
The EP energy function and minimization schemes
Thomas P. Minka

2001 (revised September 4, 2018)

Abstract

This note discusses the EP energy function in both its primal and dual forms and
the connection to the Bethe free energy. It gives a theoretical justification of damping
algorithms as well as a simple representation of Yuille’s double-loop algorithm.

1 The energy function

EP tries to approximate

p(x|D) = p(x)
∏
i

ti(x) (1)

≈ p(x)
∏
i

t̃i(x) = q(x) (2)

where the t̃i(x) are in an exponential family:

t̃i(x) = exp(
∑
j

fj(x)τj) (3)

The ti(x) must be positive but they do not have to be proper densities. However p(x), which
is not being approximated, does need to be a proper density. It doesn’t have to be the actual
“prior” in the problem; you could choose it to be 1, for example, if x has finite domain. p(x)
does not have to be in an exponential family, but it will make your life easier if it is.

The EP (dual) energy function is

min
ν

max
λ

(n− 1) log

∫
x

p(x) exp(
∑
j

fj(x)νj)dx

−
n∑
i=1

log

∫
x

ti(x)p(x) exp(
∑
j

fj(x)λij)dx (4)

such that (n− 1)νj =
∑
i

λij (5)

The EP primal energy function is

max
q

min
∀ip̂i

∑
i

∫
x

p̂i(x) log
p̂i(x)

ti(x)p(x)
dx− (n− 1)

∫
x

q(x) log
q(x)

p(x)
dx (6)

such that

∫
x

fj(x)p̂i(x)dx =

∫
x

fj(x)q(x)dx (7)∫
x

p̂i(x)dx = 1 (8)∫
x

q(x)dx = 1 (9)

1

The EP primal is not very useful since it is an optimization over functions instead of vectors.
This duality relationship is similar to that in maximum entropy modeling. It is proven in
section 2.2.

2 Relationship with BP

This section derives the BP energy function from the EP energy function. For BP, the expec-
tations fj(x) are delta functions, with j = (s, c):

fj(x) = δ(xs − c) (10)

For a pairwise MRF, each term ti(x) is a clique potential, with i = (s, t):

ti(x) = Ψst(xs, xt) (11)

Let ns be the number of neighbors of xs, i.e. the number of clique potentials involving xs.
Furthermore the prior is disconnected:

p(x) =
∏
s

Ψs(xs) (12)

Define the shorthand

Φst(xs, xt) = Ψst(xs, xt)Ψs(xs)Ψt(xt) (13)

ν(xs) = νj where j = (s, xs) (14)

λst(xu) = λij where i = (s, t), j = (u, xu) (15)

Then the energy function simplifies to

min
ν

max
λ

(n− 1) log
∑
x

∏
s

Ψs(xs) exp(ν(xs))

−
∑
st

log
∑
x

Φst(xs, xt) exp(λst(xs) + λst(xt))
∏

u6=s,u 6=t

Ψu(xu) exp(λst(xu)) (16)

such that (n− 1)ν(xu) =
∑
st

λst(xu) (17)

The sum over st means all distinct cliques. Adding Lagrange multipliers µ(xu) for the con-
straints, we find the stationary condition

Ψu(xu) exp(ν(xu))∑
u Ψu(xu) exp(ν(xu))

= µ(xu) (18)

The stationary condition for λst(xu), u 6= s, u 6= t is

Ψu(xu) exp(λst(xu))∑
xu

Ψu(xu) exp(λst(xu))
= µ(xu) (19)

2

This implies λst(xu) = ν(xu) + const. Choosing the constant to be zero gives

min
ν

max
λ

∑
s

(ns − 1) log
∑
xs

Ψs(xs) exp(ν(xs))

−
∑
st

log
∑
xs,xt

Φst(xs, xt) exp(λst(xs) + λst(xt)) (20)

such that (ns − 1)ν(xs) =
∑
t

λst(xs) (21)

This is the BP energy function for an MRF.

The belief states are

bs(xs) ∝ Ψs(xs) exp(ν(xs)) (22)

q(x) ∝ p(x) exp(
∑
j

fj(x)νj) (23)

=
∏
s

bs(xs) (24)

bst(xs, xt) ∝ Φst(xs, xt) exp(λst(xs) + λst(xt)) (25)

p̂i(x) ∝ ti(x)p(x) exp(
∑
j

fj(x)λij) (26)

= bst(xs, xt)
∏

u6=s,u 6=t

bu(xu) (27)

2.1 Equivalence with Bethe free energy

This section shows that the BP energy function above is dual to the Bethe free energy of Yedidia
et al:

min
bst

∑
st

∑
xs,xt

bst(xs, xt) log
bst(xs, xt)

Φst(xs, xt)
−
∑
s

(ns − 1)
∑
xs

bs(xs) log
bs(xs)

Ψs(xs)
(28)

such that
∑
xs

bst(xs, xt) = bt(xt) (29)∑
xt

bst(xs, xt) = bs(xs) (30)∑
xs

bs(xs) = 1 (31)

The duality is based on the following representation of the KL-divergence:∫
x

p(x) log
p(x)

q(x)
dx = max

ν

∫
x

p(x)ν(x)dx− log

∫
x

q(x)eν(x)dx (32)

3

To see that this representation is valid, the derivative wrt ν(x) is p(x) − q(x)eν(x)∫
x q(x)e

ν(x)dx
and the

second derivative is negative. Therefore the maximum is ν(x) = log(p(x)/q(x)) + z, for any z,
at which point the two sides are equal.

Applying the duality to the first part gives∑
xs,xt

bst(xs, xt) log
bst(xs, xt)

Φst(xs, xt)
= max

λ

∑
xs,xt

bst(xs, xt)λ(xs, xt)− log
∑
xs,xt

Φst(xs, xt)e
λ(xs,xt)(33)

From the stationary conditions of the Bethe free energy, we know that bst(xs, xt) has the form

bst(xs, xt) = Φst(xs, xt) exp(λst(xs) + λst(xt)) (34)

Therefore without loss of generality we can restrict λ to decompose:

λ(xs, xt) = λst(xs) + λst(xt) (35)∑
xs,xt

bst(xs, xt) log
bst(xs, xt)

Φst(xs, xt)
= max

λ

∑
xs

bs(xs)λst(xs) +
∑
xt

bt(xt)λst(xt)

− log
∑
xs,xt

Φst(xs, xt) exp(λst(xs) + λst(xt)) (36)

With this transformation, bst and its constraints disappear from the objective, and the mini-
mization is over bs instead.

Applying the duality to the second part of the objective gives

−
∑
xs

bs(xs) log
bs(xs)

Ψs(xs)
= min

ν
−
∑
xs

bs(xs)ν(xs) + log
∑
xs

Ψs(xs) exp(ν(xs)) (37)

The transformed objective is now

min
bs

min
ν

max
λ

∑
s

∑
xs

bs(xs)
∑
t

λst(xs)−
∑
st

log
∑
xs,xt

Φst(xs, xt) exp(λst(xs) + λst(xt))

+
∑
s

(ns − 1)

(
−
∑
xs

bs(xs)ν(xs) + log
∑
xs

Ψs(xs) exp(ν(xs))

)
(38)

such that
∑
xs

bs(xs) = 1 (39)

where the ordering of minbs minν maxλ is arbitrary. The optimality conditions for ν and λ are:

Ψs(xs) exp(ν(xs))∑
xs

Ψs(xs) exp(ν(xs))
= bs(xs) (40)∑

xt
Φst(xs, xt) exp(λst(xs) + λst(xt))∑

xs,xt
Φst(xs, xt) exp(λst(xs) + λst(xt))

= bs(xs) (41)

The same optimality conditions follow from adding the constraint

(ns − 1)ν(xs) =
∑
t

λst(xs) (42)

as long as we use the ordering minν maxλ. With this constraint, bs drops out of the objective
and we are left with the desired dual (20).

4

2.2 Proof of EP duality

We can apply the techniques of the last section to the EP primal:

min
p̂i

max
q

∑
i

∫
x

p̂i(x) log
p̂i(x)

ti(x)p(x)
− (n− 1)

∫
x

q(x) log
q(x)

p(x)
(43)

such that

∫
x

fj(x)p̂i(x)dx =

∫
x

fj(x)q(x)dx (44)∫
x

p̂i(x)dx = 1 (45)∫
x

q(x)dx = 1 (46)

Applying the KL duality to the first term gives∫
x

p̂i(x) log
p̂i(x)

ti(x)p(x)
= max

λ

∫
x

p̂i(x)λi(x)dx− log

∫
x

ti(x)p(x) exp(λi(x))dx (47)

From the stationary conditions we can assume w.l.o.g. that

λi(x) =
∑
j

fj(x)λij (48)∫
x

p̂i(x) log
p̂i(x)

ti(x)p(x)
= max

λ

∑
j

λij

∫
x

fj(x)q(x)dx− log

∫
x

ti(x)p(x) exp(
∑
j

fj(x)λij)dx (49)

With this transformation, p̂i(x) and its constraints disappear from the objective. Applying the
KL duality to the second term gives

−
∫
x

q(x) log
q(x)

p(x)
= min

ν
−
∫
x

q(x)ν(x)dx + log

∫
x

p(x) exp(ν(x))dx (50)

where again we assume that

ν(x) =
∑
j

fj(x)νj (51)

−
∫
x

q(x) log
q(x)

p(x)
= min

ν
−
∑
j

νj

∫
x

fj(x)q(x)dx + log

∫
x

p(x) exp(
∑
j

fj(x)νj)dx (52)

To eliminate q(x) we add the constraint

(n− 1)νj =
∑
i

λij (53)

and we get the desired dual (4).

5

3 Minimizing the BP energy

Define the BP message

mt→s(xs) =
∑
xt

Ψst(xs, xt)Ψt(xt) exp(λst(xt)) (54)

Then the optimality condition for λst(xs) can be written

Ψs(xs) exp(λst(xs))mt→s(xs)∑
xs

Ψs(xs) exp(λst(xs))mt→s(xs)
=

Ψs(xs) exp(ν(xs))∑
xs

Ψs(xs) exp(ν(xs))
(55)

whose solution is
λst(xs) = ν(xs)− logmt→s(xs) + z (56)

for any constant z which we can choose to be zero. Combining this with the constraint (42)
gives

ν(xs) =
∑
t

logmt→s(xs) (57)

Belief Propagation is simply the repeated application of these updates.

3.1 Damped BP

By using a smarter optimization scheme, we can get a damped form of BP. The optimality
condition (41) for λst(xs) can be written in terms of the messages as

exp(λst(xs))Ψs(xs)mt→s(xs)∑
xs

exp(λst(xs))Ψs(xs)mt→s(xs)
= bs(xs) (58)

whose solution is

λst(xs) = log
bs(xs)

Ψs(xs)mt→s(xs)
+ z (59)

for any constant z which we can choose to be zero. From the constraint
∑

t λst(xs) = (ns −
1)ν(xs), we find

log bs(xs) =
(ns − 1)

ns
ν(xs) +

1

ns

∑
t

logmt→s(xs) + log Ψs(xs) (60)

λst(xs) =
(ns − 1)

ns
ν(xs) +

1

ns

(∑
t

logmt→s(xs)

)
− logmt→s(xs) (61)

This is a recursive equation, becausemt→s depends on other λ’s. However, it does approximately
capture the dependence of λ on ν. By substituting this equation into the objective we can derive
an update for ν.

6

The update will minimize an upper bound. The second term of the objective can be upper
bounded using Jensen’s inequality:

−
∑
t

log
∑
xs,xt

Φst(xs, xt) exp(λst(xs) + λst(xt)) ≤ −
∑
t

∑
xs,xt

bst(xs, xt) (λst(xs) + λst(xt)) + const. (62)

bst(xs, xt) =
Φst(xs, xt) exp(λoldst (xs) + λoldst (xt))∑
xs,xt

Φst(xs, xt) exp(λoldst (xs) + λoldst (xt))
(63)

Note that the marginal
∑

xt
bst(xs, xt) does not depend on t:∑

xt

bst(xs, xt) ∝ Ψs(xs) exp(λoldst (xs))mt→s(xt) = Ψs(xs) exp(u(xs)) (64)

u(xs) =
(ns − 1)

ns
νold(xs) +

1

ns

∑
t

logmt→s(xs) (65)

The derivative of the bound with respect to ν(xs) is

(ns − 1)
Ψs(xs) exp(ν(xs))∑
xs

Ψs(xs) exp(ν(xs))
− (ns − 1)

ns

∑
t

∑
xt

bst(xs, xt) = 0 (66)

(ns − 1)
Ψs(xs) exp(ν(xs))∑
xs

Ψs(xs) exp(ν(xs))
− (ns − 1)

Ψs(xs) exp(u(xs))∑
xs

Ψs(xs) exp(u(xs))
= 0 (67)

So the update is

ν(xs) = u(xs) + z =
ns − 1

ns
νold(xs) +

1

ns

∑
t

logmt→s(xs) + z (68)

where z is any constant. In practice, it is good to choose z = −
∑

xs
u(xs) or something similar

so that ν stays within floating point limits. Normalizing the messages is a good idea too. The
new BP algorithm is:

loop nodes s:

1. Collect messages mt→s into s. (Initial messages are all 1.)

2. Update νs according to (68). This is the belief state for xs.

3. Recompute λst(xs) for all neighbors t, according to (61). This is the partial belief state
for xs excluding t.

4. Send messages out to neighbors (54).

Note the similarity with the BP updates (57) and (56). The difference is that the new algorithm
is “damped”—it changes the belief state only part of the way toward the messages. Note that
the damping is done in the log domain.

7

We can obtain a general family of BP algorithms by considering an arbitrary damping factor
β:

ν(xs) =
β − 1

β
νold(xs) +

1

β

∑
t

logmt→s(xs) + z (69)

λst(xs) =
β − 1

β
ν(xs) +

1

β

(∑
t

logmt→s(xs)

)
− logmt→s(xs) (70)

Regular BP has β = 1 and the new algorithm has β = ns.

In practice, the drawbacks of this method seem to be:

1. It requires a large number of iterations (exponential in β).

2. If the damping level is too high, it will seek a maximum of the free energy instead of a
minimum.

3.2 Yuille’s algorithm

Yuille’s algorithm is variational bound optimization applied to the BP primal (the Bethe free
energy itself). We break the primal into a convex and concave part and then upper bound the
concave part with a line:

Evex =
∑
st

∑
xs,xt

bst(xs, xt) log
bst(xs, xt)

Φst(xs, xt)
+
∑
s

∑
xs

bs(xs) log
bs(xs)

Ψs(xs)
(71)

Ecave = −
∑
s

ns
∑
xs

bs(xs) log
bs(xs)

Ψs(xs)
≤ −

∑
s

ns
∑
xs

bs(xs)ν(xs) (72)

ν(xs) = log
bolds (xs)

Ψs(xs)
(73)

Adding Lagrange multipliers λst for the marginal constraints, we have the modified objective

min
bst,bs

J =
∑
st

∑
xs,xt

bst(xs, xt) log
bst(xs, xt)

Φst(xs, xt)
+
∑
s

∑
xs

bs(xs) log
bs(xs)

Ψs(xs)
(74)

−
∑
s

ns
∑
xs

bs(xs)ν(xs) +
∑
st

∑
xs

λst(xs)

(
bs(xs)−

∑
xt

bst(xs, xt)

)
(75)

such that
∑
xs

bs(xs) = 1 (76)

Solving for bst, bs gives

bs(xs) ∝ Ψs(xs) exp(nsν(xs)−
∑
t

λst(xs)) (77)

bst(xs, xt) ∝ Φst(xs, xt) exp(λst(xs) + λst(xt)) (78)

8

We still need to solve for λ. From the marginal constraints, we have∑
xt

Φst(xs, xt) exp(λst(xs) + λst(xt)) = Ψs(xs) exp(nsν(xs)−
∑
j

λsj(xs)) (79)

exp(λst(xs))mt→s(xs) = exp(nsν(xs)− λst(xs)−
∑
j 6=t

λsj(xs)) (80)

2λst(xs) = nsν(xs)−
∑
j 6=t

λsj(xs)− logmt→s(xs) (81)

Equation (80) comes from definition (54). The last equation is not a closed-form solution but
only a consistency condition that the λ’s must satisfy. We can find the optimal λ’s by iterating
this equation.

Now we have Yuille’s algorithm:

Outer loop νnew(xs) = nsν(xs)−
∑

t λst(xs)

Inner loop 2λnewst (xs) = nsν(xs)−
∑

j 6=t λsj(xs)− logmt→s(xs)

It isn’t necessary to normalize ν at each step, but in order to avoid numerical overflow I subtract
a constant so that

∑
xs
ν(xs) = 0. Unlike BP and damped BP, Yuille’s algorithm satisfies the

constraints during its search.

The drawback of this algorithm in practice is that it requires even more iterations than damping
does (about 10 times more).

9

4 Gaussian EP

This section considers the energy function in the Gaussian case. For spherical Gaussians, ν1
and λi1 are vectors, ν2 and λi2 are scalars.

f1(x) = x f2(x) = xTx (82)

p(x) ∼ N (m0, v0I) (83)

q(x) ∼ N (mx, vxI) ∝ p(x) exp(νT1 x + ν2x
Tx) (84)

ν1 =
mx

vx
− m0

v0
(85)

−2ν2 = v−1x − v−10 (86)

q\i(x) ∼ N (m\ix , v
\i
x I) ∝ p(x) exp(λTi1x + λi2x

Tx) (87)

λi1 =
m
\i
x

v
\i
x

− m0

v0
(88)

−2λi2 = (v\ix)−1 − v−10 (89)

Let’s use the more convenient parameterization (mx, vx,m
\i
x , v

\i
x) instead of (ν1, ν2, λi1, λi2).

The dual energy is ∫
x

p(x) exp(νT1 x + ν2x
Tx)dx =

N (0;m0, v0I)

N (0;mx, vxI)
(90)∫

x

ti(x)p(x) exp(λTi1x + λi2x
Tx)dx = Zi(λ)

N (0;m0, v0I)

N (0;m
\i
x , v

\i
x I)

(91)

Zi(λ) =

∫
x

ti(x)q\i(x)dx (92)

We can drop terms in (m0, v0) because the prior is fixed. Now “minν maxλ” means “minmx,vx max
m

\i
x ,v

\i
x

”:

J = min
ν

max
λ
− (n− 1) logN (0;mx, vxI) (93)

−
n∑
i=1

logZi(λ) +
n∑
i=1

logN (0;m\ix , v
\i
x I) (94)

J = min
ν

max
λ

(n− 1)

(
d

2
log vx +

mT
xmx

2vx

)
(95)

−
n∑
i=1

logZi(λ)−
n∑
i=1

(
d

2
log v\ix +

(m
\i
x)Tm

\i
x

2v
\i
x

)
(96)

subject to (n− 1)
mx

vx
+

m0

v0
=

n∑
i=1

m
\i
x

v
\i
x

(97)

(n− 1)
1

vx
+

1

v0
=

n∑
i=1

1

v
\i
x

(98)

10

4.1 Full Gaussian EP

For full Gaussians, ν1 and λi1 are vectors, ν2 and λi2 are matrices.

f1(x) = x f2(x) = x⊗ x (99)

p(x) ∼ N (m0,V0) (100)

q(x) ∼ N (mx,Vx) ∝ p(x) exp(νT1 x + xTν2x) (101)

ν1 = V−1x mx −V−10 m0 (102)

−2ν2 = V−1x −V−10 (103)

q\i(x) ∼ N (m\ix ,V
\i
x) ∝ p(x) exp(λTi1x + xTλi2x) (104)

λi1 = (V\ix)−1m\ix −V−10 m0 (105)

−2λi2 = (V\ix)−1 −V−10 (106)

J = min
ν

max
λ

(n− 1)

(
1

2
log |Vx|+

1

2
mT

xV
−1
x mx

)
(107)

−
n∑
i=1

logZi(λ)−
n∑
i=1

(
1

2
log
∣∣V\ix ∣∣+

1

2
(m\ix)T(V\ix)−1m\ix

)
(108)

subject to (n− 1)V−1x mx + V−10 m0 =
n∑
i=1

(V\ix)−1m\ix (109)

(n− 1)V−1x + V−10 =
n∑
i=1

(V\ix)−1 (110)

4.2 Damped algorithm

As in section 3.1, define message variables:

mi = m\ix + (v\ix + vi)∇m logZi (111)

vi = (∇m∇T
m − 2∇v logZi)

−1 − v\ix (112)

Holding (mi, vi) fixed and solving for λ gives

(v\ix)−1 = v−1x − v−1i (113)

m
\i
x

v
\i
x

=
mx

vx
− mi

vi
(114)

The constraints are now

(n− 1)ν1 =
∑
i

(
mx

vx
− mi

vi
− m0

v0

)
(115)

(n− 1)(−2ν2) =
∑
i

(
v−1x − v−1i − v−10

)
(116)

11

Hold ν fixed and solve for (mx

vx
, v−1x) to get

(v\ix)−1 − v−10 =
n− 1

n
(−2ν2) +

1

n
(
∑
i

v−1i)− v−1i (117)

m
\i
x

v
\i
x

− m0

v0
=

n− 1

n
ν1 +

1

n
(
∑
i

mi

vi
)− mi

vi
(118)

Substitute this into the objective and solve for ν to get

ν1 =
n− 1

n
νold1 +

1

n

∑
i

mi

vi
(119)

(−2ν2) =
n− 1

n
(−2νold2) +

1

n

∑
i

v−1i (120)

According to this derivation, damping of EP should be done in the natural parameterization,
not the (mean,variance) parameterization. This algorithm has been tested on the clutter prob-
lem and it is effective in achieving convergence on difficult posteriors. However, the resulting
approximation isn’t very good anyway.

12

