
Lapped Textures
Emil Praun Adam Finkelstein Hugues Hoppe

Princeton University Microsoft Research
http://www.cs.princeton.edu/∼{emilp,af} http://research.microsoft.com/∼hoppe

Figure 1: Four different textures pasted on the bunny model. The last picture illustrates changing local orientation and scale on the body.

Abstract
We present a method for creating texture over an arbitrary surface
mesh using an example 2D texture. The approach is to identify
interesting regions (texture patches) in the 2D example, and to
repeatedly paste them onto the surface until it is completely
covered. We call such a collection of overlapping patches a lapped
texture. It is rendered using compositing operations, either into
a traditional global texture map during a preprocess, or directly
with the surface at runtime. The runtime compositing approach
avoids resampling artifacts and drastically reduces texture memory
requirements.

Through a simple interface, the user specifies a tangential vector
field over the surface, providing local control over the texture scale,
and for anisotropic textures, the orientation. To paste a texture patch
onto the surface, a surface patch is grown and parametrized over
texture space. Specifically, we optimize the parametrization of each
surface patch such that the tangential vector field aligns everywhere
with the standard frame of the texture patch. We show that this
optimization is solved efficiently as a sparse linear system.

Keywords: Texture synthesis, texture mapping, parametrizations.
URL: http://www.cs.princeton.edu/gfx/proj/lapped tex

1 Introduction
This paper describes a method for creating a texture over an
arbitrary surface mesh, using a given example 2D texture (Figure 1).
Computer graphics applications often use surface textures to give
the illusion of fine detail without explicit geometric modeling.
There exist several schemes for synthesizing texture on the 2D
plane based on example texture. However, these methods cannot
be readily extended to cover surfaces of arbitrary topology because
such surfaces lack continuous parametrizations over the plane.

Our approach to this problem relies on the observation that even
though a global parametrization may not exist, any manifold surface
may be locally mapped onto the 2D plane. We repeatedly paste
small regions of the example texture (texture patches) onto parts
of the mesh that can be easily mapped (surface patches), until the
entire mesh is covered with a series of overlapping texture patches,
called collectively a lapped texture. The perceptibility of seams
is reduced by applying alpha-blending at the edges of the pasted
texture patches. The user provides local control over the orientation
and scale of the synthesized texture by specifying a tangential
vector field over the mesh surface.

For each paste operation, we form a surface patch on the
mesh by growing a region homeomorphic to a disc. The surface
patch is parametrized into texture space so as to locally align
the axes of the texture patch with the surface tangential vector
field. We cast this as an optimization of a least squares functional.
Unlike other approaches that rely on an explicit fairness functional
for minimizing texture distortion, the fairness comes from the
underlying vector field. Our optimization is therefore extremely
fast, as it only involves solving a sparse linear system.

We have tested our method by applying more than sixty textures
over seven models, and found that it works surprisingly well.
Figure 1 shows a bunny model covered using four different example
textures. The fifth bunny has the same texture as the fourth, but the
tangential vector field has been modified on the body. As shown in
Figure 7, our scheme applies a variety of isotropic and anisotropic
textures over complex, organic surfaces in a natural fashion.

Lapped textures embody the simple idea of texturing a surface
with overlapping patches. Efficient implementation of this idea is
straightforward. Precomputation of patch placements takes only
minutes, and the resulting texture displays in real time. Little
human effort is necessary to delineate a texture patch and specify
texture direction and scale. Because a single texture patch is
instantiated many times over the mesh, a large surface may be
covered using a compact texture footprint. Finally, the method
extends trivially to bump maps, displacement maps, and other
surface appearance fields.

The contributions of this paper are: (1) the idea of covering
an arbitrary surface using overlapping copies of a texture patch,
(2) a fast parametric optimization that allows control over the local
texture orientation and scale, (3) a simple scheme for specifying the
vector field necessary for this control, and (4) a method of rendering
the texture in real time through the composition of precomputed,
overlapping surface patches.



2 Previous work
Previous methods for generating texture by example work mainly
on images, and are difficult to extend to surfaces. Conversely, the
methods proposed for texturing surfaces are mainly procedural in
nature, and therefore difficult to control. None of these methods
provide convenient control over local orientation and scale. We
address the problem of generating texture by example on complex
surfaces, while providing control over local orientation and scale.

Texture synthesis The problem of synthesizing textures in 2D
has been studied extensively. Heeger and Bergen [8] perturb a
noisy image in order to match the histograms of the original image
and its steerable pyramid representation with the corresponding
histograms of the generated image. They report good results with
stochastic textures, but cannot produce realistic replicas of more
structured textures such as bricks. DeBonet [2] synthesizes texture
from a wide variety of input images by shuffling elements in the
Laplacian pyramid representation. Recently, Efros and Leung [5]
proposed a scheme based on non-parametric sampling. They grow
the texture one pixel at a time, creating for each target pixel a
probability distribution based on windows of the original image.
The scheme is relatively slow, but produces impressive results for a
large class of input images. Xu et al. [20] developed a 2D texture
synthesis scheme based on the random motion of image blocks;
their prototype inspired us to consider texturing surface meshes
using overlapping patches.

Many 2D texture synthesis schemes can be extended to 3D
using solid textures: the color function is defined over a volume,
and then sampled on the surface. Heeger and Bergen [8] and
Dischler et al. [4, 7] propose schemes that apply spectral and
histogram analysis to produce a volume-filling function.

A different class of methods synthesizes texture based on a
few parameters, instead of by example. Pioneering work in this
area by Perlin [15] and subsequent extensions by Worley [19]
generate a color defined over the volume using a noise function.
In a different approach, reaction-diffusion and biologic evolution
can procedurally texture surfaces in 3D directly [6, 17, 18]. The
main drawback of these methods is the difficulty of controlling the
input parameters in order to get the desired visual result. This
parameter-to-visual-appearance feedback loop is further hindered
by the long simulation times necessary to produce an image. Also,
these methods explore a limited space of possible textures. Of these
techniques, perhaps the most suitable for the problem we address
is that of Fleischer et al. [6]; while their method is designed to
produce geometric detail, it might be adapted so that each of their
cell models carries a texture patch, and gets aligned locally to a
direction field.

Neyret and Cani [12] introduce a scheme for texturing a mesh
with a given set of triangular texture tiles. They partition the
mesh into a coarse tiling, where each triangular tile is as close to
equilateral as possible. Each surface tile is assigned one of the given
texture tiles, subject to continuity constraints across tile boundaries.
The user chooses a priori the number of distinct tile boundaries, and
creates a set of tiles that match all possible boundary conditions.

Surface parametrization for texture mapping In seeking a
surface parametrization for texture mapping, the primary objective
is to minimize distortion. The usual strategy is to define an energy
functional for the mapping, and to try to minimize it. In early
work in this area, Bennis et al. [1] “flatten” a series of user-
defined patches via optimization. Maillot et al. [10] propose as
a deformation functional the Green-Lagrange tensor from elasticity
theory. They discretize the problem by meshing the surface, placing
on each mesh edge a spring of nonzero rest length. To prevent
surface buckling, they also measure squared differences of signed
face areas. They minimize the energy functional using a nonlinear
optimization procedure, which makes the method relatively slow.

Lévy and Mallet [9] propose a functional that combines orthogo-
nality and homogeneous spacing of isoparametric curves. Although
the resulting functional is nonlinear, it can be minimized iteratively
as a sequence of linear problems by solving alternately for the s and
the t parametric coordinates.

Pedersen [13, 14] extends texture mapping and cut-and-paste
operations to a broader class of surfaces (including implicit
surfaces). He positions a meshed version of a square domain onto
the surface and allows the vertices of this regular parametrization to
slide over the surface, while minimizing the energy of an associated
mesh of springs. Arbitrarily-shaped regions of the sliding patch are
cut and pasted, using curve-drawing on the surface to define alpha
masks. The sliding patch is translated, rotated, scaled and even
warped through the manipulation of the control points defining the
parametrization. This is probably the closest work to our own.
The main difference is that Pedersen’s system is designed to be
an interactive paint system while ours is aimed at the automatic
texturing of objects. Another difference is our use of a tangential
vector field to guide the texture orientation and scale during the
parametrization process.

3 Our Approach
Our approach consists of identifying a set of broad features from
the example texture (“texture patches”), and then repeatedly pasting
them onto “surface patches” grown on the mesh, until the mesh is
completely covered. Here is an overview of our procedure:

Cut texture patches from input texture (Figure 2a, § 3.1)
Specify direction and scale fields over mesh (Figure 2a, § 3.2)
Repeat

Select random texture patch T
Select random uncovered location L for paste
Grow surface patch S around L to size of T (§ 3.3)
Flatten S over T (§ 3.4)
Record paste operation (§ 3.5)
Update face coverages (§ 3.6)

Until the mesh is covered (Figure 2b, § 3.6)

For recording the paste operations and rendering the final model, we
propose two completely different approaches which are presented
and compared in Section 4.

3.1 Creating the texture patches
For highly structured textures, the texture patch boundaries should
avoid cutting across important features, so as to minimize obtrusive
seams in the resulting lapped texture. For example, in a brick
texture, the patch boundary should not intersect the bricks but
instead follow the grout. The user manually outlines image regions
using a commercial drawing package. This outlining process is
facilitated by gradient-seeking tools such as the “edge finder” in
Microsoft PhotoDraw. The first six examples in Figure 7 were
created this way.

For homogeneous or stochastic textures, the outline of the texture
patch is less important, so we use a set of predefined shapes, such
as a circle or an irregular “splotch”.

In either case, the texture patch is assigned an alpha mask that
falls off near the patch boundary (e.g. over a distance of 3 pixels).

3.2 Establishing local orientation and scale
The desired orientation and scale for the texture are specified over
the mesh as a tangential vector field. Specifically, each mesh face
is assigned a vector T within its plane (Figure 2). The direction of
T is the desired the texture “up” direction, and the magnitude of T
is the desired local uniform scaling.

A simple choice for the tangential vector field is to project
the global up direction onto the surface, and then normalize the
resulting tangent vector. More often, the user needs more control



(a) Input: mesh, vector field, texture; (b) Output: covered mesh

Figure 2: Process overview. The inputs are a triangle mesh, a
tangential vector field defined on this mesh, and a texture cut into
patches. The patches are pasted onto the mesh until it is covered.

over the vector field. With our interface, the user specifies vectors
at a few faces. We interpolate vectors at the remaining faces using
Gaussian radial basis functions, where radius is defined as distance
over the mesh, as computed using Dijkstra’s algorithm. The user
has control over the spatial extent and weight of each basis function.

We convert the tangential vector T at each face into a tangential
basis (S, T) by using the “right” direction S = T × N̂, where N̂ is
the unit face normal (see Figure 5). The user could alternatively
specify this tangential basis directly for local control of a full
linear transform for the texture, including shearing and non-uniform
stretching. However, we have found this additional flexibility to be
unnecessary in our experiments.

For isotropic textures, the orientations of the paste operations are
unimportant. For such cases, we only specify a scaling field over
the mesh (and in most cases it is a global constant). During the
growth of surface patches (described in the next section), a local
orientation field is instead defined through propagation. That is, the
center face of the patch is assigned an arbitrary tangent direction,
and the direction of each subsequently added face is computed by
projecting onto its face plane the average direction of neighboring
faces already in the patch.

3.3 Growing the surface patch
For each paste operation, we grow a surface patch on the mesh
by successively adding faces, and form an initial parametrization
φ of the surface patch into texture space. The parametrization
φ : R3 → R2 is a piecewise linear map specified by texture
coordinates assigned to the surface patch vertices. The growth of
the surface patch is guided so that its image through φ fully covers
the texture patch. We next present the details.

First, a random point is chosen on a triangle face that is not yet
fully textured, using the coverage test presented in Section 3.6.
(Early in the process we give higher priority both to areas of
high curvature and to discontinuities in the direction field – where
the parametrization is difficult – with the hope that any distorted
regions will be covered over later.) The triangle is mapped to
texture space such that the chosen point maps to the texture patch
center, and the face tangential basis (S, T) maps to the texture space
standard axes (ŝ, t̂).

Next, the surface patch is grown around this seed face, one
triangle at a time. Faces are added in order of increasing distance

3D 2Dfrom the center face, but subject to three
constraints. First, the surface patch is
required to be homeomorphic to a disc.
The adjacent figure illustrates a prob-
lem that may arise when this constraint
is not enforced: the optimization of
Section 3.4 maps a tubular patch to a thin vertical band due to the

(a) Align only patch center (b) Align locally to field

Figure 3: Continuity of the texture direction is improved when the
optimization aligns the entire surface patch with the vector field
rather than just its center.

circular dependency in the specified texture S direction (in red).
Second, the patch is only grown over an edge if the edge is still par-
tially inside the texture patch, since there is no point in growing the
surface patch beyond the image region that will be pasted. This test
is made efficient using the polygonal hull representation discussed
later in this section. Third, patch growth is stopped when distor-
tion becomes excessive, which can occur in surface areas with high
curvature. In these cases where we are unable to extend the surface
patch to fully cover the texture patch, the pasted texture lacks an
alpha falloff across one or more edges. We find that the few notice-
able artifacts from these “hard edges” are less objectionable than
distorted texture.

When a face is added to the patch, the newly added vertex
is assigned an initial parametrization using the heuristic in [10].
Specifically, for each face that contains the new vertex and an
already mapped edge, we predict the parametrization of the new
vertex by extending the edge with a triangle similar to the face in
3D. The new vertex is assigned the centroid of these predictions.
Note that for texture pasting, we do not prevent the patch from
folding or wrapping over itself in texture space.

To determine if we need to grow the patch
over a given edge, we test to see if the edge
intersects the interior of a polygonal hull of the
texture patch. We first construct a polygon with
vertices at all the boundary pixels (in blue), and
then we conservatively simplify it, allowing it only
to grow (red outline). Sander et al. [16] construct conservative
approximations of polyhedral surface meshes using progressive
hull simplification. We adapt their construction to the 2D setting.
Simplification is done using a sequence of edges collapses, but
with the constraint that the resulting vertex lie within the correct
half-spaces of the previous model. In 3D this involves linear
programming, but in 2D it reduces to just the 3 cases illustrated
in Figure 4. The simplification operations are prioritized according
to the area they add to the polygon interior. Operations that would
give rise to self-intersections are disallowed.

Once the surface patch stops growing, we optimize the map φ
as discussed in the next section. The optimization may sometimes
uncover parts of the texture patch. When this occurs, we further
grow the patch and optimize again.

(i) Both angles convex (ii) Convex - concave (iii) Both concave No self intersections

Figure 4: Simplification of the outer hull polygon. The thick edge
is replaced with the thin lines, thereby removing one vertex.



T N

S
B

C

A

φ(T)

φ(S)

φ(A)
φ(B)

φ(C)

s

t

dT

dS

φ
^

^
^

Figure 5: The optimization process minimizes the differences
(dS, dT ) between the texture coordinate axes (̂s, t̂) and the images
(φ(S), φ(T)) in texture space of the user-specified vectors (S, T).

3.4 Optimizing the surface patch parametrization
Having formed a surface patch together with its initial parametriza-
tion φ, we optimize φ so as to locally match both the orientation
and scale of the texture with the vector field defined on the surface.
More precisely, we attempt to match the images of the surface tan-
gent vectors (S, T) with the texture coordinate axes (̂s, t̂). Figure 3
shows the importance of aligning the vector field over the whole
patch, as opposed to just at its center.

For each mesh face f = {A, B, C}, the “up” vector T lies within
the face plane. We can therefore express it using its barycentric
coordinates with respect to the vertex positions1:

T = α A + β B + γ C , where α + β + γ = 0 .

Since the map φ is linear over the face, the image φ(T) is therefore a
linear function of the vertex parametrizations φ(A), φ(B), and φ(C).
As shown in Figure 5, we define the difference vector

dT = α φ(A) + β φ(B) + γ φ(C) − t̂ ,

and we do likewise for the difference vector dS. Our optimization
problem is to find the vertex parametrizations that minimize the
least squares functional

∑

f

‖dS‖2 + ‖dT‖2 .

The minimum of this function is unique up to a translation.
We therefore add a positional constraint to fix the location of the
patch center. The exact solution to the minimization problem
only requires solving a sparse linear system. Since we begin with
a reasonable approximation of the solution, we use a conjugate-
gradient iterative solver, which is faster than an explicit solver like
Gaussian elimination.

Note that the functional does not include any explicit “fairness”
term to penalize distortion in the parametrization. Instead,
continuity of the parametrization across mesh edges relies on the
continuity of the user-provided tangential vector field. Unlike many
local edge-spring functionals, our functional does not have local
minima when the face orientations flip, and thus avoids “buckling”
artifacts. Finally, the parametrization is well-behaved even though
the patch boundary is left unconstrained.

3.5 Recording the paste operations
The paste operation sends image samples from the texture patch
onto the surface patch using φ−1. Section 4 presents two schemes
for recording these paste operations.

1Given a set of points P in general position, any vector in the affine
subspace spanning P is uniquely expressed as a linear combination of P,
and these barycentric coordinates sum to zero.

3.6 Computing face coverages
To decide where to apply paste operations (Section 3.3), we need to
know if a face is already fully covered by texture. We answer this
query using a rasterization algorithm. After each paste operation,
we render all the patch faces in an offscreen buffer, with the
parametrization from Section 3.4. (In the rare case that the patch
overlaps itself in texture space, we compute the coverage in several
passes, for subsets of non-overlapping faces.) Each face in the
patch is rendered using all paste operations that overlap it. We
use the R and G color channels to store the face ID, and the B
channel to accumulate the opaque regions of the paste operations.
To determine the coverage of a face, we divide the number of
covered pixels (in the B channel) by the number of pixels in the
triangle. For each faces that is not fully covered, we remember
an uncovered point inside the face, in order to start a future paste
operation centered there. When all faces are fully covered, we are
done pasting.

4 Texture storage and rendering
We propose two approaches for representing the textured object.
The first approach constructs a traditional surface parametrization
using a texture atlas, and pre-renders the lapped texture into this
atlas. The second and more interesting approach uses the hardware
graphics pipeline to composite the texture patches at runtime.

Rendering with a texture atlas Previous approaches for storing
texture on meshes use a texture atlas (e.g. [3, 10, 16]). An atlas is
a collection of charts that map regions of the surface to subsets of
a texture unit square, such that no two distinct surface points map
to the same texture point (see Figure 6b). Ideally, the charts should
have low parametric distortion, and should have uniform resolution
across the mesh.

To build an atlas, we use a method similar to Maillot et al. [10].
We segment the mesh into regions by bounding each region’s space
of face normals, flatten each region using relaxation, and let the
user arrange the flattened pieces. To grow and flatten the surface
regions, we use the algorithm described in Section 3.3 (for the
case of isotropic textures), but with two additional constraints. We
require the normals of the added faces to be within a certain angle
from the one of the center face. And, we prevent overlaps by
checking for intersections using a spatial hash table. The next step
is to arrange the chart images inside the unit square. Packing a set
of non-convex polygons into a given 2D domain is a well-studied
problem in computational geometry known as “pants packing” [11]
due to its application in the clothing industry. Since the problem is
NP-hard, an exact solution cannot generally be computed. Heuristic
algorithms for arranging on the order of a hundred polygons with
no initial layout produce significantly worse results than a trained
human. Therefore, we let the user manually arrange the charts.

The atlas is represented using sets of texture coordinates at the
mesh vertices. During a preprocess, the texture paste operations are
composited into the atlas charts. At runtime, the mesh is rendered
using ordinary texture mapping.

(a) Runtime pasting (b) Rendering with a texture atlas

Figure 6: Comparison of our two texture representations. The atlas
representation is more portable but may have sampling problems.



Figure 7: For the first 6 pictures the user specified the texture patch boundary and a vector field over the mesh. The remaining pictures are
examples of isotropic textures, and are generated automatically. The two upper dinosaurs are frames from an animation of the tail (see video).

Runtime pasting of lapped textures Our preferred approach for
rendering the lapped texture is to record the parameters for each
paste operation (texture patch index, list of surface patch faces, and
texture coordinates for vertices), and to render these surface patches
at runtime with alpha blending enabled.

With runtime pasting, each face of the model is rendered several
times, once for each surface patch to which the face belongs. This
increases the load on the graphics system, in terms of both geometry
processing and rasterization. To reduce this overhead, during a
preprocess we remove for a given paste operation any faces that
are completely occluded by subsequent paste operations; such faces
are detected through a rasterization algorithm as in Section 3.6.
With this optimization, the average number of times that each
face gets rendered ranges between 1.5 and 3.2, depending on the
texture scale and the model. Graphics systems have begun to
support multitexturing, whereby the rasterizer can directly evaluate
a complicated shading expression involving several texture lookups
(recently, as many as four). Although not used in our current
prototype, this multitexturing capability could reduce the number
of times each face is rendered.

Since our flattening process may produce texture coordinates
outside the unit square, we use texture coordinate clamping. For
proper interaction of blending and mipmapping, the texture patch
must have a border of transparent pixels at all mipmap levels finer
than 2x2. We therefore build the mipmap levels explicitly.

Tradeoffs of rendering approaches Compared to the atlas,
runtime pasting requires little texture memory, since it only involves
storing the initial texture patches (and often there is only one such
patch). As in ordinary 2D texture tiling, large amounts of apparent
texture can be created with little actual texture memory usage. The
randomness of our surface patch construction makes repetitiveness
of the texture less obvious than with ordinary 2D tiling.

Runtime pasting offers better visual quality because it does not
suffer from several problems inherent to a texture atlas (Figure 6):
• Sampling. The use of an atlas adds one more resampling step,
thus inherently degrading the texture image quality. The quality
is improved by increasing the texture resolution, but this further
reduces the ratio of apparent texture to texture memory usage.
• Discontinuities. The tri-linear interpolation filter used to sample
the texture does not match exactly at chart boundaries.
• Mipmapping problems. At coarser mipmap levels, distinct charts
of the atlas are wrongly averaged together.

The disadvantages of the runtime pasting approach are the
following. As discussed above, rendering is likely slower since
faces are drawn multiple times (though multitexturing may alleviate
this). Also, the storage format for the model is somewhat less
portable since it involves textures with alpha. Finally, each face
must be rendered with different textures in a specific order, and
some rendering systems may not guarantee the order in which
overlapping polygons are drawn.



Figure 8: Limitations of our method: (a) Strong low-frequency
components, (b) Boundary mismatch, (c) Singularity point.

5 Results
Several textured meshes are shown in Figure 7. In all the examples,
the synthesized texture is generated from a single texture patch
extracted from the example texture (except the brick foot which
uses two). It takes the user about 15 minutes to create a non-
trivial direction field for the meshes shown. The growth and
parametrization of the patches takes between 20 seconds and 6
minutes to compute on a 733 MHz Pentium III with a GeForce
graphics card. Except where noted, all of the examples shown in the
paper and the accompanying video tape use runtime pasting rather
than the atlas approach. The meshes used in this paper average
5000 faces. Since each face is rendered on average two or three
times, all of the lapped textures shown here display in real time. For
homogeneous textures we can use a generic texture patch boundary
(e.g., the splotch), and switch between different texture examples
instantaneously at runtime.

Figure 8 shows some of the limitations of lapped textures. Patch
seams become noticeable when the texture patch has strong low
frequency components. Seams are also apparent when viewing
highly structured textures up close. For anisotropic textures, the
user-specified vector field generally has singularity points, since of
course one cannot smoothly comb a hairy ball. Sometimes, visual
artifacts are caused by poor vector field sampling near these points
due to the presence of large faces; we reduce such artifacts by
locally subdividing the mesh.

6 Summary and future work
We have introduced lapped textures, a new approach for covering
arbitrary triangle meshes with an example 2D texture. The
approach is to apply copy/paste operations to cover the surface with
overlapping texture patches, using alpha blending to hide seams.
The paste operation relies on a new, fast, robust flattening scheme
that simultaneously minimizes distortion of the texture and matches
local orientation and scale specified by the user.

Our scheme proves to be highly practical, allowing the creation
of complex textures on meshes at a fraction of the user effort
required by 3D painting. Lapped textures can be used as a starting
point for further manual painting (e.g. for unique details such as the
mouth and eyes of a bunny).

This work suggests a number of areas for future investigation:

Fine-tuning patch placement. It may be beneficial to fine-
tune the placement of the surface patches so that sharp texture
features align across patch boundaries (Figure 8b). Initially, we
anticipated that this process would be absolutely necessary to make
patch boundaries unobtrusive; we were pleasantly surprised to
find that the method works quite well without this embellishment.
Nonetheless, we still believe it could enhance the results.

Greater automation. We believe that methods to reduce user
interaction would make this system even more practical. For
example, we have considered automatic texture patch creation,
automatic equalization of low-frequency information in these
patches (Figure 8a), and automatic direction field construction
using surface curvatures.

Other texture types. Within the lapped texture framework, we are
now exploring several other types of textures, including animated,
volumetric and view-dependent textures.

Acknowledgements
We thank Harry Shum for demonstrating a prototype 2D texture
synthesis scheme [20] that largely inspired this work. Thanks
to Viewpoint DataLabs and Stanford University for the surface
meshes, and Michael Cohen and Rico Malvar for proposing the
name “lapped textures”.

Emil Praun was supported in part by a Microsoft Research
internship. The research of Adam Finkelstein is supported by an
NSF CAREER Award and an Alfred P. Sloan Fellowship.

References
[1] BENNIS, C., VÉZIEN, J.-M., IGLÉSIAS, G., AND GAGALOWICZ, A. Piecewise

surface flattening for non-distorted texture mapping. Computer Graphics
(Proceedings of SIGGRAPH 91) 25, 4, 237–246.

[2] BONET, J. S. D. Multiresolution sampling procedure for analysis and synthesis
of texture images. Computer Graphics (Proceedings of SIGGRAPH 97), 361–
368.

[3] CIGNONI, P., MONTANI, C., ROCCHINI, C., AND SCOPIGNO, R. A
general method for preserving attribute values on simplified meshes. In IEEE
Visualization (1998), pp. 59–66.

[4] DISCHLER, J. M., GHAZANFARPOUR, D., AND FREYDIER, R. Anisotropic
solid texture synthesis using orthogonal 2D views. Computer Graphics Forum
17, 3 (1998), 87–96.

[5] EFROS, A. A., AND LEUNG, T. K. Texture synthesis by non-parametric
sampling. In IEEE International Conference on Computer Vision (Sept. 1999).

[6] FLEISCHER, K., LAIDLAW, D., CURRIN, B., AND BARR, A. Cellular texture
generation. Computer Graphics (Proceedings of SIGGRAPH 95), 239–248.

[7] GHAZANFARPOUR, D., AND DISCHLER, J.-M. Generation of 3D texture using
multiple 2D models analysis. Computer Graphics Forum 15, 3 (1996), 311–324.

[8] HEEGER, D. J., AND BERGEN, J. R. Pyramid-based texture analysis/synthesis.
Computer Graphics (Proceedings of SIGGRAPH 95), 229–238.

[9] LÉVY, B., AND MALLET, J.-L. Non-distorted texture mapping for sheared
triangulated meshes. Computer Graphics (Proceedings of SIGGRAPH 98), 343–
352.

[10] MAILLOT, J., YAHIA, H., AND VERROUST, A. Interactive texture mapping.
Computer Graphics (Proceedings of SIGGRAPH 93), 27–34.

[11] MILENKOVIC, V. J. Rotational polygon containment and minimum enclosure.
Proc. of the 14th Annual Symp. on Computational Geometry, ACM (June 1998).

[12] NEYRET, F., AND CANI, M.-P. Pattern-based texturing revisited. Computer
Graphics (Proceedings of SIGGRAPH 99), 235–242.

[13] PEDERSEN, H. K. Decorating implicit surfaces. Computer Graphics
(Proceedings of SIGGRAPH 95), 291–300.

[14] PEDERSEN, H. K. A framework for interactive texturing operations on curved
surfaces. Computer Graphics (Proceedings of SIGGRAPH 96), 295–302.

[15] PERLIN, K. An image synthesizer. Computer Graphics (Proceedings of
SIGGRAPH 85) 19, 3, 287–296.

[16] SANDER, P., GU, X., GORTLER, S., HOPPE, H., AND SNYDER, J. Silhouette
clipping. Computer Graphics (Proceedings of SIGGRAPH 2000).

[17] TURK, G. Generating textures for arbitrary surfaces using reaction-diffusion.
Computer Graphics (Proceedings of SIGGRAPH 91) 25, 4, 289–298.

[18] WITKIN, A., AND KASS, M. Reaction-diffusion textures. Computer Graphics
(Proceedings of SIGGRAPH 91) 25, 4, 299–308.

[19] WORLEY, S. P. A cellular texture basis function. Computer Graphics
(Proceedings of SIGGRAPH 96), 291–294.

[20] XU, Y., GUO, B., AND SHUM, H.-Y. Chaos mosaic: Fast and memory efficient
texture synthesis. Tech. Rep. MSR-TR-2000-32, Microsoft Research, 2000.


