
Using the cache memory structure as applied to a 12-bit minicomputer
(PDP-8/E) , and the 100-ns processor constructed of H and S
series T T L gates, the resultant performance is 5 to 10 times the
conventional implementation with a corresponding improvement
:rt the perf ormance/cost ratio

Implementation of a Buffer Memory
in Minicomputers

C. Gordon Bell and David Casasent

Carnegie-Mellon University
Pittsburgh, Pennsylvania

The cache memory concept was developed in an effort
to improve the performance of large-scale computers.
This has produced machines with the advantages of short
cycle times without the added cost of all solid-state
high-speed memories.

The implementation of this scheme in a minicomputer
is more difficult, because it requires a determination of
the performance gained for each increase in cost and,
therefore, a firm understanding of the schemes di-
rectly usable in a minicomputer. Basically, the complexity
added to a minicomputer by the use of a cache is a
much larger portion of the machine's basic price than
that of a large-scale machine. As a result, the cache
scheme should not aim at finding 98% of the addressed

C. Gordon Bell received a BS degree
in Electrical Engineering and an MS
degree from Massachusetts Institute st
Technology, Cambridge, Mass. He is
presently a professor of electrical en-
gineering and computer science at
Carnegie-Mellon University, Pittsburgh,
Pa, and consultant for Digital Equip-
ment Corp, Maynard, Mass. His re-
search interests center around the de-
sign of computer systems.

David P. Casasent received a PhD de-
gree from the University of Illinois. He
is currently an assistant professor of
electrical engineering at Carnegie-Mel-
Ion University doing research in com-
pufer architecture, high-speed digital
circuits, electro-optics, and electron-
optics.

words in cache memory. The overall cost of such a
scheme would far outweigh any performance advantages
gained.

The Computer

A minicomputer using a cache memory has been simu-
lated and constructed to test the use of high-speed logic
and high-speed memories. Initially a single bipolar mem-
ory was considered, but as the use of cache memories in
larger computers became better understood, it became
clear that the cache structure could work equally well in
minicomputers.

The cache memory size may be increased in incre-
ments. Each size increase improves the performance but
also increases the cost. Thus each user can add on enough
memory to achieve the performance/cost combination
suitable for his needs. The cycle time of the computer
with an all bipolar memory is about 100 ns, and with a
combined 512-word fast cache memory and a 1-p core
memory the effective cycle time is about 200 ns; thus an
improvement of 5 in performance can easily be obtained
over the all core memory.

The Cache

The cache memory concept has been described in
various forms in the literature: the lookaside memories,l
slave m e m ~ r i e s , ~ and associative memories3 are several
versions of the cache, and two excellent survey articles
have been written by Meade4 and Cont i .The purpose
of the cache is to achieve the effect of an all high-speed

1/0 BUS

Fig. 2 Computer structure

memory by using two memories-one slow and one
fast-and insuring that the data being used are in the
fast memory nearly 95% of the time. This provides the
advantage of speed without having to resort to an all
solid-state memory.

A simplified diagram of a cache memory system is
shown in Fig. 1. The operation is: the central processor,
PC, requests a word to be read from memory. If the

word is in the cache memory, Mc, it is given to the
processor. If the word is not in the cache, the cache
requests the word from the slower primary memory, Mp.
When the word is read from Mp, it is given to both PC
and Mc. Mc holds it for future reference. This system
works well because references to primary memory ar
in general not random; access is rather to a small lot,
set of addresses and usually contains series of loops.

One familiar with the cache memory li teraturel~~ will
recognize that all prior discussions of cache type systems
have pertained to large systems where high performance
was the design goal. The memory/computer price ratio
is quite different between a large machine and a mini-
computer. If the intriguing cache schemes of the large
computers were implemented directly here, the memory/
processor cost ratio would be too large. The memory
size and long word length of the large machines forces
some cache memory referencing techniques to be aban-
doned in large computers. Thus some schemes not
feasible in a large computer are possible with mini-
computers. The large resultant cache memory size,
16K to 32K bytes,5 often results in a data type dependent
allocation in the cache and second level associative
cache memories for large computers. The problem of
what word of fast memory to overwrite (eg, the least
recently used one) can be completely ignored in the
minicomputer case with surprisingly little difference.

Structure

A PDP-8/E was chosen as the experimental basis because
of its simple structure and because if it proved feasible
there, almost any other minicomputer could take ad
vantage of the cache structure (Fig. 2) equally well.

Conti" has defined four main cache memory con-
figurations. The disadvantages of each are discussed
here only briefly.

(1) Fully associative buffer-This system requires
extensive control circuitry. In it any word in Mp can
be mapped onto any word in Mc. This scheme does not
use the fact that memories have linear explicit addresses.

. m

/
/

/

\

\
\

/ _:
WRITE

BIT

PRIMARY MEMORY Mp CACHE MEMORY Mc

Fig. 3 Direct mapping of 2" word
cache memory from a 212 word pri-
mary memory

(2) Sector buffer-This requires that the age of each
register (when it was used last) be kept track of for
replacement.

(3) Direct mapping-This scheme was first described
by ScarrottGnd can be considered as a content address-
able memory with hash coding with modulo 2". In this
scheme, only one cell in memory can contain the address,
hence the name direct mapping. It requires only one
comparison circuit; its disadvantage is that in a loop
two instructions might occupy the same cell and necessi-
tate rewriting.

(4) Set associative buffer-This is a direct mapping
with the memory words of double length. By choosing
the correct parameters, all of the other three cases can
be shown to be special cases of this one.

Due to its ease of implementation, the direct mapping
scheme seemed most appropriate. Other schemes were
also simulated. Because of the lack of an adequate model
of minicomputer programs and due to the large number
of variables that characterize a cache system (Table 1

contains a first order list), simulation was used to deter-
mine the system parameters

The organization of the 4096-word primary memory,
Mp, and the 2'" word cache, Mc, are shown in Fig. 3. Mp
consists of 2l2 words (extended memory can also be
added) divided into 212-m sections, each denoted by a
tag number. Each section contains 2'" words or blocks.
Block x from any section of Mp can only be contained in
word x of Mc. Mc contains 2'" words, each word divided
into three parts. The least significant 12 bits are the 12-
bit word, the next most significant bit is the write bit,
and the most significant 12 - m bits are the tag bits
associated with that word. The location of the word in
the Mc denotes which block of Mp the word is in, and
the 12 -m tag bits of the Mc word denote the section of
the Mp from which it was taken.

In operation the processor presents a 12-bit address
to Mc, the least significant m-bits are used to access a
word in cache, and the tag bits of the accessed word are
compared with the tag part (the first 12 - m bits) of the

address. If equal, the word is in Mc, otherwise the word
must be fetched from Mp.

Writeback Strategy

The writeback strategy determines the action when
the processor requests a word to be written back into
memory. There are several possibilities: (1) always write
the word in the cache and in primary memory, (2)
write the word in the cache and then always write the
word in primary memory when the cache cell must be
replaced, (3) place a control bit (the write bit of

Fig. 3) in the cache, which indicates when a word
has been written and thus has to be written back in
primary memory.

The simulation showed scheme (3) to be better than
schemes (1) and (2). Although more complex schemes
are slightly better, we chose this one. Fig. 4 presents
flowcharts for processor read and write request using
scheme (3) , which essentially amounts to writing in-
formation back from Mc to Mp only when a word oi
Mc is about to be written over with a word with a new
tag number. If the write bit is a 1, the Mc has been
changed since it was entered from the Mp and thus the
Mp must be updated.

R E A D

1::9,":sT
W R I T E
REQUEST

1 ENTRY

Fig. 4 Flowchart of writeback scheme using
write bits

Simulation

~'hree benchmark programs were chosen on which to
base the design: the assembler assembling a small pro-
gram, fast Fourier transform, and FOCAL-an interactive
interpreter-executing a small program.

Assembler FFT - FOCAL
Program size
(locations) =I000 data,
(active) 1800 512 program 3000

Instructions
simulated

The simulation process was: (1) a conventional instruc-
tion simulator was modified to generate a file which
recorded each access and its type (eg, instruction, defer,
data) for each benchmark program, (2) access distribu-
tions were made for each program, and (3) the access
file was used as input to test each simulated cache
structure. FOCAL was taken as the worst-case benchmark
for most of the cache simulations.

Simulation Results

The effectiveness of the scheme varies with cache size.
This effect is shown in Table 2 for the three benchmarks,
~ssuming t,, = 50 ns, t,, = 100 ns, t,, = t,, = 500 ns,
snd t,, = 1 ps. (Refer to Table 1 for symbol glossary.)

The effect of varying the policy under which data and
instructions are assigned to the cache was also considered.
Table 3 gives the effective cycle times for various
allocation strategies using the worst-case benchmark

Fig. 5 Computer block diagram

MEMORY BUS 110 BUS

Fig. 6 Simplified timing diagram

program, FOCAL, and a 512-word cache. In the cases
considered, the cache allocation was varied from con-
taining only instructions to containing only data. In
all cases, except when one page (128 words) of cache
was allocated for the frequently referenced page zero, the
undivided cache yielded better simulation results.

Prototype Processor Design

A prototype has been constructed to verify the concepts
and to ascertain the ease of construction. The write
scheme of Fig. 4 was used. The processor was de-
signed primarily for speed although cost was also con-
sidered. The improved performance was achieved
through the use of faster circuits (H and S series TTL
logic gates), and extensive use of open collector gates,
plus a greatly increased parallelism of operations.
Basically all operations are carried out in one clock
time by calculating a number of next state alternatives.

Central Control Logic

The central control logic (Fig. 5) requires 45 ns after
receipt of data-out (DO) from memory before it will
deliver the new data-in (DI) to memory (in the case of
a write) and/or the new memory address location (MA).
This 45 ns is six gate delays plus one flip-flop set-up,
hold, and propagation time. The resultant system with
seven levels of logic was the most reasonable compromise
between speed and cost.

The central processor unit (CPU) contains the major
registers of the system plus the control logic. The com-
parator determines in which memory the desired data
is located. The control logic produces condition levels
which are used in loading the major registers with the
correct data at the proper time.

-0ADING
PULSE

DATA 1 DATA 2

CONDITION 1 CONDITION 2

DATA m-l 1 DATA rn

CONDITION m-1 CONDITION m

I Fig. 7 General example of register loading

The timing diagram for one fast memory cycle is
shown in Fig. 6. At time T1 the DO from fast memory
is valid. By time T2, the new MA and DI must be valid.
In T2-T1, the processor must determine by the com-
parator if the data (DO) from the Mc is indeed the
desired data; if not, the fast memory cycle is terminated
and a slow memory cycle is begun to retrieve the dat
or instruction word from Mp. Assuming that the DO is
valid and is an instruction word (worst case), the
processor then: (1) decodes the instruction, (2) gen-
erates the proper condition levels and the proper data in-
puts for the major registers, and (3) activates the write
or read mode line for memory and the cycle repeats at
T2. From T2 to T1, while the next word is being ac- -
cessed, the processor completes its bookkeeping by load-
ing the accumulator register, setting the major state
register, and initializing the various control lines for
the start of the new cycle.

The critical path occurs between T1 and T2. To
enable the MA and DI to be loaded during this time the -
scheme of Fig. 7 is used to load bit n of some reg-
ister, R. Each register has a small number of possible
data inputs, m. All of these are formed each memory
cycle whether they are to be used or not. While these
data inputs to the registers are being formed, the control
logic generates a set of condition levels corresponding
to the data inputs to the registers such that, at any
register loading time, only one condition level for each
register is true and all others are false. Only the data
associated with the true condition level can be loaded.
The timing and flowchart of sequential operations are
arranged to minimize the number of data and condition
lines and still maintain speed.

The timing generator that controls the sequence of
operations consists of two delay lines connected in two
separate rings or loops. One loop is for Mc timing;
the other is for Mp timing. Each loop must be able to
be entered from the other during operation in the buffer

memory mode. To increase versatility, the system timing
and logic is so arranged that only either the cache or
fast memory can be operated; or the slow main memory,
a core or an MOS, can be operated alone, or both in a
buffer memory mode. This facilitates system checkout
m d allows a wide range of cache memories to be in-
estigated.

Initial prototype results have indicated that cycle and
processor times slightly over 100 ns are possible. Many
additional requirements are placed on the design and
the system such as a preclear of the solid-state memory
whenever power is first turned on.

Conclusion
Table 4 compares three system configurations (mini-
mum, average, and large), each implemented by three
different processor/memory arrangements in an exist-
ing minicomputer using: (1) all core memory, (2) all
semiconductor MOS memory, or (3) cache memory.

If a performance factor of 1 is assigned to the all
core memory arrangement, an improvement in per-
formance by factors of 2 and 5 will be achieved by the
MOS memory and cache memory arrangements, re-
spectively. The cost differential between the different
configurations is due, basically, to the larger memories
used. As more primary memory, Mp, is added to each
system the performance/cost ratio decreases for each
larger configuration. However, in the case of the cache
memory, the ratio decreases at a slower rate since the
initial outlay for the faster processor with cache memory
becomes an ever smaller part of the cost of the growing
system. As the system configuration increases in size,
the performance/cost ratio of the cache system also in-
creases in comparison to that of the smaller systems
which, in essence, explains the success of the cache
memory in large computers as well as in minicomputers.
It is conceivable that an all solid-state memory would be

feasible if its improved speed versus its added cost were
sufficiently high.

In this discussion we have tried to show the technical
feasibility of how a cache memory would be used with
a small minicomputer. Whether such a machine is truly
useful can only be determined by trying to apply it.
There are identifiable applications which can use the
additional performance. The PDP-8 time-sharing system,
TSS-8, could effectively use the additional power because
there are instances of it being compute bound. Real-time
processing could also use the additional speed to allow
more problems to be solved. In addition, there are
simple computers being used to study microprogram-
ming; this structure would provide the equivalent amount
of power and still make it possible for the user to pro-
gram the machine. Finally, there are already 10,000
PDP-8s in existence, some of which might require more
capacity without the inconvenience of changing to a
basically large computer.

In summary, if such a machine were made available
at, say, a cost of $5K for the faster processor, it would
have the cost and performance characteristics shown in
Table 4: a performance gain of 5 or more at a cost in-
crease of 2 or less.

References
F. Lee, "Lookaside Memory Implementation," Project MAC
Memorandum MAC-M-99, Aug 19, 1963
M. V. Wilkes, "Slave Memories and Dynamic Storage Alloca-
tion," IEEE Transactions on Computers, 1965, pp 270-271
F. Lee, "Study of 'Look-Aside' Memory," IEEE Transactions
on Computers, Nov 1969, pp 1062-1064
R. M. Meade, "Design Approaches for Cache Memory Control,"
Computer Design, Jan 1971, pp 87-93
J. Conti, "Concepts for Buffer Storage," Computer Group
News, Mar 1969, pp 9-13
G. G. Scarrott, "The Efficient Use of Multilevel Storage," Pro-
ceedings IFIP Congress, 1965, Vol 1, p 137

