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ABSTRACT

We describe a head-tracking system that harnesses
Bayesian modality fusion, a technique for integrating the
analyses of multiple visual tracking algorithms within a
probabilistic framework. At the heart of the approach is
a Bayesian network model that includes random variables
that serve as context-sensitive indicators of reliability of the
different tracking algorithms. Parameters of the Bayesian
model are learned from data in an offline training phase us-
ing ground-truth data from a Polhemus tracking device. In
our implementation for a real-time head tracking task, al-
gorithms centering on color, motion, and background sub-
traction modalities are fused into a single estimate of head
position in an image. Results demonstrate the effectiveness
of Bayesian modality fusion in environments undergoing a
variety of visual perturbances.

1 INTRODUCTION

Despite intensive research efforts over the last decade,
robust, vision-based head tracking remains difficult. Real-
time tracking systems are often confused by waving hands
or changing illumination. Face detection systems [22, 23]
are seldom run at camera frame rates, and are limited to the
analysis of frontal views of the face under controlled lighting
conditions. A body of research suggests that no single visual
modality is at once consistent enough to detect all heads and
yet discriminating enough to detect heads only. Color, for
example, changes with shifts in illumination. On the other
hand, “skin-color” is not restricted to skin.

In the robotics and target tracking communities, re-
searchers have investigated a variety of sensor fusion tech-
niques to unify the results of sets of sensors [1, 19]. Of
course, different types of data present in images, such as
color, edge, and motion, can be considered different sens-
ing modalities, and so fusion techniques can apply to wholly
vision-based tracking, as well. Work that uses variations of
the Probabilistic Data Association Filter [2] combines color
and edge data for tracking a variety of objects [21]. Other ap-
proaches use color information as a prior to bias estimation
based on edge data within a multiple-hypothesis framework
[16].

More recently, research on real-time head tracking has
focused on the combination of multiple visual cues. One

approach considers edge and color data. Head position esti-
mates are made by comparing match scores based on image
gradients and color histograms. The estimate deemed most
reliable is returned as the position [3]. Another approach
heuristically integrates color data, range data, and frontal
face detection for tracking [8]. A recent system based on this
methodology is capable of tracking multiple heads simulta-
neously. This work highlights the potential for leveraging
multiple modalities to enhance the robustness of head track-
ing. However, the methodology employed for fusing the dif-
ferent modalities is ad hoc, relying on the manual tuning of
parameters.

We have pursued research on Bayesian modality fusion
for head tracking. Our approach is motivated by the observa-
tion that the performance of any particular head-tracking al-
gorithm may be satisfactory in some visual contexts but may
degrade significantly in others—and that each algorithm has
its own profile of sensitivity to context. We have sought
to build a head-tracking system that overlays the results of
multiple modalities in a coherent manner by computing the
context-sensitive reliability of each modality and using these
reliabilities to mesh the results into a single estimate of po-
sition. This approach is distinct from earlier work on head
tracking with multiple modalities in its focus on incorporat-
ing context-sensitive evidence about reliability for integrat-
ing different sensing modalities, and in integrating the anal-
yses of the modalities in a probabilistically coherent manner.

The use of Bayesian modality fusion for head tracking
is related conceptually to prior research on the use of proba-
bilistic sensor error submodels within Bayesian networks for
performing diagnosis from real-time telemetry [14]. In that
work, dynamically updated sensor-error models are used to
interpret the relevance of sensor readings for diagnosing po-
tential problems with the propulsion systems of the Space
Shuttle. The sensor error models take into consideration
observations that provide probabilistic evidence about the
current reliability of sensors. The inferred reliabilities are
considered in the fusion of multiple observations in a sound
manner during automated diagnosis and decision support.
We have applied this approach to the problem of integrating
the results of a set of head tracking modalities.

We shall first overview principles of Bayesian modality
fusion in Section 2. Then, in Sections 3 and 4, we describe
the vision primitives of our real-time head tracking system
and the details of data collection and training. In Sections 5
and 6, we review results demonstrating the effectiveness of



Target Ground Truth

Modality
Report

Modality
Reliability

Modality
Reliability Indicator 1

Modality
Reliability Indicator n 

• • •

Figure 1. Bayesian network for inferring the

ground truth about a visual target, con-

ditioned on information about the report

from a from a single modality.

Bayesian modality fusion for head tracking under a variety
of visual conditions.

2 BAYESIAN MODELS FOR MODALITY FUSION

We harness Bayesian networks to capture probabilis-
tic dependencies between the true state of the object be-
ing tracked (the target) and evidence obtained from tracking
modalities. A Bayesian network is a directed acyclic graph
that represents the joint probability distribution for a set of
random variables [15, 17, 20]. Nodes in Bayesian networks
represent random variables and arcs represent probabilistic
dependencies among pairs of variables. The dependencies
among variables in Bayesian network models can represent
causal influences among variables.

Over the last decade, there have been significant strides
in methods for constructing, learning, and performing infer-
ence with Bayesian-network models (see [11] for details of
work in this community). Research has included the devel-
opment of exact and approximate algorithms for Bayesian-
network inference procedures [15], methods that allow for
the induction of network structure from data [5, 13], and net-
works for reasoning over time [4, 6, 18]. Researchers have
also examined conceptual links between Bayesian networks
and probabilistic time-series analysis tools such as hidden
Markov models (HMMs) and Kalman filters [6]. HMMs and
Kalman filters can be represented by Bayesian networks with
specific prototypical independencies and repetitive structure
over time.

In constructing a Bayesian network for head tracking, we
represent the true location of a user’s head as a random vari-
able. This “ground truth” variable influences other random
variables, including evidential variables that are observed
during tracking as well as intermediate, non-observed vari-
ables. Directed arcs among these variables capture proba-
blistic influences. At run-time, the evidential variables are
set to values that correspond to observed visual features—
or the results of an analysis—and probabilistic inference is
performed to compute a probability distribution over the true

location.

In Bayesian models for modality fusion, we represent the
output of distinct visual processing modalities as evidential
variables. Additionally, we introduce special intermediate
and evidential variables and dependencies that endow the
model with the ability to perform real-time inference about
the context-sensitive reliabilities of the different modalities.

Figure 1 displays the basic Bayesian network for
Bayesian modality fusion. The nodes of the graph repre-
sent variables of interest, where the white nodes indicate
variables that are instantiated by the vision modules and the
gray nodes represent inferred values. The node labeled “Tar-
get Ground Truth” (t) represents the unknown state of the
target, and for our purposes, the overall goal of inference.
From a Bayesian perspective, the ground-truth state causes
the output from a visual modality (note that “causation” as
used here comprises both deterministic and stochastic com-
ponents). We indicate this influence with an arc from the
ground truth to the node labeled “Modality Report” (m).

The modality report is influenced also by its reliability, or
its ability to accurately estimate ground-truth state (“Modal-
ity Reliability,” (r) – henceforth, referred to as reliability).
Reliabilities themselves cannot be directly observed. The
key notion behind Bayesian modality fusion is that both the
reliabilities and the estimates of reliabilities vary with the
structure of the scene being analyzed. To build a coherent
framework for fusing reports from multiple modalities, we
consider reliability as a variable and build probabilistic sub-
models to dynamically infer it as a function of easily ascer-
tainable static or dynamic features of the image. In Figure 1,
such evidence is represented by the n nodes labeled “Modal-
ity Reliability Indicator,” (ii, reliability indicator) which are
in turn influenced by the actual “Modality Reliability.”

At run-time, the models for Bayesian modality fusion are
instantiated with a set of observations including the modality
report and the status of reliability indicators. The reliability
of the modality report is computed and the inferred reliabil-
ity and report are considered in inferring a probability distri-
bution over the ground-truth state of the target object.

So far, we have considered a model for inferring the prob-
ability distribution over the true state of a target from a report
by a single modality. We shall now generalize the model
to represent multiple modalities. Figure 2 displays such a
generalization. The diagram in the lower half of this figure
shows a model with two modalities. Each modality includes
a reliability submodel. We can include m different modali-
ties in a similar manner.

Beyond the generalization to multiple modalities, Fig-
ure 2 also displays an extension of the representation to con-
sider the status of variables at different times. Represent-
ing the temporal dynamics of a scene can provide valuable
patterns of evidence for tracking algorithms and models of
reliability.

As indicated in Figure 2, beyond employing variables
that capture temporality via event definitions, we can build
and assess models that consider the status of instances of
variables at different periods of time. With this represen-
tation of time, the Bayesian network model is extended so
that ensembles of variables are labeled with times. These
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Figure 2. A dynamic Bayesian network

model for integrating multiple visual pro-

cessing modalities over time.

models capture dependencies between variables at different
time periods, as well as among variables within a time slice.
Representations of Bayesian networks over time that include
temporal dependencies among some subset of variables have
been referred to as dynamic network models and dynamic
Bayesian networks [4, 7, 6, 18].

Figure 2 illustrates a Markov dynamic network model
where the previous true state directly influences the current
true state and where prior reliability indicators influence cur-
rent indicators. If we were to simplify this model by as-
suming a single visual tracking mode, fixed modal reliabili-
ties, and conditional influences in the form of linearly added
Gaussian noise, this model reduces to a standard Kalman
filter [6, 12]. By considering multiple modalities, model-
ing the details of probabilistic dependence, and considering
the changing reliabilities of reports, we gain a flexible filter
which weights estimates to different degrees based on their
inferred accuracies.

3 BAYESIAN MODALITY FUSION IN HEAD
TRACKING

We shall now describe details of learning and inference
in the use of Bayesian modality fusion for head tracking. To
perform tracking in real-time and to illustrate the effective-
ness of the fusion algorithm, we will harness simple, com-
putationally inexpensive algorithms for each of the visual
processing components. We are not advocating the use of
any specific modality; in many cases, more robust versions
of the algorithms are widely known. Nonetheless, details of
the vision algorithms are presented here to make our exam-
ple concrete.

We implemented three visual modalities and identified
a set of reliability indicators for each modality. The three
modalities are (1) peak finding based on background subtrac-
tion, (2) color-based ”blob” tracking, and (3) motion-based

ellipse tracking. Each of these modes reports 4 values for the
bounding box of the head (in image pixels) and 2 reliability
indicators whose output types vary. For all three modalities,
computation takes place on low resolution (80x60), subsam-
pled images.

Background Subtraction Modality

Our background subtraction modality combines back-
ground subtraction with a peak detection scheme. Thresh-
olding the difference between the current image and a stored
background image immediately identifies foreground pixels
if the camera is stationary. To accommodate deviations from
this assumption, the stored background is updated in a man-
ner similar to that described in [26].

Given a background image, Ib(�), we can easily deter-
mine foreground pixels as follows:

If(x; t) =

�
1; if jI(x; t)� Ib(x)j > k

thresh
f

0; otherwise.

After obtaining a foreground image, we then “drape” a hor-
izontal line of points connected to their neighbors by spring
forces onto the resulting image until the points hit signifi-
cant clusters of foreground pixels [25]. Peaks in the draped
line can be identified and the peak with the width and height
closest to the previously known dimensions of the head are
returned as the output.

Given a context of tracking a single person, we found
that the accuracy of the draping strategy is correlated with
the number of salient peaks detected by the system; multiple
salient peaks is a strong indicator that the modality may be in
a visual regime where it will not be an accurate predictor. We
also noticed that the accuracy of the draping approach drops
as the percentage of the image considered to be foreground
rises or falls significantly, whether from a jolted camera or
from the absence of foreground at all.

Therefore, we use two reliability indicators for the back-
ground subtraction modality and defined discretized vari-
ables to detect the status of reliability evidence at run-time.
Reliability indicators for this method include the number of
salient peaks in the draped line and the percentage of the
image classified as foreground pixels.

Color-Based Tracking Modality

Color is an easily computed cue for head tracking. Var-
ious skin colors under likely illuminations can be approx-
imated by a truncated pyramidal region in RGB space
bounded by upper and lower thresholds on the ratios between
red (r) and green (g) pixels, red and blue (b) pixels, and pixel
intensity:

k
�

rg < r=g < k
+
rg;

k
�

rb < r=b < k
+

rb;

k
�

int <
r+g+b

3
< k+int:

In our color-based tracking modality, binary skin-color clas-
sification is performed over the entire image. Then, clusters
of skin-colored pixels are identified by radiating investiga-
tive spokes outward from a skin-colored seed pixel until they
hit non-skin-colored pixels [24]. The bounding box of the



cluster whose centroid and size are closest to the previous
estimate is reported.

Using reasoning similar to that used for the background-
subtraction modality, we defined reliability indicators for the
the color-blob estimate as variables representing the status of
the aspect ratio of the blob bounding box and the fraction of
skin-colored pixels in the image.

Motion-Based Tracking Modality

Motion can also be a good indicator of head location,
as people rarely hold their heads completely still. Pixels
exhibiting motion can be detected by thresholding the dif-
ference between temporally adjacent image frames. In our
motion-based modality, we set all motion-detected pixels to
a constant, km. All other pixels experience a linear decay
so that the final decayed motion intensity of the pixel at x is
defined as follows:

Im(x; ti) =

�
km; if jI(x; ti)� I(x; ti�1)j > k

thresh
m ;

max(0; Im(x; ti�1)� 1); otherwise:

Ellipse tracking is then performed on the motion intensity
image by using conjugate gradient descent on the ellipse pa-
rameters to maximize the normalized sum of the motion in-
tensity values lying beneath the ellipse (similar to [3]). In the
approach, we fix the aspect ratio and consider position and
scale over a range immediately surrounding the last known
parameters.

Motion decay has been used before for “stateless” action
recognition [9]. We use motion decay in the motion-based
modality for tracking, given two desirable properties. First,
the decay accumulates motion from previous frames, implic-
itly smoothing the motion image. Second, the decay creates
a gradient in the motion image that rises with recency of
motion. Thus, we can constrain the search range for ellipse
tracking while maintaining robustness in the absence of mo-
tion filters—which often fail under jerky motion. As with the
color-based modality, the bounding box of the final ellipse is
used as the head position estimate from motion.

We defined reliability indicators for the motion-based
modality in terms of the percentage of the motion identi-
fied in the image at hand and the residual of motion intensity
observed under the final ellipse.

4 LEARNING MODEL PARAMETERS

To build a real-time model of Bayesian modality fusion,
we need to populate the conditional probability tables de-
fined by the structure of the Bayesian network for modality
fusion. Such tables can be assessed with expert knowledge
or learned through a training procedure. We designed a train-
ing system for acquiring the conditional probability tables by
integrating a Polhemus Fastrak position-sensing device with
the output from the three vision modalities. We took the
Polhemus reading as ground-truth position. The Polhemus
device was attached to the top of a subject’s head, so that
the center of the head in the horizontal plane was accurately
determined as long as the subject’s head remained upright.

For training purposes, Bayesian networks can be viewed
as a set of conditional probability tables. These were popu-
lated by counting (and normalizing) the occurrence of joint

events in the training data. For example, given all training in-
stances when the position reported by the Polhemus sensor
is �x and the reliability for a modality is �r, we can compute
the likelihood that the modality issues a report ~x (and that
its indicators assume some values), simply by counting the
times when this event occurs in the training data and divid-
ing by the total number of events with �x and �r. Additionally,
we provided a prior on the network parameters, which act as
“default values,” when training data is lacking. The effect of
the prior decreases with greater amounts of training data.

The conditional probability tables of the Bayesian net-
work were populated by converting the training data into
sets of probabilities representing the respective conditional
contexts (e.g., the probability of seeing specific values of a
position by the color blob given the position reported by the
Polhemus system, and given the width and aspect of the blob
bounding box).

5 ILLUSTRATION OF REAL-TIME MODALITY
FUSION

Once trained, the Bayesian network for modality fusion
can be used to perform inference about head position given
a set of real-time observations, including the reports gener-
ated by each of the vision processing modalities and their
reliability indicators. More specifically, the model infers a
probability distribution over position that would be reported
by the Polhemus device given the findings.

We now examine the qualitative performance of Bayesian
modality fusion for the methods described in Section 3. For
purposes of illustration, we coarsen the discretization of all
variables, eliminate temporal dependencies, and show re-
sults solely for horizontal position. The photos and infer-
ence results were generated with MSBN, a Bayesian net-
work modeling and inference environment developed at Mi-
crosoft Research [10].

Figures 3 and 4 show the structure of the Bayesian net-
works used for our experiments. The attached bar graphs
indicate the probability distributions over the states of each
variable. Modality reports and ground truth are in pixels
quantized to bins representing 40 pixels each. Reliabilities
range from 0 to 40 and above, where smaller values represent
greater expected accuracies. At run time, observational vari-
ables (white-filled nodes), are set to specific values by the
tracking system and inference is performed to compute prob-
ability distributions over the states of the hypothesis vari-
ables (gray-fill), including the ground truth and reliabilities.

The cases displayed in the figures highlight the role of
context-sensitive changes in the reliabilities of the different
modalities. Both of the cases consider an identical (though
permuted) set of reports from each of the modalities. How-
ever, the evidence about reliabilities changes, and, as a re-
sult, we see a shift in the modality that is weighted most
heavily in the overall report of head position. In Figure 3,
we see that the report from motion-based ellipse tracking
(on the right) dominates the final estimate because the net-
work infers that its reliability is high. The reliability itself
was computed from its two child nodes whose values are
observed directly (and hence concentrated in single bins).



Figure 3. An estimate of head position dominated by the motion-based ellipse report. Color

versions of all �gures are available at http://research.microsoft.com/toyama/accv.pdf.

Figure 4. An estimate of head position dominated by the color-based blob report.



In Figure 4, that status of reliability indicators depress the
inferred motion-based ellipse reliability and raise the color-
based reliability, resulting in a final estimate that reflects the
color-based report most strongly.

6 RESULTS

We now look at a system implemented on a 266MHz,
single-processor Pentium II PC equipped with a Matrox Me-
teor framegrabber and a color camera. Conditional proba-
bilities for the network were learned from empirical train-
ing data described in Section 4. The training data consisted
of 10 minutes of data sampled at 10Hz. During the train-
ing session, illumination was varied, a person walked into
the background, and the primary subjects intentionally pre-
sented signficant variations in position and pose.

All states and confidence values were discretized (at pixel
granularity). State estimates with maximum probability
were output as the final estimate. Execution cycled through
the three modalities, with only one modality operating for
any frame. Estimates of head position, however, were up-
dated at frame rate (30Hz).

Over the course of a one-hour period in which 3 people
entered and exited the field of view (to perform simple PC
chores), the system correctly recognized and tracked heads
for over 99% of the time that a person was in view (a total of
48 minutes). Unfortunately, this accuracy is not compelling
as the subjects and the surrounding environment for this ex-
periment were visually “well-behaved.”

In a more interesting analyses, we explored success and
failure modes during another set of experiments in which
we deliberately caused visual perturbations. Figures 5 and
6 show the qualitative behavior of the algorithm during in-
stances of tracking success. Under most circumstances, op-
eration proceeds as in Figure 5, where all three visual modes
accurately assess head position, and the inferred overall po-
sition serves to smooth noisy estimates.

In the top rows of Figure 6, at least one of the modes
provides unreliable estimates: In Row 1, the subject faces
away and loses color blob tracking; in Row 2, a jolt to the
camera causes the background to become unreliable; in Row
3, a moving distractor weakens the foreground estimate and
draws motion tracking away; and in Row 4, the lights are
turned off, significantly degrading both the background- and
color-based estimates. In all such cases, depressed reliability
estimates in the corresponding modalities cause the system
to weight other reports more heavily.

In Figure 7, we show modes of failure. Because hands
and face masks exhibit properties similar to human heads (at
least with respect to the three modalities), all three modes
produce estimates that are deemed reliable. Additional com-
putation to identify image regions as “head” or “not head”
may alleviate this problem, although the case for masks and
photographs is likely to require more subtle analysis.

Finally, we compare the estimates from Bayesian fusion
against each of the components and a simple mean of the
three component modality estimates. In Figure 8(top), we
show the tracking estimates for the x positional estimate
along with ground-truth data from the Polhemus tracker.
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Figure 8. Comparison of Bayesian fusion

with its constituent modalities, a simple

mean, and ground truth.

Figure 8(bottom) shows the absolute error of each estimate
when compared with ground truth. The particular image
sequence included side-to-side head movement and for the
last half of the sequence, sudden changes in illumination,
effected by turning on and off a lamp.

We have found that Bayesian modality fusion usually
outperforms any of its constituent modalities, often making
estimates close to the modality estimate with the least er-
ror. Second, we see that even in moments where two out
of the three modalities are widely off the mark (last several
frames), the fusion algorithm remains close to its most reli-
able estimate. This last point suggests that Bayesian fusion
is likely to outperform naive voting schemes. Certainly, it
outperforms the simple mean, which is drawn away from
ground truth by the two errant modalities. We can confi-
dently say that Bayesian modality fusion performs an “intel-
ligent” probabilistic weighting of the three modalities based
on collected training data.

7 CONCLUSION

Bayesian modality fusion offers an expressive framework
for weighting and integrating the reports from multiple vi-
sual modes. Our investigation has shown that Bayesian fu-
sion of multiple modalities can generate reliable estimates of
head position even in situations where component analyses
are unreliable.

We foresee future work on the head-tracking system pro-
ceeding in several directions. First, we note that in order to



Figure 5. Successful head tracking under \normal" conditions. From left to right: the original

color image with a rectangular overlay indicating the �nal state estimate, the background-

subtracted image, the color-classi�ed image, and the motion decay image.

fully train the system, training data proportional to all possi-
ble combinations of states is required. Even for our relatively
simple network, we had to resort to default values in order to
fill in the gaps. Situations for which training data was sparse
inevitably caused more difficulty for fusion. Methods such
as Gibbs’ sampling allow for a more principled approach to
estimating conditional probabilities even with sparse data,
and application of such approaches is likely to enhance fu-
sion, especially for events that occur seldomly.

We are also exploring the use of Bayesian network struc-
ture learning algorithms [5, 13] to learn the dependencies
among key variables, rather than relying on learning solely
to instantiate the parameters of a handcrafted dependency
model. Learning algorithms have the ability to identify the
best dependency model to use to infer location from ev-
idence provided by multiple visual processing modalities.
They can also characterize the strengths of the different
dependencies, giving us advice about the relative value of
modalities.
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Figure 6. Successful head tracking under stress. The top four rows show instances where at

least one of the modes fail (facing away; jolted camera; background distraction; lights out).

The bottom row shows other cases of successful head tracking (raw image and �nal estimate

only).

Figure 7. Failure modes in head tracking.


