Expectation-Maximization as lower bound maximization

Thomas P. Minka
November 4, 1998

Abstract

The Expectation-Maximization algorithm given by Dempster et al (1977) has enjoyed
considerable popularity for solving MAP estimation problems. This note derives EM from
the lower bounding viewpoint (Luttrell, 1994), which better illustrates the convergence
properties of the algorithm and its variants. The algorithm is illustrated with two examples:
pooling data from multiple noisy sources and fitting a mixture density.

1 Introduction

The Expectation-Maximization (EM) algorithm is an iterative optimization technique specif-
ically designed for probabilistic models. It uses a different strategy than gradient descent or
Newton’s method and sometimes provides faster convergence. However, it is still a local tech-
nique, and so is just as susceptible to local minima.

The difference between EM and gradient descent is illustrated in figure 1. Starting from the cur-
rent guess, gradient descent makes a linear approximation to the objective function, then takes
some step uphill. Unfortunately, we don’t know in advance how good the linear approximation
is and consequently how big of a step we can take. Newton’s method replaces the line with a
quadratic but suffers from the same difficulty.

EM instead makes a local approximation that is a lower bound to the objective function. This
is called the primal-dual method (Bazaraa and Shetty, 1979). The lower bound can have any
functional form, in principle. Choosing the new guess to maximize the lower bound will always
be an improvement over the previous guess, unless the gradient was zero there. So the idea is
to alternate between computing a lower bound (the “E-step”) and maximizing the bound (the
“M-step”), until a point of zero gradient is reached.

The bound used by EM is the following form of Jensen’s inequality:

>_9(G)a; = [J9()" (1)

provided Zaj =1
J
Clj 2 0
9(j) = 0

That is, an arithmetic mean is never smaller than a geometric mean.

p(8IX)

New
guess

Objective
function

Current
guess

Lower bound Linear

approx.

0

Figure 1: Maximizing a function with lower-bound approximation vs. linear approximation.

2 The General EM Algorithm

Maximum A-Posteriori (MAP) estimation concerns the maximization of the function

f(0) = p(X,0) (2)

where X is the matrix of observed data. If f(f) is a simple function, then its maximum can
often be found analytically, e.g. by equating its gradient to zero. However, it often happens
that f(6) has the form of a mizture of simple functions:

£(6) = p(X.6) = [p(X.h.0) (3)

This is the situation which EM addresses. One case where this situation arises is when part of
the data set is missing and we must integrate over the possible values for the missing data. This
happens when using a Gaussian mixture model (section 4). Another case is when the data model
has nuisance parameters that we don’t know the value of and are not interested in estimating.
This happens when pooling data from sources with unknown noise variance (section 3).

Given a guess for 0, the idea is to lower-bound f(#) with a function g(6, ¢(h)), parameterized
by the free variables ¢(h) (there is one free parameter for every value of h):

q(h)
10 = [Py > o, 7 (250)

provided / gh) = 1
h

The provision implies that g(h) is a valid probability distribution over h. Define G to be the
logarithm of the bound (Neal and Hinton, 1993):

G(0,q) =logg(0,q) = /h q(h)log p(X,h,#) — q(h)log q(h) (5)

The inequality (4) is true for any ¢, but we also want the lower bound to touch f at the current
guess for . So we choose ¢ to maximize G(#, ¢). This raises the lower bound in figure 1 to touch
the objective. Adding a Lagrange multiplier for the constraint on ¢ gives:

G0.q) = M1~ [b))+ [g(h)logp(X.h,6) — g(h) log g(h) (6)
dG
qm) = —A—1+logp(X,h,0) —logg(h)=0 (7)
p(X,h,)
q(h) m p(h|X,) (8)

For this choice of ¢, the bound becomes
(h)
p(X,h,0)* (Jy am)
9(0.q) = < = p(X,0)n ™) = p(X, 6) (9)
Haxs) —l0X

so indeed it touches the objective f(#) at the current guess for . Another way to see this result
is to rewrite G(6,q) as

p(X, h, 0)
G(0,q9) = Eym) [log q(h)l (10)
= —FEym) [log (h|(;) 0)] + log p(X, 0) (11)
= —D(q(h) || p(h]X,0)) +log p(X, 0) (12)

assuming ¢(h) is a valid probability distribution. The relative entropy D(q||p) is a measure of
distance between distributions ¢ and p. Therefore F'(6, q) is maximized over g when this distance
is zero, i.e. ¢(h) = p(h|X,0) (8), at which point G(6,q) = logp(X,#). This interpretation is
from Buntine (1996).

Finding ¢ to get a good bound is the “E-step” of the algorithm. To get the next guess for 0,
we maximize the bound over 6 (this is the “M-step”). This step is problem-dependent. The
relevant term of G is

[4(h)log (X, 0, 6) = Ey log p(X. b, 0) (13)

This may be difficult to do exactly; fortunately, it isn’t strictly necessary to maximize the
bound over 6. As we can see from figure 1, any improvement of G(f,q) along ¢ will do. This
is sometimes called “generalized EM.” Not all such algorithms are meaningful, however. From

the figure, it is clear that the derivative of g at the current guess is identical to the derivative
of f. This can also be shown formally:

do fhp(thue) fhp(X’h7 0) h do
If generalized EM simply takes a gradient step on g, then this is equivalent to taking a gradient
step on f, and we have accomplished nothing from the lower bound. To benefit from the bound,

we have to either take several gradient steps, or use a second-order technique like Newton-
Raphson. The second derivative of log f is

d*log f) d*logp(X, h, 0) +/hq(h) <d10gp(X, h, 9))2 - </h q(h)dlogp(X,h,9)>2

(14)

a2~ b do? df db
(15)
which is the second derivative of G plus extra terms. So EM does help Newton-Raphson by
simplifying the second derivative.

It is also not necessary to fully maximize G over ¢ during the E-step (Neal and Hinton, 1993),
i.e. the bound need not touch the objective function. Any local maximum of G(0,¢) (in both
variables) is a local maximum of f(#), so any way of maximizing G will do, regardless of whether
it increases f(0) at each step. We can take a small step along ¢, a small step along 6, change
both at once, etc.

Furthermore, the representation of ¢ need not be complete. The only properties of ¢ that we
need are those that affect the M-step. This usually amounts to the mean and covariance matrix
of h, which are therefore the only things that need to be computed in the E-step (hence its
name). Even if these moments cannot be computed analytically, they can be estimated, e.g. by
sampling methods.

3 EM for data pooling

As an example, consider the problem of pooling data from multiple noisy sources. We want to
estimate 6 which can be considered a random variable whose prior p(6) is essentially uniform over
the real line. We have two different measuring devices which produce independent measurements
a and b respectively. Unfortunately, the devices can only make noisy measurements, and the
noise variances are different:

plalf,v,) ~ N(6,v,) (16)
p(bl0,vy) ~ N(0,v) (17)
We don’t know the noise variances, so we give them noninformative priors independent of 6:
P(vald) = 1/vq (18)
p(vel0) = 1/ve (19)

4

Let the data be

A={a} i=L1.N, (20)
B={bh} i=1.N, (21)

The function we want to maximize is

f(0) = p(AB,0) (22)
— / p(A, B, v,, vy, 0) (23)
B / / P(A[0,va)p(va|0)p(B|0, ve)p(vs|0)p(6) (24)

which has the form in (3) suited to EM. The nuisance parameters here are the variances.

For the E-step, we compute the following using our current guess for 6 (call it 6°'¢):

Q(Uaa Ub) = p(Ua, Ub‘Aa B7 QOId) (25>
= p(va|A, 07 p(wp|B, 67 (26)
= qa(Va)qs(vp) (27)
a(Va) ~ *2(50“ a) (28)
S Nq /2 Sgld
-~ T(N,/2) va<2va> exp—2a) (#9)
w(vs) ~ XS99, Ny) (30)
S(c;ld — Z(az o eold)Q (31)
Sold — Z(bZ o eold)Q (32)
So the logarithm of the lower bound is
G(0,q) / / q(va, vy) log p(A, B, va, vy, 8) — q(va, vs) 10g q(vq, 1) (33)
B wa) [log p(Alvg, 0) + log p(va|0) — log ga(va)] + (34)
Eyy(u,) [log p(Blvy, 0) + log p(vy]0) — log gy(vs)] + log p(0)
Sgld o Sa Sold Sb
Ega(va) [BT] + By () [2%] (35)
Ng old Ny old No Ny
—5 log (ﬂ'Sa) —3 log <7TSb) +logT’ () r (2) p(0)

2
N,S, NS, N, T ld) Ny (ld> (Na> (Nb>
_Dada Dob Mo, (T o) _ Dby od) 4 1opT () (22

For the M-step, we compute a new guess for . Only the first two terms in (36) depend on 6, so
we get

dG N, dS. N, dS, (37)
dg 2594 °dg 2551 dg
N, Ny

— Z(ai —0)+ Gl Z(bi —0)=0 (38)

Sgld
Nodoia Ny b
Sgld Sold
Sold Sl(;ld

The EM algorithm for data pooling reduces to iteratively computing (31), (32), and (39) until
6 stops changing.

0.03 T T T T T T

Objective
Lower bounds

0.025 -

0.02 -

0.015 -

f(theta)

001

0.005 -

Theta

Figure 2: The objective f(#) and successive lower bounds g(6,q) after 1, 4, and 9 iterations of
EM starting from 6 = 2.6.

Figure 2 illustrates the algorithm in action. The function f(#) can be determined analytically
as the product of two T densities. In general, it will be bimodal, and the EM algorithm will
converge to the local maximum nearest to the starting guess for 6. A pathological case occurs
when 6 is started exactly on the valley of the function, where the gradient is zero: the algorithm

gets stuck there.

4 EM for a mixture model

A finite mixture model is a density for x which has the form of a weighted sum of component
densities:

p(x[0) = ;p(XICv 0)p(clf) (40)

For example, if p(x|c,) is Gaussian then p(x|6) is a weighted sum of K Gaussians. Note that
we are treating ¢ here as a random variable whose value we don’t know. If we knew ¢, then the
density for x is just the cth component density. Hence c is called the hidden assignment for x
to one of the component densities. If we have several independent samples x; then each has its
own assignment variable ¢;. You can think of the x;’s and ¢;’s as labeled training data where
some or all of the labels are missing.

There are two main independence assumptions implicit in the finite mixture model. First, if 6 is
known then the observed data points are statistically independent. Second, if € is known then
the hidden assignments are independent.

These two properties create a simplification in the EM algorithm. The independence of the c;
allows us to represent the multidimensional ¢ distribution with a product of one-dimensional
distributions:

q(ci..en) = qi(er)..qn(en)
Since ¢; only takes on values j = 1..K, the functions ¢;(¢;) can be represented by the N X
K matrix Q where ¢;; = ¢;(j). Furthermore, the independence of the data points x; means

lng(X, C, 6)) - Zz logp(xi7 C;, 6))

The EM algorithm simplifies to:

E-step From (8), compute

p(xilei = j, 0)p(ci = j10) :
ij = . — = plc = jlxi, 0
% > p(xilei = j,0)p(c; = j|0) ol d)

M-step From (13), maximize over 6:

Z qij log p(x;,¢; = 7,0)

ij

For a further discussion of EM applied to a mixture model see Bishop (1995) and Redner and
Walker (1984).

Acknowledgements

Rosalind Picard helped improve the presentation.

References

[1] M. S. Bazaraa and C. M. Shetty. Nonlinear Programming. John Wiley and Sons, New York,
1979.

[2] C. Bishop. Neural Networks for Pattern Recognition. Oxford: Clarendon Press, 1995.

[3] Wray Buntine. Computation with the exponential family and graphical models. Tutorial
given at NATO Workshop on Learning in Graphical Models, Erice, Italy, September 1996.
http://www.ultimode.com/ wray, 1996.

[4] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum-likelihood from incomplete data
via the EM algorithm. J. Royal Statistical Society B, 39:1-38, 1977.

[5] Stephen P. Luttrell. Partitioned mixture distribution: an adaptive bayesian network for low-
level image processing. IEE Proc on Vision, Image and Signal Processing, 141(4):251-260,
August 1994.

[6] Radford M. Neal and Geoffrey E. Hinton. A new view of the EM algorithm that justifies
incremental and other variants. Technical report, University of Toronto, Dept of Computer
Science, 1993. http://www.cs.toronto.edu/ "radford/em.abstract.html.

[7] Richard A. Redner and Homer F. Walker. Mixture densities, maximum likelihood and the
EM algorithm. SIAM Review, 26(2):195-239, April 1984.

