
 1

Performance of the 1-1 Data Pump
Tobias Mayr (mayr@cs.cornell.edu),
Jim Gray (gray@microsoft.com)

10/24/2000
Abstract: This document describes the implementation and performance of a 1-1 data pump, i.e., a program
transferring data between disks on one node or on two different nodes connected by a network. Section 1 outlines
the design, Section 2 describes the experimental setup, and Section 3 discusses the performance measurements.

1 Design of the Algorithm
The data pump moves data from a source to a sink1. The source and the sink, called the endpoints of the pump, can
each be a file, a network connection, or a null terminator. The transfer from a disk on a first site to a disk on a
second site happens through two data pumps: the sender pump on the first site and the receiver pump on the second
site. The sender pump moves data from the file source to a network sink, which is connected to a network source
on the target site. The receiver pump moves data from this network source to a local file sink. Null sources and
sinks simulate the behavior of an actual endpoint without incurring significant costs. They are used to isolate the
resource usage of network and file endpoints in the experiments.
The next section describes the algorithm that moves data between a source and a sink. It makes no difference to the
algorithm if the involved sources and sinks are files, network connections, or null terminators, since the same
interfaces are used in all cases. Section 1.3 will examine a few differences between files and network connections.

1.1 The Copy Loop
To allow pipeline parallelism (and hence maximum throughput), the source and sink should be active concurrently.
They operate in parallel by making asynchronous IO requests that do not block the caller to wait for request
completions. Several requests are pipelined on source and sink, to allow immediate processing of the next request
after the previous one is completed. The number of posted requests is called the request depth.
The main loop of the algorithm looks like this (we omitted error handling):

While (!Source->IsEndOfFile() || 0 < Source->NumberOfPendingIOs())

{ // post read requests up to the maximal request depth
 while(m_Source->NumberOfPendingIOs() < MaxSourceRequestDepth)
 m_Source->IoStartRead();
 // wait for oldest source request to complete
 Buffer = Source->WaitForCompletion();
 // if necessary, wait for a sink request to complete
 if(Sink->NumberOfPendingIOs() == MaxSinkRequestDepth)
 Sink->WaitForCompletion();
 // write the newly read buffer to the sink
 Sink->IoStartWrite(SourceBuffer);
} // in the end, wait for the sink to complete its work
while (0 < Sink-> NumberOfPendingIOs())
 Sink->WaitForCompletion();

As long as the source has not reached the end of its data, the algorithm asynchronously posts as many read requests
as possible. The algorithm then waits for the first read request to complete and writes the result to the sink. If
necessary, it waits for an older sink request to complete before posting the write (the stream must be processed in
order). The final while loop simply waits for all write requests to the sink to finish. The only time this algorithm
blocks is during calls to WaitForCompletion on either the source, to get data for the sink, or on the sink, to post
new write requests.

1 The program is based on earlier versions by John Vert, Joe Barrera, and Josh Coates.

 2

1.2 Parameters
Request size and depth are the two main parameters influencing the execution speed.

1.2.1 Request Size
The request size is the size of buffers used for source and sink IO requests. It determines the granularity of data
transfer. Request size affects three factors:
?? Memory usage: Larger requests consume more memory during the transfer. A buffer cannot be reused until its

request completes.
?? Overhead: Each data transfer has a fixed cost independent of the amount of data. Larger buffers have less fixed

costs per byte moved.
?? Latency: Larger requests increase the time the sink will be idle during the first read request and also the time

the source will be idle during the last write request. This becomes relevant when the request size is a large
fraction of the overall data.

The performance impact of request size is examined in the experiments. Based on earlier studies of Windows disk
IO behavior [1,2], we expect 64KB to be an acceptable disk request size.

1.2.2 Request Depth
The request depth determines the number of pending parallel requests. The request depth affects two factors:
?? Concurrency: In some cases the latency of an IO request delays execution beyond the time needed due to

bandwidth limitations, and it makes sense to hide this latency by executing multiple requests concurrently.
?? Memory usage: Each asynchronous request consumes a buffer until the request is completed. The number of

buffers times the buffer sizes dominates the data pump memory usage.
?? Flexibility: Multiple outstanding requests allow continuous processing even if requests complete at varying

rates, e.g., in bursts. Also, more requests allow the source or the sink more liberty in executing them (e.g.,
scatter/gather IO).

In our experiments, just a few parallel asynchronous requests are sufficient for 64KB buffers because the sources
and sinks have relatively short latency between request and completion.

1.3 Other Issues
The algorithm’s presentation in Section 1.1 omitted some interesting issues for the sake of clarity. This section
presents some of them.

1.3.1 Incomplete Returns
The data pump algorithm presented above only deals with full blocks (except for the final one). An asynchronous
read request to a network connection does not always return all the requested bytes (nor does the read at the end of
a file). The read returns as soon as some number of bytes is available. This makes it necessary to copy the part ially
filled source buffers and incrementally fill an output buffer. To provide a simple source interface, we encapsulated
this mechanism as part of the source. As an alternative, the algorithm could write a buffer to the sink as soon as it is
returned from the source, even if only partially full. This would avoid an extra copy and eliminate the delay of
waiting for a buffer to fill up. The disadvantage of this choice is that the granularity with which the source returns
data determines the granularity of requests for the sink. Another, more decisive argument for our choice were the
technical constraints on unbuffered file IO in Windows – the addresses must be sector aligned and the lengths must
be multiples of sectors.

1.3.2 Completion Order
Sources and sinks differ in the way they wait for request completion. For sinks, the completion order is irrelevant –
whatever buffer becomes available can be used for further requests. However, the source completion order is
crucial: If the algorithm forwards data in the order in which the read requests complete it might permute their order
in the stream. A source’s WaitForCompletion must block until the oldest request completes. This implies that if
more recent requests complete first, they will wait without being processed until it is their turn.

 3

1.3.3 Shared Request Depth
Sources and sinks in the same process use a common buffer pool but they each have an individual maximum
request depth. Earlier implementations used dynamic request depth limitations: Using a dynamic heuristic, the
endpoint requiring more parallelism could increase its throughput by hogging buffers, limiting the parallelism of
the competing endpoint. Theoretically, this sounds good, but we observed that the request depths would not ‘self-
optimize’ but somtimes oscillate between maximal and minimal depth. We picked independent request depths for
greater simplicity and better control of our experiments.

1.3.4 Blocking Mechanisms
Windows provides several mechanisms to wait for request completions. The data pump uses waiting for multiple
events, where each event is signaled for the completion of an individual request. As an alternative, IO completion
ports would have advantageous thread scheduling; however, the single-threaded data pump code is simpler using
blocking on events. Alternatively, a single event per endpoint could have been used in combination with explicit
polling for completion of each request.

1.3.5 Asynchronous Disk Writes
Asynchronous IO requests let the requesting thread perform other tasks while the asynchronous request is being
processed and let multiple requests complete in parallel. Unfortunately, an asynchronous write request at the end of
a file is executed synchronously in Windows (as a security feature). This ensures that initial writes and later reads
of the new part of the file are serialized. One way to avoid this behavior was to preallocate a file of adequate
length, which is not a very likely scenario. To avoid blocking the whole process, the file sink uses a separate
thread to post disk write requests. This thread blocks on each request until it completes, while the main thread can
execute in parallel. Still, for file sinks a request depth larger than one cannot be achieved because even with the
extra thread the requests are serialized.

2 Experimental Setup

2.1 Platform
In all experiments the sender is a dual processor 731MHz Pentium III with 256MB memory, reading from a
Quantum Atlas 10k 18WLS SCSI disk with a Adaptec AIC-7899 Ultra 160/m PCI SCSI controller. The receiver is
a dual processor 746MHz Pentium III with 256MB memory, writing to a 3Ware 5400 SCSI controller.
The machines are connected through 100Mbps Ethernet using 3Com FastEthernet Controllers and a Netgear DS
108 Hub.

2.2 Experiments

2.2.1 Variables
As explained in Section 1.2, the possible independent variables in the experiments are the request size and the
request depth.
We measured the following dependent variables:
?? Elapsed time . The overall elapsed time T together with the amount of data moved A allows us to determine the

overall bandwidth of the data pump pipeline as A / T .
?? Thread times. The times that a thread was actually scheduled to execute, either in user or in kernel mode, give

us a part of the incurred CPU costs.
?? CPU usage. For asynchronous IO, the thread times are only part of the CPU usage because the IO handling is

done through deferred procedure calls and interrupts by system threads once the IO completes. The user thread
only posts the IO. We measure the actual overall CPU usage using a soaker, as explained in Section 2.2.2.

?? Partial IO completions. Network read requests complete with partial results, introducing overheads for
additional requests and the assembly of partial results into full buffers. The data pump keeps track of the
number of partial results and the average amount of data returned.

 4

Figure 1: The four isolated exp eriments measure the
CPU cost and the bandwidth of a file source, a file
sink, a network source, a network sink, and a
network transport.

2.2.2 Soaking
The thread times measured by Windows do not show much of the time a process spends doing IO. To solve this
problem we used a soaker that measures the system idle time. A soaker determines the direct CPU usage and also
the kernel thread CPU costs of handling asynchronous IO requests (deferred procedure calls (DPCs) and
interrupts). A soaker has one low-priority thread per CPU, running a busy wait. The thread is only scheduled when
no other thread is running. It ‘soaks up’ all CPU time that is left over by all other threads, especially the data
pump’s work threads. Running at a higher priority, the data pump’s work threads and the kernel threads that
execute their deferred procedure calls preempt the soaker threads. The actual CPU time of threads performing
asynchronous IO is the elapsed time minus the time consumed by the soaker threads and the background system
load. In a calibration phase before each experiment, the background system CPU load is determined as the time not
consumed by the soaker threads while they are running without the worker threads.
While performing experiments with soakers we discovered an interesting effect: Soakers running on multi-
processor machines can, in certain configurations, decrease the bandwidth of network transfers. This effect
appeared to different degrees on various systems that we tested, varying from 2% to 20%. The reason for this effect
appears to be the way in which DPC and interrupt handling is distributed among multiple CPUs. Soaker threads,
running with the lowest priority, affect this distribution. The system rather interrupts a CPU running a thread with
the lowest priority then an idle CPU2. Running the soaker only on a subset of the CPUs directs most DPCs and
interrupts to those CPUs. Even soaking all CPUs slightly affects the DPC distribution and the achievable network
bandwidth (up to 10%). Consequently, in our experiments we determined the bandwidth without using soakers,
while all shown networking CPU costs are determined in separate experiments, using a soaker.

2.3 Scenarios
The data pump experiments measure the bandwidth and the CPU cost of transferring data. Costs are incurred by
each pipeline component: the source disk, the sender CPU, the network, the receiver CPU, and the sink disk. Each
component has a maximum bandwidth. A pipeline has the bandwidth of its bottleneck component – the component
with the smallest bandwidth. The component bandwidths and costs are measured in isolation by using null
terminators. A null source produces data and a null sink consumes them without incurring significant costs.
This allows experiments in the following scenarios:
?? Isolated CPU: Pump data from a null source to a

null sink. The pipeline components are the null
source, the CPU, and the null sink. The CPU
bandwidth is measured for this experiment. We
assume the load generated by the null terminators
is insignificant.

?? Isolated disk source: Pump data from a disk file to
a null sink. The pipeline components are the disk
source, the CPU, and the null sink. The disk
bandwidth and CPU cost are measured.

?? Isolated disk sink : Pump data from a null source
into a disk sink. The disk bandwidth and CPU cost
are measured.

?? Isolated network : A sender on one node pump s data from a null source to the network, while a receiver on
another node pumps data from the network to a null sink. The source CPU time, sink CPU time and, the
network bandwidth are measured.

These four scenarios measure CPU usage and bandwidth of each component.

2 We received information that Intel designed the interrupt mechanism to consider an idle CPU as having a higher
priority (IRQL 2) than an idle priority thread (IRQL 0).

 5

3 Experimental Results

3.1 Isolated CPU Cost
The CPU costs for the generation of null source and sink requests and for the necessary synchronization are
measured by a data pump “moving” one billion bytes from a null source to a null sink. No data are actually
generated or moved in memory, but buffers are handed from source to sink the necessary number of times (109 /
request size), all while using the event-based synchronization mechanism. Because there is no IO involved the CPU
is fully utilized. For various buffer sizes, the CPU is busy for 20 microseconds per request with a standard error of
7% for 64KB buffers when each experiment is run 10 times. The processor time is about half in user mode and half
in kernel mode. Experiments with varying request sizes indicate that this per-buffer cost is nearly constant. The
“throughput” for 64KB buffers is 3 GBps (no bytes are actually moved).

3.2 Disk Source Cost
The CPU costs and bandwidth of a disk source are measured for a data pump moving 100 million bytes from a disk
source to a null sink. The disk is read sequentially and the null sink simply frees each buffer. The request depths
varied from one to four and request sizes were 16KB, 32KB, 64KB, 128KB, and 256KB. For all but the 16KB
buffers, a request depth of one was adequate. Consequently, all other disk source results are reported for a request
depth of one. For each parameter setting the experiment was run ten times. The standard error for the elapsed times
is 10% or less, that for the CPU times is 25% or less.
Figure 2 shows the disk bandwidth and CPU costs. Buffer size has no effect on bandwidth: Doubling the buffer
size from 16KB to 32KB increases the overall bandwidth by 0.4% and further increase has no effect. The top right
graph shows the CPU time for different request sizes in their linear dependency on the amount of data moved. The
CPU cost per request, shown in the lower left, remains almost constant for buffer sizes up to 128KB. This

Bandwidth of Disk Source

0

5

10

15

20

25

0 64 128 192 256
Request Size (KBytes)

B
an

d
w

id
th

 (
M

B
/s

ec
o

n
d

)

CPU Time of Disk Source

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 200 400 600 800 1000

Amount of Data (mBytes)

C
P

U
 T

im
e

(s
ec

on
ds

)

32KB

64KB

128KB

256KB

CPU Time of Disk Source per Request

0

50

100

150

200

250

300

32 64 128 256
Request Size (KBytes)

C
P

U
 T

im
e

(µ
s)

Kernel Threads

Kernel Mode

User Mode

CPU Time of Disk Source per Byte

0

1

2

3

4

5

6

7

0 64 128 192 256

Request Size (KBytes)

C
P

U
 T

im
e

(n
s)

Figure 2: The costs of a disk source. Bandwidth reaches a plateau at request sizes above 16KB but CPU cost
continues to decline for larger request sizes. The CPU time per byte approaches a nanosecond. As requests
get larger, the user and kernel cost of an IO stays about constant, but the kernel thread cost rises as the
memory copy cost of the DMA increases. Still, the per-byte cost is the smallest at large request sizes.

 6

corresponds to our expectation that fixed CPU cost per request dominates until one gets to large (256KB) buffers.
The disk source CPU cost can be approximated as a
constant CPU cost per byte Cb and a constant CPU
cost per request Cr (independent of the request size).
The overall CPU cost, CPU(B,RS) would be B*Cb +
B/RS*Cr, where B is the number of bytes and RS is
the request size. The presented measurements can be
approximated using Cb = 0.5ns and Cr=86µs. A more
complex model would use individual per byte costs
for each request size: The slope of each curve in the
upper right graph is the cost per byte for its request
size. Table 1 compares the actual per-byte costs observed for different request sizes and compares them to the costs
derived from our simple model. Considering that the measured numbers contain the 20 µs per-request cost of the
pump mechanism itself (see Section 3.1), we can isolate the disk source costs as Cb = 0.5 ns and Cr = 66 µs.

3.3 Disk Sink Cost
The disk sink cost was measured with a data pump transferring 100 million bytes from a null source to a disk sink.
Because writes to the end of a new file are synchronous, the disk sink data pump operator has a separate thread that
posts the write requests sequentially. Hence, request depths greater than one have little effect at request sizes of
16KB or more. For each parameter setting, the experiment was repeated 20 times, with a standard error of less
than 3% for the elapsed time and bandwidth. The standard errors for the CPU times were up to 100%, due to the
very short CPU times involved and the rather coarse time measurements that the OS allows.
Figure 3 shows the results. The first graph shows the bandwidth as the request size increases from 16KB to
256KB: Larger request sizes increase the bandwidth, asymptotically approaching the disk write rate. Doubling
from 32KB to 64KB increases the bandwidth by 8%, while doubling from 64KB to 128KB only brings a 3%
increase.

Table 1. CPU Cost of a Disk Source:
Actual and as modeled by Cb= 0.5 ns and Cr = 86µs
Request
Size:

Observed
per-Byte Cost:

Model Prediction:
Cb + Cr/RS:

Relative
Error:

32KB 3.2 ns 3.2 ns 0 %
64KB 1.9 ns 1.9 ns 0 %
128KB 1.3 ns 1.3 ns 0 %
256KB 0.95 ns .93 ns 2 %

 Bandwidth of Disk Sink

0

2

4

6

8

10

12

14

16

18

20

0 64 128 192 256
Buffer Size (KBytes)

B
an

d
w

id
th

 (
M

B
/s

ec
)

l

CPU Time of Disk Sink

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60 70 80 90 100

Amount of Data (mBytes)

C
P

U
 T

im
e

(s
ec

o
n

d
s)

32KB

64KB

128KB

256KB

CPU Time of Disk Sink per Request

0

50

100

150

200

250

300

350

16 32 64 128 256

Buffer Size (KBytes)

C
P

U
 T

im
e

(µ
s)

Kernel Threads
Kernel Mode
User Mode

CPU Time of Disk Sink per Byte

0

1

2

3

4

5

6

7

8

9

10

0 64 128 192 256

Request Size (KBytes)

C
P

U
 T

im
e

(n
s)

Figure 3: The bandwidth and CPU cost of a disk sink.

 7

The lower left graph shows the CPU time per request.
The CPU costs are approximately constant up to
128KB. This matches our expectation of a fixed per-
request CPU cost between 100 and 300 microseconds.
The presented measurements can be approximated
using Cb = 1.6 ns and Cr=73 µs. Similar to the last
section, Table 2 shows in how far we are able to
match the slopes in the upper right graph. Compared
to Table 1, the mo del of Table 2 approximates the four
graphs only poorly. Considering that the measured numbers contain the 20 µs per-request cost of the pump
mechanism itself (see Section 3.1), we will isolate the disk source costs as Cb = 1.6 ns and Cr = 53 µs.

3.4 Network Transfer Cost
The network throughput was measured by sending data from a null source via a data pump to a null sink on another
node. The request depth varied from two to five and request sizes varied from 2KB to 128KB. The soaker
mechanism degraded performance, so we executed the experiments twice, measuring the CPU times with the
soaker and elapsed time without it, and . The experiments were run 10 times with a standard error of about 15%.
Figure 4 shows the results. The first graph shows that neither request depth nor request size has much impact on
throughput – the wire speed is the limiting resource for requests large than 8KB.
The lower left graph shows the sender and receiver per-request CPU costs – the three different parts are: the time
that the pump’s thread spends in user mode, the time it spends in kernel mode, and finally the time used by kernel
threads while processing IO interrupts and deferred procedure calls. Time spent by kernel threads was determined
as the time unused by the soaker threads minus the thread times of the data pump. The CPU time per byte is nearly
independent of the request size, around 20 ns for senders and 40 ns for receivers – this implies that for this

Table 2. CPU Cost of Disk Sink:
Actual and as modeled by Cb = 1.6ns and Cr = 73µs
Request
Size:

Observed
per-Byte Cost:

Model Prediction:
Cb + Cr/RS:

Relative
Error:

32KB 5.3 ns 3.8 ns 39 %
64KB 2.8 ns 2.7 ns 4 %
128KB 2.2 ns 2.2 ns 0 %
256KB 1.3 ns 1.9 ns 46 %

 Bandwidth of Network Transfer

0

2

4

6

8

10

12

0 16 32 48 64 80 96

Request Size (KBytes)

B
an

d
w

id
th

 (M
B

/s
ec

)

Request Depth 2 Request Depth 3

Overall CPU Time on Sender

0

0.5

1

1.5

2

2.5

3

0 25 50 75 100
Data Amount (mBytes)

C
P

U
 T

im
e

(s
ec

o
n

d
s)

4KB 8KB 16KB 32KB
64K 128KB 256KB

CPU Times per Byte

0

5

10

15

20

25

30

35

40

45

32KB 64KB 128KB 32KB 64KB 128KB

Sender Sender Sender Receiver Receiver Receiver

C
P

U
 T

im
e

(n
s)

User Mode Kernel Mode Kernel Threads

Average Returned Fraction

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 32 64 96 128 160
Request Size (KBytes)

R
el

at
iv

e
F

ra
ct

io
n

 S
iz

e

Depth 2

Depth 3

Figure 4. Network transfer costs on sender and receiver. CPU times for different request sizes are only given
for the sender. The lower right graph shows the average fraction of the requested data that was returned for a
read request from the network.

 8

configuration, the CPU would be limited to a throughput of about 25MBps per CPU. The majority of the CPU time
is spent running kernel threads: Asynchronous network IO involves deferred procedure calls and interrupt
handling, which is not done by the requesting thread but by the kernel. The larger CPU costs on the receiver are
partially due to the iteration of requests that were not fully completed and to the copying of incomplete buffers.
Request size has little effect on the CPU costs of a network transfer (Figure 4 lower left graph). This could have
two explanations: a) The CPU times largely reflect the amount of data received on the network, not the number of
requests, and b) The amount of actual requests does not decrease with the size of a request due to incomplete
returns that have to be iterated. The graph on the lower right shows the average size of the return of a request for
different request sizes and request depths. The network transports smaller units than the used buffers and imposes
its granularity on the data pump.
The cost model for the sender has a low per request cost: Cr = 40µs, but a high cost per byte: Cb = 20 ns. Table 3
compares the slopes of the curves from the upper right graph – the per-byte costs for different request sizes, with
our model.
For the receiver (the linear cost functions are not shown in Figure 4), we would have to reflect the fact that the per-
byte cost is greater for larger requests. We could only do this by using a negative per request cost across all request
sizes. In this way smaller requests, resulting in more requests, are modeled as advantageous. But even this model
would only apply for the larger request sizes beyond 16KB. A more complex model would be appropriate. In our
uniform model, we pick Cb = 40ns and Cr = 20 µs. The chosen request cost reflects the cost of the pump itself.
Table 4 shows how these parameters help model our observations.

Considering the 20 µs per-request cost of the pump mechanism itself, we can isolate the network sink costs
(incurred on the sender) as Cb = 20 ns and Cr = 20 µs. The isolated network source costs (incurred on the receiver)
are: Cb = 40 ns and Cr = 0 µs

3.5 Local Disk to Disk Copy
Having measured the components, we then measured the performance of the data pump transferring data from one
local disk to another. Based on the experiments with isolated disk sources (Section 0) and sinks (Section 3.3), the
bandwidth should be that of the bottleneck disk and the per-byte and per-request CPU costs the sum of the pipeline
components. The disk bandwidth for the read disk is 24 MB per second and 22.5 MB per second for the write disk.,
Figure 5 shows the results of the disk to disk transfer. The bandwidth of 22.4 MB per second matches our
expectations.

Table 3: CPU cost of Network Sender:
Actual and as modeled by Cb = 20 ns and Cr = 40 µs

Table 4: CPU cost of Network Receiver:
Actual and as modeled by Cb = 40 ns and Cr = 20 µs

Request
Size:

Observed
per Byte
Cost:

Model
Prediction:
CB + CR/RS:

Relative
Error:

Request
Size:

Observed
per-Byte
Cost:

Model
Prediction:
CB + CR/RS:

Relative
Error:

32KB 23 ns 21 ns 6 % 32KB 39 ns 41 ns 4 %
64KB 20 ns 21 ns 3 % 64KB 40 ns 40 ns 0 %

128KB 20 ns 20 ns 0 % 128KB 43 ns 40 ns 6 %

Bandwidth of Local Disk Transfer

0

5

10

15

20

25

30

0 64 128 192 256
Request Size (KBytes)

B
an

d
w

id
th

 (M
B

/s
ec

)

CPU Time of Local Disk Transfer

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 25 50 75 100
Amount of Data (mBytes)

C
P

U
 T

im
e

(S
ec

o
n

d
s)

32KB 64KB 128KB 256KB

Figure 5. Disk to Disk data transfer costs. The left graph shows the bandwidth of the transfer, peaking at 22.4
MB per second for 64KB buffers. The right graph shows the linear CPU cost functions for different request
sizes.

 9

The numbers measured in Section 3.2 and 3.3,
during the isolated disk source and sink
experiments, should allow us to predict the
per-request and per-byte CPU costs.
According to our CPU cost model, which
should apply uniformly across all disks, the
two cost components are each the sum of the
corresponding components (Cb and Cr) of the
source, the pump, and the sink: Cb = 0.5ns +
0ns + 1.6ns = 2.1ns, Cr = 66 µs + 20 µs + 53 µs = 139 µs. Table 5 compares the result of this analysis with the
measured overall costs per byte for each request size.

3.6 Network Disk to Disk Copy
This experiment combines a disk source and a network sink on one site, and a network source and a disk sink on
another site. Figure 6 shows the results. Because of the already described asymmetry between sender and receiver
the receiver’s CPU costs are much higher. The overall bandwidth is that of the network connection because it
forms the bottleneck.

The following tables compare the measured per-byte costs for each request size with our prediction based on the
per-byte and per-request costs of the components. For the sender, Cb = 0.5ns + 0ns + 20ns = 20.5ns and Cr =

Table 5: CPU Costs of Local Disk-to-Disk Transfer:
Actual and as modeled by predicted Cb = 2.1 ns and Cr = 139 ns
Request
Size:

Observed
per Byte Cost:

Model Prediction:
CB + CR/RS:

Relative
Error:

32KB 8.1 ns 6.4 ns 28 %
64KB 4.8 ns 4.2 ns 13 %
128KB 2.9 ns 3.2 ns 9 %
256KB 2.2 ns 2.6 ns 17 %

Bandwidth of Network Disk Transfer

0

2

4

6

8

10

12

0 64 128 192 256

Request Size (KBytes)

B
an

d
w

id
th

 (
M

B
/s

ec
)

CPU Times of Network Disk Transfer
per Request

0

2

4

6

8

10

12

14

4K
B

8K
B

16
K

B

32
K

B

64
K

B

12
8K

B

25
6K

B

4K
B

8K
B

16
K

B

32
K

B

64
K

B

12
8K

B

25
6K

B

Sender Receiver

C
P

U
 T

im
e

(m
s)

CPU Time of Network Disk Transfer
on Sender

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100
Amount of Data (mBytes)

C
P

U
 T

im
e

(s
ec

o
n

d
s)

4KB 8KB 16KB 32KB 64KB 128KB 256KB

CPU Times of Network Disk Transfer
on Receiver

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100
Amount of Data (mBytes)

C
P

U
 T

im
e

(s
ec

o
n

d
s)

4KB 8KB 16KB 32KB
64KB 128KB 256KB

Figure 6. Disk to Disk data transfer costs across a network connection. The upper left shows the overall
bandwidth. The upper right compares the CPU times per request for different request sizes on sender and
receiver. The lower two graphs show the linear CPU cost graphs for sender and receiver each for different
request sizes. The CPU cost on the receiver is generally higher, probably due to incomplete requests that have
to be reiterated and copied.

 10

66µs + 20µs + 20µs = 106µs. For the receiver: Cb = 40ns + 0ns + 1.6ns = 41.6ns and Cr = 0µs + 20µs + 53µs =
73µs.

Table 6: CPU Costs of sender in Disk-Network-Disk
Transfer: Actual and as modeled for predicted Cb =
20.5ns, Cr = 106µs

Table 7: CPU Costs of receiver in Disk-Network-Disk
Transfer: Actual and as modeled for predicted Cb =
41.6 ns, Cr = 73µs

Request
Size:

Sender
per-Byte
Cost:

Sender Model
Prediction:
CB + CR/RS:

Relative
Error:

Request
Size:

Receiver
per-Byte

Cost:

Receiver Model
Prediction:
CB + CR/RS:

Relative
Error:

32KB 25.5 ns 23.7 ns 7 % 32KB 45.2 ns 43.8 ns 3 %
64KB 22.3 ns 22.1 ns 1 % 64KB 46.1 ns 42.7 ns 8 %
128KB 22.9 ns 21.3 ns 8 % 128KB 46.3 ns 42.2 ns 10 %
256KB 22.5 ns 20.9 ns 8 % 256KB 45.3 ns 41.9 ns 8 %

3.7 Summary
In this configuration, a request depth of one for disks and of two for the network is sufficient. Thus, only few
buffers are tied up during the execution of the data pump.
The size of the buffer is a more difficult issue. The chosen buffer size is irrelevant for the CPU costs of network
sources and sinks, due to the dominance of the network’s transfer size. Disk read bandwidth favors 32KB requests,
while write bandwidth increases even with larger buffers, but at less than 5% beyond 64KB. This size has much
higher CPU cost than 32KB, while further increases would not add cost. Differently for writes, the CPU cost nearly
doubles from 64KB to 128KB.
Buffer sizes from 32KB through 256KB seem reasonable, depending on the available memory. With respect to
constrained memory – e.g., for pumping data between all sites of a cluster – and CPU costs, 64KB seems a good
choice.
The CPU load can be modeled as: A*(Cb_Src+Cb_P+Cb_Snk)+A/RS*(Cr_Src+Cr_P+Cr_Snk). Where A is the
amount of data, RS is the request size, and Cb_xxx and Cr_xxx are the respective per-byte and per-buffer CPU costs
of the used source, sink, and the pump. For a network source, the per-request costs are computed per complete
request. We gave our approximations for these parameters and compared them with our measurements for each
isolated component as well as for a local and a remote disk copy combining different components. Table 8
summarizes these results.

 Pump: Disk Source Disk Sink: Network Source: Network Sink:
Cost per Byte: 0 ns 0.5 ns 1.6 ns 40 ns 20 ns
Cost per Request: 20 µs 66 µs 53 µs 0 µs 20 µs

4 Acknowledgements
Thanks go to Joe Barrera and Josh Coates, on whose earlier code versions our data pump is based. Thanks to
Donald Slutz for support with the Rags cluster. Thanks to Maher Saba, Ahmed Talat, and Brad Waters for their
help in performing and understanding the soaker experiments. Thanks to Leonard Chung, whose soaker code we
used.

5 References
[1] Leonard Chung, Jim Gray, Bruce Worthington, Robert Horst: Windows 2000 Disk IO Performance.

Microsoft Research Technical Report MS-TR-2000-55, 2000.
[2] Riedel, Erik, Catherine van Ingen, and Jim Gray: A Performance Study of Sequential IO on WindowsNT

4.0. Microsoft Research Technical Report MSR-TR-97-34, 1997.

