
Using the cache memory structure as applied to a 12-bit minicomputer 
(PDP-8/E) ,  and the 100-ns processor constructed of H and S 
series T T L  gates, the resultant performance is 5 to 10 times the 
conventional implementation with a corresponding improvement 
:rt the perf ormance/cost ratio 
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The cache memory concept was developed in an effort 
to improve the performance of large-scale computers. 
This has produced machines with the advantages of short 
cycle times without the added cost of all solid-state 
high-speed memories. 

The implementation of this scheme in a minicomputer 
is more difficult, because it requires a determination of 
the performance gained for each increase in cost and, 
therefore, a firm understanding of the schemes di- 
rectly usable in a minicomputer. Basically, the complexity 
added to a minicomputer by the use of a cache is a 
much larger portion of the machine's basic price than 
that of a large-scale machine. As a result, the cache 
scheme should not aim at finding 98% of the addressed 

C. Gordon Bell received a BS degree 
in Electrical Engineering and an MS 
degree from Massachusetts Institute st 
Technology, Cambridge, Mass. He is 
presently a professor of electrical en- 
gineering and computer science at 
Carnegie-Mellon University, Pittsburgh, 
Pa, and consultant for Digital Equip- 
ment Corp, Maynard, Mass. His re- 
search interests center around the de- 
sign of computer systems. 

David P. Casasent received a PhD de- 
gree from the University of Illinois. He 
is currently an assistant professor of 
electrical engineering at Carnegie-Mel- 
Ion University doing research in com- 
pufer architecture, high-speed digital 
circuits, electro-optics, and electron- 
optics. 

words in cache memory. The overall cost of such a 
scheme would far outweigh any performance advantages 
gained. 

The Computer 

A minicomputer using a cache memory has been simu- 
lated and constructed to test the use of high-speed logic 
and high-speed memories. Initially a single bipolar mem- 
ory was considered, but as the use of cache memories in 
larger computers became better understood, it became 
clear that the cache structure could work equally well in 
minicomputers. 

The cache memory size may be increased in incre- 
ments. Each size increase improves the performance but 
also increases the cost. Thus each user can add on enough 
memory to achieve the performance/cost combination 
suitable for his needs. The cycle time of the computer 
with an all bipolar memory is about 100 ns, and with a 
combined 512-word fast cache memory and a 1-p core 
memory the effective cycle time is about 200 ns; thus an 
improvement of 5 in performance can easily be obtained 
over the all core memory. 

The Cache 

The cache memory concept has been described in 
various forms in the literature: the lookaside memories,l 
slave m e m ~ r i e s , ~  and associative memories3 are several 
versions of the cache, and two excellent survey articles 
have been written by Meade4 and Cont i .The  purpose 
of the cache is to achieve the effect of an all high-speed 
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memory by using two memories-one slow and one 
fast-and insuring that the data being used are in the 
fast memory nearly 95% of the time. This provides the 
advantage of speed without having to resort to an all 
solid-state memory. 

A simplified diagram of a cache memory system is 
shown in Fig. 1. The operation is: the central processor, 
PC, requests a word to be read from memory. If the 

word is in the cache memory, Mc, it is given to the 
processor. If the word is not in the cache, the cache 
requests the word from the slower primary memory, Mp. 
When the word is read from Mp, it is given to both PC 
and Mc. Mc holds it for future reference. This system 
works well because references to primary memory ar 
in general not random; access is rather to a small lot, 
set of addresses and usually contains series of loops. 

One familiar with the cache memory li teraturel~~ will 
recognize that all prior discussions of cache type systems 
have pertained to large systems where high performance 
was the design goal. The memory/computer price ratio 
is quite different between a large machine and a mini- 
computer. If the intriguing cache schemes of the large 
computers were implemented directly here, the memory/ 
processor cost ratio would be too large. The memory 
size and long word length of the large machines forces 
some cache memory referencing techniques to be aban- 
doned in large computers. Thus some schemes not 
feasible in a large computer are possible with mini- 
computers. The large resultant cache memory size, 
16K to 32K bytes,5 often results in a data type dependent 
allocation in the cache and second level associative 
cache memories for large computers. The problem of 
what word of fast memory to overwrite (eg, the least 
recently used one) can be completely ignored in the 
minicomputer case with surprisingly little difference. 

Structure 

A PDP-8/E was chosen as the experimental basis because 
of its simple structure and because if it proved feasible 
there, almost any other minicomputer could take ad 
vantage of the cache structure (Fig. 2) equally well. 

Conti" has defined four main cache memory con- 
figurations. The disadvantages of each are discussed 
here only briefly. 

(1) Fully associative buffer-This system requires 
extensive control circuitry. In it any word in Mp can 
be mapped onto any word in Mc. This scheme does not 
use the fact that memories have linear explicit addresses. 
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Fig. 3 Direct mapping of 2" word 
cache memory from a 212 word pri- 
mary memory 



(2) Sector buffer-This requires that the age of each 
register (when it was used last) be kept track of for 
replacement. 

(3) Direct mapping-This scheme was first described 
by ScarrottGnd can be considered as a content address- 
able memory with hash coding with modulo 2". In this 
scheme, only one cell in memory can contain the address, 
hence the name direct mapping. It requires only one 
comparison circuit; its disadvantage is that in a loop 
two instructions might occupy the same cell and necessi- 
tate rewriting. 

(4) Set associative buffer-This is a direct mapping 
with the memory words of double length. By choosing 
the correct parameters, all of the other three cases can 
be shown to be special cases of this one. 

Due to its ease of implementation, the direct mapping 
scheme seemed most appropriate. Other schemes were 
also simulated. Because of the lack of an adequate model 
of minicomputer programs and due to the large number 
of variables that characterize a cache system (Table 1 

contains a first order list), simulation was used to deter- 
mine the system parameters 

The organization of the 4096-word primary memory, 
Mp, and the 2'" word cache, Mc, are shown in Fig. 3. Mp 
consists of 2l2 words (extended memory can also be 
added) divided into 212-m sections, each denoted by a 
tag number. Each section contains 2'" words or blocks. 
Block x from any section of Mp can only be contained in 
word x of Mc. Mc contains 2'" words, each word divided 
into three parts. The least significant 12 bits are the 12- 
bit word, the next most significant bit is the write bit, 
and the most significant 12 - m bits are the tag bits 
associated with that word. The location of the word in 
the Mc denotes which block of Mp the word is in, and 
the 12 -m tag bits of the Mc word denote the section of 
the Mp from which it was taken. 

In operation the processor presents a 12-bit address 
to Mc, the least significant m-bits are used to access a 
word in cache, and the tag bits of the accessed word are 
compared with the tag part (the first 12 - m bits) of the 



address. If equal, the word is in Mc, otherwise the word 
must be fetched from Mp. 

Writeback Strategy 

The writeback strategy determines the action when 
the processor requests a word to be written back into 
memory. There are several possibilities: (1)  always write 
the word in the cache and in primary memory, (2) 
write the word in the cache and then always write the 
word in primary memory when the cache cell must be 
replaced, (3) place a control bit (the write bit of 

Fig. 3)  in the cache, which indicates when a word 
has been written and thus has to be written back in 
primary memory. 

The simulation showed scheme (3) to be better than 
schemes (1) and (2).  Although more complex schemes 
are slightly better, we chose this one. Fig. 4 presents 
flowcharts for processor read and write request using 
scheme ( 3 ) ,  which essentially amounts to writing in- 
formation back from Mc to Mp only when a word oi 
Mc is about to be written over with a word with a new 
tag number. If the write bit is a 1, the Mc has been 
changed since it was entered from the Mp and thus the 
Mp must be updated. 
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Fig. 4 Flowchart of writeback scheme using 
write bits 



Simulation 

~'hree benchmark programs were chosen on which to 
base the design: the assembler assembling a small pro- 
gram, fast Fourier transform, and FOCAL-an interactive 
interpreter-executing a small program. 

Assembler FFT - FOCAL 
Program size 
(locations) =I000 data, 
(active) 1800 512 program 3000 

Instructions 
simulated 

The simulation process was: (1) a conventional instruc- 
tion simulator was modified to generate a file which 
recorded each access and its type (eg, instruction, defer, 
data) for each benchmark program, (2) access distribu- 
tions were made for each program, and (3) the access 
file was used as input to test each simulated cache 
structure. FOCAL was taken as the worst-case benchmark 
for most of the cache simulations. 

Simulation Results 

The effectiveness of the scheme varies with cache size. 
This effect is shown in Table 2 for the three benchmarks, 
~ssuming t,, = 50 ns, t,, = 100 ns, t,, = t,, = 500 ns, 
snd t,, = 1 ps. (Refer to Table 1 for symbol glossary.) 

The effect of varying the policy under which data and 
instructions are assigned to the cache was also considered. 
Table 3 gives the effective cycle times for various 
allocation strategies using the worst-case benchmark 

Fig. 5 Computer block diagram 
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Fig. 6 Simplified timing diagram 

program, FOCAL, and a 512-word cache. In the cases 
considered, the cache allocation was varied from con- 
taining only instructions to containing only data. In 
all cases, except when one page (128 words) of cache 
was allocated for the frequently referenced page zero, the 
undivided cache yielded better simulation results. 

Prototype Processor Design 

A prototype has been constructed to verify the concepts 
and to ascertain the ease of construction. The write 
scheme of Fig. 4 was used. The processor was de- 
signed primarily for speed although cost was also con- 
sidered. The improved performance was achieved 
through the use of faster circuits (H and S series TTL 
logic gates), and extensive use of open collector gates, 
plus a greatly increased parallelism of operations. 
Basically all operations are carried out in one clock 
time by calculating a number of next state alternatives. 

Central Control Logic 

The central control logic (Fig. 5) requires 45 ns after 
receipt of data-out (DO) from memory before it will 
deliver the new data-in (DI) to memory (in the case of 
a write) and/or the new memory address location (MA). 
This 45 ns is six gate delays plus one flip-flop set-up, 
hold, and propagation time. The resultant system with 
seven levels of logic was the most reasonable compromise 
between speed and cost. 

The central processor unit (CPU) contains the major 
registers of the system plus the control logic. The com- 
parator determines in which memory the desired data 
is located. The control logic produces condition levels 
which are used in loading the major registers with the 
correct data at the proper time. 
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I Fig. 7 General example of register loading 

The timing diagram for one fast memory cycle is 
shown in Fig. 6. At time T1 the DO from fast memory 
is valid. By time T2, the new MA and DI must be valid. 
In T2-T1, the processor must determine by the com- 
parator if the data (DO) from the Mc is indeed the 
desired data; if not, the fast memory cycle is terminated 
and a slow memory cycle is begun to retrieve the dat 
or instruction word from Mp. Assuming that the DO is 
valid and is an instruction word (worst case), the 
processor then: (1) decodes the instruction, (2) gen- 
erates the proper condition levels and the proper data in- 
puts for the major registers, and (3)  activates the write 
or read mode line for memory and the cycle repeats at 
T2. From T2 to T1, while the next word is being ac- - 
cessed, the processor completes its bookkeeping by load- 
ing the accumulator register, setting the major state 
register, and initializing the various control lines for 
the start of the new cycle. 

The critical path occurs between T1 and T2. To 
enable the MA and DI to be loaded during this time the - 
scheme of Fig. 7 is used to load bit n of some reg- 
ister, R. Each register has a small number of possible 
data inputs, m. All of these are formed each memory 
cycle whether they are to be used or not. While these 
data inputs to the registers are being formed, the control 
logic generates a set of condition levels corresponding 
to the data inputs to the registers such that, at any 
register loading time, only one condition level for each 
register is true and all others are false. Only the data 
associated with the true condition level can be loaded. 
The timing and flowchart of sequential operations are 
arranged to minimize the number of data and condition 
lines and still maintain speed. 

The timing generator that controls the sequence of 
operations consists of two delay lines connected in two 
separate rings or loops. One loop is for Mc timing; 
the other is for Mp timing. Each loop must be able to 
be entered from the other during operation in the buffer 



memory mode. To increase versatility, the system timing 
and logic is so arranged that only either the cache or 
fast memory can be operated; or the slow main memory, 
a core or an MOS, can be operated alone, or both in a 
buffer memory mode. This facilitates system checkout 
m d  allows a wide range of cache memories to be in- 
estigated. 

Initial prototype results have indicated that cycle and 
processor times slightly over 100 ns are possible. Many 
additional requirements are placed on the design and 
the system such as a preclear of the solid-state memory 
whenever power is first turned on. 

Conclusion 
Table 4 compares three system configurations (mini- 
mum, average, and large), each implemented by three 
different processor/memory arrangements in an exist- 
ing minicomputer using: (1) all core memory, (2)  all 
semiconductor MOS memory, or (3)  cache memory. 

If a performance factor of 1 is assigned to the all 
core memory arrangement, an improvement in per- 
formance by factors of 2 and 5 will be achieved by the 
MOS memory and cache memory arrangements, re- 
spectively. The cost differential between the different 
configurations is due, basically, to the larger memories 
used. As more primary memory, Mp, is added to each 
system the performance/cost ratio decreases for each 
larger configuration. However, in the case of the cache 
memory, the ratio decreases at a slower rate since the 
initial outlay for the faster processor with cache memory 
becomes an ever smaller part of the cost of the growing 
system. As the system configuration increases in size, 
the performance/cost ratio of the cache system also in- 
creases in comparison to that of the smaller systems 
which, in essence, explains the success of the cache 
memory in large computers as well as in minicomputers. 
It is conceivable that an all solid-state memory would be 

feasible if its improved speed versus its added cost were 
sufficiently high. 

In this discussion we have tried to show the technical 
feasibility of how a cache memory would be used with 
a small minicomputer. Whether such a machine is truly 
useful can only be determined by trying to apply it. 
There are identifiable applications which can use the 
additional performance. The PDP-8 time-sharing system, 
TSS-8, could effectively use the additional power because 
there are instances of it being compute bound. Real-time 
processing could also use the additional speed to allow 
more problems to be solved. In addition, there are 
simple computers being used to study microprogram- 
ming; this structure would provide the equivalent amount 
of power and still make it possible for the user to pro- 
gram the machine. Finally, there are already 10,000 
PDP-8s in existence, some of which might require more 
capacity without the inconvenience of changing to a 
basically large computer. 

In summary, if such a machine were made available 
at, say, a cost of $5K for the faster processor, it would 
have the cost and performance characteristics shown in 
Table 4: a performance gain of 5 or more at a cost in- 
crease of 2 or less. 
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