
Automated Video Looping with Progressive Dynamism

Zicheng Liao
University of Illinois, Urbana-Champaign

Neel Joshi
Microsoft Research

Hugues Hoppe
Microsoft Research

Abstract

Given a short video we create a representation that captures a
spectrum of looping videos with varying levels of dynamism,
ranging from a static image to a highly animated loop. In such
a progressively dynamic video, scene liveliness can be adjusted
interactively using a slider control. Applications include background
images and slideshows, where the desired level of activity may
depend on personal taste or mood. The representation also provides
a segmentation of the scene into independently looping regions,
enabling interactive local adjustment over dynamism. For a
landscape scene, this control might correspond to selective animation
and deanimation of grass motion, water ripples, and swaying trees.
Converting arbitrary video to looping content is a challenging
research problem. Unlike prior work, we explore an optimization in
which each pixel automatically determines its own looping period.
The resulting nested segmentation of static and dynamic scene
regions forms an extremely compact representation.

CR Categories: I.3.0 [Computer Graphics]: General.

Keywords: video textures, cinemagraphs, progressive video loops

Links: DL PDF WEB VIDEO DATA

1 Introduction

Many mobile devices now acquire high-definition video just as
easily as photographs. With increased parallel processing, the gap
in resolution between these two media is narrowing. It should
soon become commonplace to archive short bursts of video rather
than still frames, with the aim of better capturing the “moment” as
envisioned by Cohen and Szeliski [2006].

Several recent techniques explore new ways of rendering short
videos. Examples include cinemagraphs [Beck and Burg 2012;
Tompkin et al. 2011; Bai et al. 2012] and cliplets [Joshi et al. 2012],
which selectively freeze, play, and loop video regions to achieve
compelling effects. The contrasting juxtaposition of looping
elements against still backgrounds helps grab the viewer’s attention.
The emphasis in these techniques is on creative control.

We focus on automating the process of forming looping content
from short videos. The goal is to render subtle motions in a scene to
make it come alive, as motivated by Schödl et al. [2000]. Many
such motions are stochastic or semi-periodic, such as swaying
grass, swinging branches, rippling puddles, and pulsing lights. The
challenge is that these moving elements typically have different
looping periods, and moreover some moving objects may not support
looping at all. Previous techniques rely on the user to identify spatial

Figure 1: We optimize a set of video looping parameters. This
compact encoding defines a spectrum of loops with varying activity
and enables fast local control over scene dynamism.

regions of the scene that should loop and determine the best period
independently for each such region (Section 2).

Instead, we formulate video loop creation as a general optimization
in which each pixel determines its own period. An important special
case is that the period may be unity, whereby a pixel becomes static.
Therefore the optimization automatically segments the scene into
regions with naturally occurring periods, as well as regions that
are best frozen, to maximize spatiotemporal consistency. A key
aspect that makes this optimization more tractable is to parameterize
looping content so as to always preserve phase coherence (Section 3).

Our other main contribution is to explore the concept of progressive
dynamism (Figure 1). We extend the optimization framework to
define a spectrum of loops with varying levels of activity, from
completely static to highly animated. This spectrum has a compact
encoding, requiring only a fraction of the storage of the input video.
We show that this underlying structure also permits local selection of
dynamism, for efficient runtime control of scene liveliness based on
personal preference or mood. Applications include subtly animated
desktop backgrounds and replacements for still images in slide
shows or web pages.

Our contributions are:

• Using optimization to automatically segment video into regions
with naturally occurring periods as well as static regions.

• Formulating video loop creation using 2D rather than 3D graph
cut problems.

• Introducing the progressive video loop, which defines a nested
segmentation of video into static and dynamic regions.

• Using the resulting segmented regions to enable interactive,
seamless adjustment of local dynamism in a scene.

• Demonstrating an extremely compact encoding.

http://doi.acm.org/10.1145/2461912.2461950
http://portal.acm.org/ft_gateway.cfm?id=2461950&type=pdf
http://research.microsoft.com/~hoppe/proj/videoloops/
http://research.microsoft.com/~hoppe/videoloops.mp4
http://research.microsoft.com/~hoppe/proj/videoloops/

2 Related work

Video looping Schödl et al. [2000] define video textures by
locating pairs of similar video frames to create a sparse transition
graph. A stochastic traversal of this graph generates infinite, non-
repeating video. Finding compatible frames may be difficult for
scenes with many independently moving elements. Kwatra et al.
[2003] synthesize videos using a Markov Random Field (MRF)
model. They successively merge video patches offset in space and/or
time, and determine the best merging seam using a binary graph
cut. Introducing constraints allows the creation of video loops with
a specified global period. Agarwala et al. [2005] create panoramic
video textures from a panning video sequence. The user selects a
static background layer image and draws masks to identify dynamic
regions. For each region, the natural periodicity is determined
automatically. Then, a 3D MRF problem is solved using a multilabel
graph cut on a 3D grid [Boykov et al. 2001]. Couture et al. [2011]
create panoramic stereo video textures by blending the overlapping
video in the space-time volume.

Although our technique is based on a 3D objective function like
these prior graph cut approaches, we define the solution unknowns
over a 2D domain grid. Agarwala et al. [2005] discuss that such a
2D problem is as expensive as the 3D version. We show that the cost
is reduced by precomputing cumulative-sum tables. The simpler
domain lets us introduce looping periods as per-pixel unknowns.

Cinemagraphs Tompkin et al. [2011] present a tool for interac-
tive authoring of cinemagraphs. Regions of motion in the video
are automatically isolated. The user selects which regions to make
looping and which reference frame to use for each region. Looping
is achieved by finding matching frames. Bai et al. [2012] describe a
method to selectively stabilize motions in video. The user sketches
three types of strokes to indicate regions to be made static, immobi-
lized, or fully dynamic. The method propagates the strokes across
video frames using optical flow, warps the video to stabilize it, and
solves a 3D MRF problem to seamlessly merge it with static content.
Applications include cinemagraphs, motion visualization, and video
editing. Joshi et al. [2012] develop a set of idioms (static, play, loop,
and mirror loop) to let a user quickly combine several spatiotemporal
segments from a source video. These segments are stabilized and
composited to emphasize scene elements or to form a narrative.

In contrast, our work aims to create video loops without user
assistance. Both the spatial regions and their looping periods are
found automatically. Looping pixels are allowed staggered start
times to improve temporal transitions. A progressive segmentation
of the image into static and dynamic regions is formed using a
general optimization on spatiotemporal consistency.

Other video effects Many other interesting video processing
operations have been explored, including animating still images
[Freeman et al. 1991; Chuang et al. 2005], magnifying motion
[Liu et al. 2005; Wu et al. 2012], enhancing time-lapse video
[Bennett and McMillan 2007; Sunkavalli et al. 2007], manipulating
time in video editing [Rav-Acha et al. 2007], and creating video
synopses [Pritch et al. 2008].

3 Basic video loop

The input video is denoted as a 3D volume V (x, ti), with 2D pixel
location x and frame time ti. In forming a video loop, we assume
that the input video has already been stabilized. Stabilization can
be performed automatically [e.g., Tompkin et al. 2011] or with user
guidance [e.g., Bai et al. 2012]. For our results we use either the
“Warp Stabilizer” automated tool in Adobe After Effects or a standard
feature-based global alignment method as in [Joshi et al. 2012].

Figure 2: The video loop is specified by assigning each pixel a start
time sx and period px. Static pixels have px =1. The time-mapping
function locks phase to help maintain spatial consistency across
pixels with the same period, as shown by the red ellipses.

The goal is to construct an infinitely looping output video L(x, t)
with good spatiotemporal consistency, i.e., the loop should avoid
undesirable spatial seams or temporal pops which occur when its
content is not locally consistent with the input video. Because the
input is stabilized, we form L by retrieving for each pixel some
content associated with the same pixel in the input, as illustrated
in Figure 2. This content may be either static or looping. In either
case, it is represented as a temporal interval [sx, sx + px) from the
source video, where sx is the start time and px is the period, in
number of frames. A pixel assigned to be static thus corresponds to
the case px =1.

More precisely, the output video loop is

L(x, t) = V
(
x, φ(x, t)

)
, t ≥ 0,

where the time-mapping φ is defined from the unknowns sx, px as

φ(x, t) = sx − (sx mod px)

+ (t mod px) +

{
0 if (t mod px) ≥ (sx mod px)

px otherwise.
(1)

The complicated modulo arithmetic in this formula deserves further
explanation. Intuitively, if two adjacent pixels are looping with the
same period, it is usually desired that they be in-phase in the output
loop. Figure 3 illustrate this important point. Two adjacent pixels x
and z have the same looping period px =pz and retrieve content
from input intervals [sx, sx + px) and [sz, sz + pz) respectively.
Although their start times sx, sz differ, their input time intervals
have significant overlap. By wrapping these intervals in the output
timeline using Equation 1, proper adjacency is maintained within the
temporal overlap, and therefore spatial consistency is automatically
preserved.

It is interesting to contrast this loop parameterization with that
presented by Agarwala et al. [2005, Fig. 5], which solves for time
offsets between output and input videos. We instead assume these
offsets are prescribed by phase coherence and solve for start frames
(Figure 2). As shown later in the results section, good video loops
often have regions looping in-phase with a common optimized period
but with many staggered per-pixel start times.

Video transitions using graph cut textures [Kwatra et al. 2003] also
maintain phase coherence, but they require at least one frame of the
output video to be copied in whole from the input video. In contrast,
our approach combines unconstrained temporal intervals from an
input video, as illustrated in Figure 4.

3.1 Construction overview

Prior methods define a 3D MRF problem over a fixed spatiotemporal
output domain. In our setting however, modifying per-pixel looping
periods has the effect of shifting spatiotemporal adjacencies in the

Figure 3: For adjacent pixels x and z with the same looping period
px =pz and similar start times sx, sz , the in-phase time-mapping
function of Equation 1 automatically preserves spatiotemporal
consistency over a large portion of the output timeline. The green
arrows show corresponding spatially adjacent pixels.

output video. Therefore, we must formulate video loop construction
as an MRF problem over the 2D spatial domain rather than the full
3D video volume.

The goal is to find start times s = {sx} and periods p = {px} that
minimize the objective

E(s,p) = Econsistency(s,p) + Estatic(s,p).

The first term encourages all pixel neighborhoods in the video loop
to be consistent both spatially and temporally with those in the input
video (Section 3.2). The second term penalizes the assignment of
static loop pixels except in regions of the input video that are truly
static (Section 3.3).

3.2 Spatiotemporal consistency

In the generated video loop, each pixel’s spatiotemporal neighbors
should look similar to those in the input [Agarwala et al. 2005].
Because the domain graph is defined on the 2D spatial grid, the
objective must distinguish spatial and temporal consistency:

Econsistency(s,p) = β Espatial(s,p) + Etemporal(s,p).

(We set the parameter β = 10 for all results.)

Spatial consistency The term

Espatial(s,p)=
∑

‖x−z‖=1

Ψ(x, z) γs(x, z), with

Ψ(x, z) =
1

T

T−1∑
t=0

(
‖V (x, φ(x, t))− V (x, φ(z, t))‖2+
‖V (z, φ(x, t))− V (z, φ(z, t))‖2

)
measures compatibility for each pair of adjacent pixels x and z,
according to their time mappings φ(x, t) and φ(z, t), summed at
both pixels x and z over all T time frames in the output video
loop. For instance, the pixel color V (x, φ(x, t)) is compared with
the pixel color V (x, φ(z, t)) expected by its spatial neighbor at the
same output time t and vice versa. Here the period T is the least
common multiple (LCM) of all per-pixel periods. Equivalently, the
objective can be formulated as limT→∞Espatial, the average spatial
consistency over an infinitely looping output video.

Inspired by [Kwatra et al. 2003], the factor

γs(x, z) = 1/
(

1 + λs MAD
ti

∥∥V (x, ti)− V (z, ti)
∥∥)

reduces the consistency cost between pixels when the temporal
median absolute deviation (MAD) of their color differences in the

Figure 4: Graph cut video transitions assume the loop has a given
global period and contains at least one full input frame (here shown
in red), so the search space is bounded (orange dashes). To find
compatible content, our approach considers many looping periods
and unconstrained time intervals.

input video is large, because inconsistency is then less perceptible.
We use MAD rather than variance because it is less sensitive to
outliers. (We set λs =100 in all results.)

For efficient evaluation we distinguish four cases:

(1) When pixels x and z are both made static, the energy reduces to

Ψ(x, z) = ‖V (x, sx)− V (x, sz)‖2 + ‖V (z, sx)− V (z, sz)‖2.

(2) When only pixel x is static, the energy simplifies to

Ψ(x, z) =
1

T

T−1∑
t=0

(
‖V (x, sx)− V (x, φ(z, t))‖2+
‖V (z, sx)− V (z, φ(z, t))‖2

)
.

For each of the two summed vector norms and for each color channel
c ∈ {1, 2, 3}, the sum is obtained as

1

T

T−1∑
t=0

(
Vc(x, sx)− Vc(x, φ(z, t))

)2
=

V 2
c (x, sx)−2Vc(x, sx)

pz

sz+pz−1∑
ti=sz

Vc(x, ti)+
1

pz

sz+pz−1∑
ti=sz

V 2
c (x, ti).

We evaluate the two sums above in constant time by precomputing
temporal cumulative-sum tables on Vc and V 2

c .

(3) When both pixels are looping with the same period px =pz , the
energy reduces to

Ψ(x, z) =
1

px

px−1∑
t=0

(
‖V (x, φ(x, t))− V (x, φ(z, t))‖2+
‖V (z, φ(x, t))− V (z, φ(z, t))‖2

)
.

Moreover we detect and ignore the zero-valued terms for which
φ(x, t) = φ(z, t). As illustrated in Figure 3, for the common case
where start times are similar, large time intervals (with contiguous
sets of green arrows) can thus be quickly ignored.

(4) Finally, when the pixels have different looping periods, we should
compute the sum using T =LCM(px, pz). The apparent worst case
when the two periods are relatively prime, i.e., LCM(px, pz) =
pxpz , is in fact computed efficiently by recognizing that

1

mn

m−1∑
i=0

n−1∑
j=0

(ai − bj)
2
=

1

m

m−1∑
i=0

a
2
i +

1

n

n−1∑
j=0

b
2
i −

2

mn

(m−1∑
i=0

ai

)(n−1∑
j=0

bi
)
,

where ai = Vc(x, φ(x, i)) and bj = Vc(x, φ(z, j)). We thus
reuse the same precomputed cumulative-sum tables from case (2) to
evaluate these terms in constant time.

We use this expected squared difference as an approximation even
when the periods px, pz are not relatively prime. This approximation
provides an important (6×) speedup, and we verified that it does not
appreciably affect the quality of results.

Temporal consistency The objective term

Etemporal =
∑
x

(
‖V (x, sx)− V (x, sx+px)‖2+

‖V (x, sx−1)− V (x, sx+px−1)‖2
)
γt(x)

compares for each pixel the value at the loop start and the value right
after the loop end, and for symmetry it also compares the value just
before the loop start and at the loop end.

Because looping discontinuities are less perceptible when a pixel
varies significantly over time in the input video, we attenuate the
consistency cost using the factor

γt(x) = 1/
(

1 + λt MAD
ti

∥∥V (x, ti)− V (x, ti + 1)
∥∥),

which estimates the temporal variation at the pixel based on the
median absolute deviation of successive pixel differences. (We set
λt =400 in all results.)

For any pixel assigned as static (i.e., px = 1), Etemporal computes
the pixel value difference between successive frames and therefore
favors pixels with zero optical flow in the source video. While this
behavior is reasonable, in practice we find that it prevents interesting
moving objects from being frozen in the static image. Instead, we
let the temporal energy be zero for any pixel assigned to be static.

For looping pixels, we considered introducing a factor 1/px that
would account for the fact that a shorter loop reveals a temporal
discontinuity more frequently in the output. However, this was found
undesirable as it over-penalizes loops with small periods relative to
longer loops with equal energy.

3.3 Per-pixel dynamism prior

If all pixels are assigned to be static from the same input frame, the
loop attains perfect spatiotemporal consistency. To penalize this
trivial solution, we seek to encourage pixels that are dynamic in the
input video to also be dynamic in the loop. We therefore introduce an
additional term Estatic, which adjusts the energy objective based on
whether the neighborhood N of each pixel has significant temporal
variance in the input video. If a pixel is assigned a static label, it
incurs a cost penalty cstatic, but this penalty is reduced according to
the temporal variance of the pixel’s neighborhood. Thus we define

Estatic =
∑

x|px=1

Estatic(x), with

Estatic(x) = cstatic min
(

1, λstatic MAD
ti

∥∥N(x, ti)−N(x, ti+1)
∥∥),

where λstatic = 100 and N is a Gaussian-weighted spatiotemporal
neighborhood (σx = 0.9, σt = 1.2).

3.4 Optimization algorithm

Traditional graph cut Our initial approach was to solve the MRF
optimization using a standard multilabel graph cut algorithm, where
the set of pixel labels is the outer product of candidate start times {s}
and periods {p}. However, this approach may produce relatively
poor local minima, as shown in the example of Figure 5. The
problem is that a graph cut alpha expansion only considers a single
new candidate label. As the algorithm tries to change the solution to
a possibly better looping period p, it must consider a label that pairs
this period p with a single start time s. This restriction prevents the
optimization from jumping to another valley in the energy landscape
where the new period is allowed different start times at different
pixels. Jumping out of the local minimum would require considering
multiple target labels simultaneously.

input video (static frame)

standard multilabel graph cut our two-stage approach

Figure 5: Compared to the traditional graph cut algorithm, our
two-stage procedure converges to slightly better minima with longer
loop periods. (The green-to-red color map indicates progressively
longer periods.) The two-stage algorithm is also about 1.6× faster.

Two-stage approach Instead, we introduce an optimization
procedure that works in two stages (left portion of Figure 6):

(1) For each candidate looping period p>1, we find the per-pixel
start times sx|p that create the best video loop L|p with just that
period, by solving a multilabel graph cut.

(2) Next we solve for per-pixel periods px≥1 that define the best
video loop (px, sx|px) using the pixel start times obtained in stage 1,
again by solving a multilabel graph cut. Here the set of labels
includes all the periods p>1 considered in the first stage, together
with all possible frames s′x for the static case p=1. Essentially,
the optimization merges together regions of |{p}|+ |{s}| candidate
loops: the optimized loops found in stage 1 for periods {p} plus the
static loops corresponding to the frames {s} of the input video.

The two-stage optimization is about 1.6× faster, because in stage 1
the multiple graph cuts are trivially parallelized and the spatial
consistency cost does not have to consider mismatched periods.

The graph cuts in both stages are solved using the iterative alpha-
expansion algorithm of Kolmogorov and Zabih [2004]. This algo-
rithm assumes a regularity condition on the energy function, namely
that for each pair of adjacent nodes and any three labels α, β, γ, the
spatial cost should satisfy c(α, α) + c(β, γ) ≤ c(α, β) + c(α, γ).
However, this constraint is not guaranteed in stage 2. One reason
is that when two adjacent pixels are assigned the same period, the
fact that they may have different start times means that their spatial
cost c(α, α) may be nonzero. Fortunately, the start times are solved
in stage 1 to minimize this cost, so it is likely small.

Because the regularity condition does not hold, the theoretical
bounded-approximation guarantees of the alpha expansion algorithm
no longer hold. Nonetheless, several researchers have reported good
results in this case [e.g., Kwatra et al. 2003; Agarwala et al. 2004].
The workaround is to adjust some edge costs when setting up each
alpha expansion pass. Specifically, we add small negative costs to
the edges (β, γ) such that the regularity condition is satisfied.

Another reason that the energy function is irregular is that
Espatial(x, z) is a squared distance rather than a Euclidean distance.
We find that introducing the square root yields inferior results.

Because the iterative multilabel graph cut algorithm may find only a
local minimum of the objective function, the initial state is important.
For stage 1, we initialize sx to minimize only the temporal cost, and
for stage 2, we select px whose loop L|px has lowest spatiotemporal
cost at pixel x.

Figure 6: We construct an optimized video loop in two stages: (1) finding optimized loops L|p for each period p, and (2) spatially merging
these loops together with with static frames of the input video. The green circles denote instances of multilabel graph cuts. Next, creating a
progressive video loop involves a recursive partition using fast binary graph cuts, shown as purple circles.

4 Progressive video loops

We now generalize from a single video loop L to a spectrum of
loops L = {Ld | 0 ≤ d ≤ 1} where d refers to level of dynamism
– a normalized measure of the temporal variance in the video loop
(Section 4.2). At one end of the spectrum, the least-dynamic loop
L0 corresponds to a static image (where each pixel may be copied
from a different frame of the input video). At the other end of the
spectrum, the most dynamic loop L1 has the property that nearly all
its pixels are looping.1

To define the spectrum of loops, we require that each pixel have
exactly two possible states:

• static, with a color value taken from a single frame s′x of the
input video, or

• looping, with a looping interval [sx, sx + px) that includes the
static frame s′x.

We then establish a nesting structure on the set of looping pixels
by defining the activation threshold ax ∈ [0, 1] as the level of
dynamism at which pixel x transitions between static and looping.

Thus, a progressively dynamic video loop has the time-mapping

φd(x, t) =

{
s′x if d ≤ ax
φ(x, t) otherwise.

The goal is to determine the activation threshold ax, static frame s′x,
loop start frame sx, and period px at each pixel such that all video
loops in L have good spatiotemporal consistency.

4.1 Construction overview

As shown in Figure 6, our approach consists of three steps:

(1) We solve for a most dynamic loop L1 using the two-stage
algorithm of Section 3 by setting cstatic to a large value, cmax =10.

(2) We create a static loop L0 (i.e., a “reference image”) by leaving
as-is any pixels already static in L1 and solving for the best static
frame s′x for each remaining pixel (Section 4.3).

(3) Having obtained the parameters (s′x, sx, px) defining the two
loops {L0, L1} ⊂ L, we assign an activation threshold ax at each
pixel to establish the loop spectrum L. This step uses a recursive
binary partition over cstatic between L0 and L1 (Section 4.4).

1Forcing all pixels to loop may introduce bad artifacts for scenes with
non-loopable content – artifacts undesirable enough that it is not worth
showing these loops to the user.

4.2 Parameterization of progressive video loop

The most straightforward way to parameterize the progressive loop
spectrum L is using the static-cost parameter cstatic that is varied
during construction. However, the level of activity in the loop often
changes quite non-uniformly (Figure 8) and differs significantly
across videos. We find that a more intuitive parameterization is to
use a normalized measure of temporal variance within the loop. Let

Var(L) =
∑
x

Var
sx≤ti<sx+px

(
V (x, ti)

)
measure the temporal variance of all pixels in a video loop L. We
define the level of dynamism as the temporal variance normalized
relative to that of the most dynamic loop L1:

LOD(L) = Var(L)/Var(L1).

This LOD measure is used to define the dynamism d of each loop Ld.
Therefore, by definition, the most dynamic loop has LOD(L1) = 1
and the static loop has LOD(L0) = 0.

4.3 Construction of static loop

To obtain the static loop L0 in step 2, we use the second-stage
optimization of Section 3, setting cstatic = 0, and enforcing the
constraint sx ≤ s′x < sx + px, as shown in Figure 7. For this step,
we also introduce an extra data term that penalizes squared color
differences from each static pixel to its corresponding median value
in the input video. Encouraging median values helps create a static
image that represents a “still” moment, free of transient objects or
motions [Wang et al. 2005].

4.4 Optimization of per-pixel activation thresholds

The assignment of activation thresholds in step 3 operates as follows.
Recall that we obtained the most dynamic loop L1 by setting the
parameter cstatic to a large value cmax =10 and we obtained the static
loop L0 by setting this same parameter to zero. For each pixel x

Figure 7: The looping parameters for the most static loop and the
subsequent intermediate loops are constrained to be compatible with
previously computed loops.

Figure 8: A video loop’s level of dynamism is often non-uniform
as a function of the optimization parameter cstatic, and it has step
transitions corresponding to the activation of coherent pixel regions.

looping in the most dynamic loop L1, we know that its transition
from static to looping must occur between loops L0 and L1, and
therefore its activation threshold satisfies 0 ≤ ax < 1.

We form an intermediate loop by setting cstatic = (0 + cmax)/2
(halfway between the settings for L0 and L1) and constraining each
pixel x to be either static as in L0 or looping as in L1. MinimizingE
is thus a binary graph cut problem. Let d be the resulting loop’s level
of dynamism, so the loop is denoted Ld. The assignment of each
pixel as static or looping in loop Ld introduces a further inequality
constraint on its activation threshold ax, i.e., either ax<d or ax≥d.
We further partition the intervals [L0, Ld] and [Ld, L1] recursively
to precisely define ax at all pixels, as illustrated by the cascade of
binary graph cuts in Figure 6.

In the limit of recursive subdivision, the activation threshold of each
pixel converges to a unique value. Recursion terminates when the
change in the static-cost parameter cstatic becomes sufficiently small
(< 10−6) or when the difference between the levels of dynamism of
the two loops is sufficiently small (< 0.01). As a postprocess, each
activation level is adjusted to lie at the midpoint of its vertical step
in Figure 8 (rather than at the maximum of the step).

In the spectrum L, there are intervals of dynamism over which the
loop does not change, i.e., the vertical steps in Figure 8. Such
discontinuities must exist, because the dynamism level is continuous
whereas the set of possible loops is finite. The reason that some
intervals are large is that maintaining spatiotemporal consistency
requires some spatial regions to transition coherently. For some
videos this leads to significant jumps in dynamism. To reduce these
jumps, we lower the spatial cost parameter β from 10 to 5 during
step 3; however, the tradeoff is that some of the new transitions are
more noticeable.

Ordering of progressive dynamism Another issue is that in a
progressive video loop, we would prefer that the activation threshold
for subtle loops (with less activity) be smaller than that for highly
dynamic loops. Unfortunately, with Estatic as defined in Section 3.3,
varying cstatic has the opposite effect: when cstatic is low (near the
static video L0), pixels with high temporal variance benefit from the
greatest drop in Estatic when they transition to looping, and therefore
the most active loops are introduced first. (Conversely, when cstatic is
high near the most dynamic video L1, only pixels with low temporal
variance have sufficiently small Estatic penalty to become static, and
therefore the least active loops are introduced late.)

To address this, only for the duration of step 3 we redefine

Estatic(x)=

cstatic

(
1.05−min

(
1, λstatic MAD

ti

∥∥N(x, ti)−N(x, ti + 1)
∥∥)).

Because the loops L0, L1 bounding the recursive partition process
are fixed, the only effect is to modify the activation thresholds and
thereby improve the ordering in which the loops appear. Please refer
to the supplemental video for some example comparisons.

Figure 9: Segmentation of scene into independent looping regions,
visualized with random colors and static pixels in light gray.

4.5 Implementation details

In most of our results, the input video is a 5-second segment recorded
at 30 frames/sec. To reduce computational cost, we quantize loop
start times and periods to be multiples of 4 frames. Also, we set a
minimum period length of 32 frames.

As another speedup, to compute the spatial cost between two pixels
looping with the same period (case (3) in Section 3.2), we aggregate
groups of 4 consecutive pixels into 12-dimensional vectors, and
perform principal component analysis (PCA) as a preprocess to
project these vectors into an 8 dimensional space. This PCA
projection retains over 99% of the data’s variance in our tests.

We parallelize the graph cut optimizations using OpenMP and only
use a few iterations through all candidate alpha-expansion labels.
We find that two iterations are sufficient for the second stage of our
optimization and a single iteration is sufficient for all other stages.

5 Interactive spatial control over dynamism

The per-pixel periods and activation levels induce a segmentation of
the scene into independent looping regions. Whereas the progressive
video loop defines a single path through this space, we can also
let the user adapt dynamism spatially by selectively overriding the
looping state per region.

For fine-grain control, the selectable regions should be small. Yet,
they must be sufficiently large to avoid spatial seams when adjacent
regions have different states. We place two adjacent pixels in the
same region if (1) they share the same looping period, (2) their
temporal extents overlap, and (3) they have the same activation level.
A flood-fill algorithm finds the equivalence classes for the transitive
closure of this relation, as shown in Figure 9.

Our prototype system offers a simple interface to manipulate
dynamism over the regions. As the cursor hovers over the video,
the local underlying region is highlighted in yellow, and the other
regions are shaded with a color code to delineate each region and
its current state (shades of red for static and shades of green for
looping). Clicking the mouse on the current highlighted region
toggles its looping state. Alternatively, dragging the cursor starts the
drawing of a stroke. All regions that overlap the stroke are activated
or deactivated depending on whether the shift key is pressed. The
action is instantaneous, so prior strokes are not retained. Please refer
to the supplemental video for examples.

6 Local alignment

In some cases, scene motion or parallax can make it difficult to
create high-quality looping videos. For these cases, shown in our
supplemental video, we optionally perform local alignment of the
input video content to enable better loop creation. This is related
to the scenario and approach explored by Bai et al. [2012], with a
few significant differences. Because their focus is creative control,
their approach uses several types of user-drawn strokes to indicate
regions to stabilize, keep static, and loop. In contrast, our approach

is automatic and does not require any user input, and the creative
control (see Section 5) is independent of the alignment process.

Our approach is to treat strong, low-frequency edges as “structural”
edges that must be aligned directly and high spatiotemporal
frequency areas as “textural” regions whose flow is smoothly
interpolated. The visual result is that aligned structural edges
appear static, leaving the textural regions dynamic and able to be
looped. We achieve this by using a pyramidal optical flow algorithm
[Horn and Schunk 1981], with a high degree of smoothing, to align
each frame of the video to a reference video frame (tref). We use
a 3-level pyramid and the same smoothing constant for all results.
The reference frame is chosen as the frame which is most similar to
all other frames before local alignment.

Within the optimization algorithm (Section 3), we introduce two
additional data terms. The first term

Ealigned(x) =

{
∞ if px = 1 and sx 6= tref
0 otherwise,

forces all static pixels (i.e., not looping) to be taken from the
reference frame. The other term

Eflow(x) =

{
0 if px = 1

λf max
sx≤ti<sx+px

F (x, ti) otherwise,

penalizes looping pixels in areas of low confidence for optical
flow, where F (x, ti) is the flow reprojection error (computed at
the next-to-finest pyramid level) for a pixel x at time ti aligned
to the reference frame tref . We set F (x, ti) = ∞ for any pixels
where the reprojection error is larger than the error before warping
with the flow field or where the warped image is undefined (due to
out-of-bounds flow vectors). (We set λf =0.3 in all results.)

The result of these two terms is that the optimization avoids loops
aligned with poor flow and forces regions that cannot be aligned at
all to take on values from the static reference frame, which has no
alignment error by construction. The looping areas then come from
pixels where the flow error at a coarse level of the pyramid is low.

7 Rendering

Crossfading We apply crossfading to help mask spatial and
temporal discontinuities in a video loop, but only where spatial
and temporal inconsistencies are significant, so as to avoid excessive
blurring elsewhere. We perform temporal crossfading during
loop creation, using a linear blend with an adaptive window size
that increases linearly with the loop’s temporal cost (up to ±5
frames). Spatial crossfading is performed at runtime using a spatial
Gaussian filter G at a subset of pixels S. The set S consists of the
spatiotemporal pixels with a large spatial cost (≥ 0.003), as well
as the pixels within an adaptive window size that increases with the
spatial cost (up to a 5×5 neighborhood). For each pixel x ∈ S we
compute

L(x, t) =
∑
x′

G(x′ − x)V
(
x, φ(x′, t)

)
.

Smooth progressive transitions As the level of dynamism is
varied, some fraction of pixels transition from static to looping or
vice versa. In either case, it is desirable to maintain spatiotemporal
consistency to avoid visible artifacts.

Our initial strategy sought to exploit the fact that the static frame
at each pixel lies within the temporal range of its loop. A natural
idea is to wait until the (active or potential) loop reaches this frame
before transitioning (from or to) the loop. Although this eliminates

Figure 10: The accessed portion of the input video is remapped to a
shorter video V̄ , whereby the last value of each pixel’s loop is held
constant.

temporal pops, it has two significant drawbacks. First, it introduce
a significant lag in responsiveness. Second, the transition frame
often differs at adjacent pixels, resulting in temporary but noticeable
spatial inconsistencies. Instead, we simply crossfade between the
static and looping states over an interval of 20 frames.

8 Compression

Besides the input video V , the progressive loop representation L
needs only four per-pixel parameters (s′x, sx, px, ax). These
parameters have strong spatial coherence as visualized in Figure 11.
We store the parameters into a four-channel PNG images, with
activation thresholds ax quantized to 8 bits. As shown in Table 1,
the compressed representation is about 200 KB per video, a small
fraction of the video itself.

Because the progressive loop spectrum L accesses only a subset
of the input video, we repack this content into a shorter video V̄
of maxx px frames, by evaluating the initial frames of the most-
dynamic loop L1:

V̄ (x, ti) = V
(
x, φ1(x, ti)

)
, 0 ≤ ti < max

x
px.

The time-mapping function is then extremely simple:

φ̄(x, t) = t mod px.

Note that it becomes unnecessary to store the loop start times sx,
which have high entropy. The static frames are adjusted as
s̄′x = φ̄(x, s′x). We reduce entropy in unused portions of the
shortened video by freezing the last pixel of each loop (Figure 10).
As shown by the compression results in the right columns of Table 1,
this remapped video representation (V̄ together with s̄′x, px, ax)
achieves significant space savings.

9 Results and discussion

Our procedure for constructing progressive video loops is fully
automatic, and we have tested it on over a hundred videos. This
includes a variety of casually shot videos acquired by us (filmed
using handheld or tripod-mounted cameras and smartphones) and
videos from five related works [Schödl et al. 2000; Kwatra et al.
2003; Tompkin et al. 2011; Bai et al. 2012; Joshi et al. 2012]. We
enable local alignment for a few of the videos from Bai et al. [2012].

For our tests, we limit input videos to 5 seconds or less at up to 30
frames/second. We compute most results at a resolution of 960×540
pixels, downsampling the input video if necessary. As shown in
Table 1, the processing time for videos of this size is about 8–10
minutes. All our examples are computed on a 2.5GHz Intel Xeon
L5420 (2 processor) PC with 16 GB of memory.

In supplemental material we include video results at HD resolution
(1920×1080). These are obtained by upsampling the looping
parameters computed at the lower resolution (with nearest-neighbor
interpolation) and using the resulting time-mapping on the HD input.

Time Compressed (KB) Compressed remapped (KB) Compression
Name Figure Resolution (min) Video V (s′x, sx, px, ax) Remapped V̄ (s̄′x, px, ax) ratio

Pool 11a 960x540 10 4,415 189 1,930 69 0.43
Drummers 11b 960x540 9 1,952 202 532 90 0.29
Waterwheel 11c 960x540 9 4,822 183 3,182 72 0.65
Aquarium 11d 960x540 8 2,065 238 887 98 0.43
Flowers 11e 960x540 9 4,386 198 1,498 95 0.35
Pinatas 11f 960x540 10 5,165 153 2,473 66 0.48
Flags 11g 960x540 10 3,780 164 1,585 59 0.42
Citylights 11h 960x540 6 1,767 192 736 75 0.41

Table 1: Timing and compression results. The optimized parameters (static frame s′x, loop start frame sx, period px, and activation
threshold ax) are encoded into a PNG file. Remapping the video significantly reduces size while preserving the ability to adapt dynamism.

Figure 9 shows a selection of eight results using a diverse set of input
videos. We show the static image corresponding to the least-dynamic
loop L0 and the per-pixel looping parameters: the period px, start
frame sx, and activation parameter ax. Note how these parameter
maps capture and encode a spatiotemporal segmentation of the video.
Please see our supplemental video to appreciate these results and to
see more examples.

The results show that there are generally a few dominant periods,
which are a function of the scene’s motion; however, within one
period there are often many staggered per-pixel start times. We
have found that having both per-pixel periods and start times
greatly increases the quality of the results, as demonstrated in our
supplemental video.

Our supplemental video also shows how a user can explore a
spectrum of dynamic imagery by interactively varying the level
of dynamism of the looping video. The extremes of the spectrum
produce a static image or a fully looping video, respectively, while
values in the middle produce cinemagraph-type imagery. We also
show how a user can override the prioritization encoded in the
activation parameter, by changing the looping state of regions using
mouse clicks and strokes.

Lastly, our supplemental video shows results with data from five pre-
vious works [Schödl et al. 2000; Kwatra et al. 2003; Tompkin et al.
2011; Bai et al. 2012; Joshi et al. 2012] along with side-by-side com-
parisons. The first two are automatic schemes like ours, and on their
datasets our results are similar in quality or have slightly fewer ar-
tifacts (especially blurring and ghosting). The next three schemes
require user interaction, and our results are comparable in quality
while requiring no interaction. Of course, without a user in the
loop, we do not achieve the same semantics. Some of the videos of
Bai et al. are challenging due to large motions; where our automated
alignment fails we still produce results with good quality but differ-
ent semantics. Possibly our results could be improved with a more
sophisticated optical flow method.

Compared to the approaches of Schödl et al. [2000] and Kwatra et al.
[2003], our framework sacrifices flexibility for performance by
encoding only a single, contiguous loop per pixel. Nonetheless, our
results are quite good. Notably, having fewer temporal transitions
leads to larger spatiotemporal regions that are coherent with the
input video and are therefore automatically free of inconsistencies.
Our contribution is to extend beyond these textures to more general
videos consisting of many different moving elements as well as
static and non-loopable elements, and to free the user from having
to select a specific input interval and looping period. Achieving
high-quality transitions comes largely from the fact that we optimize
both loop periods and start times at each pixel. What we lose in
temporal variety by having only a single loop per-pixel, we gain by
having different loop periods across pixels. In other words, having
multiple loops as in video textures [Schödl et al. 2000] may be more
important for a perception of variety when the loop is global across
the image.

10 Conclusions and future work

In this work, we presented a method for creating a spectrum of
looping videos from short input videos. As a result of per-pixel
optimization of the loop period and start time, our method can create
a high-quality, fully looping video without any user input. An added
benefit is the ability to find many subtle but interesting loops that are
not easy to discover manually. Our optimization also models scene
liveliness and creates a segmentation that encodes spatial regions
that loop contiguously. Along with this, we compute a default
prioritization for transitioning these regions from static to dynamic
with minimal visual artifacts.

A user may interactively override this prioritization while still
exploiting a segmentation structure that conveniently identifies good
independently looping regions. With simple interactions, a user can
create looping videos with a desired amount of scene liveliness. Our
optimization is fairly efficient and produces results that are highly
compressible. We have addressed many challenges in creating
progressively dynamic videos; however, our results also suggest
several areas for future work.

Limitations In some cases our optimization produces results that
have no perceivable artifacts, yet the semantic relationship between
objects is disturbed. Post-hoc user interaction can compensate
for many of these semantic errors. An interesting opportunity for
future work is to provide lightweight interaction for steering the
optimization directly.

Stabilization errors can introduce subtle unintended motion which is
interpreted as scene motion and is therefore captured in a video loop.
Stabilization is an active research area, so future improvements can
help reduce these artifacts.

Some slowly moving scene elements, such as smoke or steam,
cannot form good loops within the longest periods we consider.
Looping these elements would require a longer input video and a
more efficient optimization strategy such as a hierarchical solver
[Agarwala et al. 2005].

Our current discrete subsampling of periods (multiples of four) can
create suboptimal loops. This might be overcome by fine tuning
loop periods and start times using a fast postprocess.

Residual seams are sometimes visible for elements with low-
frequency spatial content such as clouds. In these cases, the spatial
support of our current crossfading is too narrow to adequately diffuse
the discontinuities. A Laplacian or Poisson blend [Burt and Adelson
1983; Mahajan et al. 2009] could be used instead.

Although our method adapts to diverse video content and thus
minimizes the need for “parameter tweaking”, there are cases
where adjusting the spatial cost parameter β improves results. The
fundamental reason is that “texture-like” and “object-like” content
have different gradient distributions. We believe it should be possible
to learn a data-dependent function for β by leveraging ideas from
content-adaptive image priors [Cho et al. 2010].

Static image (loop L0) Loop period px Start frame sx Activation threshold ax

Figure 11: Progressive video loop results, showing the static image corresponding to the least-dynamic loop L0 and the per-pixel looping
parameters. All parameters are visualized using a colormap ranging from green through yellow to red as values increase, with light gray
indicating static pixels. The activation parameter ax in the rightmost column encodes the level of dynamism at which each pixel transitions
from static to looping. Please refer to the supplemental material to see the progression of video loops.

New functionalities Progressive dynamism could be generalized
to control motion amplitude [Wu et al. 2012] rather than just atom-
ically turning it on and off. Another improvement is to anticipate
subsequent spatiotemporal feathering when estimating temporal cost
near mismatched features. We know that spatiotemporal feathering
reduces visible artifacts, but currently our optimization does not
solve for labels that will give the optimal feathered results. Lastly,
we could incorporate optical flow in the spatiotemporal consistency
term to ensure more consistent motion between neighboring pixels.

For new user-facing features, we are interested in automatic creation
of mirror loops [Joshi et al. 2012] in addition to ordinary loops. We
would also like to use a design gallery [Marks et al. 1997] type
of approach to let a user quickly select from an interesting set of
automatically created results with different levels of dynamism or
different static and looping regions.

Acknowledgments

We thank Sing Bing Kang for helpful discussions, David Forsyth
for his support, the reviewers for their attentive comments, and the
authors of previous work for making their data freely available.

References
AGARWALA, A., DONTCHEVA, M., AGRAWALA, M., DRUCKER,

S., COLBURN, A., CURLESS, B., SALESIN, D., and COHEN, M.
2004. Interactive digital photomontage. ACM Trans. Graph., 23
(3):294–302.

AGARWALA, A., ZHENG, K. C., PAL, C., AGRAWALA, M.,
COHEN, M., CURLESS, B., SALESIN, D., and SZELISKI, R.
2005. Panoramic video textures. ACM Trans. Graph., 24(3).

BAI, J., AGARWALA, A., AGRAWALA, M., and RAMAMOORTHI,
R. 2012. Selectively de-animating video. ACM Trans. Graph.,
31(4).

BECK, J. and BURG, K. 2012. Cinemagraphs. http://
cinemagraphs.com/.

BENNETT, E. P. and MCMILLAN, L. 2007. Computational time-
lapse video. ACM Trans. Graph., 26(3).

BOYKOV, Y., VEKSLER, O., and ZABIH, R. 2001. Fast approximate
energy minimization via graph cuts. IEEE Trans. on Pattern Anal.
Mach. Intell., 23(11).

BURT, P. J. and ADELSON, E. H. 1983. A multiresolution spline
with application to image mosaics. ACM Trans. Graph., 2(4).

CHO, T. S., JOSHI, N., ZITNICK, C. L., KANG, S. B., SZELISKI,
R., and FREEMAN, W. T. 2010. A content-aware image prior. In
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

CHUANG, Y.-Y., GOLDMAN, D. B., ZHENG, K. C., CURLESS, B.,
SALESIN, D. H., and SZELISKI, R. 2005. Animating pictures
with stochastic motion textures. ACM Trans. Graph., 24(3).

COHEN, M. and SZELISKI, R. 2006. The moment camera. IEEE
Computer, 39(8).

COUTURE, V., LANGER, M., and ROY, S. 2011. Panoramic stereo
video textures. ICCV, pages 1251–1258.

FREEMAN, W. T., ADELSON, E. H., and HEEGER, D. J. 1991.
Motion without movement. ACM SIGGRAPH Proceedings.

HORN, B. K. P. and SCHUNK, B. G. 1981. Determining optical
flow. Artificial Intelligence, 17:185–203.

JOSHI, N., MEHTA, S., DRUCKER, S., STOLLNITZ, E., HOPPE,
H., UYTTENDAELE, M., and COHEN, M. 2012. Cliplets:
Juxtaposing still and dynamic imagery. Proceedings of UIST.

KOLMOGOROV, V. and ZABIH, R. 2004. What energy functions
can be minimized via graph cuts? IEEE Trans. on Pattern Anal.
Mach. Intell., 26(2).

KWATRA, V., SCHÖDL, A., ESSA, I., TURK, G., and BOBICK, A.
2003. Graphcut textures: image and video synthesis using graph
cuts. ACM Trans. Graph., 22(3):277–286.

LIU, C., TORRALBA, A., FREEMAN, W. T., DURAND, F., and
ADELSON, E. H. 2005. Motion magnification. ACM Trans.
Graph., 24(3):519–526.

MAHAJAN, D., HUANG, F.-C., MATUSIK, W., RAMAMOORTHI,
R., and BELHUMEUR, P. 2009. Moving gradients: A path-based
method for plausible image interpolation. ACM Trans. Graph.,
28(3):42.

MARKS, J., ANDALMAN, B., BEARDSLEY, P. A., FREEMAN, W.,
GIBSON, S., HODGINS, J., KANG, T., MIRTICH, B., PFISTER,
H., RUML, W., RYALL, K., SEIMS, J., and SHIEBER, S. 1997.
Design galleries: A general approach to setting parameters for
computer graphics and animation. ACM SIGGRAPH Proceedings.

PRITCH, Y., RAV-ACHA, A., and PELEG, S. 2008. Nonchronologi-
cal video synopsis and indexing. IEEE Trans. on Pattern Anal.
Mach. Intell., 30(11).

RAV-ACHA, A., PRITCH, Y., LISCHINSKI, D., and PELEG, S. 2007.
Dynamosaicing: Mosaicing of dynamic scenes. IEEE Trans. on
Pattern Anal. Mach. Intell., 29(10).

SCHÖDL, A., SZELISKI, R., SALESIN, D. H., and ESSA, I. 2000.
Video textures. In SIGGRAPH Proceedings, pages 489–498.

SUNKAVALLI, K., MATUSIK, W., PFISTER, H., and
RUSINKIEWICZ, S. 2007. Factored time-lapse video. ACM
Trans. Graph., 26(3).

TOMPKIN, J., PECE, F., SUBR, K., and KAUTZ, J. 2011. Towards
moment images: Automatic cinemagraphs. In Proc. of the 8th
European Conference on Visual Media Production (CVMP 2011).

WANG, J., BHAT, P., COLBURN, R. A., AGRAWALA, M., and
COHEN, M. F. 2005. Interactive video cutout. ACM Trans.
Graph., 24(3).

WU, H.-Y., RUBINSTEIN, M., SHIH, E., GUTTAG, J., DURAND,
F., and FREEMAN, W. 2012. Eulerian video magnification for
revealing subtle changes in the world. ACM Trans. Graph., 31(4).

http://cinemagraphs.com/
http://cinemagraphs.com/

