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Abstract

Short looping videos concisely capture the dynamism of natural
scenes. Creating seamless loops usually involves maximizing
spatiotemporal consistency and applying Poisson blending. We take
an end-to-end view of the problem and present new techniques
that jointly improve loop quality while also significantly reducing
processing time. A key idea is to relax the consistency constraints to
anticipate the subsequent blending, thereby enabling looping of low-
frequency content like moving clouds and changing illumination.
We also analyze the input video to remove an undesired bias toward
short loops. The quality gains are demonstrated visually and
confirmed quantitatively using a new gradient-domain consistency
metric. We improve system performance by classifying potentially
loopable pixels, masking the 2D graph cut, pruning graph-cut labels
based on dominant periods, and optimizing on a coarse grid while
retaining finer detail. Together these techniques reduce computation
times from tens of minutes to nearly real-time.
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1 Introduction

The spatial resolution of videos is approaching that of digital
photographs (e.g., 8-megapixel videos vs. 16-megapixel photos on
current phones). Video content is thus becoming more prevalent, and
we expect that as storage and bandwidth continue to scale, videos
will displace photos as default capture medium. This paper focuses
on computing short video loops for periodic motions (e.g., swaying
trees, rippling water) in nature scenes, as such loops help convey
a greater sense of presence than still images. Our goal is to create
video loops without user assistance, much like the automatic mode
for shooting photos on consumer devices, and to do so far more
efficiently than prior methods.

Several techniques create looping videos from short input videos
[e.g., Schödl et al. 2000; Kwatra et al. 2003; Agarwala et al. 2005;
Couture et al. 2011; Liao et al. 2013]. The general approach
is to assemble content from the original video such that 3D
spatiotemporal neighborhoods of the resulting video loop are
consistent with those of the input video. Typically this is cast as a
combinatorial optimization with an objective of color consistency.

In this paper we describe an end-to-end pipeline for generating video
loops of greater quality and with significantly less computational
effort than prior methods. We introduce several new techniques that
jointly address these two challenges.
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Figure 1: A video loop L is formed from an input video V by
repeating some temporal interval at each pixel x using a time-
mapping function φ, specified using a period px and start frame sx.
The consistency objective is that for any output pixel color (shown in
solid red), its spatiotemporal neighbors should have the same values
as the corresponding neighbors in the input.

Improved loop quality For many scenes, the color consistency
constraints cannot be fully satisfied, resulting in spatial seams
or temporal pops. Several approaches aim to reduce or hide
these artifacts. Feathering or multiresolution splining is applied
as a post-process [Schödl et al. 2000]. Gradient-domain Poisson
blending improves results by diffusing spatiotemporal discrepancies
[Agarwala et al. 2005]. The consistency constraints are adaptively
attenuated by recognizing that discontinuities are less perceptible in
high-frequency regions [Kwatra et al. 2003]. Troublesome scene
regions are replaced by static (nonlooping) pixels, either using
assisted segmentation [Agarwala et al. 2005; Tompkin et al. 2011;
Bai et al. 2012; Joshi et al. 2012] or as part of the optimization
[Liao et al. 2013]. However, for some scenes there may be little
dynamism left.

Our key idea is to modulate the consistency objective in the loop
synthesis algorithm to anticipate the subsequent step of Poisson
blending and thereby provide greater flexibility for optimization. In
particular, low-frequency image differences (e.g., smooth intensity
changes due to illumination changes or moving clouds/smoke)
can be ignored because they are easily corrected through Poisson
blending. In contrast, distinct shape boundaries are not easily
repaired. We show that the quality of video loops also benefits
from giving a preference to longer periods.

Fast loop computation State-of-the-art video looping optimiza-
tions require many minutes of computation. We describe several
algorithmic improvements that together reduce the processing time
on a desktop PC to about 7 seconds for a 5-second Full HD video,
i.e., nearly real-time.

We review prior work, including the framework of [Liao et al. 2013]
upon which we build, then present our processing pipeline and
contributions in Section 3.

2 Background and related work

Given an input video with color V (x, ti) at each 2D pixel x and
input frame time ti, the aim is to compute a video loop

L(x, t) = V (x, φ(x, t)), 0 ≤ t < T,

by determining a time-mapping function φ(x, t). Note that the loop
content L(x, ·) at a given position x is taken from the same pixel
location V (x, ·) in the input video (Figure 1).
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Figure 2: Our processing pipeline has two stages: (1) determining looping parameters and (2) assembling a seamless Poisson-blended loop.
Most computations operate on downsampled video. We obtain per-pixel periods and start frames by minimizing a consistency objective using a
multilabel graph cut. We improve fidelity in this optimization by accessing detail from the next-finer resolution. We anticipate the subsequent
Poisson blending by introducing a blend-aware objective E∗ which spatially attenuates consistency based on a blend mask. Classification of
loopable pixels in the input video reduces the dimension of the search space. Identification of dominant periods reduces the set of labels. Local
temporal scaling lets us assemble an ordinary 5-second loop. Screened Poisson blending removes spatial seams and temporal pops. It involves
gathering sparse gradient differences gd in the downsampled loop, solving a multigrid Poisson problem, upsampling the resulting correction,
and merging it with the initial high-resolution loop. We reduce memory usage by opening multiple read streams on the input video.

Techniques can be contrasted by their definitions of the temporal
mapping φ. Schödl et al. [2000] transition regions simultaneously
by finding compatible frames. If V (·, tA) ≈ V (·, tA + p), a good
mapping is φ(x, t) = tA + (t mod p). Kwatra et al. [2003] allow
pixels to transition at different times. They obtain a loop of
period p by solving a binary 3D graph cut over variables b(x, t) ∈
{0, 1} such that φ(x, t) = t0 + (t mod p) + b(x, (t mod p)) p.
Agarwala et al. [2005] create a loop from a panoramic-sweep video
by allowing the time-mapping function φ(x, t) = δ(x, (t mod p))
to have arbitrary temporal offsets δ into the stabilized input video
and solving a multilabel 3D graph cut.

Several techniques exploit user guidance to create loops. The
interactive tool of Tompkin et al. [2011] juxtaposes static and
looping regions to create cinemagraphs [Beck and Burg 2012].
Joshi et al. [2012] develop a set of idioms (static, play, loop, and
mirror loop) to combine several spatiotemporal segments from a
source video, thus emphasizing particular scene elements or forming
a narrative. Bai et al. [2012] apply spatial warping to the video
content to selectively de-animate content. Guided by user strokes,
their approach removes large-scale motions while preserving high-
frequency movement. Bai et al. [2013] use tracking on handheld
video to create portrait cinemagraphs. Sevilla-Lara et al. [2015] use
morphing to create a loop for the case of a contiguous foreground
object that can be segmented from its background.

Our work builds on the automated technique of Liao et al. [2013]
which optimizes a looping period px and start frame sx at each pixel:

φ(x, t) = sx + ((t− sx) mod px).

In regions with nonloopable content, a pixel may be assigned the
period px = 1, which makes it static by freezing its color to that in
frame sx.

The goal is to determine the set of periods p = {px} and start
frames s = {sx} that minimize the objective

E(p, s) = Econsistency(p, s) + Estatic(p, s). (1)

The termEconsistency = Espatial+Etemporal measures the spatiotemporal
consistency of neighboring colors in the video loop with respect
to the input video [Agarwala et al. 2005]. The spatial term sums

consistency over all spatially adjacent pixels x, z:

Espatial =
∑

‖x−z‖=1

Ψspatial(x, z) γs(x, z) with

Ψspatial(x, z) =
1

T

T−1∑
t=0

(
‖V (x, φ(x, t))− V (x, φ(z, t))‖2 +
‖V (z, φ(x, t))− V (z, φ(z, t))‖2

)
and the temporal term sums consistency across the loop end-
frames sx and sx + px at each pixel:

Etemporal =
∑
x

(
‖V (x, sx)− V (x, sx+px)‖2 +
‖V (x, sx−1)− V (x, sx+px−1)‖2

)
γt(x).

The factors γs, γt attenuate consistency in high-frequency regions
[Kwatra et al. 2003; Bai et al. 2012]. Finally, the term Estatic assigns
a penalty to static pixels to prevent a trivial all-static solution.

The minimization is a 2D Markov Random Field (MRF) problem,
in which each pixel is assigned a label (px, sx) among the outer
product {p} ⊗ {s} of candidate periods and start frames. An
(approximate) solution is found using a multilabel graph cut
algorithm, which iterates through the set of labels several times
[Kolmogorov and Zabih 2004]. For each label α, it solves a 2D
binary graph cut to determine if the pixel should keep its current
label or be assigned label α — this is referred to as alpha expansion.
Lastly, spatiotemporal feathering is applied to help mask seams in
the resulting video loop.

3 Overview and contributions

Figure 2 summarizes our processing pipeline. Like Liao et al.
[2013], we optimize per-pixel periods p and start frames s. And like
Agarwala et al. [2005], we diffuse inconsistencies using gradient-
domain (Poisson) blending. Our contributions include:

• Coarsening the 2D optimization domain while maintaining the
accuracy of finer-scale detail.

• Modifying spatiotemporal consistency using a blend mask to
anticipate the opportunity provided by Poisson blending.

• Classifying loopable pixels to reduce the optimization domain
using a 2D binary mask.
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Figure 3: Local temporal scaling creates an ordinary video loop by
temporally stretching or shrinking each looping period to an integer
number of loop instances.

• Identifying the dominant periods of loopable pixels to prune the
candidate loop periods and start frames.

• Removing an undesired bias towards shorter loops.

• Using a screened Poisson formulation to enable a fast multigrid
algorithm for the gradient-domain blending.

• Applying local temporal scaling to allow creation of an ordinary
short loop even with the flexibility of differing per-pixel periods.

• Assembling the loop as a streaming computation using multiple
read streams to reduce memory.

We next present these techniques in greater detail.

4 Local temporal scaling

The optimization over p, s allows pixels to have different looping
periods. One drawback is that such a representation is not supported
in common video playback components. While it is possible to
create a repeating loop whose length is the least common multiple
of all periods in p, such a loop is often impractically long.

Our approach is to temporally scale the content such that each
looping period adjusts to the nearest integer number of instances in
a fixed-size loop, e.g., 5 seconds long (see Figure 3). For example,
when generating a 150-frame loop, given a pixel whose looping
content is 40 frames long, we temporally scale the content by a
factor of 0.9375 to obtain exactly 4 loop instances. Mathematically,
we obtain a perturbed time-mapping function φ′(x, t), in which
incrementing the output time t sometimes repeats or skips an input
video frame.

The temporal scaling does not introduce appreciable artifacts
because all pixels with the same period are adjusted by the same
factor, so that their spatiotemporal relationships are preserved. It
is only at the boundaries between pixels with different periods that
spatial seams could worsen. Fortunately, the spatial consistency
cost Ψspatial(x, z) between two neighboring pixels with different
periods already makes the worst-case assumption that these periods
are independent (i.e., relatively prime), so generally these boundaries
lie along pixels with relatively unchanging content and thus temporal
scaling has little visible effect.

The approach is related to the independent looping regions created
by Liao et al. [2013], which also involve pixels with a shared period.
Their goal is to selectively freeze these regions to spatially control
dynamism. Freezing a region can be viewed as an extreme case of
temporal scaling.

For all results in this paper, we use this local temporal scaling
scheme to generate ordinary 5-second loops (with T =150 frames).
As shown in Figure 2, given the loop parameters p, s computed
in the multilabel graph cut, local temporal scaling is used both to
define an initial loop L and to formulate the Poisson blending which
determines the final loop L′.

No correction Spatiotemp. feathering Poisson blending 

Figure 4: Poisson blending more effectively diffuses errors than
feathering, as visualized here near spatial seams. Temporal pops
are similarly attenuated as seen in the supplemental video.

5 Improved looping quality

In this section we describe several techniques to obtain better
loops, i.e., with greater dynamism and improved spatiotemporal
consistency.

5.1 Screened Poisson blending

Like Agarwala et al. [2005], we apply Poisson blending [Pérez et al.
2003] to video looping, so that discrepancies at the stitching
boundaries are diffused over the full domain, unlike with a finite
feathering filter (Figure 4). Whereas they use Dirichlet constraints
at the boundaries of user-specified looping regions, we introduce
a weak prior based on the colors in the initial (unblended) loop L
and optimize the blended colors L′ over the full 3D domain. In our
notation, we seek

min
L′

(
E′consistency(L

′) + α‖L′ − L‖2
)
,

where E′consistency = E′spatial + E′temporal measures gradient-domain
spatiotemporal consistency by comparing differences of adjacent
colors in the final loop and the original video. The term E′spatial uses

Ψ′spatial(x, z) =
1

T

T−1∑
t=0


∥∥∥∥ (L′(z, t)− L′(x, t))−
(V (z, φ′(x, t))− V (x, φ′(x, t)))

∥∥∥∥2 +∥∥∥∥ (L′(z, t)− L′(x, t))−
(V (z, φ′(z, t))− V (x, φ′(z, t)))

∥∥∥∥2
 .

Similarly, E′temporal uses

px
T

T−1∑
t=0


∥∥∥∥ (L′(x, t+ 1)− L′(x, t))−
(V (x, φ′(x, t) + 1)− V (x, φ′(x, t)))

∥∥∥∥2 +∥∥∥∥ (L′(x, t+ 1)− L′(x, t))−
(V (x, φ′(x, t+ 1))− V (x, φ′(x, t+ 1)− 1))

∥∥∥∥2
 ,

with wraparound temporal access to L′. Note that E′consistency

reduces to Econsistency when L′=L (assuming that both are defined
using the temporally scaled φ′). The minimization is equivalent
to minL′ ‖∇L′ − g‖2 + α‖L′ − L‖2 where g is a gradient field
defined from V and φ′. Its solution corresponds to a screened
Poisson equation [Bhat et al. 2008],

(∆− α)L′ = ∇ · g − αL.

The absence of irregular Dirichlet boundaries lets us solve the linear
system using a simple multigrid algorithm. The algorithm coarsens
the domain in both the spatial and temporal dimensions with a 3D
box filter. Numerically precise solutions can be obtained using ten
multigrid V-cycles and two iterations of Gauss-Seidel relaxation per
level on each leg of a V-cycle. However, we find that using just three
multigrid V-cycles yields solutions with 0.37% rms error for Full
HD video, which is sufficiently precise for 8-bit color channels.



Figure 5: Visualization of the blend mask B computed for two
example input videos. Bright luminance corresponds to B = 1,
i.e., regions that contain sharp transitions and are therefore not
easily blended. The regions highlighted in red have low values of B,
reflecting the fact that they are easily blended.

5.2 Blend-aware consistency metric

A weakness of solving minp,sE(p, s) as in prior work is that
it fails to account for the fact that Poisson blending may yet
diffuse the inconsistencies to obtain a seamless solution, i.e., with
lower E′consistency. As a simple example, consider a scene whose
illumination brightens slowly over time. Temporal consistency
compares the colors near the loop start and end frames. Because the
colors differ, the optimization is likely to favor short loops or may
even freeze the scene altogether, whereas Poisson blending would
smooth away the low-frequency illumination change even for a long
loop. Although for this case one could globally adjust illumination
as a preprocess, the benefit of Poisson blending is that it applies
more generally. For instance, it is also effective spatially and on
local discrepancies.

Ideally, we would like to minimize the gradient-domain-based

E′(p, s, L′) = E′consistency(p, s, L
′) + Estatic(p, s) (2)

over both the combinatorial loop parameters p, s and the final
blended colors L′. However, this is challenging because changes
in p, s result in structural changes to the desired gradient field g.

Instead, our approach is to minimize (1) but using a modified
objective E∗ = E∗consistency +Estatic where the consistency metric is
blend-aware.

From the input video we compute a spatial blend mask B that is used
to modulate the spatial and temporal consistency terms. Intuitively,
B(x) is small if pixel x is not traversed by any sharp boundary in
the input video, i.e., if it is in a blendable region.

Conceptually, we want to compute the mask B at each pixel based
on the maximum temporal derivative of the input video’s highpass
signal. As we shall see in the following derivation, this is well
approximated simply by the maximum temporal derivative.

Let VL = V ∗ G be a spatially blurred version of the input video,
obtained with a spatial Gaussian filter G. The highpass signal is
therefore VH = V − VL. Its temporal derivative is

V t+1
H − V t

H =
(
V t+1 − V t+1 ∗G

)
−
(
V t − V t ∗G

)
=
(
V t+1 − V t)− (V t+1 − V t) ∗G

≈
(
V t+1 − V t) .

The approximation exploits the fact that the temporal derivatives
have lower magnitude and become negligible after the spatial blur.

start frame 𝑠 (luminance) period 𝑝 (hue) 

(short) (long) (early) (late) 

(a) Input video (b) [Liao et al. 2013]

(c) Ours, without blend mask B (d) Ours, with blend mask B

Figure 6: Comparison of the looping parameters computed in
Liao et al. [2013] and in our method without/with the blend-aware
consistency metric (hue indicates period, brightness indicates start
frame, white pixels are nonloopable, and gray pixels are assigned
static). Result (c) differs from (b) due to other improvements in
Section 5. Blend-aware consistency enables more pixels to loop, and
some pixels to have longer periods.

Before Poisson blending After Poisson blending

Figure 7: As shown in these close-ups, blend-aware consistency
leads to seams in the initial loop L, but these are smoothed during
the subsequent Poisson blending, resulting in a better overall
result L′. The accompanying video shows similar behavior for
the associated temporal discontinuities.

Thus for each pixel position x, we assign the blend mask

B(x) = clamp
(

max
t

(V (x, t+ 1)− V (x, t)) · cb, 0, 1
)
,

with the scaling factor cb =1.5. The resulting mask B is illustrated
in Figure 5.

We useB(x) to modulate the spatial and temporal consistency terms,
as highlighted in blue:

E∗spatial =
∑

‖x−z‖=1

Ψspatial(x, z) γs(x, z) max(B(x), B(z))

and

E∗temporal =
∑
x

(
‖V (x, sx)− V (x, sx+px)‖2 +
‖V (x, sx−1)− V (x, sx+px−1)‖2

)
γt(x)B(x).

Note that the new factors supplement the local edge-strength
modulation factors γs(x), γt(x) from prior work. It is worth
emphasizing the differences. The edge-strength factors γ are based
on average or median differences of pixel colors. They reflect the
fact that seams are less perceptible in high-frequency (textured)
regions and pops are less perceptible on highly dynamic pixels. In



-1

0

1

2

3

4

5

6

14

15

16

17

18

19

20

21

32 48 64 80 96 112

R
e

si
d

u
al

 v
al

u
e

 

d
(p

) 

Period p 

Cost d(p)

Line fit

Residual

Figure 8: Temporal cost d(p) of the best synchronous loop as
a function of the period p, together with a linear fit and its
residual dR(p), for the palmtrees in the second row of Figure 9.

contrast, the blend mask B is based on maximum differences, and
reflects the fact that seams and pops are less perceptible away from
moving sharp boundaries after gradient-domain blending.

The net effect is to focus consistency constraints on regions where
color discrepancies are less likely to be corrected by subsequent
blending. Figures 6 and 7 show an example.

Currently, the computation of B is conservative in that it considers
the full input video even though the generated video loop accesses
only a temporal subset. Future work could explore updating B
somehow based on the content in the selected video loop.

5.3 Adapted temporal costs to promote longer loops

We find empirically that temporal consistency tends to favor shorter
video loops. Liao et al. [2013] counter this by constraining all
looping periods to be at least one second long. Many of their results
use these minimal loops. There is a simple intuitive explanation.
The difference between a given frame and progressively later frames
tends to increase as small differences (lighting variations, shifting
objects) gradually accumulate in the scene.

To analyze this, we define the difference d0.8(V (·, t1), V (·, t2))
of two video frames t1, t2 as the 80th-percentile absolute error of
corresponding pixels. This percentile error is more robust than the
traditional L2 metric as it ignores the large errors in nonloopable
regions, which are likely made static in any case. We speed up the
evaluation of d0.8 by sampling it on a 25% subset of image pixels.

For a synchronous loop in which all pixels share the same period p
and start frame s, the cost as measured at the two nearest transition
frames [Schödl et al. 2000] is

d(p, s) =

 d0.8
(
Ṽ (·, s), Ṽ (·, s+ p)

)
+

d0.8
(
Ṽ (·, s− 1), Ṽ (·, s+ p− 1)

) .

In Figure 8, we visualize d(p) = mins d(p, s), the cost of the best
synchronous loop for each loop period. We see that even for a scene
with some natural cyclic motion (in this example, a period of about
17*4 frames), although d(p) dips slightly as expected, the upward
trend prevents this from becoming a minimum.

In general, we would prefer to use a longer loop if possible (i.e., if
scene elements are loopable) because (1) it increases the variety of
unique content in the resulting video and (2) it reduces the frequency
of temporal blending artifacts.

To address this, for each input video we compute d(p) and fit an
affine model d̃(p) = mp+ b as shown by the red line in Figure 8.
We redefine the temporal consistency cost at any pixel x to subtract
this affine model:

E∗(adapted)
temporal (x)=E∗(old)

temporal(x)− d̃(px).

start frame 𝑠 (luminance) period 𝑝 (hue) 

(short) (long) (early) (late) 

Using Etemporal Using Etemporal Input video 
 *(adapted)

  *(old)
 

Figure 9: The adapted temporal costs promote longer loop periods
(seen as a shift in hue). The accompanying video shows the
associated improvement in loop quality.

Also, local minima in the residual costs dR(p, s) = d(p, s)− d̃(p)
are used later in Section 6.4 to select good candidate periods for
loop optimization. Some example results are shown in Figure 9.

We also explored encouraging greater dynamism by measuring
the variance of the content within the loop chosen at each pixel.
However, this tends to favor short loops with fast transient activity
rather than a more natural animation.

6 Fast loop computation

We explore several acceleration techniques. To simplify the
presentation, we assume that the input video and the computed
loop are both 5-seconds long and sampled at 30 frames/sec.

6.1 Spatiotemporal downsampling

We first compute a spatiotemporally downsampled version Ṽ of the
input video using a 3D box filter. The temporal scaling factor is
always 4. The spatial scaling factor is a power of two such that the
resulting vertical size is no larger than 350. For example, an input
video with resolution 3840×2160×150 is scaled to 480×270×37.
All computations are performed on Ṽ , except the graph cut which
defines its objective using the next-finer-level detail (Section 6.5)
and Poisson blending which outputs at full resolution (Section 6.6).

6.2 Classification of loopable pixels

Given the downsampled video Ṽ , we quickly identify spatial regions
that are unlikely to form good loops, so as to reduce the optimization
effort to a smaller subset of pixels. The approach is to classify each
pixel into one of 3 classes: unchanging (constant in Ṽ ), unloopable
(dynamic but unable to loop), or loopable. Pixels classified as
unchanging or unloopable are made static and not considered in the
optimization. Classification should be conservative, erring on the
side of labeling a pixel as loopable, so that at worst, the optimization
can still freeze the pixel.

As described next, we compute initial binary scores (0, 1) for each
of the three classes at each pixel independently, spatially smooth the
scores, and finally classify each pixel based on its maximum score.



Input video (representative frame) Initial pixel classification

Final classification after smoothing Loopable mask (black)

Figure 10: Classification of 2D pixels into unchanging (white),
unloopable (red), and loopable (green). Unchanging and unloopable
pixels are made static, whereas loopable pixels define a mask (black)
of the subset of pixels to be optimized during the graph cut.

Initial scores We compute initial binary scores (0, 1) for each of
the three classes at each pixel as follows. Given position x and color
channel c ∈ {0, 1, 2}, we define (using ε = 10

255
):

rises(x, c) = ∃t1, t2 s.t. t1 < t2 ∧ Ṽc(x, t2)− Ṽc(x, t1) > ε

falls(x, c) = ∃t1, t2 s.t. t1 < t2 ∧ Ṽc(x, t1)− Ṽc(x, t2) > ε.

These predicates are computed in a single traversal of the video by
tracking running minimum and maximum values at each pixel.

We then assign (where Y denotes xor)

label(x)←


unchanging if ∀c ¬rises(x, c) ∧ ¬falls(x, c)
unloopable if ∃c rises(x, c) Y falls(x, c)
loopable otherwise.

Spatial smoothing We apply a Gaussian blur (σ = 7 pixels) to
each of the three score fields. This serves to remove small islands
of static pixels in larger looping regions as well as small islands
of dynamic pixels in static regions, both of which are visually
distracting.

Voting Finally, we classify each pixel according to its maximum
smoothed score. Figure 10 shows the effect of smoothing on the
final classification and the resulting binary mask of loopable pixels.

We could omit the computation of the blend mask B (Section 5.2)
for nonloopable pixels, but this does not result in a speedup. On
the other hand, we exclude nonloopable pixels in our estimates of
dominant looping periods (later in Section 6.4) and find that this
significantly improves quality.

6.3 Masked 2D graph cut

When nonloopable pixels are excluded from the graph cut, the
graph is no longer a regular 2D grid. Although one could invoke a
version of graph cut designed for general graphs, we find that it is
much more efficient to preserve the regular connectivity of the 2D
graph and instead modify the graph-cut solution to account for the
binary mask. Specifically, we omit computing the data cost terms
for any nonloopable pixel (since it cannot change). And, for any
nonloopable pixel x adjacent to a loopable pixel z, we transfer the
smoothness cost E∗spatial(x, z) to the data cost of the loopable pixel z.
For parallelism, our implementation builds on the multithreaded
graph cut approach of Liu and Sun [2010].
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Figure 11: The spatial consistency cost of two adjacent coarse-
scale pixels x and z is the sum of the spatial consistency costs of
their boundary-adjacent fine-scale pixels. Within the interior of each
(2×2) block, spatial consistency is guaranteed because the fine-scale
pixels share the same label (period and start frame).

The fraction of nonloopable pixels varies significantly across videos,
as indicated in Table 1. It results in a speedup of about a factor 1.6
overall (Table 4).

6.4 Pruned candidate labels

Liao et al. [2013] consider all periods {p} and all possible start
frames {s} for each period. For a 4× temporally downsampled
5-second input video (i.e., 37 frames), and a minimum loop period
of 8 frames, this results in a multilabel graph cut with 502 labels
(s= 0, 1, . . . 37 | p= 1; s= 0, 1, . . . 29 | p= 8; s= 0, 1, . . . 28 | p=
9; . . . ; s= 0 | p= 37). Performing alpha expansion over all these
labels is costly. We heuristically prune this set to just 21 candidates
as follows.

We find that it is useful to identify two dominant periods in the input
video, a long period to provide greater content variety, and a shorter
one as a fallback for regions on which there are no good long loops.

We use the adjusted synchronous temporal costs dR(p, s) from
Section 5.3 to identify the most promising synchronous loop
(p1, s1) = arg min(p,s) dR(p, s). We compute these costs only over
the loopable pixels identified in Section 6.2. Also, we disallow loop
periods greater than 4 seconds (p > 30) because loop lengths that
approach the length of the input video have insufficient variety of
start frames to allow good loop creation. We then find the next-most
promising (p2, s2) such that (1) the periods p1 and p2 differ by
at least 25% of the maximum loop period, and (2) the two loops
overlap, i.e., [s1, s1 + p1) ∩ [s2, s2 + p2) 6= ∅.
For each of the two dominant labels (pi, si), we also select the 9
nearest start frames as additional candidates, for 20 labels in total.

The 21st label is for a static frame (period p=1), which is selected
as the middle frame of the overlap of the two loops (pi, si).

For the reduced set of 21 labels, the two-stage optimization of [Liao
et al. 2013] is unnecessary. We solve a single multilabel graph cut.
All pixels are initialized with labels that correspond to the longer of
the two loops (pi, si) found above, as we find that the optimization
has an easier time changing to the shorter period than vice versa.

As shown later in Table 4, pruning the set of labels reduces looping
quality on our example results (objective E′ increases from 48.8
to 51.9), but fortunately the change is small.

6.5 Coarse-scale graph cut optimization

As the graph cut is a computational bottleneck, it is important to
perform it at the coarse spatial resolution (e.g., 480×270) of Ṽ .
However, at this resolution, we find that the loss of fine-scale detail
significantly degrades the estimates of spatiotemporal consistency.

Our solution is to evaluate the consistency objectives at double
the spatial resolution of Ṽ . Figure 11 illustrates the construction
for E∗spatial. We define E∗temporal similarly using the sum of fine-scale
pixel differences on each block. Effectively, we are solving the
problem at a higher resolution (e.g., 960×540) but restricting the
labels to have 2×2 spatial granularity.



Agarwala et al. [2005] describe a different multiscale strategy for
their 3D multilabel graph cut. They progressively upsample coarser
solutions and optimize nodes only in neighborhoods of the seams
found at the coarse resolution. Specifically, for each alpha-expansion,
they consider only nodes within distance 10 of those that already
have the particular alpha label. We initially experimented with a
similar strategy for our 2D graph cut and found that the solution is
more susceptible to poor local minima inherited from coarse scales.
This drawback is discussed in [Agarwala et al. 2005].

6.6 Coarse-scale Poisson blending

The Poisson-blended loop L′ must be generated at full resolution.
Even with a multigrid scheme, it is daunting to solve a linear system
with 3840×2160×150 ≈ 1.2G unknowns (actually, one such system
for each of the three color channels).

Similar to Agarwala [2007], we solve for the differenceLd = L′−L
rather than L′ itself. We briefly review this approach, extending
it to the screened Poisson setting in which there is a preference to
preserve the original colors in L. Recall that we seek

min
L′
‖∇L′ − g‖2 + α‖L′ − L‖2.

A key observation is that the desired gradient g can be expressed as
a sparse difference gd from the gradient of the initial loop L,

g = ∇L+ gd,

because gd is nonzero only along the spatiotemporal seams, i.e., at
discontinuities of φ′(x, t).

Therefore the linear system can be represented as

(∆− α)(L+ Ld) = ∇ · (∇L+ gd)− αL,

which simplifies to

(∆− α)Ld = ∇ · gd. (3)

Thus, solving for the difference Ld is again a screened Poisson
equation, but now with a sparse right-hand-side vector. Due to
this sparsity, Ld tends to be low-frequency everywhere except
immediately adjacent to the seams. This motivates Agarwala to
define Ld using an adaptive quadtree structure.

We use the simple approach of solving (3) on a coarser 3D grid L̄.
We then upsample the correction L̄d (using a box filter) and add
it to the initial loop L to obtain the blended loop L′. We find
that temporal downsampling leads to noticeable artifacts, in part
due to the nonuniform time steps in φ′ resulting from the local
temporal scaling of Section 4, so we create the coarse grids L̄, ḡ, L̄d

by downsampling just spatially, to the same spatial resolution as Ṽ .
Using a single multigrid V-cycle on the coarse-grid system, the
fine-scale rms error for Full HD video is only about 0.8%, and the
result is visually adequate. The use of a box filter could give rise to
2D blocking artifacts. We had initially implemented Gauss-Seidel
relaxation at the resolution of L̃ for this concern, but found that as
long as the 3D grid is subsampled only spatially, the 2D blocking
artifacts are not noticeable in practice.

7 Reduced memory usage

Storing a 3840×2160 30fps 5-second video using 4 bytes/pixel
requires 5.0 GB memory. We use the NV12 representation (half-
resolution chroma) to reduce this to 1.9 GB. The input video V
is immediately downsampled as it is streamed in, and the output
loop L′ is also generated and compressed in streaming fashion.
Nearly all computation involves downsampled data.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Input video 𝑉 

𝑝1=5 

𝑝2=8 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Output loop 𝐿 

Figure 12: Because we use two candidate periods, the content at
any pixel x of an output frame t is selected (based on (px, sx)) from
only a small number of input frames. Here, output frame 13 only
needs access to input frames 3, 5, 8, and 13.

Thus the memory bottleneck is the computation of the blended loop
L′ = L + Upsample(Ld), because loop L(x, t) = V (x, φ′(x, t))
needs random-access to the full-resolution frames of the input video.
At first, it would appear that the entire input video V must be
memory-resident.

However, because we constrain the candidate labels to just two
dominant periods p1, p2, the content needed to generate L(·, t)
comes from only a small number {k1}, {k2} of input frames:
0 ≤ (t mod p1) + k1p1 < T and 0 ≤ (t mod p2) + k2p2 < T
(refer to Figure 12). Therefore, an efficient solution is to advance
multiple simultaneous read streams on the input video V such that
only these frames are memory-resident for each output frame t.
When processing a 5-second UHD video, the use of multiple read
streams reduces maximum memory use from 3.4 GB to 2.1 GB. We
were hoping to see a bigger savings; it seems that the use of Windows
Media Foundation for video processing introduces a significant
memory overhead per read and write stream. On the other hand, this
per-stream overhead is independent of the video length.

8 Results and discussion

Figure 13 shows results for 24 example loops, and Table 1 lists
some of their properties. The percentage of pixels classified
as nonloopable varies greatly depending on the content, as do
the dominant periods p1, p2 identified in the preprocess and the
fraction of pixels assigned to be static. One column analyzes the
improvement in dynamism (fraction of looping pixels) provided
by the relaxed constraints of the blend-aware consistency metric.
As a measure of the uniformity of assigned loop parameter labels,
we report the entropy of their distribution over all pixels. The
computation times are obtained on a 3.2GHz quad-core Intel Xeon
W3565 (acquired in 2009). These times vary only slightly with video
resolution because much of the computation occurs on the coarser-
scale video Ṽ . The resolution-dependent work is the downsampling
of the input and the final loop assembly including the summation
with the upsampled gradient-domain correction.

Table 2 shows the fraction of time spent in each step of loop creation.
The costs of decompressing the input video and compressing the
output loop are significant. We omit these two steps when reporting
computation times. The computational bottleneck is the graph cut
optimization, and the Poisson blending is a close second. As shown
in Table 3, our timing results are about two orders of magnitude
faster than prior techniques, even while processing videos with
higher resolution.

Many of the example datasets are from the work of Liao et al. [2013],
and we provide comparisons in the accompanying video. The results
show that blend-aware consistency enables greater dynamism (i.e.,
a greater fraction of looping pixels), and that looping quality is not
adversely affected by the acceleration techniques of Section 6.



% nonloopable % static w/ % static w/ Increased Periods Entropy Time
Video Resolution pixels Econsistency E∗consistency dynamism p1 p2 (px, sx) (sec)

balcony 1920×1080 54.5 1.2 0.3 1.0 8 26 2.48 6.6
bridgebirds 1920×1080 66.3 9.0 3.2 5.8 30 8 2.20 5.9
brink 1920×1080 43.4 0.1 0.1 0.0 21 12 3.02 6.8
floraine 1920×1080 13.7 2.5 1.4 1.1 15 30 3.03 8.4
giant 1920×1080 56.1 11.8 3.1 8.7 30 8 2.52 6.2
grandprismatic 1920×1080 73.6 7.5 6.0 1.5 30 12 1.82 4.8
grass 1920×1080 5.1 0.3 0.0 0.3 30 10 2.66 7.9
harlequin 1920×1080 4.4 14.1 5.1 8.9 8 30 3.70 7.5
madisonriver 1920×1080 20.7 0.8 0.0 0.7 8 26 3.01 12.0
morningsteam 1920×1080 61.2 9.7 2.8 6.9 8 30 2.09 8.0
palmtrees 1920×1080 44.5 3.7 0.9 2.8 18 25 2.92 6.0
pigeons 1920×1080 79.0 3.9 3.8 0.0 16 29 1.40 4.5
pinatas 1920×1080 17.5 1.2 0.1 1.1 24 10 3.17 6.8
poolsea 1920×1080 70.5 1.3 0.4 0.9 8 30 2.00 5.6
rampart 1920×1080 54.0 0.7 0.0 0.7 21 8 2.14 7.5
squareflags 1920×1080 36.4 7.6 3.1 4.5 22 8 3.36 5.8
bluepool 3840×2160 31.9 3.2 0.6 2.6 17 28 3.06 13.6
seabeach 3840×2160 44.2 1.5 0.0 1.5 24 10 2.62 13.5
uwfountain 3840×2160 58.6 0.5 0.1 0.3 24 13 2.16 11.5
varkalapool 3840×2160 27.0 4.7 0.8 3.9 25 10 3.58 12.3
pelicans 960×540 83.9 2.0 1.3 0.7 27 8 1.06 3.3
shanghai 960×540 63.0 4.2 7.1 -2.9 24 18 2.03 4.5
snoqualmiefalls 960×540 61.9 2.2 0.1 2.1 8 22 2.18 4.8
streetlight 960×540 61.9 6.7 2.0 4.7 20 15 2.02 4.5

Table 1: Results for the examples shown in Figure 13: spatial resolution, percentage of pixels classified as nonloopable, percentage of pixels
assigned by the optimization to be static using the traditional consistency metric Econsistency and using the blend-aware consistency E∗consistency,
resulting added dynamism, dominant periods (in frames at 7.5fps), average entropy of loop parameter labels, and computation times.

Processing step % Time

Load video V 14 %
Downsample to Ṽ 11 %
Compute cumulative sum tables 2 %
Find best periods p1, p2 1 %
Determine initial loop L 33 %
Generate blended loop L′ 24 %
Save compressed video L′ 15 %

Table 2: Breakdown of execution time among the various steps in
loop creation.

Output spatial Time
Method resolution (sec)

[Schödl et al. 2000] ≤ 360×240 n/a (fast)
[Kwatra et al. 2003] ≤ 360×240 300–3600
[Agarwala et al. 2005]† 6000×1200 3600–25200
[Couture et al. 2011] 2×6500×540 3600
[Tompkin et al. 2011]† ≤ 960×540 > 75
[Bai et al. 2012]† ≤ 675×324 350–1400
[Joshi et al. 2012]† ≤ 640×480 120-600
[Liao et al. 2013] 960×540 480–600
[Sevilla-Lara et al. 2015] 480×360 7200
Ours, Full HD 1920×1080 5–8
Ours, Ultra HD 3840×2160 11–14

Table 3: Timing results compared with prior techniques for video
loop creation. Methods marked ‘†’ rely on some user assistance.

To quantify the benefits of our individual techniques in terms
of improving quality and speed, Table 4 reports the objective
function E′ and computation times for our final method and with
each technique disabled. Recall that E′ measures gradient-domain
consistency of the output loop and is therefore a better predictor
of visual quality than the objective E∗ used in the optimization.

Objective Time
Scheme E′ (sec)

Complete method 51.9 8.0

Without Poisson blending 595.0 5.2
Without blend-aware consistency 64.7 6.4
Without promotion of longer loops 55.2 7.6
Without any of the quality improvements 318.0 4.5

Without masked graph cut 71.0 12.5
Without candidate label pruning 48.8 87.8
Without coarse-scale Poisson blend – 193.2
Without coarse-scale graph cut or any blend 45.4 61.0
Without any of the acceleration techniques 42.6 5785.7

Table 4: Effects of the techniques from Sections 5 and 6 on quality
and speed, measured using median values across the 16 Full HD
examples in Table 1.

We evaluate this gradient-domain consistency at the resolution of
the input video V , rather than the resolution of the downsampled
video Ṽ at which E∗ is optimized. One caveat is that the coarse-
scale Poisson blending approximation generates uniform small errors
inE′ which obscure the analysis, so for the purpose of comparingE′

values we evaluate Poisson blending accurately at the full resolution
(and hence the missing number in the associated row).

The measured consistency valuesE′ corroborate the observed visual
improvements, showing that each technique of Section 5 helps
overall loop quality.

The bottom half of the timing results in Table 4 reveal the speedup
factors of the techniques from Section 6: approximately 1.6 for
masked graph cut, 10 for candidate label pruning, 25 for coarse-scale
Poisson blend approximation (relative to full-resolution multigrid
with ten V-cycles), and 12 for coarse-scale graph cut solution. The
speedup factors are not completely independent, so the overall
improvement is about 720 instead of 4800.
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Figure 13: Example results, showing a frame of the video loop and the associated looping parameters. The loop periods are indicated using
hue (green to yellow to red for increasing periods) and start frames using luminance (brighter for later frames). Pixels classified nonloopable
are shown white, and pixels assigned static by the optimization are gray.

A surprising result is that the masked graph cut not only accelerates
the computation, it also improves the quality of the resulting loop.
The reason is that excluding the nonloopable pixels when estimating
the dominant periods provides a better set of candidate labels.

Limitations We inherit many of the limitations demonstrated in
prior work on automated video looping. The general approach
is most effective on the class of videos exemplified in the results,
namely stationary views of natural scenes with organic motions.
We observe that some natural motions, such as waves breaking on
a beach, have periods that exceed the short 5-second input videos
we acquire. For these we would have to capture a longer input
and allow a longer maximum loop period. Scenes with moving
people or distinct objects are often problematic, as these have
sharp delineated boundaries and may lack repeating motion. In
such cases, our technique may freeze the objects, leaving just a

dynamic background. In some respects, this is opposite the effect
sought in cinemagraphs [Beck and Burg 2012], where typically a
foreground object is subtly animated in front of a static background.
Creating effective cinemagraphs generally requires user guidance or
controlled environments.

Within the space of nature environments, our contribution is to
expand the category of scenes that can be successfully looped
without user input, by recognizing that many low-frequency scene
changes (e.g., moving clouds, smoke, steam, shadows) can be
smoothed away through Poisson blending.

Local temporal scaling (Section 4) can affect the speed of scene
motions. To better bound this temporal distortion, we could select
the length of the video loop as a function of the two periods p1
and p2 identified during construction. In particular, the loop length
could be max(p1, p2) or a small multiple of it.



9 Summary and future work

We have presented techniques to improve quality and efficiency
when computing seamless video loops. Together these techniques
allow computation of higher quality results about two orders of
magnitude faster than prior work.

There are several avenues for future work. We assume that the
input video is stabilized. It would be interesting to revisit video
stabilization in the specific context of loops. Perhaps feature tracking
can be made more robust for periodic scene motions, so that these
motions are more easily distinguished from camera shake.

For the blend mask B used to attenuate consistency in blendable
regions, it would be interesting to explore a generalization of this
construction that considers separate Bspatial and Btemporal masks.

We have designed our technique to only process short input videos
and create correspondingly short loops. For some scenes it may be
useful to consider longer input sequences to either identify better
short loops or form longer loops. Both the computational cost
and memory requirement of our technique should scale linearly
with the size of the input. In fact, if one considers a fixed number
of candidate (loop parameter) labels, the computational cost may
increase sublinearly.

The loop computation may now be fast enough to be practical on
mobile devices such as smartphones and cameras. It would be
interesting to explore whether it can be further accelerated using
specialized hardware.

References
AGARWALA, A. 2007. Efficient gradient-domain compositing using

quadtrees. ACM Trans. Graph., 26(3):94.

AGARWALA, A., ZHENG, K. C., PAL, C., AGRAWALA, M.,
COHEN, M., CURLESS, B., SALESIN, D., and SZELISKI, R.
2005. Panoramic video textures. ACM Trans. Graph., 24(3).

BAI, J., AGARWALA, A., AGRAWALA, M., and RAMAMOORTHI,
R. 2012. Selectively de-animating video. ACM Trans. Graph.,
31(4).

BAI, J., AGARWALA, A., AGRAWALA, M., and RAMAMOORTHI,
R. 2013. Automatic cinemagraph portraits. Computer Graphics
Forum, 32(4):17–25.

BECK, J. and BURG, K. 2012. Cinemagraphs. http://
cinemagraphs.com/.

BHAT, P., CURLESS, B., COHEN, M., and ZITNICK, L. 2008.
Fourier analysis of the 2D screened Poisson equation for gradient
domain problems. European Conference on Computer Vision,
pages 114–128.

COUTURE, V., LANGER, M., and ROY, S. 2011. Panoramic stereo
video textures. ICCV, pages 1251–1258.

JOSHI, N., MEHTA, S., DRUCKER, S., STOLLNITZ, E., HOPPE,
H., UYTTENDAELE, M., and COHEN, M. 2012. Cliplets:
Juxtaposing still and dynamic imagery. Proceedings of UIST.

KOLMOGOROV, V. and ZABIH, R. 2004. What energy functions
can be minimized via graph cuts? IEEE Trans. on Pattern Anal.
Mach. Intell., 26(2).
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