
Journal of Artificial Intelligence Research 67 (2020) 191-234 Submitted 05/2019; published 02/2020

Blind Spot Detection for Safe Sim-to-Real Transfer

Ramya Ramakrishnan ramyaram@mit.edu

Massachusetts Institute of Technology

77 Massachusetts Ave, Cambridge, MA 02139

Ece Kamar eckamar@microsoft.com

Debadeepta Dey dedey@microsoft.com

Eric Horvitz horvitz@microsoft.com

Microsoft Research

14865 NE 36th St, Redmond, WA 98052

Julie Shah julie a shah@csail.mit.edu

Massachusetts Institute of Technology

77 Massachusetts Ave, Cambridge, MA 02139

Abstract

Agents trained in simulation may make errors when performing actions in the real world
due to mismatches between training and execution environments. These mistakes can be
dangerous and difficult for the agent to discover because the agent is unable to predict
them a priori. In this work, we propose the use of oracle feedback to learn a predictive
model of these blind spots in order to reduce costly errors in real-world applications. We
focus on blind spots in reinforcement learning (RL) that occur due to incomplete state
representation: when the agent lacks necessary features to represent the true state of the
world, and thus cannot distinguish between numerous states. We formalize the problem of
discovering blind spots in RL as a noisy supervised learning problem with class imbalance.
Our system learns models for predicting blind spots within unseen regions of the state
space by combining techniques for label aggregation, calibration, and supervised learning.
These models take into consideration noise emerging from different forms of oracle feedback,
including demonstrations and corrections.

We evaluate our approach across two domains and demonstrate that it achieves higher
predictive performance than baseline methods, and also that the learned model can be
used to selectively query an oracle at execution time to prevent errors. We also empirically
analyze the biases of various feedback types and how these biases influence the discovery
of blind spots. Further, we include analyses of our approach that incorporate relaxed
initial optimality assumptions. (Interestingly, relaxing the assumptions of an optimal oracle
and an optimal simulator policy helped our models to perform better.) We also propose
extensions to our method that are intended to improve performance when using corrections
and demonstrations data.

1. Introduction

Agents designed to act in the real world are often trained in a simulated environment to learn
a policy that can be transferred to a real-world setting. Training in simulation can provide
experiences at a low cost, but mismatches between the simulator and the real world can
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Figure 1: An example of a mismatch between agent representation (Sagent) and real-world
representation (Sreal), which can cause agent blind spots. In this case, the agent interprets
an ambulance and a big white car as identical and thus continues driving. Because the
agent takes an unacceptable action in the case of an ambulance, the corresponding agent
observation represents a blind spot.

degrade the learned policy’s performance in the open world and lead to costly errors. For
example, consider an autonomous driving simulator that includes components for learning
how to drive, take turns, stop appropriately, etc., but does not incorporate any emergency
vehicles, such as ambulances or fire trucks. When an agent trained in such a simulator is
in the presence of an emergency vehicle in the open world, it will continue to drive rather
than pull over because it lacks knowledge of the true representation of the world, potentially
leading to costly delays or even accidents.

First, let us formally define the problem of discovering blind spots in reinforcement
learning (RL). Blind spots are regions of the world where agents make unexpected errors
due to mismatches between the training environment and the real world. Different kinds
of limitations lead to different types of blind spots; in this paper, we focus on blind spots
stemming from limitations in state representation. Limitations in the fidelity of the state
space result in an agent being unable to distinguish between different real-world states, as
highlighted in Figure 1. In the driving example mentioned above, for an agent trained in
simulation, states with and without an ambulance would appear the same according to the
learned representation. However, the optimal action to take in the open world in these
two situations differs significantly, and it would be impossible for an agent that could not
distinguish these states from one another to learn to act optimally, regardless of the quantity
of simulation-based training.

Such representational incompleteness is ubiquitous in any safety-critical RL application,
especially in robotics and autonomous driving, since real-world data can be dangerous
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to collect. An expert could make an agent’s state representation more complete if the
true representation were known a priori, but even with extensive engineering, a gap often
exists between simulation and reality. Further, the agent’s representation cannot be pre-
specified when it is learned automatically through deep reinforcement learning. In cases
where complete real-world representation is impossible, it is critical to invest in meta-level
reasoning techniques for identifying blind spots, which in turn enable representation and
policy refinement.

Recent work has increasingly addressed safety with the goal of enabling safer deployment
of AI systems. Several works have focused on building more realistic simulators, reducing the
gap between simulation and reality (Shah, Dey, Lovett, & Kapoor, 2018b; Dosovitskiy, Ros,
Codevilla, Lopez, & Koltun, 2017; Chang, Dai, Funkhouser, Halber, Nießner, Savva, Song,
Zeng, & Zhang, 2017). Others (Tobin, Fong, Ray, Schneider, Zaremba, & Abbeel, 2017;
Zhang, Leitner, Ge, Milford, & Corke, 2017; Peng, Andrychowicz, Zaremba, & Abbeel, 2018;
van Baar, Corcodel, Sullivan, Jha, Romeres, & Nikovski, 2018) have focused on developing
more robust training, which involves training on perturbed environments to increase variety
in what the agent sees before real-world execution. Cautious exploration in the real world
can also enable safe deployment with fewer catastrophic failures during execution (Kahn,
Villaflor, Pong, Abbeel, & Levine, 2017; Garcıa & Fernández, 2015). Other recent works
have also used human feedback to avoid costly errors (Prakash, Khatwani, Waytowich, &
Mohsenin, 2019; Frye & Feige, 2019). While many of these works improve transfer from
simulation to the real world, they assume that the agent’s representation is sufficient for
learning and acting. Our work considers the problem of identifying errors when the agent’s
representation is incomplete. We propose using human feedback to learn a blind spot model
that can improve self-awareness and lead to safer real-world execution.

To discover errors caused by representation limitations, we propose a transfer learning
approach that incorporates a learned simulator policy and limited oracle feedback to learn
where blind spots are likely to occur. The oracle provides information either by performing
the task itself (demonstrations) or monitoring and correcting the actions of the agent (cor-
rections), which provides signals to the agent indicating whether its actions were acceptable
in each state. We assume that blind spots do not occur at random, and that they correlate
with features known to the agent. For example, an agent may lack the features to recognize
emergency vehicles, but the existence of emergency vehicles may correlate with observable
features, such as vehicle size or color. Under this assumption, we formalize the problem
of discovering blind spots as one of supervised learning, where the objective is to learn a
blind spot map that provides the likelihood of each agent observation being a blind spot
by generalizing predictions to unseen regions of the world. That is, the agent learns the
probability that each agent observation corresponds to at least one real-world state in which
the agent’s chosen action would result in a high-cost error.

Note that learning a predictive model for blind spots is preferred over updating a learned
policy when the agent’s state representation is insufficient. In the driving example, two
states that are indistinguishable to the agent require different actions: a state that includes
an ambulance requires the agent to pull over to the side of the road and stop, while a state
without an ambulance requires the agent to continue to drive at the speed limit. If the
agent updates its policy for both of these similar-appearing states, the consequence could
be costly and dangerous. Instead, a blind spot model can be used in any safety-critical
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real-world setting where the agent can query an oracle for help in potentially dangerous
areas instead of committing to an incorrect and potentially catastrophic action.

Formalizing blind spot discovery as a supervised learning problem introduces several
challenges. First, each label received from the oracle provides a noisy signal indicating
whether the corresponding agent observation is a blind spot. Since an agent’s observation
of the world may correspond to multiple real-world states, identifying whether an agent
observation is a blind spot requires aggregating multiple labels. In addition, the noise in
labels varies across different types of oracle feedback: for example, corrections clearly indi-
cate whether an agent’s action is acceptable in a state, whereas demonstrations only depict
when the agent’s and oracle’s behaviors differ. Second, blind spots can be rare, and thus
learning about them represents an imbalanced learning problem. Finally, oracle feedback
collected through executions (including both corrections and demonstrations) violates the
i.i.d. assumption and introduces biases into the learning process.

Our approach leverages multiple techniques to address the problems of noise and imbal-
ance. Prior to learning, we apply expectation maximization (EM) to the dataset of oracle
feedback in order to estimate noise in the labels and reduce noise through label aggregation.
We also apply oversampling and calibration techniques to address class imbalance. Finally,
we experiment with different forms of oracle feedback, including corrections, demonstra-
tions, and randomly-selected states, to quantify the biases in different conditions.

We evaluated our approach using two game domains, and our findings indicate that blind
spots can be learned more effectively with our method than baseline approaches, highlighting
the benefit of reasoning about different forms of feedback noise. Further, the learned blind
spot models are useful for selectively querying an oracle for help during real-world execution.
Our evaluations also show that each feedback type introduces different biases that influence
the blind spots the agent learns. Overall, corrections are informative, as they provide direct
feedback about the agent’s policy. The effectiveness of demonstrations varies: in some cases,
demonstrations do not account for important errors that the agent may make, resulting in
inadequate coverage of all blind spots; while in other cases, demonstration data is sufficient
to enable the agent to avoid dangerous regions altogether.

Our initial formulation assumes optimal oracle demonstrations and an optimal simulator
policy; we also include an analysis of how our method performs when these assumptions are
relaxed. We found that with suboptimal demonstrations, the model can better separate safe
and blind spot regions because the distribution of labels from the oracle is more varied. With
a suboptimal simulator policy, an agent identifies a larger number of states as blind spots,
resulting in a more conservative agent. When both of these assumptions are relaxed, we
can obtain equivalent – and occasionally better – performance than when using the original,
optimal policies. We also propose data augmentation techniques that improve performance
for each feedback type. For corrections, we include an augmentation that propagates human
feedback signals to expected future states, which allows an agent to learn about dangerous
regions without actually visiting them. For demonstrations, we augment the data with a
limited amount of corrections to increase the variety in the data collected.

Our contributions in this work are six-fold: (1) formalizing the problem of discovering
blind spots caused by representation incompleteness in reinforcement learning, (2) introduc-
ing a transfer learning framework that leverages human feedback to learn a blind spot map
of the target world, (3) evaluating our approach across two simulated domains, (4) assessing
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the biases of different types of human feedback, (5) analyzing the effect of suboptimal oracle
and simulator policies on our approach, and (6) proposing modifications to our method to
increase performance with demonstrations and corrections data.

The problem of identifying blind spots was first presented in prior work (Ramakrish-
nan, Kamar, Dey, Shah, & Horvitz, 2018), but we include several extensions here. First, we
relax two of our original optimality assumptions: having access to optimal oracle demon-
strations and learning an optimal simulator policy during training. We relax these two
assumptions simultaneously (the most realistic case), and demonstrate their complementar-
ity through several experiments. Second, we include additions to our method that improve
the prediction of blind spots for both corrections and demonstrations data. In our pre-
vious work, we showed that our approach represents a first step toward identifying blind
spots, but noted that the approach did not work well in certain settings (Ramakrishnan
et al., 2018). The improvements introduced in this paper allow our model to discover
blind spots with greater accuracy than our original approach, which can thus lead to im-
proved self-awareness for AI systems. Code for the experiments in this paper is available at
https://github.com/ramya-ram/discovering-blind-spots.

2. Related Work

Here, we discuss prior work related to the problem of blind spot discovery in reinforcement
learning. We first outline work in simulation to real-world transfer that is closely related
to our problem; we then discuss relevant work in transfer and lifelong learning, which can
involve high-level transfer between different tasks and domains. We also highlight work in
supervised learning, in which more robust models are developed to better generalize when
training and test distributions differ. Finally, we discuss techniques for outlier and novelty
detection.

2.1 Safe Simulation to Real-World Transfer

Reinforcement learning under safety constraints is an active research topic, particularly
with regard to transfer from simulation environments to the real world (Garcıa & Fernández,
2015; Munos, Stepleton, Harutyunyan, & Bellemare, 2016; Amodei, Olah, Steinhardt, Chris-
tiano, Schulman, & Mané, 2016). Many prior works have focused on either developing re-
alistic simulation environments with more robust training or on more cautious exploration
within the real world. While these methods improve robustness and safety, they do not ad-
dress scenarios in which the agent has a flawed representation that prevents it from learning
calibrated uncertainty estimates.

One approach to safe real-world execution is creating more realistic simulators that
match the real-world setting as closely as possible. Shah et al. introduced a photorealistic
environment called AirSim for autonomous cars and drones (Shah et al., 2018b). CARLA
(Dosovitskiy et al., 2017) and TORCS (Wymann, Espié, Guionneau, Dimitrakakis, Coulom,
& Sumner, 2000) are car simulators that model different aspects of the real world. Chang
et al. introduced a dataset with realistic images for scene understanding, which could
potentially be used for then learning how to act in the real world (Chang et al., 2017).

While these simulators provide realistic environments, agents still need to train and
learn robust models that perform well in the real world. Domain randomization represents
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one method of developing such robust policies (Tobin et al., 2017; Zhang et al., 2017; Peng
et al., 2018; van Baar et al., 2018). It involves training the agent on many variants of a
task or a wide set of parameters in order to better generalize to a real-world environment.
Bousmalis et al. used randomized synthetic data to improve a robot’s performance of a
grasping task in the real world (Bousmalis, Irpan, Wohlhart, Bai, Kelcey, Kalakrishnan,
Downs, Ibarz, Pastor, Konolige, et al., 2018). Several other works have also optimized
performance for specific areas in which an agent does not typically perform well, such as
adversarial settings and worst-case scenarios (Uesato, Kumar, Szepesvari, Erez, Ruderman,
Anderson, Heess, Kohli, et al., 2018; Ruderman, Everett, Sikder, Soyer, Uesato, Kumar,
Beattie, & Kohli, 2018).

Another approach to improved real-world generalization uses progressive networks,
which allows for sequential task learning (Rusu, Vecerik, Rothörl, Heess, Pascanu, & Had-
sell, 2016). In this method, columns are added to the network as new tasks are introduced,
preventing the network from performing worse through task-specific fine-tuning. Another
method of bridging the reality gap is to learn reusable skills that allow for quick adaptation
(He, Julian, Heiden, Zhang, Schaal, Lim, Sukhatme, & Hausman, 2018; Julian, Heiden,
He, Zhang, Schaal, Lim, Sukhatme, & Hausman, 2018). He et al. considered a multi-task
setting in which a robot used simulation data to learn latent skills and a policy conditioned
on this space; the robot was then able to choose a sequence of these learned skills to perform
unforeseen tasks in the real world (He et al., 2018). Realistic simulators and robust training
enable agents to be more capable of acting in the world, but there is still often a reality
gap between simulation and the real world because not every nuance can be modeled or
predicted (Ramakrishnan et al., 2018; Ramakrishnan, Kamar, Nushi, Dey, Shah, & Horvitz,
2019).

Another method for safe transfer is cautious exploration during execution. Berkenkamp
et al. introduced an algorithm to safely obtain data to learn about the dynamics of a system
with theoretical safety guarantees (Berkenkamp, Turchetta, Schoellig, & Krause, 2017). In
work by Osband et al., an agent explores based on uncertainty estimates obtained through
bootstrapping with random initialization (Osband, Blundell, Pritzel, & Van Roy, 2016).
Gal and Ghahramani interpreted dropout in neural networks as equivalent to a Bayesian
model, which helps to obtain uncertainty estimates (Gal & Ghahramani, 2016).

In a robotics scenario, these notions of uncertainty can be useful for safer real-world
execution. In work by Kahn et al., a robot predicts its uncertainty as it acts within the world,
and moves slowly to avoid high-speed collisions, while increasing its velocity within parts
of the space where it has greater confidence in its actions (Kahn et al., 2017). Many other
works have developed approaches for estimating model uncertainty using various techniques
(Lütjens, Everett, & How, 2018; McAllister, Gal, Kendall, Van Der Wilk, Shah, Cipolla,
& Weller, 2017; Malinin & Gales, 2018). While these approaches are helpful for avoiding
errors in real-world environments, they do not account for circumstances in which the agent
has a limited representation of the world and its uncertainty estimates are subsequently
misleading. The mistakes that can result from such a scenario will occur in areas where an
agent has high confidence but is actually incorrect (blind spots).
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2.2 Transfer and Lifelong Learning

Many approaches have improved the transfer of information across tasks (Taylor & Stone,
2009; Pan & Yang, 2010; Barrett, Taylor, & Stone, 2010), as tasks cannot be learned
from scratch each time. Transfer learning aims to improve performance of a target task
by leveraging knowledge from a source task. While this includes simulation to real-world
transfer, it can also refer to transfer across different tasks and domains. Multi-task learning
involves optimizing performance over a set of tasks by developing shared knowledge across
those tasks. Lifelong learning is a combination of both transfer and multi-task learning that
refers to a continual process of learning new tasks while retaining the quality of performance
on prior tasks.

Many works in the field of transfer learning have focused on learning mappings between
state and action spaces to enable Q-value function or policy transfer (Taylor, Stone, & Liu,
2007; Taylor, Kuhlmann, & Stone, 2008; Ramakrishnan, Zhang, & Shah, 2017). Dai et
al. developed a model to learn a mapping by linking the feature space of a source task
to the target feature space (Dai, Chen, Xue, Yang, & Yu, 2009). In work by Taylor and
Stone, rules are summarized in the source task and transferred to the target (Taylor &
Stone, 2007). Several researchers have also considered hierarchical approaches to RL that
involve transferring subtasks across domains (Kulkarni, Narasimhan, Saeedi, & Tenenbaum,
2016; Vezhnevets, Osindero, Schaul, Heess, Jaderberg, Silver, & Kavukcuoglu, 2017; Peng,
Berseth, Yin, & Van De Panne, 2017; Tessler, Givony, Zahavy, Mankowitz, & Mannor,
2017). Our setup is different from many prior transfer learning scenarios, as they do not
reason explicitly about the mismatch in the agent’s representation and the true represen-
tation of the world (Taylor & Stone, 2009; Barreto, Munos, Schaul, & Silver, 2016; Tobin
et al., 2017; Barrett et al., 2010; Christiano, Shah, Mordatch, Schneider, Blackwell, Tobin,
Abbeel, & Zaremba, 2016).

Within lifelong learning literature, many works have introduced methods for quick trans-
fer to new, sequentially introduced tasks (Ammar, Tutunov, & Eaton, 2015b; Ammar,
Eaton, Luna, & Ruvolo, 2015a; Isele, Rostami, & Eaton, 2016b). Ruvolo and Eaton devel-
oped an approach that learns a shared basis, uses this library to transfer to new tasks, and
revises the basis as additional tasks are introduced (Ruvolo & Eaton, 2013); this approach
performs well on classification and regression problems. Abel et al. used state abstractions
to capture important structure within the task to help during transfer (Abel, Arumugam,
Lehnert, & Littman, 2018). Brunskill and Li performed a theoretical analysis of when learn-
ing options, or temporally extended actions, could be helpful in lifelong learning settings
(Brunskill & Li, 2014). In work by Isele et al., transfer was improved considerably by learn-
ing relationships between task descriptors and task policies (Isele, Luna, Eaton, Gabriel,
Irwin, Kallaher, & Taylor, 2016a).

2.3 Generalization in Supervised Learning

Our work relates to supervised learning literature that trains models to be robust to exam-
ples outside of the training distribution. The presence of different training and test distri-
butions during learning can also be referred to as covariate shift. One method of addressing
this situation is a technique called dropout (Srivastava, Hinton, Krizhevsky, Sutskever, &
Salakhutdinov, 2014), which reduces overfitting by dropping units and connections while
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training a neural network. Many thinned networks are sampled and trained, and are then
combined into a single network at test time. This process results in better generalization
than use of neural nets without dropout across several classification datasets.

Another way to train more robust models that do not overfit is to use adversarial exam-
ples (Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, & Fergus, 2013; Kurakin,
Goodfellow, & Bengio, 2016). Shaham et al. developed a robust optimization approach
in which a network is optimized over several perturbed examples in an uncertainty set,
U (Shaham, Yamada, & Negahban, 2015). Athalye et al. generated a more informative
set of adversarial examples based on transformations of physical objects, which identifies
3D adversarial objects (Athalye & Sutskever, 2017). While these approaches to generat-
ing examples increase the robustness of the learned model, they do not help when the set
of possible examples is incomplete. In work by Tramèr et al., models are trained against
black-box adversaries that have no information about the model’s inner workings, rather
than white-box adversaries that have full knowledge of the algorithm and model parameters
(Tramèr, Kurakin, Papernot, Goodfellow, Boneh, & McDaniel, 2017).

While adversarial examples represent one way of identifying model errors, it is useful
for machine learning systems to also be self-aware and actively query for help in regions
where it is likely to make incorrect predictions (Cohn, Ghahramani, & Jordan, 1996; Zhu,
Wang, Tsou, & Ma, 2009; Zhang, Deng, Marchi, & Schuller, 2013; Kapoor, Grauman,
Urtasun, & Darrell, 2007; Joshi, Porikli, & Papanikolopoulos, 2009; Roy & McCallum,
2001). One useful technique for active learning is estimating model uncertainty, which can
guide the querying process. Uncertainty quantification in deep learning (Gal, 2016; Tripathy
& Bilionis, 2018; Kendall, Badrinarayanan, & Cipolla, 2015) can be extremely beneficial for
learning high-error regions of the model for future refinement.

However, traditional active learning does not directly apply when it is difficult to con-
struct or identify these examples before deploying a model in the open world. Even with
extensive adversarial training, a gap can still exist between the data used for training the
model and the true distribution of data. Lakkaraju et al. introduced a method for identify-
ing regions of unknown unknowns in discriminative classifiers when deployed into the open
world (Lakkaraju, Kamar, Caruana, & Horvitz, 2017). In this approach, data points are
clustered in an unsupervised manner, followed by a multi-arm bandit algorithm (with each
cluster representing an arm) to efficiently identify regions of the feature space in which the
classifier is most likely to make mistakes. It is not straightforward to apply this approach
to RL, however, because examples (states) are no longer i.i.d., as in supervised learning. In
RL, states are visited according to a distribution induced by executing either the learned
policy or the oracle’s policy. There can also be multiple acceptable labels (actions) for each
state, rather than a single “correct” label. Finally, certain mistakes in the real world can
be catastrophic, necessitating risk-sensitive classification to prioritize identifying rare blind
spots (Zadrozny, Langford, & Abe, 2003).

2.4 Novelty and Outlier Detection

As indicated in previous work, outlier and novelty detection are related but not directly
applicable to blind spot discovery (Chandola, Banerjee, & Kumar, 2009; Gupta, Gao, Ag-
garwal, & Han, 2014; Campos, Zimek, Sander, Campello, Micenková, Schubert, Assent, &
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Houle, 2016). Outlier detection aims to identify instances within the training data that are
far from the rest of the examples. Novelty detection assumes that the training data does not
contain outliers, and instead involves identifying whether a new instance not seen in train-
ing deviates significantly from the training set. One reason blind spots differ from outliers
is that they are not rare instances, but systematic regions within the agent’s representation
where the training environment does not match the testing environment, leading to costly
errors. In our work, we present a method for efficiently identifying these regions through or-
acle feedback. Another difference between outliers and blind spots is that detecting outliers
requires access to the correct set of features in order to distinguish novel examples (Markou
& Singh, 2003a, 2003b); in our work, the available features are insufficient for differentiating
blind spots from safe regions.

Several prior methods have used kernel techniques to identify outliers (Schölkopf,
Williamson, Smola, Shawe-Taylor, & Platt, 2000; Hoffmann, 2007; Campbell & Bennett,
2001; Bodesheim, Freytag, Rodner, Kemmler, & Denzler, 2013). Hoffman introduced a
novelty measure by using kernel PCA to map points into a higher-dimensional space. The
system performed PCA to obtain independent components and computed the reconstruc-
tion error based on this space (Hoffmann, 2007). Bodeshim et al. mapped training examples
with a specific class into one point (Bodesheim et al., 2013); this projected subspace has
zero variance within each class and can be used to predict the novelty of new instances
through a distance measure.

In work by Blouvshtein and Cohen-Or, outliers were identified by reasoning about dis-
tances between data points (Blouvshtein & Cohen-Or, 2018). A given distance is predicted
to be an outlier if it breaks the triangle inequality for many triangles. While many of these
methods rely upon distances to detect outliers, one challenge is that many examples look like
outliers in high-dimensional spaces. Radovanović et al. demonstrated that when attributes
are not noisy, outliers can be identified as more pronounced within the high-dimensional
space (Radovanović, Nanopoulos, & Ivanović, 2015). However, these works are, again, con-
ditioned upon the availability of features to identify novel or irregular instances, which we
do not assume in our own work.

3. Problem Formulation

We formulate the discovery of agent blind spots in reinforcement learning as a transfer
learning problem, in which an agent is trained in a simulation environment Magent sim and
is deployed and evaluated in a real-world environment Mreal. The simulator is modeled as
a Markov Decision Process (MDP): Magent sim = {Sagent,A, Tsim, Rsim}. The state space
Sagent defines all possible states in the simulation world. The representation of this state
space can be manually designed or learned. The action space of the agent is defined as
A. The transition function Tsim : Sagent × A × Sagent → R models the dynamics in the
simulation environment, which is an approximation of the real world dynamics based on
the agent’s representation Sagent. The reward function Rsim : Sagent ×A → R specifies the
reward the agent receives for taking an action from a specific state. The agent trains in this
world and learns a policy Πsim : Sagent → A, which maps states in Sagent to actions A.

The real-world environment is defined as a Partially-Observable Markov Decision Pro-
cess (POMDP) because the agent does not observe the true state of the world and instead
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receives an observation of this true state: Mreal = {Sreal,A, Treal, Rreal,Ω, O}. In this en-
vironment, Sreal defines all possible real-world states, and Ω = Sagent defines the space of
all possible agent observations. The agent observes states of the world through its repre-
sentation defined in simulation. While the state space Sagent was sufficient for learning in
the simulator, it lacks important features for acting safely in the real world so the agent’s
observation space is a subset of the real-world state space Sagent ⊂ Sreal. The observation
function O : Sreal ×A → Sagent is a deterministic mapping between the true state and the
agent’s observation of that world based on Sagent. The action space A is identical to that
in training. The true transition and reward functions Treal and Rreal in the real world are
based on Sreal rather than Sagent, so these functions do not match the approximations in
simulation.

For each real-world state sreal ∈ Sreal, the agent receives a flawed observation of the
world in terms of its representation oagent ∈ Ω = Sagent. Because Sagent ⊂ Sreal, multiple
states look identical to the agent, also known as perceptual aliasing (Kaelbling, Littman,
& Moore, 1996). The agent has access to an oracle or human that observes the true state
of the world sreal ∈ Sreal. The agent can only reason within the agent’s observation space
Sagent, while the oracle has access to the true real-world state space and provides feedback
based on Sreal.

Our goal is to use the agent’s learned policy from simulation and a limited budget, B,
of feedback from an oracle, O, in order to learn a blind spot model of the real world that
indicates the probability that each agent observation is a blind spot Sagent → [0, 1]. This
learned model can then be used during real-world task execution to query a human for help
at states with a high probability of being blind spots. Prior works have investigated the use
of human feedback for guiding agents in RL tasks (Argall, Chernova, Veloso, & Browning,
2009; Knox & Stone, 2009; Saunders, Sastry, Stuhlmueller, & Evans, 2017; Christiano,
Leike, Brown, Martic, Legg, & Amodei, 2017; Griffith, Subramanian, Scholz, Isbell, &
Thomaz, 2013), but we use oracle feedback to learn a blind spot model of the real world
rather than to learn a policy.

An oracle, O = {A(s, a), πreal}, is defined by two components: an acceptable function
A(s, a) and an optimal real-world policy πreal. The acceptable function A(s, a) provides
direct feedback about the agent’s actions by returning 0 if action a is acceptable in state s,
and 1 otherwise. In our experiments, we simulated A(s, a) by defining acceptable actions as
those with values within some δ of the optimal action value for that state; however, A(s, a)
can be defined in many ways. The optimal policy πreal is used when the oracle is providing
demonstrations within the real world. In practice, oracles can be humans or other agents
with more expensive and/or complementary mode sensors (e.g., lidar cannot see color but
can sense 3D shapes, while cameras can detect color but not 3D shapes).

An observation in the agent’s representation oagent ∈ Sagent is defined as a blind spot
(B(oagent) = 1) if:

∃sreal ∈ Sreal s.t. A(sreal, πsim(oagent)) = 1. (1)

In other words, blind spots are observations in the agent’s representation where the
agent’s learned action is unacceptable in at least one real-world state that maps to it. Intu-
itively, if two states appear identical to the agent, and that agent is taking an unacceptable
action within either of them, it should mark the flawed state it observes as a blind spot.
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The agent’s objective is to use the learned policy πsim and a limited budget of B labels
from the oracle O = {A(s, a), πreal} in order to learn a blind spot model, M = {C, t}. The
classifier C : Sagent → Pr(B(Sagent) = 1) predicts, for each agent observation oagent ∈ Sagent,
the probability that oagent is a blind spot in the real-world environment, while the probability
threshold t specifies the cutoff for classifying an agent observation as a blind spot.

3.1 Agent Observations

A perfect label for learning the blind spot map would be the tuple < oiagent, l
i
p >, such

that lip is 1 when oiagent is a blind spot – a real-world state corresponding to oiagent exists
where πsim(oiagent) is not acceptable – and lip is 0 otherwise. Since the oracle and agent have
different representations of the world, the oracle’s actions are based on Sreal, not Sagent.
Thus, labels collected from the oracle are associated with state representation (SR) noise
as the agent and the oracle perceive the world differently. In addition, some forms of oracle
feedback may provide weaker information about the quality of an agent’s actions: instead
of providing information about whether an action is acceptable, the feedback may indicate
when the agent’s and oracle’s actions differ, referred to as action mismatch (AM) noise.
We describe both types of noise in detail below.

3.1.1 State Representation Noise

State representation (SR) noise occurs because the agent and oracle are operating within
two different representations. The agent’s representation is limited, and has missing features
that cause the agent to observe many distinct real-world states as identical to one another.
When the oracle provides a label about a real-world state, the agent cannot disambiguate
this label from labels provided for other real-world states that look identical and map to
the same agent observation, resulting in state representation noise.

Let sireal be a real-world state and oiagent be the agent observation sireal corresponds to.
A label tuple from the perspective of the oracle is defined as a tuple, < sireal, l

i
a >, where

lia ∈ {0, 1} is the resulting label such that lia = A(sireal, a
i
agent) and aiagent = πsim(oiagent).

However, due to a limited state representation, the label tuple from the agent’s perspective
is < oiagent, l

i
a >. When many real-world states map to the same agent observation in this

manner, the agent receives several noisy labels for a single observation. For example, if the
agent takes an acceptable action in one real-world state and an unacceptable action in a
different state that the agent interprets as identical to the first, it will receive two labels for
this agent observation: a 0 and a 1.

To return to our definition of blind spots: if the agent receives even one unacceptable
label for any real-world state, the corresponding agent observation is automatically iden-
tified as a blind spot. Thus, receiving an unacceptable label is a perfect signal that the
corresponding agent observation is a blind spot. However, if the agent receives many ac-
ceptable labels, the agent cannot mark the observation as “safe” (i.e., not a blind spot)
because there may be other real-world states that map to this one where the agent’s action
would be unacceptable. The main property of SR noise is that receiving many “safe” labels
does not guarantee that the corresponding agent observation is safe.
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3.1.2 Action Mismatch Noise

The formulation described thus far assumes that the oracle provides direct feedback about
the agent’s actions using the acceptable function A(s, a). Another form of feedback allows
the oracle to provide demonstrations using πreal while the agent simply observes, which
might be of lower cost to the oracle than directly monitoring and correcting the agent’s
actions. In this case, when feedback about the agent’s actions is not given directly, an
additional form of noise is introduced: action mismatch (AM) noise. If the oracle takes
action ai but the agent planned to take aj , this could be indicative of a blind spot because
the agent is not following the optimal action. However, two actions can both be acceptable in
a state, so a mismatch does not necessarily imply that the given agent observation is a blind
spot. The main property of AM noise is that noisy unacceptable labels are generated for
safe regions, and the agent should reason about this noise to avoid being overly conservative
and labeling safe areas as blind spots.

4. Approach

We now present a framework for learning blind spots in RL, as depicted in Figure 2. The
pipeline includes a data collection phase, during which the agent receives data from an
oracle through various forms of feedback. Since each feedback type is associated with noise,
we introduce a label aggregation step that estimates the noise in the labels using EM and
predicts the true label of each visited agent observation through aggregation of labels. To
generalize observations from visited agent observations to unseen regions, we use supervised
learning. This learning step assumes that blind spots do not occur at random, but instead
correlate with existing features that the agent has access to.

Since blind spots are typically rare within data, learning about them represents an
imbalanced learning problem. To address this, we first oversample the blind spot examples
and then perform calibration in order to correct estimates of the likelihood of blind spots.
Calibrated estimates are important for our domain, as they can be used to decide whether
to request oracle help. This allows the agent to accurately trade off the likelihood of error
with the cost of querying the oracle in execution.

4.1 Data Collection

In order to develop a system that can learn blind spots in a real-world environment, we first
must collect data from an oracle. This oracle can either provide feedback about the agent’s
actions directly through the acceptable function A(s, a) or provide a demonstration of the
optimal action, which the agent can observe, using πreal. We now discuss specific forms of
oracle feedback and the type of noise (SR and/or AM) they each contain.

4.1.1 Corrections (C)

The first feedback type is corrections (C), in which the oracle monitors and corrects the
actions of the agent as it acts within the real world. As shown in Figure 3, the process for
data collection is as follows: The agent first visits a state sireal ∈ Sreal in the real world
based on its simulator policy, πsim. The agent receives an observation of this state oiagent
and computes the action it plans to take, aiagent = πsim(oiagent). The agent then obtains a
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Figure 2: The full pipeline of our approach. To learn a blind spot model, the agent first
collects data from an oracle using one of the feedback types, then aggregates noisy labels
in order to predict whether each agent observation is a blind spot. Finally, a classifier is
trained with this data to generalize over the full space of agent observations.

Figure 3: This figure outlines the process of data collection with corrections and demon-
strations serving as feedback methods. With the use of corrections, the agent receives direct
feedback about its own actions through the acceptable function; with demonstrations, the
agent obtains noisy signals of acceptability by observing action matches and mismatches.

feedback label, li = A(sireal, a
i
agent), from the oracle at that state, where li = {0, 1}. The

agent records an acceptable label if li = 0, and an unacceptable label if li = 1. Given
that many real-world states appear identical to the agent and thus map to the same agent
observation, the resulting dataset, D = {(oagent, [l1, ..., lk])}, has many noisy labels for each
agent observation due to state representation (SR) noise. (Corrections contain no AM
noise because the oracle directly provides feedback about the agent’s actions through the
acceptable function.)

4.1.2 Demonstrations-Action Mismatch (D-AM)

Corrections can be expensive to obtain because doing so involves constant monitoring of
the agent. Demonstrations represent an alternative form of feedback that involves the
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oracle acting in the real world using πreal. Figure 3 depicts the process of obtaining data
from demonstrations. In this case, the oracle selects states based on the policy πreal in
the real world. The agent receives an observation oiagent of the chosen real-world state
sireal and computes the action it would take given that observation aiagent = πsim(oiagent).
The agent then observes the oracle’s action, aioracle = πreal(s

i
real). In this feedback type,

the agent does not learn about the acceptability of its own action; instead, it compares
its action to that of the oracle’s and uses action matches and mismatches as proxies for
acceptability. If the agent’s action matches the oracle’s action, aiagent = aioracle, the agent
knows its action is acceptable to perform in the real world. However, if the actions do
not match aiagent 6= aioracle, this does not necessarily mean that the agent performed an
unacceptable action, as multiple acceptable actions may exist for that state. The agent
notes a noisy unacceptable label for all action mismatches. This condition results in a
dataset, D = {(oagent, [l1, l2, ..., lk])}, with noisy unacceptable labels; thus, demonstrations-
action mismatch (D-AM) includes both SR noise and AM noise.

4.1.3 Demonstrations-Acceptable (D-A)

Corrections and demonstrations-action mismatch differ in two ways: distribution of data
and AM noise. We want to decouple these effects; thus, we include a condition without
AM noise. This feedback type, demonstrations-acceptable (D-A), is collected similarly to
D-AM and followed by a review period in order to get direct feedback about the agent’s
mismatched actions. For all states with action mismatches, the agent queries the oracle
function, A(sireal, πsim(oiagent)), to resolve action mismatch ambiguities. Thus, all noisy
unacceptable labels become either “safe” labels (because the agent’s action, while different
from the oracle’s, is acceptable) or true “unacceptable” labels (which confirm that the given
action is unacceptable). While AM noise is resolved in this condition, SR noise still exists.
The only difference between D-A and C is that D-A generates states according to πreal,
while C generates states according to πsim.

4.1.4 Random-Acceptable (R-A)

Demonstrations and corrections are forms of feedback that allow a human to naturally
provide information to an agent (Christiano et al., 2017). However, the visited states are
biased according to the policy that generated them; furthermore, collecting data based
on policies violates the i.i.d. assumption of supervised learning. To evaluate the effect of
this bias, we include two baseline approaches in which states are randomly selected. In
the random-acceptable (R-A) condition, states are randomly sampled in the real world.
For each state, the oracle provides a label using the acceptable function, and this label is
recorded. The data collection process is identical to D-A, except that states are now chosen
randomly.

4.1.5 Random-Action Mismatch (R-AM)

In the random-action mismatch (R-AM) condition, states within the real world are randomly
sampled, and the oracle computes its action for a given state based on πreal. The agent
records an action match as an acceptable label, and a mismatch as a noisy unacceptable
label. R-AM is identical to D-AM, except for the random sampling of states.
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Table 1: This table outlines the feedback types we consider in this work. We indicate the
types of noise each contains and whether each feedback can contain data bias.

Feedback Type SR Noise AM Noise Bias

Corrections (C) X - X
Demonstrations-action mismatch (D-AM) X X X

Demonstrations-acceptable (D-A) X - X
Random-action mismatch (R-AM) X X -

Random-acceptable (R-A) X - -

4.1.6 Summary of Feedback Types

All feedback types result in a dataset, D = {(oagent, [l1, ..., lk])}, which includes a set of
noisy acceptable and unacceptable labels for each agent observation. For feedback types
lacking AM noise, when an unacceptable label is given by the oracle for any real-world
state, the matching agent observation is marked as a blind spot. In other words, for each
(oagent, [l1, ..., lk]) ∈ D, if ∃li = 1, oagent is a blind spot. For an agent observation, if all
corresponding labels are acceptable, the agent should reason about the likelihood of the
observation being a blind spot or safe based upon the number of labels collected. If the
feedback type contains AM noise, the agent must reason about noisy unacceptable labels
when learning to identify blind spots.

D-AM is the most difficult type of feedback to reason about because it includes SR noise,
AM noise, and bias, while corrections represents the most informative feedback type because
it provides direct feedback about the agent’s policy. However, we expect demonstrations to
be easier to obtain than corrections because the oracle simply acts in the world according to
its policy. In Section 6, we discuss the biases and tradeoffs of using demonstrations versus
corrections data and how both of these compare to the baselines that involve randomly
sampled data. Table 1 summarizes all feedback types and the noise/bias observed in each.

4.2 Aggregating Noisy Labels

Across all conditions, the collected data has many noisy labels that must be aggregated.
Through data collection, we obtained a dataset of noisy labels, Dn = {(oagent, [l1, l2, ..., lk])},
for regions the agent has visited; these labels are noisy due to SR and AM noise. The model
must reason about these noisy labels obtained from the oracle in order to determine whether
the true label of the agent observation is “blind spot” or “safe.”

For label aggregation, we use the Dawid-Skene algorithm (DS), which is a popular
approach for addressing label noise in data collection (Dawid & Skene, 1979). We prefer
this approach because it has a small number of parameters to estimate, works well over
sparse data sets, and has been shown to consistently work well across problems (Sheshadri
& Lease, 2013). DS takes a dataset of noisy labels as input, and its goal is to predict the
true labels of instances by estimating the prior distribution of the data (the ratio of blind
spots vs. safe regions) and the confusion matrix, which is the noise model between noisy
labels (acceptable vs. unacceptable) and true labels (blind spots vs. safe). The algorithm
is unsupervised; it uses EM in its estimation.
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Algorithm 1 Dawid-Skene

Initialize: L̂ij = nim
Nc∑

m=1
nim

while not converged do
M step:

Ψjm =

|Dn|∑
i=1

L̂ijnim

Nc∑
m=1

|Dn|∑
i=1

L̂ijnim

αj =

|Dn|∑
i=1

L̂ij

|Dn|
E step:

L̂ij =

Nc∏
m=1

(Ψjm)nimαj

Nc∑
q=1

Nc∏
m=1

(Ψqm)nimαq

end while

Figure 4: This figure depicts the way in which
we constrain the Dawid-Skene algorithm for
feedback types with and without AM noise.
When there is no AM noise, the confusion ma-
trix can be constrained during learning, but
there is no such structure when the data col-
lected includes AM noise.

Algorithm 1 details the full approach. Assume that L̂ij represents the probabilities that
each datapoint in the data, i ∈ [1, 2, ..., |Dn|], is in each class: j ∈ [1, Nc], where Nc is the
number of classes. Because we are interested in labelling states as “safe” or “blind spot”,
we have Nc = 2 classes. For example, if L̂3,2 = 0.6, the 3rd state in the data is predicted
to be a blind spot with 0.6 probability and safe with 0.4 probability. The prior of safe vs.
blind spot agent states is denoted as αj where j ∈ [1, .., Nc] and the confusion matrix is
Ψjm where j,m ∈ [1, .., Nc]. First, the true labels of instances are initialized by averaging
the labels for each agent observation. Then, in the M step, the confusion matrix and prior
are estimated based on the initialized true labels. Using these quantities, the true labels
are re-estimated in the E step by weighting based on the estimated noise. The algorithm
iterates until convergence.

Different forms of feedback are associated with particular noise types that can be used
to inform the aggregation approach. For example, for all feedback types without AM
noise (C, D-A, R-A), safe regions never receive unacceptable labels because when an agent
observation is truly safe for the agent, all corresponding real-world states will also be safe.
Also, since the agent receives direct signals based upon its actions, it will not receive noisy
labels from action mismatches. We can modify DS to leverage this property by constraining
the confusion matrix that DS attempts to estimate. Specifically, one row of the confusion
matrix (corresponding to safe regions) can be constrained to have 100% acceptable labels
and 0% unacceptable labels. The left-hand side of Figure 4 depicts the parameters that DS
must learn for feedback types without AM noise: the ratio of acceptable and unacceptable
labels for blind spot regions and the prior distribution of safe and blind spot regions.

In the presence of AM noise, the agent can take a different action from the oracle while
remaining safe; we denote this action mismatch as a noisy unacceptable label. As both

206



Blind Spot Detection for Safe Sim-to-Real Transfer

safe and blind spot regions can now receive either label (“acceptable” or “unacceptable”),
there is no structure within the data to constrain the noise estimation problem. Thus, for
feedback types with AM noise (D-AM, R-AM), we use the original DS algorithm to learn
all parameters, as shown in Figure 4. The output of aggregation is a dataset, Da = {(s =
oagent, l̂, c)}, where l̂ represents the estimated true label and c is the associated confidence.

4.3 Model Learning

With estimated true labels, we train a supervised learner to predict which observations in
the agent’s representation are likely to be blind spots in the real world. Due to the relative
rarity of blind spot regions, the major challenge in model learning is class imbalance. With
only a few blind spots, the model will learn to predict all regions as safe, which can be
extremely dangerous. To deal with class imbalance, we oversample blind spot instances
to generate balanced classes in the training data, and then calibrate the model to provide
better estimates.

The full model-learning process is as follows: a random forest (RF) classifier is trained
with data from aggregation Da = {(oagent, l̂, c)}, weighted according to c. The output is a
blind spot model M = {C, t}, which includes a classifier C and a threshold t. To learn M ,
the system performs a randomized hyperparameter search over RF parameters, runs three-
fold cross-validation with oversampled data for each parameter configuration, and obtains
an average F1-score. The hyperparameters with the highest average F1-score are chosen to
train the final model.

For the final training round, we reserve 30% of the full training data for calibration. We
oversample the rest of the data and train an RF classifier using the best parameters. In
order to calibrate the model after training on oversampled data, we vary the threshold that
specifies a cutoff probability for classifying an agent observation as a blind spot. For each
possible threshold t, the system measures the percentage of blind spots predicted by the
model on the held-out calibration data, and chooses t such that the prior of blind spots on
the calibration set matches the prior in the training data, as estimated by the DS approach.
The final output, M = {C, t}, includes the learned RF classifier, C, and the threshold, t.

5. Experimental Setup

In order to evaluate our system’s ability to identify blind spots, we conducted experiments
within two domains. For each domain, we used one version of the domain to train the agent
and a modified version to simulate a real-world setting that did not match the training
scenario.

5.1 Domains

The first domain is a modified version of the game Catcher, in which the agent is required
to catch falling fruits. In Catcher, a fruit starts from the top of the screen at a random
x location, then falls straight down at a constant speed. The agent controls a paddle at
the bottom of the screen that can remain stationary, move left, or move right. The state
of the game in the simulation environment is represented as [xp, xf , yf ], where xp is the x
location of the player and (xf , yf ) represents the fruit’s location. In simulation, the reward
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is proportional to the player’s x distance away from the fruit, or W − |xp − xf |, where W
represents the width of the screen.

For this domain, the real world is split into two regions: the left-hand side, which
appears exactly like simulation, and the right-hand side, which has a probability p of being
like simulation, and a probability 1 − p that a “bad” fruit will fall instead of the original
fruit. The agent receives a higher reward for moving away from bad fruits, denoted by
|xp − xf |. An additional high negative reward, -100, is given when xp = xf , because the
space directly under a bad fruit represents a high-danger region. The agent does not have
the fruit type feature in its representation, so it lacks the “true” representation of the real
world. Without the ability to distinguish between fruit types, the agent can never learn the
optimal policy.

The second domain is a variation of the game Flappy Bird. The goal is to fly a
bird through the space between two pipes. The state in simulation is represented by
[yt, yb, ya, va,∆x], where yt, yb, and ya represent the y locations of the top pipe, bottom
pipe, and agent, respectively; va is the agent’s velocity; and ∆x is the x distance between
the agent and the pipe. The agent can either move up or take no action, in which case
gravity begins to pull the bird downward. The simulation environment includes high pipes
and low pipes, and the agent must learn to fly high above the ground and then swoop
downward in order to pass between both low and high pipes. The agent receives +10 for
getting past a pipe, -10 for crashing, and +0.1 any time it flies above a certain threshold (to
encourage flying at a high altitude). In the real-world environment, pipes are composed of
different materials (copper and steel), which the agent is unable to observe. Copper pipes
close to the ground can cause a heavy wind to pass through, requiring the agent to be
cautious and fly low, while steel pipes do not cause heavy winds, and thus the agent should
fly at a high altitude before passing through them. The reward function remains the same
for the real-world setting, except that the agent receives +0.1 for flying below a specific
threshold (to encourage flying low) for copper pipes, and -100 when it flies high, because
this represents a high-danger region. Without knowledge of the pipe’s material, the agent
is unable to learn the optimal policy for both pipes.

5.2 Oracle Simulation

We assume access to an oracle O = {A(s, a), πreal} that provides feedback to the agent. We
simulate this oracle by obtaining an optimal policy πreal for the target task and constructing
an acceptable function A(s, a) that specifies which actions are acceptable in each state. This
function depends upon the domain, as well as how strict the given oracle is. A strict oracle
may only consider optimal actions to be acceptable, while a lenient oracle may accept most
actions except those that would lead to significantly lower Q-values.

To simulate different acceptable functions, we first trained an agent on the true real-
world environment to obtain the optimal real-world Q-value function, Qreal. We then
computed, for each state sreal ∈ Sreal, the difference in Q-values between the optimal
action and every other action: ∆Qisreal = Qreal(sreal, a

∗)−Qreal(sreal, ai), ∀ai ∈ A. The set
of all Q-value deltas, {∆Qisreal}, quantifies all possible mistakes the agent could make.

The deltas are sorted in ascending order from least-dangerous to costliest mistakes,
and the model chooses a cutoff delta value δ based on a specified percentile p at which
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to separate acceptable and unacceptable actions. This cutoff value is used to define the
acceptable function in an experimental setting – and, consequently, the set of blind spots
(agent observations with at least one unacceptable action in a real-world state mapping
to it) for the task. When A(s, â) is queried with agent action â, the oracle computes the
difference: ∆Qâ = Qreal(s, a

∗) − Qreal(s, â). If ∆Qâ < δ, action â is acceptable in state
s; otherwise, the action is unacceptable. An acceptable function A(s, a) = {Qreal, p} is
defined by the target Q-value function Qreal and a percentile p for choosing the cutoff. A
high p value simulates a lenient oracle, resulting in a greater number of acceptable actions
and fewer blind spots. Consequently, more AM noise exists, because if the oracle accepts
the majority of actions, there is a high chance that the agent will subsequently take an
acceptable action that differs from the action of the oracle. A low p value simulates a strict
oracle, because even actions with Q-values only slightly lower than the optimal will still be
considered blind spots. This results in less AM noise, because deviation from the oracle is
a strong indicator that the agent’s action is truly unacceptable.

5.3 Baselines

The first baseline is a majority vote (MV) aggregation method for the noisy labels. For
each state, MV takes the label that appears most frequently as the true label. The second
baseline is all labels (AL), which uses no aggregation and simply passes all data points to
a classifier. The model learning is the same for both our method and the baselines, which
we used to assess the benefit gained from using DS for aggregation.

We report the baselines’ performance when predicting blind spots based on the F1-score
to assess both the precision and recall of the predictions, as well as the accuracy of the
estimates of the likelihood of blind spots. We also compare results obtained with a strict
versus a lenient oracle. The strict oracle was chosen such that only the optimal action was
acceptable (no associated percentile p); for the lenient oracle, we used p = 0.95 for the
Catcher domain and p = 0.7 for the Flappy Bird domain. We chose these percentile values
to represent an acceptable function that was intuitive for these domains (e.g., unacceptable
to be too close to a bad fruit). Varying p will affect the ground truth set of blind spots and
in corrections, it will change when the oracle provides corrective feedback.

6. Results

Here, we present the results of our approach in both domains. We observed better per-
formance with our method compared with existing baselines, and also noted that different
forms of feedback induced biases within the data that affected the learned blind spot model.

6.1 Benefits of Aggregation

We first compared the performance of our approach, which uses DS for aggregation, to
existing baselines: majority vote (MV) and all labels (AL), on the Catcher domain. In
this section, we focus on feedback types with AM noise, because DS provides the greatest
benefit when noise cannot be easily recovered by simple techniques. We present blind spot
prediction performance for states visited during data collection, as this demonstrates the
difference between our approach and the baselines with regard to the ability to estimate and
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(a) R-AM with a strict oracle (b) R-AM with a lenient oracle

(c) D-AM with a strict oracle (d) D-AM with a lenient oracle

Figure 5: A comparison between our approach and baseline methods using random and
demonstration data and varying oracles within the Catcher domain.
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reduce noise in the training data. As depicted in Figure 5, we varied the number of oracle
labels received by the agent (the budget) and reported the resulting F1-scores, which were
weighted according to the “importance” of states (represented by how often the states were
visited by πsim). We ran the full experiment 25 times, and plotted the average performance
along with standard error bars. We further compared all of the approaches against one
another when applied with a strict versus a lenient oracle.

For the randomly sampled data, DS performed much better than MV and AL with both
strict and lenient oracles due to the uniformity of labels across all observations. Because
random samples are drawn from a uniform distribution, the agent receives observations
about states that correspond with blind spots that are not all visited when actions are
drawn according to the agent or oracle policy. DS could thus recover the prior and confusion
matrix that generated this data, while MV predicted most regions to be safe because safe
signals were much more common. AL exhibited lower accuracy because it did not aggregate
the labels, which resulted in a poor prior estimate of blind spot regions.

Performance dropped overall with demonstration data (compared to random data), since
feedback was biased based on the oracle’s policy, preventing the system from learning about
some blind spots that the agent would face during real-world task execution. Despite the
decrease in performance, DS still performed well compared with both MV and AL in the
presence of a strict oracle. With a lenient oracle, many safe regions were associated with
unacceptable labels (due to action mismatch noise) that an unsupervised learning method
such as DS could not completely recover. Nevertheless, DS performed equally well to MV,
and much better than AL.

Overall, DS performed well compared with the baselines; however, performance dropped
when states were sampled in a biased form rather than randomly, and also with a lenient
oracle rather than a strict one. We observed similar trends in the Flappy Bird domain with
regard to the benefit of DS versus baselines. We discuss details of the effect of feedback
types and resulting biases across the two domains in Section 6.3.

6.2 Effect of Feedback Type on Classifier Performance

Next, we evaluated the best-performing approach (learning with DS) while varying the
oracle feedback type. We evaluated the classifier on states observed in oracle feedback,
which measures the ability of DS to recover true labels from noisy ones; and on unseen
data, which highlights the ability of the classifier to generalize to unvisited regions. We
report F1-scores in Table 2 for each condition.

The results show that learning from random data performed well across conditions,
regardless of whether the condition included SR noise (R-A) alone or both SR and AM
noises (R-AM). R-AM performed well in these cases, despite the presence of AM noise,
because DS was able to recover the labels for randomly sampled data when the labels were
distributed uniformly across all agent observations. However, the performances of both R-A
and R-AM dropped when the oracle was lenient, as there were fewer blind spots to learn
from.

Our findings also indicate that the correlated nature of observations from demonstra-
tions and corrections overall reduced the performance of classifiers compared with random
data feedback types. In the strict oracle case, the performances of D-A, D-AM, and C
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Table 2: The effect of feedback type on classifier performance in the Catcher domain,
reported as F1-scores.

Strict Lenient

Feedback Type Seen Unseen Seen Unseen

R-A 0.996 0.994 0.825 0.700
R-AM 0.997 0.993 0.837 0.833
D-A 0.476 0.453 0.084 0.152

D-AM 0.487 0.477 0.209 0.274
C 0.478 0.461 0.636 0.520

were comparable because AM noise was low, resulting in similar feedback obtained from
corrections and demonstrations, because the monitoring oracle that corrected the agent
would redirect the agent any time it deviated from the optimal. On the other hand, a
lenient oracle would only correct an agent if an action would be very dangerous, resulting
in a more informative state distribution than that obtained through demonstrations. In
this case, both versions of demonstrations failed to collect observations about major blind
spot regions. Furthermore, D-A yielded few unacceptable labels due to the absence of AM
noise; this hurt the prior estimate and made it difficult for the system to learn an accurate
classifier. Thus, we report that D-A’s performance was even worse than that of D-AM for
this scenario.

6.3 Effect of Feedback Type on Oracle-in-the-Loop Evaluation

The ultimate goal of our work is to use limited feedback to learn a blind spot model of
the real world that could enable an agent to act more intelligently. Ideally, the agent
could use this model to selectively query for human help, avoiding costly mistakes without
overburdening the human. The next set of results evaluates the effectiveness of the learned
model in oracle-in-the-loop (OIL) execution. In this case, the agent executes actions in a
real-world environment using the source policy. When the learned model predicts a state to
be a blind spot using the learned calibrated threshold, the agent queries an oracle for the
optimal action, then takes this provided action and resumes acting according to its policy
in the world. We compared our method of querying the oracle based on the learned model
to an insufficiently cautious agent that never queried and an overly conservative agent that
always queried.

Figure 6 shows that in both domains, demonstrations and corrections provided different
feedback, and thus introduced separate biases into the data. Corrections provided direct
feedback about the actions the agent would take, while demonstrations followed the policy
of an optimal oracle. In the Catcher domain, an optimal oracle moved toward good fruits
and away from bad fruits; an agent trained in the source task with only good fruits learned
to move closer to all fruits. In Figures 6a and 6b, the fruits represent the movement of a bad
fruit, and the agent moving at the bottom represents the feedback bias. Demonstrations
provided observations about states that were far away from bad fruits, while corrections
provided observations about states closer to bad fruits. In the Flappy Bird domain, the
agent was required to be careful and fly low around copper pipes; as depicted in Figures
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(a) Catcher
Corrections

(b) Catcher
Demonstrations

(c) Flappy
Corrections

(d) Flappy
Demonstrations

Figure 6: The data bias of demonstrations and corrections observed in both the Catcher
and Flappy Bird domains.

6c and 6d, a demonstration would show the agent flying low for a copper pipe, while a
correction trajectory would allow the agent to fly slightly higher and correct only before it
went too far. This provides information about the more informative states the agent would
likely visit.

Figure 7 depicts the performance of our model on OIL evaluation with different feedback
types. We report performance as the number of oracle labels (budget) increases. The left
y-axis shows the reward obtained in the real-world environment by an agent that used
the model to query compared with an agent that never queried (NQ) and one that always
queried (AQ). On the same graph, the dotted line indicates the percentage of times the
agent queried the oracle for help using our model. Across all feedback types, the model
achieved higher reward than the NQ agent, while still querying with relative infrequence.

Figures 7a and 7c show that, with a lenient oracle, D-AM and C both yielded greater
rewards than NQ, while C had a lower percentage of queries. C, however, did obtain
less reward than D-AM, because corrections did not receive labels about many blind spot
regions, as the oracle steered the agent away from dangerous areas before the agent actually
visited them. Thus, when the agent began the task close to a blind spot region, the model
was uninformed about that part of the world, and thus the agent did not know to move
away. In Section 8.1, we introduce a modification to our approach that allows the agent to
learn about the blind spot regions it did not visit by estimating a dynamics model of the
world and propagating oracle labels to potential future states.

Interestingly, even though D-AM did not earn a high F1-score on classifier performance,
it performed well during OIL evaluation because D-AM considered any action mismatch
(where the agent deviated from the optimal action) as an unacceptable label, resulting in
an overly conservative agent that queried for help at all mismatches. For example, in the
Catcher domain, when the oracle was far away from a bad fruit and moving further from
it, D-AM marked these regions as blind spots due to action mismatches. When the agent
queried for help in these states, the oracle instructed the agent to move away. For D-A
(Figure 7b), states far from the fruit were resolved as safe; the agent thus moved towards
the fruit, but because there was never any demonstration data in which the agent was close
to bad fruits, D-A did not know to act. With a strict oracle (Figure 7d), all regions with
action mismatches were considered blind spots, so D-A did not have this issue and queried
the oracle in the same states as D-AM.
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(a) D-AM with a lenient oracle (b) D-A with a lenient oracle

(c) C with a lenient oracle (d) D-A with a strict oracle

Figure 7: Oracle-in-the-loop evaluation in the Catcher domain with varying feedback types.

Table 3: Reward and percentage of times queried for oracle-in-the-loop evaluation in the
Flappy Bird domain.

Strict Lenient

Feedback Reward % Queries Reward % Queries

AQ 12.69 100% 12.66 100%
NQ -318.77 0% -316.17 0%
D-A -151.15 25% -373.46 5%

D-AM -197.84 20% -186.46 23%
C -147.21 21% -125.44 14%
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We observed similar trends in the Flappy Bird domain, as shown in Table 3. With a strict
oracle, all three feedback types performed similarly and better than NQ, while also querying
much less frequently than AQ. With a lenient oracle, D-A performed poorly because the
initial states (where the oracle demonstrated how to fly low and between the pipes) were
resolved to be safe. The agent thus did not query and ended up flying high, resulting in
a substantial negative reward. Note that the classifiers used during OIL evaluation valued
precision as much as recall, meaning that they put equal emphasis on making a mistake and
querying the oracle unnecessarily. In cases where errors were more costly than querying,
the classifier threshold could be chosen accordingly to increase the aggregate reward of
oracle-in-the-loop execution in exchange for a larger percentage of queries to the oracle.

The key takeaway is that the type of feedback to use depends highly on the domain.
Corrections provides the most informative signals on the agent’s policy but can be more
expensive as it requires a human to be constantly monitoring a system. Further, in real-
world applications, human corrective feedback will likely be delayed, requiring an agent
to associate the feedback with some prior action, introducing another research challenge.
Demonstration data is often easier to obtain, but it provides feedback in a different region
of the world (based on the oracle’s policy). This can either result in a very conservative
agent that avoids dangerous regions through frequent querying or an agent that navigates
into uncharted territory and makes costly errors because the blind spot model is no longer
accurate. Depending on the constraints of a particular problem, the most suitable feedback
type for accurate blind spot learning may vary.

7. Relaxing Optimality Assumptions Analysis

Here, we present analyses of our approach when we relaxed two of our initial optimality
assumptions. The first assumption we made in our formulation was that the oracle policy
πreal was optimal in the real world, resulting in optimal demonstrations. In this section,
we evaluate the performance of our approach when the oracle’s policy was suboptimal in
the real world. The second assumption we made was that the policy πsim learned from
simulation was optimal; we also present an analysis of our approach with a suboptimal
πsim. Finally, we evaluate our method when we relaxed both assumptions simultaneously.

7.1 Suboptimal Oracle Policy πreal

In previous results, we assumed that the agent received demonstrations from an oracle
that always followed the optimal policy when acting in the real world. We relaxed this
assumption and incorporated an oracle that selected acceptable, but not necessarily optimal,
actions. To simulate a suboptimal oracle, in each state si ∈ Sreal, a random acceptable
action ai from the set of all possible acceptable actions {a ∈ A|A(si, a) = 0} was chosen by
the oracle, where A represents the set of all possible actions and A(si, a) is the acceptable
function. Collecting demonstrations from a suboptimal but acceptable oracle increases the
variety of acceptable and unacceptable labels in demonstration data, which can provide
more information to the agent. However, this also leads to a larger number of noisy signals
for blind spot discovery, because mismatches become more prevalent throughout.
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Figure 8: A visualization of differences in the data when an oracle followed an optimal vs. a
suboptimal policy. The red lines represent the separation boundaries that the Dawid-Skene
algorithm learned in order to distinguish safe and blind spot regions.

7.1.1 Difference in Data

First, we discuss the differences between the labels the agent receives when an oracle follows
an optimal policy vs. a suboptimal but acceptable policy. We analyze the data by observing
the ratio of acceptable and unacceptable labels for safe and blind spot regions.

In an ideal scenario, for DS to properly distinguish between the two different categories,
we want the proportion of acceptable and unacceptable labels to appear consistently dif-
ferent between safe and blind spot regions. As depicted in Figure 8, we observed that with
an optimal oracle providing demonstrations, two clusters within the safe region received
different proportions of labels. One cluster of the safe region had no action mismatches,
because these were areas that appeared in the simulation task with good fruits only, in
which the agent and oracle always acted optimally. Another cluster in the safe region ex-
isted, which represented areas in the real world in which the agent acted suboptimally, but
still acceptably; thus, both action matches and mismatches existed. Given the presence of
two different clusters in the safe region, DS, an unsupervised learning method, learned to
separate the safe regions with no action mismatches from all other regions; the red line in
Figure 8 conceptually represents what DS learned.

To better understand the two safe clusters, consider the Catcher example: only good
fruits fall on the left-hand side of the game, which is identical to the simulation environment.
If the oracle acts optimally here, its actions and those of the agent will always match, and
the agent will never receive an unacceptable label in this safe region. On the right-hand
side of the game, good fruits fall with a certain probability; otherwise, bad fruits fall.
Some parts of this region are safe, specifically areas where the agent might perform a
suboptimal but acceptable action that differs from the oracle’s optimal action, resulting in
action mismatches.

When an oracle follows a suboptimal policy, there are no longer two separate clusters
in the safe region. When the real world matches the simulation, the agent’s optimal action
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πreal, πsim DS Accuracy F1 Seen F1 Unseen OIL Reward OIL % Queries

Opt, Opt 0.477 0.134 0.258 44.855 0.288
Sub, Opt 0.929 0.628 0.396 -9.721 0.154
Opt, Sub 0.388 0.333 0.332 53.862 0.512
Sub, Sub 0.944 0.481 0.295 17.694 0.090

Table 4: A comparison of aggregation, classifier, and oracle-in-the-loop performance in the
Catcher domain when πsim and πreal were each set to both optimal and suboptimal.

and the oracle’s suboptimal action no longer always match. Figure 8 shows that only
two regions exist with a suboptimal oracle, because all agent observations receive both
acceptable and unacceptable labels from action mismatches. Interestingly, even though
the number of mismatches increases overall, the labels in the safe region become more
homogeneous, making it easier for DS to separate the two categories.

7.1.2 Aggregation and Classifier Performance

Figure 9a depicts the accuracy of the DS algorithm when obtaining data from an optimal
vs. a suboptimal oracle. The graph shows that with a low budget, DS’ accuracy is lower
with a suboptimal oracle policy πreal; this is because the proportions p3 and p4, as shown in
Figure 8, are not easily distinguishable. As the budget increases, the data from a suboptimal
policy helps DS to achieve greater accuracy because the ratio of acceptable and unacceptable
labels begins to differ between the safe and blind spot regions. Specifically, the percentage of
unacceptable labels from action mismatches is much higher in blind spot than in safe regions
(i.e., p4 � p3). With more action mismatches, it would intuitively seem that differentiating
between categories would become more difficult; however, with sufficient data, the action
mismatches are helpful for separating the two groups more easily.

The first two rows of Table 4 show the performance of each part of our pipeline when
the optimality of the oracle policy πreal was relaxed. The table depicts DS’ accuracy when
predicting safe and blind spot regions, the performance of the classifier on seen and unseen
data, and oracle-in-the-loop performance based on the predicted blind spots. (All of these
results are based on a high budget of 50,000 labels from the oracle.) DS’ accuracy improved
when πreal changed from optimal to suboptimal, which is consistent with Figure 9a.

For classifier performance, having a suboptimal oracle resulted in better F1-scores than
using an optimal oracle. For seen data, F1-scores were predominantly based on DS’ accuracy,
so it follows that the classifier predicted seen data well when DS had high accuracy. The
performance on unseen data was lower overall than seen data because it is difficult to
generalize well, but the suboptimal oracle condition still led to better performance than the
optimal condition.

7.1.3 Oracle-in-the-Loop Evaluation

We next analyze whether high aggregation performance translates to high performance
during oracle-in-the-loop (OIL) evaluation with suboptimal demonstration data. Figure 9b
indicates that with sufficient budget, an agent trained on optimal demonstrations could get
relatively close to achieving the optimal reward. Figure 9c shows that OIL performance
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(a) The accuracy of the
Dawid-Skene algorithm when
estimating safe and blind spot
regions given data from an op-
timal vs. a suboptimal oracle.

(b) Optimal πreal, Optimal
πsim. The agent could ef-
fectively avoid dangerous blind
spot regions and perform well in
OIL evaluation with a sufficient
budget.

(c) Suboptimal πreal, Optimal
πsim. The agent performed
worse with a larger budget, be-
cause the prior of blind spots
was estimated to be lower.

Figure 9: A comparison of an optimal vs. a suboptimal oracle policy πreal within the Catcher
domain. Figure 9a depicts DS’ accuracy, and Figures 9b and 9c show OIL performance.

actually dropped with suboptimal demonstrations as budget increased; this is because even
though Dawid-Skene’s performance was high, the prior of blind spots was predicted to be
lower than the true ground truth prior. With a larger budget, DS was more certain about
its predictions, but estimated a lower prior of blind spots. Our current approach chooses
to query in the world based on a threshold selected during model learning, which aims to
predict a similar percentage of blind spots in the calibration data as the training data. As
the prior was estimated to be lower than the ground truth for the suboptimal oracle, the
threshold was selected to be very high in order to prefer fewer predicted blind spots.

To evaluate the performance of our model invariant of the threshold, we compared the
ROC curves between the optimal and suboptimal oracle. Figure 10a indicates that with an
optimal oracle, the learned classifier did not predict much better than a random classifier,
with an AUC of 0.6. On the other hand, a classifier trained on suboptimal data yielded an
AUC of 0.96 (as shown in Figure 10b) because it was able to separate safe and blind spot
regions well across different settings of thresholds.

In order to understand the effect of prior estimation on OIL execution, we compared
the performance of an optimal and a suboptimal πreal when we fixed the prior to be the
true prior of blind spots in the data. This is, of course, an unrealistic condition, because
the agent would never know the true prior of blind spots; however, it shows that the model
can learn blind spots well if the prior can be better estimated. Figure 10c shows that with a
fixed prior of blind spots, an agent learning from suboptimal data can achieve much greater
reward than an agent learning from optimal data with the same prior.

Since we cannot set this manually to an unknown prior in the real world, we can instead
combine the strengths of both optimal and suboptimal data. Optimal demonstration data
helps the model to learn a more conservative prior, since many safe regions are predicted
to be blind spots; suboptimal demonstrations provide more uniformly distributed labels
that make it easier to disambiguate safe and blind spot groups. If there was an option to
query the oracle for specific forms of data, the agent could first query for a small amount
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of optimal data to learn a prior, and then ask for more data from a suboptimal policy that
would help to better predict blind spots in seen data. Figure 10d indicates that an agent
could indeed perform better by combining both forms of data. In our experiment, given a
particular budget on the x-axis, the agent queried for optimal data with 33% of its budget
and used these labels to estimate the prior of blind spots. It then queried for suboptimal
data with 67% of its budget to perform aggregation and predict blind spot probabilities for
each agent observation. The learned classifier used the prior estimated from optimal data
to set the threshold, resulting in much better performance during OIL evaluation than with
suboptimal data alone.

Overall, by using suboptimal instead of optimal demonstration data, the agent was able
to better predict safe and blind spot regions. In terms of real-world performance, the agent
that learns from optimal demonstrations earns a greater reward because it is more conser-
vative. This is an important point, because it demonstrates that classifier performance on
the test data is not the only measure to evaluate. Even with poor performance of blind
spot prediction, an agent could avoid blind spot regions altogether by being slightly more
conservative. In order to achieve both high aggregation and high OIL performance, one
approach is to learn the prior with a small amount of optimal data, then learn the blind
spot classifier with a set of suboptimal demonstrations; thus, the agent could benefit from
both forms of data for better overall performance.

7.2 Suboptimal Simulator Policy πsim

Another assumption we made was that the agent’s policy πsim learned from simulation
would be optimal with respect to the simulation world. Learning an optimal simulation
policy may not always be possible if the agent has limited training time; thus, we observed
the effect that a suboptimal policy has on the agent’s ability to identify blind spots and
perform well in the real world with an oracle in-the-loop. The agent trained in the simulation
environment for a limited time, and we evaluated our approach with this suboptimal πsim.

7.2.1 Difference in Data

In terms of differences in the collected data, we observed a greater number of unacceptable
labels from action mismatches for both safe and blind spot regions using a suboptimal
simulator policy, as compared to an optimal one. This is to be expected, because given that
the agent is taking suboptimal actions, there is a greater likelihood that the agent’s action
will not match that of the oracle in safe regions. Similarly, in blind spot regions, the agent’s
action will match the oracle’s less frequently; for example, in a blind spot region where a
bad fruit is close to the agent, two potential corresponding real-world states exist: one in
which a bad fruit is close, and one in which a good fruit is close. If the agent’s action is
suboptimal in the “good fruit” region, there will be more action mismatches, even for blind
spot regions.

Taking a closer look at the label distribution, when πsim is suboptimal, many safe regions
never receive a “safe” label. The agent always takes the suboptimal action in these states,
while the oracle always takes the optimal action. Thus, the agent will only receive action
mismatch labels, making it impossible for DS to predict these agent observations as safe.
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(a) ROC curve for an optimal πreal with
an AUC of 0.6.

(b) ROC curve for a suboptimal πreal with
an AUC of 0.96.

(c) Optimal vs. suboptimal oracle with a
fixed prior.

(d) Combined optimal+suboptimal on
OIL evaluation.

Figure 10: A comparison of optimal and suboptimal πreal demonstrations in the Catcher
domain through an analysis of the ROC curve. A classifier trained with suboptimal data
(Figure 10b) was better able to separate safe and blind spot regions compared with one
trained with optimal demonstration data (Figure 10a).

220



Blind Spot Detection for Safe Sim-to-Real Transfer

(a) Optimal πreal, Suboptimal πsim.
The estimated prior of blind spots from
DS was high, so the agent queried fre-
quently and performed well.

(b) Suboptimal πreal, Suboptimal πsim.
The agent’s OIL performance decreased
as budget increased.

Figure 11: OIL performance with a suboptimal πsim in the Catcher domain. Performance
is compared between an optimal and suboptimal πreal.

7.2.2 Aggregation and Classifier Performance

When the agent learns an optimal simulator policy, the Dawid-Skene algorithm learns to
separate observations with only “safe” labels from everything else. With a suboptimal
simulator policy, there is an increase in the number of agent observations with only action
mismatches. Thus, DS learns to separate regions with action mismatches alone from all
other observations, resulting in similar accuracy for both optimal and suboptimal policies
on aggregation. However, the suboptimal πsim obtains a better F1-score than the optimal
πsim, because the prior from DS was estimated to be high for blind spots. The threshold
chosen during model learning allows for prediction of a greater number of blind spots.

7.2.3 Oracle-in-the-Loop Evaluation

Because DS predicts a higher prior for blind spots, a suboptimal πsim actually performs
better than an optimal πsim during OIL evaluation. The agent predicts many safe regions
to be blind spots and queries the oracle for help; this allows the agent to avoid dangerous
regions, but also results in more unnecessary (and undesirable) querying.

Also, the worst possible reward that an agent can receive by never querying is higher
for a suboptimal simulator policy compared with an optimal simulator policy. This is not
intuitive, but is an artifact of our domain and reward function. In the Catcher domain, if
the agent consistently moves toward a bad fruit, the agent receives a negative reward. When
the agent takes a suboptimal action, it actually receives a better reward: for example, if a
bad fruit is present, the agent interprets it as a good fruit and would move closer if πsim
were optimal, resulting in some reward, x. However, if the agent were to act suboptimally
in that state, it would either remain stationary or move left, both of which would result in
> x reward.

221



Ramakrishnan, Kamar, Dey, Horvitz, & Shah

Figure 12: This figure summarizes the results from relaxing πreal and πsim. When πreal
was suboptimal, it became easier for Dawid-Skene to aggregate labels. When πsim was
suboptimal, the prior of blind spots increased, improving classifier and oracle-in-the-loop
performance.

7.3 Suboptimal Oracle Policy πreal and Suboptimal Simulator Policy πsim

When both assumptions were relaxed, performance improved over that observed when ei-
ther assumption was relaxed separately. Figure 12 summarizes the results of each possible
variation of πreal and πsim being optimal vs. suboptimal. The horizontal axis varies πreal,
and the vertical axis varies πsim. The figure highlights changes to aggregation, classifier,
and OIL performance when moving from one assumption box to another.

By receiving more varied demonstrations from a suboptimal πreal, the agent can better
separate safe and blind spot regions because the proportions of acceptable and unaccept-
able labels are more separable between the two classes, resulting in improved aggregation
performance. With a suboptimal πsim, the prior of blind spots predicted from DS increases,
resulting in a threshold that predicts a greater number of states as blind spots. This leads
to a conservative agent that queries much more frequently, thus achieving better reward on
the task.

8. Data Augmentation Improvements

We now present two improvements to our pipeline that boost performance when working
with correction and demonstration data. The first improves the performance of corrections:
estimating the transition model of the world and propagating unacceptable signals to later
states even when the agent never visits those states (as they are dangerous and the oracle
will not allow the agent to go there). The second improves demonstrations: augmenting
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(a) Original corrections data.
The agent was unable to
achieve the same performance
because it lacked signals
about blind spot regions that
it never visited.

(b) πsim in the real world,
without action corrections.
(Note this is an unsafe and
infeasible data collection
method, and is only used as a
comparison to corrections.)

(c) Corrections along with
additional labels propagated
by estimating the transition
model of the real world. The
agent achieved performance
similar to πsim without cor-
rections, but safely.

Figure 13: The system’s performance in the Catcher domain when propagating unacceptable
labels to future states based on an estimated transition model of the world. This resulted
in improved performance with corrections data, while also maintaining safety.

demonstration data with corrections to have better exposure in the real world, and thus
improved prediction of blind spots.

8.1 Boosting Corrections Performance

The first improvement is intended to increase performance when using corrections data.
When the agent obtains labels from corrections, it receives direct signals about its own ac-
tions. Consequently, the unacceptable labels the agent receives are true labels, not based on
action mismatches. The issue, however, is that the agent never receives labels in dangerous
blind spot regions, since the oracle always steers the agent away before the agent reaches
that area. Figure 13a depicts the performance of an agent using corrections to predict blind
spots within the Catcher domain: it was unable to achieve high OIL performance because
when it began the task close to blind spot regions, it did not have a good model of blind
spots and therefore had not learned to avoid them.

To analyze the impact of an agent not receiving signals when close to blind spot regions,
we ran an experiment with a modification in the data collection for corrections. With the
original corrections feedback type, the agent receives labels from the oracle, and in the event
of unacceptable labels, the oracle steers the agent away from blind spots by providing the
optimal action to take at that state. With our modification, the agent simply uses πsim
directly in the real world during data collection, and obtains acceptable and unacceptable
labels without being corrected. This allows the agent to receive true labels for many more
blind spots, resulting in more accurate blind spot modeling. However, running πsim without
corrections cannot be safely transferred to the real world; we include the analysis here only
in order to assess the benefit of the agent receiving signals about blind spot regions. Figure
13b indicates that this modified form of corrections feedback performed much better than
the original during OIL evaluation in Catcher.
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(a) This approach uses original correc-
tions data to learn a blind spot model.

(b) This approach uses corrections with
propagated labels based on potential fu-
ture states the agent might visit.

Figure 14: Performance in the Flappy Bird domain with the corrections augmentation.

Since running πsim without action corrections can be dangerous and may involve costly
errors, the agent can instead propagate the unacceptable labels it receives to future states
based on which regions the agent thinks it will go to. In other words, the agent can
safely obtain data using the original corrections feedback type (in which the oracle steers
the agent away from dangerous regions). However, to better model blind spot regions
without labels from the oracle, the system can estimate the dynamics model of the world
and propagate unacceptable labels to potential future states. To do this, the system first
collects data from corrections in the original form (with action corrections), providing the
agent with acceptable and unacceptable signals. Our system then estimates the transition
model of the real world, T̂real(oagent, a, o

′
agent), using this corrections data. This transition

model estimate is based on the agent observation space, oagent ∈ Sagent, because this is the
representation the agent has when recording data from the oracle. We chose to estimate
the transition model of the real world, rather than the one in simulation, because this is
more representative of the world that the agent will operate in. If the agent has access
to very little real-world data, however, another possible approach would be to estimate an
approximate transition model of the simulation world and use it as a proxy for estimating
real-world dynamics.

Given T̂real(oagent, a, o
′
agent) and the labels obtained through corrections, our system

propagates every unacceptable label a few steps forward. This can then be modified to
propagate a decaying unacceptable label over a longer sequence. The aim of propagation
is to provide better labels for blind spot regions that the agent never visited. However, by
artificially creating these new labels, our system may unintentionally apply unacceptable
labels to safe regions, which could result in overprediction of blind spots. However, as long as
overprediction is minimal, this method remains preferable to the original corrections method
because it results in a slightly more conservative and safer agent. Figure 13c indicates that
when the system estimates the transition model and propagates unacceptable signals, the
system obtains similar performance to πsim on the Catcher domain, while also maintaining
safety.
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This improvement for corrections data leads to higher performance in the Flappy Bird
domain as well. Figure 14a depicts OIL performance with the original corrections data: in
this case, the agent was able to obtain much higher reward compared with an agent that
never queried, and it only queried approximately 15% of the time. However, the agent was
unable to obtain a maximum reward close to that obtained by an agent that always queried.
In Figure 14b, we include the propagation of correction labels to potential future states;
this addition improved performance during OIL evaluation to be closer to the best possible
reward.

8.2 Boosting Demonstrations Performance

The second improvement involves boosting performance when using demonstrations, since
demonstration data suffers from limited state exposure. In the Catcher example, demon-
stration data only includes states located near good fruits and far away from bad fruits. The
agent never sees regions close to bad fruits; however, these are still important areas that the
agent would visit in the real world. Earlier results indicated that an agent using demon-
stration data obtained low F1-scores on classifier performance, but was able to perform
relatively well on OIL performance with sufficient budget by being extra-conservative.

To improve F1-scores and OIL performance, we analyzed a feedback type where the
agent was able to review all action mismatches in demonstration data with the oracle (D-A).
Our findings showed that reviewing these action mismatches did not improve performance
– and, in fact, resulted in a performance drop. Regions with mismatches were resolved to
be safe, leading the agent to unsafe regions for which it had no data and thus did not know
to query the oracle. Since reviewing action mismatches in demonstration data did not help,
another option would be to augment the space of visited states in demonstrations with a
new set of states obtained from corrections data. Imagine that the agent has access to a set
of demonstrations: to improve performance, the system could ask the oracle for a limited
monitoring session in the real world in order to collect more data.

In our experiments, we set a constant budget of 250 labels obtained from demonstra-
tion data to which the agent already had access. We then observed the performance of
our approach as demonstration data was increasingly combined with more data obtained
through corrections. Figure 15a indicates that in the Catcher domain, the F1-score for seen
data improved considerably with the addition of corrections data. Corrections data did
not contain any action mismatches, and was therefore easier for the Dawid-Skene algorithm
to separate. The performance improvement resulting from DS in turn improved classifier
performance on both seen and unseen data. Figure 15b depicts OIL performance in Catcher
of an agent that learned only from demonstrations (D-AM) vs. an agent that learned from
both demonstrations and corrections data (D-AM + C). We used the modification proposed
in Section 8.1 to propagate unacceptable labels for the corrections data, and found that D-
AM + C performed considerably better than D-AM alone. In the Flappy Bird domain,
we observed similar benefits from augmenting demonstrations data with corrections data.
While keeping the amount of demonstration data constant at 1,000 labels, we increased the
amount of combined corrections data; Figure 15c indicates the benefit to reward obtained
in the real-world environment with this augmented data in Flappy Bird.
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(a) Classifier performance on
seen data when incorporat-
ing data from demonstrations
alone vs. demonstrations aug-
mented with corrections data
in the Catcher domain.

(b) OIL performance when us-
ing data from demonstrations
alone vs. demonstrations with
additional corrections data in
Catcher.

(c) OIL performance in
Flappy Bird comparing
demonstrations alone with
demonstrations and addi-
tional corrections data.

Figure 15: Assessing the benefit of combining demonstrations data with additional correc-
tions data to increase exposure and improve performance.

9. Discussion

In this work, we formulate the problem of identifying blind spots of AI systems that occur
due to limited state representation. Many current safe AI methods assume sufficient repre-
sentation for learning and acting (Garcıa & Fernández, 2015; Saunders et al., 2017; Kahn
et al., 2017), but when that representation is insufficient, these approaches can break down.
Our system explicitly learns how to find these errors through the help of an external oracle
or human; using this feedback, agents can better understand their own failures and query
for help accordingly.

We envision a future with safer deployment of more self-aware AI systems, allowing
for iterative refinement with safely obtained real-world data. Our approach to learning
blind spots provides a first step toward using human feedback to identify agent failures.
Given an agent’s flawed representation, we introduce a step to intelligently aggregate sig-
nals provided by an oracle operating within a different representation, and demonstrate in
our experiments that our blind spot model enables an agent to avoid costly mistakes while
querying with relative infrequence. This approach identifies blind spots due to representa-
tion incompleteness. Other types of blind spots, such as those due to incorrect models of
reward or transitions, can also be included into the approach to enable an agent to better
understand its errors.

There are many interesting steps for future work. Our current approach still requires
sufficient oracle data to learn blind spots. Active learning can be used to reduce the number
of labeled data points by intelligently querying for labels at important states. One challenge
in this setting is that the agent must query for trajectories rather than single data points
(as in supervised learning). This requires the agent to reason about possible futures and
select a trajectory query that will lead to the greatest information gain across the full
set of points. To enable the human to provide richer feedback, the model can also be
relaxed to take a continuous quality rating from the human, rather than a binary label for
acceptable/unacceptable actions.
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Generalizing human feedback to communicate information not only about actions but
also about states can be challenging because the representations of the agent and the human
do not match. One solution is to query through an interpretable communication channel
that leverages an easy-to-understand structure. One such example would be to use linear
temporal logic (Shah, Kamath, Shah, & Li, 2018a) or object representations (Diuk, Cohen,
& Littman, 2008; Ramakrishnan, Narasimhan, & Shah, 2016) as a shared medium or to use
other forms of data querying, such as preference elicitation (Christiano et al., 2017; Bıyık
& Sadigh, 2018). To reduce the burden on the human helper, the agent could also make a
more informed decision about whether to query or proceed with an action if the agent knew
the relative cost of making a mistake in the world vs. the cost of querying an oracle. Adding
such decision-theoretic analyses can be a principled way of deciding how to act in the real
world using the learned blind spot model and can improve human-agent coordination.

In future work, we would like to apply our method to more complex problems and
richer real-world applications. Specifically, some avenues for future research include evalu-
ating with real human users, scaling up the approach to high-dimensional state represen-
tations, and applying the method to specific applications (such as autonomous driving and
robotics). Collecting data from human users can introduce new challenges, such as access
to even smaller sample sizes and the presence of additional forms of noise. As discussed
earlier, active querying to users represents one way of learning good models when the cost
of obtaining data is high. Human feedback in real-world applications can have added noise
due to the delay in correction signals. Realistically, people cannot provide action correc-
tions instantaneously due to slow human reflexes, which can cause an agent to misinterpret
signals. Thus, it is important for the agent to learn how to perform credit assignment and
penalize the most likely action the human was referring to. Human studies could help us
better understand how to augment our blind spot model learning.

In addition to working with people, we would like to explore how our approach could
be modified to work in high-dimensional and continuous state representations. First, an
agent’s policy learned from simulation will likely be a high-dimensional neural network.
Similarly, the oracle’s acceptable function and policy will also be high-dimensional. In
the data collection step, a human would provide labels at states, but because states can
be continuous, many states will not map to a single agent observation. To address this,
we can introduce an additional clustering step to identify similar states or learn a set of
domain-agnostic features (Stadie, Abbeel, & Sutskever, 2017) that capture the essential
components of the task independent of visual appearance. Representing states in terms
of a domain-agnostic, lower-dimensional space can also make learning more tractable in
continuous settings. For example, estimating a transition model of the world to propagate
human signals to future dangerous states can improve our prediction of blind spots (Section
8.1), but it may be difficult to estimate in a high-dimensional space. Thus, we can instead
estimate a lower-dimensional transition model that is more tractable.

Once these labels are assigned to similar states in a lower-dimensional space, we can
use our aggregation step to combine these labels. The model learning step may involve
building a larger and more complex model, like a deep neural network, that can capture
rich relationships. When data is unbalanced in continuous problems and oversampling and
undersampling do not provide enough diversity, data augmentation techniques can be used.
Training a blind spot model based on domain-agnostic features can lead to more robust
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predictions in the real world. Finally, using our approach in real-world applications would
be an interesting and impactful direction for future work. Understanding the types of blind
spots that exist in today’s AI systems (such as self-driving cars and commercial robots)
could inform the addition of other improvements to our method.

10. Conclusion

In this work, we addressed the challenge of discovering agent blind spots in reinforcement
learning when the state representation of an agent does not sufficiently describe the real-
world environment. We proposed a methodology to explicitly handle noise induced by this
representation mismatch, as well as noise from low-precision oracle feedback. Our approach
achieved better performance than baseline methods when predicting blind spots in the real-
world environment. We additionally showed that this learned model helped to avoid costly
mistakes during real-world execution, while also drastically reducing the number of oracle
queries. We discussed the biases caused by different types of feedback (namely, demonstra-
tions and corrections), and assessed the benefits of each based on domain characteristics.
Finally, we included an analysis of how our model performed when optimality assumptions
were relaxed and added data augmentation improvements to enable more accurate blind
spot predictions when using corrections and demonstrations data. Further investigations
are necessary for ideal integration of blind spot models into oracle-in-the-loop execution by
trading off the cost of a mistake with the cost of querying an oracle. We also noted the
possibility of moving beyond a heavy reliance upon high-quality training data via active
learning approaches that can obtain more informative feedback from the oracle.
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