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Abstract. System F is ubiquitous in logic, theorem proving, language
meta-theory, compiler intermediate languages, and elsewhere. Along with
its type abstractions come type applications, but these often appear
redundant. This redundancy is both distracting and costly for type-
directed compilers.

We introduce System IF, for implicit System F, in which many type
applications can be made implicit. It supports decidable type checking
and strong normalisation. Experiments with Haskell suggest that it could
be used to reduce the amount of intermediate code in compilers that
employ System F'.

System IF constitutes a first foray into a new area in the design space of
typed lambda calculi, that is interesting in its own right and may prove
useful in practice.

This paper appears in the Proceedings of Mathematics of Program Con-
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1 Introduction

The polymorphic lambda calculus or System F is ubiquitous in many areas
of computer science such as logic, e.g. (Girard et al. 1989; Girard 1990), pro-
gramming, e.g. (Reynolds 1974), theorem-proving, e.g. (Coq), and intermediate
languages for compilers, e.g. (Peyton Jones 2003; Harper and Morrisett 1995).
System F' is, however, tiresomely verbose. For example, suppose the first projec-
tion from a pair is given by fst : Va.Vb.(a, b) — a. Then the first projection of
the pair (3,True) is given by

fst Int Bool (3,True)

where the two type arguments, Int and Bool, are required to instantiate the type
variables a and b. To a naive observer, the type arguments seem redundant. After
all, if we were to write simply

fst (3,True)

then it is clear how to instantiate a and b! And indeed many source languages
omit type arguments, relying on type inference to fill them in. However our in-
terest is in typed calculi with the power of System F, for which type inference
known to be undecidable (Wells 1994). More precisely, we address the follow-
ing question: can we omit type arguments in a polymorphic calculus with the
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full expressive power of System F, without losing decidable type checking? Our
contributions are as follows:

— We present a new, explicitly-typed lambda calculus, System IF (short for
“implicit System F”) that is precisely as expressive as System F, but allows
many type application to be be scrapped (Section 3). However, it requires
four new reduction rules.

— System IF enjoys the same desirable properties as System F; in particular,
type checking is decidable, and reduction is type preserving, confluent, and
strongly normalising (Section 3.4). Furthermore, IF shares System F’s prop-
erty that every term has a unique type (Section 2.2), which is particularly
useful when the calculus is used as intermediate language for a compiler
(Section 4.1).

— Every System F term is also an System IF term; and conversely there is
translation from System IF to System F that preserves typing, type erasure,
term equality and inequality (Section 3.3). Reduction itself is not preserved
since one reduction rule is reversed during translation.

— We regard System IF as of interest in its own right, but it potentially has
some practical importance because compilers for higher-order, typed lan-
guages often use an explicitly-typed intermediate language based on Sys-
tem F (Peyton Jones et al. 1993; Tarditi et al. 1996; Shao 1997), and there
is evidence that cost of processing types is a significant problem in prac-
tice (Shao et al. 1998; Petersen 2005). To get some idea of whether System IF
is useful in this context, we adapted the Glasgow Haskell Compiler (GHC),
a state-of-the-art compiler for Haskell, to use System IF as its intermediate
language (Section 4). The results are mixed: 80% of all type applications can
be removed, reducing the total size of the code by 12%, but the “bottom
line” of compiler execution time is not improved (Section 4).

Our work complements other approaches that reduce the burden of type infor-
mation in intermediate languages (Section 5), but it is distinctively different: to
the best of our knowledge no previous such work specifically considers how to
eliminate type applications.

Although the emphasis in this paper is on intermediate languages, the ideas
may be of broader significance. In programming, for example, quantified function
types allow for the possibility of combining cases whose types quantify different
numbers of type variables. In each case the instantiation of type variables will
be determined by the argument, not by the programmer, in a form of dynamic
dispatch for type variables (Jay 2006).

2 System F

This section recalls System F and discusses its redundant type applications.
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Syntax
a, b, ¢ ::= (type variables)
f,9,7,y,z := (term variables)
o, 7,9, i=a | o—0o | Va.o
rys,tybun=x% |ttt | to | A7t | Aat
=gz . 27" (n>0)
Ax=ai,...,an (n>0,a; distinct)
Notation

VAo =Vai....Va,.o
AAt = Aay. ... Aay.t
tA=tali...an
t (@A) =t (0ar) ... (Oan) for 0 a type substitution
FTV (o) = the free type variables of o

Type system

£ -
(fvar) Irz°r+z°%:0
I'kFr:o—¢
I'wu: Iz°ks: d r
(fapp) u:o (fabs) z°Fs:¢ z&dom(I)
I'tru:¢ I'EXe?s:0—¢
I't+t:Va. I'ts: FTV(I"
(tapp) v (tabs) L1227 0TIV
I'tty:{¢Y/a}o I't Aa.s:Va.o

Dynamic semantics
(1) (A\z°.8) v — {u/z}s
(B2) (Aa.s) ¥ — {tp/a}s

Fig. 1: Definition of System F

2.1 The system

The syntax, notation, type system and dynamic semantics for System F are
given for easy reference in Figure 1. They should be familiar, but they serve to
establish our notational conventions.

The standard definitions apply for: the free type variables FTV (o) of a type o;
the free type variables FTV(t) of a term ¢; the free term variables ftv(t) of ¢; type
and term substitutions; and the a-equivalence relations for re-naming bound type
and term variables. The notation {o1/ay, ..., 0/ a, } is the substitution mapping
a; to o;, and {o1/a1,...,0n/an @ is the result of applying that substitution to
the type ¢. (And similarly for terms.) A type environment I is a partial function
of finite domain, from term variables to types. The notation z;*,...,zJ" may
be used to denote the function that maps z; to o;. The domain of I" is denoted
dom(I").
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The symbol A stands for a sequence of distinct type variables aq,..., a,,
and we may write VA.o to abbreviate Vaj....Va,.o0. Similar syntactic sugar
abbreviates type abstractions AA.t and type applications ¢ A and even ¢ (§A)
for a type substitution 6.

The dynamic semantics is expressed using the reduction rules (1) and (52)
which generate a rewriting relation in the usual way.

In our examples, we often use type constants Int and Bool, along with cor-
responding term constants 0, 1, ..., True, False, (+), (&&), and so on. We also
assume a pair type (o, @), and a list type List o; with term constructors

Pair:Va,b.a—b—(a,b)
Nil: Va.List a
Cons : Va.a —List a—List a.

Formally, these are just notations for their Church encodings, but no harm comes
from considering them as extensions of the language.

2.2 Uniqueness of types

In Girard’s original notation, each term variable is annotated with its type, at its
occurrences as well as its binding site, but there are no type environments. Later
treatments commonly include a type environment which enforces the invariant
that every free occurrence of a term variable has the same type, an approach
we follow in Figure 1. The type environment allows the type annotation to be
dropped from term-variable occurrences, but we nevertheless retain them as
a source of type information which will prove useful in the new system. For
example, we write
(/\mInt. negateInt—»Int l,Int).

This notation looks somewhat verbose, in conflict with the goals of the paper,
and indeed in our informal examples we often omit type attribution on variable
occurrences. However, in practice there is no overhead to this apparent redun-
dancy, as we discuss in Section 4.1, and it has an important practical benefit:
every term has a unique type.

Theorem 1 (Uniqueness of types). If 'tt:0 and I"Ft: 0’ theno =o'.

We can therefore write, without ambiguity, ¢ : ¢ or ¢ to mean that there is
some [ such that I'F ¢ : 0.

This unique-type property is extremely convenient for a compiler that uses
System F as an intermediate language. Why? Because every term has a unique
type independent of the context in which the term appears. More concretely,
the compiler may straightforwardly compute the type of any given term with a
single, bottom-up traversal of the term, applying the appropriate rule of Figure 1
at each node of the term. System IF is carefully designed to retain this property.
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2.3 Redundant type applications

Although System F’s definition is beautifully concise, its terms are rather ver-
bose. This subsection will demonstrate this through some examples, as a moti-
vation for the new systems that will follow.

Our particular focus is on type applications, the term form (¢ o). Human
beings dislike writing type applications in source programs, because it is usually
obvious what they should be, and they are burdensome to write. Rather, in
programming languages such as ML and Haskell a type inference system, such
as Hindley-Milner, fills them in.

Why are the missing type applications “obvious”? Because the types of the
arguments of an application typically determine the appropriate type arguments.
The introduction gave one example, but here is another. Suppose we are given
terms map : Va, b.(a — b) —List ¢ —List b and treble : Int — Int. Then an
application of map might look like this:

map Int Int treble

It is obvious that the type of treble immediately fixes both type arguments of
map to be Int, so no information is lost by writing simply (map treble).

The type arguments in System F can occasionally become onerous even to
a computer. We encountered this in practice when implementing derivable type
classes (Hinze and Peyton Jones 2000) in the Glasgow Haskell Compiler (GHC).
The implementation transforms an N-ary data constructor into a nested tuple.
For example, the Haskell term (C e; e2 e3 e4 e5) is transformed to a nested tuple,
whose System F representation looks like this (where ¢; : 0;):

Pair o (02, (03, (04,035))) €1
(Pair o2 (03,(04,05)) €2
(Pair o3 (04,05) ez (Pair o4 05 €4 e5))).

Note the quadratic blow-up in the size of the term, because the type argument
at each level of the nest repeats all the types already mentioned in its arguments.
We are not the first to notice this problem, and we discuss in Section 5.2 ways
of exploiting sharing to reduce the size of the term or of its representation. But
it is more direct to simply omit the repeated types than to compress them!
Furthermore, omitting them is entirely possible in this example: no information
is lost by writing just

Pair e; (Pair ey (Pair ez (Pair e e5))).

Omitting obviously-redundant type applications in System F can therefore lead
to an asymptotic reduction in the size of the term. When the calculus is used as
an intermediate language in a compiler, reducing the size of terms may lead to
improvements in compilation time.

This abbreviated form is, of course, exactly what an ML programmer would
write, relying on type inference to fill in missing type arguments. So the reader
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might wonder: why not simply omit type applications and use type inference to
reconstruct them when necessary? We discuss this question in Section 5, but the
short answer is this: type inference is undecidable for System F (Wells 1994).
The trouble is that System F is far too expressive for type inference to work.
In particular, in System F type arguments may be quantified types. For example,
one might write:

Pair (Va.a—a) Int (Aa.Xz®. z) 4

That is, System F is impredicative. Very few source languages are impredicative,
but System F certainly is. Furthermore, a compiler that uses System F as its
typed intermediate language may well exploit that expressiveness. For example,
when desugaring mutually recursive bindings, GHC builds tuples whose compo-
nents are polymporhic values, which in turn requires the tuple to be instantiated
at those polytypes.

3 System IF

Syntax as for System F

Notation as for System F plus

{¥/[A] o} = the most general substitution 6 (if any)
such that dom(#) C A and o = v
A\o = A\FTV(0)

Type system as for System F, but replacing (fapp) by

£ I'tr:VAoc—o Fl—u:wFTV A 9
(it N o) /A ote | W) N (ANo) =

Dynamic semantics as for System F, plus

€y et u— if o € FTV(0)\ A
(€2) "YU —rug if o ¢ FTV(0)\ A
(pl) (Aa.t"277) u¥ — {i/[a, Alo}t u if a € FTV(0)\A

and FTV(t)nA =10
(12) (Aa.t™277) u¥ — Aa.(t u) if a g FTV(u) U (FTV(0)\A)

Fig. 2: Definition of System IF

Thus motivated, we introduce System IF, short for “implicit System F”,
whose definition is given for reference in Figure 2. The key idea is this:

System IF is just like System F, except that many type applications
may be omitted.
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In fact, System F is embedded in System IF: they have exactly the same types,
the same term syntax, and every well-typed term in System F is a well-typed
term in System IF.

But System IF has additional well-typed terms that System F lacks. In
particular, a term of the form r v; ... 1, u in System F may be replaced by
an equivalent term 7 u of System IF provided that the types 1, ...,%, can be
recovered from the types of r and u. Of course, scrapping such type applications
has knock-on effects on the type system and dynamic semantics.

3.1 Type system of IF

In System F, a term r of type Va.oc can only be applied to a type, but in Sys-
tem IF it may also be applied to a term. The single new typing rule, (ifapp),
specifies how such term applications are typed in System IF. The idea is this: if
r:VA.c—¢ and u : 9, then use 9 to instantiate all those type variables a; € A
that appear free in o.

For example, suppose 7 : Va, b.(a — Int —b) — ¢ and v : Int — Int — Bool.
Then if we see the application (r ) it is plain that we must instantiate a
to Int and b to Bool; and that no other instantiation will do. To derive this
instantiation:

we match (a— Int—b) against (Int — Int —Bool)
to find a substitution for {a, b}
namely {Int/a,Bool/b}.

(The notation {¢/a,7/b} stands for a substitution, as explained in Section 2.1.)
More formally, we define a match of o against ¢ relative to a sequence of type
variables A, written {¢)/[A]o}, to be a substitution § whose domain is within A
such that 6o = ¢. Such a match is most general if any other such match factors
through it.

The rules for matching are straightforward, rather like those for unification,
the only novelty being the treatment of quantified types. For example, to match
Vd.(Vb.b — b) — d against Vc.a — ¢, relative to a, first use a-conversion to iden-
tify ¢ with d and then bind a to Vb.b — b. Note, however, that matching cannot
employ such bound variables in either the range or domain of the substitution.
For example, {Vc.c — a /[a] Ve.c — c} fails, since one cannot substitute ¢ for a
under the quantifier Ve; and similarly {Vc.c — ¢ /[¢] Ve.Int — ¢} fails, since we
cannot substitute for ¢ under the quantifier.

These observations motivate the following definition: a type substitution v
avoids a type variable a if @ is not in the domain or the range of v.

Theorem 2. If there is a match of type o against a type v relative to a sequence
of type variables A, then there is a most general such match. Further, there is
at most one most general match, which is denoted {¢/[Alc}.



8 Barry Jay and Simon Peyton Jones

Proof. Now the most general match is defined as follows:

{v/[A]a} = {¢/a} ifaeA
{a/[A]a} = {} ifag A
{1 =)o /[Alor — 02} = let v1 = {91 /[A]o1} in
let vy = {v191/[AJvio1} in

Vg O U1
{Vap/[AVa.c} = {¢/[A]o} if this avoids a
{¥/[Alo} = undefined otherwise.
The proof details are by straightforward induction. a

Now let us return to the typing of an application (r v). What if the argument
type of r does not mention all 7’s quantified type variables? For example, suppose
r : Va,b.(Int — a) — ¢ and u : Int — Bool. Then in the application (r u) it
is clear that we must instantiate a to Bool, but we learn nothing about the
instantiation of b. In terms of matching, the match {Int — Bool/[a, b]Int —
a} = {Bool/a} does not act on b. That is, (r u) is still polymorphic in b, which
fact can be expressed by giving (r u) the type Vb.{Bool/a}¢. Rather than allow
b to become free, the solution is to bind it again in the result type.

Generalising from this example gives the following typing rule for applica-
tions, which is shown in Figure 2 and replaces (fapp) in Figure 1:

I'tFr:VAoc—¢ I'ku:y
'tru:V(A\o){y/[Alo}d

Here A\ o is the sub-sequence of A consisting of those variables not free in o;
these are the quantified variables that are not fixed by u. Note that (ifapp) only
applies if the match exists, which is not always the case; for example there is no
match of Int against Bool.

To illustrate (ifapp) in action, suppose x : Int and y : Bool. Then here are
some terms and their types:

(ifapp) FTV() N (A\o) =0

Pair Int Bool: Int—Bool— (Int,Bool) (1)
Pair Int Bool x:Bool— (Int,Bool) (2)
Pair x:Vb.b—(Int,b) (3)

Pair x Bool:Bool— (Int,Bool) (4)
Pair x Bool y: (Int,Bool) (5)
Pair x y: (Int,Bool) (6)

The first two examples are well-typed System F as well as System IF, with the
expected types; you do not have to drop type applications in System IF! Example
(3) is more interesting; here the value argument x instantiates one, but only one,
of the type variables in Pair’s type, leaving a term quantified in just one type
variable. Incidentally, it would have made no difference if the type of Pair had
been quantified in the other order (Vb, a.a—b— (a, b)): example (3) would still
have the same type. Examples (4-6) illustrate that the polymorphic function
(Pair x) can be applied to a type (examples (4,5)) or to a term (example (6)).
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Like F, System IF is robust to program transformation. For example, suppose
f VAo — 09— ¢, and g : VA.09 — 01 — ¢, so that their types differ only the
order of the two arguments. Then if (f ¢; t2) is well-typed, so is (g &2 t1). This
property relies on the ability of (ifapp) to re-abstract the variables not bound
by the match. In particular, suppose f : Va.a — Int — a, ¢ : Va.Int — a —
a. Now consider the application (f True 3). The partial application (f True)
will instantiate a to Bool, yielding a result of type Int — Bool which is then
applied to 3. Now consider the arguments in the other order, in (g 3 True). The
partial application (g 3) yields a match that does not bind a, so the result is
re-abstracted over a to give Va.a — a. This function can be applied to True
straightforwardly.

3.2 Dynamic semantics of System IF

Since (ifapp) admits more terms than (fapp), we need more reductions, too.
In particular, it is necessary to reduce terms of the form (Aa.s) u, where a
type-lambda abstraction is applied to a term. A minimum requirement is that
reduction should support the following generalisation of (1) to handle the type
abstractions:

(B1) (AANz.t) u¥ — A(A\o). {u/z}{y/[A]o}t
if FTV(¢) N (A\o) = 0.

This reduction matches (ifapp) closely. First it finds the match {¢/[A]o} that
describes how to instantiate the type variables A (or rather, those that appear
free in o). Then it applies this substitution to ¢, and re-abstracts over the re-
maining type variables of A. The side condition, which can always be made to
hold by a-conversion, simply ensures that the new abstraction does not capture
any variables in u.

Notationally, this reduction makes use of Theorem 1, extended to System IF,
which says that every term has a unique type. In the left-hand side of the re-
duction we write this type as a superscript on the term, thus u¥, although that
is not part of the syntax of System IF. We could instead re-state the reduction
in a way that is more faithful to the operational reality like this:

(BY) (AANz7.t) u — A(A\o). {u/z}{/[A]o}t
if FTV(y) N (A\o) =0
and I I' - u : 2.

Now the left-hand side can be matched purely structurally, while 1 is fixed by
the new condition on the right-hand side. In operational terms, there is an easy
algorithm to find ¢ given a (well-typed) term w.

Although it is essential that the left-hand side of (81’) reduces to its right
hand side, it is rather unsatisfactory as a one-step reduction rule. From a prac-
tical perspective, it eliminates a string of lambdas all at once, and may require
reduction under a big lambda to bring the left-hand side to the required form.
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From a theoretical perspective, it will prove to be a consequence of other rules
to be introduced now.

The whole point of System IF is that one can omit many type applications,
but this is not intended to express or create new meanings: when (r ) and
(r ¢ u) have the same meaning they should have the same normal form. For
example, with the rules we have so far, these two terms would be distinct normal
forms:

(Az¥%%% 2 Bool True) and (Az"* %% z True).

Their equality is achieved by adding reduction rules (£1) and (£2) (they also
appear in Figure 2):

(1) r¥ad o= oy —s ru  if a € FTV(0)\A
(£2) r¥adoe=b oy — rupifad FTV(e)\A

The first eliminates a type application altogether when the immediately following
term argument fixes the instantiation of the polymorphic function — that is, when
a is mentioned in o'. For example, if Leaf : Va.a — Tree a then

Leaf ¢ u¥ — Leaf u¥.

By itself, this rule is not enough, as can be seen in Pair i 7 s t since the type of
s does not determine the value of 7 which is instead given by ¢. This situation
is handled by rule (£2).

These two reductions may also be regarded as optimisation rules, that can
be applied statically to remove redundant type applications from an System IF
program. For example:

Pair ¢ 7 s t — Pair ¥ s 7 t by (£2)
— Pairs7t Dby (£1)
— Pair s t by (£1)

as desired. Here is another example. Suppose Inl : Va, b.a — a + b, and Inr :
Ya.Vb.b—a + b. Then

Inl Int Bool 3 — Inl Int 3 Bool by (£2)
— Inl 3 Bool by (£1)

Inr Int Bool True — Inr Int True by (£1)
— Inr True Int by (£2)

In these two examples, notice that one type application necessarily remains,
because the argument of Inl and Inr only fixes one of the type parameters. (At
least, it necessarily remains if Inr is regarded as a constant; if it is replaced by
its Church encoding then further reductions can take place.) Exactly the same
thing happens with the Nil of the list type.

! Technically we need a € FTV(c)\ 4, since nothing prevents a appearing in A.
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Note that (£1) and (£2) overlap with the rule (52) since a term of the form
(Aa.t) ¥ u can sometimes be reduced to both {¢/a}t u (by 52) and (Aa.t) u
(by £1). Now, if ¢ is A-abstraction Az.s then both sides reduce to {u/z}{v/a}s
by (81'). However, if ¢t and u are variables then (Aa.t) u is irreducible by the
existing rules so that confluence would fail. That is, (81’) is just too coarse.

The solution is to add rules that act on terms of the form (Aa.t) u namely:

(1) (Aa.t¥2o=%) u¥ — {o/]a, Alo}t u if a € FTV(0)\A
and FTV(tH)NA=10
(12) (Aa.t¥3o=%) ¥ — Aa.(t u) if a € FTV(u) UFTV(0)\A

Rule (p1) is akin to (82), in that it substitutes for the type variable a in the
body t. Unlike System F, however, the type to substitute is not explicit; instead,
it is found by matching the type ¢ of the value argument v against the argument
type o of ¢. This match yields the substitution {¢/[a, A)o}, which will certainly
bind a, but also may (and perhaps must) bind variables in A. The side condition
FTV(t) N A = @, which can always be made true by a-conversion, ensures that
the substitution does not accidentally instantiate an unrelated free type variable
of ¢.

The rule (u2) is more straightforward. It simply commutes the abstraction
and application when they do not interfere. Note that the side condition a ¢
FTV(u) can be made true by a-conversion. Now (81’) is a consequence of (31)
and (ul) and (42) so the full set of reduction rules is given by the S-rules of
System F plus the four new rules in Figure 2.

3.3 Translation to System F

This subsection formalises the close relationship between System IF and Sys-
tem F.

Theorem 3. The embedding of System F into System IF preserves typing, type
erasure and reduction.

Note that some normal forms of System F are reducible in System IF. For
example, it may happen that a normal form x ¥ u of System F reduces to = u

by (£1).

==z
[r747% u¥] = A(A\o).[r] {p/[Alo}A [u]
[Az7.s] = Az?.[s]
[r¢] =1r] ¢
[Aa.s] = Aa.]s]

Fig. 3: Translation from System IF to System F
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This natural embedding is complemented by a translation in the opposite
direction, from System IF into System F, that makes the implicit type appli-
cations explicit. The translation is shown in Figure 3. Although it is fairly well
behaved, it does not preserve the reduction rule (£2). Rather, the left-hand and
right-hand sides of (£2) translate repectively to

Aa. A(A\o).[r] ¢ A [u] and  (Aa.A(A\0).[r] a A" [u]) ¥

for some A’. Here, the right-hand side reduces to the left-hand side by (52). In
this case the permutation of the arguments has caused the direction of reduction
to be reversed. However, although the translation does not preserve reduction,
it does preserve equality, the symmetrical relation generated by the rules.

The same type erasure mechanism used for System F can be applied to terms
of System IF to yield pure A-terms.

Theorem 4. There is a translation [—] from terms of System IF to those of
System F that preserves typing, type erasure and equality of terms. Further, if t
is a term in System F then [t] is t itself.

Proof. That the translation in Figure 3 preserves type derivations follows by
induction on the structure of the derivation. That it preserves type erasure is
immediate. The preservation of terms in System F follows by induction on the
structure of the term. The only non-trivial case concerns an application r
but then the type of r cannot bind any type variables so that the translation
becomes

[ ] = [r] [u].

Now consider equality. It is enough to show that when both sides of each re-
duction rule are translated then they are either equal, or have a common reduct.
The rule (51) is preserved since [(Az?.s) u] = (Az?.[s]) [u] — {[u]/z}[s]} =
[{u/x}s] where the last equation is a trivial lemma. A similar argument applies
to (2). Both sides of the rule (£1) have the same translation. The argument for
(£2) is already given. The translation of (u1) is given by the (52) reduction

A(A\o).(Aa.[t]) 0a 0A [u] — {fa/a}(A(A\o).[t] 0A [u])
where 6 is {1/[a, Alo}. The translation of (u2) is given by the (52) reduction
Aa. A(A\o).(Aa[t]) a OA [u] — Aa.A(A\o).[t] A [u]

where 6 is {1/[a, Alo} which is also {¢/[A]o} since a € FTV(0).
This completes the proof that the translation preserves the equality generated
by rewriting.
O

3.4 Properties of System IF

System IF is a little more complicated than System F, but they share many of
the same good properties, including being strongly normalising and confluent.
Notably, it shares the unique-type property described in Section 2.2, as can be
seen by inspection of the typing rules.
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Lemma 1 (Substitution Lemma).

1. If there is a derivation of t : o and 0 is a type substitution then there is a
derivation of 0t : 6o.

2. If s : ¢ is a term and x° is a variable that may be free in s and u : o is a
term then there is a derivation of {u/z}s: ¢.

Proof. The proofs are by straightforward induction on the structure of the terms.
O

Theorem 5. Reduction in System IF preserves typing.

Proof. The proof is by induction on the structure of the reduction. Without loss
of generality, the reduction is a rule. If it is either (81) or (82) then apply the
Substitution Lemma.

If the rule is (€1) with w : 7 then r ¢ : {¢/a}(VA.c — ¢) and so r ¢ u :

Y(A\o).{r/[Al{$/a}o} {1/ a}p while
ru:V(a, A\o).{7/[a, Alo}.

Now a € FTV(o) implies that {7/[a, Alo} = {7/[A{¢/a}o} o {¢p/a} (where o
denotes composition of substitutions). This yields the result.

If the rule is (£2) with w : 7 then r ¢ : {¢p/a}(VA.0c — ¢) whose type is
also VA.oc — {¢/a}¢) since a is not free in o. Hence r ¢ u has type V(A\
o).{7/[Alo}{¥/a}d which is the type V(A\o).{vo/a}{7/[A]o}d of r u 2.

If the rule is (ul) then the left-hand side has type V(A\0).v¢ where v =
{¥/]a, Alo}. Also, the right-hand side has type

v(A\o){¢/[Al{va/atoH{va/a}¢

which is the same since v = {¢p/[A{va/a}o} o {va/a}.
If the rule is (p2) then the left-hand side has type Va.V(A\o).v¢ where
v ={y/[a, Alo} is also {1/[A]o} since a is not free in . Hence, the type is that
of the right-hand side, too.
O

Theorem 6. Type erasure maps (51) to S-reduction of the pure A-calculus and
maps all other rules to equations.

Proof. The proof is immediate. a
Theorem 7. Reduction in System IF is strongly normalising.

Proof. Observe that if ¢ is a term in System F then its type erasure is strongly
normalising in the pure A-calculus, since any reduction of the erasure is the im-
age of some non-empty reduction sequence in System F. Since the translation
from System IF to System F preserves the type erasure and (1) this property
extends to all of System IF. Thus any reduction sequence in System IF con-
tains finitely many instances of (81). Hence, to prove strong normalisation, it
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suffices to consider reduction sequences without any uses of (51). The remaining
reduction rules all reduce the rank p of the terms, as defined by

p(z?) =0

p(r )—2P()+Pu
p(r U) = p(r) +
p(Aa.s) =2p(s )+1

For example, p(r ¢ u) = 2(p(r) + 1) + p(u) > 2p(r) + p(u) +1 = p(r u ) and
p((Aa.s) u) = 2(p(s) + 1) + p(u) > 2p(s) + p(u) + 1 = p(Aa.s u). The other
three reduction rules are easily checked.

O

Theorem 8. Reduction in System IF is Church-Rosser.

Proof. Since reduction is strongly normalising, it is enough to prove that every
critical pair can be resolved. Those which are already present in System F are
resolved using its Church-Rosser property. The new reduction rules cannot over-
lap with (1) for typing reasons. Nor can they overlap with each other. Hence
the only remaining critical pairs involve (52) and (£1) or (£2).

For (£1), a term of the form (Aa.s) ¥; u¥ rewrites to both {1;/a}s u and
(Aa.s) u. The latter term further reduces by (ul) to 6s u where 6 is the re-
striction of {¢/[a, Alo} to a. Now this must map a to ; since a is free in
o and {¢/[A]{¢1/a}o} exists (from the typing of the original term). Hence
{t1/]a, Alo}s u is exactly {¢/a}s u.

For (£2) a term of the form (Aa.s) ¥ u rewrites to both {¢1/a}s u and
(Aa.s) u 1p1. The latter term further reduces to (Aa.s u) 11 and thence to the
former term. ad

3.5 Extension to higher kinds

The side conditions for the novel reduction rules constrain the appearance of
bound type variables in quantified types, and the matching process inspects
their syntactic structure. Type safety requires that these properties be stable
under substitution.

In System IF, like System F', this is automatically true. But what if one
were to add functions at the type level, as is the case in Fw, for example? Then,
b is free in the type (a b), but if we were to substitute Az.Int for a, then
(a b) would reduce to Int in which b is no longer free. Similarly, computing the
match {List Int/[b](a b)}, as defined in Figure 2, would yield the substitution
{Int/b}; but if we were to substitute Az.z for a, the match would become
{List Int/[b]b}, which yields quite a different result.

None of these problems arise, however, in the fragment of Fw that is used
by Haskell (Peyton Jones 2003). Haskell permits higher-kinded constants (intro-
duced by data type declarations), but has no type-level lambda, and hence no
reductions at the type level. In this setting, simple first-order matching suffices
despite the use of higher kinds. For example, adding List as a constant of kind
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*—* (with no reduction rules) causes no difficulty; indeed, this same property
is crucial for type inference in the Haskell source language.

In short, System IF as presented above can readily be extended with type
constants and type variables of higher kind, to serve as an intermediate language
for Haskell. The syntax of types would then become

S, T ::= (type constructors)
U7T7¢7w:::a | g—0 | Ya.o | T | 0’¢

(note no lambda), together with kinding rules to ensure that types are well-
kinded. We leave for future work the question of whether and how IF can be
further extended to accommodate full type-level lambda.

3.6 Eta-rules
In pure A-calculus, the (n)-equality
Az.rx=r

reflects the intuition that everything is a function. It is of interest here for two
reasons. One is to tighten the connection between System IF and System F.
The other is to support its use in compiler optimisations.

Traditionally, () it has been expressed as a contraction (reducing A\z.r z
to r), which is appropriate in practice. Note, however, that for many purposes
it is better thought of as an expansion (Jay and Ghani 1995; Ghani 1997). In
System F the n-contraction rules are

() Adz.r o — r  if z & ftv(r)
(n2) Aa.r a — rif a € FTV(r).

In System IF, the rule (n1) must be made more general, to reflect the implicit
action on type variables. Given a term r : VA.0c — ¢ and a variable z : o then r z
will instantiate the type variables in A N FTV(o) while leaving the rest bound.
Hence r z (A\o) : ¢ and so

Ae?.orx (A\o):o—¢
has the same type as r A. In this way, the rules become:

(n1") Aa?.r74 =% g (A\o) — r A if x & ftv(r)
(n2) Aar a —r if ag FTV(r).

Of course, if the redex of (n1’) is well-typed in System F then A is empty and
the standard rule emerges. When these 7n-contractions are added, the resulting
systems are called System Fn and System IF7 respectively.

The rule (n1’) is unlike all previous rules considered, in that it is not stable
under substitution for type variables in A. If 8 is a type substitution then the
reduction relation defined by the rules must be broadened to include

A7 r7A g 9(A\o) — 1 (0A) if = ¢ ftv(r).
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To apply the rule in this form, it suffices to discover # by type matching of o
against the given type of z etc.

The good properties established in the last two sub-sections continue to hold
in the presence of the n-rules.

Theorem 9. The translation [—] from terms of System IF to those of System F
maps (n2) to (n2) and maps (nl’) to a sequence of reductions using (n2) followed
by (nl). Further, for each term t in System IFn, its translation [t] reduces to t
in System IFn.

Proof. The translation of the redex of (n1’) is
Az? (A(A\o).[r] A z) (A\o)

which reduces by (92) to Az.[r] A z and then to [r] A by (n1). The translation
of (n2) is (n2).

The proof that [¢] — ¢ is by induction on the structure of ¢. The only
non-trivial case is an application r u. To its translation apply the &-rules to get
a term of the form A(A\o).[r] [u] (A\o) which reduces by (n2) to [r] [«]. In
turn, this reduces to r u by induction.

Theorem 10. Reduction in System IFn is strongly normalising.

Proof. The proof is as for System IF, but now relying on the translation to
System Fr.

Theorem 11. Reduction in System IFn is Church-Rosser.

Proof. It suffices to check the new critical pairs that arise from interaction with
the n-rules. The critical pair involving (/32) and (2) is resolved as in F. The other
critical pairs are of (nl’) with (81), (£1), (%i2), (u1) and (u2). Let us consider
them in turn, in relation to the rule (n1’).

If 7 is Az.s then A is empty and Az.(Az.s) x reduces by (n1’) and (31) to
AZ.S.

If ris ¢t a for some ¢ : Va.VA.c — ¢ then A\z.t a  (A\o) reduces to ¢t a A
by (n1’). The result of applying either (£1) or (£2) to the original term can be
further reduced by (n1’) to t a A. More generally, if r is some ¢ 1 then the
applications of (n1’) must have the substitution of ¢ for a applied to them.

If r is Aa.s then (n1’) reduces this to (Aa.s) a (A\o). This in turn reduces
to s (A\o). If a € FTV(0)\ A then this is also the result of applying first (u1)
and then (n1’). If a € FTV(0)\ A then this is also the result of applying first
(u2) and then (42) and (n1').

4 Practical implications

Apart from its interest as a calculus in its own right, we were interested in ap-
plying System IF in a real compiler. We therefore modified the Glasgow Haskell
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Compiler (GHC), a state-of-the-art compiler for Haskell, to use System IF as its
intermediate language. This process turned out (as hoped) to be largely straight-
forward: the changes were highly localised, and only a few hundred lines of code
in a 100,000-line compiler had to be modified in a non-trivial way.

GHC already uses a mild extension of System F as its intermediate lan-
guage: at the type level it admits generalised algebraic data types (GADTs) and
higher-kinded type variables; while in terms it allows recursive let bindings,
data constructors (and applications thereof), and case expressions to decom-
pose constructor applications. We extended System IF in an exactly analogous
way, a process which presented no difficulties, although we do not formalise it
here.

While GHC maintains full type information throughout its optimisation
phases, it performs type erasure just before code generation, so types have no
influence at run-time. The effect of using System IF instead of F' is therefore
confined to compile time.

4.1 Variable bindings and occurrences

In practical terms, the reader may wonder about the space implications of at-
taching a type to every variable occurrence, rather than attaching the variable’s
type only to its binding (Section 2.1). In fact, GHC already does exactly this,
reducing the additional space costs (compared to annotating only the binding
sites) to zero by sharing. The data type that GHC uses to represent terms looks
like this:

data CoreExpr = Var Id | Lam Id CoreExpr |
data Id = MkId Name Type

An I4d is a pair of a Name (roughly, a string), and its Type, so it represents
the formal notation z?. An Id is used both at the binding site of the variable
(constructor Lam) and at its occurrences (Var). GHC is careful to ensure that
every occurrence shares the same Id node that is used at the binding site; in
effect, all the occurrences point to the binder. This invariant is maintained by
optimisation passes, and by operations such as substitution.

As a consequence, like System F itself, every term in GHC’s intermediate
language has a unique type, independent of its context (Section 2.2). That is,
we can (and GHC does) provide a function exprType that extracts the type of
any term:

exprType :: CoreExpr -> Type

Notice that exprType does not require an environment; it can synthesise the
type of a term by inspecting the term alone, in a single, bottom-up traversal
of the term. (Here, we assume that the term is well-typed; exprType is not a
type-checking algorithm.) This function exprType makes concrete the idea that
every term has a unique type (Section 2.1), and it is extremely valuable inside
GHC, which is why maintaining the unique-type property was a key requirement
of our design.
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Module| GHC Core | System IF |Reduction(%)
Size| Type Size| Type| Size Type
apps apps apps
Data.Tuple|169,641|10,274(131,349 0(23% 100%
Data.Generics.Instances| 36,038| 1,774| 32,488| 578|10% 67%
Data.Array.Base| 32,068| 2,498| 26,468 397|17% 84%
Data.Sequence| 29,468| 2,124| 24,532 354(17% 83%

Data.Map| 21,217| 1,566| 17,958 334|15% 79%

Data.Array.Diff| 16,286 895 14,067 73|14% 92%

GHC.Float| 16,100 414| 15,353| 50| 5% 88%

Data.IntMap| 14,614 1,025 12,363| 209|15% 80%

System.Time| 14,499 914| 12,934| 338|11% 63%

GHC.Read| 14,210 959| 11,110 141(22% 85%

GHC.Real| 14,094 355| 13,400, 54| 5% 85%

GHC.IOBase| 13,698 711| 11,494| 212|16% 70%

GHC.Handle| 13,504| 902| 11,938| 192|12% 79%

GHC.Arr| 13,455 837| 11,490 49|15% 94%

Data.ByteString| 12,732 1,104| 10,632 230|16% 79%
Foreign.C.Types| 12,633| 359 11,987 48| 5% 87%

...and 114 other modules ...
TOTAL|792,295|46,735(676,615|7,257|15% 84%

TOTAL (omitting Data.Tuple)|622,654|36,461|545,266|7,257(12% 80%

Fig. 4: Effect of using System IF

4.2 Optimisation and transformation

One might wonder whether, in changing from System F to IF, we had to rewrite
every transformation or optimisation in the compiler. Happily, we did not. Al-
most all transformations now rewrite IF to IF without change, and certainly
without introducing and re-eliminating the omitted type applications.

The non-trivial changes were as follows:

— The new typing rule (ifapp) amounts to extending the exprType function,

and Core Lint. The latter is a type checker for GHC’s intermediate language,
used only as a consistency check, to ensure that the optimised program is still
well typed. If the optimisations are correct, the check will always succeed,
but it is extremely effective at finding bugs in optimisations.

It turned out to be worth implementing the type-matching function (Sec-
tion 3.1) twice. For Core Lint the full matching algorithm is required, but
exprType operates under the assumption that the term is well typed. In the
latter case several short-cuts are available: there is no need to check that
matching binds a variable consistently at all its occurrences, kind-checks
(usually necessary in GHC’s higher-kinded setting) can be omitted, and
matching can stop as soon as all the quantified variables have been bound.
The new reduction rules (£1), (£2), (u1), (42), (n1’) all appear as new optimis-
ing transformations. GHC’s optimiser goes to considerable lengths to ensure
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that transformations “cascade” well, so that many transformations can be
appplied successively in a single, efficient pass over the program. Adding the
new rules while retaining this property was trickier than we expected.

— FEta-reduction, one of GHC’s existing transformations, becomes somewhat
more complicated (Section 3.6).

— There is one place that that we do reconstruct the omitted type arguments,
namely when simplifying a case that scrutinises a constructor application,
where the constructor captures existential variables. For example, consider
the following data type:

data T where { MkT :: forall a. a -> (a->Int) > T }
Now suppose we want to simplify the term

case (MkT ’c’ ord) of
MkT a (x:a) (f:a->Int) -> ...

(Here ord has type Char->Int.) Then we must figure out that the existential
type variable a, bound by the pattern, should be instantiated to Char, which
in turn means that we must re-discover the omitted type argument of the
MkT constructor.

4.3 Code size

We compiled all 130 modules of the base library packages, consisting of some
110,000 lines of code. Each module was compiled to GHC’s Core language, which
is a variant of System F. We wrote a special pass to eliminate redundant type
applications by applying rules (£1) and (£2) exhaustively, and measured the
size of the program before and after this transformation. This “size” counts the
number of nodes in the syntax tree of the program including the sizes of types,
except the types at variable occurrences since they are always shared. Apart
from the sharing of a variable’s binding and its occurrences we do not assume
any other sharing of types (see Section 5.2). We also counted the number of type
applications before and after the transformation.

The results are shown in Figure 4, for the largest 16 modules, although the
total is taken over all 130 modules. The total size of all these modules taken
together was reduced by around 15%, eliminating nearly 84% of all type appli-
cations. These figures are slightly skewed by one module, Data.Tuple, which
consists entirely of code to manipulate tuples of various sizes, and which is both
very large and very uncharacteristic (all of its type applications are removed).
Hence, the table also gives the totals excluding that module; the figures are still
very promising, with 80% of type applications removed.

Manual inspection shows that the remaining type applications consist almost
exclusively of

— Data constructors where the arguments do not fully specify the result type
(such as Nil).
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— Calls to Haskell’s error function, whose type is
error : Va.String—a

There are a handful of other places where type applications are retained. For
example, given map and reverse with their usual types, and xs : List Int, then
in the term

(map (reverse Int) xs)

the type application (reverse Int) cannot be eliminated by our rules. In prac-
tice, however, data constructors and error calls dominate, and that is fair enough,
because the type applications really are necessary if every term is to have unique,
synthesisable type.

4.4 Compilation time

The proof of the pudding is in the eating. System IF has smaller terms, but its
reduction rules are more complicated, and computing the type of a term involves
matching prior to instantiation. Furthermore, although fewer types appear ex-
plicitly in terms, some of these omitted types might in practice be constructed
on-the-fly during compilation, so it is not clear whether the space saving will
translate into a time saving.

We hoped to see a consistent improvement in the execution time of the com-
piler, but the results so far are disappointing. We measured the total number of
bytes allocated by the compiler (a repeatable proxy for compiler run-time) when
compiling the same 130 modules as Section 4.3. Overall, allocation decreased by
a mere 0.1%. The largest reduction was 4%, and the largest increase was 12%,
but 120 of the 130 modules showed a change of less than 1%. Presumably, the
reduction in work that arises from smaller types is balanced by the additional
overheads of System IF.

On this evidence, the additional complexity introduced by the new reduction
rules does not pay its way. Nevertheless, these are matters that are dominated
by nitty-gritty representation details, and the balance might well be different in
another compiler.

5 Related work

5.1 Type inference

In source languages with type inference, such as ML or Haskell, programmers
never write type applications — instead, the type inference system infers them.
The classic example of such a system is the Hindley-Milner type system (Milner
1978), which has been hugely influential; but there are many other type inference
systems that allow a richer class of programs than Hindley-Milner. For exam-
ple, Pierce and Turner’s Local Type Inference combines type information from
arguments to choose the type instantiation for a function, in the context of a
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language with subtyping (Pierce and Turner 1998). Their paper also introduced
the idea of bidirectional type inference, which Peyton Jones et al subsequently
applied in the context of Haskell to improve type inference for higher-rank types
(Peyton Jones et al. 2007).

Stretching the envelope even further, Le Botlan and Rémy’s ML" language
supports impredicative polymorphism, in which a polymorphic function can be
called at a polytype (Le Botlan and Rémy 2003). Pfenning goes further still,
describing the problem of partial type inference for full Fw, including lambda
at the type level (Pfenning 1988). Type abstractions (Aa.t) are retained, but
type annotations may be omitted from term abstractions (thus Az.t¢ rather than
Az?.t), and type applications may be abbreviated to mere placeholders (thus
t [] instead of ¢ o). However, type inference in this system requires higher-order
unification, and it lacks the unique-type property. Even more general use of such
placeholders can be found in dependent type systems, which may be used to
compress the size of proof-carrying code (Necula and Lee 1998) or to support
dependently-typed programming languages (Norell 2007).

Such inference engines are invariably designed for source languages, and are
less well suited for use as a calculus, or as a compiler intermediate language.

— Most type inference systems are less expressive than System F. For example,

in Hindley-Milner, function arguments always have a monomorphic type; in
many other systems types must be of limited rank, and the system is usually
predicative.
This lack of expressiveness matters, because the compiler may use a richer
type system internally than is directly exposed to the programmer. Examples
include closure conversion (Minamide et al. 1996), and the dictionary-passing
translation for type classes (Wadler and Blott 1989).

— Type inference can be regarded as a constraint-solving problem, where the
constraints are gathered non-locally from the program text, and the solver
may be somewhat costly to run. In contrast, in a compiler intermediate
language one needs to answer the question “what is the type of this sub-
term?”, and to do so cheaply, and using locally-available information. For
this purpose, the unique-type property of Section 2.2 is extremely helpful,
but it is rare indeed for a system based on type inference to possess it.

— The restrictions that allow type inference are never fully robust to pro-
gram transformation, and (in every case except the least expressive, Hindley-
Milner) require ad hoc type annotations. For example, even if ¢ is well-typed
in a particular environment, (Af.¢) f may not be, because, say, f’s type may
not be a monotype. Compilers perform inlining and abstraction all the time.
Another way to make the same point is this: type inference systems usually
treat a fized source program text; they are never thought of as a calculus
equipped with a type-preserving reduction semantics.

In short, type inference systems focus on programmers, whereas our focus is on
compiler writers and logicians. Nevertheless, to the extent that one might regard
System F as a language for programmers, we believe that IF should serve the
same role as well or better.
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5.2 Reducing the cost of types

A handful of papers address the question of the overheads of type information
in type-preserving compilers. The most popular approach is to exploit common
sub-structure by sharing common types or parts of types. These techniques come
in two varieties: ones that implicitly share the representation of terms, and ones
that express sharing explicitly in the syntax of terms.

For example, Petersen (Petersen 2005, Section 9.6) and Murphy (Murphy
2002) describe several approaches to type compression in the TILT compiler.
Most of these are representation techniques, such as hash-consing and de-Bruijn
representation, that can be used to implement type operations more efficiently.
Shao et al devote a whole paper to the same subject, in the context of their
FLINT compiler (Shao et al. 1998). Their techniques are exclusively of the im-
plementation variety: hash-consing, memoisation, and advanced lambda encod-
ing.

Working at the representation level is tricky, and seems to be sensitive to
the context. For example Murphy reports a slow-down from using hash-consing,
whereas Shao et al report a significant speed-up, and Petersen found that with-
out hash-consing type-checking even a small program exhausted the memory
on a 1Gbyte machine. (These differences are almost certainly due to the other
techniques deployed at the same time, as we mention shortly.) Another reason
that representation-level sharing is tricky is that it is not enough for two types to
share memory; the sharing must also be observable. Consider, say, substitution.
Unless sharing is observable, the substitution will happen once for each identical
copy, and the results will be laboriously re-hash-consed together. Memory may
be saved, but time is not.

A complementary approach, and the one that we discuss in this paper, is to
change the intermediate language itself to represent programs more efficiently.
For example, TILT has a lettype construct which provides for explicit sharing
in type expressions. For example, using lettype we could write the nested Pair
example from Section 2.3 like this:

lettypeas = o01;...;a5 = 05
b = (ah a2)
bo = (a3, aq)
b3 = (b27 a5)

in Pairb; b3
(Pair ay ag €1 62)
(Pair by as (Pair az a4 €3 64) 65).

Such an approach carries its own costs, notably that type equivalence is modulo
the environment of lettype bindings, but since TILT has a very rich notion of
type equivalence anyway including full g-reduction in types, the extra pain is
minimal. The gain appears to be substantial: FLINT does not have lettype,
and Murphy suggests that this may be the reason that FLINT gets a bigger
relative gain from hash-consing — lettype has already embodied that gain in
TILT by construction.
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Another example of changing the intermediate language to reduce type in-
formation is Chilpala et al’s work on strict bidirectional type checking (Chilpala
et al. 2005). Their main goal is to drop the type annotation from a binder, for
example writing Az.t instead of Az?.t. It is possible to do this when the occur-
rence(s) of z completely fix its type. The paper only describes a simply-typed
language, whereas our focus is exclusively on the type applications that arise in
a polymorphic language. Furthermore, our approach relies on every term having
a unique type, whereas theirs relies on inferring the unique types of the free
variables of a term, starting from the type of the term itself. It remains to be
seen whether the two can be combined, or which is more fruitful in practice.

Our focus is exclusively on reducing the cost of compile-time type manipula-
tion. Other related work focuses on the cost of run-time type manipulation, for
systems that (unlike GHC) do run-time type passing (Tolmach 1994; Saha and
Shao 1998).

5.3 Pattern calculus

The approach to type quantification developed in this paper was discovered while
trying to type pattern-matching functions (Jay and Kesner 2006) in which each
case may have a different (but compatible) polymorphic type (Jay 2006). For
example, consider a function toString : Va.a — String which is to have special
cases for integers, floats, pairs, lists, etc. A natural approach is to define special
cases for each type setting, as follows:

toStringInt : Int — String
toStringFloat : Float —String
toStringPair : Vb, c.(b, ¢) —String
toStringList: Va.List a —String

and then try to combine them into a single function. Then the application
toString (List a) could reduce to toStringList a and toString (b, ¢) could
reduce to toStringPair b c¢ etc. in a form of typecase. However, this makes
types central to reduction so that they cannot be erased. By making type appli-
cations implicit, it is possible to let the choice of special case be determined by
the structure of the function argument instead of the type, as in

toString 3 — toStringInt 3
toString 4.4 — toStringFloat 4.4
toString (Pair z y) — toStringPair (Pair z y)
toString Nil — toStringlList Nil.

The proper development of this approach is beyond the scope of this paper; the
point here is that implicit type quantification is the natural underpinning for
this approach. Note, too, that there are natural parallels with object-orientation,
where the object determines how to specialise the methods it invokes.
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6 Further work

The focus of this paper is on removing redundant type applications but type ap-
plications are not the only source of redundant type information. For example,
as (Chilpala et al. 2005) point out, non-recursive let expressions are both com-
mon (especially in A-normalised code) and highly redundant; in the expression
(let z7=r in t) the type annotation on z is redundant since it can be synthe-
sised from r. A similar point can be made for case expressions; for example,
consider the expression

A\z%. case z of (p?,¢¥)->1t

Here, the type annotations on p and ¢ are redundant, since they can be synthe-
sised from the type of z.

One approach is to follow (Chilpala et al. 2005) by dropping these readily-
synthesisable types at the language level. But nothing is gained from dropping
type annotations on binders unless we also drop the annotations on occurrences,
and that in turn loses the highly-desirable property that every term has a synthe-
sisable type. An alternative, and perhaps more promising, approach is to work
at the representation level, by regarding the type on such a binder simply as a
cached or memoised call to exprType. In this way, if the type of the right-hand
side of a non-recursive let binding was very large, the chances are that much
sub-structure of that large type would be shared with variables free in that term.
We have no data to back up these speculations, but it would be interesting to
try.

So far we have assumed that the back end of the compiler performs type
erasure, so that there is no run-time type passing. However, suppose one wants
run-time type passing, to support typecase or reflection. It is immediately ob-
vious how to compile System F to machine code, and still support run-time type
passing — just make all type arguments into value arguments — but matters
are not so obvious for System IF. This is an area for future work.

System IF contains a mixture of implicit and explicit type applications. This
is extremely useful for backwards compatibility with System F but the resulting
calculus is hardly minimal. Hence, there are a number of other possibilities for
handling type applications. In particular, one can insist that all such are implicit,
in a calculus of quantified function types (Jay 2006) whose types are given by

ogu=a | [Alo—o

where the well-formed quantified function types [A]lo — ¢ play the same role
as the type VA.c — ¢ in System F but come with a guarantee that all type
applications can be made implicit.

7 Conclusions

The formal beauty of System F together with the practical success of the Hindley-
Milner type system have combined to set a high standard for anyone attempting
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to improve in either direction. For studying the concept of parametric polymor-
phism System F appears ideal, despite its redundancies. For avoiding types, the
Hindley-Milner system is spectacularly successful. The key observation of this
paper is that one can eliminate much of the redundant type information in Sys-
tem F without sacrificing any expressive power or basic properties. The price
of this approach is the need to add some redundancy to the reduction rules, so
that there are several ways to reduce a type application.

System IF should be of interest as a calculus in its own right. On the practical
side, we hoped that System IF would allow us to reduce the size of program
terms in a type-preserving compiler, and thereby reduce compilation time. In the
particular context of the Glasgow Haskell Compiler we successfully demonstrated
the former, but not the latter. The balance of costs and benefits might, however,
be different in other settings.

As indicated in the related work, there is a rich design space of highly-
expressive calculi in which some type information is implicit or abbreviated.
Among these, System IF appears to be the only one that shares System F’s
desirable unique-type property. Whether it is possible to elide yet more type
information without losing this property remains an open question.
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