Submitted to Haskell Symposium, May 2009

Finding the needle
Stack Traces for GHC

Tristan Allwood

Imperial College
tora@doc.ic.ac.uk

Abstract

Even Haskell programs can occasionally go wrong. Programs call-
ing head on an empty list, and incomplete patterns in function def-
initions can cause program crashes, reporting little more than the
precise location where error was ultimately called. Being told that
one application of the head function in your program went wrong,
without knowing which use of head went wrong can be infuriating.

We present our work on adding the ability to get stack traces out
of GHC, for example that our crashing head was used during the
evaluation of foo, which was called during the evaluation of bar,
during the evaluation of main. We provide a transformation that
converts GHC Core programs into ones that pass a stack around,
and a stack library that ensures bounded heap usage despite the
highly recursive nature of Haskell. We call our extension to GHC
StackTrace.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Haskell

1. Motivation

Well-typed Haskell programs cannot seg-fault, but they can still
fail, by calling error. For example, head is defined thus:

head :: [a] -> a
head (x:xs) = x
head [] = error "Prelude.head: empty list"

If the programmer calls head, and (presumably unexpectedly) the
argument is [], the program will fail in the following cryptic fash-
ion:

> ghc -o main Main.hs

> ./main.exe
main.exe: Prelude.head: empty list

At this point, a programmer new to Haskell will ask “Which of the
zillions of calls to head in my program passed the empty list?”’. The
message passed to the error function in head tells the programmer
the local reason for the failure, but usually provides insufficient
context to pinpoint the error.

If the programmer is familiar with debugging an imperative
language, they would expect to look at a stack trace; a listing

[Copyright notice will appear here once ’preprint’ option is removed.]

short description of paper

Simon Peyton Jones

Microsoft Research
simonpj@microsoft.com

Susan Eisenbach

Imperial College
susan.eisenbach@imperial.ac.uk

that shows main called foo, foo called bar and bar called head,
which then called error and ended the program. This information
is readily available, since the run-time stack, which the debugger
can unravel, gives the context of the offending call. However, in a
lazy language, the function that evaluates (head []) is often not the
function that built that thunk, so the run-time stack is of little or no
use in debugging.

In the work described here, we describe a modest modification
to GHC that provides a similar functionality to that offered by call-
by-value languages:

® We describe a simple transformation that makes the program
carry around an explicit extra parameter, the debug stack repre-
senting (an approximation of) the stack of a call-by-value eval-
uator. Section 3.

The debug stack is reified as a value, and made available to
functions like error, to aid the user in debugging their program.

Crucially, the transformation inter-operates smoothly with pre-
compiled libraries; indeed, only the parts of the program under
scrutiny need be recompiled. Section 3.2.

We give an efficient implementation of the stack data structure,
that ensures that the debugging stacks take only space linear in
the program size, regardless of the recursion depth, run-time, or
heap residency of the program. Section 4.

For Haskell programs to pass around stacks, we had to design
an appropriate stack data structure with associated library func-
tions, these are outlined in Section 4.2.

We built a prototype implementation, called StackTrace, in the
context of a full-scale implementation of Haskell, the Glasgow
Haskell Compiler. We sketch the implementation and measure
the performance overhead of our transformation in Section 6.

Our prototype implementation threw up some interesting issues,
which we discuss in Section 5.

Although it is very simple in both design and implementation, de-
bug stack traces have an extremely good power-to-weight ratio.
Since “Prelude.head: empty list” has so little information,
even a modest amount of supporting context multiplies the pro-
grammer’s knowledge by a huge factor! Sometimes, though, that
still may not be enough, and we conclude by comparing our tech-
nique with the current state of the art (Section 7).

1 2009/5/14

2. The programmers-eye view

We begin with a simple example of our implemented system. The
following program should print out the second Fibonacci number.

1 module Main where

2

3 import Error

4

5 main :: 10 ()

6 main = print $ fib 2
7

8 fib:: Int — Int

9 fibl=1

10 fib n

11 |n>1=fib(n—1)+ fib(n—2)
12 fib n = error’ $ "Fib with negative number: "
13 H show n

However our programmer has made a small mistake:

> ghc --make -o Fib Fib.hs
> ./Fib
Fib: Fib with negative number: 0

Of course, 0 is not a negative number, and our programmer has
just missed out a base case. But the first thing programmer wants
to know when faced with such an error is: what was the call site of
the offending call to fib? Our new tool makes this easy to answer,
by simply adding the -fexplicit-call-stack-all flag:

> ghc --make -fexplicit-call-stack-all -o Fib Fib
> ./Fib

Fib: Fib with negative number: 0O

in error’, Error.hs:7,14

in fib, Fib.hs:12,9

in fib, Fib.hs:11,27

in main, Fib.hs:6,16

in main, Fib.hs:6,1

This shows that the call to error’ was made in function fib, on line
12 and column 9; that is what “in fib, Fib.hs:12,9” means,
where the line numbers are given in the code sample above. In turn,
the offending call to £ib was made in fib on line 11, column 27;
the fib (n — 2) call. In effect, we are provided with a stack trace of
the offending call.

2.1 Stack elision

Once the program has been recompiled with call stack information
applied, we can use GHCi to experiment with other calls to fib:

Prelude Main> fib 20

*x*x Exception: Fib with negative number: O
in error’, Error.hs:7,14

in fib, Fib.hs:12,9

in fib, Fib.hs:11,27

in fib, Fib.hs:11,13

Here, the “...”s mean some of the stack has been elided, because we
have recursively called the same function from the same call site.
In this case the interactive request for fib 20 will have forced the
call to fib (n — 1) on line 11, column 13, which will then call itself
another 19 times before then calculating fib 1 + fib 0. The fib 0
(from line 11 column 27) then fails as before.

If we were instead to keep the full stack trace, a program that
looped would consume every-increasing memory for the ever-
growing stack.

short description of paper

Here is another example of this behaviour (at the bottom of our
Fib.hs file):

15 firstLetters = loopOver ["hi", "world","", "1"]
16

17 loopOver [] =[]

18 loopOver (z : xs) = head’ z : (loopOver zs)

Here we have a small recursive loop that turns a list of lists into a
list by taking the head element of each of the sublists. Running this
through GHCi we can see that some recursion happened before the
program took the head element of an empty list.

*Main> firstLetters

"hw*** Exception: head: empty list
in error’, exs/Error.hs:7,14

in head’, exs/Error.hs:14,12

in loopOver, Fib.hs:18,19

in loopOver, Fib.hs:18,30

in firstLetters, Fib.hs:15,16

Of course, the more idiomatic way of writing this would be to
use a map combinator.

21 firstLetters2 = map’ head’ ["hi", "world","" "1"]

*Main> firstLetters2

"hw*** Exception: head: empty list
in error’, exs/Error.hs:7,14

in head’, exs/Error.hs:14,12

in firstLetters2, Fib.hs:21,22

Now the stack trace may appear at first to be surprising, as there
is no mention of the map’' function in it. This is due to map’
taking head’ as a higher-order argument, and at present we do
not propagate stacks into higher-order arguments (a point we will
return to in Section 5.1). However the stack trace obtained does
accurately convey that it is some application of the head’ function
referenced in the source of firstLetters2 that caused the error.

2.2 Selective debugging

A critical design goal is that a program can be debugged without
recompiling the entire program. Although it is theoretically unim-
portant, this goal is absolutely vital in practice for several reasons:

e Libraries may be available only in binary form.

e The program may simply be tiresomely voluminous, so that
whole-program recompilation is painful (e.g. libraries, again).

e The overheads of generating and passing around a stack trace
for the entire program may be substantial and unnecessary for
all but a small critical path.

These have proved serious obstacles for tools based on whole-
program transformation, including the cost-centres of GHC’s own
profiler (Section 7).

We therefore provide support for selective debugging on a
function-by-function basis. A typical mode of use is this:

¢ Function buggy in module Bug crashes (by calling error).

e The programmer asks GHC to generate call-site information for
buggy by adding a pragma (a bit like a INLINE pragma) thus:

!'Several of the example functions used have primes () suffixed on. Be-
cause of a currently unresolved bootstrapping issue, it is challenging to re-
compile all the standard libraries with our transform turned on, so we have
just rewritten a few standard prelude functions and rebuilt them (with the
exception of error’, which is discussed later).

2 2009/5/14

{-# ANN buggy Debug #-}

e The system is recompiled passing -fexplict-call-stack
to GHC. Modules that call buggy need to be recompiled (to
pass their call site information), but that is all. (Except that
if optimisation is on (the -0 flag), more recompilation may
happen because of cross-module inlining.)

e The programmer re-runs the program.

e Now buggy still crashes, but the trace tells that it crashed in
module Help, function bugCall.

e That might already be enough information; but if not, the pro-
grammer asks GHC to debug bugCall in module Help, and re-
compiles. Again, depending on the level of optimisation, only a
modest amount of recompilation takes place.

e The process repeats until the bug is nailed.

There is a shorthand for adding a Debug pragma to every function
in a module, namely passing the ~-fexplicit-call-stack-all

flag while compiling the module (which can reside in an OPTIONS_GHC

pragma on a module by module basis).

2.3 Reifying the stack trace

We have seen that error’ prints out the stack trace. But in GHC,
error’ is just a library function, not a primitive, so one might ask
how error’ gets hold of the stack trace to print. StackTrace adds a
new primitive throwStack thus:

throwStack ::V e a.FEzception e = (Stack — €) — a

The implementation of throwStack gets hold of the current stack
trace, reifies it as a Stack value, and passes it to throwStack’s ar-
gument, which transforms it into an exception. Finally, throwStack
throws this exception. The Stack type is provided by our tool’s sup-
port library, and is an instance of Show.

Given throwStack, we can define error’ as follows:

error’ :: [Char] — a
error’ m = throwStack (As — ErrorCall (m 4 show s))

It is also possible to reify the stack trace elsewhere, as we discuss
in the case study that follows.

2.4 Debugging for real

GHC is itself a very large Haskell program. As luck would have it,
in implementing the later stages of StackTrace we encountered a
bug in GHC, which looked like this at runtime:

ghc.exe: panic! (the ’impossible’ happened)
(GHC 6.11 for i386-unknown-mingw32): idInfo

Fortunately the project was far enough advanced that we could
apply it to GHC itself. The error was being thrown from this
function:

varldInfo :: Var — IdInfo
varldInfo (Globalld {idInfo- = info}) = info
varldInfo (Localld {idInfo_ = info}) = info
varldInfo other_var = pprPanic "idInfo"

(ppr other_var)

Rewriting it slightly to use our throwStack primitive, and recom-
piling with the transform allowed us to gain some extra context:

{-# ANN varldInfo Debug #-}
varldInfo :: Var — IdInfo
varldInfo (Globalld {idInfo_ = info}) = info
varldInfo (Localld {idInfo_- = info}) = info
varldInfo other_var

short description of paper

= throwStack (As —
pprPanic ("idInfo\n" + show s)
(ppr other_var) :: SomeEzception)

ghc.exe: panic! (the ’impossible’ happened)
(GHC 6.11 for i386-unknown-mingw32): idInfo

in varIdInfo, basicTypes/Var.lhs:238,30

in idInfo, basicTypes/Id.lhs:168,10

We then chased through the functions sprinkling on further Debug
annotations until we gained a full stack trace that we used to nail
the bug.

ghc.exe: panic! (the ’impossible’ happened)
(GHC 6.11 for i386-unknown-mingw32): idInfo

in varIdInfo, basicTypes/Var.lhs:238,30

in idInfo, basicTypes/Id.lhs:168,10

in idInlinePragma, basicTypes/Id.lhs:633,37

in preInlineUnconditionally,

simplCore/SimplUtils.1lhs:619,12

in simplNonRecE, simplCore/Simplify.lhs:964,5

in simplLam, simplCore/Simplify.lhs:925,13

in simplExprF’, simplCore/Simplify.lhs:754,5

in simplExprF, simplCore/Simplify.lhs:741,5

in completeCall, simplCore/Simplify.lhs:1120,24

in simplVar, simplCore/Simplify.lhs:1032,29

in simplExprF’, simplCore/Simplify.lhs:746,39

in simplExprF’, simplCore/Simplify.lhs:750,39

in simplLazyBind, simplCore/Simplify.lhs:339,33

in simplRecOrTopPair,
simplCore/Simplify.lhs:295,5

in simplTopBinds, simplCore/Simplify.lhs:237,35

in simplifyPgmI0, simplCore/SimplCore.lhs:629,5

in simplifyPgm, simplCore/SimplCore.lhs:562,22

in doCorePass, simplCore/SimplCore.lhs:156,40

This story seems almost too good to be true, but we assure the
reader that it happened exactly as described: the original failure was
neither contrived nor anticipated, and the authors had no idea where
the bug was until the trace revealed it. Simple tools can work very
well even on very large programs.

3. Overview of the implementation

StackTrace is a simple Core-to-Core compiler pass that transforms
the program in GHC’s intermediate language (Core, [8]) to pass an
additional argument describing the call site of the current function.
This extra argument is called the call stack. StackTrace comes with
a supporting library to be described shortly.

The basic transformation is extremely simple. Suppose we have
auser-defined function recip, with a Debug pragma (Section 3.1),
and a call to it elsewhere in the same module:

{-# ANN recip Debug #-}
recip :: Int — Int
recip x = if x = 0 then error "Urk foo"
elsel/z

bargle z =(recip x)
The transformation (elaborated in Section 3.2) produces the follow-
ing code:

recip :: Int — Int

recip © = recip_deb emptyStack

{-# ANN recip (Debugged 'recip_deb) #-}
recip_deb :: Stack — Int — Int

3 2009/5/14

recip_deb stk x = if x = 0 then error stk’ "Urk foo"

elsel/z
where
stk’ = push "in recip:14,23" stk
bargle z =(recip_deb stk)
where

stk = push "in bargle:19:22" emptyStack
Notice several things here:

e The transformed program still has a function recip with its orig-
inal type, so that the source-language type-checking is not dis-
turbed. Also any dependant modules can be compiled without
enabling the transform and still work normally.

In the transformed program, recip simply calls the debugging
version recip_deb, passing an empty stack trace. The name
“recip_deb” is arbitrary; in our real implementation it is more
like recip_ $ 351, to ensure it cannot clash with programmer-
defined functions.

The transformation adds a new annotation Debugged, which
associates the original function recip with its (arbitrarily-
named) debugging verion recip_deb. We discuss this anno-
tation further in Section 3.2.

The debugging version, recip_deb, contains all the original
code of recip, but takes an extra stack-trace parameter, and
passes on an augmented stack trace to the call to error.

recip_deb does not pass a stack trace to (=) or (/). Why not?
Because it cannot “see” a debugging version of these functions;
we describe how it identifies such functions in Section 3.1.

Even though bargle is not not marked for debugging, the call to
recip in bargle is transformed to call recip_deb with a singleton
stack. In this way, a single Debug annotation may cause many
call sites to be adjusted. That is the whole point!

3.1 Debug pragmas

As discussed earlier (Section 2.2), our tool supports selective trac-
ing, using pragmas to specify which functions should be traced.

For these pragmas we use a recent, separate, GHC feature,
called annotations [9]. The annotations feature allows a user to
associate a top level function or module name with a Haskell value,
using an ANN pragma, thus:

fz=..
{-# ANN f True #-}

data Target = GPU | CPU deriving (Data, Typeable)
{-# ANN f GPU #}

The first pragma adds the association (f, True), while the second
adds (f, GPU). The associated value is any Haskell value that im-
plements both Data and Typeable. (In fact, the “value” is implic-
itly a Template Haskell splice, which is run at compile time to give
the value.) These annotations are persisted into GHC interface files,
and can be read off later by users of the GHC API, the GHC Core
pipeline itself, and eventually GHC plugins.

StackTrace provides a datatype Debug (exported by the tool’s
support library GHC'. EzplicitCallStack. Annotation) for anno-
tating user functions with:

data Debug = Debug deriving (Data, Typeable)

This is then used with the ANN (annotate) pragma to mark func-
tions for debugging:

import GHC'.EzplicitCallStack.Annotation (Debug (. .))

short description of paper

{-# ANN f (Debugged 'f_deb) #-}

[f=e = f = f-deb emptyStack
f-deb s = [e],
if f has a Debug pragma
= f = IIe]]emptyStack
otherwise
[throwStack], = Af — throw (f s)
[z], = x_deb (pushls)

if has (Debugged "x_deb) ann
=z otherwise

el ee], = [ed], [e2l,
e —e], = Xz—[e],
[case el of p — e2], = casel[el], of p — [e2],
llet z = el ine2], = letz = [el],in[e2],

Figure 1. The stack-trace transformation

{-# ANN foo Debug #-}
foo = ...

Note the import of GHC'.ExplicitCallStack.Annotation: the
data constructor Debug must be in scope before it can be men-
tioned, even in an annotation.

3.2 The transformation

When the user compiles their code with a command-line flag,
-fexplicit-call-stack, we run an extra compiler pass that
transforms the program as sketched above. This section gives the
details of the transformation.

The GHC compiler pipeline parses Haskell into a large, data
structure that is then typechecked. This typechecked source is then
de-sugared into the simpler, typed intermediate language Core. The
Core program is then optimised before being passed to the back-
end compiler for turning into an executable or byte-code.

Although we have presented the StackTrace transform above in
terms of the surface Haskell syntax, we implement it as a Core-to-
Core transformation, because Core is a much, much smaller lan-
guage than Haskell. However, the transformation is run early, just
after the Haskell program has been desugared into Core, but before
it has been optimised. At this stage the Core program still bears
a close resemblance to the original Haskell, with some exceptions
as noted later in Section 5.4. For example, top level Haskell func-
tions become top-level bindings, pattern matching is expanded out
to case statements, etc. Some information does get lost; for exam-
ple it is difficult to know whether a Core let bound variable has
come from a Haskell 1et or where statement or compiler created
variable (for e.g. working with type class dictionaries). This can
cause difficulties when trying to accurately talk about Haskell level
function scopes and source location from within Core.

The transformation itself is presented in Figure 1. The transfor-
mation is applied to each top-level definition f = e. If it has a
Debug annotation then the transformation generates:

e A new function f_deb with argument s (of type Stack), whose
right hand side is [e] .

e An impedance-matching definition for the original f, which
calls f_deb passing the empty stack, emptyStack (defined by
the support library).

e A new annotation is generated for f, that associates it with the
value (Debugged ' f_deb), where Debugged is a data construc-
tor declared in the support library as follows:

4 2009/5/14

data Debugged = Debugged TH.Name

Its argument is a Template Haskell name, in this case the name
of f’s debugging variant. (Such quoted names are written in
Template Haskell with a preceding single quote.)

If f does not have a Debug annotation (Section 3.1), then much
less happens: the right hand side e is simply transformed with
le]...peysiack> Where emptyStack is the empty stack trace, reflect-
ing the fact that a non-debugged function has no stack-trace con-
text.

The term transformer [e],, also defined in Figure 1, simply
walks over the term e, seeking occurrences of functions that have
debug variants. How are such functions identified? With the excep-
tion of the special primitive throwStack, discussed shortly, they are
the ones that have a Debugged annotation, which gives the name
of the debugging variant to be substituted. Remember that imported
functions, as well as functions defined in this module, may have a
Debugged annotation. The new Debugged annotation attached to
f by the transformation is automatically preserved in the module’s
interface file, and will thereby be seen by f’s callers in other mod-
ules.

The stack passed to z_deb is (push [s). Here, [is the source
location (source file, line and column number etc.) of this occur-
rence of x, written informally as a subscript in Figure 1. The other
parameter s is the stack trace of the context. The function push is
exported by the support library, and pushes a location onto the cur-
rent stack trace. The implementation of stack traces is described in
Section 4.

There is a small phase-ordering question here. Since the top-
level functions of a module may be mutually recursive, we must
add all their Debugged annotations before processing their right-
hand sides, so that their mutual calls are transformed correctly.

The transform has been designed to preserve the existing API
of a module. The original function name f in the binding f = e is
still available at the original type. As the definition of f now uses
the debugged version with an empty initial stack, libraries compiled
without the transform can still depend on it with no changes, and
gain limited stack-trace benefits for free.

The transform is fully compatible with non-transformed li-
braries: a call to a library function is left unchanged by the transfor-
mation unless the library exposes a Debugged annotation for that
function.

3.3 Implementing throwStack

The primitive throwStack is implemented in our library very sim-
ply, as follows:

throwStack ::V e a.Ezxception e = (Stack — €) — a
throwStack f = throw (f emptyStack)

This provides a safe default for when it is used without Stack-
Trace being enabled. The transformation then treats references to
throwStack as a special case, although you can imagine a de-
bugged version of throwStack would take the following shape:

{-# ANN throwStack (Debugged "throwStack_deb) #-}
throwStack_deb :: ¥V e a.FEzxception e
= Stack — (Stack — e) — a
throwStack_deb s f = throw (f s)

Any call elsewhere to throwStack will be transformed to a call
to (throwStack_deb s) where s is the stack trace at that call site.
Then throwStack_deb simply passes the stack to f, and throws the
result. Simple.

The reader may wonder why we did not give throwStack
the simpler and more general type (Stack — a) — a. Since
throwStack is a normal Haskell function, if it had the more gen-

short description of paper

module Stack where
emptyStack :: Stack
push :: Stack — StackElement — Stack
throwStack ::V e a.Exception e = (Stack — e) — a

Figure 2. The signature of the Stack library in StackTrace.

eral signature, it could lead to a subtle break of referential trans-
parency. Consider the following program (assuming the more lib-
eral throwStack):

{-# ANN main Debug #-}
main = print (bar = bar)
{-# ANN bar Debug #-}
bar :: String
bar = throwStack show

‘When run normally, the program would print out:

>./example
True

as expected. However, if -fexplicit-call-stack is enabled
during compilation, it would instead print out:

>./example
False

The two different contexts of the bar call in main now are visible.
Since a debugging library should not affect the control flow in pure
Haskell code, we decided to require that throwStack diverges. An
expert Haskell programmer can of course resort to the unsafex
black arts should they really desire the more liberal function.

4. Call Stacks

A key component of StackTrace is the data structure that actually
represents stack traces. It is implemented by our support library,
and has the signature given in Figure 2. This section discusses our
implementation of stack traces. A key design goal was this:

¢ The maximum size of the stack is statically bounded, so that the
debugging infrastructure adds only a constant space overhead to
the program.

To maintain a precise stack trace would take unbounded space, of
course, because of recursion, so instead we abbreviate the stack
with “...” elisions, in order to bound its size. Section 2 showed
some examples of this elision. But just what should be elided? We
established the following constraints:

e The top of the stack accurately reflects the last calls made up
to an identifiable point. This is important for debugging, so the
user can know exactly what they do and don’t know about what
happened.

e Any function that would be involved in a full stack trace is
represented at least once in this stack trace.
4.1 Eliding locations in the Stack

Our stack design has the following behaviour when pushing a
source location [(file name, line and column numbers) onto a stack:

e Place [at the top of the stack.

e Filter the rest of the stack to replace the previous occurrence of

[T}

[(if it exists) with a sentinel value ...

5 2009/5/14

Push | onto stack gives result
(D a | - a,-
2) b | a,- b,a,-
3) a | b,a,- a,b,...,-
(@) b | a,b,...,- b,a,...,-
(®)] c | b,a,...,- c,b,a,...,-
(6) c | c,b,a,...,- C,...,b,a,...,-
@) b|c,...,b,a,...,- | b,c,...,a,...,-
(8) a|b,c,...,a,...,- | a,b,c,...,-

Figure 3. Pushing elements onto our Stack (young end to the left)

e [f “..” were inserted and are directly above/below another “...”’s,

@ 9

they are collapsed into a single ...

Some examples of this behaviour are in Figure 3, which depicts
a stack trace as a list of labels and elisions, such as a,...,b,-.
The young end of the stack is at the left of such a list, with “-”
representing the base of the stack. In examples (1) and (2) and (5)
the element being pushed is not already in the stack and is placed on
top as would be expected. In example (3) the element (a) is already
present and is therefore its original reference is replaced with “...”’s,
while it is placed on top. In (4) the same happens with element b,
although the new “...”s would be adjacent to the ones placed in (3),
so they collapse together. In (8) we see an extreme example where
three “...”s would end up adjacent and are all collapsed together.

An alternative way of imagining the results of this algorithm is
this: given a real stack trace, you can convert it to our stack trace by
sweeping down the stack from the top. Whenever you see a source
location you have seen before, replace it with a sentinel value
... If multiple sentinel values appear consecutively, collapse them
together. To see this in practice, imagine reading the push column in
Figure 3 from bottom to top (which represents the real stack trace),
replacing any duplicate elements with “...”. Doing this on any line
will yield that line’s result.

Given that all stacks must start out as empty, and the only
mutation operator is to push a source location (i.e. you can never
push an “...”). We get several nice properties:

e Any source location referring to a usage of a top-level function
occurs at most once in the call stack.

w9

e A “.” is never adjacent to another “...

e The number of elements in the call stack is bounded at twice the
number of possible source locations that refer to usages of top
level functions (follows from the previous two). It is of course
likely to be much, much less than this since not all program
locations can call into each other.

e A “..” represents an unknown number of entries/calls in the
stack trace. However the only functions that could have been
invoked that are elided by the “...” could be any of the functions

w

that are above the “...” in the stack.

The top of the stack accurately reflects what happened, down to
the first “...”.

4.2 Stack Implementation

The run-time stack trace is implemented as an ordinary Haskell
library. The data structure representing the stack takes advantage
of the sentinel value (°...") only ever occurring between two stack
elements, and maintains this invariant implicitly.

data Stack = Empty { stackDetails :: |StackDetails }
| Then {stackDetails :: | StackDetails
, stackElement :: | StackElement
, restOfStack :: |Stack }

short description of paper

Figure 4. Complete transition diagram for our stack abstraction
with two source locations. The empty stack is denoted by *-’. Edges
represent pushing the named source location onto the stack.

| RecursionThen {stackDetails :: |StackDetails
, stackElement :: | StackElement
, restOfStack :: |Stack }

The Empty constructor represents the empty stack, and Then
is the way of placing a StackElement upon an existing stack.
The RecursionThen constructor is used to represent a sentinel
value between its StackElement and the stack below it. The
StackElements represent source locations. The StackDetails
contain some bookkeeping information for each stack. When dis-
cussing stacks in constructor form, we will elide the StackDetails,
meaning we can talk about stacks like a‘ Then‘b‘ RecursionThen'
Empty (whichis a,b,...,-).

In Figure 4 we consider building a stack where we only have
two possible items to put into it called a and b (these are actually
locations in our source code, but the fact is unimportant for this
example). The Figure shows how the push function relates stacks
via the source locations pushed onto them. The empty stack, ‘-’,
at the bottom left of the picture is the root of all the possible stack
configurations.

For example, if a is the first source location reached, then the
stack becomes a,- (following the a arrow from - to the right).
From this position, if we reach source location b (following the
b arrow to the right), then b is pushed onto the top of the stack
as would be expected (giving b, a,-). If that source location b is
recursively re-entered (following b again), then the first time the
stack would transition to b, . . . ,a, -, however any further pushes
of the source location b would cause the stack to remain the same.

As the diagram shows, many configurations are possible to
reach. Also at runtime many of the shorter stacks appear in different
contexts (for example main, - will likely be a common suffix of all
stacks).

6 2009/5/14

4.3 Stack sharing and memoization

There are resource-related questions for stack traces:

e Every call (push [s) must search s for occurrences of [. We
would like to not do so repeatedly, giving push an amortised
constant-time cost. We achieve this by memoising calls to push.

e Although elision means that each individual stack trace has
bounded depth, there may be an unbounded number of them.
We would like to share their storage, so that the size of all stack
traces fogether is bounded, independent of program runtime or
data size. We can achieve this by hash-consing: that is, ensuring
that for any particular stack trace there is at most one stack in
the heap that represents it. Since the tail of a stack is also a
stack, this implicitly means we share all suffices of stacks.

We can memoise push by attaching a memo table to each stack
trace. The memo table for a stack trace s maps source locations [
to the result of (push [s). As a partial analogy, you could imagine
that the arrows in Figure 4 represent the associations in the memo
tables for each stack. The StackDetails data structure is where
this memo table lives, which takes the following shape:

data StackDetails
= StackDetails {
stackUnique :: ! Unique,
stackTable ::!(MVar (HashTable StackElement
Stack))
}

The stackTable is used to memoize the push calls. When (push [s)
is called, the stack s checks its stackTable to see if the new
stack has already been calculated (looking it up and returning if
necessary); otherwise the new appropriate stack is built and the
stackTable is updated. Since we are using hashtables, the Stacks
also need to be comparable for equality, and we use stackUnique
to provide a quick equality check.

4.4 The implementation of push

The use of memo tables alone, however, does not guarantee that
all stacks in the heap are unique. The problem is that it could be
possible to reach the same stack in multiple different ways. For
example, the stack a,b. . . , - could be reached by: push a opush b
opush a $emptyStack or push a opush b opush b $emptyStack.
In order to ensure each stack is only created once, we make our
push function generate new stacks using a canonical set of pushes
upon a known memoized stack. The idea is to make all stacks be
built incrementally using two “smart constructors” that can only
alter the top of the stack, only ever operate on stacks that have
already been memoized correctly and do not feature the program
location about to be pushed. If these preconditions are met, they
guarantee that all stacks are only ever created once and share all
tails correctly.

e pushl is the smart constructor for Then. It takes program
location [and a known memoized stack s (not containing /), and
checks s’s memo table for /. If the check succeeds, it returns the
memoized result. Otherwise it uses Then to build a new stack
trace, adds it to s’s memo table, and returns it.

pushr is the smart constructor for RecursionThen. To guaran-
tee all stacks are correctly shared, this constructor ensures that
(for example) the generation of the stack a,...,rest given
a known memoized stack rest: a,rest is memoized and the
memo table for a,rest knows that when a is pushed upon it
the resultita,...,rest.

It achieves this by (using this example of pushra rest):

short description of paper

push b (a,b,c,-)

Action | Queue | Stack

(1) split stack at b b,a,..., | ¢c,-

(2) pushr a

(3) pushla b, a,c,-

(4) replace a, witha,..., | b, a,...,C,—
(5) pushl b b,a,...,c,—

Figure 5. Example use of the smart constructors

* First using pushl to build or lookup the stack a,rest

= It then does a memo table check in a,rest for pushing a.
If the check succeeds, it just returns the result. If it fails
it picks apart the top of the stack and swaps the Then
for a RecursionThen, and then adds the mapping for
pushing a onto a,rest to a,...,rest, before returning
a,...,rest.

With these smart constructors in hand, the implementation of
(push 1 s) is easy:

1. Look up ! in s’s memo table. If the check succeeds, return the
pre-computed result.

2. Search s for an occurrence of /. If none is found, just tail-call
(pushl 1 s) to push [onto s.

3. Starting from the suffix just below the occurrence of / (which
cannot itself contain /), rebuild the stack using pushl and
pushr, omitting [. Finally use pushl to push [onto the re-built
stack.

We illustrate the third step with an example in Figure 5.

In the example we are pushing b onto the stack a,b,c,-. In
(1), push splits the stack into a queue of things to be pushed, and
the known memoized stack being built up. Notice that b has been
placed at the front of the queue, and its original location replaced
with a “..”.

In (2) we take the last item of the queue (a, . .. which is really
just a value representing a‘RecursionThen'), and since we need
to create a RecursionThen, use the smart constructor pushr to
place that on the top of the new stack. pushr first uses pushl to
put a on the top of the stack in (3), and then replaces the Then
constructor on the top of the new stack with RecursionThen in
(4). In (5) we take the next item off the queue, and since that needs
to be separated using Then, we use pushl to place it on the top of
the stack.

Once the queue is empty, push then updates the memo table of
the original (pre-queue) stack to point to the final stack when (in
this example) b is pushed.

4.5 Run-time example

‘We now demonstrate how our algorithm for pushing elements onto
the stack, using memo tables, results in a bounded heap footprint.
Using the following program:

a=1b
b=a
main = a

Imagine that main is not being debugged, so our stack traces will
only refer to the source locations b and a.

Initially there is a global constant empty stack available, with
an empty memo table attached (Figure 6 - 1). Pushing program
location a onto this stack first checks the memo table, but as it is
empty we need to compute the new stack, and update the memo
table. As the stack does not contain a already, pushl can simply

7 2009/5/14

1. Empty Stack (-) with empty

2. Pushing a onto the stack

RecursionThen

5. Pushing b again to create a
RecursionThen

6. Stack structure after re-entering
b for the first time.

3. Pushing b onto the stack

RecursionThen

4. Pushing b onto Emtpy

\Then

RecursionThen

Then

7. The final Stack structure.

short description of paper

Figure 6. Stack Pushing Example

2009/5/14

create a new Then stack element (with its own empty memo table)
and update Empty’s memo table to point to it (2).

Pushing b onto this new stack follows similarly, giving a heap
as in (3). Now we come to pushing a on top of b,a,-. Again the
memo table is empty, so we need to compute a new stack. However
the existing stack already contains an a, so push splits the stack at
a, giving a known memoized stack -, and a queue of a,b,

So in this example, the first item off the queue is b, . . ., which
means push will delegate to pushr. This then delegates to pushl to
first push b on to Empty, giving the heap layout in (4). Then, since
we want a RecursionThen between Emipy and b, pushr will
replace the top Then with a RecursionThen, giving the situation
in (5). Notice in this step we have initialized the new memo table
with a self-reference loop because any further pushes of b will
return to the same stack.

Then only item left in the queue is the a,, which is pushed using
pushl. Finally push updates the b,a,- memo table to point to the
resulting a,b, . . ., - stack (6).

The next iteration of the loop then pushes another b, transition-
ing the stack from a,b,...,-tob,a,...,- with associated up-
dates to form the heap in (7). (7) also includes the final arc that the
subsequent pushing of a creates.

5. Future Work

For the most part, StackTrace as described so far works well; well-
enough for it to be helpful in debugging GHC itself (Section 2.4).
However there are some thorny open issues that need to be inves-
tigated to make it complete. How to deal with type classes is one
problem, as these have non-trivial, cross-module interactions that a
rewriting transform must take into account. Our stack trace trans-
form also has potential negative effects on constant functions and
the translation of mutually recursive functions with polymorphic /
type-class arguments.

5.1 Stack traces for Higher Order Functions

There are times when it could be useful to have a more flexible call
stack to the one currently implemented. Higher order functions are
a good motivator of this. For example, the map function:

map :: (a — b) — [a] — [b]
map f [] =[]
map f (x:zs) = (f) : map f zs

and a use site:
1 foo = map (error’ "..

The call stack will be:

.M [1,2,3]

error ‘¢...”°

in foo, Blah.hs:1,12
in <foo’s calling context>

even if we add an annotation to explicitly say we want to debug
map, there will be no reference to map in the call stack. The reason
for this is that map’s argument f is never told (and has no way to
know) that it is being applied inside map.

A natural solution to this problem would be to let the user
somehow indicate that that the first argument to map should also
accept a stack, giving a debugged version and new stack trace like
S0:

map_deb :: Stack — (Stack — a — b) — [a] — [b]
map-deb s f [] =]
map_deb s f (z : xs)
= f (push loc1 s) z : map (push loc2 s)
(As" — f (push loc3 s')

short description of paper

zs)

foo = Astack — map (push locj stack)
(Astk — error’ (push loc5 stk)
"oy [1,2,3)

error "..."

in foo at loch

in map at locl

in foo at loc4

in <foo’s calling method>

Now f also takes a stack indicating where it is used, and in the
recursive case of mapDebugged, the fact that it is called inside
map at loc1 is presented to it.

The complications with implementing this scheme would be es-
tablishing which function arguments (or in fact any locally declared
variable) could be useful to debug, and then keeping track of these
so that we know to propagate the stack. The difficulty comes from
realising that f is a local variable, whereas previously all debugged
variants of things were top-level declarations that could easily be
referred to in GHC.

5.2 Constant Applicative Form Expressions

Another problem area is the treatment of expressions in Constant
Applicative Form (CAF’s). Due to GHC’s evaluation strategy, these
will be evaluated once and their end result stored, as opposed to
recomputing their value each time they are demanded. For example:

e = expensive ‘seq‘ f
main = print e > print e

Here expensive will only be computed once, the second reference
to e in main will just get the result of whatever f evaluated to.

However, by adding the stack argument, and threading it
through into ezpensive, we can dramatically change the runtime
of the program:

e_deb stack
= ezpensive ‘seq‘ (f_deb (push loc stack))

main = print (e_deb (push locl emptyStack)) >
print (e—_deb (push loc2 emptyStack))

Now, since e_deb accepts an argument (which is different in
both cases), and GHC is unaware of our invariant that stacks do
not change user-visible control flow, then both invocations of e_deb
will require the recomputation of expensive, each with the different
stack variable passed in.

This is a very hard problem to solve in general, although we mit-
igate this by allowing the user to explicitly state which parts of the
program should be rewritten - which allows stack traces to remain
performant even in the presence of expensive CAF expressions.

5.3 Type Class Design Space

We want the StackTrace pass to degrade gracefully if future mod-
ules compiled without StackTrace are compiled against StackTrace
altered modules. This means any changes StackTrace makes to a
module have to preserve the existing interface of the module. For
simple functions, record selector functions and even mutually re-
cursive functions, no definition can cross a module boundary and
so making a change in an API compatible way is straightforward.
However type classes can be instantiated in different modules to
where they are declared, and used in a different set of modules
again. It could be possible, for instance, for a use-site of a type-
class instance to see declared instances that have come from mod-
ules both compiled with and without StackTrace enabled.
Consider the following two modules:

9 2009/5/14

module MClassC where
class C a where
c::a — Bool

module MUseC where
import MClassC
useC :: C a = a — Bool
useC = —oc¢

Here we have a module declaring a type class C' with a simple
function c. And a module that just uses class C in a generic way.

If we Debug annotate the function useC', and propagate the
stack into the c in its definition, the debugged version of useC
would be:

useC'_deb stack = — o (c_deb (push loc stack))

The question is now, where does the c_deb name come from? Is
it is generated by rewriting the type-class C as follows?

module MClassC where
class C a where
c::a— Bool
c_deb :: Stack — a — Bool
c.deb _= ¢

Now the original class declaration is expanded with a new func-
tion, and we give it a default implementation to ensure later clients
compiled without StackTrace have a sensible implementation of it.

Instance declarations for class C' that are compiled with the
transform turned on could then generate a c_deb function to give a
stack propagating version of their ¢ instance, others would get the
API safe, but stackless, default implementation.

However there are some downsides to this approach. The first is
that in GHC the internal representation of a type-class is currently
fixed very early on in the compiler pipeline, and altering that fixed
definition would invalidate some invariants in later stages of the
compiler.

The second problem is that it requires the class declaration itself
to be available to be annotated by the user. If the class declaration
is buried deep in a library without a debugged annotation attached,
then any user code that has control flow through a user instance
declaration would have its stack essentially reset.

An alternative approach would be to create a new typeclass that
contains the debugged definitions of functions and to change the
rewritten functions to require the presence of the new typeclass
(if it exists) instead of the original. So for our example, we would
generate instead:

class (C a) = C_Deb a where
c_deb :: Stack — a — Bool

useC_deb :: (C_Deb a) = Stack — a — Bool
useC_deb stack = — o (c_deb stack)

However, we currently have some open questions for this de-
sign. If we allow the user to declare that the ¢ function should have
a debugged version available, but not need to annotate the class
declaration in its declaring module, then we have to ensure that
any potential users of the debugged version can see the declaration
of the debugged version. For this example, it may require an extra
import in MUseC' to pull in the new declaration. It also requires
that any instance declarations can see the debugged version of the
typeclass so they can make instances of it.

There are some other, more serious, issues however. For exam-
ple imagine a class with two functions; and imagine that separately
we create two debugged versions of the class, each debugging a dif-
ferent function. Now we can have a function that can witness both
of these debugged versions - do we create debugged versions of it
for all possibilities of debug information available?

short description of paper

module Urg where

class Urg a where
ul :: a — Bool
u2 :: a — Bool

module Urg! where
import Urg
{-# ANN ul Debug #-} -- Which generates:
class (Urg a) = Urg_Deb_1 a where
uwl_deb :: Stack — a — Bool

module Urg2 where
import Urg
{-# ANN u2 Debug #-} -- Which generates:
class (Urg a) = Urg_Deb_2 a where
u2_deb :: Stack — a — Bool

module UseUrgs where
import Urgl, Urg2, Urg
{-# ANN d Debug #-}
d:: Urg a = a — Bool
dr=ul x Nu2 x

Our Urg module exports a typeclass with two member functions.
Then in separate modules, we request that the member functions be
debugged. Finally in module Use Urgs we ask to debug the function
d. The question is now, do we expand out all the possibilities for
the debugged version of d, such as:

d_Deb_1 :: Urg_Deb_1 a = Stack — a — Bool
d_Deb_1 stack x

= ul_deb (push loc stack) z N\ u2 z
d_deb_2 :: Urg_Deb_2 a = Stack — a — Bool
d_deb_2 stack x

= ul z A u2_deb (push loc stack) =
d_deb_1_2:: (Urg_Deb_1 a,

Urg_Deb_2 a) = Stack — a — Bool

d_deb_1_2 stack z

= ulDebugged (push loc stack) z N

u2Debugged (push loc stack) x

5.4 Mutually recursive functions with type parameters / type
class dictionaries

One of the few cases in which GHC Core does not intuitively
resemble the original Haskell source is in the treatment of mutually
recursive functions with type parameters / type class dictionaries.
By default, the following set of bindings:
f 0= error’ "Argh!"
fe=g(z-1)
gr=fz
Normally desugars into (roughly) the following Core language:
fg-tuple = Aa.\d_num : Num a —
let {
d_eq = getEqDict d_num
flel =Xz :a — case (((Z) a d-eq) 0 z) of
True — error’ "Argh"
False — g_lcl (((—) a d-num) z 1)
glcdd=MAzx:a— flcx
}in
(f-lel, g_lcl)

f=Aa.Xd_num : Num a —
case (fg-tuple a d_num) of

10 2009/5/14

(f-lel, g-lcl) — f_lel

g = Aa.Ad_num : Num a —
case (fg_tuple a d_num) of
(f-lel, g-lel, —) — g-lcl

The actual definitions of f and g end up living in f_lcl and
g-lcl inside the let in fg_tuple. Hoisting them into this let means
that the functions do not need to apply their counterparts to the
type variable a and dictionary d_num (the arguments to fg_tuple)
on the recursive call, as they are just in scope. This has obvious
benefits in terms of keeping the code size down (it could blow
up exponentially otherwise), but also (because the calculation of
the Eq dictionary d_eq, needed for finding the definition of (=),
becomes cached) maintains the full laziness property that GHC
supports. A fuller explanation for this can be found in [4].

However, when we add the stack transform, the following hap-
pens:

fg_tuple = Astack.Aa.Ad_num : Num a —
let {
d_eq = getEqDict d_num

flcl =Xz :a — case (((Z) a d_eq) 0 z) of
True — error’ (push pos stack) "Argh"
False — g_lcl (=) a d_num) z 1)

glel=MAz:a— flclzx
}in
(f-lel, g-lcl)
f = Astack.Aa.\d_num : Num a —

case (fg-tuple (push pos stack) a d_num) of
(f-lel, g_lcl) — f_lel

g = Astack.Aa.\d_num : Num a —
case (fg_tuple (push pos stack) a d_num) of
(=, g-lel, g-lcl) — g-lcl

The stack is modified in f and g when entering fg_tuple, and
again in f_lcl before calling error’ (the latter causing the non-
Haskell-source variable fg_tuple to appear in the stack trace). How-
ever the stack does not get modified when the recursion between
f-lcl and g_lcl occurs. This means invocations of say f 100 and
f 0 will produce the same output stacks, despite the fact that a lot
of recursion will have happened in the former case.

In theory it could be easy to detect the code structure above
and special-case-modify it to pass the call stack as desired. Un-
fortunately by the time we get to the desugared Core, the link be-
tween the tuple fg_tuple and the top-level selectors being used to
encode mutually recursive functions is gone. There is no way to
know that the let-bound f _Icl, g_lcl are really the implementations
of top-level functions.

To get around this, we have added an optional flag to the desug-
arer to do a more naive translation. However this can result in large
code-blowup and duplication, and removes the full laziness prop-
erty. We present some preliminary results from using this transform
in the following section.

6. Evaluation

Although this work is prototypical and experimental in nature, we
have used the nofib [6] benchmark suite to gain an insight into the
possible compile and runtime costs of StackTrace on non-erroneous
programs. The full logs of the nofib results are available from [1].
We ran the test-suite three times. Once using a clean GHC head
snapshot, and twice using our patched version of the GHC head,
once using only our simple desugaring rule for mutually recursive
functions (-fds-simple, see Section 5.4) and once rewriting all
sources to pass stacks through (-fexplicit-call-stack-all).

short description of paper

01:00.00

00:50.00
00:40.00
00:30.00
00:20.00
00:10.00
00:00.00 .
0 1 2 3 4

Fib(n|

Elapsed Time (seconds)

B Avg. ECS
M Avg. NoECS

5 10 100 1000 10000 100000
)

Figure 7. Graph of average runtimes for the erroneous Fibonacci
function with and without StackTrace enabled

As none of the nofib programs crash, and do not use our
throwStack function anywhere, we are not going to see call stacks
at runtime, however it is useful to see the performance impact of
this work when enabled on full programs.

Our prototype implementation was able to compile and run all
programs with -fds-simple enabled, and 75 of the 91 programs
could be tested under -fexplicit-call-stack-all.

Comparing the original GHC to our modified version with
-fds-simple turned on, we see that there is an average of over
11% cost in terms of runtime and memory allocations for just us-
ing the simple desugaring strategy (though the maximum increase
in time was over thirteen in the multiplier program). Compile times
(excluding those programs that failed to compile) were on average
2.5% slower, although one standard deviation ranged from -18.5%
t0 28.5%.

Comparing the original GHC to our modified version with
-fexplicit-call-stack-all turned on, we see that there is
an average of over five times the cost in terms of runtime and mem-
ory allocations. Compile times were on average 71% slower, with
one standard deviation ranging from 14.0% to 157.4%.

The experiments with the nofib benchmark suite indicate that
some work is still necessary in ironing out the bugs in the prototype.
There are many different parts in the entirety of the GHC pipeline,
and some of the nofib programs have teased out otherwise undis-
covered interactions between the pipeline and the changes neces-
sary to enable the stack transform. However, for the vast majority
of programs, it is possible to apply our stack passing transform to
the entire program, and still run it with a modest, but perfectly ac-
ceptable, performance hit.

As a smaller benchmark, we have taken the example erroneous
fib program from the Example in Section 2, and compared its
runtime with and without the explicit call stack transform enabled.
Our benchmark calls fib with the indicated 7, forcing the resulting
exception (if there is one). This is done 10000000 times in a loop.
For each n, we performed this experiment 5 times. The average
results are presented graphically in Figure 7.

Calling fib where n is 1 doesn’t call error’, and indicates there
is less than a 20% cost in just adding the call stack information to
the program. When n is 10 or greater, the resulting stack from the
error is always the same, and calculating it increases the runtime by
approximately 180%.

What the results also indicate is that the overhead is mostly in
calculating the stack for printing (which most normal use-cases
would do only once), as opposed to any calculation that occurs
with each push onto the stack, as there is no consistent increase
in runtime as the size of the fib argument increases from 10 to 100
to 1000 etc.

There is an increase in performance when n is 0 or 2 compared
to when n is 10 or greater with the transform enabled. When n

11 2009/5/14

is 0 or 2, the resulting stack is smaller and simpler (it features
no recursion) than in the other cases - again this is indicative that
the formatting of the stack is much more expensive than the actual
creation of the stack.

7. Related Work

There are already several ways of debugging existing Haskell pro-
grams. GHC currently ships with an interactive mode that features
several debugging features, [5], [3]. Along with the standard op-
tions for setting breakpoints, and inspecting current local variables
when execution is paused, it also features a :trace mode, which
allows the build up of a dynamic execution stack. Currently this is
limited to the last 50 execution steps. It is also only available for
code that is run in interpreted mode.

The difference in approach in keeping an accurate but bounded
stack, verses our abstracted stack has advantages and disadvan-
tages. For cases where the program control flow does not exceed
50 execution steps deep then certainly the accurate stack is more
helpful. However a tight loop of greater than 50 iterations would re-
move any of the preceding context, and not would not provide any
more information beyond the loop running for over 50 iterations.
Our abstracted stack on the other hand would indicate that the loop
was re-entered at least once, and would keep the (abstracted) con-
text above the loop. It is possible that some form of hybrid approach
that keeps the full stack up to some limit and then starts abstracting
away recursion could provide the best of both worlds, which we
leave open to future work.

Another existing tool is the Haskell Tracer, HAT [10]. This pro-
vides the ability to trace Haskell 98 (plus most common extensions)
programs and extract a Redex Trail (a full record of all the reduc-
tions that happened in the program). From this Redex Trail, they
provide several different views with the trace that can aid in debug-
ging a program. One of these is a call stack (provided through the
tool hat-stack). As the authors note, this call stack (and ours) is not
the real lazy evaluation stack, but

“gives the virtual stack showing how an eager evaluation
model would have arrived at the same result.”

Although building a full Redex Trail could be potentially quite
large and expensive for a large application, HAT is designed to
stream this out to disk and thus not cripple performance on large
programs. Also of note is the difference in when the tracing code is
applied; HAT works by first pre-processing the program, whereas
we have integrated directly with GHC. While this in theory gives
us the advantage of being able to reasonably easily track new GHC
extensions to Haskell (because we are buffered from them by using
Core unlike HAT which has to then upgrade its parser, internal
model and other features), we do not yet have a good story for
tracing (for example) type-classes, which HAT can currently do
perfectly.

It is also possible to re-use the GHC profiling tools in order to
get stack traces out of GHC. When profiling, GHC associates the
runtime costs (memory / cpu use) to cost centers [7], and it builds
up an abstracted stack of these at runtime as different functions
are evaluated. The abstraction scheme used is to prune the stack
back to the previous entry for a cost center when one is recursively
re-entered. When a program crashes, it is possible to acquire the
current cost-center stack, and thus get an indication of what the
root causes of the crash could be. Although the abstraction scheme
employed is somewhat lossy, in practice this is probably not an
issue; the success or failure of using the cost center stacks for stack
traces depends on the accuracy and resolution of the cost centers
themselves. By default GHC creates a single cost center for an
entire function definition, and so tracing through individual cases

short description of paper

can be tricky. However the user is free to declare a new cost center
anywhere by annotating an expression with an SCC pragma.

Another related tool that has an integrated component into GHC
is HPC [2] (Haskell Program Coverage). This transforms a Haskell
program into one that uses tick boxes to record when expressions
are evaluated at runtime, and then allows visualisation of this data
in terms of marked-up source code to see which expressions where
or where not executed. Unlike our approach of rewriting GHC
Core, they perform their transform earlier in the pipeline, just be-
fore the Haskell AST is desugared into Core. This means they have
a data structure that much closer resembles the original source pro-
gram to work with. As a possible alternative target in the pipeline
for a fuller implementation, HPC demonstrates that before Core is
a reasonable target.

8. Conclusions

We have presented StackTrace, our prototype for adding the ability
to get stack traces out of crashing GHC-Haskell programs. We have
given an intuitive overview of how Haskell programs are rewritten
to pass an explicit stack around, and then given details on the actual
transformation used on the GHC Core language. Accompanying
the stack passing transform is a stack data structure and associated
API that models the current call stack, while ensuring bounded
heap usage by abstracting away recursively entered functions. We
have discussed some current limitations and areas for future work,
and presented some initial results from using our work on the nofib
benchmark suite.

Acknowledgments

This work was undertaken while Tristan Allwood was on an intern-
ship at Microsoft Research Cambridge. We would also like to thank
Thomas Schilling, Max Bolingbroke and Simon Marlow for long
and interesting discussions and guidance during this work. Tristan
is supported by EPSRC doctoral funding.

References

[1] T. Allwood, S. P. Jones, and S. Eisenbach. Explicit call stack paper re-
sources. http://code.haskell.org/explicitCallStackPaper/.

[2] A. Gill and C. Runciman. Haskell program coverage. In G. Keller,
editor, Haskell, pages 1-12. ACM, 2007.

[3] G. U. Guide. The ghci debugger. http://www.haskell.org/ghc/
docs/latest/html/users_guide/ghci-debugger.html.

[4] S. P. Jones and P. Wadler. A static semantics for haskell. Draft paper,
Glasgow, 91.

[5] S. Marlow, J. Iborra, B. Pope, and A. Gill. A lightweight interactive
debugger for haskell. In G. Keller, editor, Haskell, pages 13-24.
ACM, 2007.

[6] W. Partain. The nofib benchmark suite of haskell programs. In
J. Launchbury and P. M. Sansom, editors, Functional Programming,
Workshops in Computing, pages 195-202. Springer, 1992.

[7] P. Sansom and S. Peyton Jones. Formally based profiling for higher-
order functional languages. ACM Transactions on Programming
Langauges and Systems, 19(1), 1997.

[8] M. Sulzmann, M. M. T. Chakravarty, S. L. P. Jones, and K. Donnelly.
System F with type equality coercions. In F. Pottier and G. C. Necula,
editors, TLDI, pages 53-66. ACM, 2007.

[9] G. Trac. Annotations. http://hackage.haskell.org/trac/
ghc/wiki/Annotations.

[10] M. Wallace, O. Chitil, T. Brehm, and C. Runciman. Multiple-view
tracing for Haskell: a new Hat. In R. Hinze, editor, Preliminary
Proceedings of the 2001 ACM SIGPLAN Haskell Workshop, pages
151-170, Firenze, Italy, Sept. 2001. Universiteit Utrecht UU-CS-
2001-23. Final proceedings to appear in ENTCS 59(2).

12 2009/5/14

