Foundations and Trends® in
Computer Graphics and Vision

Vol. 8, No. 1 (2012) 1-84 n‘w

(© 2014 D. Nehab and H. Hoppe
DOI: 10.1561/0600000053 the essence of knowledge

A Fresh Look at Generalized Sampling

Diego Nehab
Instituto Nacional de Matematica Pura e Aplicada (IMPA)

Hugues Hoppe
Microsoft Research

Contents

1 Introduction|

2

Background|

2.2 Analysisfilters|]

Basic notation, definitions, and properties|

Fundamental algorithms|

4.1 Interpolation|. oL

[4.3 Orthogonal projection|
[4.4 Oblique projection|

b

Translation and scaling|

[5.1 Translation of discretized signals|
[>5.2 Scaling of discretized signals|

Approximation of derivatives|

Generalized prefiltering and estimator variance|

Practical consideration

12

18
19
20
22
25

27
27
29

37

41

47

1 rid str rel
[8.2 Efficient use of piecewise-polynomial kernels|
[8.3 Pretiltering, reconstruction, and color spaces|
8.4 Rangeconstraints|

9 Theoretical considerations|

(10 Experiments and analyses|

53

57

68

69

70

80

Abstract

Discretization and reconstruction are fundamental operations in computer
graphics, enabling the conversion between sampled and continuous repre-
sentations. Major advances in signal-processing research have shown that
these operations can often be performed more efficiently by decomposing
a filter into two parts: a compactly supported continuous-domain function
and a digital filter. This strategy of “generalized sampling” has appeared in a
few graphics papers, but is largely unexplored in our community. This survey
broadly summarizes the key aspects of the framework, and delves into specific
applications in graphics. Using new notation, we concisely present and extend
several key techniques. In addition, we demonstrate benefits for prefiltering in
image downscaling and supersample-based rendering, and analyze the effect
that generalized sampling has on the noise due to Monte Carlo estimation.
We conclude with a qualitative and quantitative comparison of traditional and
generalized filters.

D. Nehab and H. Hoppe. A Fresh Look at Generalized Sampling. Foundations and Trends® in
Computer Graphics and Vision, vol. 8, no. 1, pp. 1-84, 2012.

DOI: 10.1561/0600000053.

1

Introduction

Many topics in computer graphics involve digital processing of continuous-
domain data, so it is unsurprising that discretization and reconstruction are
essential operations. Figure [I.T|shows the traditional sampling and reconstruc-
tion pipeline. During discretization (e.g., rasterization of a scene, or capture
of a digital photograph), a continuous input signal f is passed through an

discretization reconstruction

fo=f* [-1 f=[ful*e

f—| v —fw-*@?-[fﬂ—* ¢ i—f

input

output

continuous IIT mixed
analysis sampling synthesis

Figure 1.1: The traditional signal-processing pipeline is divided into two major stages: dis-
cretization and reconstruction. During discretization, a continuous input signal f is convolved
with the reflection 1" of a given analysis filter . The resulting prefiltered signal f, = f * "
is then uniformly sampled into a discrete sequence [fy]. To obtain the output approximation f,
the reconstruction stage computes the mixed convolution between [f,;] and a given recon-
struction kernel ¢, i.e., a sum of shifted copies of ¢, where each shifted copy scaled by the
corresponding entry in [f]. (Our notation is explained in greater depth in section)

2

Prefiltering
f ¢ = fo
* = /\/\/\/
Sampling
fo [fe]

Reconstruction

[fu] . p=p

Figure 1.2: A continuous function f is prefiltered with analysis kernel ¢ (here the box func-
tion 3%, not to scale). The resulting signal fu is sampled into a discrete sequence [fy;]. The
final output f is obtained by mixed convolution between the discrete sequence [f] and the
reconstruction kernel ¢ (here the hat function 3 L not to scale).

analysis filter 1 (a.k.a. sampling kernel, prefilter, or antialiasing filter) before
being sampled. The result is a discrete sequence [f,] (e.g., an image). During
reconstruction (e.g., interpolation of a texture, or display of an image on a
screen), the continuous approximation f of the original signal is obtained by
mixed convolution with a reconstruction kernel ¢ (a.k.a. generating function,
basis function, or postfilter). Figure [1.2] illustrates each step of the process
with a concrete example in 1D.

The roles of the analysis filter ¢/ and reconstruction kernel ¢ are tradi-
tionally guided by the sampling theorem [Shannon, |1949]. Given a sampling
rate 1/7, the analysis filter ¢ = sinc(-/7) eliminates from the input signal f
those frequencies higher than or equal to 1/27 so that the bandlimited fy,
can be sampled without aliasing. And in that case, the reconstruction ker-
nel o = sinc(-/7) recreates f = f, exactly from the samples.

Sampling may also be interpreted as the problem of finding the function f
that minimizes the norm of the residual || f — f||,. If we restrict our attention

4 Introduction

discretization reconstruction

fo=Fre) [-1 F=[fslxrxp
f— @)= fo>R-[fu]~ m4¢ — f
I

_______ -

input output

continuous 11T mixed
analysis sampling synthesis

Figure 1.3: The main idea in generalized sampling is to broaden the analysis and reconstruction
kernels by expressing these as mixed convolutions (p * ¢ and r *) with a pair of digital filters
(p and r) while retaining compact support for the functions v and .

3 18] /\
= B2 315" —-

Figure 1.4: The traditional Keys cubic (Catmull-Rom spline) K has support 4 and a reasonably
sharp frequency response |R' |. The cardinal cubic B-Spline 33, is a generalized kernel formed
from the basic cubic B-spline 32 and a digital filter. The digital filter acts to widen support to
infinity (though with exponential decay) and to significantly sharpen the frequency response.

to the space of bandlimited functions, the ideal prefilter is still ¢) = sinc(-/T).
However, functions are often not bandlimited in practice (e.g., due to object
silhouettes, shadow boundaries, vector outlines, detailed textures), and for
efficiency we desire ¢ and ¢ to be compactly supported.

In addressing these concerns, the signal-processing community has
adopted a generalization of the sampling and reconstruction pipeline [Unser,
2000]]. The idea is to represent the prefilter and reconstruction kernels as mixed
convolutions of compactly supported kernels and digital filters. As shown in
figure digital filters p and r respectively modify the prefilter ¢/ and the
reconstruction kernel (. The additional degrees of freedom and effectively
larger filter support enabled by p and 7 allow the design of generalized kernels
with better approximation properties or sharper frequency response. Figure|l.4]
compares a traditional piecewise cubic kernel (the Catmull-Rom spline, or
Keys cubic) with a generalized cubic kernel (the cardinal cubic B-spline).

discretization reconstruction

fo = f x4 [-1 e=[fulxa f=cxp

f— ¥l @l @ e~ ¢

input I """""""""" output
continuous I digital mixed
analysis sampling filtering synthesis

Figure 1.5: Generalized sampling adds a digital filtering stage to the pipeline. The output [fy]
of the sampling stage is convolved with a digital transformation filter ¢ = p” * r. It is the
result ¢ of this stage (and not [fy]) that is convolved with the reconstruction kernel ¢ to
produce the output signal.

Equivalently, the digital filters p and 7 can be combined as g = p” * r into
a separate filter stage as shown in ﬁgure The result [f;;] of the sampling
stage is transformed by the digital filter q (a.k.a. correction or basis change)
to form a new discrete sequence c, which is then convolved with ¢ as usual to
reconstruct f. The key to the efficiency of this generalized sampling framework
is that the digital filters p and r that arise in practice are typically compact
filters or their inverses [[Unser et al., [1991]], both of which are parallelizable
on multicore CPU and GPU architectures [Ruijters et al., 2008}, Nehab et al.,
2011]). Thus, the correction stage adds negligible cost.

An important motivation for generalized sampling is improved interpo-
lation [Blu et al., [1999]. As demonstrated in figure an image [fy] is
processed by a digital filter g resulting in a coefficient array ¢ which can then
be efficiently reconstructed with a simple cubic B-spline filter 32. The result-
ing interpolation is sharper and more isotropic (i.e., has higher quality) than
that produced by the popular Mitchell-Netravali filter [1988]], even though
both filters have the same degree and support. The implementation of the
digital filtering stage is described in detail in section f.2] The theory of image
upscaling is described in section with implementation notes in section
Source-code in provided in appendix [A]

In graphics, careful prefiltering is often necessary to prevent aliasing.
McCool| [1995] describes an early application of generalized sampling, in
which rendered triangles are antialiased analytically by evaluating a prism
spline prefilter. The resulting image is then convolved with a digital filter. In
this work, we apply generalized sampling to image downscaling and in general

6 Introduction

Input f Reconstructed f * M

s?é

\

IB 3
%Q

Correctedc = f xr Reconstructed ¢ * 52

Figure 1.6: Reconstruction example. The top row shows the result of the traditional cubic

Mitchell-Netravali filter M. The bottom row uses the generalized sampling approach, first

applying a digital filter » = [é, %, %] Tasa preprocess, and then reconstructing with the cubic

B-spline 3% — which is less expensive to evaluate on a GPU than filter M.

to rendering with supersampling. Figure [I.7]shows an example. The input f is
prefiltered using the cubic B-spline basis 3. The resulting over-blurred image
is then transformed with a digital filter p” that reshapes the antialiasing kernel
a posteriori. The final low-resolution image is sharper and exhibits less aliasing
than with a Catmull-Rom filter, for a similar computational cost. The theory
of image downscaling is described in section [5.2] with implementation notes
in section[8.2] and source-code in appendix [A] Generalized supersampling is
described in section[7l

Our aim is to present a concise overview of the major developments in
generalized sampling and to extend these techniques to prefiltering in graphics.
To facilitate exposition and exploration, we develop a new concise notation
for sampling. With this parameter-free notation, key techniques are derived
using simple algebraic manipulation. We conclude by comparing a variety of

Input f Prefiltered, sampled [f * K]

Prefiltered, sampled [f = (3°)] Corrected [f * (8%)'] = p’

Figure 1.7: Prefiltering example. The top row shows the result of rendering with the Keys
(Catmull-Rom) prefilter K. The bottom row shows rendering using a B-spline 5%, followed
by convolution with a digital filter p* = [%, %, é] " The generalized prefilter p * 5> equals
the cubic cardinal B-spline 82, Kernels K and 3% have the same support, but the improved
frequency response of 83, reduces aliasing while maintaining sharpness. (Our notation is

explained in section[3})

traditional and generalized filters, using frequency-domain visualizations and
empirical experiments using both L2 and SSIM metrics, to identify the best
strategies available.

2

Background

2.1 Reconstruction kernels

The search for finite-support alternatives to the ideal reconstruction filter has
led to many non-polynomial windowed-sinc variants [Meijering et al., [1999a].
The most popular in graphics is the Lanczos window [Duchon, [1979]]. (Accord-
ing to our experiments in section [I0} the Hamming window [Hamming|, [1977]]
performs better.)

Polynomial functions have been shown to have an efficiency advantage,
and to match (and surpass) windowed-sinc approximations in quality [Me1{
jering et al., 2001]]. We therefore focus on piecewise polynomial kernels.
Like Thévenaz et al.|[2000], we use a set of properties that characterize re-
construction kernels to guide us through the bibliography. For an alternative,
chronological survey, please refer to Meijering [2002].

The degree N of a kernel ¢ is the maximum degree of its polynomial
pieces. The support W of ¢ is the width of the smallest interval outside of
which ¢ vanishes (assuming a sample spacing of one). Increasing either the
degree or support of a kernel ¢ introduces additional degrees of freedom
for the design of good kernels, but unfortunately also adds to the runtime
computational cost.

2.1. Reconstruction kernels 9

Most kernels are symmetric about the origin. The regularity R measures the
smoothness of . That is, a kernel ¢ is said to be in C¥ if it is differentiable R
times. The space of functions spanned by a generator ¢ is denoted by V.
The order of approximation L of V,, measures the rate at which the residual
between f and its optimal approximation f, € Vi, vanishes as the sample
spacing T is reduced:

If = Frilc, :CfTL as T — 0.

Equivalently, a space with approximation order L can reproduce polynomial
signals of up to degree L —1 [Strang and Fix} [1973]]. Enforcement of regu-
larity, symmetry, and approximation order in ¢ consume degrees of freedom
from the design process. In fact, the best approximation order a kernel of
degree N can attain is L = /N 41. This optimal order is achievable even with a
compact support W =N+1 [Blu et al., 2001]]. Various strategies for setting
the remaining degrees of freedom have led to the development of a multitude
of reconstruction kernels.

Mitchell and Netravali| [1988]] design a family of cubic kernels by starting
with W = 4, R = 1, and L = 1. They set the two remaining degrees of
freedom by subjectively evaluating the amount of ringing, blur, and anisotropy
in upsampled images. Alternatively, setting L = 2 leaves only one degree of
freedom, and they similarly set its value based on subjective quality.

Interpolating kernels A reconstruction kernel ¢ is interpolating if it sat-
isfies ¢(0) = 1 and p(k) = 0,k € Z \ {0}. Naturally, enforcing this property
further eliminates degrees of freedom. Popular interpolating kernels include
the ubiquitous nearest-neighbor (or box, L = 1, W = 1) and linear (or hat,
L =2, W = 2) interpolation kernels. These are members of the family of
local Lagrangian interpolators, which have optimal order and minimum sup-
port L = W = N + 1 [Schafer and Rabiner, 1973, |Schauml 1993, Blu et al.,
2001]] but offer no regularity. Several authors have reached the Catmull-Rom
cubic spline [Catmull and Rom, 1974 by different means [Keys, |1981} [Park
and Schowengerdt, 1983, Meijering et al.,|1999b, Blu et al.,[2001]]. It is the only
C!'-continuous cubic interpolating kernel with optimal order and minimum
support.

Other noteworthy kernels include an additional cubic (W = 6, L = 4)
by Keys| [1981], the C-continuous (interpolating) and the C!-continuous

10 Background

(not interpolating) quadratics (N = 2, W = 3, L = 2) of [Dodgson| [[1997]],
a quartic (L =5,W =7,R = 1) by |German| [1997]], and the quintic and
septic kernels (W = 6 and 8, but L = 3) by |[Meijering et al|[[1999b|. The
support of these kernels is larger than necessary for their approximation order.

Generalized kernels A breakthrough came from the idea that the respon-
sibility for interpolating the original samples need not be imposed on the
continuous kernel ¢ itself, but can instead be achieved by using a digital
correction filter g. This was first demonstrated in the context of B-spline
interpolation [Hou and Andrews| 1978 [Unser et al., [1991]].

B-splines are the most regular members of a class of functions called
MOMS (for Maximal Order, Minimum Support) [Blu et al.,[2001]]. The best
performing kernels, the O-MOMS (Optimal MOMS), trade off regularity to
minimize the leading coefficient C'7, in the optimal mean approximation error

If = Frlle, = CoT | fP)p, as T — 0.

If continuous derivatives are desired, the SO-MOMS (Sub-Optimal MOMS)
minimize coefficient C, subject to C!-continuity.

It is possible to further reduce reconstruction error by mimicking the low-
frequency behavior of orthogonal projection (see below). The shifted linear
interpolation scheme of Blu et al.|[2004]] gives up on symmetry and uses the
additional freedom to minimize the approximation error. Quasi-interpolation
schemes give up on interpolation of [f;], so that g is freed of this restriction.
In that case, the interpolation property holds only when f is a polynomial
of degree less than L (the quasi-interpolation order). Blu and Unser [[1999al]
describe an IIR design for g,|Condat et al.|[2005] an all-pole design, and |Dalai
et al.|[2006] a FIR design. The improvements due to this relaxation are often
substantial, particularly for low-degree schemes (/N < 3).

2.2 Analysis filters

As explained earlier, an important goal is orthogonal projection: minimizing
the residual || f — f||z, between the reconstruction f and the input signal f.
Given a reconstruction kernel ¢, orthogonal projection is achieved using a
prefilter known as the dual of ¢ and denoted by the symbol . This prefilter
may be written in the form p * ¢ (see section[4.3)). Exploiting the fact that in

2.2. Analysis filters 11

computer graphics we often have access to the input signal prior to sampling,
Kajiya and Ullner|[1981]] use this orthogonal projection for antialiased text
rasterization. In their work, ¢ is a Gaussian that models the CRT electron
beam, and f corresponds to the text being rendered. They further restrict the
optimization to non-negative coefficients ¢ and explore a perceptual alternative
to the £9 norm.

This idea was extended by [McCool| [[1995]] to include other prefilters of
the form p * v, where v is a compactly supported B-spline basis function.
A similar factorization is used: first the input is prefiltered with), then the
result is transformed to what would be obtained if directly prefiltering with
the cardinal spline.

Orthogonal projection is commonly used in processing of previously
discretized input signals. Most image processing operations result in signals
outside of the approximation space. These can then be projected back. In
the case of scaling and translation, there are efficient algorithms to achieve
this [[Unser et al.,|1995albl [Munoz et al., 2001]].

The approach of orthogonal projection has not been widely adopted in
computer graphics. In part, there is a lack of familiarity with the framework.
But also, there is the issue that the perceptual quality of an approximation
involves a subjective balance between aliasing, blurring, ringing, and positivity,
to which the £5 norm is oblivious (as noted by [Kajiya and Ullner [1981])).
Some favor the sharpness offered by filters with negative lobes (the “negative
lobists” [Blinn, [1989]]), while others fear the accompanying ringing in dark
regions (a problem accentuated by gamma correction). Rendering systems
therefore offer several alternatives, including box, hat, Mitchell-Netravali,
Catmull-Rom (Keys), Gaussian, and windowed-sinc filters [Pixar, 2005]], but
rarely (if ever) offer orthogonal or oblique projections.

3

Basic notation, definitions, and properties

Many of the derivations in generalized sampling involve tedious manipulations
of integrals and summations, including changes of index variables. In this
section, we introduce a new index-free notation to help eliminate this problem.
Using this notation and a small set of properties, we are able to simplify the
derivations of many algorithms and concepts to trivial algebraic manipulations.

For simplicity, we formulate the mathematics in one dimension. However,
all results are easily extended to 2D images and 3D volumes in a separable way
by making use of tensor-product basis functions. Furthermore, we assume all
signals are real even though results are easily generalized to complex signals.

ITBELR

We denote the implicit argument to a univariate function with a dot

f(-+ k) €z flz+k). (3.1)

The prefiltering stage in figures [[.T]and [I.5]simply perform a continuous
convolution between the signal f and the prefilter kernel :

R N (CEAEEL e (3.2)

We denote discrete sequences by bold letters, or write the values explicitly,
enclosed in bold square-brackets [|:

Cd:e{[...,c_g,c_l,CO, 01762,...], ct €ER, ke Z. 3.3)

12

13

An element of a sequence can be selected by a subscript so that ¢y, & ¢, above.

A key part of our new notation is the use of bold square-brackets, when
enclosing an expression with a single free variable, to denote the discrete
sequence that results from uniformly sampling the expression at all multiples
of a sampling spacing 7":

[flp = [f(=2T7), f(=T), £(0), £(T), f2T),...] (3.4)

2 [f], in short when T = 1. (3.5)

This is the operation performed by the sampling stage of figures[I.THI.3]
The digital filtering introduced by the generalized sampling pipeline in

figure [I.5] corresponds to discrete convolution with the discrete sequence q:

c=bxq, where ¢, = Zbi Qk—i, k € Z. (3.6)
€7
The reconstruction stage in figures[I.THI.5|shares many properties with

convolutions. We therefore introduce notation for a mixed convolution with
spacing T’ between a discrete sequence ¢ and a reconstruction kernel (:

Cxr Z cro(- —kT) andin particular cx = e, 0. (3.7)
keZ

In most cases, commutativity and associativity apply to all combinations of
convolutions. Parentheses are unnecessary as there is no danger of ambiguity.
We can manipulate convolutions like products:

(bxc)xf=bx(cxf) and (f*xg)*xb=fx(gx*b). (3.8)

The only exception is in expressions involving multiple mixed convolu-
tions with different spacings. Even then, it is still true that

bxr (cxs f) = cxg (b*r f), (3.9)
but the spacings must be the same for us to factor out the discrete convolution:
by (cxr f) =cxp (bxr f) = (bxc)*r f. (3.10)

For repeated convolution, we use a notation reminiscent of exponentiation:

f"=fx---xf and b =bx---xb (3.11)

n n

14 Basic notation, definitions, and properties

The reflection of sequences and functions is denoted by
ey, keZ and fY(2)E f(—z), zeR (3.12)
and distributes over all flavors of convolution:
(bxe)'=b'xc’, (fxg) =f"xg’, and (bx)' =b"x¢p". (3.13)

The simple connection between inner-products and convolutions,

(o) [Trow = (£ v)(0), (.14

is the source for the pervasive reflection operation. Its generalization

o= [F@ee-pd=F® 619

lets us express in compact form the fundamental operation of sampling a
function f with an analysis filter 1):

[(F wC-=10), (f,0), (f, -+ 1)....] =[f*¢']. (3.16)

Using our notation, we can succinctly express the key property that sam-
pling a mixed convolution with matching spacing 7" is equivalent to performing
a discrete convolution between the sequence and the sampled function:

[bxr flr =b*[fl. (3.17)

In other words, these operations commute.

The continuous unit impulse § (the Dirac delta) and the discrete unit
impulse & (the Kronecker delta) are the identity elements for the convolution
operations:

Sx fEF VS and dxc= e, Ve (3.18)
The discrete impulse can also be defined simply as
6=1[...,0,0,1,0,0,...] where dp=1. (3.19)

The discrete convolution operation ¢ = b % g can often be efficiently
inverted (see section[4.2). The inverse operation is again a discrete convolution:

b=cxq' with gxqg'=3. (3.20)

15

Reflection and convolution-inverse commute, so we can define:
b= (b = () (3.21)
Interestingly, the derivative operation does not distribute over convolution:
(fxg) =fxg=fxd. (3.22)

This rule lets us express the derivative operation as a convolution, since
f=fxd = [f=(fxd)=fxd. (3.23)
For higher-order derivatives, we use the short notation

F = fe(d). (3.24)

The discrete analog of the derivative is the finite difference. We can express
the (backward) differencing operation as convolution with the sequence

A=]...,0,0,1,-1,0,...] where Ap=1. (3.25)
Just as with the derivative operation,
Ax(bxc)=(Axb)xc=bx(Axc). (3.26)

The continuous unit (or Heaviside) step function u is the integral of the
unit impulse. Accordingly, the discrete unit step function w is the summation
of the discrete unit impulse:

u(z) :/ S(t)dt and w; =) &y (3.27)
— k=—00
From these definitions, it is clear that
(f % u)(x) :/ ftydt and (cru)i=Y e (3.28)
- k=—00

Furthermore,
uxd =6 and wxA =9, (3.29)

so that the pairs u, &’ and u, A are convolution inverses.

16 Basic notation, definitions, and properties

We use 7, to denote the translation of the impulse by an offset h:
Th = 0(- — h). (3.30)

This lets us express the translation of a function f as a convolution:

f(-—h) =7 f. (3.31)

The centered B-spline basis functions 5" are an important family of
generating functions. The box filter 3° can be defined as:

B =Axuxtyp. (3.32)
The hat filter ' and the remaining B-splines are recursively defined as:
B =gt B, (3.33)
or equivalently using the notation for repeated convolution:

B = (50)*(71-1—1) — AL o x(ntl) T (nt1)/2- (3.34)

Note that the one-sided power function can be written equivalently as
xn
w) (z) = — u(x). (3.35)
n!
A useful shorthand for the cross-correlation between two functions is:

apy = /Ooso(t) Pt —) dt =). (3.36)

In particular, we denote the auto-correlation as a, £ Q-
Two functions ¢ and ¢ are biorthogonal if they satisfy

(p(+—1), ¥(-—4)) = {1 i=7 (3.37)

0 otherwise,
where i, j € Z, or equivalently in our notation,
[arq] =0. (3.38)

The Discrete Time Fourier Transform (DTFT) of a sequence and the Fourier
Transform of a function are defined respectively by

e(§) =Y cpe ™k and f(O = / Oof(x)e—mfx da. (3.39)

kEZ

17

Convolution in the time domain becomes a product in the frequency domain.
This is also true of mixed convolutions:

—

(brc)=eb, (f+g)=f3 and (f+c)=fe (3.40)
In our notation, the impulse train (Dirac comb) is a mixed convolution:

M= 6(-—k)=[1]x6=1%0 (3.41)
kEZ

It has the important property of being its own Fourier transform:
I = II1. (3.42)

See table [3.1|for a list of properties and constructions expressed using the
notation we just presented.

Table 3.1: Some properties and constructions using the notation presented in this section.

Concept Expressed in our notation
Symmetry of ¢ ="
Interpolation property [¢] =0
Unit integral pxl=1
Partition of unity px[1] =1
Cross-correlation of ¢ and v Ay = @ * P’
Biorthogonality of ¢ and v [a, 4] =6
Auto-correlation of ¢ ap, = @ * ¢’
Orthogonality of ¢ [as] =6
Cardinal kernel ¢in¢ [o] !+ ¢
Dual kernel ¢ [ap] ™ * ¢

Orthogonal kernel ¢ [a<p]‘% *

4

Fundamental algorithms

Using the new notation introduced in section 3| we now describe some funda-
mental algorithms in generalized sampling. While none of these algorithms
are novel, the new notation allows more concise (and arguably more intuitive)
derivation.

The algorithms in the next sections address different scenarios based on
the selection of prefilter and reconstruction kernels:

¢ In interpolation, the input is a sampled representation assumed to be
obtained without prefiltering, or equivalently by using a prefilter
equal to the unit impulse d. Therefore the goal is to find the unique
reconstruction f that interpolates the samples — among functions in
the space V,, of the reconstruction kernel .

e The technique of orthogonal projection addresses the case where the
prefilter) spans the same function space as the reconstruction kernel (¢,
e.g. the space of piecewise cubic B-splines. The approach is to minimize
the L difference between the input signal and the reconstruction.

e Finally, oblique projection considers the case where the prefilter v
and reconstruction kernel ¢ span different function spaces. It sets the
reconstruction error to be orthogonal to the prefiltering space.

18

4.1. Interpolation 19

Table 4.1: Fundamental algorithms and their associated digital filters.

Approach Prefilter Reconstruction Digital filter
Interpolation =94 %] q= [90]-1
Orthogonal projection ¥ = @ %] q= [agp]_l
Oblique projection Y % q=[p=* W]_l

Table summarizes the digital filter associated with each of the three
approaches, as derived in the next sections. Interestingly, both interpolation
and orthogonal projection can be seen as special cases of oblique projection.

4.1 Interpolation

When the prefiltering process is unknown (or absent if ¢ = §), it is often
desired that the reconstructed function f interpolate the sample values [fy].
With traditional sampling (figure [I.1)), this interpolation property requires:

[fs]=1[/1] (4.1)
= [[fe]l *] 4.2)
= [f] * [¢]. 4.3)

As [fy] is arbitrary, an interpolating reconstruction kernel ¢ must therefore
satisfy

[¢] = o. (4.4)

As noted earlier, these interpolation constraints may severely hinder the design
of a reconstruction kernel with good approximation properties. Therefore,
instead of requiring the kernel itself to satisfy the interpolation property,
generalized sampling (figure [I.5)) introduces a digital filtering stage for that
purpose. We find an appropriate digital filter for interpolation with an arbitrary
kernel ¢ as follows:

[fy] =[F] (4.5)
= [ex ¢] (4.6)
=cx*[p] = (C))

c = [fol *[e]™ (4.8)

20 Fundamental algorithms

In other words,
c=[fyl*q with q=/[p]" (4.9)

The convolution of the digital filter ¢ = [] ' with the kernel ¢ is called the
cardinal i (see figure d.1p):

f=cxp=[fsl*[e] %o (4.10)
so that
F=[fol %o with g =[] "5 . .11
We can use (@.4) to verify that vy is indeed an interpolating kernel:
[oind = [l * o] = [e] "+ [¢] = 6. (4.12)

The key point is that the generalized sampling approach has the advantage of
using the compactly supported ¢ during reconstruction, when performance is
paramount. Since digital filtering with q is performed during preprocessing, it
does not add any computational cost to the reconstruction stage. In the words
of Blu et al| [[1999]], one obtains “higher-quality at no additional cost”. In
contrast, the cardinal kernel ;¢ has infinite support. Finite approximations
have a significantly wider support than ¢, increasing reconstruction costs.

4.2 Inverse discrete convolution

Discrete convolution by a sequence [¢] as in is a linear operator and
therefore expressible in matrix form:

[fy] = ¢ x [¢] = ® ¢, for some matrix . (4.13)

Inverting the process as in (#.9) is more challenging, as it amounts to solving
a linear system:

c=[fpl=[e] "= o' [f4]. (4.14)

Fortunately, typical matrices ® have regular structure: for even-periodic exten-
sions, they are almost Toeplitz. We describe an algorithm adapted from Mal4
colm and Palmer [1974] for solving the common case where [¢] = [p, ¢, p]
is symmetric with support width of 3 elements. A similar algorithm appéars
in [Hummel| [1983]] in the context of orthogonal projection. The tridiagonal
matrix ¢ and its LU-decomposition are:

4.2. Inverse discrete convolution 21

p+q p 1 (!
p qp ! Gl
d=| SO0 |=p| - N
P qp lys 1 |
P q+p lpo 1 v

The factorization is performed and stored only once, then reused to solve
multiple linear systems (one for each column and row in the image). Moreover,
when ® is diagonally dominant, the factorization is highly compressible, as the
sequence [{o, {1, . . .] quickly converges to a limit value /... The last diagonal
element v = 1 + 1// of matrix U needs to be handled separately.

Computing ¢ = [fy] * [¢] 1 when [¢] has support 3 requires only
3n products and 2n additions. Coincidentally, this is the same cost as comput-
ing [fy] = ¢ * [¢]. If one can make do with a scaled version d = p c of the
solution, for example by pre-scaling the kernel so that p = 1, the computation
requires n fewer products.

The forward- and back-substitutions are very simple, and we include
full source-code in appendix [A] (function linear_solve, lines[12H32)). For
convenience, we also provide the LU-decomposition arising from the cubic
B-spline and O-MOMS interpolation problems. The cubic B-spline has [¢] =
%[1, 4,1] and needs only 8 coefficients before the sequence converges to
single-precision floating-point. (See lines[I60H162]) For the cubic O-MOMS,
[¢] = 2—11[4, 13, 4] and only 9 coefficients are needed (See lines)
Our vectorized, multicore implementation of the same algorithm in 2D runs at
800MiPix/s on an Intel Core 17 980X CPU.

An equivalent approach favored by the signal processing community is
to formulate this inverse convolution as a sequence of recursive filters [Hou
and Andrews, (1978, [Unser et al., [1991]]. The difficulty is dealing with the
poles in g = [c,o]'1 and the trick is to factor the filter into cascaded causal
and anticausal parts, each realized as a stable recursive filter. Interestingly,
the operations are almost exactly the same as those described in appendix [A]
The only difference is in the treatment of elements close to the boundaries.
Whereas the recursive-filtering approach conceptually extends the input so as
to compute the initial feedback, the LU-factorization simply uses different
coefficients for the elements close to the boundary.

22 Fundamental algorithms

Even if [¢] has larger support (i.e., W > 4), the inverse convolution can
still be performed efficiently using LU -factorization in a similar way. The
matrices L and U have bandwidth L%J , so the forward/back-substitution
steps use several feedback elements, much like higher-order causal/anti-causal
recursive filters.

In signal processing, higher-order recursive filters are sometimes further
factored into chains of first- and second-order recursive filters. This is equiva-
lent to factoring the L and U matrices into products of lower and upper bidiag-
onal or tridiagonal matrices. However, computations using such factorizations
traverse the data additional times and do not save arithmetic operations. Thus,
the additional factorization is not beneficial in modern computer architectures
where memory access is expensive.

A modern parallelization of recursive filters for GPUs recently achieved
over 6GiPix/s on an NVIDIA GTX 480 GPU for the bicubic B-spline inter-
polation problem [Nehab et al., [2011]]. The key message is that, whatever
the approach followed or architecture used, the digital processing stage in
generalized sampling is extremely fast.

4.3 Orthogonal projection

We now derive an algorithm to obtain the orthogonal projection P, f of the
input signal f into the reconstruction space V,,. The algorithm computes the
coefficient array c expressing this projection as P, f = ¢ * ¢. To compute c,
we need to determine the appropriate prefilter ¢) and digital filter gq. The
orthogonality condition is:

(f-f)LV, & (f—f, o(-—k)=0 for keZ, (4.15)

s [(f=Ff)=¢] =0 (4.16)
From there,
[(F=F)¢]=0 = (4.17)
[f ¢l =[F*¥] (4.18)
=[e*xp*¢'] (4.19)
=cx*x[p*x¢] = (4.20)

c=[f*o*[exe 1" 4.21)

4.3. Orthogonal projection 23

A A

-6 -4 -2 2 4 6 - 6

(a) Basic ¢ (compact support) (b) Cardinal int (interpolating)

(c) Dual ¢ (biorthogonal to) (d) Orthogonal ¢ (own dual)

Figure 4.1: Equivalent basis functions for cubic B-splines.

In other words,
c=[f*v]*q with v=¢ and q=[a,]" (4.22)

Here, a, = ¢ * ¢’ is the auto-correlation of ¢, so that the matrix associated
with the linear system is none other than the Gramiam matrix reached by
Kajiya and Ullner| [1981]] and |[Hummel| [1983]]. It is important to point out
that, unless the output device uses ¢ for reconstruction, it makes little sense
to directly use the coefficient array c¢ for display. It may be necessary to
prefilter P, f for display, or at least sample its reconstruction (see section[10]

and figure [10.4):
[Pof]=lc* ¢l =cxle] (4.23)

Recall that the orthogonal projection P, is equivalent to convolution with
the dual ¢ (figure[d.Tk). To find the expression for ¢ and verify that it belongs
to V,,, note thaiﬂ

c=[f*p]x* [agp]_1 = [f x '] * [a,]”
= [f * 0 % [asp]_v] = [f * (90 * [a@]-l)v]

"Remember that a, = ¢ * ¢’ is always symmetric.

24 Fundamental algorithms

so that

c=[f*¢] with @ =px[a,]™ (4.24)

Thus, the traditional sampling approach would be to set the prefilter ¢ = .
The generalized sampling approach lets us avoid working directly with the
dual ¢, which typically has infinite support. We instead prefilter f with the
more convenient, compactly supported kernel ¢, and convolve with the inverse
of the sampled auto-correlation.

As a side note, it is easy to verify the biorthogonality of ¢ and ¢, i.e.

(B(- =), (- = 4)) = dij, (4.25)
using our notation:
[+ ¢l = [0 (p*[ag])] (4.26)
= [¢ * 0’ % [aw]’v] (4.27)
= [p ']+ [a,]” (4.28)
= [ag] * [ag] " (4.29)
=94. (4.30)

McCool|[[1995]] explored orthogonal projection in the context of rendering,
but may have mistakenly used the correction filter g = [o] ' [¢] " instead of
q = [a,]" for generalized prefiltering.

Orthogonal kernels Tt is easy to show (via the frequency domain) that the
ideal low-pass filter sinc equals its own auto-correlation. Because sinc satisfies
the interpolation condition, it happens that sinc is also its own dual, i.e., it is an
orthogonal kernel. This means that the ideal sampling procedure amounts to
the orthogonal projection of function f into the space of bandlimited functions.
Another example of orthogonal kernel is the box filter (its auto-correlation is
the hat filter, which also interpolates). In general, other typical kernels are not
orthogonal, so that ¢ and ¢ are quite different.

Notable equivalent generating functions We have already seen three
generating functions for the same approximation space V,,: The basic ¢ itself,
its cardinal iy, and its dual ¢. To complete the picture, we now find an

4.4. Oblique projection 25

orthogonal generating function ¢ for V,,. This is mostly of theoretical interest.
To do so, we numerically compute the “convolution square root” of [acp]‘{ via
the Fourier series expansion of DTFTV/2([a,]). Then,

¢ =gxla,]? where [a,]7 *[ap]? = [a,] 431)

and we can verify that ¢ is indeed orthogonal:

[6% '] = [0 % [ap] 2 * (¢ * [a,]2)"] (4.32)
= [px'] * [ag] 2 # [a,] 2 (4.33)
= [ag] * [a,]" (4.34)
=9. (4.35)

Figure [4.1]shows the four bases associated with the cubic B-splines.

4.4 Oblique projection

Unlike in rendering applications, many signal-processing applications typically
have little control over the analysis filter ¢ (e.g., it is part of an acquisition
device). Moreover, there may be little control over the reconstruction filter ¢
(e.g., it is part of a display device). Naturally, this prevents the use of the or-
thogonal projection. Instead, given both ¢/ and ¢, consistent sampling [[Unser
and Aldroubi, |1994] is a strategy for obtaining the oblique projection P, f
of a signal f into space V,,, where the residual is orthogonal to V;; (rather than
being orthogonal to V,,):

[(F=F*v]=0= (4.36)
Lf ¢ =[]+ '] (4.37)

= [e*x @ *1] (4.38)

=cx[pxy] = (4.39)
c=[f*]*[ex]" (4.40)

In other words,

c=[fyl*q with q=[p*¢]" = [aps], (4.41)

where a,, 4 is the cross-correlation of ¢ and).

26 Fundamental algorithms

An equivalent characterization follows from the projection property. If a
signal f = c * already belongs to V,,, then its oblique projection P, f
must be f itself (hence, “consistent”):

cxp=P,y(cxp) = (4.42)
c=lexpx]xg=cx[px]*xq = (4.43)
q=[pxy']" (4.44)

Yet another characterization is that oblique projection selects g to make
the effective analysis filter g* *) biorthogonal to the reconstruction kernel (:

[p+(g'*)]=6 = (4.45)
[pxg*xy']=6 = (4.46)
[px']*xq=0 = (4.47)
q=[p*y 7" (4.48)
The approximation error of the oblique projection is bounded by
1F=Pofll < If =Poryfll < (cosbye) " [|f = Pofll; (4.49)

where 0, , is a measure of the “maximum angle” between the two spaces, as
computed from their spectral coherence [Unser and Aldroubi, [1994].

5]

Translation and scaling

We next examine how the generalized sampling algorithms can be applied to
the problems of signal translation and scaling. These operations are obviously
crucial in processing images.

5.1 Translation of discretized signals

The common practice for translating a discrete signal by an offset A is to
sample the translated reconstruction f(. — h) = 73, * f with no prefiltering
(i.e., with yp = 4):

ch=[m*f]l=[m*c*p]l=cx*[m*y] B.D

The result is the discrete convolution between the coefficient array and the
sampled, translated basis ¢.

Translation using generalized sampling When the reconstruction ker-
nel includes a digital filter r, equation (5.1)) does not directly produce the
desired coefficient array. Instead, we must apply the filter:

cp = cx [mhx @] * 7. (5.2)

27

28 Translation and scaling

The new coefficient array ¢y, is then ready for reconstruction with ¢ (and
further processing).

To complete the generalization, we must add a prefiltering stage to equa-
tion [5.2] Thanks to our notation, this can be done with simple algebraic
manipulations:

¢, = [(’Th* f)* (p* ¢)v] * 7 (5.3)
= [mxecxox] xpxr (5.4)
=cx* [m* a%w] xpxT (5.5)
=cxq with q=[m*a,y]*p*r. (5.6)

To represent naive translation within this generalized sampling framework,
simply eliminate prefiltering by setting) = ¢ and p = r = § in (5.6). The
result is (5.1). The generalized sampling method, however, can also express
more sophisticated strategies.

Least-squares translation Unlike the space of band-limited func-
tions Vinc, the translation 7, * f of a function f € V., does not in general
belong to Vi,.|Unser et al.| [1995Db] therefore explore forming its orthogonal
projection P, (7, * f) into V., and then sampling it. This is accomplished by
setting p * ¢ = ¢ = ¢ * [a,] " and 7 = & in (5.6):

cy = cx [Th*ap] * [a<p]'1 sothat [Py(mp* f)] = enx[¢]. (5.7)
They further observe that (3.7) may be rewritten to resemble (5.1)):

cp =cCx* [Th* (aw)int]. (5.8)

This means that least-squares translation in space V,, is similar to naive trans-
lation in the space V. For example, if ¢ = 3" is the B-spline of degree n
(and order L = n + 1), then a, = B?7*1 is the B-spline of degree 2n + 1
(and order L = 2n + 2). Therefore, in this case, least-squares translation is
equivalent to performing the naive translation in a space that has twice the
approximation order.

Note that in all of the translation algorithms, the reconstruction and pre-
filter kernels are sampled into the digital filter, so computing the translated
sequences only involves a discrete convolution.

5.2. Scaling of discretized signals 29

reconstruction scaling prefiltering resampling digital filter
f=cxp [-]
P - e 5
1 - \3 3 {
e @ =) v R 4 e
input 7T ! t St output
samples 111 samples

Figure 5.1: Scaling a sequence using generalized sampling. Given the input sequence c, the
reconstruction f = c * ¢ is scaled by a factor s. The scaled reconstruction f is prefiltered
and sampled, and the resulting sequence is convolved with a digital filter g to produce the new
sequence Cs.

5.2 Scaling of discretized signals

Scaling a discrete sequence is a more difficult operation than translation
because in the general case it cannot be computed as a single convolution. The
overall process is illustrated in figure [5.1]

We use the shorthand notation f, & f(-/s) to denote f after a uniform
scale by factor s. Using explicit sampling rates as in and (3.7), we first

note a few convenient relations:

(f*9)s =1 fixgs, (5.9)
(c*x@)s = c*, s, (5.10)
[f:]=[f]s, and (5.11)
fxds=sf. (5.12)

In scaling a discrete sequence, we distinguish between magnification
(upsampling, s > 1) and minification (downsampling, s < 1). These cases are
treated independently.

When magnifying, the prefilter becomes redundant in the presence of a
good reconstruction filter. To see this, recall that a good reconstruction filter
has a cut-off frequency ~ % cycles per input sample, whereas a good prefilter
has cut-off at ~ % cycles per output sample. Since the scaling operation is
such that the output sampling rate is s times the input sampling rate, the
reconstruction filter’s cut-off frequency is s times lower than the prefilter’s.
Therefore, common practice is to sample the scaled reconstruction without

30 Translation and scaling

any prefiltering (i.e., ©» = § when s > 1):

[/ 0"] = s[(F+6)s] (5.13)
=s|[f*di]. (5.14)
=/ (5.15)
= [ex o)1 (5.16)

See function upsample in lines [[98H216] of appendix [A] for source-code
implementing this algorithm.

Conversely, when minifying, it is the effect of the reconstruction filter that
is hidden by the prefilter. Accordingly, common practice is to prefilter the
discrete signal without any reconstruction (i.e., ¢ = § when s < 1):

Lo '] = [(ex)5] (5.17)
= [ex, 6% '] (5.18)
= s[ex '] (5.19)
= s[(cxvy)s] (5.20)
= s[exyi]y (5.21)
= [ex(sv)']. (5.22)

Note that the factor s within s 11 in (5.22)) acts to preserve the integral of the
kernel 1) as it is scaled. In generaﬁ, if 5 is not an integer, s¥1 does not satisfy a
partition of unity even when v does. It is therefore common practice to add
a normalization step to the sampling process. To do so, we accumulate the
weights assigned to each entry in ¢, and divide the resulting sampled value
by this number. The normalization ensures the resampled sequence has the
same average level as the input. See function downsample in lines 2184247
of appendix [A] for the corresponding source-code.

Scaling using generalized sampling As we did for translation, we
now derive an efficient algorithm for finding the coefficient array cs of a

5.2. Scaling of discretized signals 31

scaled signal, but employing generalized reconstruction and prefiltering:

Ccs = [fs* (p * z/;)v] T (5.23)
= [fx ¢ T*p*r (5.24)
=[cx gx] xpxr (5.25)
=[x (sp*y)s]*p'xr (5.26)
:s[c*tp*wf]l*pv*r (5.27)
= s[exagy, |ixpxr. (5.28)

The traditional algorithms (3.16) and (5.22)), are special cases of (5.28). Note
that the mixed convolution and the sampling operation use different spacings
in (5.16), (5.22), and (5.28), and relation (3.17) does not apply. Therefore,
we may have to evaluate the cross-correlation term a,, 4, at the arbitrary
positions i/s — j, with ¢,j € Z. This is inconvenient, because any closed-
form expression for A,y is specific to a given s, which may only be known
at runtime. Nevertheless, since a,, , has compact support, we can compute
all required values once and reuse them for all rows and columns in the image.
Furthermore, when s is rational, the values repeat and we can compute a single
cycle. Finally, when 1 is an integer, we can simply compute ¢ * [a,, 4,] and
decimate the results by 1 or, better yet, compute only the elements in the
discrete convolution that remain after decimation.

Repeated integration The computation required to evaluate a single sam-
ple from ¢ * 91" in (3.22)) or from ¢ * a,, y, in (5.28)) increases proportionally
to 1 (ie., with the kernel support). Fortunastely, when downsampling an entire
image, the increased computation per sample is cancelled by the corresponding
reduction in the total num