (rather than prompt 
crafting), then spend time verifying it. If suggestions are unhelpful, 
they could easily be seen as interrupting the fow of writing. 
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The CUPS diagram also revealed some unexpected transitions. 
Notably, the second-most probable transition from the ‘Prompt 
Crafting’ state is ‘Prompt Crafting 

0 −− 
.25 → Waiting for Suggestion’. 

This potentially reveals an unexpected and unnecessary delay and is 
a possible target for refnement (e.g., by reducing latency in Copilot). 
Importantly, each of these transitions occurs with a probability that 
is much higher than the lower bound/uniform baseline probability 
of transitioning to a random state in the CUPS diagram (1/12=0.083). 
In fact, when we compute the entropy rate (a measure of random-
ness) of the resulting Markov Chain [10] from the CUPS diagram 
we obtain a rate of 2.24; if the transitions were completely random 
the rate would be 3.58, and if the transitions were deterministic 
then the rate is 0. 

Interface Design Suggestion: Identifying current CUPS 
state can help serve programmer needs 

If we are able to know the current programmer CUPS state 
during a coding session we can better serve the programmer, 
for example, 

• If the programmer is observed to have been defer-
ring their thought on the last few suggestions, group 
successive Copilot suggestions and display them to-
gether. 

• If the programmer is waiting for the suggestion, we 
can prioritize resources for them at that moment 

• While a user is prompt crafting, Copilot suggestions 
are often ignored and may be distracting; however, af-
ter a user is done with their prompt, they may expect 
high-quality suggestions. We could suppress sugges-
tions during prompt crafting, but after the prompt 
crafting process is done, display multiple suggestions 
to the user and encourage them to browse through 
them. 

Future work can, for example, realize these design sugges-
tions by allowing custom keyboard macros for the pro-
grammer to signal their current CUPS state, or a more auto-
mated approach by predicting their CUPS state. 

We also investigated longer patterns in state transitions by search-
ing for the most common sequence of states of varying lengths. 
We achieved this by searching over all possible segment n-grams 
and counting their occurrence over all sessions. We analyzed pat-
terns in two ways: in Figure 6a, we merged consecutive segments 
that have the same state label into a single state (thus removing 
self-transitions), and in Figure 6b we looked at n-grams in the user 
timelines (including self-transitions) where we include both states 
and participants actions (shown, accepted and rejected). The most 
common pattern (#1) in Figure 6a was a cycle where programmers 
repeatedly wrote new code functionality and then spent time veri-
fying shown suggestions, indicating a new mode for programmers 
to solve coding tasks. At the same time, when we look at pattern 
(#B) in Figure 6b, which takes a closer look into when program-
mers are writing new functionality, we observe that they don’t stop 

to verify suggestions and reject them as they continue to write. 
Other long patterns include (#2) (also shown as pattern #D ), where 
programmers repeatedly accepted successive Copilot suggestions 
after verifying each of them. Finally, we observe in (#3) and (#A) 
programmers iterating on the prompt for Copilot until they obtain 
the suggestion they want. We elaborate more on this in the next 
subsection. 

6.3 Programmers Often Defer Thought About 
Suggestions 

An interesting CUPS state is that of ’Deferring Thought About 
A Suggestion’. This is illustrated in Figure 7, where programmers 
accept a suggestion or series of suggestions without sufciently ver-
ifying them beforehand. This occurs either because programmers 
wish to see the suggestion with code highlighting, or because they 
want to see where Copilot suggestions leads to. Figure 5b shows 
that programmers do in fact, frequently defer thought– we counted 
61 states labeled as such. What drives the programmer to defer 
their thought about a suggestion rather than immediately verifying 
it? We initially conjectured that the act of deferring may be par-
tially explained by the length of the suggestions. So, we compared 
the number of characters and the number of lines for suggestions 
depending on the programmer’s state. We fnd that there is no 
statistical diference according to a two-sample independent t-test 
(� = −0.58, � = 0.56)6 in the average number of characters between 
deferred thought and suggestions (75.81 compared to 69.06) that 
were verifed previously. The same holds for the average number 
of lines. 

However, when we look at the likelihood of editing an accepted 
suggestion, we fnd that it is 0.18 if it was verifed before, but it is 
0.53 if it was deferred. This diference is signifcant according to a 
chi-square test (�2 = 29.2, � = 0). In fact, the programmer CUPS 
state has a big efect on their future actions. In Table 3, we show 
the probability of the programmer accepting a suggestion given the 
CUPS state the programmer was in while the suggestion is being 
shown. We also show the probability of the programmer accepting 
a suggestion as a function of the CUPS state the programmer was 
in just before the suggestion was displayed. We observe there is a 
big variation in the suggestion acceptance rate by the CUPS state. 
For example, if the programmer was in the "Deferring Thought For 
Later" state, the probability of acceptance is 0.98 ± 0.02 compared 
to when a programmer is thinking about new code to write, where 
the probability is 0.12 ± 0.04. Note that the average probability of 
accepting a suggestion was 0.34. 

What are the programmers doing before they accept a suggestion? 
We found that the average probability of accepting a suggestion 
was 0.34. However, we observed that when the programmer was 
verifying a suggestion their likelihood of accepting was 0.70. In 
contrast, if the programmer was thinking about new code to write, 
the probability dropped to 0.20. This diference was statistically 
signifcant according to Pearson’s chi-squared test (�2 = 12.25, � = 
0). Conversely, when programmers are engineering prompts, the 
likelihood of accepting a suggestion drops to 0.16. One reason for 
this might be that programmers want to write the prompt on their 

6All p-values reported are corrected for multiple hypothesis testing with the Benjam-
in/Hochberg procedure with � = 0.05. 
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(a) Common patterns of transitions between distinct states. In individual participant timelines, the patterns visually appear as a change of 
color, but here we measure how often they appear across all participants (n=). 
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(b) Common patterns of states and actions (including self transitions). Each pattern is extracted from user timelines and we count how often it 
appears in total (n=) 

Figure 6: Myriad of CUPS patterns observed in our study. 
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class LogisticRegression:
def __init__(self,X,y,alpha=0.01):

self.X = X
self.y = y
self.alpha = alpha
self.theta = np.zeros(X.shape[1])
self.cost = []
self.theta_history = [

class LogisticRegression:
def __init__(self,X,y,alpha=0.01):

self.X = X
self.y = y
self.alpha = alpha
self.theta = np.zeros(X.shape[1])
self.cost = []
self.theta_history = [

self.theta
]
self.cost_history = [

self.cost()

class LogisticRegression:
def __init__(self,X,y,alpha=0.01):

self.X = X
self.y = y
self.alpha = alpha
self.theta = np.zeros(X.shape[1])
self.cost = []
self.theta_history = [

self.theta
]
self.cost_history = [

self.cost()
]

def cost(self):
return (-1 / len(self.y)) *

np.sum(self.y * np.log(self.hypothesis())) + …

4 single line
Accepts
later

3 single line
Accepts
later

Open left brace [ indicates 
that suggestion is not a 
complete code segment

Suggestion references a 
method cost() not yet 
implemented

The function cost references a 
method hypothesis() not yet 
implemented

Figure 7: Illustration of a coding scenario with Copilot where the programmer may choose to defer verifying a suggestion 
(‘Deferring Thought’). Here, Copilot suggests an implementation for the class Logistic Regression line-by-line (illustrated 
from left to right). And the programmer may need to defer verifying intermediate suggestion of self.cost (middle screenshot) 
because the method that implemented it is suggested later (right screenshot). 

own without suggestions, and Copilot interrupts them. We show 
the full results in the Appendix for the other states. 

Table 3: We compute the percentage of suggestions accepted 
given the programmer was in the CUPS state while the sugges-
tion is being shown (% Ss accepted while shown). We compute 
the percentage of suggestions accepted given the program-
mer was in the CUPS state before the suggestion is shown, 
the state just before the one where the suggestion is shown 
(% Ss accepted before S is shown). We compute the standard 
error for the acceptance rate (%). 

State % Ss accepted % Ss accepted 
while shown before S is 

shown 

Thinking/Verifying 0.80 ± 0.02 0.56 ± 0.04 
Suggestion 
Prompt Crafting 0.11 ± 0.02 0.22 ±0.03 
Looking up Documenta- 0.00 ± 0.00 0.29 ± 0.17 
tion 
Writing New Function- 0.07 ± 0.02 0.31 ± 0.03 
ality 
Thinking About New 0.12 ± 0.04 0.27 ± 0.04 
Code To Write 
Editing Last Suggestion 0.03 ± 0.03 0.23 ± 0.05 
Waiting For Suggestion 0.10 ± 0.05 0.58 ± 0.06 
Editing Written Code 0.07 ± 0.04 0.17 ± 0.07 
Writing Documentation 0.40 ± 0.22 0.33 ± 0.19 
Debugging/Testing 0.23 ± 0.07 0.26 ± 0.06 
Code 
Deferring Thought For 0.98 ± 0.02 1.0 ± 0.0 
Later 

6.4 CUPS Attributes Signifcantly More Time 
Verifying Suggestions than Simpler Metrics 

We observed that programmers continued verifying the suggestions 
after they accepted them. This happens by defnition for ’deferred 
thought’ states before accepting suggestions, but we fnd it also 
happens when programmers verify the suggestion before accepting 
it and this leads to a signifcant increase in the total time verifying 
suggestions. First, when participants defer their thought about a 
suggestion they accepted, 53.2% of the time they verify the sug-
gestion immediately afterward. When we adjust for the post-hoc 
time spent verifying, we compute a mean time of 15.21 (�� = 20.68) 
seconds of verifcation and a median time of 6.48s. This is nearly 
a fve-times increase in average time and a three-time increase 
in median time for the pre-adjustment scores of 3.25 (�� = 3.33) 
mean and 1.99 median time. These results are illustrated in Figure 8 
and is a statistically signifcant increase according to a two-sample 
paired t-test (� = −4.88, � = 1.33 · 10−5). This phenomenon also 
occurs when programmers are in a ’Thinking/Verifying Suggestion’ 
state before accepting a suggestion where 19% of the time they 
posthoc verify the suggestion which increases total verifcation 
time from 3.96 (�� = 8.63) to 7.03 (�� = 14.43) on average which is 
statistically signifcant (� = −4.17, � = 5� − 5). On the other hand, 
programmers often have to wait for suggestions to show up due to 
either latency or Copilot not kicking in to provide a suggestion. If 
we sum the time between when a suggestion is shown and the pro-
grammer accepts or rejects this in addition to the time they spend 
waiting for the suggestion (this is indicated in the state ’Waiting 
for suggestion’), then we get an increase from 6.11s (�� = 15.52) to 
6.51s (�� = 15.61) which is minor on average but adds 2.5 seconds 
of delay when programmers have to explicitly wait for suggestions. 
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Metric Suggestion: Adjust verifcation time metrics and 
acceptance rates to include suggestions that are veri-
fed after acceptance 

The previous analysis showed that the time to accept a sug-
gestion cannot be simply measured as the time spent from the 
instance a suggestion is shown until a suggestion is accepted– 
this misses the time programmers spend verifying a sugges-
tion after acceptance. Similarly, since deferring thought is 
a frequent behavior observed, it leads to an infation of ac-
ceptance rates. We recommend using measures such as the 
fraction of suggestions accepted that survive in the codebase 
after a certain time period (e.g. 10 minutes). 

6.5 Insights About Prompt Crafting 
Insights about Prompt Crafting. We take a closer look into how 

participants craft prompts to obtain Copilot suggestions. Our frst 
insight is that programmers consistently ignore suggestions while 
prompt crafting. Among 234 suggestions that were shown while par-
ticipants were actively prompt crafting, defned as a suggestion where 
a programmer was prompt crafting while the suggestion was being 
displayed, only 10.7% were accepted. We hypothesize this behavior 
could be due to programmers wanting to craft the prompt in their 
own language rather than relying on Copilot to help them prompt 
craft. This also indicates that Copilot is unnecessarily interrupting 
participants’ prompt crafting attempts. 

However, programmers often iterate on their prompts until they 
obtain the suggestion they desire and often do not abandon prompt 
crafting without accepting a suggestion. We defne a prompt craft-
ing attempt as a segment of the coding session that starts from 
when the programmer frst enters the CUPS "prompt crafting" state 
and lasts until the programmer enters a non-Copilot centric state 7. 
We count 59 such prompt crafting attempts wherein 81.3% of them 
a suggestion is accepted. 

Prompt crafting is often an iterative process, where the program-
mer writes an initial prompt, observes the resulting suggestion, then 
iterates on the prompt by adding additional information about the 
desired code or by rewording the prompt. For example, P5 wanted to 
retrieve the index of the maximum element in a correlation matrix 
and wrote this initial prompt and got the suggestion: 
# print the indices of the max value excluding 1 in corr 
maxval = np.amax(corr, axis=1) # Copilot suggestion 

This code snipped returns the value of the maximum value rather 
than the index, so it was not accepted by the participant. They then 
re-wrote the prompt to be: 
# print the two features most correlated 
# Copilot suggestion 
maxcor = np.where(corr == np.amax(corr)) 

and accepted the above suggestion. 

7The non-Copilot centric states are: ’Writing New Functionality,’ ’Editing Written 
Code,”Thinking About New Code To Write,”DebuggingTesting Code,’ ’Looking up 
Documentation,’ ’Writing Documentation.’ 

Finally, we observe that there are three main ways participants 
craft prompts: 
1) through writing a single line comment with natural language 
instructions, although the comment may resemble pseudo-code 
[17], an example: 

# impute missing values in X_train as average of column 
# where missinggn value is -1 

2) through writing a docstring for the function: 

def distance(self, query): 
''' 
query: single numpy arrray 
return: l2 distances from query to the vectors 
''' 

and fnally, 3) through writing function signatures (or variable 
names) e.g., writing "def add_time" then pausing to wait for a sug-
gestion. Often, programmers combine the three prompt crafting 
strategies to get better code suggestions. 

6.6 Post-Study Survey Answers 
After completing the study, participants were asked to complete 
a survey based on the productivity survey in [40], which focuses 
on the SPACE framework of programmer productivity [13]. We 
also included a free-form text box at the end of the survey where 
participants can add any additional thoughts about their experience 
using Copilot for the task assigned. The full results of the survey 
can be found in the Appendix. 

We found that 6/21 participants agreed or strongly agreed with 
the statement that they were concerned about the quality of their 
code when using Copilot. Participant #9 noted, "I worry that bugs 
can sneak-in and go unnoticed, especially in weakly-dynamically 
typed languages" and Participant #19 noted that "My main concern 
with Copilot is whether it is teaching me to do things the wrong 
(or old) way (e.g. showing me a Python 3.6 way instead of a Python 
3.10 way and so on)". On the other hand, 14/21 participants agreed 
that using Copilot helped them stay in fow and spend less time 
searching for information. Participant #3 noted that "Collaborating 
with Copilot felt like I was googling what I wanted to do except 
instead of going through several stack overfow links that Google 
would show me, the code just appeared inline saving me time and 
keeping my fow of coding" and Participant #6 "Going into the 
exercise I genuinely thought there would be a point when I pull up 
stack overfow. Because that’s the kind of tiny stuf you sometimes 
need to search for. With copilot, it really reduced my worry of doing 
so." Finally, 17/21 participants agreed with the statement that by 
using Copilot, they completed the task faster, and 16/21 participants 
agreed that they were more productive using Copilot. These survey 
responses highlight the costs and benefts of writing code with 
Copilot and reinforcing existing results in [40]. 

7 LIMITATIONS, FUTURE WORK AND 
CONCLUSION 

7.1 Limitations 
The observations from our study are limited by several decisions 
that we made. First, our participants solved time-limited coding 
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Figure 8: Illustration of one of the adjustments required for measuring the total time a programmer spends to verify a suggestion. 
Here, when a programmer defers thought for a suggestion, they spend time verifying it after accepting it and may also have to 
wait beforehand for the suggestion to be shown. 

tasks that were provided by us instead of real tasks they may per-
form in the real world. Furthermore, the selection of tasks was 
limited and did not cover all tasks programmers might perform. 
We mostly conducted experiments with Python with only two 
participants using C++ and JavaScript when Copilot is capable of 
completing suggestions for myriads of other languages. We also 
made an assumption about the granularity of telemetry where each 
segment at most contained one state when, in a more general set-
ting, programmers may perform multiple activities within a single 
segment. We also did not capture longer-term costs of interacting, 
e.g., from accepting code with security vulnerabilities or longer 
horizon costs. To this end, security vulnerabilities and possible 
overreliance issues [2, 25, 26], are important areas of research that 
we do not address in this paper. 

7.2 Future Work 
We only investigated a limited number of programmer behaviors 
using the CUPS timelines and diagrams. There are many other 
aspects future work could investigate. 

Predicting CUPS states. To enable our insights derived in Sec-
tion 6, we need to be able to identify the current programmer’s 
CUPS state. An avenue towards that is building predictive mod-
els using labeled telemetry data that is collected from our user 
study. Ideally, we can leverage this labeled data to further label 
telemetry data from other coding sessions or other participants so 
that we can perform such analyses more broadly. Specifcally, the 
input to such a model would be the current session context, for 
example, whether the programmer accepted the last suggestion, the 
current suggestion being surfaced, and the current prompt. We can 
leverage supervised learning methods to build such a model from 
collected data. Such models would need to run in real-time during 
programming and predict at each instance of time the current user 
CUPS state. This would enable the design suggestions proposed 
to serve to compute various metrics proposed. For example, if the 
model predicts that the programmer is deferring thought about a 
suggestion, we can group suggestions together to display them to 
the programmer. In the Appendix, we built small predictive models 
of programmers CUPS state using labeled study data. However, 
the current amount of labeled data is not sufcient to build highly 
accurate models. There are multiple avenues to improve the per-
formance of these models: 1) simply collecting a larger amount 

of labeled data which would be expensive, 2) using methods from 
semi-supervised learning that leverage unlabeled telemetry to in-
crease sample efciency [35], and 3) collecting data beyond what is 
captured from telemetry such as video footage of the programmer 
screen (e.g. cursor movement) to be able to better predict with the 
same amount of data. 

Assessing Individual Diferences. There is an opportunity to apply 
the CUPS diagram to compare diferent user groups and compare 
how individuals difer from an average user. Does the nature of 
inefciencies difer between user groups? Can we personalize inter-
ventions? Finally, we could also compare how the CUPS diagram 
evolves over time for the same set of users. 

Efect of Conditions and Tasks on Behavior. We only studied the 
behavior of programmers with the current version of Copilot. Fu-
ture work could study how behavior difers with diferent versions 
of Copilot– especially when versions use diferent models. In the 
extreme, we could study behavior when Copilot is turned of. The 
latter could help assess the counterfactual cost of completing the 
task without AI assistance and help establish whether and where 
Copilot suggestions add net value for programmers. For example, 
maybe the system did not add enough value because the program-
mer kept getting into prompt crafting rabbit holes instead of moving 
on and completing the functions manually or with the assistance 
of web search. 

Likewise, if developers create a faster version of Copilot with 
less latency, the CUPS diagram could be used to establish whether 
it leads to reductions in time spent in the "Waiting for Suggestion" 
state. 

Informing New Metrics. Since programmers’ value may be multi-
dimensional, how can we go beyond code correctness and measure 
added value for users? If Copilot improves productivity, which 
aspects were improved? Conversely, if it didn’t, where are the ef-
ciencies? One option is to conduct a new study where we compare 
the CUPS diagram with Copilot assistance with a counterfactual 
condition where the programmers don’t have access to Copilot. 
And use the two diagrams to determine where the system adds 
value or could have added value. For example, the analysis might 
reveal that some code snippets are too hard for programmers to 
complete by themselves but much faster with Copilot because the 
cost of double-checking and editing the suggestion is much less 



Reading Between the Lines: Modeling User Behavior and Costs in AI-Assisted Programming CHI ’24, May 11–16, 2024, Honolulu, HI, USA 

than the cost of spending efort on it by themselves. Conversely, the 
analysis might reveal that a new intervention for helping engineer 
prompts greatly reduced people’s times in “Prompt Crafting”. 

Another option is to design ofine metrics based on these insights 
that developers can use during the model selection and training 
phase. For example, given that programmers spent a large fraction 
of the time verifying suggestions, ofine metrics that can estimate 
this (e.g., based on code length and complexity) may be useful 
indicators of which models developers should select for deploy-
ment. Future work will aim to test the efectiveness of these design 
suggestions as well. 

Beyond Programming. We also hope our methodology is applied 
to study other forms of AI assistants that are rapidly being de-
ployed. For example, one can make an analogous CUPS taxonomy 
for writing assistants for creative writers or lawyers. 

7.3 Conclusion 
We developed and proposed a taxonomy of common programmer 
activities (CUPS) and combined it with real-time telemetry data 
to profle the interaction. At present, CUPS contains 12 mutually 
unique activities that programmers perform between consecutive 
Copilot actions (e.g., such as accepting, rejecting, and viewing sug-
gestions). We gathered real-world instance data of CUPS by con-
ducting a user study with 21 programmers within our organization, 
where they solved coding tasks with Copilot and retrospectively 
labeled CUPS for their coding session. We collected over 3137 in-
stances of CUPS and analyzed them to generate CUPS timelines 
that show individual behavior and CUPS diagrams that show aggre-
gate insights into the behavior of our participants. We also studied 
the time spent in these states, patterns in user behavior, and better 
estimates of the cost (in terms of time) of interacting with Copilot. 

Our studies with CUPS labels revealed that when solving a coding 
task with Copilot, programmers may spend a large fraction of total 
session time (34.3%) on just double-checking and editing Copilot 
suggestions, and spend more than half of the task time on Copilot 
related activities, together indicating that introducing Copilot into 
an IDE can signifcantly change user behavior. We proposed new 
metrics to measure the interaction by computing the time spent in 
each CUPS state and modifcation to existing time and acceptance 
metrics by accounting for suggestions that get verifed only after 
they get accepted. We proposed a new interface design suggestion: 
if we allow programmers to signal their current state, then we can 
better serve their needs, for example, by reducing latency if they 
are waiting for a suggestion. 
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