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Abstract

Image processing operations like blurring, inverse convolution, and
summed-area tables are often computed efficiently as a sequence of
1D recursive filters. While much research has explored parallel recur-
sive filtering, prior techniques do not optimize across the entire filter
sequence. Typically, a separate filter (or often a causal-anticausal
filter pair) is required in each dimension. Computing these filter
passes independently results in significant traffic to global memory,
creating a bottleneck in GPU systems. We present a new algorithmic
framework for parallel evaluation. It partitions the image into 2D
blocks, with a small band of additional data buffered along each
block perimeter. We show that these perimeter bands are sufficient to
accumulate the effects of the successive filters. A remarkable result
is that the image data is read only twice and written just once, inde-
pendent of image size, and thus total memory bandwidth is reduced
even compared to the traditional serial algorithm. We demonstrate
significant speedups in GPU computation.
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1 Introduction

Linear filtering (i.e. convolution) is commonly used to blur, sharpen,
or downsample images. A direct implementation evaluating a filter
of support d on an h×w-image has cost O(hwd). For filters with a
wide impulse response, the Fast Fourier Transform reduces the cost
to O(hw log hw), regardless of filter support. Often, similar results
can be obtained with a recursive filter, in which the computation
reuses prior outputs, e.g. yi = xi − 1

2
yi−1. Such feedback allows

for an infinite impulse response (IIR), i.e. an effectively large filter
support, at reduced cost O(hwr), where the number r of recursive
feedbacks (a.k.a. the filter order) is small relative to d. Recursive
filters are a key computational tool in several applications:

• Low-pass filtering. Filters like Gaussian kernels are well
approximated by a pair of low-order causal and anticausal
recursive filters [e.g. Deriche 1992; van Vliet et al. 1998].

• Inverse convolution. If an image X is the result of convolving
an image V with a compactly supported filter F , i.e.X = V ∗F ,
the original image can be recovered as V = X ∗F−1. Although
the inverse filter F−1 generally has infinite support, it can be
expressed exactly as a sequence of low-order recursive filters.

• Summed-area tables. Such tables store the sum of all pixel
values above and to the left of each pixel [Crow 1984]. They
have many uses in graphics and vision. On a GPU, summed-area
tables are typically computed with prefix sums over all columns
then all rows of the image [Hensley et al. 2005]. Crucially, a
prefix sum is a special case of a 1D first-order recursive filter.

These applications all have in common the fact that they invoke a
sequence of recursive filters. First, a 2D operation is decomposed
into separate 1D filters. Second, except for the case of summed-
area tables, one usually desires a centered and well-shaped impulse
response function, and this requires the combination of a causal and
anticausal filter pair in each dimension.

As an example, consider the problem of finding the coefficient im-
age V such that reconstruction with the bicubic B-spline interpolates
the pixel values of a given image X . (Such a preprocess is re-
quired in techniques for high-quality image filtering [Blu et al. 1999,
2001].) The coefficients and image are related by the convolution
X = V ∗ 1

6
[1 4 1] ∗ 1

6
[1 4 1]T . The inverse convolution can be

decomposed into four successive 1D recursive filters:

yi,j = 6xi,j + αyi−1,j , (causal in i)
zi,j = −αyi,j + αzi+1,j , (anticausal in i)
ui,j = 6zi,j + αui,j−1, (causal in j)
vi,j = −αui,j + αvi,j+1, with α=

√
3−2. (anticausal in j)

Although the parallelization of such recursive filters is challenging
due to the many feedback data dependencies, efficient algorithms
have been developed as reviewed in section 2.

However, an important element not considered in previous work is
optimization over the entire sequence of recursive filters. If each
filter is applied independently as is common, the entire image must
be read from global memory, and then written back each time. Due
to the low computational intensity of recursive filters, this memory
traffic becomes a clear bottleneck. Because the data access pattern
is different in successive filters (down, up, right, left), the different
computation passes cannot be directly fused.

Contribution In this paper, we present a new algorithmic frame-
work to reduce memory bandwidth by overlapping computation over
the full sequence of recursive filters, across both multiple dimen-
sions and causal-anticausal pairs. The resulting algorithm scales
efficiently to images of arbitrary size.

Our approach partitions the image into 2D blocks of size b×b. This
blocking serves several purposes. Inter-block parallelism provides
sufficient independent tasks to hide memory latency. The blocks fit in
on-chip memory for fast intra-block computations. And, the square
blocks enables efficient propagation of data in both dimensions.

We associate a set of narrow rectangular buffers with each block’s
perimeter. These buffers’ widths are the same as the filter order r.
Intuitively, the goal of these buffers is to measure the filter response
of each block in isolation (i.e. given zero boundary conditions), as
well as to efficiently propagate the boundary conditions across the
blocks given these measured responses.

The surprising result is that we are able to accumulate, with a single
block-parallel pass over the input image, all the necessary responses
to the filter sequence (down, up, right, left), so as to efficiently
initialize boundary conditions for a second block-parallel pass that
produces the final solution. Thus, the source image is read only twice,
and written just once. A careful presentation requires algebraic
derivations, and is detailed in sections 4–5.

Our framework also benefits the computation of summed-area tables
(section 6). Even though in that setting there are no anticausal filters,
the reduction in bandwidth due solely to the overlapped processing
of the two dimensions still provides performance gains.
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2 Related work

Prefix sums and scans A prefix sum, yi = xi + yi−1, is a
simple case of a first-order recursive filter. A scan generalizes the
recurrence using an arbitrary binary associative operator. Parallel
prefix sums and scans are important building blocks for numerous
algorithms [Iverson 1962; Stone 1971; Blelloch 1989; Sengupta et al.
2007]. Recent work has explored the efficient GPU implementation
of scan operations using optimization strategies such as hierarchical
reduction, bandwidth reduction through redundant computation,
and serial evaluation within shared memory [Sengupta et al. 2007;
Dotsenko et al. 2008; Merrill and Grimshaw 2009]. An optimized
implementation comes with the CUDPP library [2011].

Recursive filtering Recursive filters generalize prefix sums by
considering a weighted combination of prior outputs as indicated in
equation (1). This generalization can in fact be implemented as a
scan operation with appropriately redefined basic operators [Blelloch
1990]. For recursive filtering of images on the GPU, Ruijters and
Thévenaz [2010] exploit parallelism across rows and columns. To
expose parallelism within each row and each column, we build on
the work of Sung and Mitra [1986, 1992]. The idea is to partition
the input into blocks and decompose the computation over each
block into two parts: one based only on the block data and assuming
zero initial conditions, and the other based only on initial conditions
and assuming zero block data (see section 4). We then overlap
computation between successive filters passes. As noted by Sung
and Mitra, there is also related work on pipelined circuit evaluation
of recursive filters [e.g. Parhi and Messerschmitt 1989], but such
approaches are more expensive on general-purpose computers.

Tridiagonal systems The forward- and back-substitution passes
associated with solving banded linear systems by LU-decomposition
are related to recursive filters, particularly for Toeplitz matrices,
although the resulting L and U matrices have nonuniform entries at
least near the domain boundaries. Forward- and back-substitution
passes can be implemented with parallel scan operations [Blelloch
1990]. On GPUs, fast tridiagonal solvers process rows and columns
independently with cyclic reduction [Hockney and Jesshope 1981],
using either pixel-shader passes over global memory [Kass et al.
2006], or within shared memory using a single kernel [Zhang
et al. 2010; Göddeke and Strzodka 2011]. The use of shared
memory imposes a limit on the maximum image size. Recent
work explores overcoming this limitation [Lamas-Rodrígues et al.
2011]. Our blocking strategy is able to overlap causal and anticausal
computations to run efficiently on images of arbitrary size. We hope
it can be applied it to general tridiagonal systems in future work.

Summed-area tables The typical approach for efficiently gener-
ating summed-area tables on the GPU is to compute parallel prefix
sums over all columns, and then over all rows of the result. These
prefix sums can be computed with recursive doubling using multi-
ple passes of a pixel shader [Hensley et al. 2005]. As previously
mentioned, recent prefix-sum algorithms reduce bandwidth by using
GPU shared memory [Harris et al. 2008; Hensley 2010]. In fact,
summed-area tables can be computed with little effort using the
high-level parallel primitives of the CUDPP library and publicly
available matrix transposition routines.

3 Problem definition

Causal recursive filters of order r are characterized by a set of r feed-
back coefficients ak in the following manner. Given a prologue vec-
tor p ∈ Rr (i.e., the initial conditions) and an input vector x ∈ Rh,
of any size h, the filter F : Rr× Rh → Rh produces the output
vector y = F (p,x) with the same size as the input x:

yi = xi −
r∑

k=1

akyi−k, i ∈ {0, . . . , h−1}(1)

where on the right-hand side of (1) we set as initial conditions

y−k = pr−k, k ∈ {1, . . . , r}.(2)

The definition of an anticausal filter R : Rh×Rr→ Rh of order r is
analogous. Given input vector y ∈ Rh and epilogue vector e ∈ Rr ,
the output vector z = R(y, e) is defined by

zi = yi −
r∑

k=1

a′kzi+k, i ∈ {0, . . . , h−1},(3)

where on the right-hand side of (3) we set as initial conditions

zh+k−1 = ek−1, k ∈ {1, . . . , r}.(4)

Causal and anticausal filters frequently appear in pairs. In such cases,
we are interested in computing

z = R(y, e) = R
(
F (p,x), e

)
.(5)

In image processing applications, it is often desirable to apply filters
independently to each row and to each column of an image (i.e., in a
separable way). To process all image columns, we extend the defi-
nition of F to operate independently on all corresponding columns
of an r × w prologue matrix P and an h× w input matrix X . The
extended filter is described by F : Rr×w× Rh×w→ Rh×w.

For row processing, we define a new extended filter F T that
operates independently on corresponding rows of an h× w input
matrix X and an h × r prologue matrix P ′. This transposed
filter is described by F T : Rh×r× Rh×w→ Rh×w. Anticausal
filters can also be extended to operate independently over multiple
columns, R : Rh×w× Rr×w→ Rh×w, and over multiple rows,
RT : Rh×w× Rh×r→ Rh×w.

With these definitions, we are ready to formulate the problem of
applying the full sequence of four recursive filters (down, up, right,
left) to an image. As shown in figure 1, given an input matrix X
and the prologues (P , P ′) and epilogues (E, E′) that surround its
columns and rows, we wish to compute matrix V , where

(6)
Y = F (P,X), Z = R(Y,E),

U = F T(P ′, Z), V = RT(U,E′).

In particular, we want to take advantage of the massive parallelism
offered by modern GPUs.

Figure 1: The problem is to compute for an image X a sequence
of four 1D recursive filters (down, up, right, left), with boundary
conditions given by prologue P ,P ′ and epilogue E,E′ matrices.



Design goals on GPUs Modern GPUs are composed of p stream-
ing multiprocessors (SMs), each containing c computational cores.
For example, our test hardware (an NVIDIA GTX 480) con-
tains p = 15 SMs, each with c = 32 cores. Because the cores in
each SM execute instructions in lockstep, divergence in execution
paths should be minimized for maximum performance. SMs execute
independently from each other, but typically run the same program,
called a kernel, operating over distinct parts of the input.

Although bandwidth to global memory is higher than on a CPU,
access must be coalesced for maximum performance. Ideally,
all cores should access aligned, consecutive memory addresses.
Furthermore, hiding memory latency requires a large number of
independent tasks to be available for scheduling. Each SM contains
a small amount of fast memory (48KB in our case) shared among its
cores. This memory is typically used as a managed cache to reduce
the number of expensive accesses to global memory.

Mapping recursive filtering to GPU architectures presents several
challenges. One is the dependency chain in the computation, which
reduces the number of tasks that can be executed independently.
The other problem is the high bandwidth-to-FLOP ratio, particularly
in low-order filters. Without a large number of schedulable tasks
to hide memory latency, processing cores become idle waiting for
memory transactions to complete, and performance suffers.

Given these considerations, the main design goal of our work is
to increase the amount of parallelism without increasing the total
memory bandwidth required to complete the computation.

4 Prior parallelization strategies revisited

In large images, the independence of column and row processing
offers a significant level of parallelism. With that in mind, here is
the approach followed by Ruijters and Thévenaz [2010]:

Algorithm RT

RT.1 In parallel for each column in X, apply F sequentially accord-
ing to (1). Store Y .

RT.2 In parallel for each column in Y , apply R sequentially accord-
ing to (3). Store Z.

RT.3 In parallel for each row in Z, apply F T sequentially according
to (1). Store U .

RT.4 In parallel for each row in U , apply RT sequentially according
to (3). Store V .

Algorithm RT uses bandwidth proportional to 8hw, and completes
in O(hw

cp 4r) steps. The number of tasks that can be performed in
parallel is limited by h or w. In a GPU with 15 SMs and 32 cores
per SM, we need at least 480 rows and columns to keep all cores
busy. Much larger images are required for effective latency hiding.

Roadmap for improvements A common approach to improving
performance is to restructure the computation so memory accesses
are coalesced (during row as well as column processing). This is
one of the reasons we employ a blocking strategy (section 4.1). We
introduce inter-block parallelism by adapting the method of Sung
and Mitra [1986] to modern GPU architectures (section 4.3). The
inter-block parallelism also lets us fuse computations, thereby
reducing traffic to global memory (section 4.4).

The fundamental contributions of our work begin in section 5.1,
where we develop an overlapping strategy for merging causal and
anticausal filtering passes. The idea culminates in section 5.2, where
we present an overlapped algorithm that merges row and column
processing as well. Finally, in section 6 we specialize it to compute
summed-area tables. The resulting reduction in memory bandwidth
combined with the high degree of parallelism enable our overlapped
algorithms to outperform prior approaches.
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Figure 2: (a) 2D block notation showing a block and its boundary
data from adjacent blocks. (b) 1D block notation, showing vectors
as rows for layout reasons.

4.1 Block notation

We partition the image into blocks of b× b elements, where b
matches the number of threads executed in lockstep (the warp size)
within an SM, i.e., b = c = 32 throughout our work.

As shown in figure 2(a), we define operators to select a block and its
boundary data in adjacent blocks. Bm,n(X) identifies in matrix X
the b×b data block with index (m,n). Pm−1,n(X) extracts the r×b
submatrix in the same shape and position as the column-prologue to
blockBm,n(X). Similarly,Em+1,n(X) denotes the r×b submatrix
in the position of the column-epilogue to block Bm,n(X). For row
processing, transposed operators P T

m,n−1(X) and ET
m,n+1(X) are

defined accordingly.1

It will often be useful to select prologue- and epilogue-shaped
submatrices from a b × b block. To that end, we define a tail
operation T (for prologues) and a head operation H (for epilogues).
Transposed counterparts T T and HT are defined analogously:

(7)
Pm,n(X) = T

(
Bm,n(X)

)
, Em,n(X) = H

(
Bm,n(X)

)
,

P T
m,n(X) = T T(Bm,n(X)

)
, ET

m,n(X) = HT(Bm,n(X)
)
.

For simplicity, when describing unidimensional operations, we will
drop the vertical block index n, as shown in figure 2(b).

Given these definitions, the blocked version of the problem formula-
tion in (6) is to compute all output blocks Bm,n(V ) where:

(8)

Bm,n(Y ) = F
(
Pm−1,n(Y ), Bm,n(X)

)
,

Bm,n(Z) = R
(
Bm,n(Y ), Em+1,n(Z)

)
,

Bm,n(U) = F T (P T
m,n−1(U), Bm,n(Z)

)
,

Bm,n(V ) = RT (Bm,n(U), ET
m,n+1(V )

)
.

All algorithms described from now on employ blocking to guarantee
coalesced memory access patterns. Typically, each stage loads an
entire block of data to shared memory, performs computation in
shared memory, and finally writes the data back to global memory.

4.2 Important properties

We first introduce key properties of recursive filtering that will
significantly simplify the presentation. The first property of interest
is superposition, and it comes from linearity. The effects of the
input and the prologue (or epilogue) on the output can be computed
independently and later added together:

F (p,x) = F (0,x) + F (p,0),(9)
R(y, e) = R(y,0) +R(0, e).(10)

1Note that PT(·) is not the transpose of P (·) (but has the same shape).



Notice that the first term F (0,x) does not depend on the prologue,
whereas the second term F (p,0) does not depend on the input.
Similar remarks hold for R. We will use superposition extensively
to split dependency chains in the computation.

Because filtering operations are linear, we can express them as
matrix products. This will help reveal useful associative relations.
For any d, let Id denote the identity matrix of size d× d. Then,

(11)

F (p,0) = F (Ir,0)p = AFP p, AFP = F (Ir,0),

R(0, e) = R(0, Ir) e = ARE e, ARE = R(0, Ir),

F (0,x) = F (0, Ib)x = AFB x, AFB = F (0, Ib), and
R(y,0) = R(Ib,0)y = ARB y, ARB = R(Ib,0).

Here, AFB and ARB are b × b matrices, AFP is b × r, and ARE

is b × r. Notice that whereas the columns of AFB and ARB are
shifted impulse responses (which allows for efficient storage), the
columns of AFP and ARE are generally not shifts of each other.

Row processing is analogous, except for transposition. This is the
justification for our notation choice:

(12)
F T(pT ,0) = pT (AFP )T , RT(0, eT ) = eT (ARE )T ,

F T(0,xT ) = xT (AFB )T , RT(yT ,0) = yT (ARB )T .

A trivial property of matrix product lets us write

T (Ap) = T (A)p and H(A e) = H(A) e.(13)

Finally, as shown in appendix A,

T (AFP ) = Ab
F and H(ARE ) = Ab

R,(14)

where Ab
F , A

b
R are precomputed r×r-matrices that depend only on

the feedback coefficients ak, a′k of filters F and R, respectively.

4.3 Inter-block parallelism

We start the description in one dimension for simplicity. When
attempting to perform block computations independently, we are
faced with the difficulty that each output block

Bm(y) = F
(
Pm−1(y), Bm(x)

)
(15)

depends on the prologue Pm−1(y), i.e., on the tail end of the
previous output block, T

(
Bm−1(y)

)
. This creates a dependency

chain that we must work around.

By the superposition property (9), we can decompose (15) as

Bm(y) = F
(
0, Bm(x)

)
+ F

(
Pm−1(y),0

)
.(16)

The first term can be computed independently for each block (inter-
block parallelism) because it assumes a zero prologue. We use
symbol ȳ to denote this incomplete causal output:

Bm,n(ȳ) = F
(
0, Bm(x)

)
,(17)

where each block is filtered as if its prologue was null.

The second term of (16) is more challenging due to the dependency
chain. Nevertheless, as soon as the dependency is satisfied, each
element in a block can be computed independently (intra-block
parallelism). To see this, apply property (11):

F (Pm−1(y),0) = F (Ir,0)Pm−1(y)(18)
= AFP Pm−1(y)(19)

and recall that AFP depends only on the feedback coefficients.

Sung and Mitra [1986] perform unidimensional recursive filtering
on a CRAY X-MP computer. Their algorithm works in two stages.
First, each processor works on a separate block, computing Bm(ȳ)
sequentially. Second, the blocks are corrected sequentially, accord-
ing to (16) and (19), with each block’s elements updated in parallel
across processors. Although this algorithm requires twice the band-
width and computation of the sequential algorithm, the amount of
available parallelism is increased by a factor h/b (i.e., the number
of blocks) in the first stage, and by a factor b in the second stage.

Inspired by the bandwidth reduction strategy described by Dotsenko
et al. [2008] in the context of scan primitives, we proceed differently.
Notice that the dependency chain only involves prologues. Using
properties (11), (13), and (14), we can make this apparent:

Pm(y) = T
(
Bm(y)

)
= T

(
F (Pm−1(y), Bm(x))

)
(20)

= T
(
F
(
0, Bm(x)

))
+ T

(
F
(
Pm−1(y),0)

)
(21)

= T
(
Bm(ȳ)

)
+ T

(
F (Ir,0)Pm−1(y)

)
(22)

= Pm(ȳ) + T (AFP )Pm−1(y)(23)

= Pm(ȳ) +Ab
F Pm−1(y).(24)

Therefore, in contrast to the work of Sung and Mitra [1986], we
refrain from storing the entire blocks Bm(ȳ). Instead, we store only
the incomplete prologues Pm(ȳ). Equation (24) then allows us to
sequentially compute one complete prologue from the previous by
means of multiplication by the r × r matrix Ab

F and an r-vector
addition with the incomplete Pm(ȳ). The resulting algorithm is:

Algorithm 1

1.1 In parallel for all m, compute and store each Pm(ȳ).
1.2 Sequentially for eachm, compute and store the Pm(y) accord-

ing to (24) and using the previously computed Pm(ȳ).
1.3 In parallel for all m, compute and store output block Bm(y)

using (15) and the previously computed Pm−1(y).

The algorithm does some redundant work by computing the recursive
filter within each block in both stages 1.1 and 1.3. However, the
reduction in memory bandwidth due to not writing the block in
stage 1.1 provides a net benefit.

Although stage 1.2 is still sequential, it typically executes faster
than the remaining stages. This is because we focus on small filter
orders r with block size b large in comparison. This causes stage 1.2
to account for a small fraction of the total I/O and computation.
Although we have not experienced a need for it, a hierarchical
parallelization strategy is possible, as outlined in section 7.

The derivation for the anticausal counterpart to algorithm 1 follows
closely along the same lines and is omitted for brevity. We
include the anticausal versions of equations (15), (17), and (24)
for completeness. Assuming z = R(y, e):

Bm(z) = R
(
Bm(y), Em+1(z)

)
(25)

Bm(z̄) = R
(
Bm(y),0

)
(26)

Em(z) = Em(z̄) +Ab
REm+1(z).(27)

Row operations are analogous and are also omitted.

When applying causal and anticausal filter pairs to process all
columns and rows in an image, the four successive applications
of algorithm 1 require O

(
hw
cp (8 + 4 1

b
(r2+r)

)
steps to complete.

The hw/b tasks that can be performed independently provide the
scheduler with sufficient freedom to hide memory access latency.

The repeated passes over the input increase memory bandwidth
to (12 + 16r/b)hw, which is significantly more than the 8hw
required by algorithm RT. Fortunately, we can reduce bandwidth by
employing the kernel fusion technique.



4.4 Kernel fusion

As it is known in the literature [Kirk and Hwu 2010], kernel fusion
is an optimization that consists of directly using the output of one
kernel as the input for the next without going through global memory.
The fused kernel executes the code of both original kernels, keeping
intermediate results in shared memory.

Using algorithm 1 for all filters, we fuse the last stage of F with
the first stage of R. We also fuse the last stage of F T with the
first stage of RT. Combined, the fusion of causal and anticausal
processing lowers the required bandwidth to (10 + 16r/b)hw. Row
and column processing are also fused. The last stage of R and the
first stage of F T are combined to further reduce bandwidth usage
to (9 + 16r/b)hw.

The resulting algorithm is presented below:

Algorithm 2

2.1 In parallel for all m and n, compute and store the Pm,n(Ȳ ).
2.2 Sequentially for each m, but in parallel for each n, compute

and store the Pm,n(Y ) according to (24) and using the previ-
ously computed Pm,n(Ȳ ).

2.3 In parallel for all m and n, compute and store Bm,n(Y )
using the previously computedPm−1,n(Y ). Then immediately
compute and store the Em,n(Z̄).

2.4 Sequentially for each m, but in parallel for each n, compute
and store the Em,n(Z) according to (27) and using the
previously computed Em,n(Z̄).

2.5 In parallel for all m and n, compute and store Bm,n(Z) using
the previously computed Em+1,n(Z). Then immediately
compute and store the P T

m,n(Ū).
2.6 Sequentially for each n, but in parallel for each m, compute

and store the P T
m,n(U).

2.7 In parallel for all m and n, compute and store Bm,n(U) using
the previously computed P T

m,n−1(U). Then compute and store
the ET

m,n(V̄ ).
2.8 Sequentially for each n, but in parallel for each m, compute

and store the ET
m,n(V ).

2.9 In parallel for all m and n, compute and store Bm,n(V ) using
the previously computed ET

m,n+1(V ).

The combination of coalesced memory accesses, increased paral-
lelism, and kernel fusion make algorithm 2 substantially faster than
algorithm RT (see section 8).

We could aggressively reduce I/O even further by refraining from
storing any of the intermediary results Y , Z, and U at stages 2.3,
2.5, and 2.7, respectively. These can be recomputed from X
and the appropriate prologues/epilogues when needed. Bandwidth
would decrease to (6 + 22r/b)hw. (Notice that this is even less
than the sequential algorithm RT!) Unfortunately, the repeated
computation of Y , Z, and U increases the total number of steps
to O

(
hw
cp (14r + 4 1

b
(r2+r)

)
, and offsets the gains from the band-

width reduction. Even though the tradeoff is not advantageous for
our test hardware, future GPU generations may tip the balance in
the other direction.

Conceptually, buffers Pm,n(Ȳ ), Em,n(Z̄), P T
m,n(Ū), ET

m,n(V̄ )
can be thought of as narrow bands around the perimeter of each
block Bm,n(X). However, these buffers are stored compactly in
separate data arrays to maintain efficient memory access.

5 Overlapping

Our main contribution is the development of an overlapping tech-
nique which achieves further bandwidth reductions without any
substantial increase in computational cost.

5.1 Causal-anticausal overlapping

One source of inefficiency in algorithm 2 is that we wait for
the complete causal output block Bm,n(Y ) in stage 2.3 before
we obtain the incomplete anticausal epilogues Em,n(Z̄). The
important insight is that it is possible to work instead with twice-
incomplete anticausal epilogues Em,n(Ẑ), computed directly from
the incomplete causal output blockBm,n(Ȳ ). Even though these are
obtained before Bm,n(Y ) are available, we are still able to compute
the complete epilogues Em,n(Z) from them. We name this strategy
for obtaining prologues Pm,n(Y ) and epilogues Em,n(Z) with one
fewer pass over the input causal-anticausal overlapping.

The trick is to apply properties (9) and (10) to split the dependency
chains of anticausal epilogues. Proceeding in one dimension for
simplicity:

Em(z) = H
(
R
(
Bm(y), Em+1(z)

))
(28)

= H
(
R
(
F (Pm−1(y), Bm(x)), Em+1(z)

))
(29)

= H
(
R
(
0, Em+1(z)

))
+H

(
R
(
F (Pm−1(y), Bm(x)),0

))(30)

= H
(
R
(
0, Em+1(z)

))
+H

(
R
(
F (Pm−1(y),0),0

))
+H

(
R
(
F (0, Bm(x)),0

))
.

(31)

We can simplify further using (11), (13) and (14) to reach

Em(z) = H
(
R(0, Ir)Em+1(z)

)
+H

(
R(Ib,0)F (Ir,0)Pm−1(y)

)
+H

(
R
(
F (0, Bm(x)),0

))(32)

= H
(
R(0, Ir)

)
Em+1(z)

+H
(
R(Ib,0)

)
F (Ir,0)Pm−1(y)

+H
(
R
(
F (0, Bm(x)),0

))(33)

= Ab
R Em+1(z)

+
(
H(ARB )AFP

)
Pm−1(y)

+ Em(ẑ)

(34)

where the twice-incomplete ẑ is such that

Bm(ẑ) = R
(
F (0, Bm(x)),0

)
(35)

= R(ȳ,0).(36)

Notice that the r × r matrix H(ARB )AFP used in (34) can be
precomputed. Furthermore, each twice-incomplete epilogue Em(ẑ)
depends only on the corresponding input blockBm(x) and therefore
they can all be computed in parallel already in the first pass. As a
byproduct of that same pass, we can compute and store the Pm(ȳ)
that will be needed to obtain Pm(y). With Pm(y), we can compute
all Em(z) sequentially with equation (34).

The resulting one-dimensional algorithm is as follows:

Algorithm 3

3.1 In parallel for all m, compute and store Pm(ȳ) and Em(ẑ).
3.2 Sequentially for eachm, compute and store the Pm(y) accord-

ing to (24) and using the previously computed Pm(ȳ).
3.3 Sequentially for each m, compute and store Em(z) according

to (34) using the previously computed Pm−1(y) and Em(ẑ).
3.4 In parallel for all m, compute each causal output block Bm(y)

using (15) and the previously computed Pm−1(y). Then com-
pute and store each anticausal output block Bm(z) using (25)
and the previously computed Em+1(z).



Using algorithm 3 for both row and column processing and fusing
the two stages leads to:

Algorithm 4

4.1 In parallel for all m and n, compute and store the Pm,n(Ȳ )
and Em,n(Ẑ).

4.2 Sequentially for each m, but in parallel for each n, compute
and store the Pm,n(Y ) according to (24) and using the previ-
ously computed Pm,n(Ȳ ).

4.3 Sequentially for each m, but in parallel for each n, compute
and store the Em,n(Z) according to (34) using the previously
computed Pm−1,n(Y ) and Em,n(Ẑ).

4.4 In parallel for all m and n, compute Bm,n(Y ) using the
previously computed Pm−1,n(Y ). Then compute and store
the Bm,n(Z) using the previously computed Em+1,n(Z).
Finally, compute and store both P T

m,n(Ū) and ET
m,n(V̂ ).

4.5 Sequentially for each n, but in parallel for each m, compute
and store the P T

m,n(U) from P T
m,n(Ū).

4.6 Sequentially for each n, but in parallel for each m, com-
pute and store each ET

m,n(V ) using the previously com-
puted P T

m,n−1(U) and ET
m,n(V̂ ).

4.7 In parallel for all m and n, compute Bm,n(V ) using the
previously computed P T

m,n−1(V ) and Bm,n(Z). Then com-
pute and store the Bm,n(U) using the previously com-
puted Em,n+1(U).

As expected, algorithm 4 is faster than algorithm 2 (see section 8).
The advantage stems from a similar O

(
hw
cp (8r + 6 1

b
(r2+r)

)
num-

ber of steps combined with lower (5 + 18r/b)hw bandwidth.

5.2 Row-column causal-anticausal overlapping

There is still one source of inefficiency: we wait until the complete
block Bm,n(Z) is available in stage 4.4 before computing incom-
plete P T

m,n(Ū) and twice-incomplete ET
m,n(V̂ ). Fortunately, we

can overlap row and column computations and work with thrice-
incomplete transposed prologues and four-times-incomplete trans-
posed epilogues obtained directly during stage 4.1. From these, we
can compute the complete P T

m,n(U) and ET
m,n(V ) without going

over the input again.

The derivation of the procedure for completing the transposed
prologues and epilogues is somewhat tedious, and can be found
in full in appendix B. Below is the formula for completing thrice-
incomplete transposed prologues:

P T
m,n(U) = P T

m,n−1(U) (Ab
F )

T

+ARE

(
Em+1,n(Z)

(
T (AFB )

)T )
+ (ARB AFP )

(
Pm−1,n(Y )

(
T (AFB )

)T )
+ P T

m,n(Ǔ),

(37)

where b × r matrix ARE as well as b × r matrices ARB AFP and
T (AFB ) can all be precomputed. The thrice-incomplete Ǔ satisfies

Bm,n(Ǔ) = F T(0, Bm,n(Ẑ)
)
.(38)

To complete the four-times-incomplete transposed epilogues of V :

ET
m,n(V ) = ET

m,n+1(V ) (Ab
R)

T

+ P T
m,n−1(U)

(
H(ARB )AFP

)T
+ARE

(
Em+1,n(Z)

(
H(ARB )AFB

)T )
+ (ARB AFP )

(
Pm−1,n(Y )

(
H(ARB )AFB

)T )
+ ET

m,n(Ṽ ).

(39)

Here, the r × r matrix H(ARB )AFP is the same as in (34), and
the b × r matrix ARB AFP is the same as in (37). The new r × b
matrix H(ARB )AFB is also precomputed. Finally, the four-times-
incomplete Ṽ is

Bm,n(Ṽ ) = RT(Bm,n(Ǔ),0
)
.(40)

The fully overlapped algorithm is:

Algorithm 5

5.1 In parallel for all m and n, compute and store each Pm,n(Ȳ ),
Em,n(Ẑ), P T

m,n(Ǔ), and ET
m,n(Ṽ ).

5.2 In parallel for all n, sequentially for each m, compute and
store the Pm,n(Y ) according to (24) and using the previously
computed Pm−1,n(Ȳ ).

5.3 In parallel for all n, sequentially for each m, compute and
store Em,n(Z) according to (34) and using the previously
computed Pm−1,n(Y ) and Em+1,n(Ẑ).

5.4 In parallel for all m, sequentially for each n, compute and
store P T

m,n(U) according to (37) and using the previously
computed P T

m,n(Ǔ), Pm−1,n(Y ), and Em+1,n(Z).
5.5 In parallel for all m, sequentially for each n, compute and

store ET
m,n(V ) according to (39), using the previously com-

puted ET
m,n(Ṽ ), P T

m,n−1(U), Pm−1,n(Y ), and Em+1,n(Z).
5.6 In parallel for all m and n, successively compute Bm,n(Y ),

Bm,n(Z), Bm,n(U), and Bm,n(V ) according to (8) and
using the previously computed Pm−1,n(Y ), Em+1,n(Z),
P T
m,n−1(U), and ET

m,n+1(V ). Store Bm,n(V ).

The number of steps required by the fully overlapped algorithm 5
is only O

(
hw
cp (8r + 1

b
(18r2+10r))

)
. In our usage scenario, the

filter order is much smaller than the block size. The step complexity
is therefore about twice that of the sequential algorithm. On the
other hand, algorithm 5 uses only (3 + 22r/b)hw bandwidth. This
is less than half of what is needed by the sequential algorithm. In
fact, considering that the lower bound on the required amount of
traffic to global memory is 2hw (assuming the entire image fits in
shared memory), this is a remarkable result. It is not surprising that
algorithm 5 is our fastest, at least in first-order filters (see section 8).

6 Overlapped summed-area tables

A summed-area table is obtained using prefix sums over columns and
rows, and the prefix-sum filter S is a special case of first-order causal
recursive filter (with feedback weight a1 = −1). We can therefore
directly apply the idea of overlapping to optimize the computation
of summed-area tables.

In blocked form, the problem is to obtain output V from input X
where the blocks satisfy the relations

Bm,n(V ) = ST(P T
m,n−1(V ), Bm,n(Y )

)
and

Bm,n(Y ) = S
(
Pm−1,n(Y ), Bm,n(X)

)
.

(41)

With the framework we developed, overlapping the computation
of S and ST is easy. In the first stage, we compute incomplete
output blocks Bm,n(Ȳ ) and Bm,n(V̂ ) directly from the input:

Bm,n(Ȳ ) = S
(
0, Bm,n(X)

)
and(42)

Bm,n(V̂ ) = ST(0, Bm,n(Ȳ )
)
.(43)

We store only the incomplete prologues Pm,n(Ȳ ) and P T
m,n(V̂ ).

Then we complete them using:

Pm,n(Y ) = Pm−1,n(Y ) + Pm,n(Ȳ ) and(44)

P T
m,n(V ) = P T

m,n−1(V ) + s
(
Pm−1,n(Y )

)
+ P T

m,n(V̂ ).(45)



Figure 3: Overlapped summed-area table computation according to algorithm SAT. Stage S.1 reads the input (in gray) then computes and stores
incomplete prologues Pm,n(Ȳ ) (in red) and P T

m,n(V̂ ) (in blue). Stage S.2 completes prologues Pm,n(Y ) and computes scalars s
(
Pm−1,n(Y )

)
(in yellow). Stage S.3 completes prologues P T

m,n(V ). Finally, stage S.4 reads the input and completed prologues, then computes and stores the
final summed-area table.

Scalar s
(
Pm−1,n(Y )

)
in (45) denotes the sum of all entries in

vector Pm−1,n(Y ). The simplified notation means the scalar should
be added to all entries of P T

m,n(V ). The resulting algorithm is
depicted in figure 3 and described below:

Algorithm SAT

S.1 In parallel for all m and n, compute and store the Pm,n(Ȳ )
and P T

m,n(V̂ ) according to (42) and (43).
S.2 Sequentially for each m, but in parallel for each n, compute

and store the Pm,n(Y ) according to (44) and using the previ-
ously computed Pm,n(Ȳ ). Compute and store s

(
Pm,n(Y )

)
.

S.3 Sequentially for each n, but in parallel for each m, compute
and store the P T

m,n(V ) according to (45) using the previously
computed Pm−1,n(Y ), P T

m,n(V̂ ) and s
(
Pm,n(Y )

)
.

S.4 In parallel for all m and n, compute Bm,n(Y ) then compute
and store Bm,n(V ) according to (41) and using the previously
computed Pm,n(Y ) and P T

m,n(V ).

Our overlapped algorithm SAT uses only (3 + 8/b+ 2/b2)hw of
bandwidth and requires O

(
hw
cp (4 + 3/b)

)
steps for completion.2 In

contrast, using a stock implementation of prefix scan to process rows,
followed by matrix transposition, followed by column processing
(as in [Harris et al. 2008]) requires at least 8hw bandwidth. Even
our transposition-free, fused, bandwidth-saving variant of the multi-
wave approach of Hensley [2010] requires at least (4 + 9/b)hw
bandwidth. As shown in section 8, the bandwidth reduction leads to
the higher performance of the overlapped algorithm SAT.

7 Additional considerations

Feedforward in recursive filters A more general formulation for
causal recursive filters would include an additional a0 coefficient as
well as a feedforward filter component with coefficients bk:

yi =
1

a0

(
q∑

k=0

bkxi−k −
r∑

k=1

akyi−k

)
.(46)

The added complication due to the feedforward coefficients is small
compared to the basic challenge of the feedback coefficients, because
the feedforward computation does not involve any dependency
chains. One implementation approach is to simply pre-convolve the
input with the feedforward component and then apply the appropriate
feedback-only filter. To reduce memory bandwidth, it is best to fuse
the feedforward computation with the parallelized feedback filter.
This is relatively straightforward.

2Actually, O
(
hw
cp (4 + (b+1)/b2 + 2/b)

)
, but (b+1)/b ≈ 1.

Flexibility with higher-order filters Higher-order causal or anti-
causal recursive filters can be implemented using different schemes:
direct, cascaded, or in parallel. A direct implementation uses equa-
tions (1) or (3). Alternatively, we can decompose a higher-order
filter into an equivalent set of first- and second-order filters, to be
applied in series one after the other (i.e., cascaded) or independently
and then added together (i.e., in parallel). See [Oppenheim and
Schafer 2010, section 6.3] for an extensive discussion.

Although the different schemes are mathematically equivalent, in
practice we may prefer one to the other due to bandwidth-to-FLOP
ratio, implementation simplicity, opportunities for code reuse, and
numerical precision. (Precision differences are less of a concern in
floating-point [Oppenheim and Schafer 2010, section 6.9].)

Our overlapping strategy is compatible with all these schemes. The
tools we provide allow the implementation of overlapped recursive
filters of any order, in a way that maps well to modern GPUs.
Overlapping can be used to directly implement a high-order filter, or
alternatively to implement the first- and second-order filters used as
building blocks for a cascaded or parallel realization.

Hierarchical reduction of prologues and epilogues In our
algorithms, incomplete prologues and epilogues are completed
sequentially (i.e., without inter-block parallelism). It is possible
to perform such computations in a hierarchical fashion, thereby
increasing parallelism and potentially speeding up the process.
Completion equations such as (24) have the same structure as a
recursive filter. This is clear when we consider the formulation
in (52) of appendix A, where we process the input in groups of r
elements at a time. Taking stage 5.2 as an example, we could
group b prologues Pib,n(Ȳ ) to P(i+1)b,n(Ȳ ) into input blocks and
recursively apply a variant of algorithm 1 to compute all Pm,n(Y ).
Step 2 of this new computation is b times smaller still, consisting
of only w/b2 prologues. We can repeat the recursion until we
reach a problem size small enough to be solved sequentially, the
results of which can be propagated back up to complete the original
filtering operation. We skipped this optimization in our work due
to diminishing returns. For example, the amount of time spent by
algorithm 5 on stages 5.2–5.5 for a 40962 image amounts to only
about 17% of the total. This means that, even if we could run these
stages instantaneously, performance would improve by only 20%.

Recursive doubling for intra-block parallelism In our image-
processing applications, the processing of each two-dimensional
block exposes sufficient parallelism to occupy all cores in each SM.
When processing one-dimensional input with algorithms 1 or 3,
however, it may be necessary to increase intra-block parallelism.



Table 1: Properties of the presented algorithms, for row and column
processing of an h× w image with causal and anticausal recursive
filters of order r, assuming block-size b, and p SMs with c cores each.
For each algorithm, we show an estimate of the number of steps
required, the maximum number of parallel independent threads, and
the required memory bandwidth.

Alg. Step complexity Max. # of threads Bandwidth

RT hw
cp 4r h,w 8hw

2 hw
cp

(
8r + 4 1

b
(r2+r)

)
1
b
hw (9 + 16 r

b
)hw

4 hw
cp

(
8r + 6 1

b
(r2+r)

)
1
b
hw (5 + 18 r

b
)hw

5 hw
cp

(
8r + 1

b
(18r2+10r)

)
1
b
hw (3 + 22 r

b
)hw

SAT hw
cp (8 + 3

b
) 1

b
hw (3 + 8

b
+ 2

b2
)hw

Recursive doubling [Stone 1973] is a well known strategy for first-
order recursive filter parallelization we can use to perform intra-
block computations. The idea maps well to GPU architectures, and
is related to the tree-reduction optimization employed by efficient
one-dimensional parallel scan algorithms [Sengupta et al. 2007;
Dotsenko et al. 2008; Merrill and Grimshaw 2009]. Using a block
size b that matches the number of processing cores c, the idea is to
break the computation into steps in which each entry is modified
by a different core. Using recursive doubling, computation of b
elements completes in O(log2 b) steps.

The extension of recursive doubling to higher-order recursive filters
has been described by Kooge and Stone [1973]. The key idea is
to group input and output elements into r-vectors and consider
equation (1) in the matrix form of (52) in appendix A. Since the
algebraic structure of this form is the same as that of a first-order
filter, the same recursive doubling structure can be reused.

8 Results

Table 1 summarizes the main characteristics of all the algorithms that
we evaluated, in terms of number of required steps, the progression
in parallelism, and the reduction in memory bandwidth.

Our test hardware consisted of an NVIDIA GTX 480 with 1.5GB
of RAM (480 CUDA cores, p = 15 SMs, c = 32 cores/SM). All
algorithms were implemented in C for CUDA, under CUDA 4.0. All
our experiments ran on single-channel 32-bit floating-point images.
Image sizes ranged from 642 to 40962 pixels, in 64-pixel increments.
Measurements were repeated 100 times to reduce variation. Note
that small images are solved in sequence, not in batches that could
be processed independently for added parallelism and performance.

First-order filters As an example of combined row-column
causal-anticausal first-order filter, we solve the bicubic B-spline
interpolation problem (see also figure 7(top)). Algorithm RT is the
original implementation by Ruijters and Thévenaz [2010] (avail-
able on-line). Algorithm 2 adds blocking for memory coalescing,
inter-block parallelism, and kernel fusion. (Algorithms 1 and 3 work
on 1D input and are omitted from our tests.) Algorithm 4 employs
overlapped causal-anticausal processing and fused row-column pro-
cessing. Finally, algorithm 5 is fully overlapped. Performance num-
bers in figure 4(top) show the progression in throughput described
throughout the text. As an example, the throughput of algorithm 5
solving the bicubic B-spline interpolation problem for 10242 images
is 4.7GiP/s (gibi-pixels per second). Each image is transformed in
just 0.21ms or equivalently at more than 4800fps. The algorithm
appears to be compute-bound. Eliminating computation and keeping
data movements, algorithm 5 attains 13GiP/s (152GB/s) on large
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Figure 4: Throughput of the various algorithms for row-column
causal-anticausal recursive filtering. (Top plot) First-order filter
(e.g. bicubic B-spline interpolation). (Bottom plot) Second-order
filter (e.g. biquintic B-spline interpolation).

images, whereas with computation it reaches 6GiP/s (72GB/s).

Second-order filters The second-order, causal-anticausal, row-
column separable recursive filter used in our tests solves the biquintic
B-spline interpolation problem. Figure 4(bottom) compares three
alternative structures: 2×51 is a cascaded implementation using
two fused fully-overlapped passes of first-order algorithm 5, 42 is a
direct second-order implementation of algorithm 4, and 52 is a direct
fully-overlapped second-order implementation of algorithm 5. Our
implementation of 42 is the fastest, despite using more bandwidth
than 52. The higher complexity of second-order equations slows
down stages 5.4 and 5.5 substantially. We believe this is an
optimization issue that may be resolved with a future hardware,
compiler, or implementation. Until then, the best alternative is to
use the simpler and faster 42. It runs at 3.1GiP/s for 10242 images,
processing each image in less than 0.32ms, or equivalently at more
than 3200fps.

Precision A useful measure of numerical precision in the solution
of a linear system such as the bicubic B-spline interpolation problem
is the relative residual. Using random input images with entries in
the interval [0, 1], the relative residual was less than 2 × 10−7 for
all algorithms and for all image sizes.

Summed-area tables Our overlapped summed-area table algo-
rithm was compared with the algorithm of Harris et al. [2008] im-
plemented in the CUDPP library [2011], and with the multi-wave
method of Hensley [2010]. We also compare against a version of
Hensley’s method improved by two new optimizations: fusion of
processing across rows and columns, and storage of just “carries”
(e.g. Pm,n(Ȳ )) between intermediate stages to reduce bandwidth.
As expected, the results in figure 5 confirm that our specialized
overlapped summed-area table algorithm outperforms the others.
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Figure 5: Throughput of summed-area table computation, using our
overlapped algorithm, the multi-wave algorithm of Hensley [2010],
a revisited version of it, and the CUDPP code of Harris et al. [2008].

Recursive Gaussian filters As mentioned in section 1, Gaussian
filters of wide support are well approximated by recursive filters (see
also figure 7(bottom)). To that end, we implemented the third-order
approximation (N = 3) of van Vliet et al. [1998] with cascaded
first- and second-order filters. The first-order component uses
algorithm 5, and is fused with the second-order component, which
uses algorithm 42. Figure 6 compares performance of the overlapped
recursive implementation with convolution in the frequency domain
using the CUFFT library [2007], and with highly optimized direct
convolution (separable in shared memory) [Podlozhnyuk 2007].
Because computation in the direct convolution is proportional to
the number of filter taps d, we show results for filter kernels with
d = 17, 33, 65 taps. Although the direct approach is fastest for small
filter windows, both the recursive filter and CUFFT are faster for
larger windows. For reasonably sized images, overlapped recursive
filtering is fastest. Moreover, its advantage over CUFFT should
continue to increase on larger images due to its lower, linear-time
complexity.

9 Conclusions

We describe an efficient algorithmic framework that reduces memory
bandwidth over a sequence of recursive filters. It splits the input into
blocks that are processed in parallel by modern GPU architectures,
and overlaps the causal, anticausal, row, and column filter processing.
The full sequence of filter passes requires reading the input image
only twice, and writing only once. The reduced number of accesses
to global memory leads to substantial performance gains. We
demonstrate practicality in several scenarios: solving bicubic and
biquintic B-spline interpolation problems, computing summed-area
tables, and performing Gaussian filtering.

Future work Although we have focused on 2D processing, our
framework of overlapping successive filters should extend to vol-
umes (or even higher dimensions) using analogous derivations. How-
ever, one practical difficulty is the limited shared memory (e.g. 48k
bytes) available in current GPUs. Making the volumetric blocks of
size b3 fit within shared memory would require significantly smaller
block sizes, and this would decrease the efficiency of the algorithm.

Another area for future work is to adapt our algorithms to modern
multicore CPUs (rather than GPUs). Although row and column
parallelism is already sufficient for the fewer CPU threads, the
memory bandwidth reduction may still be beneficial. In particular,
our blocking structure may allow more accesses to be served by
the faster L1 cache (or by the L2 cache in the case of volumetric
processing). Whether this would lead to performance gains remains
to be seen. The reduced bandwidth may also be beneficial on
architectures like the Cell microprocessor in which memory transfers
must be managed explicitly.

2D Gaussian filtering
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Figure 6: Throughput of 2D Gaussian filtering, using our over-
lapped 3rd-order recursive implementation, direct convolution with
d taps (σ = d/6), and the Fast Fourier Transform.

Finally, we would like to investigate whether the idea of overlapped
computation can be used to optimize the solution of general narrow-
band-diagonal linear systems.

10 Acknowledgements

This work has been funded in part by a post-doctoral scholarship
from CNPq and by an INST grant from FAPERJ.

References
BLELLOCH, G. E. 1989. Scans as primitive parallel operations.

IEEE Transactions on Computers, 38(11).

BLELLOCH, G. E. 1990. Prefix sums and their applications.
Technical Report CMU-CS-90-190, Carnegie Mellon University.

BLU, T., THÉNAVAZ, P., and UNSER, M. 1999. Generalized
interpolation: Higher quality at no additional cost. In IEEE
International Conference on Image Processing, volume 3, 667–
671.

BLU, T., THÉVENAZ, P., and UNSER, M. 2001. MOMS: Maximal-
order interpolation of minimal support. IEEE Transactions on
Image Processing, 10(7):1069–1080.

CROW, F. 1984. Summed-area tables for texture mapping. In Com-
puter Graphics (Proceedings of ACM SIGGRAPH 90), volume 18,
ACM, 207–212.

CUDPP library. 2011. URL http://code.google.com/p/
cudpp/.

CUFFT library. 2007. URL http://developer.nvidia.com/
cuda-toolkit. NVIDIA Corporation.

DERICHE, R. 1992. Recursively implementing the Gaussian and
its derivatives. In Proceedings of the 2nd Conference on Image
Processing, 263–267.

DOTSENKO, Y., GOVINDARAJU, N. K., SLOAN, P.-P., BOYD, C.,
and MANFERDELLI, J. 2008. Fast scan algorithms on graphics
processors. In Proceedings of the 22nd Annual International
Conference on Supercomputing, 205–213.

GÖDDEKE, D. and STRZODKA, R. 2011. Cyclic reduction tridiago-
nal solvers on GPUs applied to mixed-precision multigrid. IEEE
Transactions on Parallel and Distributed Systems, 22(1):22–32.

HARRIS, M., SENGUPTA, S., and OWENS, J. D. 2008. Parallel
prefix sum (scan) with CUDA. In GPU Gems 3, chapter 39.

HENSLEY, J. 2010. Advanced rendering technique with DirectX 11:
High-quality depth of field. Gamefest 2010 talk.

HENSLEY, J., SCHEUERMANN, T., COOMBE, G., SINGH, M., and

http://code.google.com/p/cudpp/
http://code.google.com/p/cudpp/
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit


Down +Up +Right +Left

Figure 7: Effect of successive recursive filtering passes on a test image. (Top row) Cubic B-Spline interpolation filter, which acts as a high-pass.
(Bottom row) Gaussian filter with σ = 5, which acts as a low-pass. Insets show the combined filter impulse responses (not to scale). Our
overlapped algorithm computes all four of these successive filtering passes using just two traversals of the input image.

LASTRA, A. 2005. Fast summed-area table generation and its
applications. Computer Graphics Forum, 24(3):547–555.

HOCKNEY, R. W. and JESSHOPE, C. R. 1981. Parallel Computers:
Architecture, Programming and Algorithms. Adam Hilger.

IVERSON, K. E. 1962. A Programming Language. Wiley.

KASS, M., LEFOHN, A., and OWENS, J. D. 2006. Interactive depth
of field using simulated diffusion on a GPU. Technical Report
#06-01, Pixar Animation Studios.

KIRK, D. B. and HWU, W. W. 2010. Programming Massively
Parallel Processors. Morgan Kaufmann.

KOOGE, P. M. and STONE, H. S. 1973. A parallel algorithm for
the efficient solution of a general class of recurrence equations.
IEEE Transactions on Computers, C-22(8):786–793.

LAMAS-RODRÍGUES, J., HERAS, D. B., BÓO, M., and
ARGÜELLO, F. 2011. Tridiagonal solvers internal report. Techni-
cal report, University of Santiago de Compostela.

MERRILL, D. and GRIMSHAW, A. 2009. Parallel scan for stream ar-
chitectures. Technical Report CS2009-14, University of Virginia.

OPPENHEIM, A. V. and SCHAFER, R. W. 2010. Discrete-Time
Signal Processing. Prentice Hall, 3rd edition.

PARHI, K. and MESSERSCHMITT, D. 1989. Pipeline interleaving
and parallelism in recursive digital filters–Part II: Pipelined
incremental block filtering. IEEE Transactions on Acoustics,
Speech and Signal Processing, 37(7):1099–1117.

PODLOZHNYUK, V. 2007. Image convolution with CUDA. NVIDIA
whitepaper.

RUIJTERS, D. and THÉVENAZ, P. 2010. GPU prefilter for accurate
cubic B-spline interpolation. The Computer Journal.

SENGUPTA, S., HARRIS, M., ZHANG, Y., and OWENS, J. D. 2007.
Scan primitives for GPU computing. In Proceedings of Graphics
Hardware, 97–106.

STONE, H. S. 1971. Parallel processing with the perfect shuffle.
IEEE Transactions on Computers, C-20(2):153–161.

STONE, H. S. 1973. An efficient parallel algorithm for the solution
of a tridiagonal linear system of equations. Journal of the ACM,
20(1):27–38.

SUNG, W. and MITRA, S. 1986. Efficient multi-processor im-
plementation of recursive digital filters. In IEEE International
Conference on Acoustics, Speech and Signal Processing, 257–
260.

SUNG, W. and MITRA, S. 1992. Multiprocessor implementation
of digital filtering algorithms using a parallel block processing
method. IEEE Transactions on Parallel and Distributed Systems,
3(1):110–120.

VAN VLIET, L. J., YOUNG, I. T., and VERBEEK, P. W. 1998.
Recursive Gaussian derivative filters. In Proceedings of the 14th

International Conference on Pattern Recognition, 509–514 (v. 1).

ZHANG, Y., COHEN, J., and OWENS, J. D. 2010. Fast tridiagonal
solvers on the GPU. In Proceedings of the 15th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming.

A Derivation of T (AFP) = Ab
F

In this appendix we derive the r×r-matrix T (AFP ) that is used to
transfer a prologue vector across a zero-valued block in the recursive
filter computation of (24).

When dealing with a higher-order recursive filter F , it is convenient
to group input and output elements into r-vectors, so that F is
expressed in a simplified matrix form. To that end, let

ẏi =


yi−r

...
yi−2

yi−1

, ẋi =


xi−r

...
xi−2

xi−1

 and ẍi =


0
...
0

xi−1

 .(47)



It is easy to verify that if

ẏ0 = p, then
ẏi = ẍi +AF ẏi−1, where

(48)

AF =


0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1
−ar −ar−1 · · · −a2 −a1

 .(49)

A nicer expression involves ẋi rather than ẍi. Iterating (48):

ẏi = ẍi +AF ẏi−1 = ẍi +AF ẍi−1 +A2
F ẏi−2 = · · ·(50)

=

(
r−1∑
k=0

Ak
F ẍi−k

)
+Ar

F ẏi−r(51)

= ĀF ẋi +Ar
F ẏi−r.(52)

Column k of matrix ĀF is simply the last column of Ar−k−1
F ,

for k ∈ {0, 1, . . . , r − 1}. Under this formulation, r new output
elements are produced and r elements of input are consumed. For
example, given a second-order filter:

AF =

(
0 1
−a2 −a1

)
,(53)

ĀF =

(
1 0
−a1 1

)
, and A2

F =

(
−a2 −a1
a1a2 a21 − a2

)
(54)

Equivalent derivations appear in the works of Kooge and Stone
[1973] and Blelloch [1990].

Anticausal filters can also be expressed in terms of r-vectors in a
form similar to (52), with corresponding matrices ĀR and AR.

Recall that

T (F (p,0)) = T (F (Ir,0)p) = T (AFP p) = T (AFP )p.(55)

When xi is null, equations (48) reduce to

ẏ0 = p, ẏi = AF ẏi−1 = Ai
F p.(56)

Since the last r output elements of the b-wide block are given by

T (F (p,0)) = ẏb,(57)

we have

T (AFP )p = Ab
F p ⇒ T (AFP ) = Ab

F .(58)

B Derivation of full overlapping

Consider the transposed prologues of U . From the definition and
repeated application of properties (9) and (10):

P T
m,n(U) = T T(F T(P T

m,n−1(U),0)
)

+ T T(F T(0, R(0, Em+1,n(Z)))
)

+ T T(F T(0, R(F (Pm−1,n(Y ),0),0))
)

+ T T(F T(0, R(F (0, Bm,n(X)),0))
)
.

(59)

Now applying (11), (13) and (14):

P T
m,n(U) = P T

m,n−1(U)T T(F T(Ir,0)
)

+R(0, Ir)Em+1,n(Z)T T(F T(0, Ib)
)

+R(Ib,0)F (Ir,0)Pm−1,n(Y )T T(F T(0, Ib)
)

+ T T(F T(0, R(F (0, Bm,n(X)),0))
)(60)

= P T
m,n−1(U) (Ab

F )
T

+ARE

(
Em+1,n(Z)

(
T (AFB )

)T )
+ (ARB AFP )

(
Pm−1,n(Y )

(
T (AFB )

)T )
+ P T

m,n(Ǔ),

(61)

where Ǔ is such that

Bm,n(Ǔ) = F T(0, R(F (0, Bm,n(X)),0
))

(62)

= F T(0, Bm,n(Ẑ)
)
.(63)

In (61) we have exploited matrix-product associativity to select the
best computation ordering.

Following a similar derivation for the transposed epilogues of V :

ET
m,n(V ) = HT(RT(0, ET

m,n+1(V ))
)

+HT(RT(F T(P T
m,n−1(U),0),0)

)
+HT(RT(F T(0, R(0, Em+1,n(Z))),0)

)
+HT(RT(F T(0, R(F (Pm−1,n(Y ),0),0)),0)

)
+HT(RT(F T(0, R(F (0, Bm,n(X)),0)),0)

)
(64)

= ET
m,n+1(V ) (Ab

R)
T

+ P T
m,n−1(U)

(
H(ARB )AFP

)T
+ARE

(
Em+1,n(Z)

(
H(ARB )AFB

)T )
+ (ARB AFP )

(
Pm−1,n(Y )

(
H(ARB )AFB

)T )
+ ET

m,n(Ṽ ),

(65)

where

Bm,n(Ṽ ) = RT(F T(0, R(F (0, Bm,n(X)),0)),0
)

(66)

= RT(Bm,n(Ǔ),0
)
.(67)


