
In a frank, often droll look at standards, DEC’s former vice president
of engineering concludes that standards really are the best tools‘
for technology evolution. It’s how we use them that causesproblems.

Special Feature

Standards Can Help Us
C. Gordon Bell, Encore Computer Corporation

Standards are constraints that ensure the evolu-
tion-not revolution-of computing. They save design
time b, rlarrowing the search for new products and pro-
cesses and permit us to build on past work rather than start
each new design from silicon. Standards provide a real in-
tellectual discipline that pushes computing developments
further and faster.

The lack of standards impedes technological progress
and lowers productivity. Redundancy in product develop-
ment ties up critical resources in the reinvention of trivia,
and solutions to hard, important problems such as those
involving speech and video communication, intelligent
programs revolutionary machines, and fully automatic
production get short shrift. 1 have to wonder: 1s it a short-
age of engineers or a shortage of leadership that creates
disconnected, overlapping, low-technology products?

As an official IEEE-CS Computer Pioneer (recognized
for Computer Design, Compcon Spring 82), 1 urge the
engineering establishment to see that key standards are set
for the evolution to the next generation information era.
These targets are critical for productivity and maintaining
a healthy information processing industry.

I see the role of standards in today’s computer evolution
as critical, particularly in silicon chips and wafers,
microprocessors and their buses, LANs, Unix. and Lisp
because these standards areas constitute barriers that are
impedifig technological progress. What I’d really like to
see is a Compcon devoted solely to promoting the under-
standing of various standards and the standards process. I
hope this article at least makes a start in that direction.

~~ ~

Bell presented a preliminary vmion of this anick as the keynote speech
at Compcon 84. February 28, m San Francisco.

Standards: The basis of today’s evolutionary
generation

The first two computer generations were characterized
by complete vertical integration. Each computer company
or division designed and manufactured circuits, periph-
erals, hardware systems, operating systems, languages,
and applications and created unique, proprietary stan-
dards. Today, standards provide clear constraints for
building products within a given strata and segment. For
example, a spreadsheet industry has evolved common data
format standards for programs built by different software
companies-to allow not only competitive programs but
also the ability to interface with plotting and database pro-
grams. Thus, two other industries can form.

Today!s generation is characterized by a large set of
product-segmented industries that are organized by levels
of integration that form strata, which in turn are formed
by standards. Entrepreneurial energy drives industries
and venture capital releases their energy.

Unlike the previous generations, when processors and
memories constituted a large fraction of system cost,
microprocessors are comparatively small and standard.
Paradoxically, then, many more creative computing struc-
tures are possible because of standardization. But the
structure is creative not the building blocks, standards
allow us to use bricks, not a collection of designer-created
“pet rocks.”

Today, the following eight levels of integration form the
industrial strata. The bottom four are hardware and the
first four software and applications. Each level has many
product-segmented industries. A given organization usual-
ly excels in only a few strata/product segments or types of
systems, which are a collection of many strata.

.

June 1984 0018-9162/84/06M)~1SO1.00 0 1984 IEEE 71

Dkcipline and Profession-Specific Application. CAD
(for logic design) ’
Generic Application. word processing, electronic
mail, spreadsheets
Third-Generation Procedural Programming Lm-
wages. Fortran, Basic, C
Operating System. base, communication gateways,
databases/CP/M. MS/DOS, Unix.
Electromechanical. disks, monitors, power supplies,
enclosures/eight-inch. five-inch, three-inch(?) floppy
disks; five-inch Winchester disk.
Printed Circuit Board. buses that are synchronized to
micro and memory/S-100, Multibus, P C Bus,
Multibus 11, and VME
Standard Chip. micros, microperipherals, and
memories; evolution of Intel and Motorola architec-
tures that are synchronized to the evolution of
memory chip sizes/8080 (4K), 280 (16K), 8086 and
68,000 (UK), 286, 68020, and NS32032 (256K)
Silicon Wafer. bipolar and evolving CMOS
technologies (proprietary, corporate process stan-
dards . . .require formalization to realize a silicon
foundry-based industry)

Some standard dos and don’ts

Before I go on to discuss specific standards, In think we
need to look at ways to make the setting and adoption of
standards easier. The following “rules” are suggestions
about what we might observe when setting and using stan-
dards. The list isn’t complete or necessarily consistent; it
merely gives my observations and personal prejudices.

1. Either make the standard or follow the standard. The
IBM PC emerged immediately as a standard. It came at a
propitious time-concurrent with-a processor capable of
accessing almost a megabyte of memory, the 64K chip,
and wide-scale availability of five-inch floppy disks and
just prior to five-inch Winchester disks. PC software de-
mand dramatically increased because people could work
on useful applications instead of reinventing and transferr-
ing old operating systems for hardware-idiosyncratic PCs.
The standard is fine for at least five years; Byte’s recent
editorial about the compatibility c razs was wrong.

2. Be prepared to react quickly and follow when the de
facto standard changes. Those who follow IBM standards
might remember the early 70’s when Amdahl, among
others, had to scrap its 360 design as IBM evolved and in-
troduced the 370. History may repeat when future IBM
PCs make current products obsolete by providing a fully
upward-compatible product with more capability, such as
virtual memory.

On the other hand, Apple’s Lisa and Macintosh
designers are to be congratulated for not following the
IBM ~ t a n d a r d . ~ People and organizations who, for the
sake of progress, deviate from simple evolution are essen-
tial, even though such deviations like those made by Am-
dah1 at Trilogy are risky and sometimes fail. Meaningful
deviations don’t merely repackage old ideas or provide the

same simple function; they are large-scale, well-thought-
out projects that provide much more capability and take
us in a different direction.

3. Change the standard when it’s wrong. IBM has fmal-
ly adopted ASCII codes after years of using Extended
Binary Coded Decimal Interchange Code,4 and evolu-
tionary extension and remnant of the card era. This adap-
tation means much mainframe translation work as the PC
and mainframe communicate.

4. Make somebody [person(s) or organization(s)) re-
sponsible for defining, implementing, and maintaining a
standard. Ethernet is a good example. Xerox and DEC
needed it as the backbone of their product strategies, and
Intel needed it to sell chips. Rarely has an interconnection
standard been as important as the LAN. How it is imple-
mented should be moot-the modulation (broadband ver-
sus baseband) and topology (buses, rings, trees, or cen-
tralized switches) have only minor impacts on cost and
performance of the total system. Yet the 802 series, which
addresses topological differences, 5A became a focus for
ideological differences that lead to time-consuming argu-
ments. The work building real systems is deferred by at
least five years, with billions of dollars lost through redun-
dancy, lack of productivity, and poor communications.

5. Minimize the number of organizations responsible
for a standard. Our industry lives in a chaotic world of de
facto standards that emerge from particular companies
(the S-100 Bus, dialects of Basic), industry standards-
which are often simply IBM’s standards-and “vanity”
standards, those developed by individual companies to
box users into particular systems. Vanity machines- per-
sonal computers, processors, operating systems, and
languages generated by every engineer or company trying
to do its own thing-make no real contribution to the state
of the art and usually wind up confusing the marketplace.
In addition, many conflicting government and profes-
sional organizations that reflect multiple, overlapping
disciplines are involved in standards setting.

Perhaps the greatest problem in standards today is that
too many groups are competing to set too few standards.
We must have a way of selecting the best organizations
and people to work on a standard, and to reduce the
number of bodies that delay work and introduce noise.
While a standards process does have to recognize and re-
spond to great ideas, these can generally come from out-
side the “official” body.

6. Remember that almost ady standard is far more im-
portant than a highly refined optimum. To make progress,
we often have to regress. Models such as the seven-layer
open systems interconnection are often valuable as a base
for building new standards. Unless a model is followed by
the detailed definition of the layers, it is only a template
for creating a multitude of vanity standards and for
writing advertising copy. Since implementation must come
before standardization, the seven layers might better be
only four, or even nine. Unfortunately, every real im-
plementation that says it uses the seven levels uses them the
way an engineer uses a metric ruler t o draw on quarter-

72 COMPUTER

inch quadrille graph paper. The lines serve only as refer-
ences for the infinity of figures possible; about every 2.5
inches the two scales line up pretty well. bnix is an cxcel-
lent example of an arbitrary standard that is below the
state of the art and will require much evolution. (I describe
this standard’s desirability and its necessary evolution on
p. 76).

7. Provide and plan for evolution; it’s often the fastest
way. The evolution of a real standard usually beats the
ideal that never gets completed. Algol, for example, was a .
good idea that never got completed or backed with ap-
propriate implementation. Instead, it became a model for
designers of succeeding languages to build on.

With exponential change in virtually every dimension of
computing, the domain of a standard should be specified a
priori to understand when it should be extended. Many
standards, such as Fortran, survive longer than the spon-
sor thought or intended. One reason is that standards
organizations can’t arbitrarily pronounce a standard dead
and ignore it if many people are using it. Otherwise, new
products would make ad hoc extensions and no one would
be responsible.

8. Base the standard on experience, not on a committee
design; if you haven’t lived with a proposed standard,
don’t adopt it. The best way to ensure reality is to imple-
ment several alternative interfaces before setting a given
standard. The digital communications standard ISDN is
an excellent example of a complex committee design, with
no real test use, for what should have been a simple, clean
interface. No wonder it took a.decade to design. And even
if it is to be widely used in the‘next 10 years, it will need a
great deal of expensive redesign.

Another example is the Ethernet standard (802.3),
which took almost 10 years after a full-scale working
model to develop.’ The upgrade over Xerox’s first
Ethernet improved performance by almost a fictor of
four, but if the original had been used to get real ex-
perience, all LANs could have been realized earlier and not
still be “several years away.”s

9. Make the standard precise, understandable, applic-
able, and useful at several levels of detail. You don’t
always have to be IBM to set a standard. In 1%9, neither
IBM nor any official group was interested in a standard
for interconnecting computer components to form mini-
computers. DEC’s PDP-11 Unibus originally set the stan-
dard. Eight years after hundreds of engineers had designed
hardware to attach to Unibusfs, a really complete Unibus
specification was finally written. The original specification
provided a way to interconnect different kinds of parts,
not just a pair, and showed the way for this generation of
buses and the future generation of micros.

Had a standards committee been involved in the original
Unibus, it is doubtful whether the design would have been
completed.

10. Remember that only one or a few standards are nee-
ded for the same function; a standard should aim toward
unifying a set of alternatives. Ideally, a standard should

define the interface between sets of parts, not Just two
parts. Having too many standards is like having no stan-
dards at all. The current plethora of 802 LAN standards,
including digital communication switching, which is also a
LAN, is good example of too many, with no basis of cx-
perimentation. Every company, consortium, or commit-
tee tries to get one more standard bus and LAN. In turn,
members add features to ride every new bus and LAN
specification. There are simply too many buses, LANs,
and riders. We need bus and LAN birth control.

Critical standards for the next generation

Silicon chip and wafer for custom systems: The silicon
foundry. The silicon wafer is an important level of integra-
tion that requires wide-scale standardization. Since
semiconductor processes have traditionally been the cor-
porate jewels of semiconductor companies, the wafer and
chip are not well publicized or documented. Yet, we can
safely predict that the silicon wafer or custom chip is likely
to be the basis of the next computer generation. Some
computer systems will be a single chip with one to 10
million transistors. Of course, most chips will continue to
come from manufacturers as a “standard” or combina-
tions of “standards” such as microcomputers, periph-
erals, and memories.

Creative new products will come from the silicon foun-
dry industry that Carver Mead advocates8-requiring
substantial standardization. Weitek9 is an example of this
new kind of company that takes algorithms and embeds
them in silicon-“VLSIzation.” Another example is the
workstation product, Iris, from Silicon Graphics. lo Iris
uses a dozen 75,000-transistor chips, which Jim Clark calls
the Geometry Engine, and computes at a speed of 10
Mflops-roughly equivalent to a CDC 7600. In this way,
Iris outperforms by a factor of several hundred the other
150 workstations. We can envision radically new, special
chip-based systems that operate on pictures, voice, and
mechanisms.

Because foundries and CAD systems lack standards, we
are far from being able to realize the scenario of a silicon
foundry industry. Standards are essential for all user-
specific gate array, standard cell, or fully custom chips.
It’s distressing that we still have no standards for specify-
ing gate arrays; custom PLAs and ROMs took too long to
standardize. A few interfaces for this industrial structure
are

specifications of structure and behavior, including

physical information at all levels including those for

control of foundry processes, especially if processing

chip test, including automatic generation of test data;

chip assembly and packaging, including bonding and

For CAD, the development of standard interfaces to
languages and databases that are communicable through
networks must be targeted. It might be desirable to stan-
dardize the specification languages; 1 can’t identify any

simulation and timing at all levels;

processing wafer masks (CIF);

steps become optional;

and

multichip interconnection.

June 1984 73

benefits of observing the differences. Agreeing on inter-
faces doesn’t limit the coqqxtitiveness or creativity of any
CAD company or foundry; it simply means that users
don’t have to learn many systems and languages for the
same function or to convert data formats. Standards
would let users mix and match different CAD systems in a
completely flexible fashion. Syntactically idiosyncratic
editors, timing verifiers, simulators. design rule checkers,
etc., don’t really increase user power. Use would expand
much more rapidly because buyers wouldn’t be forced to
make critical long-term decisions with no way to exchange
data to other systems. As an analogy. look at the pre-
Cobol/pre-Fortran era in the late 50’s when all the users
rebelled at every manufacturer providing a unique lan-
guage. The rebels designed Cobol, the first, oldest, and
most widely used of the standard languages, because there
was no reason for different languages.

In CAM, the user is also faced with a fuzzy and perplex-
ing interface to the process from masks to tested com-
ponents.

The foundries, CAD companies, and users, such as the
Microelectronics and Computer Corporation, could effect
change now so we can have the next generation. A whole
Compcon could be devoted to describing alternatives and
defining interfaces. I’ll get back to this idea later.

Standard chip: micros, rnicroperipherals, memories.
The semicomputer manufacturers are responsible for stan-
dards resulting from the instruction-set architecture. This
lowest level of integration for computers is the input to a
very high gain “work amplifier” because it forces a range
of unique buses, boards, and systems, including operating
systems and languages, to be created.

Rebels designed Cobol, the first,
oldest, and most widely used of the

standard languages, because there was
no reason for different languages.

Microarchitecture, like its mini- and mainframe
predecessors, is the root of most of our redundant work. A
micro’s life is incredibly predictable, following a time-
worn path with respect to its ability to access memory.
Fraileyll suggested that there are about 20 measures of
word length. 1 believe only one counts-the amount of
directly addressable memory to a process-because it
determines a computer’s programmability and therefore
its longevity. Of course, when considering performance, a
few embellishments like data types and implementation
word lengths are worth noting.

Unlike participants in the semiconductor evolution,
micro users are dragged along as an architecture evolves
and can relive history. For example. we were-dragged
through the evolution of the stack, which started out in a
Datapoint terminal. went on to become the 8008, the 8080,
the 280 (when another company provided us with an
almost useful PC), then on to the 8086, 186,286, and so
on. As a user of these parts, 1 have been able to relive com-
puter evolution for a third time. The good news is that the
286 may be the fastest micro and is evidence that evolution
does work because there is finally a large, state-of-the-art

I

address. It also illustrates the difficulty of design for corn.
patibility.

In the late 503, a system that allowed users to treai
primary and secondary memory as one was developed ai
the University of Manchester using Ferranti’s version 01
the university’s second machine, Mercury. By 1%2, thc
university had an operating breadboard with a 27-bit vir.
tual address for Atlas. l 3 (Atlas also had a number of othei
ideas, such as Extracodes that Bhujade recently redis.
covered.14) It was a university machine in the UK de.
scribed in nearly 10 papers, and Ferranti built only a few
The critical paper was republished in 1971 in a work b)
Bell and Newell,I5 and again in 1982 in a work bb
Siewiorek. Bell, and Newell. l6 But if engineers read about
it, they neither remembered or learned.

Having known Atlas, I went on to design two minicom.
puters with 12- and 13-bit addresses because I felt they
were special and wouldn’t evolve to general-purpose use.
Both had to be extended to 16-bit addresses almost before
they were shipped. In 1964, the PDP-6, the forerunner of
DEC system 10 and the 360 were introduced, and both
could access about a megabyte. The DEC system 10/2C
and the 370 eventually ended up with 32 bits of address,
complete with paging, just like Atlas, but about 15 years
later.

In 1970, the PDP-11 came out with a 16-bit address to
solve the minicomputer addressing problem. The first
customer demanded a physical address extension to 18
bits. The virtual and physical addresses evolved to 17 and
22 bits. For several years, DEC engineering spent
thousands of hours trying to figure out how to address
more memory. Users spent much time encoding programs
in small memories. In 1975, the Vax project was started to
provide a 32-bit address with an embedded PDP-I1 for
compatibility. This cycle took about eight years and was
well documented. I 8 v i 9 Other East Coast minicomputers
followed the same path for the second time around.

In 1971, the micro was born on the West Coast with the
4004 (12 bits of address) and 8008 (14 bits of address).
Because the models were established two times, the evolu-
tion was clear. In 1978, the 8086 was extended to 20 bits
and most recently to 24 bits of physical and 30 bits of vir-
tual address. The cycle based on the 8086 has taken six to
12 years. It is ironic that information on addressing didn’t
travel from California to Oregon, where Intel’s 432 was
developed.

Motorola’s saga is similar. National took the high road
and copied Vax without violating its patents to supply
Vax-like chips-since DEC is a minicomputer, not a
semicomputer company. Unfortunately, National didn’t
copy enough of Vax to make software automatically
transportable from Vax.

The National architecture is certainly an interesting
alternative t o Vax, permitting transfer of Vax programs
with minimal effort. If an exact copy of Vax could have
been made, many billion dollars of software could have
been made available, and many resources could have been
freed for doing creative and productive work. With the
micro, the cycle has been repeated three times. The saga is
not yet ended, since we now understand the ramifications

‘A semicomputer company is a semiconductor company that builds com-
pulers.

74 COMPUTER

of address spaces greater than 32 bits. Stay tuned for fur-
ther evolution. I

The story surrounding the Computer Family Architec-
ture, or CFA, specifically the Department of Defense’s
version of Vax, called Nebula, is far worse. An exact copy
of Vax could have been made saving 10 years and many
billions of dollars.

New architectures, especially those that have gone along
well-traveled evolutionary paths, have cost computing at
least half of its resources, have provided little or no benefit,
and in some cases have delayed progress. Using C and Unix
to obtain machine independence appears simple but don’t
be fooled. A compiler for C or a compiler written in C is
only a starting point for a product . . . not the end. An ar-
chitecture prevades virtually every part of a system and its
database. Even if C and Unix can be standardized to a
greater degree, the instruction set is still pervasive. Deter-
mining when an architecture should be copied, evolved,
thrown out, or completely redesigned is fundamental to
the notion of standards because of the tremendous user
program and data investments.

Revolutionary research architectures based on paral-
lelism are another issue. A recent taxonomy listed 55 new,
evolutionary, and radical computer system designs: 25 can
be built. 15 may be built, perhaps 10 are worthwhile
building, and we have resources to build and evaluate five
at most. At a time when meaningful research requires large
team efforts, only a few experiments can be performed.
We need the results of a few critical experiments, not more
half-done, toy projects.

Board: buses for various performance, applications,
etc. The board level-is similar to the instruction set ar-
chitecture story, except that buses last longer. The various
species of the IBM channel buses are now 20 years old and
will survive in their current forms for another 20 years,
even though many functions that a peripheral might per-
form could be handled with the same amount of hardware
as that required to interface and drive the bus.

The IEEE sanctions these buses. The politics is hard to
understand. Is a bus designed and sanctioned in-
dependently of whether there are any riders? How many
more buses do we need or can we afford beyond the ex-
isting ones? Why aren’t the on-board signals standardized
to mix and match processor and peripheral chips?

LANs and LANCs: another kind of switch. While
riding buses, let’s look at our most critical bus, the Local
Area Network used for interconnecting computers and
terminals in a local area. We need to keep the number of
standards to a minimum so that we can get on with
building clusters-or LANCs-which few organizations
understand experientially. The motivation behind a
LANC is the certain evolution of three types of clusters:

a single. shared mini or large computer that will
gradually be decomposed into functional server com-
ponents;
a collection of large computers that must behave as a
single system with a common database; and
the proliferation of PCs that require intercommuni-

. cation to form a single integrated system by aggrega-
tion.

LANs are especially difficult to design and standardize
because they cross from the computer industry into tradi-
tional communications and cable television industries in-
volving more disciplines and organizations. A sorry
parallel can be seen in the slow formation of videodisc
standards-slow because both computer and television
engineers are involved.

The IEEE 802 standards program is essential to
LANs.’.~ While it must be strengthened to include
PABXs, a new set of numbers will be required just for all
the new LANs. 802.3 was allocated for the CSMAXD
bus, Ethernet. But instead of spending energy to reduce
the cost of this LAN, groups took the basic idea and built
incompatible, lower cost, nonstandard versions. With
IBM’s recent announcement of yet another LAN, one for
PCs based on CSMAKA, we have one more standard
and number.

802.3 can be transmitted on standard orange or yellow
Ethernet cable. For those who like a simpler installation
and lower cost and will give up distance, RGU 58 can be
used-call it “Cheapernet.” 3COM and Bob Metcalfe,
Ethernet’s inventor, call it “Thin Ethernet.” Codenol has
a fiber optic transmission system using the same basic elec-
tronics. For those who like cable television technology, a
modem permits the same controller to transfer Ethernet’s
baseband information on broadband. The purpose of all
these media is to build and use LANs and not to wait for
what is really quite an arbitrary choice of media that only
delays use. The controller/transceiver interconnect for
Ethernet is becoming an important standard. With it,
maybe any topology (including high-speed PABXs),
modulation schcme, and medium can be used.

We need to keep the number of LAN
standards to a minimum so that we can build

clusters, or LANCs-something few
organizations have practical experience with.

802.4 denotes LANs carried on broadband with three
incompatible data-rate versions. With the 5M-bit-per-
single-channel-pair version in operation, we can hope that
the other two will not materialize. General Motors is using
its market power to insist that various computers demon-
strate their ability to communicate at NCC 84. If this
works, maybe GM should take over some of the standards
role from IEEE, ANSI, ECMA, and NBS.

The ring came out of early work at Bell Labs and Cam-
bridge University. Cambridge and. its alumni invent about
one new ring each year. Prime uses a ring, and since
Apollo was founded largely by Prime alumni, they too use
another ring. Perhaps because rings can be built with large
central controllers, IBM grabbed the ring, hence 802.5.

The 802.6 deals with metropolitan areas. Very high
speed PABXs could provide the same function as the LAN
and hence should come under the 802 purview. It is im-
perative to have conformity at the higher levels. Is this
802.6 or do we need yet another standard? Since we can
obviously use fiber optics to build LANs, we require a
fiber standard, 802.8. Since several already exist, can’t we

June 1984 75

either make one official or embed the medium as an option
within another standard?,

The multiplicity of standards to switch information at
modem computer data rates causes us to avoid the cssen-
tial problem of building networks and clusters. Almost
every week a new incompatible LAN is announced. This is

The glib answer to the panopoly or lack of standards is
gateways.20 Virtually nothing is known about gateways
except that building them is a craft-and roughly
equivalent to conversions ,between high-level languages
such as from Fortran to Pascal. Building a gateway is
about as easy as designing a train that can travel on dif-
ferent gauge tracks. It may be fine if you can reach steady
state, but the transition from track to track is tricky.

crazy!

Electromechanical assembly: disks, 110, power, en-
closures. The evolution of small disks and tapes has been
impressive and demonstrates the strongest case for stan-
dards. When AI Shugart started Seagate, his greatest con-
cern was making sure a competitive second-source in-
dustry with a common interface and form factor was
available. He used the same formula to create the original
5%-inch floppy disk from factors, standards, and in-
dustries. We might increase our understanding of the stan-
dardization process by studying this industry.

Operating systems and Unix. In 1966, a user could have
a 300-baud Teletype using a phone line. By 1980, the speed
had been raised to 1200 baud for a performance improve-
ment of less than 10 percent per year, while theconnection
cost rose. This performance is roughly equal to the im-
provement in horsepower and cost increases for sports
cars, not for computers. By adopting Unix, a large part of
our future systems development has been entrusted to
some part of AT&T (call it Unixco). Given the simplicity
of Unix. and the need for much more rapid evolution,
either a strong Unix-compatible company will emerge, or
IBM will take the responsibility for Unix. In other words,
it is unlikely that Unixco will fulfill its role.

The Unix phenomenon illustrates nile 6: Almost any
standard is far more important than the unobtainable
ideal. Like many systems, the people who love Unix are its
many parents and those who grew up with it. The final
clause of rule 6 also typifies Unix: To make progress, we
often have to regress. For example, look at the way Unix
evolved. Its development was the result of Thompson and
Ritchie’s reaction to Multics, a very large, joint MIT and
Bell Labs project conducted in the late 60’s. The idea for
Unix coincided with the time the book, Small is Beautiful,
was popular. Thompson and Ritchie began with a dis-
carded DEC PDP-9 and went on to use the PDP-11 in the
early 70’s. Since DEC didn’t give away operating systems
to universities, the university used Unix, which was essen-
dally free. No manufacturer provided source code to
users. Unix did. Unix, by most measures a very simple
operating system, could do useful work with database ac-
cess, special communications, and extra programs. Stu-
dents and faculty could understand all facets of its inter-
nal~ and use because of its simplicity and availability. It
was written in a very elegant, structured, high-level assem-
bly language, C, and as such could be modified. It was an

L

excellent pedagogical tool. Universities embraced it and
trained many students with it providing a large, future
market.
Unix was used on other computers because it was por-

table. As long as a C language compiler was available, a
team of people could move Unix to another computer sys-
tem. Other early high-level languages were never quite en-
tirely pgrtable because of incompatible extensions to ac-
cess the operating and file system. Unix created the notion
that someday we would have a complete system that was
machine and manufacturer independent. Users liked this
idea.

Chip makers with very small programming groups
needed software and were used to adhering to standards.
Small system manufacturers wanted system software and
access to the DEC user base. IBM appeared to view Unix
as a way into DEC’s technical market. Thus, a standard
was created that has almost everyone’s support.

Much work is required to have a system that supports
computing concepts in the 80’s. Unixco must take the
responsibility commensurate with its marketing. The no-
tion of a standard is great, but is must be developed more
rapidly than any single manufacturer is capable of doing.
The standard can evolve if there is parallel development
among many organizations. If Unixco is the only company
doing and blessing all the extensions, we have simply
substituted multiple competitive companies with a single,
behemoth. Unix has to be evolved in a reasonable, not ad
hoc, fashion. This potential bottleneck may be the most
serious problem we have in extending computing today.

Some of the extensions of most concern are
higher reliability, greater performance, and greater
security; I
virtual memory (Berkeley, version 4.1 with virtual
memory has been available nearly five years);
special functions for real-time and transaction pro-
cessing (Unix is being extended and adapted in incom-
patible ways by diverse companies. A clearinghouse
to ensure portability and compatibility of applica-
tions is required);
a modern human interface that is competitive with
the PC or new PCs (Vnix was developed in the time-
sharing era using “glass Teletypes.” As a result, inter-
action is via one-dimensional, cryptic messages.
Helpful, less cryptic interaction and multiple win-
dows with fast interaction are critical today.);
multiprocessing (with the micro, multiprocessors are
feasible, desirable and available);
networks (given Unix’s origin, we should,demand
modern communications capabilities for wide-area
networks); and
fully distributed processing across a LAN to form
LANCs (”he Universities of Newcastle and Berkeley
and others have implemented incompatible systems
for fully distributed processing. Berkeley 4.2 is a good
starting point).

Languages including extensions to applications Ian-
gusges. The concern for Unix is paralleled by C, the heart
of applications portability, and must be standardized. A
language for artificial intelligence is of great concern

76 COMPUTER

because of next generation applications. Lisp has proven
useful for these appiications. I

Lisp, designed about 1W by John McCarthy, im-
pressed me so much that I included the critical data access
primitives in the architecture of the DEC system 10 in 1%5
(still about the fastest Lisp computer). Lisp branched. One
path went west via Bolt, Beranek and Newman alumni to
Xerox, creating Interlisp and its dialects. Many dialects
evolved from the original MIT Lisp: Maclisp, Zetalisp,
NIL, Scheme, T-Lisp, Portable Standard Lisp, and Com-
mon Lisp. The last two vie for standards status. Franz
Lisp, Glisp, Nist are other dialects and extensions. Virtual-
ly everyone who works with a Lisp compiler or interpreter
creates a private language or extension. Because these
languages are incompatible with one another, we can’t
benchmark or extend the language in a compatible fashion
using bootstrapping. Much work surrounding Lisp is to
make applications development easier, but given the
number of dialects and extensions to ease development, is
anyone even working on applications?

To get on with the business of applying AI, we need
some way of sharing information across the various dif-
ferent languages called Lisp. A serious standards activity is
long overdue.

In fact, the Japanese were so confused about Lisp that
they totally gave up and went on to Prolog.

A Compcon on standards

Unfortunately, we can’t go off and simply make rules
for standards; instead a better understanding of the whole
standards process is needed. I think we need a Compcon
devoted entirely to standards that would

examine and prioritize critical standards [Certain
standards such as LANs and electronic mail are
relatively arbitrary and simply need to be frozen. On
the other hand, some care is needed to avoid con-
straining future creativity.];
establish responsibility and territoriality [Often too
many groups are involved in setting goals and con-
straints, definition, review, test, and implementation.
Having fewer designers, but extremely competent
ones, always yields a far better system.];
establish goals and constraints [In many cases, efforts
immediately digress to bit encoding without agree-
ment that a standard is necessary.];
understand the timing in the past (origin), present,
and future of a standard [With the invention of new
phenomena, it is pointless to discuss standardization
until a breadboard has been made to demonstrate
utility. On the other hand, several organizations have
extended Fortran in incompatible ways to handle
vectors because the standards group has considered
Fortran a dead language; a standard is still long
overdue.];
understand the effects and desirability of standards
[Although most effects appear to be beneficial to
both suppliers and consumers. the perception of
almost every producer is that the “ideal state” is a
monopoly.]; and

develop arbitrary “Standards” for use in future
radical research to aid rapid progress [For example,
every data-flow computer has a unique, higher level
language. Almost any data-flow language would let
us encode algorithms and measure parallelism
without having to build any special hardware.].

Models for the next generation of computers will con-
tinue to rely heavily on standards. The traditional levels of
integration are now well defined through various industry
and traditional standards. Following certain rules might
improve the standards process, and a Compcon devoted to
patticular standards and the standards process would help
us develop standards more intelligently.

Postscript

I’ve extolled standards now for some time, but there is a
down side. A standard provides an interface, or target, by
which similar systems can be compared-and anyone can
use it. For example, the focus and adoption of US stan-
dards has permitted Japan to become number one in com-
puting.

In early 1984, kernel benchmark codes developed at the
Lawrence Livermore National Laboratory were run in
Japan on the Fujitsu VTlOO and VT2W and the Hitachi
810/820 at a rate of over two times what a one-processor
Cray XMP could achieve. The Japanese machines are
evolved versions of a 20-year-oid architecture, the IBM
370, implemented with evolved 25-year-old ECL circuitry,
highly evolved 25-year-old ICs, and expressed in 25-year-
old Fortran. The Japanese used standards to increase pro-
ductivity; they did not start by inventing a new architec-
ture and the associated reprogramming. They built on the
vectorizing compilers derived from the 15-year-old Illinois
Illiac IV project.

This example illustrates the value of using standard in-
terfaces, understanding the old, and seeing that it envolves
immediately to increase output and free resources with
higher productivity. It lays down the gauntlet for a new
revolution. *

Acknowledgments

I dedicate this article to all engineers who devote their
energy to working on standards in an effort to create a
more orderly environment.

References

1 . M. A. Harris, “Computer Makers Bet on Standards,” Elec-
tronics, Vol. 57. No. 3, Feb. 9, 1984, pp. 110-111.

2. P. Lemmons, “The Standards Craze,” Byre, Vol. 9, No. 1 ,
Jan. 1984, p. 5.

3. P. Lemmons.’“An Interview: The Macintosh Design
Team,” Byte, Vol. 9, No. 2, Feb. 1984, pp. 58-80.

4. G. A. Brooks and F. P. Brooks, “The Structure of the Sys-
tem/360.” IBM Systems J., Vol. 3, No. 2, Feb. 1964, pp.
119-1 35 (reprinted in Chapter 43 of Computer Structures, see
ref. IS).

June 1984 77

8.
9.

10.

1 1 .

12.

13.

14.

15.

16.

17.

J. Nelson, “802: A Progress Report,” Datamation, Vol. 29,

R. P. Blanc, “Local Area Network Standards,” Proc.
Compcon Spring 84, IEEE-CS Press, Los Alamitos, Calif.,

M. Macalfe and D. R. Boggs, “Ethernet: Distributed
Packet Switching for Local Computer Networks,” Comm.
ACM, Vol. 19, No. 7, July 1976, pp. 395-404 (reprinted in
Chapter 26 of Computer Structures: Principles and Ex-
amples, see ref. 16).

Carver Mead, lectures and private communication.
High-speed IEEE Flooring Point Processors, Weitek Corp.,
Santa Clara, Calif., 1984.
IRIS Product Reference Monual, Silicon Graphics, Moun-
tain View, Calif., 1983.
D. J. Frailey, “Word Length of a Computer Architecture:
Definitions and Applications,” Computer Architecture
News, Vol. 11, No. 2, June 1983, pp. 20-26.
S. P. Morse et al., “Intel Microprocessors-8008 to 8086,”
Co/nputer, Vol. 13, No. IO. Oct. 1980, pp. 42-60.
T. Kilburn et al., “One-level Storage System,” Institute
Radio Engineers Trans. Electronic Computers, EC-I 1, Vol.
2, Apr. 1962, pp. 223-235.
M. R. Bhujade, “On the Design of Always-Compatible In-
struction Set Architecture (ACISA),” Computer Archirec-
lure News, Vol. 1 1 , No. 5, Dec. 1983, pp. 28-30.
C. G. Bell and A. Newell, Computer Structures: Reudings
ond Exomples, McGraw-Hill, New York, 1971.

D. P. Siewiorek, C. G. Bell, and A. Newell, Computer
Structures: Principles ond Exomples, McGraw-Hill, New
York, 1982.
C. G. Bell et al., “A New Architecture for Minicompu-
ters-The DEC PDP-I 1 ,” Con/. Proc. AFIPS SJCC, Vol.

NO. 8, Aug. 1983, pp. 136-152.
I

pp. 252-254.

36, 1970. pp. 657-675 (reprinted in Chapter 9 of A DEC
View of Hardware System Design. see ref. 19).

18. C. G. Bell and W. D. Strccker, “Computer Structures:
What Have We Learned from the PDP-I I?” h o c Cony.
Third Annuol Symp. Comp. Arch., IEEE and ACM, 1976.

19. C. G. Bell, J. C. Mudge, and J. E. McNamara. Computer
Engineering: A DEC View of Hardware System Design,
Digital Press, Ekdford, Mass., 1978.

20. W. Stallings, “Beyond Local Networks,” Datamation, Vol.
29, NO. 8, Aug. 1983, pp. 167-176.

C. Gordon Bell is chief technical officer for
Encore Computer Corporation, where he is
responsible for the overall product strategy.
Before joining Encore Computer, he was
vice president of engineering for Digital
Equipment Corporation, responsible for
R&D activities in computer hardware, soft-
ware, and systems.
-Bell was also manager of computer design

at DEC. resDonsible for the PDP-4. -5. and
d computers. He was also on ;he faculty of Carnegie-Mellon
University from 1966 to 1972.

Bell’s accomplishments are many. He led the team that con-
ceived the Vax architecture, established Digital Computing Ar-
chitecture, and was one of the principal architects of C.mmp (16
processors) and Cm’ (50 processors) at Carnegie-Mellon Univer-
sity. He is a widely published author on computer architecture,
and computer design.

Bell earned his BS and MS degrees in Electrical Engineering at
Massachusetts Institute of Technology in 1956 and 1957 respec-
tively. He holds several patents in computer and logical design.

Among Bell’s professional affiliations are the National Acad-
emy of Engineering, the IEEE (fellow), the American Association
for the Advancement of Science (fellow), and the ACM. He is
listed in American Men ~f Science and Who’s Who.

