Algorithms for maximume-likelihood logistic regression
Thomas P. Minka
September 19, 2003

Abstract

Logistic regression is a workhorse of statistics and is closely related to methods used in
Machine Learning including the Perceptron and the Support Vector Machine. This note
reviews seven different algorithms for finding the maximum-likelihood estimate. Iterative
Scaling is shown to apply under weaker conditions than usually assumed. A modified
iterative scaling algorithm is also derived, which is equivalent to the algorithm of Collins
et al. (2000). The best performers in terms of running time are the line search algorithms
and Newton-type algorithms, which far outstrip Iterative Scaling.

1 Introduction

The logistic regression model is

1
1+ exp(—ywTx)

ply = £1x,w) = o(yw'x) = (1)
It can be used for binary classification or for predicting the certainty of a binary outcome.
See Cox & Snell (1970) for the use of this model in statistics. This note focuses only on
computational issues related to maximum-likelihood estimation. Given a data set (X,y) =
[(x1,%1), ---y (XN, Y)], we want to find the parameter vector w which maximizes the log-likelihood:

[(w) == log(1 + exp(—piw"x;)) (2)

i=1
The gradient of the log-likelihood is
g=Vyul(w) =) (1-o(yw %))y (3)

Gradient descent using (3) resembles the Perceptron learning algorithm, except that it will
always converge for a suitable step size, regardless of whether the classes are separable.

The Hessian of the log-likelihood is

_ d?I(w) _ T T T
H= 1 =- Xi:a(w x;)(1 — o(wTx;))x;x; (4)

which in matrix form can be written
ai; = o(w'x)(l—o(w'x)) (5)
H = —-XAX" (6)
Note that the Hessian does not depend on how the x’s are labeled. It is nonpositive definite,

which means [(w) is convex.

Suppose the prior for w is uniform. Then when the classes are nonseparable, the posterior is
approximately Gaussian:

p(wlX,y) ~ N(w;w,-H™) (7)
W o= argmaXHp(inXi,W) (8)

2

So the model likelihood can be approximated by
p(y|X) ~ p(y, w|X)(2m)** |-H|""/? (9)
where d is the dimensionality of w.

Unfortunately, when the classes are separable, then the posterior is improper: the magnitude of
w can be increased without bound. This suggests a nonuniform prior on w, such as:

p(w) ~ N(0,0I) (10)

Performing MAP with this prior instead of ML gives a “regularized” estimate (Nigam et al.,
1999).

2 Newton’s method

If we define
2 = X; Wou + = O(y;WTXi))yi (11)
Then a Newton step is)
Woew = Waa + (XAXT)™! Z(l — o(ywTx;)) yixi (12)
— (XAXT) XA (X + | (L], (13)
= (XAXT)'XAz ’ (14)

which we recognize as the solution to a weighted least squares problem. This efficient imple-
mentation of Newton’s method is called Iteratively Reweighted Least Squares. It requires n > d
and takes O(nd?) time per iteration.

3 Line search methods

Because the likelihood is convex, we can also optimize each wy alternately. A coordinate-wise
Newton update is

new old _U_lwlgld + 21(1 - U(inTXi))yixik

w = w
k k -1 2
v+ 37 agad,

(Use v = oo for maximum-likelihood.) To implement this efficiently, note that w'x; for all
can be incrementally updated via

(Wnew)TXi — (WOld)TXZ- 4 (wz,ew _ wzld)xik (16)

Using this trick, it takes O(n) time to update wy and thus O(nd) time to update all components
of w.

(15)

This idea can be generalized to updating in an arbitrary direction u. Assuming |[u|| = 1, the
Newton step along u is
T
new old gu
— u 17
v W v~! —uTHu (17)

To implement this efficiently, use the expansion
—UTHU = Z a,-i(uTx,-)Z (18)
i

Each update takes O(nd) time, which is more expensive than the O(n) time required for updating
along a coordinate direction. However, this method can be faster if we choose good update
directions. One approach is to use the gradient as the update direction. Even better is to use
the so-called conjugate gradient rule, which subtracts the previous update direction from the
gradient:

u=g—u’j (19)
There are various heuristic ways to set the scale factor 5 (Bishop, 1995). The method which
seems to work best in practice is the Hestenes-Stiefel formula:
old)

T(o _
6_g(gg

~ (ud)T(g — gold) (20)

4 Dual line search

Jaakkola & Haussler (1999) have shown that the MAP objective has a simple dual formulation
in terms of Legendre transformations. The dual representation of the sigmoid is

logo(z) = m}\in)\x—H(/\) (21)
H(A) = —Alogh—(1—X)log(l—2X) (22)

3

With a Gaussian prior on w, the objective function is

p(w) ~ N(0,0I) (23)
J(w) = Zlogo(yinxi) - %WTW (24)
= m}nJ(w,)\) (25)

J(w,A) = ZAiyinxi — H(\) — %WTW (26)

We can now fold in the maximum over w to get

w(A) = UZ)\iini (27)

JA) = max J(w,) (28)

This objective only involves inner products between data points. The derivatives are

dJ(A) T 1—N
i = vy; ZJ: AjyiX; x; — log N (30)
1=
= yw'x; — log)\.)\ (31)
d?>J(A) T 1
= X+ — 32
N VKXt T (32)
d*J(A) T
Newton’s method on the full A vector would require inverting the n x n Hessian matrix
1

Jaakkola & Haussler (1999) recommend instead to update one \; at a time. The coordinate-wise
Newton update is
yiV‘AITXZ' — log 1;—1)\1

T (35)
Ai(1=X;)

A =\ —
! X x; +
If this update would take \; outside the region [0, 1], then we stop it at the endpoint. Computing

the full set of inner products x; x; takes O(n?d) time, and each iteration (updating all \;’s) takes
O(n?) time.

This algorithm technically cannot compute an MLE since it requires a proper prior. A workaround
is to make v very large. However, the convergence rate depends strongly on v—many iterations
are required if v is large. So the best scheme is to start with small v and gradually “anneal” the
prior to uniform.

5 Bohning’s method

Béhning’s method is a quasi-Newton method, i.e. a Newton method using a different matrix
H in place of the Hessian matrix H. Béhning (1999) has shown that the convergence of quasi-
Newton is guaranteed as long as H < H in the sense that H—H is positive definite. He suggests

the matrix .
H= —ZXXT (36)

This matrix must be less than H because 1 > o(z)(1 — o(z)) for any z and therefore 11 > A.
Because H does not depend on w, we can precompute its inverse—or even simpler its LU
decomposition. The resulting algorithm is:

Setup Compute the LU decomposition of H.
Tterate w™ = w? — Hlg
where H™g is computed by back-substitution.
This algorithm has O(nd?) setup cost and O(nd + d?) cost per iteration (O(nd) for computing
the gradient and O(d?) for back-substitution).
A slightly better algorithm is possible by using
H = —bw)XX" (37)
b(w) = maxo(y;w'x;)(1 —o(yw'x;)) (38)

which also satisfies H < H. But the difference is minimal in practice.

6 Iterative Scaling

Iterative scaling is a lower bound method for finding the likelihood maximum. It produces a
lower bound which is additive in the parameters wy, which means we have the option to update
one or all of them at each step. The algorithm requires that all feature values are positive:
Ty > 0. Define s = max;), z4. Unlike most derivations of iterative scaling, we will not

require), T, = 1.
Iterative scaling is based on the following two bounds:

—log(z) > 1-— z log(zo) for any x, (39)
Zo

—exp(— quwk) > - Z qr. exp(—wg) — (1 — Z oy (40)

for any ¢ > 0 satisfying Z g < 1
k

The second bound comes from Jensen’s inequality applied to the function e™*:

exp(— Y _qrwp) < Y qrexp(—wy) (41)
ity g =1 (42)

Now let some of the wy = 0 to get

exp(— Y qewr) < Y grexp(—wi) + (1—)) (43)

k k

k

Start by writing the likelihood in an asymmetric way:

pyXow) = [-2 oy ! (45)

1+ exp(wTx;) Wil 1+ exp(wTx;)

Applying the first bound at the current parameter values wg, we obtain that the log-likelihood
function is bounded by

ilyi=1

logp(y|X,w) = Z wix; — Zlog 1 +exp(w'x;)) (46)
ilyi=1
1+ exp(wTx;)
2 lowply/Xowo)+ 3 (w = wolxi+ 320~ o))
= logp(y|X,wo) + > (w—wo)'x; + »_ o(wgx;)(1— exp((w — wo)"x;)) (48)
ily;=1 i

Maximizing this bound over w is still too hard. So we apply the second bound, with g, = /s,
remembering that x;; > 0:

—exp((w—wo)'x;) = —exp(D)_(wp — wor)xi) (49)
> — Z % exp((wg — wog)s) — (1 — Z %) (50)

Note that s was chosen to ensure), gy < 1. Thanks to this bound, the algorithm reduces to a
one-dimensional maximization for each wy of

g(wyg) = Z (wg, — Wok)Tik — Za(ngi) Z x?m exp((wy, — wog)s) (51)
ily;=1 i k

Zero the gradient with respect to wy:

dg(wk)
dwk

= Yz — Y o(wo i)z exp((wg — wor)s) =0 (52)

ily;=1 i

Zi\yizl Lik

exp((wy = wor)s) = S o (Wiz) T (53)
1 E,Z\ 1 Tik

= | vi 54

ok Wk + 5 108 > o (Wi i) T (54)

This is one possible iterative scaling update. Note that we could have written a different asym-
metric likelihood:

1 exp(—w'x;)
- _ 55
p(yIX, w) H 1+ exp(—wTx;) iyU1 1+ exp(—wTx;) o9

lyi=

ily;=1

which would have led to the update

exp((wp — wor)s) = 21— o(womi))zak
p((k Ok)) Z”yi:_l T (56)

So the fair thing to do is combine the two updates:

Zi‘yizl Tik Zl(l — U(WEXO)Z‘M
D iyt Tik D 0(Wo X)) Ty

This is the iterative scaling update used in practice (Nigam et al., 1999; Collins et al., 2000),
and it converges faster than either of the two asymmetric updates. Note that the first term
is constant throughout the iteration and can be precomputed. The running time is O(nd) per
iteration.

(57)

exp((wy — wor)s) =

7 Modified Iterative Scaling

We can get a different iterative scaling algorithm by applying the same bounds to the symmetric

likelihood: .

1+ exp(—y;wTx;)

p(y[X,w) =] (58)
Applying the first bound at the current parameter values wy, we obtain that the log-likelihood
function is bounded by

logp(y|X,w) = — Z log(1 + exp(—y;w"x;)) (59)

1 + exp(—yiw'x;)
1 + exp(—y;wg X;)

> logp(y|x,wO)+Z(1—) (60)

= logp(y[X, wo) + Z(l — o (yiwy 2:)) (1 — exp(—yi(w — wo) 'x;)) (61)

2

Maximizing this bound over w is still too hard. So we apply the second bound with g, = z;/s,
remembering that x;; > 0:

—exp(—yi(w —wo)Tx) = =) “Eexp(—yis(we—wnr) — (1- Y) (62)
k k
The algorithm reduces to a one-dimensional maximization for each wy of
glu) = = (1~ o(ywym) D = exp(—yis(ws — wor) (63)
i k
The gradient with respect to wy is
di;(wk) = Z(l — o (yswy ;))Ystar exp(—yis(wr — wor)) = 0 (64)
W

Multiply both sides by exp(—s(wy — wqx)) and solve for wy to get

Zi\y,-:1 (1- U(yiwgﬂ%))ﬂﬁik

exp(2s(wy, — wor)) = (65)
Zi‘yq;:—l (]‘ - U(y’LWOTx’L))x’Lk
To allow negative feature values x;;, define s = max;), |z| and use gz = |x;|/s to get
Ty .
o) = 301 - olywa)) 3 exp(—yisign(ea) s — wer) (66
i k §

d

Zﬁk) = Z(l — o (yiwg ;) yitix exp(—ysign(zi)s(wy — wor)) =0 (67)

Zi\ympo (1- U(ingiﬂi))\%k\

exp (2s(wy, — wor)) (68)

8

This update rule was also given by Collins et al. (2000), using a boosting argument. This
algorithm will be called Modified Iterative Scaling. The cost is O(nd) per iteration.

8 Results

The missing factor in the above analysis is the number of iterations needed by each algorithm.
This section compares the algorithms empirically on real and simulated data. All algorithms are
started at w = 0 and performance is measured according to the log-likelihood value achieved.
The results are not substantially affected by using a random starting point instead of w = 0.
Cost is measured by total floating-point operations (FLOPS) using the flops command in
Matlab. This is more meaningful than comparing the number of iterations or wall-clock time.
Each algorithm was implemented to minimize its FLOP count, e.g. by precomputing common
subexpressions.

The first experiment repeats the setup of Collins et al. (2000). For a given dimensionality d,
feature vectors are drawn from a standard normal: x ~ N(0,I;). A true parameter vector is
chosen randomly on the surface of the d-dimensional sphere with radius v/2. Finally, the feature
vectors are classified randomly according to the logistic model. Due to the choice of w, about
16% of the data will be mislabeled. Each of the algorithms is then run to find the MLE for w
(which is not necessarily the true w). In this experiment, Iterative Scaling cannot be run since
some feature values are negative (but see the next experiment). The dual line search method
was run with prior variance v = 10 to get an approximate MLE.

Figure 1 shows the result for a typical dataset with (d = 100, n = 300). It really matters which
algorithm you use: the difference in cost between the best (CG) and worst (MIS) algorithms
is more than two orders of magnitude! The relative performance of the algorithms remains the
same for smaller d, and varies little across repeated draws of the dataset. What about bigger
problems? Figure 2 shows the result for a typical dataset with (d = 500,n = 1500). The
differences simply get bigger. The cost difference between CG and MIS is now more than three
orders of magnitude.

Log-likelihood

-100 "/ Coord.

-120 /

~140}

Dual coord.
-160

-180

-200

. P T R R R | . I T R R R | . R S R R |
5 6 8

10 10 10’ 10 10
FLOPS

Figure 1: Cost vs. performance of six logistic regression algorithms. The dataset had 300 points
in 100 dimensions. “CG” is conjugate gradient (section 3), “Coord.” is coordinate-wise Newton,
and “MIS” is modified iterative scaling. CG also has the smallest clock time in Matlab.

10

Log-likelihood

-500

-550 - Bohning Y
-600 -

-650 -

N

-700

-750

I'Dual coord. -

-800

-850 -

-900 -

-950

|
|
|
|
|
|
|
|
|
|
~1000 I
|
|

_1050””|7 - Illlllls 5 I T T
10 10 10 10

FLOPS
Figure 2: Cost vs. performance of six logistic regression algorithms. The dataset had 1500

points in 500 dimensions. CG took 5 seconds, Newton took 2 minutes, and MIS took 1.8 hours
to reach the last point plotted.

11

The previous experiment had independently distributed features. The next experiment uses
highly correlated features. A dataset is first generated according to the previous experiment
and then modified by adding 10 to all feature values x;,. This introduces significant correlation,
in the sense that XXT has significant off-diagonal elements. To make the labels consistent with
this shift, an extra feature z;, is added with value 1 and classification weight wy = —10 2?21 w.
This ensures that w'x; is unchanged by the shift. Under this setup, we expect the coordinate-
wise algorithms to perform poorly. Thanks to the shift, the features are all positive, so we can
run Iterative Scaling this time.

Figure 3 shows the result. It suggests two things: (1) it is hard to beat Newton’s method for
correlated data, and (2) you should decorrelate your data before running logistic regression. For
this data it is easy to decorrelate by subtracting the mean of each feature, but in other cases the
correlation may be more subtle. The dual line search method performs particularly poorly for
correlated data. Its likelihood curve is not monotonic because it is optimizing a dual function,
not the original likelihood. The best result for it was obtained with v = 1 (shown).

12

T T T T T

. -
Both_/ -
/ s
, -
P A
| 7
/
_ J .
- 7
/ /Newton
r /
-100 CG / ']
4
/
'§ /
£ r=7
.—GEJ I
T I
(@)
o] I
-

|

-150 I ' Dual coord. 7
/ |
/ |
/ |
I
/ |
! !
I |
I |-
-
-200 / |
/ _ = = = — : |
. Ll . M] I . | P | . L
10° 10° 107 10° 10°

FLOPS

Figure 3: Cost vs. performance of logistic regression algorithms on correlated data. The dataset
had 300 points in 100 dimensions.

13

The third experiment simulates a document classification problem. It is designed to be as
favorable as possible to Iterative Scaling. A multinomial classifier has

I, p* Pk
=1 » P = T, T % 1 — 69
ply %P, q) IL e + 11k 9 G(zk:x ko8 Qk) (69)
1
UC R) (70)

which can be translated into a logistic regression problem. For the experiment, feature vectors
are drawn from a uniform Dirichlet distribution: x; ~ D(1,...,1), which means z; > 0 and
> e Tk = 1. A true parameter vector is drawn according to log 1;—:, where p and q have a
uniform Dirichlet distribution. Finally, the feature vectors are classified randomly according to
the logistic model.

Figure 4 shows the result for a typical dataset with (d = 100,n = 300). Modified Iterative
Scaling is better than regular Iterative Scaling, but they are still the worst of the bunch, even
when >, z;; = 1. Dual line search did not perform well with any fixed value of v so instead v
was annealed by adding 100 at each step, starting from v = 1000.

References

Bishop, C. (1995). Neural networks for pattern recognition. Oxford: Clarendon Press.

Bohning, D. (1999). The lower bound method in probit regression. Computational Statistics
and Data Analysis, 30, 13-17.

Collins, M., Schapire, R. E.; & Singer, Y. (2000). Logistic regression, AdaBoost and Bregman
distances. COLT. http://www.research.att.com/“schapire/papers/breg-dist.ps.gz.

Cox, D. R., & Snell, E. J. (1970). The analysis of binary data. Chapman and Hall.

Jaakkola, T., & Haussler, D. (1999). Probabilistic kernel regression models. Seventh
International Workshop on Artificial Intelligence and Statistics.
http://www.ai.mit.edu/ tommi/papers.html.

Nigam, K., Lafferty, J., & McCallum, A. (1999). Using Maximum Entropy for text
classification. IJCAI’99 Workshop on Information Filtering.
http://www.cs.cmu.edu/ "mccallum/.

14

~130 ——

_140

-150

-160 -

Log-likelihood
[
3
o
T

-180

-190

-200

-210]

10 10

10’
FLOPS

Figure 4: Cost vs. performance of logistic regression algorithms on positive data. The dataset

had 300 points in 100 dimensions.

15

