
In a frank, often droll look at standards, DEC’s former vice president 
of engineering concludes that standards really are the best tools‘ 
for technology evolution. It’s how we use them that causesproblems. 

Special Feature 

Standards Can Help Us 
C. Gordon Bell, Encore Computer Corporation 

Standards are constraints that ensure the evolu- 
tion-not revolution-of computing. They save design 
time b, rlarrowing the search for new products and pro- 
cesses and permit us to build on past work rather than start 
each new design from silicon. Standards provide a real in- 
tellectual discipline that pushes computing developments 
further and faster. 

The lack of standards impedes technological progress 
and lowers productivity. Redundancy in product develop- 
ment ties up critical resources in the reinvention of trivia, 
and solutions to hard, important problems such as those 
involving speech and video communication, intelligent 
programs revolutionary machines, and fully automatic 
production get short shrift. 1 have to wonder: 1s it a short- 
age of engineers or a shortage of leadership that creates 
disconnected, overlapping, low-technology products? 

As an official IEEE-CS Computer Pioneer (recognized 
for Computer Design, Compcon Spring 82), 1 urge the 
engineering establishment to see that key standards are set 
for the evolution to the next generation information era. 
These targets are critical for productivity and maintaining 
a healthy information processing industry. 

I see the role of standards in today’s computer evolution 
as critical, particularly in silicon chips and wafers, 
microprocessors and their buses, LANs, Unix. and Lisp 
because these standards areas constitute barriers that are 
impedifig technological progress. What I’d really like to 
see is a Compcon devoted solely to promoting the under- 
standing of various standards and the standards process. I 
hope this article at least makes a start in that direction. 

~~ ~ 

Bell presented a preliminary vmion of this anick as the keynote speech 
at Compcon 84. February 28, m San Francisco. 

Standards: The basis of today’s evolutionary 
generation 

The first two computer generations were characterized 
by complete vertical integration. Each computer company 
or division designed and manufactured circuits, periph- 
erals, hardware systems, operating systems, languages, 
and applications and created unique, proprietary stan- 
dards. Today, standards provide clear constraints for 
building products within a given strata and segment. For 
example, a spreadsheet industry has evolved common data 
format standards for programs built by different software 
companies-to allow not only competitive programs but 
also the ability to interface with plotting and database pro- 
grams. Thus, two other industries can form. 

Today!s generation is characterized by a large set of 
product-segmented industries that are organized by levels 
of integration that form strata, which in turn are formed 
by standards. Entrepreneurial energy drives industries 
and venture capital releases their energy. 

Unlike the previous generations, when processors and 
memories constituted a large fraction of system cost, 
microprocessors are comparatively small and standard. 
Paradoxically, then, many more creative computing struc- 
tures are possible because of standardization. But the 
structure is creative not the building blocks, standards 
allow us to use bricks, not a collection of designer-created 
“pet rocks.” 

Today, the following eight levels of integration form the 
industrial strata. The bottom four are hardware and the 
first four software and applications. Each level has many 
product-segmented industries. A given organization usual- 
ly excels in only a few strata/product segments or types of 
systems, which are a collection of many strata. 

. 
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Dkcipline and Profession-Specific Application. CAD 
(for logic design) ’ 
Generic Application. word processing, electronic 
mail, spreadsheets 
Third-Generation Procedural Programming Lm- 
wages. Fortran, Basic, C 
Operating System. base, communication gateways, 
databases/CP/M. MS/DOS, Unix. 
Electromechanical. disks, monitors, power supplies, 
enclosures/eight-inch. five-inch, three-inch(?) floppy 
disks; five-inch Winchester disk. 
Printed Circuit Board. buses that are synchronized to 
micro and memory/S-100, Multibus, P C  Bus, 
Multibus 11, and VME 
Standard Chip. micros, microperipherals, and 
memories; evolution of Intel and Motorola architec- 
tures that are synchronized to the evolution of 
memory chip sizes/8080 (4K), 280 (16K), 8086 and 
68,000 (UK), 286, 68020, and NS32032 (256K) 
Silicon Wafer. bipolar and evolving CMOS 
technologies (proprietary, corporate process stan- 
dards . . .require formalization to realize a silicon 
foundry-based industry) 

Some standard dos and don’ts 

Before I go on to discuss specific standards, In think we 
need to look at ways to make the setting and adoption of 
standards easier. The following “rules” are suggestions 
about what we might observe when setting and using stan- 
dards. The list isn’t complete or necessarily consistent; it 
merely gives my observations and personal prejudices. 

1. Either make the standard or follow the standard. The 
IBM PC emerged immediately as a standard. It came at a 
propitious time-concurrent with-a processor capable of 
accessing almost a megabyte of memory, the 64K chip, 
and wide-scale availability of five-inch floppy disks and 
just prior to five-inch Winchester disks. PC software de- 
mand dramatically increased because people could work 
on useful applications instead of reinventing and transferr- 
ing old operating systems for hardware-idiosyncratic PCs. 
The standard is fine for at least five years; Byte’s recent 
editorial about the compatibility c razs  was wrong. 

2. Be prepared to react quickly and follow when the de 
facto standard changes. Those who follow IBM standards 
might remember the early 70’s when Amdahl, among 
others, had to scrap its 360 design as IBM evolved and in- 
troduced the 370. History may repeat when future IBM 
PCs make current products obsolete by providing a fully 
upward-compatible product with more capability, such as 
virtual memory. 

On the other hand, Apple’s Lisa and Macintosh 
designers are to be congratulated for not following the 
IBM ~ t a n d a r d . ~  People and organizations who, for the 
sake of progress, deviate from simple evolution are essen- 
tial, even though such deviations like those made by Am- 
dah1 at Trilogy are risky and sometimes fail. Meaningful 
deviations don’t merely repackage old ideas or provide the 

same simple function; they are large-scale, well-thought- 
out projects that provide much more capability and take 
us in a different direction. 

3. Change the standard when it’s wrong. IBM has fmal- 
ly adopted ASCII codes after years of using Extended 
Binary Coded Decimal Interchange Code,4 and evolu- 
tionary extension and remnant of the card era. This adap- 
tation means much mainframe translation work as the PC 
and mainframe communicate. 

4. Make somebody [person(s) or organization(s)) re- 
sponsible for defining, implementing, and maintaining a 
standard. Ethernet is a good example. Xerox and DEC 
needed it as the backbone of their product strategies, and 
Intel needed it to sell chips. Rarely has an interconnection 
standard been as important as the LAN. How it is imple- 
mented should be moot-the modulation (broadband ver- 
sus baseband) and topology (buses, rings, trees, or cen- 
tralized switches) have only minor impacts on cost and 
performance of the total system. Yet the 802 series, which 
addresses topological differences, 5A became a focus for 
ideological differences that lead to time-consuming argu- 
ments. The work building real systems is deferred by at 
least five years, with billions of dollars lost through redun- 
dancy, lack of productivity, and poor communications. 

5. Minimize the number of organizations responsible 
for a standard. Our industry lives in a chaotic world of de 
facto standards that emerge from particular companies 
(the S-100 Bus, dialects of Basic), industry standards- 
which are often simply IBM’s standards-and “vanity” 
standards, those developed by individual companies to 
box users into particular systems. Vanity machines- per- 
sonal computers, processors, operating systems, and 
languages generated by every engineer or company trying 
to  do its own thing-make no real contribution to the state 
of the art and usually wind up confusing the marketplace. 
In addition, many conflicting government and profes- 
sional organizations that reflect multiple, overlapping 
disciplines are involved in standards setting. 

Perhaps the greatest problem in standards today is that 
too many groups are competing to set too few standards. 
We must have a way of selecting the best organizations 
and people to work on a standard, and to  reduce the 
number of bodies that delay work and introduce noise. 
While a standards process does have to recognize and re- 
spond to great ideas, these can generally come from out- 
side the “official” body. 

6. Remember that almost ady standard is far more im- 
portant than a highly refined optimum. To make progress, 
we often have to regress. Models such as the seven-layer 
open systems interconnection are often valuable as a base 
for building new standards. Unless a model is followed by 
the detailed definition of the layers, it is only a template 
for creating a multitude of vanity standards and for 
writing advertising copy. Since implementation must come 
before standardization, the seven layers might better be 
only four, or even nine. Unfortunately, every real im- 
plementation that says it uses the seven levels uses them the 
way an engineer uses a metric ruler t o  draw on quarter- 
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inch quadrille graph paper. The lines serve only as refer- 
ences for the infinity of figures possible; about every 2.5 
inches the two scales line up pretty well. bnix is an cxcel- 
lent example of an arbitrary standard that is below the 
state of the art and will require much evolution. (I describe 
this standard’s desirability and its necessary evolution on 
p. 76). 

7. Provide and plan for evolution; it’s often the fastest 
way. The evolution of a real standard usually beats the 
ideal that never gets completed. Algol, for example, was a . 
good idea that never got completed or backed with ap- 
propriate implementation. Instead, it became a model for 
designers of succeeding languages to build on. 

With exponential change in virtually every dimension of 
computing, the domain of a standard should be specified a 
priori to understand when it should be extended. Many 
standards, such as Fortran, survive longer than the spon- 
sor thought or intended. One reason is that standards 
organizations can’t arbitrarily pronounce a standard dead 
and ignore it if many people are using it. Otherwise, new 
products would make ad hoc extensions and no one would 
be responsible. 

8. Base the standard on experience, not on a committee 
design; if you haven’t lived with a proposed standard, 
don’t adopt it. The best way to ensure reality is to imple- 
ment several alternative interfaces before setting a given 
standard. The digital communications standard ISDN is 
an excellent example of a complex committee design, with 
no real test use, for what should have been a simple, clean 
interface. No wonder it took a.decade to design. And even 
if it is to be widely used in the‘next 10 years, it will need a 
great deal of expensive redesign. 

Another example is the Ethernet standard (802.3), 
which took almost 10 years after a full-scale working 
model to develop.’ The upgrade over Xerox’s first 
Ethernet improved performance by almost a fictor of 
four, but if the original had been used to get real ex- 
perience, all LANs could have been realized earlier and not 
still be “several years away.”s 

9. Make the standard precise, understandable, applic- 
able, and useful at several levels of detail. You don’t 
always have to be IBM to set a standard. In 1%9, neither 
IBM nor any official group was interested in a standard 
for interconnecting computer components to form mini- 
computers. DEC’s PDP-11 Unibus originally set the stan- 
dard. Eight years after hundreds of engineers had designed 
hardware to attach to Unibusfs, a really complete Unibus 
specification was finally written. The original specification 
provided a way to interconnect different kinds of parts, 
not just a pair, and showed the way for this generation of 
buses and the future generation of micros. 

Had a standards committee been involved in the original 
Unibus, it is doubtful whether the design would have been 
completed. 

10. Remember that only one or a few standards are nee- 
ded for the same function; a standard should aim toward 
unifying a set of alternatives. Ideally, a standard should 

define the interface between sets of parts, not Just two 
parts. Having too many standards is like having no stan- 
dards at all. The current plethora of 802 LAN standards, 
including digital communication switching, which is also a 
LAN, is good example of too many, with no basis of cx- 
perimentation. Every company, consortium, or commit- 
tee tries to get one more standard bus and LAN. In turn, 
members add features to ride every new bus and LAN 
specification. There are simply too many buses, LANs, 
and riders. We need bus and LAN birth control. 

Critical standards for the next generation 

Silicon chip and wafer for custom systems: The silicon 
foundry. The silicon wafer is an important level of integra- 
tion that requires wide-scale standardization. Since 
semiconductor processes have traditionally been the cor- 
porate jewels of semiconductor companies, the wafer and 
chip are not well publicized or documented. Yet, we can 
safely predict that the silicon wafer or custom chip is likely 
to be the basis of the next computer generation. Some 
computer systems will be a single chip with one to 10 
million transistors. Of course, most chips will continue to 
come from manufacturers as a “standard” or combina- 
tions of “standards” such as microcomputers, periph- 
erals, and memories. 

Creative new products will come from the silicon foun- 
dry industry that Carver Mead advocates8-requiring 
substantial standardization. Weitek9 is an example of this 
new kind of company that takes algorithms and embeds 
them in silicon-“VLSIzation.” Another example is the 
workstation product, Iris, from Silicon Graphics. lo  Iris 
uses a dozen 75,000-transistor chips, which Jim Clark calls 
the Geometry Engine, and computes at a speed of 10 
Mflops-roughly equivalent to a CDC 7600. In this way, 
Iris outperforms by a factor of several hundred the other 
150 workstations. We can envision radically new, special 
chip-based systems that operate on pictures, voice, and 
mechanisms. 

Because foundries and CAD systems lack standards, we 
are far from being able to realize the scenario of a silicon 
foundry industry. Standards are essential for all user- 
specific gate array, standard cell, or fully custom chips. 
It’s distressing that we still have no standards for specify- 
ing gate arrays; custom PLAs and ROMs took too long to 
standardize. A few interfaces for this industrial structure 
are 

specifications of structure and behavior, including 

physical information at all levels including those for 

control of foundry processes, especially if processing 

chip test, including automatic generation of test data; 

chip assembly and packaging, including bonding and 

For CAD, the development of standard interfaces to 
languages and databases that are communicable through 
networks must be targeted. It might be desirable to stan- 
dardize the specification languages; 1 can’t identify any 

simulation and timing at all levels; 

processing wafer masks (CIF); 

steps become optional; 

and 

multichip interconnection. 
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benefits of observing the differences. Agreeing on inter- 
faces doesn’t limit the coqqxtitiveness or creativity of any 
CAD company or foundry; it simply means that users 
don’t have to learn many systems and languages for the 
same function or to convert data formats. Standards 
would let users mix and match different CAD systems in a 
completely flexible fashion. Syntactically idiosyncratic 
editors, timing verifiers, simulators. design rule checkers, 
etc., don’t really increase user power. Use would expand 
much more rapidly because buyers wouldn’t be forced to  
make critical long-term decisions with no way to exchange 
data to other systems. As an analogy. look at the pre- 
Cobol/pre-Fortran era in the late 50’s when all the users 
rebelled at every manufacturer providing a unique lan- 
guage. The rebels designed Cobol, the first, oldest, and 
most widely used of the standard languages, because there 
was no reason for different languages. 

In CAM, the user is also faced with a fuzzy and perplex- 
ing interface to the process from masks to tested com- 
ponents. 

The foundries, CAD companies, and users, such as the 
Microelectronics and Computer Corporation, could effect 
change now so we can have the next generation. A whole 
Compcon could be devoted to describing alternatives and 
defining interfaces. I’ll get back to this idea later. 

Standard chip: micros, rnicroperipherals, memories. 
The semicomputer manufacturers are responsible for stan- 
dards resulting from the instruction-set architecture. This 
lowest level of integration for computers is the input to a 
very high gain “work amplifier” because it forces a range 
of unique buses, boards, and systems, including operating 
systems and languages, to be created. 

Rebels designed Cobol, the first, 
oldest, and most widely used of the 

standard languages, because there was 
no reason for different languages. 

Microarchitecture, like its mini- and mainframe 
predecessors, is the root of most of our redundant work. A 
micro’s life is incredibly predictable, following a time- 
worn path with respect to its ability to access memory. 
Fraileyll suggested that there are about 20 measures of 
word length. 1 believe only one counts-the amount of 
directly addressable memory to a process-because it 
determines a computer’s programmability and therefore 
its longevity. Of course, when considering performance, a 
few embellishments like data types and implementation 
word lengths are worth noting. 

Unlike participants in the semiconductor evolution, 
micro users are dragged along as an architecture evolves 
and can relive history. For example. we were-dragged 
through the evolution of the stack, which started out in a 
Datapoint terminal. went on to become the 8008, the 8080, 
the 280 (when another company provided us with an 
almost useful PC), then on to  the 8086, 186,286, and so 
on. As a user of these parts, 1 have been able to relive com- 
puter evolution for a third time. The good news is that the 
286 may be the fastest micro and is evidence that evolution 
does work because there is finally a large, state-of-the-art 

I 

address. It also illustrates the difficulty of design for corn. 
patibility. 

In the late 503, a system that allowed users to treai 
primary and secondary memory as one was developed ai 
the University of Manchester using Ferranti’s version 01 
the university’s second machine, Mercury. By 1%2, thc 
university had an operating breadboard with a 27-bit vir. 
tual address for Atlas. l 3  (Atlas also had a number of othei 
ideas, such as Extracodes that Bhujade recently redis. 
covered.14) It was a university machine in the UK de. 
scribed in nearly 10 papers, and Ferranti built only a few 
The critical paper was republished in 1971 in a work b) 
Bell and Newell,I5 and again in 1982 in a work bb 
Siewiorek. Bell, and Newell. l6 But if engineers read about 
it, they neither remembered or learned. 

Having known Atlas, I went on to design two minicom. 
puters with 12- and 13-bit addresses because I felt they 
were special and wouldn’t evolve to general-purpose use. 
Both had to  be extended to 16-bit addresses almost before 
they were shipped. In 1964, the PDP-6, the forerunner of 
DEC system 10 and the 360 were introduced, and both 
could access about a megabyte. The DEC system 10/2C 
and the 370 eventually ended up with 32 bits of address, 
complete with paging, just like Atlas, but about 15 years 
later. 

In 1970, the PDP-11 came out with a 16-bit address to 
solve the minicomputer addressing problem. The first 
customer demanded a physical address extension to 18 
bits. The virtual and physical addresses evolved to 17 and 
22 bits. For several years, DEC engineering spent 
thousands of hours trying to  figure out how to address 
more memory. Users spent much time encoding programs 
in small memories. In 1975, the Vax project was started to 
provide a 32-bit address with an embedded PDP-I1 for 
compatibility. This cycle took about eight years and was 
well documented. I 8 v i 9  Other East Coast minicomputers 
followed the same path for the second time around. 

In 1971, the micro was born on the West Coast with the 
4004 (12 bits of address) and 8008 (14 bits of address). 
Because the models were established two times, the evolu- 
tion was clear. In 1978, the 8086 was extended to 20 bits 
and most recently to 24 bits of physical and 30 bits of vir- 
tual address. The cycle based on the 8086 has taken six to  
12 years. It is ironic that information on addressing didn’t 
travel from California to Oregon, where Intel’s 432 was 
developed. 

Motorola’s saga is similar. National took the high road 
and copied Vax without violating its patents to supply 
Vax-like chips-since DEC is a minicomputer, not a 
semicomputer company. Unfortunately, National didn’t 
copy enough of Vax to make software automatically 
transportable from Vax. 

The National architecture is certainly an  interesting 
alternative t o  Vax, permitting transfer of Vax programs 
with minimal effort. If an exact copy of Vax could have 
been made, many billion dollars of software could have 
been made available, and many resources could have been 
freed for doing creative and productive work. With the 
micro, the cycle has been repeated three times. The saga is 
not yet ended, since we now understand the ramifications 

‘A semicomputer company is a semiconductor company that builds com- 
pulers. 
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of address spaces greater than 32 bits. Stay tuned for fur- 
ther evolution. I 

The story surrounding the Computer Family Architec- 
ture, or CFA, specifically the Department of Defense’s 
version of Vax, called Nebula, is far worse. An exact copy 
of Vax could have been made saving 10 years and many 
billions of dollars. 

New architectures, especially those that have gone along 
well-traveled evolutionary paths, have cost computing at 
least half of its resources, have provided little or no benefit, 
and in some cases have delayed progress. Using C and Unix 
to obtain machine independence appears simple but don’t 
be fooled. A compiler for C or a compiler written in C is 
only a starting point for a product . . . not the end. An ar- 
chitecture prevades virtually every part of a system and its 
database. Even if C and Unix can be standardized to a 
greater degree, the instruction set is still pervasive. Deter- 
mining when an architecture should be copied, evolved, 
thrown out, or completely redesigned is fundamental to 
the notion of standards because of the tremendous user 
program and data investments. 

Revolutionary research architectures based on paral- 
lelism are another issue. A recent taxonomy listed 55 new, 
evolutionary, and radical computer system designs: 25 can 
be built. 15 may be built, perhaps 10 are worthwhile 
building, and we have resources to build and evaluate five 
at most. At a time when meaningful research requires large 
team efforts, only a few experiments can be performed. 
We need the results of a few critical experiments, not more 
half-done, toy projects. 

Board: buses for various performance, applications, 
etc. The board level-is similar to the instruction set ar- 
chitecture story, except that buses last longer. The various 
species of the IBM channel buses are now 20 years old and 
will survive in their current forms for another 20 years, 
even though many functions that a peripheral might per- 
form could be handled with the same amount of hardware 
as that required to interface and drive the bus. 

The IEEE sanctions these buses. The politics is hard to 
understand. Is a bus designed and sanctioned in- 
dependently of whether there are any riders? How many 
more buses do  we need or can we afford beyond the ex- 
isting ones? Why aren’t the on-board signals standardized 
to mix and match processor and peripheral chips? 

LANs and LANCs: another kind of switch. While 
riding buses, let’s look at our most critical bus, the Local 
Area Network used for interconnecting computers and 
terminals in a local area. We need to keep the number of 
standards to a minimum so that we can get on with 
building clusters-or LANCs-which few organizations 
understand experientially. The motivation behind a 
LANC is the certain evolution of three types of clusters: 

a single. shared mini or large computer that will 
gradually be decomposed into functional server com- 
ponents; 
a collection of large computers that must behave as a 
single system with a common database; and 
the proliferation of PCs that require intercommuni- 

. cation to form a single integrated system by aggrega- 
tion. 

LANs are especially difficult to  design and standardize 
because they cross from the computer industry into tradi- 
tional communications and cable television industries in- 
volving more disciplines and organizations. A sorry 
parallel can be seen in the slow formation of videodisc 
standards-slow because both computer and television 
engineers are involved. 

The IEEE 802 standards program is essential to 
LANs.’.~ While it must be strengthened to  include 
PABXs, a new set of numbers will be required just for all 
the new LANs. 802.3 was allocated for the CSMAXD 
bus, Ethernet. But instead of spending energy to  reduce 
the cost of this LAN, groups took the basic idea and built 
incompatible, lower cost, nonstandard versions. With 
IBM’s recent announcement of yet another LAN, one for 
PCs based on CSMAKA, we have one more standard 
and number. 

802.3 can be transmitted on standard orange or yellow 
Ethernet cable. For those who like a simpler installation 
and lower cost and will give up distance, RGU 58 can be 
used-call it “Cheapernet.” 3COM and Bob Metcalfe, 
Ethernet’s inventor, call it “Thin Ethernet.” Codenol has 
a fiber optic transmission system using the same basic elec- 
tronics. For those who like cable television technology, a 
modem permits the same controller to transfer Ethernet’s 
baseband information on broadband. The purpose of all 
these media is to build and use LANs and not to wait for 
what is really quite an  arbitrary choice of media that only 
delays use. The controller/transceiver interconnect for 
Ethernet is becoming an important standard. With it, 
maybe any topology (including high-speed PABXs), 
modulation schcme, and medium can be used. 

We need to keep the number of LAN 
standards to a minimum so that we can build 

clusters, or LANCs-something few 
organizations have practical experience with. 

802.4 denotes LANs carried on broadband with three 
incompatible data-rate versions. With the 5M-bit-per- 
single-channel-pair version in operation, we can hope that 
the other two will not materialize. General Motors is using 
its market power to  insist that various computers demon- 
strate their ability to communicate at NCC 84. If this 
works, maybe GM should take over some of the standards 
role from IEEE, ANSI, ECMA, and NBS. 

The ring came out of early work at Bell Labs and Cam- 
bridge University. Cambridge and. its alumni invent about 
one new ring each year. Prime uses a ring, and since 
Apollo was founded largely by Prime alumni, they too use 
another ring. Perhaps because rings can be built with large 
central controllers, IBM grabbed the ring, hence 802.5. 

The 802.6 deals with metropolitan areas. Very high 
speed PABXs could provide the same function as the LAN 
and hence should come under the 802 purview. It is im- 
perative to have conformity at the higher levels. Is this 
802.6 or do we need yet another standard? Since we can 
obviously use fiber optics to  build LANs, we require a 
fiber standard, 802.8. Since several already exist, can’t we 
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either make one official or embed the medium as an option 
within another standard?, 

The  multiplicity of standards to  switch information at 
modem computer data rates causes us to avoid the cssen- 
tial problem of building networks and clusters. Almost 
every week a new incompatible LAN is announced. This is 

The glib answer to the panopoly or lack of standards is 
gateways.20 Virtually nothing is known about gateways 
except that building them is a craft-and roughly 
equivalent to conversions ,between high-level languages 
such as from Fortran to Pascal. Building a gateway is 
about as easy as designing a train that can travel on dif- 
ferent gauge tracks. It may be fine if you can reach steady 
state, but the transition from track to track is tricky. 

crazy! 

Electromechanical assembly: disks, 110, power, en- 
closures. The evolution of small disks and tapes has been 
impressive and demonstrates the strongest case for stan- 
dards. When AI Shugart started Seagate, his greatest con- 
cern was making sure a competitive second-source in- 
dustry with a common interface and form factor was 
available. He used the same formula to create the original 
5%-inch floppy disk from factors, standards, and in- 
dustries. We might increase our understanding of the stan- 
dardization process by studying this industry. 

Operating systems and Unix. In 1966, a user could have 
a 300-baud Teletype using a phone line. By 1980, the speed 
had been raised to 1200 baud for a performance improve- 
ment of less than 10 percent per year, while theconnection 
cost rose. This performance is roughly equal to the im- 
provement in horsepower and cost increases for sports 
cars, not for computers. By adopting Unix, a large part of 
our future systems development has been entrusted to 
some part of AT&T (call it Unixco). Given the simplicity 
of Unix. and the need for much more rapid evolution, 
either a strong Unix-compatible company will emerge, or 
IBM will take the responsibility for Unix. In other words, 
it  is unlikely that Unixco will fulfill its role. 

The Unix phenomenon illustrates nile 6: Almost any 
standard is far more important than the unobtainable 
ideal. Like many systems, the people who love Unix are its 
many parents and those who grew up with it. The final 
clause of rule 6 also typifies Unix: To make progress, we 
often have to regress. For example, look at the way Unix 
evolved. Its development was the result of Thompson and 
Ritchie’s reaction to Multics, a very large, joint MIT and 
Bell Labs project conducted in the late 60’s. The idea for 
Unix coincided with the time the book, Small is Beautiful, 
was popular. Thompson and Ritchie began with a dis- 
carded DEC PDP-9 and went on to use the PDP-11 in the 
early 70’s. Since DEC didn’t give away operating systems 
to universities, the university used Unix, which was essen- 
dally free. No manufacturer provided source code to 
users. Unix did. Unix, by most measures a very simple 
operating system, could do useful work with database ac- 
cess, special communications, and extra programs. Stu- 
dents and faculty could understand all facets of its inter- 
nal~ and use because of its simplicity and availability. It 
was written in a very elegant, structured, high-level assem- 
bly language, C, and as such could be modified. It was an 
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excellent pedagogical tool. Universities embraced it and 
trained many students with it providing a large, future 
market. 
Unix was used on other computers because it was por- 

table. As long as a C language compiler was available, a 
team of people could move Unix to another computer sys- 
tem. Other early high-level languages were never quite en- 
tirely pgrtable because of incompatible extensions to ac- 
cess the operating and file system. Unix created the notion 
that someday we would have a complete system that was 
machine and manufacturer independent. Users liked this 
idea. 

Chip makers with very small programming groups 
needed software and were used to adhering to standards. 
Small system manufacturers wanted system software and 
access to the DEC user base. IBM appeared to view Unix 
as a way into DEC’s technical market. Thus, a standard 
was created that has almost everyone’s support. 

Much work is required to have a system that supports 
computing concepts in the 80’s. Unixco must take the 
responsibility commensurate with its marketing. The no- 
tion of a standard is great, but is must be developed more 
rapidly than any single manufacturer is capable of doing. 
The standard can evolve if there is parallel development 
among many organizations. If Unixco is the only company 
doing and blessing all the extensions, we have simply 
substituted multiple competitive companies with a single, 
behemoth. Unix has to be evolved in a reasonable, not ad 
hoc, fashion. This potential bottleneck may be the most 
serious problem we have in extending computing today. 

Some of the extensions of most concern are 
higher reliability, greater performance, and greater 
security; I 
virtual memory (Berkeley, version 4.1 with virtual 
memory has been available nearly five years); 
special functions for real-time and transaction pro- 
cessing (Unix is being extended and adapted in incom- 
patible ways by diverse companies. A clearinghouse 
to ensure portability and compatibility of applica- 
tions is required); 
a modern human interface that is competitive with 
the PC or new PCs (Vnix was developed in the time- 
sharing era using “glass Teletypes.” As a result, inter- 
action is via one-dimensional, cryptic messages. 
Helpful, less cryptic interaction and multiple win- 
dows with fast interaction are critical today.); 
multiprocessing (with the micro, multiprocessors are 
feasible, desirable and available); 
networks (given Unix’s origin, we should,demand 
modern communications capabilities for wide-area 
networks); and 
fully distributed processing across a LAN to form 
LANCs (”he Universities of Newcastle and Berkeley 
and others have implemented incompatible systems 
for fully distributed processing. Berkeley 4.2 is a good 
starting point). 

Languages including extensions to applications Ian- 
gusges. The concern for Unix is paralleled by C, the heart 
of applications portability, and must be standardized. A 
language for artificial intelligence is of great concern 
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because of next generation applications. Lisp has proven 
useful for these appiications. I 

Lisp, designed about 1W by John McCarthy, im- 
pressed me so much that I included the critical data access 
primitives in the architecture of the DEC system 10 in 1%5 
(still about the fastest Lisp computer). Lisp branched. One 
path went west via Bolt, Beranek and Newman alumni to 
Xerox, creating Interlisp and its dialects. Many dialects 
evolved from the original MIT Lisp: Maclisp, Zetalisp, 
NIL, Scheme, T-Lisp, Portable Standard Lisp, and Com- 
mon Lisp. The last two vie for standards status. Franz 
Lisp, Glisp, Nist are other dialects and extensions. Virtual- 
ly everyone who works with a Lisp compiler or interpreter 
creates a private language or extension. Because these 
languages are incompatible with one another, we can’t 
benchmark or extend the language in a compatible fashion 
using bootstrapping. Much work surrounding Lisp is to 
make applications development easier, but given the 
number of dialects and extensions to ease development, is 
anyone even working on applications? 

To get on with the business of applying AI, we need 
some way of sharing information across the various dif- 
ferent languages called Lisp. A serious standards activity is 
long overdue. 

In fact, the Japanese were so confused about Lisp that 
they totally gave up and went on to Prolog. 

A Compcon on standards 

Unfortunately, we can’t go off and simply make rules 
for standards; instead a better understanding of the whole 
standards process is needed. I think we need a Compcon 
devoted entirely to standards that would 

examine and prioritize critical standards [Certain 
standards such as LANs and electronic mail are 
relatively arbitrary and simply need to be frozen. On 
the other hand, some care is needed to avoid con- 
straining future creativity.]; 
establish responsibility and territoriality [Often too 
many groups are involved in setting goals and con- 
straints, definition, review, test, and implementation. 
Having fewer designers, but extremely competent 
ones, always yields a far better system.]; 
establish goals and constraints [In many cases, efforts 
immediately digress to bit encoding without agree- 
ment that a standard is necessary.]; 
understand the timing in the past (origin), present, 
and future of a standard [With the invention of new 
phenomena, it is pointless to discuss standardization 
until a breadboard has been made to demonstrate 
utility. On the other hand, several organizations have 
extended Fortran in incompatible ways to handle 
vectors because the standards group has considered 
Fortran a dead language; a standard is still long 
overdue.]; 
understand the effects and desirability of standards 
[Although most effects appear to be beneficial to 
both suppliers and consumers. the perception of 
almost every producer is that the “ideal state” is a 
monopoly.]; and 

develop arbitrary “Standards” for use in future 
radical research to aid rapid progress [For example, 
every data-flow computer has a unique, higher level 
language. Almost any data-flow language would let 
us encode algorithms and measure parallelism 
without having to build any special hardware.]. 

Models  for the next generation of computers will con- 
tinue to rely heavily on standards. The traditional levels of 
integration are now well defined through various industry 
and traditional standards. Following certain rules might 
improve the standards process, and a Compcon devoted to 
patticular standards and the standards process would help 
us develop standards more intelligently. 

Postscript 

I’ve extolled standards now for some time, but there is a 
down side. A standard provides an interface, or target, by 
which similar systems can be compared-and anyone can 
use it. For example, the focus and adoption of US stan- 
dards has permitted Japan to become number one in com- 
puting. 

In early 1984, kernel benchmark codes developed at the 
Lawrence Livermore National Laboratory were run in 
Japan on the Fujitsu VTlOO and VT2W and the Hitachi 
810/820 at a rate of over two times what a one-processor 
Cray XMP could achieve. The Japanese machines are 
evolved versions of a 20-year-oid architecture, the IBM 
370, implemented with evolved 25-year-old ECL circuitry, 
highly evolved 25-year-old ICs, and expressed in 25-year- 
old Fortran. The Japanese used standards to increase pro- 
ductivity; they did not start by inventing a new architec- 
ture and the associated reprogramming. They built on the 
vectorizing compilers derived from the 15-year-old Illinois 
Illiac IV project. 

This example illustrates the value of using standard in- 
terfaces, understanding the old, and seeing that it envolves 
immediately to increase output and free resources with 
higher productivity. It lays down the gauntlet for a new 
revolution. * 
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