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Abstract 

We consider the challenge of predicting the en-

gagement of people with an open-world dialog 

system, where one or more participants may es-

tablish, maintain, and break the communication 

frame.  We show in particular how a system can 

learn to predict an intention to engage from 

multiple observations that are extracted from a 

visual analysis of people coming into the prox-

imity of a system. 

1 Introduction 

We address the challenge of predicting the forthcoming 

engagement of people with conversational systems in 

relatively unconstrained environments, where multiple 

participants might come and go, establish, maintain and 

break the communication frame, and simultaneously 

interact with a system and with others. Examples of 

such open-world dialog (Bohus and Horvitz, 2009a) 

include people passing by an interactive billboard in a 

mall, robots in a home environment, intelligent home 

control systems, interactive systems that offer assistance 

and provide support during procedural tasks, etc. 

With traditional closed-world dialog systems the en-

gagement problem is generally resolved via simple, un-

ambiguous signal.  For example, engagement can be 

assumed in such systems when a phone call is answered 

by a telephony dialog system. Similarly, a push-to-talk 

button is a clear engagement signal in speech enabled 

mobile applications. These solutions are typically inap-

propriate however for systems that must operate conti-

nuously in open environments, working to engage and 

support different people and groups over time. Such 

systems should ideally be ready to initiate dialog in a 

fluid, natural manner and work to understand and en-

gage users who are both close by and at a distance. Par-

ticipants include both people with a standing plan to 

interact with a system, and those whom opportunistical-

ly decide to engage with a dialog system, in-stream with 

their other ongoing activities.  They need to minimize 

false positives of engaging someone who may come into 

the proximity of a system or just be passing by the sys-

tem, while also minimizing the unnatural delays and 

discontinuities that come with false negatives about 

engagement intentions. 

(Bohus and Horvitz, 2009b) describes a computa-

tional model for supporting fluid engagement in open-

world contexts. The proposed situated, multiparty en-

gagement model harnesses components for sensing the 

engagement state, actions, and intentions of multiple 

participants in the scene, for making high-level en-

gagement control decisions, and for rendering these 

decisions using appropriate, coordinated low-level be-

haviors, such as the changing pose and expressions of 

the face of an embodied agent. We shall focus on the 

sensing component of this larger model and describe an 

approach for automatically learning to detect engage-

ment intentions from interaction. 

2 Related Work 

The challenges of engagement among people, and be-

tween people and computational systems, have received 

attention in several communities, including sociolin-

guistics, conversational analysis, and in the human-

computer interaction communities. In an early treatise, 

Goffman (1963) discusses how people use cues to detect 

engagement in an effort to avoid the social costs of en-

gaging in interaction with an unwilling participant. In 

later work, Kendon (1990a) presents a detailed investi-

gation of greetings in human-human interaction, based 

on video sequences. Several stages of complex coordi-

nated action (pre-sighting, sighting, distance salutation, 

approach, close salutation) are identified and discussed, 

together with the head and body gestures that they typi-

cally involve. In (1990b), Kendon introduces the notion 

of an F-formation, a pattern said to arise when “two or 

more people sustain a spatial and orientational relation-

ship in which they have equal, direct, and exclusive 



access,” and discusses the role of F-formations in estab-

lishing and maintaining social interactions. Argyle and 

Cook (1976) as well as others (Duncan, 1972; Vertegaal 

et al., 2001) have identified and discussed the various 

functions of eye gaze in communication and in main-

taining social engagement. Overall, this body of work 

suggests that engagement is a rich, mixed-initiative, and 

well-coordinated process that relies on non-verbal cues 

and signals, such as spatial trajectory and proximity, 

gaze and mutual attention, head and hand gestures, as 

well as verbal greetings.  

More recently, a number of researchers have investi-

gated issues of engagement in human-computer and 

human-robot interaction contexts. Sidner et al. (2004; 

2005) define engagement as “the process by which two 

(or more) participants establish, maintain and end their 

perceived connection during interactions they jointly 

undertake,” and conduct a user study that explores the 

process of maintaining engagement. They show that 

people directed their attention to a robot more often 

when the robot makes engagement gestures throughout 

an interaction, i.e. tracked the user’s face, and pointed to 

relevant objects at appropriate times in the conversation. 

Peters et al (2005a; 2005b) use an alternative defini-

tion of engagement as “the value that a participant in an 

interaction attributes to the goal of being together with 

the other participant(s) and of continuing the interac-

tion,” and present the high-level schematics for an algo-

rithm for establishing and maintaining engagement. The 

proposed algorithm highlights the importance of mutual 

attention and eye gaze in this process and relies on a 

heuristically computed interest level to decide when to 

start a conversation.  

Michalowski et al (2006) propose and conduct expe-

riments with a spatial model of engagement. The model 

is grounded in proxemics (Hall, 1966) and classifies 

relevant agents in the scene in four different categories 

based on their distance to the robot: present (standing 

far), attending (standing closer), engaged (next to the 

robot), and interacting (standing right in front of the 

robot). The robot’s behaviors are conditioned on the 

four categories above: it turns towards attending people, 

greets engaged people and verbally prompts interacting 

people for input if they are not typing. The authors dis-

cuss several important lessons learned from an observa-

tional study conducted with the robot in a building lob-

by.  They find that the fast-paced movements of people 

in the environment pose a number of challenges: often 

the robot greeted people that passed by too late (earlier 

anticipation was needed), or greeted people that did not 

intend to engage (more accurate anticipation was 

needed). The authors recognize that these limitations 

stem in part from their reliance on static models, and 

hypothesize that temporal information such as speed 

and trajectory may provide additional cues regarding a 

person’s future engagement with the robot. 

We expand in this paper our previous work on a si-

tuated multiparty engagement model (Bohus and Hor-

vitz, 2009b), and focus our attention on a key issue in 

managing the engagement process: detecting whether or 

not a user intends to engage in an interaction with a sys-

tem. We introduce an approach that significantly im-

proves upon existing work (Peters 2005a, 2005b; Mi-

chalowski et. al, 2006) in several ways. Most important-

ly, we construct data-driven, predictive models from an 

array of observations that includes temporal features.  

The use of machine learning techniques allows a system 

to adapt to the specific characteristics of its physical 

location and to the behaviors of the surrounding popula-

tion of potential participants. Finally, no developer su-

pervision is required, as the supervision signal is ex-

tracted automatically, in-stream with the interactions.  

3 Situated Multiparty Engagement Model 

To set the broader context for the experiments on en-

gagement, we shall briefly review the overall frame-

work for managing engagement in an open-world set-

ting. The engagement model outlined in (Bohus and 

Horvitz, 2009b) is centered on a reified notion of inte-

raction, defined as a basic unit of sustained, interactive 

problem-solving. Each interaction involves two or more 

participants, and this number may vary in time; new 

participants may join and current participants may leave 

an existing interaction at any point in time. The system 

is actively engaged in at most one interaction at a time 

(with one or multiple participants), but it can simulta-

neously keep track of additional, suspended interactions. 

In this context, engagement is viewed as the process 

subsuming the joint, coordinated activities by which 

participants initiate, maintain, join, abandon, suspend, 

resume, or terminate an interaction. 

Successfully managing this process requires that the 

system (1) senses and reasons about the engagement 

state, actions and intentions of multiple agents in the 

scene, (2) makes high-level engagement control deci-

sions (i.e. about whom to engage or disengage with, and 

when) and (3) executes and signals these decisions to 

the other participants in an appropriate manner (e.g. via 

a set of coordinated behaviors such as gestures, greet-

ings, etc.) The proposed model, illustrated in Figure 1, 

subsumes these three components. 

The sensing subcomponent in the model tracks the 

engagement state, engagement actions, and engagement 

intention for each agent in the visual scene. The en-

gagement state, 𝐸𝑆𝑎
𝑖 (𝑡), denotes whether an agent 𝑎 is 

engaged in interaction 𝑖 and is modeled as a determinis-

tic variable with two possible values: engaged and not-

engaged. The state is updated based on the joint actions 

of the system and the agent.  



Figure 1. Graphical model showing key variables and 

dependencies in managing engagement. 
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A second engagement variable, 𝐸𝐴𝑎
𝑖 (𝑡), models the 

actions that an agent takes to initiate, maintain or termi-

nate engagement. There are four possible engagement 

actions: engage, no-action, maintain, disengage. These 

actions are tracked by means of a conditional probabilis-

tic model that takes into account the engagement state 

𝐸𝑆𝑎
𝑖 (𝑡), the previous agent and system actions, as well 

as additional sensory evidence Ψ capturing committed 

engagement actions, such as: salutations (e.g. “Hi!”); 

calling behaviors (e.g. “Laura!”); the establishment or 

the breaking of an F-formation (Kendon, 1990b); ex-

pected opening dialog moves (e.g. “Come here!”) etc.  

A third variable in the proposed model, 𝐸𝐼𝑎
𝑖 (𝑡) , 

tracks whether or not each agent intends to be engaged 

in a conversation with the system. Like the engagement 

state, the intention can either be engaged or not-

engaged. Intentions are tracked separately from actions 

since an agent might intend to engage or disengage the 

system, but not yet take an explicit engagement action. 

For instance, let us consider the case in which the sys-

tem is already engaged in an interaction and another 

agent is waiting in line to interact with the system: al-

though the waiting agent does not take an explicit, 

committed engagement action, she might signal (e.g. via 

a glance that makes brief but clear eye contact between 

the agent and dialog systems) that her intention is to 

engage in a new conversation once the opportunity aris-

es. More generally, the engagement intention captures 

whether or not an agent would respond positively 

should the system initiate engagement. In that sense, it 

roughly corresponds to Peters’ (2005; 2005b) “interest 

level”, i.e. to the value the agent attaches to being en-

gaged in a conversation with the system. Like engage-

ment actions, engagement intentions are inferred based 

on probabilistic models that take into account the cur-

rent engagement state, the previous agent and system 

actions, the previous engagement intention, as well as 

additional evidence that captures implicit engagement 

cues, e.g. the spatiotemporal trajectory of the 

pant, the level of sustained mutual attention, etc.  

Based on the inferred engagement state, actions, and 

intentions of the agents in the scene, as well as other 

additional high-level evidence such as the agents’ in-

ferred goals (𝐺), activities (𝐴) and relationships (Γ), the 

proposed model outputs engagement actions – denoted 

by the 𝑆𝐸𝐴 decision node in Figure 1. The action-space 

consists of the same four actions previously discussed: 

engage, disengage, maintain and no-action. At the low-

er level, the engagement decisions taken by the system 

are translated into a set of coordinated lower-level beha-

viors (𝑆𝐸𝐵) such as head gestures, making eye contact, 

facial expressions, salutations, interjections, etc. 

In related work (Bohus and Horvitz, 2009a; 2009b), 

we have demonstrated how this model can be used to 

effectively create and support multiparty interactions in 

an open-world context. We focus here our attention on 

one specific subcomponent in this framework: the mod-

el for detecting engagement intentions.  

4 Approach 

To illustrate the problem of detecting engagement inten-

tions, consider for instance a situated conversational 

agent that examines through its sensors the scenes from 

Figure 3. How can the system detect whether the person 

in the image intends to engage in a conversation or is 

just passing-by? Studies of human-human conversation-

al engagement (Goffman, 1963; Argyle and Cook, 1976; 

Duncan, 1972; Kendon, 1990, 1990b) indicate that 

people signal and detect engagement intentions by pro-

ducing and monitor for a variety of cues, including sus-

tained attention, trajectory and proximity, head and 

hand gestures, etc.  

We shall investigate the value of employing machine 

learning to enable an open-world interactive system to 

learn to detect the specific patterns that characterize an 

engagement intention and thus, forthcoming engage-

ment, directly from interaction. In general, as discussed 

in the previous section, the engagement intentions of an 

agent may evolve temporally under the proposed model, 

as a function of the various system actions and beha-

viors (e.g. an embodied system that makes eye contact, 

or smiles, or moves toward a participant might alter the 

engagement intention of that participant). In this work 

we concentrate on a simplified problem, in which the 

system’s behavior is fixed (e.g. system always tracks 

people that pass by), and the engagement intention can 

be assumed constant within a limited time window.  



Figure 3. Placement and visual fields of view for  

side (right) and front (left) orientations. 
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The central idea of the proposed approach is to start 

by using a very conservative (i.e., low false-positives) 

detector for engagement intentions, such as a push-to-

engage button, and automatically gather sensor data 

surrounding the moments of engagement, together with 

labels that indicate whether someone actually engaged 

or not. In most cases the system eventually finds out if a 

person becomes engaged with it. If we assume that an 

intention to engage existed for a limited window of time 

prior to the moment of engagement, the collected data 

can then be used to learn a model for predicting this 

intentions ahead of the actual moment of engagement.  

Previous work on detecting engagement intentions 

has focused on static heuristic models that leverage 

proximity and attention features (Peters, 2005, 2005b; 

Michalowski, 2006). The use of machine learning al-

lows us to consider such observations as trajectory, 

speed, and attention of a potential participant over time. 

As previously discussed, psychologists have shown the 

important role of geometric relationships and trajecto-

ries in signaling and detecting engagement intentions. 

The patterns of engagement can therefore be highly de-

pendent on the physical surroundings and on the place-

ment of the system.  The data-driven approach we pro-

pose enables a system to learn how to predict forthcom-

ing engagement from interactions in any new environ-

ment, without any developer supervision. 

5 Experimental Setup 

To provide an ecologically valid basis for data collec-

tion and for evaluating the proposed approach, we de-

veloped a situated conversational agent and deployed it 

in the real-world. The system, illustrated in Figure 2, is 

an interactive multimodal kiosk that displays a realisti-

cally rendered avatar head. The avatar can engage and 

interact via natural language with one or more partici-

pants, and plays a simple game in which the users have 

to respond to multiple-choice trivia questions. The sys-

tem, and sample interactions are described in more de-

tail in (Bohus and Horvitz, 2009.) 

The hardware and software architecture is also illu-

strated in Figure 2. Data gathered from a wide-angle 

camera, a 4-element linear microphone array, and a 19” 

touch-screen is forwarded to a scene analysis module 

that fuses the incoming streams and constructs in real-

time a coherent picture of the dynamics in the surround-

ing environment. The system detects and tracks the lo-

cation of multiple agents in the scene, tracks the head 

pose for engaged agents, and infers the focus of atten-

tion, activities, goals and (group) relationships among 

different agents in the scene. An in-depth description of 

these scene analysis components falls beyond the scope 

of this paper; more details are available in (Bohus and 

Horvitz, 2009). The scene analysis results are forwarded 

to the control level, which is structured in a two-layer 

reactive-deliberative architecture. The reactive layer 

implements and coordinates low-level behaviors, in-

cluding engagement, conversational floor management 

and turn-taking, and coordinating spoken and gestural 

outputs. The deliberative layer plans the system’s dialog 

moves and high-level engagement actions. 

We deployed the system described above in an open-

space near the kitchenette area in our building. As we 

were interested in exploring the influence of the spatial 

setup on the engagement models, we deployed the sys-

tem in two different spatial orientations, illustrated to-

gether with the resulting visual fields of view in Figure 

3. Even though the location is similar, the two orienta-

tions create considerable differences in the relative tra-

jectories of people that go by (dashed lines) and people 

that engage with the system (continuous lines). In the 

side orientation, people typically enter the system’s field 

of view and approach it from the sides. In the front 

Figure 2. System prototype and architectural overview. 
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orientation, people enter the field of view and approach 

either frontally, or from the immediate right side.  

6 Data and Modeling 

The system was deployed during regular business hours 

for 10 days in each of the two orientations described 

above, for a total of 158 hours and 32 minutes. No in-

structions where provided and most people that inte-

racted with the system did so for the first time.  

6.1 Corpus and Implicit Labels 

Throughout the data collection, the system used a con-

servative heuristic to detect engagement intentions: it 

considered that a user wanted to engage when they ap-

proached the system and entered in an F-formation 

(Kendon, 1990b) with it. Specifically, if a sufficiently 

large (close by) frontal face was detected in front of it, 

the system triggered an engaging action and started the 

interaction. We found this F-formation heuristic to be 

fairly robust, having a false-positive rate of 0.18% (6 

false engagements out of 3274 total faces tracked). In 2 

of these cases the face tracker committed an error and 

falsely identified a large nearby face, and in 4 cases a 

person passed by very close to the system but without 

any visible intention to engage.   

Although details on false-negative statistics have not 

yet been calculated (this would require a careful exami-

nation of all 158 hours of data), our experience with the 

face detector suggests this number is near 0. In months 

of usage, we never observed a case where the system 

failed to detect a close by, frontal face. At the same time, 

we note that there is an important distinction between 

people who actually engage with the system, and people 

who intend to engage, but perhaps not come in close-

enough proximity for the system to detect this intention 

(according to the heuristic described above). In this 

sense, while our heuristic can detect people who engage 

at a 0 false-negative rate, the false-negative rate with 

respect to engagement intentions is non-zero. Despite 

these false-negatives, we found that the proposed heu-

ristic still represents a good starting point for learning to 

detect engagement intentions. As we shall see later, em-

pirical results indicate that, by learning to detect who 

actually engages, the system can learn to also detect 

people who might intend to engage, but who ultimately 

do not engage with the dialog system.  

In the experiments described here, we focus on de-

tecting engagement intentions for people that ap-

proached while the system was idle. We therefore au-

tomatically eliminated all faces that were temporally 

overlapping with the periods when the system was al-

ready engaged in an interaction. For the remaining face 

traces, we automatically generate labels as follows: 

 if a person entered in an F-formation and became 

engaged in interaction with the system at time 𝑡𝑒 , 

the corresponding face trace was labeled with a 

positive engagement intention label from 𝑡𝑒-20sec; 

until 𝑡𝑒 ; the initial portion of the trace, from the 

moment it was detected until 𝑡𝑒-20sec was marked 

with a negative engagement intention label. Final-

ly, the remainder of the trace (from 𝑡𝑒  until the 

face disappeared) was discarded, as the user was 

actively engaged with the system during this time.  

 if the face was never engaged in interaction (i.e. a 

person was just passing by), the entire trace was 

labeled with a negative engagement intention.  

Note that in training the models described below we 

used these automatic labels, which are not entirely accu-

rate: they include a small number of false-positives, as 

discussed above. However, for evaluation purposes, we 

used the corrected labels (no false-positives). 

6.2 Models 

To review, the task at hand is to learn a model for pre-

dicting engagement intentions, based on information 

that can be extracted at runtime from face traces, includ-

ing spatiotemporal trajectory and cues about attention. 

We cast this problem as a frame-by-frame binary classi-

fication task: at each frame, the model must classify 

each visible face as either intending to engage or not. 

We used a maximum entropy model to make this pre-

diction:  
 

𝑃 𝐸𝐼 𝑋 =
1

𝑍(𝑋)
𝑒𝑥𝑝   𝜆𝑖 ∙ 𝑓𝑖(𝑋)

𝑖

  

 

The key component in the proposed maximum entro-

py model is the set of features 𝑓𝑖(𝑋), which must cap-

ture cues that are relevant for detecting an engagement 

intention. We designed several subsets of features, 

summarized in Table 2. The location subset, loc, in-

cludes the x and y location of the detected face in the 

visual scene, and the width and height of the face region, 

which indirectly capture proximity information. The 

second feature subset, loc+ff, also includes a (continuous 

and binarized) score produced by the face detector 

which reflects the confidence that the face is frontal and 

thus provides an automatic measure of the focus-of-

attention of the agent. Apart from these automatically 

generated attention features, we also experimented with 

Table 1. Corpus statistics. 

 Side Front Total 

Size (hours:minutes) 83:16 75:15 158:32 

# face traces 2025 1249 3274 

# engaged 
% engaged  

72 
3.55% 

74 
5.92% 

146 
4.46% 

# false-positive engaged 
% false-positive engaged 

1 
0.04% 

5 
0.40% 

6 
0.18% 

# not-engaged  
% not-engaged  

1953 
96.45% 

1175 
94.08% 

3128 
95.54% 

 



a manually annotated binary attention score, attn. The 

attention of each detected face was manually tagged 

throughout the entire dataset. This information is not 

available at runtime, and we use it only to identify an 

upper performance baseline.   

The maximum entropy model is not temporally struc-

tured. The temporal structure of the spatial and atten-

tional trajectory is captured via a set of additional fea-

tures, derived as follows. Given an existing feature f, we 

compute a set of trajectory features traj.w(f) by accumu-

lating aggregate statistics for the feature f over a past 

window of size w frames. We explored windows of size 

5, 10, 20, 30. For continuous features, the trajectory 

statistics include the min, max, mean, and variance of 

the features in the specified window. In addition, we 

performed a linear and a quadratic fit of f in this window, 

and use the resulting coefficients (2 for the linear fit and 

3 for the quadratic fit) as features (see the example in 

Figure 4). For the binary features, the trajectory statis-

tics include the number and proportion of times the fea-

ture had a value of 1 in the given window, and the num-

ber of frames since the feature last had a value of 1.  

7 Experimental Results 

We trained and evaluated (using a 10-fold cross-

validation process) a set of models for each of the two 

system orientations shown in Figure 3 and for each of 

the 5 feature subsets shown in Table 2. The results on 

the per-frame classification task, including the ROC 

curves for the different models are presented and dis-

cussed in more detail in Appendix A.  

At run time, the system uses these frame-based mod-

els to predict across time the likelihood that a given 

agent intends to engage (see Figure 5). In this context, 

an evaluation that counts the errors per person, rather 

than errors per frame is more informative. Furthermore, 

since early detection is important for supporting a natu-

ral engagement process, an informative evaluation 

should also capture how soon a model can detect a posi-

tive engagement intention (see Figure 5).  

Making decisions about an agent’s engagement in-

tentions typically involves comparing the probability of 

engagement against a preset threshold. Given a thre-

shold, we can compute for each model the number of 

false-positives at the trace level: if the prediction ex-

ceeds the threshold at any point in the trace, we consider 

that a positive detection. We note that, if we aim to 

detect people who will actually engage, there are no 

false negatives at the trace level. The system can use the 

machine learned models in conjunction with the pre-

vious heuristic (a user is detected standing in front of 

the system), to eventually detect when people engage. 

Also, given a threshold, we can identify how early a 

model can correctly detect the intention to engage 

(compared to the existing F-formation heuristic that 

defined the moment of engagement in the training data). 

These durations are illustrated for a threshold of 0.5 in 

Figure 5, and are referred to in the sequel as early detec-

tion time. By varying the threshold between 0 and 1, we 

can obtain a profile that links the false-positive rate at 

the trace level to how early the system can detect en-

gagement, i.e. to the mean early detection time.  

Figure 6 shows the false-positive rate as a function of 

the mean early detection time for models trained using 

each of the five feature subsets shown in Table 2, in the 

side orientation. The model that uses only location in-

formation (including the size of the face and proximity) 

performs worst. Adding automatically extracted infor-

mation about whether the face is frontal or leads to only 

a marginal improvement. However, adding information 

about the trajectory of location and of attention, leads to 

larger cumulative gains. Adding the more accurate (ma-

Feature sets Description [total # of features in set] 

Loc location features: x, y, width and height [4] 

loc+ff 
location features plus a confidence score indicat-
ing whether the face is frontal (ff), as well as a 
binary version of this score (ff=1) [6] 

traj(loc) 
location features plus trajectory of location fea-
tures over windows of 5, 10, 20, 30 frames [118] 

traj(loc+ff) 
location and face frontal features, as well as 
trajectory of location and of face-frontal features 
over windows of 5, 10, 20, 30 frames [172] 

traj(loc+attn) 
location and manually labeled attention features, 
as well as trajectory of location and of attention 
over windows of 5, 10, 20, 30 frames [133] 

 
Table 2. Feature sets for detecting engagement intention. 
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Figure 4. Trajectory features extracted by fitting linear and 
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Figure 5. Example predictions for three different models. 

0 5 10 15
0

0.5

1

0

50

100
0

640

0

0.5

1

x 

width 

frontal 

traj(loc+ff) 

traj(loc) 

loc early detection time = 10.4 sec 

5.4 sec 

4.0 sec 



nually tagged) information about focus of attention 

yields the best model. The relative performance of these 

models (which can be observed at the frame-level in 

Appendix A) confirms our expectations and the impor-

tance of trajectory features (both spatial and attentional) 

in detecting engagement intentions. The results also 

indicate that the differences, and hence the importance 

of these features, are larger when trying to detect en-

gagement early on, i.e. at larger early detection times. 

Tables 3 and 4 further highlight these differences. For 

instance, when detecting engagement intentions at a 

mean early detection above 3 seconds, the model that 

uses trajectory information, traj(loc+ff), decreases the 

false positive rate by a factor of 3 compared to the loca-

tion-only model.  

Figure 7 and Tables 5 and 6 show the results for the 

front orientation. The relative trends are similar to those 

observed in the side orientation, highlighting again the 

importance of trajectory features. At the same time, the 

models are performing slightly worse in absolute terms, 

which is consistent with the increased difficulty of the 

task. Several contributing factors can be identified in 

Figure 3: people may simply pass by in closer proximity 

to the system; people who come from the corridor are 

generally frontally oriented towards the system, making 

frontal face cues less informative; and finally, people 

who will engage need to deviate less from the regular 

trajectory of people who are just passing by.   

Next, we review how well the models trained gene-

ralize across the two different setups, by evaluating the 

trajectory models traj(loc+ff) across the two datasets. The 

results indicate that the models are attuned to the dataset 

they are trained on (see Figure 7). As we discussed ear-

lier, we expect this result given the different geometry 

of the relative trajectories of engagement in the two 

orientations. These results highlight the importance of 

learning in situ, and show that the proposed approach 

can be used to learn the specific patterns of engagement 

in a given environment automatically, without explicit 

developer supervision.  

Finally, we performed an error analysis. We focused 

on the side orientation and visually inspected the 79 

(4%) false-positive errors committed by the traj(loc+ff) 
model when using a threshold corresponding to a mean 

Model 

Early detection time 

FP=2.5% FP=5% FP=10% FP=20% 

loc 1.14 1.97 2.29 2.92 

loc+ff 1.70 2.25 2.74 3.18 

traj(loc) 1.93 2.57 3.13 3.66 

traj(loc+ff) 1.99 2.64 3.44 4.02 

traj(loc+attn) 1.97 2.47 3.52 4.15 

 

Model 

Early detection time 

FP=2.5% FP=5% FP=10% FP=20% 

loc 2.18 2.72 3.09 3.59 

loc+ff 2.25 2.74 3.08 3.63 

traj(loc) 2.51 3.03 3.53 4.07 

traj(loc+ff) 2.68 3.20 3.68 4.22 

traj(loc+attn) 3.08 3.52 4.13 4.49 

 

Figure 6. False-positives vs. early detection time (side). 
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Table 3. *False-positive rate at different EDT (side) Table 5. *False-positive rate at different EDT (front) 

Table 4.*Early detection times at different FP rates (side). Table 6 * Early detection times at different FP rates (front). 

 

Figure 7. False-positives vs. early detection time (front). 

Model 

False positive rate 

EDT=1 EDT=2 EDT=2.5 EDT=3 EDT=3.5 EDT=4 

loc 0.31% 1.6% 4.3% 9.4% 18.4% 32.6% 

loc+ff 0.31% 1.5% 4.1% 8.7% 18.3% 28.6% 

traj(loc) 0.31% 1.1% 2.6% 4.8% 9.3% 18.6% 

traj(loc+ff) 0.15% 0.9% 2.0% 4.0% 7.1% 14.3% 

traj(loc+attn) 0.26% 0.6% 1.1% 2.2% 5.1% 8.9% 

 

Model 

False positive rate 

EDT=1 EDT=2 EDT=2.5 EDT=3 EDT=3.5 EDT=4 

loc 2.3% 5.8% 11.3% 23.0% 35.2% 44.5% 

loc+ff 1.6% 3.7% 7.3% 15.8% 28.5% 41.7% 

traj(loc) 1.1% 3.1% 4.7% 8.2% 15.6% 36.8% 

traj(loc+ff) 1.2% 2.7% 4.7% 7.2% 10.9% 19.8% 

traj(loc+attn) 0.8% 2.9% 5.4% 5.4% 10.3% 16.1% 

 

*shaded cells in Tables 3-6 show statistically significant improvements in performance (p<0.05) over the corresponding model that uses the immediately previous 

feature set (e.g. the cell right above). The traj(loc), traj(loc+ff), traj(loc+attn) always statistically significantly (p<0.05) improve upon the loc models 



early detection time of 3 seconds. This analysis indi-

cates that in 22 out 79 of these errors (28%) the person 

did actually exhibit behaviors consistent with an inten-

tion to engage the system, such as stopping by or turn-

ing around after passing the system, and approaching 

and maintaining sustained attention for a significant 

amount of time. These cases represent false-negatives 

committed by our conservative F-formation heuristic 

with respect to engagement intention; the user did not 

approach close enough for the system to trigger en-

gagement. The actual false-positive rate of the trained 

model is therefore 2.9% rather than 4%. The system was 

able to correctly identify these cases because the beha-

vioral patterns are similar to the ones exhibited by 

people who did approach close enough for the heuristic 

detector to fire. We plan to assess the false-negative rate 

of the current heuristic more closely and explore how 

many false negatives are actually recovered by the 

trained model.  This analysis will require that multiple 

judges assess engagement intentions on all 3274 traces.  

8 Summary and Future Work 

We described an approach to learning engagement in-

tentions in a situated conversational system. The pro-

posed models fit into a larger framework for supporting 

multiparty, situated engagement and open-world dialog 

(Bohus and Horvitz, 2009a; 2009b). Experimental re-

sults indicate that a system using the proposed approach 

can learn to detect engagement intentions at low false 

positive rates up to 3-4 seconds prior to the actual mo-

ment of engagement. The models leverage features that 

capture spatiotemporal and attentional cues that are 

tuned to the specifics of the physical environment in 

which the system operates. Furthermore, the models can 

be trained in previously unseen environments, without 

any explicit developer supervision. 

We believe the methods and results described 

represent a first step towards supporting fluid, natural 

engagement in open-world interaction. Numerous chal-

lenges remain. While we confirmed the importance of 

spatiotemporal and attentional features in detecting en-

gagement intentions, we believe that leveraging addi-

tional and more accurate sensory information (e.g. body 

pose, eye gaze, more accurate depth information, agent 

identity coupled with longer term memory features) 

may improve performance. Secondly, while the current 

models where trained in a batch fashion, the proposed 

method naturally lends itself to an online approach, 

where the system starts with a prior model for detecting 

engagement intentions, and refines this model online. 

More importantly, rather than just learning to detect 

engagement intentions, we plan to focus on the more 

general problem of controlling the engagement process: 

how should the system time its actions (i.e. gaze and 

sustained attention, smiles, greeting, etc.) to create natu-

ral, fluid engagements in the open world. Also, intro-

ducing mobility to dialog systems brings another inter-

esting dimension to this problem: how can a mobile 

system, such as a robot, detect engagement intentions 

and respond to support a natural engagement process? 

We believe that there is great opportunity to address 

these interaction challenges by learning predictive mod-

els from data.  
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Appendix A. Per-frame evaluation of maximum entropy models for detecting engagement intentions 

 

Model Avg. log-likelihood Hard error 

Base Train CV Base Train CV 

loc -0.1651 -0.1222 -0.1259 3.91% 3.22% 3.25% 

loc+ff -0.1651 -0.0962 -0.0984 3.91% 3.01% 3.07% 

traj(loc) -0.1651 -0.0947 -0.1073 3.91% 2.88% 3.06% 

traj(loc+ff) -0.1651 -0.0836 -0.0904 3.91% 2.69% 2.85% 

traj(loc+attn) -0.1651 -0.0765 -0.0810 3.91% 2.47% 2.56% 

 

Figure 1. Per-frame ROC for side orientation models 
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Figure 2. Per-frame ROC for front orientation models 
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Model Avg. log-likelihood Hard error 

Base Train CV Base Train CV 

loc -0.1875 -0.1451 -0.1498 4.63% 4.58% 4.72% 

loc+ff -0.1875 -0.1326 -0.1392 4.63% 4.22% 4.39% 

traj(loc) -0.1875 -0.1262 -0.1338 4.63% 3.99% 4.24% 

traj(loc+ff) -0.1875 -0.1159 -0.1298 4.63% 3.91% 4.38% 

traj(loc+attn) -0.1875 -0.1150 -0.1267 4.63% 4.04% 4.47% 

 
Table 1. Baseline, training-set and cross-validation 

performance (data average log-likelihood and classifi-

cation error) for side orientation models 

Table 2. Baseline, training-set and cross-validation 

performance (data average log-likelihood and classifi-

cation error) for front orientation models 


