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Abstract

This note further explores the Dirichlet-tree distribution developed by Dennis (1991). An
inclusion relationship is given for different tree structures and an independence relationship is
given for probabilities in the tree. The posterior, evidence, and predictive density are derived
for multinomial observations.

1 Introduction

The Dirichlet distribution has enjoyed considerable popularity as a prior distribution for multino-
mial parameters. This is mainly because the Dirichlet is conjugate to the multinomial under the
conventional parameterization. But the Dirichlet distribution has key limitations:

1. Each variable has its own mean, but they must all share a common variance parameter.

2. Aside from the constraint that they sum to one, the variables are mutually independent
(Mosimann, 1962).

This note describes a new distribution which overcomes these limitations while preserving compu-
tational simplicity. The new distribution is simply the conjugate distribution to the multinomial
under a different parameterization.
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Figure 1: (a) A finite stochastic process (b) Notation for a general process

Instead of representing a multinomial sample as the outcome of a K-sided die, we can represent it
as the outcome of a finite stochastic process, such as the tree shown in figure 1(a). The probability
of a leaf is the product of branch probabilities leading to that leaf. To represent an arbitrary tree,
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we can use the notation in figure 1(b). Before, the parameters were the leaf probabilities [p1...pK ],
so that the probability of a sample x was

p(x|p) =
K
∏

k=1

p
δ(x−k)
k (1)

Under the tree parameterization, it is instead written

p(x|B, T ) =
∏

(nodes j)

∏

(branches c)

b
δjc(x)
jc (2)

δjc(x) =
{

1 if branch jc leads to x
0 otherwise

(3)

The probability of reaching any interior node can also be computed this way. The conjugate prior
for this parameterization is no longer a single Dirichlet density but rather a product of Dirichlet
densities, one for each node:

p(B|α) =
∏

(nodes j)

p(bj|α) (4)

p(bj|α) ∼ D(αjc) (5)

The “Dirichlet-tree distribution” is the distribution over leaf probabilities [p1...pK ] that results from
this prior on branch probabilities. The distribution is a function of the tree structure T as well as
α. The explicit density over [p1...pK ] can be computed by noting that

bjc =

∑

k δjc(k)pk
∑

kc′ δjc′(k)pk

(6)

i.e. bjc is proportional to the probability mass in its subtree. Combining this with (4) and multi-
plying by the Jacobian gives (Dennis, 1991)

p(p|α, T ) =
∏

k

p
αparent(k)−1

k

∏

j

Γ(
∑

c αjc)
∏

c Γ(αjc)

(

∑

kc

δjc(k)pk

)βj

(7)

βj = αparent(j) −
∑

c

αjc (or 0 if j is the root node) (8)

where αparent(j) means the α parameter for the branch immediately leading to j.

Since the Dirichlet distribution at a node can be arbitrarily broad or sharp, the Dirichlet-tree
distribution can give an independent variance to each pk. Also, the leaves in a subtree are correlated
since they all depend on the ancestors of that subtree.

2 Properties

The Dirichlet-tree distribution obviously generalizes the Dirichlet distribution, since we can always
have a tree of depth 1. Surprisingly, a depth 1 tree is not necessary: it is possible for any tree
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structure to realize a Dirichlet distribution on [p1...pK ], if the α’s are chosen carefully. In particular,
if the βj in (7) are all zero, then the distribution is Dirichlet. This result is generalized in the
following theorem:

Theorem 1 Let S(T ) be the set of Dirichlet-tree
distributions realizable by tree structure T . If T ′

is identical to T except for an additional interior
node, then S(T ′) is a proper superset of S(T ).

Proof T ′ adds a new α to the tree and a new βj

to (7). By setting βj = 0, we can realize anything
in S(T ). If βj 6= 0, then we can get distributions
not in S(T ).

p1 p2

p3 p4

p1 p2

T

p3 p4

T ′

The marginal distribution of any pk is difficult to compute, since it is a multiplicative convolution
of Dirichlet densities. But the moments of pk are easy. The first two moments are (Dennis, 1991):

E[pk] =
∏

jc

E[bjc]
δjc(k) =

∏

jc

(

αjc
∑

c′ αjc′

)δjc(k)

(9)

E[p2
k] =

∏

jc

E[b2
jc]

δjc(k) = E[pk]
∏

jc

(

1 + αjc

1 +
∑

c′ αjc′

)δjc(k)

(10)

The most probable p, given by maximizing (7), corresponds to setting the branch probabilities to

bjc ∝ αjc −
∑

k

δjc(k) (11)

The subtracted term is simply the total number of leaves under branch jc. In the Dirichlet case,
this reduces to the usual formula pk ∝ αk − 1.

A special case of the Dirichlet-tree distribution was de-
veloped by Connor & Mosimann (1969). It restricts the
tree structure to be a binary cascade, as shown to the
right.
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Connor & Mosimann showed that the cascade-tree distribution satisfies a certain independence
property. The following theorem generalizes this property to arbitrary trees.

3



Theorem 2 Let a be a node in the tree such that nodes
b and c are descendants of a while node d is not. Then the
ratio pb/pc is independent of pd. That is, relative probabil-
ities in a subtree are independent of anything outside the
subtree.

Proof The probability of a node is the product of branch
probabilities leading to it. The ratio pb/pc only involves
branch probabilities below a, so the theorem follows.

a

b

c

d

3 Bayesian inference

Since the Dirichlet-tree distribution is a conjugate distribution, it is straightforward to compute the
posterior distribution given data D = {x1...xN}:

p(B|D,α, T ) ∝ p(B|α)
∏

i

p(xi|B, T ) (12)

∝
∏

jc

b
αjc−1
jc b

∑

i
δjc(xi)

jc (13)

∼
∏

j

D(αjc +
∑

i

δjc(xi)) (14)

We simply add 1 to αjc for every data point reachable from branch jc. Each observation x is
equivalent to a boolean matrix of decision outcomes, given by δjc(x). So from the perspective of
node j, it is just as if its children were leaves. The same result holds for the evidence:

p(D|α, T ) =
∫

B

p(B|α)
∏

i

p(xi|B, T ) (15)

=
∏

j

(

Γ(
∑

c αjc)

Γ(
∑

c αjc +
∑

c njc)

∏

c

Γ(αjc + njc)

Γ(αjc)

)

(16)

njc =
∑

i

δjc(xi) (17)

The predictive density for a new sample D′ = {y1...yM} is therefore

p(D′|D,α, T ) = p(D′, D|α, T )/p(D|α, T ) (18)

=
∏

j

(

Γ(
∑

c αjc +
∑

c njc)

Γ(
∑

c αjc +
∑

c njc +
∑

c mjc)

∏

c

Γ(αjc + njc + mjc)

Γ(αjc + njc)

)

(19)

mjc =
∑

i

δjc(yi) (20)

These results also appear in Dennis (1996).
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Figure 2: Greedy construction of tree structure

4 Learning the tree structure

Suppose we want to find the tree structure which best fits a data set. The data set is a matrix of
counts D = {x1...xN} where each column xs is a set of samples. For any particular tree structure,
we can convert this dataset into a matrix of counts njc, which is the number of times branch jc was
taken. Define Dj = {nj1, ..., njC} to be the dataset from the perspective of node j.

Formally, we want to do model selection by maximizing the probability of the data, with parameters
integrated out (the “structure evidence”):

p(D|T ) =
∫

α
p(D|α, T )p(α|T ) (21)

=
∏

j

∫

αj

p(Dj|αj)p(αj) (22)

Because each interior node has separate α parameters, this decouples into a product of integrals,
one for each interior node. Intuitively, the structure evidence for an interior node measures how
well the data for that node matches an ordinary Dirichlet distribution.

To evaluate this criterion efficiently, one could use Laplace’s method at the maximum-likelihood
estimate of α, or a variational method based on the lower bounds derived by Minka (2000).

Given an efficient way to evaluate the evidence at each interior node, one way to optimize it is to
greedily build the tree structure top-down, as illustrated in figure 2. By Theorem 1, we only need
to consider binary trees. Start with one interior node. At each step, pick an interior node r with
> 2 children (which must all be leaves), and introduce two new interior nodes, j1 and j2, which will
parent the children. Each possible division of the children is scored using the evidence. Note that
when we make a local change to the tree structure, most of the terms in (22) are unchanged. In
particular, when we introduce j1 and j2, we change the term for r and add terms for j1 and j2. All
the other terms are unchanged.

Further development of these ideas is left to the reader.
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