Divergence measures and message passing

Tom Minka Microsoft Research Cambridge, UK

with thanks to the Machine Learning and Perception Group

Message-Passing Algorithms

Mean-field	MF	[Peterson, Anderson 87]
Loopy belief propagation	BP	[Frey,MacKay 97]
Expectation propagation	EP	[Minka 01]
Tree-reweighted message passing	TRW	[Wainwright,Jaakkola,Willsky 03]
Fractional belief propagation	FBP	[Wiegerinck,Heskes 02]
Power EP	PEP	[Minka 04]

Outline

- Example of message passing
- Interpreting message passing
- Divergence measures
- Message passing from a divergence measure
- Big picture

Outline

- Example of message passing
- Interpreting message passing
- Divergence measures
- Message passing from a divergence measure
- Big picture

Estimation Problem

7

Estimation Problem

$$p(x, y, z, D) = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix} \begin{bmatrix} 0.4 \\ 0.6 \end{bmatrix} \begin{bmatrix} 0.7 \\ 0.3 \end{bmatrix} \begin{bmatrix} 0.8 \\ 0.2 \end{bmatrix}^{2}$$

p(0,0,0,D) = 0.224 p(0,0,1,D) = 0.014 p(0,1,0,D) = 0.024 p(0,1,1,D) = 0.006 p(1,0,0,D) = 0.084 p(1,0,1,D) = 0.021 p(1,1,0,D) = 0.036

Queries: $p(x,D) = \sum_{y,z} p(x,y,z,D)$ $p(D) = \sum_{x,y,z} p(x,y,z,D)$ $(x^*, y^*, z^*) = \operatorname{argmax} p(x, y, z, D)$

Want to do these *quickly*

Belief Propagation

Belief Propagation

Outline

- Example of message passing
- Interpreting message passing
- Divergence measures
- Message passing from a divergence measure
- Big picture

Message Passing = Distributed Optimization

- Messages represent a simpler distribution q(x) that approximates p(x)
 - A distributed representation
- Message passing = optimizing q to fit p
 - -q stands in for p when answering queries
- Parameters:
 - What type of distribution to construct (approximating family)
 - What cost to minimize (divergence measure)

How to make a message-passing algorithm

- 1. Pick an approximating family
 - fully-factorized, Gaussian, etc.
- 2. Pick a divergence measure
- 3. Construct an optimizer for that measure
 - usually fixed-point iteration
- 4. Distribute the optimization across factors

Outline

- Example of message passing
- Interpreting message passing
- Divergence measures
- Message passing from a divergence measure
- Big picture

Let p,q be *unnormalized* distributions

Kullback-Leibler (KL) divergence

$$KL(p \mid\mid q) = \int p(x) \log \frac{p(x)}{q(x)} dx + \int (q(x) - p(x)) dx$$

Alpha-divergence (α is any real number)

$$D_{\alpha}(p \mid\mid q) = \frac{\int_{x} \alpha p(x) + (1 - \alpha)q(x) - p(x)^{\alpha}q(x)^{1 - \alpha}dx}{\alpha(1 - \alpha)}$$

Asymmetric, convex

 $D_{\alpha}(p \mid\mid q) = 0$ if p = q $D_{\alpha}(p \mid\mid q) > 0$ otherwise

Examples of alpha-divergence

$$D_{-1}(p || q) = \frac{1}{2} \int_{x} \frac{(q(x) - p(x))^{2}}{p(x)} dx$$

$$D_{0}(p || q) = KL(q || p)$$

$$D_{\frac{1}{2}}(p || q) = 2 \int_{x} \left(\sqrt{p(x)} - \sqrt{q(x)} \right)^{2} dx$$

$$D_{1}(p || q) = KL(p || q)$$

$$D_{2}(p || q) = \frac{1}{2} \int_{x} \frac{(p(x) - q(x))^{2}}{q(x)} dx$$

Properties of alpha-divergence

- $\alpha \leq 0$ seeks the mode with largest mass (not tallest)
 - *zero-forcing*: p(x)=0 forces q(x)=0
 - underestimates the support of p
- $\alpha \ge 1$ stretches to cover everything - *inclusive*: p(x)>0 forces q(x)>0
 - overestimates the support of p

[Frey,Patrascu,Jaakkola,Moran 00]

Structure of alpha space

Other properties

- If q is an exact minimum of alpha-divergence:
- Normalizing constant:

$$\int q(x)dx \leq \int p(x)dx \qquad \text{if } \alpha < 1$$

$$\int q(x)dx = \int p(x)dx \qquad \text{if } \alpha = 1$$

$$\int q(x)dx \geq \int p(x)dx \qquad \text{if } \alpha > 1$$

If α=1: Gaussian q matches mean, variance of p
 Fully factorized q matches marginals of p

Two-node example

$$p(x,y) = \begin{bmatrix} 1/4 \\ 3/4 \end{bmatrix} \begin{bmatrix} x \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad p(y) = \begin{bmatrix} 1/4 \\ 3/4 \end{bmatrix}$$
$$x \qquad y$$

С

 \boldsymbol{y}

$$q(x,y) = \begin{bmatrix} a \\ b \\ x \end{bmatrix} \begin{bmatrix} x \\ x \end{bmatrix}$$

- q is fully-factorized, minimizes α -divergence to p
- q has correct marginals only for $\alpha = 1$ (BP)

$$\begin{array}{c} \text{Bimodal}\\ \text{distribution} \quad p(x,y) = \begin{array}{c} x \begin{bmatrix} 1/4 & 0\\ 0 & 3/4 \end{bmatrix} \\ y \\ \end{array}$$

$$\begin{array}{c} \alpha = 1 \ (\text{BP})\\ q(x,y) = \begin{array}{c} 1/4\\ 3/4\\ x \end{array} \begin{array}{c} 1/4\\ 3/4\\ y \end{array} = \begin{array}{c} x \begin{bmatrix} 1/16 & 3/16\\ 3/16 & 9/16 \end{bmatrix} \\ y \\ y \\ y \end{array}$$

$$\begin{array}{c} \text{Good} \quad \text{Bad} \\ \text{-Marginals} \\ \text{-Nass} \end{array} \begin{array}{c} \text{-Zeros}\\ \text{-Peak}\\ \text{heights} \\ \text{-Mass} \end{array}$$

$$\begin{array}{c} \alpha = 0 \ (\text{MF})\\ \alpha \leq 0.5\\ q(x,y) = \begin{array}{c} 0\\ \sqrt{3}/2\\ x \end{array} \begin{array}{c} 0\\ \sqrt{3}/2\\ x \end{array} \begin{array}{c} 0\\ \sqrt{3}/2\\ y \end{array} = \begin{array}{c} x \begin{bmatrix} 0\\ 0\\ \sqrt{3}/2\\ y \end{array} \begin{array}{c} 0\\ \sqrt{3}/2\\ y \end{array} \begin{array}{c} x \end{array} \begin{array}{c} 0\\ \sqrt{3}/2\\ y \end{array} \begin{array}{c} 0\\ \sqrt{3}/2\\ y \end{array} \begin{array}{c} x \end{array} \begin{array}{c} 0\\ \sqrt{3}/2\\ y \end{array} \begin{array}{c} x \end{array} \begin{array}{c} x \\ y \end{array} \begin{array}{c} 0\\ \sqrt{3}/2\\ y \end{array} \begin{array}{c} 0\\ \sqrt{3}/2\\ y \end{array} \begin{array}{c} x \end{array} \begin{array}{c} x \\ y \end{array} \begin{array}{c} 0\\ \sqrt{3}/2\\ y \end{array} \begin{array}{c} 0\\ \sqrt{3}/2\\ y \end{array} \begin{array}{c} x \end{array} \begin{array}{c} 0\\ \sqrt{3}/2\\ y \end{array} \begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0 \end{array} \begin{array}{c} 0\\ \sqrt{3}/2\\ y \end{array} \begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0 \end{array} \end{array}$$

$$\begin{array}{l} \textbf{E}_{\text{distribution}} & \mu(x,y) = \begin{pmatrix} 1/4 & 0\\ 0 & 3/4 \\ y \end{pmatrix} \\ \begin{pmatrix} \varepsilon = \infty \\ q(x,y) = \begin{pmatrix} 1/2 \\ \sqrt{3}/2 \\ x & y \end{pmatrix} \begin{pmatrix} 1/2 \\ \sqrt{3}/2 \\ y & y \end{pmatrix} = \begin{pmatrix} 1/4 & \sqrt{3}/4 \\ \sqrt{3}/4 & 3/4 \end{pmatrix} \begin{pmatrix} \cdot \text{Peak} \\ \cdot \text{Peak} \\ \cdot \text{Marginals} \end{pmatrix}$$

Lessons

- Neither method is inherently superior depends on what you care about
- A factorized approx does not imply matching marginals (only for α=1)
- Adding y to the problem can change the estimated marginal for x (though true marginal is unchanged)

Outline

- Example of message passing
- Interpreting message passing
- Divergence measures
- Message passing from a divergence measure
- Big picture

Distributed divergence minimization

$$p(x,y,z) = \begin{bmatrix} x \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix} \begin{bmatrix} y \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix} \begin{bmatrix} x \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix} \begin{bmatrix} 0.4 \\ 0.6 \end{bmatrix} \begin{bmatrix} 0.7 \\ 0.3 \end{bmatrix} \begin{bmatrix} 0.8 \\ 0.2 \end{bmatrix}$$
$$qq(x,y,z) = \begin{bmatrix} .59 \\ .41 \\ x \end{bmatrix} \begin{bmatrix} .5 \\ .5 \\ .5 \\ y \end{bmatrix} \begin{bmatrix} .6 \\ .4 \\ .4 \\ y \end{bmatrix} \begin{bmatrix} .57 \\ .43 \\ z \end{bmatrix} \begin{bmatrix} .61 \\ .39 \\ x \end{bmatrix} \begin{bmatrix} .5 \\ .5 \\ .5 \\ z \end{bmatrix} \begin{bmatrix} 0.4 \\ 0.6 \\ 0.6 \\ x \end{bmatrix} \begin{bmatrix} 0.7 \\ 0.3 \\ 0.2 \\ z \end{bmatrix}$$
$$q(x,y,z) = \begin{bmatrix} 0.61 \\ 0.39 \\ x \end{bmatrix} \begin{bmatrix} 0.78 \\ 0.22 \\ y \end{bmatrix} \begin{bmatrix} 0.84 \\ 0.16 \\ 0.39 \\ z \end{bmatrix}$$

31

Distributed divergence minimization

• Write p as product of factors:

$$p(x) = \prod_a t_a(x)$$

- Approximate factors one by one: $t_a(x) \rightarrow \tilde{t}_a(x)$
- Multiply to get the approximation:

$$q(x) = \prod_a \tilde{t}_a(x)$$

Global divergence to local divergence

- Global divergence: D(p(x) || q(x)) = $D(t_a(x) \prod_{b \neq a} t_b(x) || \tilde{t}_a(x) \prod_{b \neq a} \tilde{t}_b(x))$
- Local divergence:

 $D(t_a(x)\prod_{b\neq a}\tilde{t}_b(x) || \tilde{t}_a(x)\prod_{b\neq a}\tilde{t}_b(x))$

Message passing

- Messages are passed between factors
- Messages are factor approximations: $\tilde{t}_a(x)$
- Factor *a* receives $\tilde{t}_b(x), b \neq a$
 - Minimize local divergence to get $\tilde{t}_a(x)$
 - Send to other factors
 - Repeat until convergence
- Produces all 6 algs

Global divergence vs. local divergence

In general, local ≠ global

- but results are similar
- BP doesn't minimize global KL, but comes close

Experiment

- Which message passing algorithm is best at minimizing global $D_{\alpha}(p||q)$?
- Procedure:
- 1. Run FBP with various α_L
- 2. Compute global divergence for various $\alpha_{\rm G}$
- 3. Find best α_L (best alg) for each α_G

- Average over 20 graphs, random singleton and pairwise potentials: $exp(w_{ij}x_ix_j)$
- Mixed potentials $(w \sim U(-1,1))$:
 - best $\alpha_L = \alpha_G$ (local should match global)
 - FBP with same α is best at minimizing D_{α}
 - BP is best at minimizing KL

Outline

- Example of message passing
- Interpreting message passing
- Divergence measures
- Message passing from a divergence measure
- Big picture

Other Message Passing Algorithms

Do they correspond to divergence measures?

- Generalized belief propagation [Yedidia,Freeman,Weiss 00]
- Iterated conditional modes [Besag 86]
- Max-product belief revision
- TRW-max-product [Wainwright, Jaakkola, Willsky 02]
- Laplace propagation [Smola, Vishwanathan, Eskin 03]
- Penniless propagation [Cano, Moral, Salmerón 00]
- Bound propagation [Leisink,Kappen 03]

Future work

- Understand existing message passing algorithms
- Understand local vs. global divergence
- New message passing algorithms:
 - Specialized divergence measures
 - Richer approximating families
- Other ways to minimize divergence