Hessian-based Markov Chain Monte-Carlo
Algorithms

Yuan Qi and Thomas P. Minkal
Media Lab, MIT, Cambridge, MA, 02139
yuanqi@media.mit.edu
Department of Statistics of CMU, Pittsburgh, PA, 15123'
minka@stat.cmu.edu’

September 12, 2002

Abstract

In this paper, we propose two efficient Markov chain Monte-Carlo sam-
pling methods, namely, the Hessian-based Metropolis-Hastings (HMH)
and adaptive multiple importance-try (AMIT) algorithms. HMH utilizes
Newton’s optimization method to generate transition distributions in a
Metropolis-Hastings sampling scheme. By introducing learning rates into
Newton’s method, HMH reduces the risk of having samples stuck in a
local region where it is not good to approximate the target distribution
by a Gaussian. We also provide a method to efficiently implement HMH
for high-dimensional data. For more effective exploration of the adaptive
proposal distributions obtained by HMH, AMIT combines HMH with the
multiple-try Metropolis (MTM) algorithm, proposed by Liu et al [5]. We
compare HMH and AMIT samplers with Gibbs and optimal marginal
data augmentation (DA) samplers, proposed by van Dyk and Meng [7],
on a probit regression problem. In the experiment, the AMIT sampler
outperforms the other samplers. Though only tested on a probit model,
these new sampling methods can be easily applied to any generalized
linear model and other models for which we can efficiently compute or
approximate Hessian matrices.

1 Introduction

Markov chain Monte-Carlo methods allows easy implementation of Bayesian in-
ference systems and helps Bayesian techniques play a more and more important
role in real world applications.

In this paper, we propose two efficient Markov chain Monte-Carlo sampling
methods, namely, the Hessian-based Metropolis-Hastings (HMH) and adaptive
multiple importance-try (AMIT) algorithms. HMH utilizes Newton’s optimiza-
tion method to generate transition distributions in a Metropolis-Hastings sam-



pling scheme. By introducing learning rates into Newton’s method, HMH re-
duces the risk of having samples stuck in a local region where it is not good to
approximate the target distribution by a Gaussian. We also provide a method
to efficiently implement HMH for high-dimensional data. Recently[3], Geweke
and Tanizaki propose a sampling method that is similar to HMH. But their
sampler does not have any learning rate and only deals with one dimensional
data.

For more effective exploration of the adaptive proposal distributions obtained
by HMH, AMIT combines HMH with the multiple-try Metropolis (MTM) al-
gorithm, proposed by Liu et al [5]. We compare HMH and AMIT samplers
with Gibbs and optimal marginal data augmentation (DA) samplers, proposed
by van Dyk and Meng [7], on a probit regression problem. In the experiment,
the AMIT sampler outperforms the other samplers. Though only tested on a
probit model, these new sampling methods can be easily applied to any gener-
alized linear model and other models for which we can efficiently compute or
approximate Hessian matrices.

The paper is organized as follows. First, section 2 describes generalized linear
models and reviews Gibbs and DA samplers for probit regression. Then section
3 presents HMH and its efficient implementation for generalized linear models,
followed by section 4 that presents AMIT samplers. Section 5 compares HMH
and AMIT samplers with Gibbs, DA, and MTM samplers on a probit regression
problem, demonstrating the efficiency of the new samplers. Finally, section 6
concludes the paper and points out the directions for future work.

2 Generalized linear Model, Gibbs and DA
Samplers

Given a data set

D= {(leyl)y---;(xn;yn)}) (1)
y:[yla'--yynllxn (2)
X = [X1,.-yXnldxn (3)

where y; € {—1,1}, the likelihood of a generalized linear model for w can be
written as

plylw,x) = HM%IX%W)ZH#](%X?W) (4)

where 1(-) is a linear or nonlinear link function. For the probit model,the
link function % (2) is the standard Gaussian cumulative function. The posterior
distribution can be computed as follows

p(wly,x) oc p(y|w, x)p(w),

where a non-informative prior distribution is assigned to w such that p(w) o< 1.



To construct a Gibbs sampler for probit regression, we first augment y to
Ymbozaug = {(Y1,21)s - s (Yn, 2n) }. It follows that

y; = sign(z;) (5)
zilw ~ N(xFw, 1) (6)

where sign(z;) = 1 if z; > 0, and sign(z;) = —1 otherwise. Then the Gibbs
sampler draws samples as follows [1]:

w = (xTx)"'xTz (7

W|Yaug: zr~ N(VN\’, (XTX)_I) (8)

Zi|wayi ~ TN(X:LTWalayi)a (9)

where z = [21,...,2,]T and TN (p,0,¥;) is a truncated Gaussian distribution

with mean p and variance o, truncated to be positive if y; = 1 and negative if
yi = -1

Though easy to implement, the Gibbs sampler for probit regression suffers
from its slow convergence speed as demonstrated in section 5. The Gibbs sam-
pler actually defines a stochastic mapping for the parameter w based on the
latent variable z;, similar to the EM algorithm. It is well known that the EM
algorithm for probit regression is not efficient, which in turn corresponds to the
slow convergence speed of the Gibbs sampler. To increase the EM convergence
rate, Liu, Rubin, and Wu introduce variables that are identifiable under the
augmented model but not under the observed data model and design a fast EM
algorithm for probit regression [4]. Also, Meng and van Dyk propose the work-
ing parameter approach to speed up EM-type algorithms [6]. For the purpose
of sampling, van Dyk and Meng adopt the EM criterion and design !!!! data-
augmentation (DA) samplers for different data models [7]. Among them, the
DA sampler for probit regression is given as follows:

n

C = Z(zl —x w)? (10)

i

w NN(\/%\XI, (xTx)™h) (11)

where z; and W are defined in equations (9) and (7), and x? represents a sam-
ple drawn from the Chi-square distribution with the degree of freedom n. As
shown by van Dyk and Meng,the DA sampler converges much faster than the
plain Gibbs sampler for probit regression, just like a PX-EM algorithm usually
converges much quicker than a plain EM algorithm.

While DA samplers enjoy fast convergence speeds, it may be hard to design
new efficient DA samplers for new data models though some work has been done
to facilitate the design [7].



3 Hessian-based Metropolis-Hastings algorithm

In this section, we propose a new MCMC sampling algorithm, namely, Hessian-
based Metropolis-Hastings (HMH) algorithm. By locally approximating the
posterior distribution by Gaussians, HMH obtains adaptive proposal distribu-
tions, which greatly improve the convergence speed. HMH can be applied to
various data models for which we can efficiently compute or approximate their
Hessians, such as generalized linear models.

First consider a general Metropolis-Hastings sampler. It samples a new
point w* from a jumping distribution J;(w*|w?) at the t'" iteration, and then
computes the ratio of importance ratios:

p(W*ly)/ Jo(w*|w')

"= ) T (12)

With probability min(r, 1), it sets w!t! = w*; otherwise, it keeps the parameter
unchanged, i.e., wit! = wt.

Though ideally the jumping distribution J;(w*|w?) would be the target dis-
tribution p(w*|y) for all w, such a direct sampling scheme is not possible in
most problems. Instead, we can use a local approximation of p(w*|y) that is
also easy for sampling to served as the jumping distribution J;(w*|w?). To this
end, we borrow the approximation scheme from Newton’s optimization method.

To maximize the logarithm of a posterior p(w|y) over parameter w, New-
ton’s method iteratively approximates log p(w|y) by a quadratic function, then

maximizes the quadratic approximation to get new parameter w*:

dlogp(wly
¢ = dlogp(wly)

T (13)

d* log p(wly)
H=-___°2" Y/ 14
dwdwT (14)
w*=w—-H g (15)

where H is the Hessian matrix, and H™'g is known as the Newton direction. For
the non-informative prior p(w) x 1, H = %. If the posterior p(wly) is
log-concave, w* will converge to the maximum a posteriori (MAP) solution by
iteratively applying the Newton’s updates.

Now instead of maximizing over w, we first construct a Gaussian approxi-
mation of p(w]y) as in the Newton method, and then draw samples by taking
the Gaussian approximation as the jumping distribution Ji(w*|w):

]
ot = dlogp(wly) 16

— |w:w’

dw
Y= —H gt
m! =w!++ 3% g
Jy(w*|w') = N(w* | m*, %)

17
18

)
)
)
19)

(
(
(
(



where v is a learning rate that controls how much m* will change from w?

along the Newton’s direction. By using the Newton direction to update the
mean of the jumping distribution, the new sample is more likely drawn from a
high probable region.

Note that the parameter 7 is used as a learning rate in equation (18). For
HMH, if the target distribution can not be well approximated by a Gaussian,
a big change of the proposed mean from w' to m* will result in a very low
acceptance ratio and the Markov chain may be stuck in a local region for a
long time. Thus, the learning rate v is used to avoid this problem. A simple
choice of the learning rate is to a number between 0 and 1. This number can
be randomly generated. And the algorithm will still be a valid MCMC, since
we have zero probability to come back to the same data point in a continuous
probability space of w. From another perspective, the random generation of
learning rates simply means that the jumping distributions are chosen on the
fly rather than in advance. Using a small learning rate helps Markov sampling
chains leave a local region where the target distribution is far from a Gaussian.

A more sophisticated method [2] to address the same problem will be intro-
ducing a scaling factor into the Hessian so that the new Hessian equals

H+ AI

where H is defined in equation (14), and Iis an identity matrix. We scale A based
on the quality of the quadratic approximation. If the quadratic approximation is
not good, we use a large A; otherwise, we make A small. This technique is called
a model trust region method in the optimization community. In addition, if H is
not positive definite or near zeros, we can make the Hessian positive definite in
a reasonable range by imposing a suitable A\. But for generalized linear models
that we will discuss later, the Hessian is usually positive definite. In this paper,
we only use the learning rate method in our experiments.

Though we have two jumping distributions at each iteration, we only need to
compute the variance parameter for the backward jumping distribution except
the first iteration. The variance of the next forward jumping distribution is
either the variance of the current forward jumping distribution, or that of the
current backward distribution, depending on if the new sample is accepted or
not.

In sum, the HMH sampling algorithm is described as follows:

1. Draw a starting point w!, for which p(w!|y) > 0, from a starting dis-
tribution p;(w). Compute the mean m' and the Cholesky factor R; of
the negative Hessian Hy, for which RTR; = —Hj, for the first forward
jumping distribution.

2. Fort=2,3,...

(a) Sample a new point w* from the forward jumping distribution



Jy(w*|wt) = N(w* | m?, 2;):

c ~ Ngy(0,I) (20)
w* =w' + R, 'c. (21)

We can use the variable elimination method to compute R; ¢ with-
out inverting R; ! directly. This reduces the computation complexity
from O(d?) to O(d?).

(b) Compute the mean m* and the Hessian H, for the backward jumping
distribution Ji(wtlw*) = AN(w' | m*,X,) by switching the time
indexes (%) to (t) in the equations (18) and (17). Then compute the
Cholesky factor R, of —H,.

(c) Compute the ratio of importance ratios:

)N [ m,S)
p(wtly)/N(wt | m*, %)

(22)

Clearly, given H, and R, we can easily compute the ratio r without
any matrix inversion.

(d) With probability min(r, 1), we set w!t! = w* m!t! = m*, and
R:;1 = R,; Otherwise, we set wi*! = w m!™! = m? and Ryy; =
R;.

Recently [3], Geweke and Tanizaki propose a sampler that is similar to HMH.
But their sampler only deals with one dimensional data and does not have any
learning rate. As discussed before, without the use of learning rate, HMH has
the risk of being stuck in a local region where a quadratic approximation is not
good.

In next section, we propose a method to considerably reduce the computation
complexity at each sampling iteration for high-dimensional problems.

3.1 HMH for Generalized Linear Models

For generalized linear models, a Hessian matrix has the following form

H = —xAx" = —xdiag{a}xT (23)
where a = [ai,...,a,]. For probit models, the diagonal element a; can be
calculated as follows:

ix; 1 ix; 1

a; = N(y X ;V|07 ) N(y X ;V|07 ) + in;rW (24)
P(yix; w) P(yix; w)

where A'(+|0,1) and ¢(-) are the standard Gaussian probability and cumulative
density functions. For logistic models, we have

a; = o(x; w)(1 - o(x; w)) (25)

?



where o(z) = m-

At each iteration of HMH, we need to compute the Cholesky factor R; of Hy,
which requires O(d®) computation. For high-dimensional data, this computation
is expensive. Therefore, instead of computing the exact Cholesky factor Ry, we
approximate it using k sequential Cholesky downdates. The approximation
details are given in the following paragraphs.

First, generate several points in the parameter space as the reference points.
The reference points could be chosen as the data points near the posterior
mode, or sampled from the exact or approximate target distribution. Compute
the diagonal elements of the Hessian matrix. Also, calculate Cholesky factors
for the reference points.

Now given a new data point at w, compute the diagonal vector a of the
Hessian matrix and find the nearest vector, denoted by af, to a among the
diagonal vectors of the reference points. Denote by R+ the Cholesky factor of
the negative Hessian matrix H; that corresponds to a'. Then we have

H; = —xAx’ H=—xAx" = H; — xAx" (26)

where A, = diag{a,} = diag{a —a'}.

To reduce the computation, we prune a; into a shorter vector b by remov-
ing all the elements in a; whose absolute values are smaller than a predefined
threshold 6, such that the length k of by is much smaller than the length d of
a;. Thus, we can approximate H by a low-rank update

H~ H; - xB,x"

where B, = diag{b}, and x consists of the columns in x corresponding to the
elements left in bg. Then, we can apply k sequential Cholesky rank-1 donwdates
to the reference Cholesky factor R+, in order to get the new factor R. The k
sequential Cholesky rank-1 donwdates require O(d?k) time, instead of O(d?) as
the direct computation of R. For high-dimensional data, this approximation
could save a lot of time at each sampling iteration.

4  Adaptive Multiple-Importance-Try Sampling

In this section, we incorporate adaptive jumping distributions in HMH with
the multiple-try Metropolis (MTM) algorithm [5]. The new algorithm, resulted
from this combination, is called the Adaptive Multiple-Importance-Try (AMIT)
algorithm. The basic idea of the AMIT algorithm is to draw multiple samples
from a Hessian-based adaptive jumping distribution at each iteration, stochas-
tically pick one by preferring those samples with large importance ratios, and
weight all the rest samples.

Similar to MTMs, the AMIT algorithm explores more thoroughly in the
neighboring region defined by its adaptive jumping distribution than HMH.
This is useful when the data dimension is high and therefore the parameters of
an adaptive jumping distribution is relatively expensive to obtain. In contrast to



MTMs, the AMIT algorithm can efficiently employ the information from all the

samples instead of from single one selected from multiple trials at each iteration

as MTMs. This is valuable when the number of trials at each iteration is large.
In sum, the AMIT algorithm estimates [ f(w)p(w|D)dw as follows:

1. Draw a starting point w!, for which p(w°|y) > 0, from a starting distribu-
tion p;(w). Compute the mean m' and the Cholesky factor Ry of —Hjy,
for which RTR; = —H, for the first forward jumping distribution.

2. Fort=1,2,...
(a) Sample h independent trials, w¥,..., w} from the forward jumping
distribution J;(w¥|w’) = N(w}|w*,%;) for j = 1,...,h as in equa-

tions ( 20) and (21). It costs O(d”h) computation. For each w,
Compute the importance ratio

p(wj|D)

a(wh,wh) = —L .
W) = s )

3 (27)
If the posterior p(w*|D) is hard to obtain, we compute the following
weighted likelihood

H - p(y|wr, x)p(w})

a(wi,w
Je(wr|wt)

i (28)
where p(w7) is the prior. Here we actually choose a special form of
the A parameter in MTM [5].

(b) Sample w* from the trial set {w7,...,w}} with probability pro-

portional to its importance ratio or its weighted likelihood a;,57 =
1,...,h.
First, assign weight 1 to w*. Then denote by W; the trial set without
w*. Assign a(w7, w') to the elements in W; if we choose w* based on
its importance ratio (27); otherwise, assign the normalized weighted
likelihood to the corresponding elements.

(c) Compute the mean and the Cholesky factor R, of —H, for the back-
ward jumping distribution N (m*,3,) where ¥, = —H,. We can
compute the exact Ry, or, as in HMH, use a few sequential Cholesky
donwdates to approximate R, for high-dimensional data.

(d) Sampleqy,...,q,—1 from the backward jumping distribution N(w*, X,),
and let q, = w'. Compute a(q;, w*) for q;,j = 1,...,h as in equa-
tion (27) or (28).

e) Compute the ratio of the sum of multiple importance ratios or weighted
g
likelihoods: .
Zj CM(W;-(, w )

> olq, W) (29)

Ty =



(f) With probability min(r,,1), we set wit! = w*, m*! = m*, and
R:;1 = R,; Otherwise, we set wit! = w!, m'*! = m’, and Ry, =
R:.

3. Finally, we estimate the integral [ f(w)p(w|D)dw as the weighted mean
of f(w')s and f(w%)s.
Note that w's are in the Markov chain and sampled from the target distri-
bution after convergence since the detailed balance is satisfied. Its proof
is same as in Liu et al’s MTM paper [5]. On the other hand, wis are off
the chain and not sampled from the target distribution. Thus, we need
to weight w7s by the importance ratios or the weighted likelihoods as in
step 2.(b).
If we use the importance ratios to weight f(w7)s, the estimate of
[f(w)p(w|D)dw is clearly unbiased. On the other hand, if we use the
weighted likelihoods to weight f(w7)s, the estimate is biased. In the latter
case, in order to have an unbiased estimate of the integral, we can throw
away wys and only keep wis. Using wis or not is a trade-off between
variance and bias.

5 Experimental Performance

In this section, we first empirically compare Gibbs, data augemntation (DA),
normal multiple-try metropolis (MTM), HMH, and AMIT samplers on a probit
regression problem. Then we illustrate by an example the important role of the
learning rate in HMH and the risk of directly adopting Newton’s method for
sampling without using any learning rate.

First, we use a Kidney biopsy data set with the presence of Lupus as the
response and the difference between IgG3 and IgG4 and Clq as two predictors.
In our probit regression model, we use an intercept with both covariates. The
comparison results are summarized in figures 1 and 2. Figure 1 shows the results
of Gibbs, DA, and HMH samplers, and figure 2 shows the results of MTM and
AMIT samplers. The MTM sampler has a fixed Gaussian jumping distribution
N (w, 101).

As shown in these figures, the HMH sampler results in smaller autocorela-
tion coefficients, and its \/E statistic, a convergence criterion, deceases faster
than the Gibbs, DA, and MTM samplers. By combining Hessian-based adaptive
transition distributions with the local exploration capability of the multiple-try
approach, the AMIT sampler outperforms all the other samplers as demon-
strated in these figures.

In addition, we compare two HMH samplers to illustrate the effect of using
the learning rate in equation (18). One sampler uses a learning rate, randomly
drawn from a uniform distribution between 0 and 0.7, while the other one does
not use any learning rate, i.e., v equals 1 all the time. Since a poor Gaussian
approximation of the target distribution often happens in some tail regions of
the target distribution, we deliberately choose three random points far from the



Estimate of the Posterior Autocorrelation \/FB Statistic

Mean w; Coefficients
10 1 | 2
8 0-8 1.8
6 ’I‘/\_\/\ 0.6 | 1.6
i -~ 0.4
Gibbs al e | 1.4
o T 0.2
| 12
21 - 0
_02 1 ....................
5 15 25 0 20 40 66 0 250 500 750 1000
CPU Time Lag Iteration
10 1 2
s 0.8
0.6
6
DA 0.4
a4
0.2
2t 0
-0.2
5 15 25 0 250 500 750 1000
CPU Time Iteration
10 1 2
8 11.8
6 116
HMH 4 114
’ 12 N{\/
0.2 . '
5 15 25 0 20 40 6c O 250 500 750 1000
CPU Time Lag Iteration

Figure 1: Comparison of Gibbs, DA, HMH, MTM, and AMIT Samplers for Fitting a Probit
Regressoin Model with Two Covariates as well as an Intercept: Part 1. The rows of this
figure correspond to the Gibbs, DA, and HMH samplers respectively. The columns are with
all summaries computed for the first covariate w;. Clearly, the HMH sampler results in
smaller autocorelation coefficients and reduces the \/E statistic faster than the Gibbs and
DA samplers. Note that the X axis in the first column is indexed by the CPU time instead of
by the number of iterations.

10



Estimate of the Posterior Autocorrelation \/E Statistic

Mean wq Coefficients
10 1 2
8 0.8 1.8
I
0.6
6 16
0.4
MTM 4 1.4
0.2 |
1.2
2 0
1 ...............
-0.2
5 15 25 0 20 40 6 0 250 500 750 1000
CPU Time Lag Iteration
10 1t 2
8 08 i1
0.6 R
6 ‘ ; 1.6
0.4
AMIT ‘ ‘ 14
: 0.2 "h R
: 1.2
an |
1
-0.2
5 15 25 0 20 40 6 0 250 500 750 1000
CPU Time Lag Iteration

Figure 2: Comparison of Gibbs, DA, HMH, MTM, and AMIT Samplers for Fitting a Probit
Regressoin Model with Two Covariates as well as an Intercept: Part 2. The rows of this
figure correspond to MTM, and AMIT samplers respectively. The MTM sampler is a normal
Multiple-try metropolis sampler with a fixed Gaussian jumping distribution, N'(w, 10I). Asin
figure 1, the columns of figure are with all summaries computed for the first covariate wi. By
combining Hessian-based adaptive transition distributions with the multiple trial approach,
the AMIT sampler outperforms Gibbs, DA, HMH, and MTM samplers. The AMIT sampler
computes the exaxt Hessians and select samples from multiple trials. It results in the smallest
autocorelation coefficients in column 2 compared to the other methods.

11



HMH without using HMH with a random learning

any learning rate rate between 0 and 0.7
10 — 10
8 8
6 6
4 4
2 2
5 15 25 5 15 25
CPU Time CPU Time
1 1
0.8 o oo : 0.8
0.6 \ . : : 0.6
0.4 0.4
0.2 0.2 mm = S .
0 0
-0.2 -0.2
0 20 40 60 0 20 40 60
Lag Lag

Figure 3: The Role of Learning Rate in HMH. The HMH chains in the left and right
plots start from the same three points, which are far from the mean and mode of the target
distribution. Without using any learning rate, one of the chains in the left plot is stuck in the
local region for a long time due to a poor Gaussian approximation of the target distribution.
This leads to large autocorrelation coefficients of that chain, and therefore slows down the
convergence speed. By contrast, the HMH chains in the right plot do not suffer from this
problem. In addition, we observe in our experiments that a fixed small number, which is less
than 1, can be well served as the learning learning rate in HMH too.

mode as the initial sampling points to test these two HMHs. From figure 3,
we can see that the use of the learning rate in HMH removes the risk of being
stuck at a local region due to a unreasonable jumping distribution. Using a
learning rate, the HMH sampler works pretty robust, so that they have never
been observed to be stuck in any local region in our experiments.

6 Conclusion and Future Work

In this paper, we have proposed two new MCMC samplers, HMH and AMIT
samplers. The AMIT sampler enjoys both HMH and MTM’s advantages and
greatly outperforms the other samplers on a probit regression problem.

As to the future work, we plan to apply the new sampling methods to dif-
ferent data models and have more experimental evaluations.

12



References

1]
[2]
8]
[4]

[5]

[6]

[7]

J. Albert and S. Chib. Bayesian analysis of binary and polychotomous response
data. Journal of the American Statistical Association, 88:669-679, 1993.

C. Bishop. Neural networks for pattern recognition. Oxford university press, 1995.

J. Geweke and H. Tanizaki. Note on the sampling distribution for the metroplis-
hastings algorithm. http://ht.econ.kobe-u.ac.jp/ tanizaki/cv/working/mh.pdf,
2002.

C. Liu, D. B. Rubin, and Y. N. Wu. parameter expansion to accelerate em: the
px-em algorithm. Biometrika, 85:755-770, 1998.

J. S. Liu, F. Liang, and W. H. Wong. The use of multiple-try method and local
optimization in metropolis sampling. Journal of American Statistical Association.,
95:121-134, 2000.

X. L. Meng and D. A. van Dyk. The em algorithm — an old folk song sung to a
fast new tune. In Journal of the Royal Statistical Society, B., pages 511-567. 1997.

D. A. van Dyk and X. L.Meng. The art of data augmentation (with discussion).
Journal of Computational and Graphical Statistics, 10(1):1-111, March 2001.

13



