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Abstract 

A theoretical study of precedence schemes used in parsing 

programming languages is presented. It unifies and generalizes the 

schemes of Floyd, Pair, Wirth and Weber, and Colmerauer by defining 

the concepts of token sets and operator sets and then defining pre- 

cedence relations on them. The case in which a precedence scheme 

yields the canonical parse is constructively characterized. 

It is of'ten necessary to transform a given grammar into a similar 

one with some special property, A concept of a cover is introduced to 

formalize the word "similar". Grammar G1 is said to cover G2 if one 

can obtain a l l  parses in G by a simple homomorphism of the parses in 
2 

G1. It is shown that every grammar is covered by a normal form 

grammar and by an operator normal form @;ramma,r but that certain 

grammars m e  not covered by any grammar in Greibach normal form. 

Precedence schemes simply detect the presence of a phrase contain- 

ing an operator, they do not detect phrases not containing operators 

nor do they explain what production was used to obtain this phrase. 

Almost all previous work assumed that productions have unique right 

sides. A construction is presented which shows that every context 

f'ree grammar may be transformed to an equivalent grammar with unique 

right-hand sides. However the resulting grammar is not a cover of the 

original. Further, this construction destroys the precedence relations. 

In fact precedence grammars with unique right-hand sides are a proper 

subset of the set of (1,l) bounded right context grammars. 

A central conclusion of this thesis is that the restriction that 

the productions have unique right-hand sides should be relaxed. It is 



shown fo r  example tha t  every L R ( ~ )  grammar is  covered by a simple 

precedence L R ( ~ )  crammar and every  ARC(^,^) grammar i s  covered by a 

simple precedence DRC(~',~) grammar. 

iii 



Introduction 

Among the many methods for parsing context-free .'languages, pre- 

cedence analysis i s  especially at t ract ive.  It has been studied and 

has been applied t o  prac t ica l  progranrmi~ languages [I, 2, 3, 5, 12, 

l l k ,  181. 

Floyd [5] f i r s t  formalized the idea of precedence analysis by 

defining relat ions on terminal characters. I n  hir, theory, the 

grammars were not allowed t o  have A-rules and were required t o  be i n  

operator form. Pair [16] and independently Wirth and Weber [18] 

generalized the method by relaxing some res t r ic t ions  and by defining 

t h e i r  precedence relat ions on the en t i re  vocabulary. McKeeman [141 

simplified the work of Wirth and Weber and considered schemes for  

reducing the s ize  of precedence tables. Colmerauer 112) has generalized 

t h i s  notion by allowing more complex parsers and he began t o  consider 

t h e  structure of precedence relations.  

The present paper presents a general theory of precedence 

analysis which includes a l l  other known schemes. We characterize how 

the schemes of Floyd and of Wirth and Weber f i t  in to  our theory. Wc 

characterize when ~olmerauer 's  method produces a canonical l e f t  t o  

r ight  parse. 

During the course of the thesis  some of the resu l t s  presented by 

Fischer [!+I were independ-ently obtained. They deal with the re la t ive  

power of the schemes of Floyd and Wirth and Weber. ve have omitted 

these r e su l t s  but strongly recommend tha t  h i s  paper be read i n  con- 

junction with t h i s  thesis.  



This thesis  i s  concerned with the use of precedence analyzers i n  

syntnx directed t ranslat ion of programming languages 1181. T t  argues 

tha t  a mechanically generated parser must produce a cancwicnl pars(. 

although it may bc allowed t o  ignore productions without sctmantic 

significance. This yields the idea of a "sparse parse". One grammar 

i s  said t o  "cover" another if it i s  possible t o  construct the sparse 

parses i n  the second from the sparse parses of the f i r s t .  From the 

point of view of a syntax directed t ranslator ,  being able t o  parse a 

covering grammar i s  as good as  being able t o  parse the or iginal  

grammar. 

It is shown tha t  every grammar is  covered by a normal 

form grammar and by an operator normal form grammar but tha t  there a re  

grammars which are  not covered by any Greibach normal form grammar. 

Precedence parsers detect only those phrases which contain an 

operator. They ignore phrases not containing an operator and give no 

h in t  how t o  reduce the phrase. The problem of reduction i s  quite a 

complex one. Almost a l l  published work has ignored the problem by 

requiring tha t  the productions of the grammar have unique right-hand 

sides. Fischer has shown tha t  i f  t h i s  res t r ic t ion  i s  relaxed any 

context-free 1anp;uage can be parsed with a simple precedence analyzer. 

Conversely, t h i s  thesis  contains n construction which transforms any 

grammar in to  an equivalent grammar i n  which every production has a 

unique right-hand side. However these two constructions are 

incompatable, since the grammars with both properties are a proper sub- 

s e t  of the (1,l)  bounded r ight  context grammars. 



A central  conclusion of t h i s  thes is  i s  tha t  every L H ( ~ )  p a m m a r  

i s  covered by a simp1.e precedence LR(~) grammar and every RHC (n,m) 

grammar i s  covered by a simple precedence BRC (n'  ,m) @mnmar. This 

provides a n  cconomicd reduction scheme i n  these cases. 'I'htxe fac ts  

are implicit ly ~ ~ s c ; t l  by Cheatham rl] and Jchbiah and Morse! [1?1 i n  

constructing LR(~) parsers. 



Section 1 

Basic Def initi.ons 

We begin with the definit ion of a context-free grammar with a 

delimiter. 

Definition, A context-free grammar with delimiter i s  a 4-tuple 

G = (v, C, P, -L S l  ) where 

( i )  V i s  a f i n i t e  non-empty s e t  (vocabulary) 

( i i )  ,y c - V i s  a f i n i t e  non-empty s e t  (terminal symbols) 

( i i i )  ~ C C .  1 is  called a delimiter. 

( iv) S e V - 2 .  We c a l l  S 1 the s t a r t  string. 
* 

(v) P i s  a f i n i t e  subset'') of (V - E) r (V - [I)) and we 

write u -b v instead of (u,v) c P. P i s  the s e t  of 

productions. 

This family of grammars i s  a variant of the usual definit ion of 

context-free grammars since we need delimiters surrounding s t r ings 

generated by the grammars. 

Definition. Let p be a binary re la t ion  on a s e t  X, i.e., 

p c_ X x X. Define 

p0 = ( (a,a) 1 a E X] 

( l )Let  X and Y be se t s  of words. Write XY = [ xyl x c X, y c Y] where 
0 

xy i s  the concatenation of x and y. Define X = {A)  where A i s  the 

- * 
* C) xi. nul l  word. For each i > 0 ,  define xi+' = X% and X = 

i > " J  
Let X+ = X X and l e t  $ denote the empty set .  Finally, if-x i s  a 
s t r ing,  l e t  lp;(x) denote the number of occurrenccts of symbols i n  x, 
lh r ther  f'or any 3 > - 0 and any x - a , o p . .  .an, al,*..,a F i: iJ' i > n 

then (i) X r X  
(1) x. I f '  1 < n then (0 x - nl... a j  and x (0 I: 



and fo r  each") i > - 0 
i + l  i 

P = P P .  

Ncxt,, w e  cnn de f jnc?  the ru les  for rewriting s t r incs .  

Definition. Let G = (v, C, P, -L S 1 ) be a context-free grammar 

* * 
and l e t  u, v e V . Define u-*v i f  there ex i s t  words, x, y, w e V 

* 
and A e V - x so t h a t  u = xAy, v = my and A -+ w i s  in P. If y c C , 
w e  write u-v. 

R 
Furthermore define 

and 

* * 
The s t r i ng  x F: V i s  said t o  be a -- sentcntial. -- form if' i~_L====*x .  

It i s  a canonical sentential form i f  1 s ~ _ _ J ~ x .  Not every -- ----- 
R 

sen ten t ia l  form i s  canonical. Consider the grammar with productions 

The sen ten t ia l  f o r m j - a A I  i s  not canonical. 
* * 

me set ~ ( c )  = [x z S - x  i s  said to be th r  language 

~ c n c r a t e d  by G .  

(2) 
The operation ir. cc,mposit;iorr o f '  rt%la ti ons whi ch i :; c 1 c . f  i n c ~ r l  t i c :  

follows: if p C X x Y and 0 c - Y x Z, def ine  pa  -. [ (x,z') I xpy anfl 
ycrz for  sonx y-c 'Y). Observe t ha t  



We now adopt four equivalent but notaticjnal.1. y d i f  ferwt d e f  i n i -  

t jons of derivations. Each notation has i t s  own advantn[;es and wc 

sha l l  use thc most sui table  onc i n  any par t icular  ca:;c5. 

(uc,,. . . ,IJ ) i s  n di.rivation of u Srom u . TT u0 - " LI -. . 
r - -  r o R 1 ; ;  

... 3 u  t,hc derivation jr,  s a i d  t,o be a -- canonica:l t3c>rivitt.i0n. --- Tf 
Ti 

fo r  each 0 4 i < r, i f  u. 7 v.A.w and u r v.y.w and u 1s 
I 1 1 i  i+l I 1 i i c l  

obtained from u by rlsing production II = A. -+ y. w e  say tha t  the sequence 
i i 1 1 

of ru le  intei:e+ pairs  ( ( A  o -+ yo, lg(vG yo) ) '. . . . , ( A ~ - ~ +  yr-l,l$(vr-l j;-l'ij) 

i s  a derl.vation of u f'rom u . I f  the derivation i s  canonical then r 0 

the sequence ( (n n o  . . . , ( n r , n )  ) i s  said t o  be a canonl ca l  
0 

derivation of u from u . In t h i s  case the n are  slperfluous so w e  r o i 

a lso  l e t  (a,. . . ,n ) denote the canonical derivation of u from u . 
r-1 r o 

If u i s  not mentioned it i s  assumed tha t  uo = . Any particular 
0 

derivation a l so  corresponds t o  a labeled directed t r se ,  called the 

parse t ree .  Two derivations are said t o  be equivalent i f  they have --- 
the same parse t ree .  The canonical derivation of' any canonical 

sentent ia l  form i s  the canonical representative of i ts  equi-valence 

class.  

If the sequence (x ,x , . . .,x ) is a derivation, of y from z then 1 2  n 

( x , , x ~ - ~ ,  . . .,x ) i s  said t o  be a parse of y t o  z .  If the derivation 
1 

i s  canonical the parse i s  said t o  be canonical. Further i f  z i s  not 

mentioned -L SL i s  assumed. 

n Xe sha l l  somctimes denote the seqlience (no, nl,.. ., fin) by (ni.) 

I n  a particul.ar derivation of canonical sentent ia l  form x, denoted 

by a sequence of (rule, integer) pa i r s  ( (no7no) , . . . , (n,, n,) ) , i f  

II - (A -+ y) then the occurrence of the substr in~:  y i n  x a t  position n r r 



i s  called a phrase of x, and the pa i r  (nr,n ) i s  called a reduction r 

of x. If the derivation i s  canonical then (nr,np) i s  callcd a handle 

of x. 

C i s  said t o  be unambiguous i f f  each canonical sentcnt ial  form 

has (1 unique canonical derivation. This i s  c lear ly cquival-ent t o  each 

canonical scntent ial  form having a unique handle. 

Two fundamental problems associated with context-free grammars 

a re  : 

Recognition Problem. Given a context f ree grammar G = (v, C, P, 
* L s ~  ) give an algorithm which given any x e C decides whether or  not 

x e L(G). 

Parsing FYoblem. Given a context-free grammar G = (v, C, P , ~ S L  ) 

* 
and a s t r ing  x c , produce a l l  the canonical parses of x i n  G. - 

Of course, a solution t o  the parsing problem implies a solution to  

the recognition problem since i f  x $ L(G) ,  there w i l l  be no canonical 

parses of x. 

The motivations behind our in te res t  i n  the parsing problem are the 

c o n n e c t i o n s  with s y n t a x  d i r e c t e d  language t r a n s l a t i o n s .  I n  t h e s e  

schemes, a parser enumerates the nodes of a parse t ree  of a source 

language s t r ing.  With each such node i s  associated a (possibly n u l l )  

semantic i n  some object language. The resulting sequence of semantics 

i s  the translated program C3.81. 

The parsing schemes we w i l l  be dealing with are  collectively known 

as "bottom up" schemes. They can be thought of as the i te ra t ion  of the 

* 
following three steps applied t o  a s t r ing  x c V . l n i t i ~ l l y  x w i l l  be 



(1) find a leftmost phrase, y, of x (detection),  

(2) determine the production involved A -+ y, and output it, 

(3) replace y by A t o  obtain a new x. (reduction) and go t o  (1). 

We sha l l  devote almost a l l  of t h i s  thesis  t o  considering cano~llcai 

parse. This decision i s  motivated by the following argument. If one is t o  

construct a t ranslator  by having the parser enumerate the nodes of the 

parse t r e e  and then associate a semantic with each node it is  v i t a l  

t ha t  the person writing the semantics have a c lear  idea of the order 

i n  which the nodes are going t o  be erhnerated. The canonical parse 

corresponds t o  suffix polish or  i n  the termino1oe;y of Knuth, post 

order. I f  the parser does reductions i n  a random way or a way depend- 

ing on the grammar then it may be very d i f f i c u l t  t o  write the semantics. 

Specifically i f  the parser i s  mechanically generated it i s  v i t a l  tha t  

it generate the nodes in  a uniform way. The following example 

i l l u s t r a t e s  the d i f f i cu l t i e s  which may ar i se .  

Example: Consider the grammar 

(program) 4 (statement) ; 1 (statement) ; (program) 

(statement) -+ GO TO A [ GO TO B 

Suppose tha t  the semantics of "GO TO A" i s  "JP A" and similarly for  B. 

Thus the program 

GO TO A; 

GO TO B; 

has a canonical parse which generates 

J-F'A 

JP B 



wh.ile the noncanonical parse generates 

,TP B 

J - P A  

Thus a naive choice of grammar and precedence relations can i n  

fac t  yield the l a t t e r  parse. %is cannot be tolerated i n  a f'ully auto- 

matic generator of parsers. 

On(. ~ l t e r n n t i v e  i s  ~ozs ih! .~ ,  build up the p a r z ( ,  ~ T C  in n n v  orilpr 

a n d  t,hc.n travc.rsc3 it i n  canonical order. T h i s  i s  c:~oc~cial-l:,~r n1, t rnct ivr  

i n  comc: s i tuat ions (e.(:., optimiziny: compilers). IIo~~evt~r t h j s  i s  

quite an expensive way t o  build a compilcr and i s  appropriatcl i n  m o s t  

s i tuations.  

The following are  common types of detection and reduction. Fix 

1 G = (v, C, P, LS _ _  1. . 

Definition. G i s  L R ( ~ )  detectable i f f  

* 
i f  - 1  S - :-* xyz has handle (A -+ y, lg (xy) ) R 

* 
and ! S - L-__ --J)CYZ' has handle (A' -+ y' , j) R 

and (") z = ( " ' z ' t h e n j  = Ig (xy)  a n d y t = y .  

Note tha t  A'  need not equal A. 

Definition. G i s  LR(~) reducible i f f  

* 
if -1.. S L  =+ 

R xyz has handle (A + y, Ig (xy) ) 
* 

S L y - - 3 > x y z  ' has handle (A'  -+ y, lg (xy) ) 

and (") z = ( " ) z '  then A = A' .  

Definition. G i s  LR(k) i f f  it i s  L R ( ~ )  detectable and reducible. 

That i s  i f f  
9 

if , S x y z  has handle ( ~ - + y ,  &(ICY)) and 



* 
if L S J  y-- 2. xyz' has hancUe (A' + y' , j) 

and (") z = (k)z '  then ( ~ ' + y ' ,  j )  - ( ~ + y ,  lg(xy) ') .  

Next we deal with the bounded r i g h t  context property. 

Definition. G i s  bounded r i g h t  context (n,rn),J@c (n,m) ) detectable - 
X 

iff if ! S !  - ---. 
R 

->  xyz has handle ( A  + y, lg(xy)) 

* 
and ! sJ- - - R f= x'yz' has handle (A'  + yf ,  ,i) 

(n) a n d x  - x '  ("' and (m) z ;- (m) Z' and lg (xny)  - < j thrn j - lg(x'y) and 

y t  = y. 

Definition. G i s  B R C ( ~ , ~ )  reducible i f f  

* 
if L S L==* xyz has handle (A -+ y, l g  (xy) ) 

R 
* 

and -L s L ~  x ' p '  has handle (A' + y, 1g(x1y) ) 
R 

and x(n)  - xt(")  end ( m ) ~  = ( m ) ~ l  then A'  = A. 

Definition. - C; i s  B~C(n,rn) i f f  it i s  B R C ( ~ , ~ )  dtttectable and 

~ 3 ~ ~ ( n , m )  reducible. That i s  i f f  

* 
if 1 s I---- -3 xyz has handle (A -+ y, l g  (xy) ) 

R 
* 

1 ~ 1 - 3 x ' ~ z '  has handle (A' + y', j * )  
R 

These def in i t ions  a re  var ian ts  of the  usual ones. Inspec- 

t i on  of Knuths r13] paper shows t h a t  the above def ini t ion of ~ ~ ( k j  

coincides with h j s .  However our def in i t ion  of J ~ R c ( ~ )  docs not. We 

c-ln i m  his drbfj n 113 o r 1  i :: too rc.r, 1,r-i rtivc. s j  ncc h(1 1 ~.nvc.r: nut. thr. clnur.c+ 

'7 ~ ( x ' y )  - < .) ''I i n  Lhc. hypothr?si n. 'I%(. followj nr: ,r~-nrrm~nr i:; l{I;(:(( ' ,O) I,y 

our def in i t ion  but, not, by hi:: since ( A  4 a,3) i s  not, a h a n d l c  01' 

1- a a l .  



context grammars with the same error. 

f I . \  

Floyd [5] o r i ~ i n a l l y  defined i r ~ ~ ( n , m )  for  A-free , : rmrrs  ' '' . Fir 

l e f t  out end markers so h i s  def ini t ion f a i l s  on the [:rammar 

sincc. by h i s  d c f i ~ l i t i o n  A -b a has contcixt set  (set: hcl ow) { ( A  ,A \ ] so 

(A 3 a , l )  must be a handle of ab. 

The following presentation of h i s  o r ig ina l  def inr t ion cc)rrect,s 

th i s .  Floyd's def jni t ion proceeds as fo.Uows. 

Let G = (v, C, P,L SL ) be a A-free grammar and l e t  m, n :-A - O 

-n * 
Consider any ( A  -r y) (: P. The s e t  C c - V x C i s  said t o  br  an ( r ~ , m ?  

canonical context s e t  fo r  A -+ y i f f  

(1) for  cnch ( x , z )  e C _~b';(x) - < n and lg(z) - < m y  
* * 

and ? i -- - ; L * ~ A z  thcn for  some (x ,Z c > x,,, z, $ V , 
t <  1 1  i 

(n,mj iff A -+ y has a n  (n,m) canonical context set, C such tha t  fo r  
* 

any (x,z) E C and any xl, x , y , y,, zl, z c '1 slich tha t  x = x Y 
2 1 c- 2 1 .?' 

y = yly2, z = z z None of the following folirteen predicete!: a r e  
1 3' - * 

sa t i s f i ed  fo r  any s ,  t, u, v, w e V , B c V +  X: 



- * 
(34') (44') (10)l ~ ~ - _ = = = - = - 3 s t x ~  m - = - 5 s t x y  y zw and v f i  A .  

R 1 R 1 3  

The nimbern i n  the l e f t  margin arc the ones given by Floyd i n  h j s  

paper. Inspcction of these predicates shows t h a t  in any case the 

resul1,ing s t r i ng  i n  stxyzw = r. 

Cases (I), (?), ( 3 ) ,  (11) characterize the casc 

(a) r has handle (D -, q, lg(stxy)) and A f 11 or q f y 

Cases ( 5 ) ,  ( 6 ) ,  (7) characterize the casc 

(b) r has h a n d l c  ( ~ 7  -+ q, j) and lg(stxy) < j 5 Ig(stxyz) 

CHZP::  (8) , ( 0 )  , (10) r.h~rcrclx~rizcl l,ht. can,. 

(c) r ha:: hantflc (J)  + q , . j )  and  Ig(stxyz) < J 

9, b, e may be abstracted as 

r has handle  ( I D  + q)  , j) and j > l@;(stxy] o r  q f y or A 1 i. 



-n 
i s  a context s e t  C: for A -+ y such t h a t  Y ( X  o z I ) s C, x,, ::,, i: V 

t,l,erl (R -t q , J )  - (A -' y, ldxPx,y) 

We sha l l  adopt t h i s  modified version of Floyd's definition i r i  

what follows. Floyd went on t o  define C, t o  hc li~C(n,rn) i f f '  cach A -+ y 

i n  P i s  HRC (n,m) . 
1~'loyd adopted t h i s  form of the def in i t ion  because it mad(% comp1e~c~l.y 

c l ea r  t h a t  the  qucstion " I s  G B H C ( ~ , ~ ) ? "  i s  decidable. Sincc thcre is a 

great  deal  of conf'usion about b r i e f e r  forms of the dcfinit io.1 ar. provc 

t h a t  in the  case of A-free grammars our def in i t ion  coi-ncides with ~ ' loyd ' s .  

Proposition. Suppose G = (v, X,  P ,LsL) ir. a A-free g r a m r  

( ~ l o y d  did not define B R C ( ~ , ~ )  on grammars with A ru les ) .  Thtm fo r  any 

n ,  m > - O,G i s  n~(:(n,rn) i n  the Floyd sense i f f  i t ,  is P R C ( ! I , ~ )  i n  our 

sense. 

h o o f :  Supposc G is  R R C ( ~ , ~ )  i n  the Floyd sense. Then supposc 

* 
S 1 z has handle (A -+ y, l d x y )  

Ti 

* 1 S ~ - - - - t ) ~ ' ~ z '  has handle (A' -+ y', j ') 
R 

has a n  (n,m) canonical context s e t  C. So f o r  some (xl,zl) 5 C, 

* 
x z , ~  v xyz = x x y z  z Since 1g(xl) < n ,  x ( ~ '  =-x' 2' a- 2 1  1 2 .  - '"' and 

* 
'm' z T ( m ) ~ ' .  W c h a v e x f y z ' - x x y z z  f o r o o m r x ~ , z q ~ V .  Further 

3 1  1 . 7  3 

j ' > - 1g(xfy) so x'yz' has handle ( A  -+ y, 1g(xty) 1 - -  (A' -+ v' ,, , , j t )  s i m p  

A -+ y i s  B R C ( ~ , ~ )  i n  Floyd's sense, So G i s  B R C ( ~ , ~ )  i n  our sense. 

Conversely i f '  G i s ~ ~ ~ ( n r n )  i n  our sense and '; i r  A f ree  considw 



of "!iC(n,m). So a s n u m e  t ha t  

R 

i s  nonempty. Clearly it i s  an (n,m) canonical context s c t  for  A -+ y. 

To ver i fy  t h a t  A -t y i s  B R C ( ~ , ~ )  i n  the Floyd sense c:onsidcr any 

* 
(xl,zl) c C. Then fo r  some x 2 ,z 2 c V 

Duw suppose tha t  fo r  some x 3, Z 3  E v*. 

* Ls-L---- -x x yz z has handle (A' -t yl,j') arid j > l g (x  x y ) .  
3 3  1 3  - 

R 3 

Then since (: i s  B R C ( ~ , ~ )  i n  our sense (A' -+ y', J ' )  = (A -t y, lg(x3xly)). 

So A -+ y s a t i s f i e s  Floyd's def ini t ion of a R R C ( ~ , ~ )  production. Thus 

a l l  productions a re  BRC (n,m) i n  Floyd's sense so G i s  B R C ( ~ , ~ )  i n  

~ l o y d ' s  sense. 

In passing we mention t h a t  one can define FI-oyd's concept of 

bounded context (n,m) (BC (nm)) as: 

For any n, rn > - 0 and any grammar C = (v, C, P , -L  S-L ), G is 

~K!(n,m) i f f  

(a)  every sen ten t ia l  form has a unique handlc ( i .e . ,  C i s  

unambiguous) , 
* 

and (b) fo r  a l l  x, z, x ' ,  z' i n  V , A -+ y i n  P, i f  

I S L X A Z  = ~ x y z ,  and 

Then x'Azl i s  a sen ten t ia l  form. 



We h a v ~  not found Bc(n,m) t o  be a usec i l  concept i n  parsing 

p r o g r d n g  languages since it does not take advantage of the informa- 

t i on  gained by previous reductions. Also does not correspond t o  the  

canonical parse. 

These def ini t ions  a re  d i s t i n c t  from those given i n  the l i t e r a t u r e .  

We have chosen them fo r  t h e i r  r e l a t i ve  simplicity.  For examply they 

allow the following simple proof t h a t  B R C ( ~ , ~ )  implies L R ( ~ )  . 
Remark: If G i s  B R C ( ~ , ~ )  it i s  L R ( ~ ) .  

Proof: Suppose 

, '  * 
-2 S : - R >xyz has handle (A -+ y, lg(xy))  

i * 
i S, 

R 
->xyz' has handle (A' + y ' ,  j ') 

(m) (m)z' .  There i s  no l a s s  i n  general i ty  i n  assuming t h a t  where z = 

j ' > - lg(xy) by the symmetry of the problem. Now x("" = x(") and 

(m) z = (m) z' so ( ( A  -+ y) , lg(xy))  = ( ( A '  + y ' )  ,j ') by the def in i t ion  

of R R C ( ~ , ~ ) .  Therefore G i s  ~ ~ ( r n ) .  111 
Similarly we can show t h a t  i f  G is  L R ( ~ )  it i s  G unambiguous. 

Proof: F i r s t  w e  r e c a l l  t ha t  a grammar i s  unambiguous i f f  each 

sen ten t ia l  form has a unique handle. The def ini t ion of L R ( ~ )  implies 

t h a t  every sen ten t ia l  form has e unique handle (take x = y) .  So 

~ ~ ( k ' l  grammars are  unambiguous. I 



Section 2 

Normal Forms and Covers 

When presented with a particular grammar most parsing al,yorithms 

give one of the following answers: 

(1) I can parse this grammar, 

(2) I can't parse this grammar but, I can parse one "similar" 

to it, 

(3) I can't parse this grammar. 

This section proposes a formal definition of the word "similar". 

The development is predicated on the idea that the parser is intended 

to drive a syntax directed compiler. 

The parsers described so far enumerate all nodes of the parse 

tree. For applications, we would be content with a parser which 

enumerated only those nodes in the parse tree which have semantic 

significance. For example, consider the generation tree of Fig. 1 

which occurs in Euler [16]. 
* 

The chain(') r - - A is typical if what happens in grammars 

for programming languages. Chains exist to enforce precedence of 

operators and to collect several categories of syntactic types. 

Example. In ALGOL, one has the BNF statement 

(stst.ement) : :=(unconditional statement) I 
(conditional statement) I 
(for statement) 

(4' A derivation zo a. . .3 z is said to be a chain if r > 0 and r 
z s V - c for each i. i 
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(a) A sparse parse of the generation i n  Fig. 1. 

(b) A non-sparse parse of Fig. 1. 

Fig. 2 



Chain productions rarely have semantic significance as our 

running example shows since in Fbler, only the following productions 

have nontrivial scmantics. 

oxpr- 4 e oxpr- 

var- + X -- 

primary + 

h + A  

For the purposes of code generation, the "sparse generation tree" of 

Fig. 2a is as satisfactory as the tree in Fig. 1. The tree shown in 

Fig. 2b would not be a satisfactory replacement for the original tree 

because some nodes with semantic significance have been omitted. 

We must formalize this notion of restricting attention to nodes 

with semantic significance, 

Definition. Let G = (v, C, P, 1 s -1 ) be a context-f'ree grammar 

and H be a subset of P. Let n,.,...,~ be distinct symbols representing 

the productions in P. Suppose x is a sententid form and the string 

rc ...xi denotes a canonical derivation of x. m e  H-sparse generation 
il r 

of x corresponding to ni . . .n is rp(4 . . .n. ) where cq is the homo- - 
1 

i 
1 

1 r r 

morphism generated by 

(A otherwise 

TZlus cp(s .. .x. ) denotes the subsequence of the productions of 
i 
1 

1 r 

7ci . . .st Which are in 13. Note that we may speak of sparse parses as 
1 r 



well a s  sparse generations, Non-canonical sparse generations are  

defined analogously. 

It i s  often convenient t o  transform a given grammar G in to  a 

"similar1' grammar G' which possesses some special  form. For our 

I1 
purposes, similarf'  must mean, a t  the very l eas t ,  equivalence [4]. We 

also would l i k e  t o  be able t o  construct a parse for  x i n  G i f  we were 

given a parse for  x i n  G' because we would l ike  t o  be able t o  generate 

the same code for  x i n  both grammars. 

Definition. Let G = (v, C, P, -1 S 1 ) and G' = (v' , C' , P' , -1- ~l.1- ) 

be context-free grammars with El c - P and H' c - P' . We say tha t  (G,H) 

covers (G',H') under a map (p from H' in to  H i f  

(1) L(G') = L(G) 

and (2) f o r  each x s L(G) , 
(a) i f  YC i s  an H-sparse generation of x i n  G there i s  an 

H'-sparse generation n' of x i n  G' so thatcp(nl) = n. 

and (b) if YC' i s  an H'-sparse generation of x i n  G' then cp(nl) is  

an H-sparse generation of x i n  G. 

G' i s  said t o  cover (G,H) if there ex is t  H' and cp so that (G',H*) 

covers (G'H) under q. Finally, i f  H =: P, we say tha t  G' completely 

covers G. 

The basic idea behind t h i s  definit ion i s  tha t  i f  (G',H') covers 

(G,H) by cp and i f  one can construct the H' sparse parse of x i n  G' 

then, using a simple table  look up method (with the table of cp) one 

can construct the H-sparse parse of x i n  G. 

If ki+p Hicl ) covers ( G ~ ,  H ~ )  under map cpi f o r  i = 1, 2, then 

( G ~ ,  H ~ )  covers (C H ) under map rpyp?. In other words, covering i s  
I' I 

n trarmitlvn rc:lnt,l on.  'I'his rcslni, l  or^ 4 t i  ref1 exivc b u t  not.  n;ymmc.tr3 c .  



Note tha t  G t  i s  equivalent t o  G i f f  G covers (G',?). 

The s p i r i t  of our definition of covers i s  very much l i k e  tha t  of 

Reynolds [17]. It d i f fers  i n  tha t  we allow sparse generations and i n  

tha t  Reynolds i s  more concerned with embeddlngs so he does not require 

Covers are also related t o  isomorphism of gramnexs, a concept 

introduced i n  a more re s t r i c t ive  way i n  [ 7 ] .  We need t h i s  concept j n  

i t s  flill generality. 

Definition. Let G = (v, C, P, 1 SL ) and G' - (v', c', P',J-S'L) 

be context-f'ree grammars. G i s  isomorphic t o  C' i f  there exis ts  a map 

Jr so tha t  (G',P') covers (G,P) under Jr and 

(1) there i s  R one-to-one map cp f'rom V' into V so tha t  tpA = A 

* 
and (2) Extending cp t o  a homomorphism on V we require tha t  

Thus isomorphism requires tha t  Gt-parse t rees  map onto G-parse t rees  

by a functional relabelling of non-terminal nodes [7,18]. 

We w i l l  also need some familiar definitions *om the theory of 

context-free languages [7,ll]. 

Definition. A context-free grammar G = (v, C, I), 1 SL ) i s  said -- 
t o  be 

( i i )  chain f ree  i f  P f l  ((v - C) x (V - c)) - $ 
* 

(iii) reduced i f  (a) for  each A c V, there exis t  x, y i n  V so 
* 

t ha t  S ---;)xAy, 

* 
and (b) for  each A f S, there exis t s  x c: c SO tha t  

* 
A -x, 



(iv) invertible i f  A + x and R -+ x i n  P implies A = B 

(v) i n  normal form i f  P c - (V - E) x ([A] U V U ('v - x)') 
* * 3 * 

(vi) i n  operator form i f  P c - (V - C) x (V - V ( - ) V ) 

- 't (rii) i n  Greibach form if P c ( (V - C) x CV , 

The following resul t s  all appear i n  the l i t e ra tu re  (cf. [7,lll 

unless otherwise referenced.) 

(a) C i s  cquivdent  t o  a A-free grammar. 

(b) G i s  equivalent t o  a chain-free grammar. 

(c) G i s  isomorphic t o  a reduced grawhas. 

(d) If C i s  a parenthesis grammar then G i s  equivalent t o  an 

invertible parenthesis grammar [15] . 
(e) G i s  equivalent t o  a @;rammar i n  normal form. 

(f)  G i s  equivalent t o  a grammaz i n  operator f o m  [lo]. 

( g )  G i s  equivalent t o  a grammar i n  Greibach form [10,U]. 

These properties may be combined in to  pairs  (i.t?. , a grammar may 

be assumed t o  sa t i s fy  an arbi t rary pa i r  of the properties) except tha t  

the pairs  (d,e) , (e,f)  and (e,$) are incompatible. 

Our f i r s t  r e su l t  extends (d) t o  the class  of all context-free 

languages. This resul t  has the following interesting interpretation. 

Bottom-up parsing my be thought of as  involving two processes, 

(1) detecting a phrase and (2) reducing the phrase. It i s  possible t o  

do (1) easi ly for  any context-free language using precedence 

techniques [4]. I f  t h i s  is  done, reduction becomes d i f f icu l t .  On the 

other hand, Theorem 2.1 shows tha t  reduction can be made t r i v i a l  but 

detection becomes more d i f f icu l t .  



Theorem 2.1. For each context-fYee grammar (; = (v, z, P, -L S 1- ) 

there i s  an invertible context-free grammar C ' - (v', C, P', 1 S'  ) 

so tha t  J,(cI') - T,(G) . 
Proof: We may assume, without loss  of gencrnlity, that G has no 

A-rules and tha t  G has no rules of the form A -t I \ .   he case wher~ 

r\ c L(G) may be easi ly handled.) 

Let G' - (v', I:, P', 1 s'L ) where V' - Z -: {IT z - V - Z I IJ m u  

{s ' ]  whcrc 2' 5 s  a n e w  r.;ymhoJ not 4n V. 

'I'hl~z Lhc. vnrinS,Jcs of G '  (c'xc!cqA 2 ' )  w i l l  l w  nortcnqky r , u b r ; c - t : :  o f '  

the vnsiablec 01' C .  

P' i s  defined as  follows: 

1. S'  -t A where S s A c  V - C is  i n  P' - 

2. For each production B + x B x ... B x i n  P with B1,...,B c V-Z 
011 n n  n * 

and xo.. . .,x E B 7 then for each A,-,.. .,An E V' - (2 U [s ' ) )  . n 

P' contains 

where A = { C ~ C  + xoClxl., .Cnxn i s  i n  P 

for  some C1, ..., Cn with each Ci s Ail 

* 
'%us i f  C + yoC1y1 .. .Cnyn With Y, ,...,yn c I: , Ci s V - z, we call- the 

s t r ing  y - yl.. .-y the s tenci l  of the production (variables replaced 
o n 

by dashes) . 
Note t ha t  P and P' have the same s e t  of s tenci ls  and tha t  G' i s  

invertible.  Assume without loss  of generality tha t  G '  i s  reduced. 

Before embarking on a proof tha t  L(G') = L ( G ) ,  we given an  

example of the construction. 



Fxample : Consider thc followin{; grammar 

Applying the construction of the theorem leads t o  the following 

Reducing the grammar leads t o  

Now we begin the proof tha t  L(G') - L(G). 
* 

C l a i m  1. For each A s V' - C and each x c C 

implies 
* 

B d x  i n  G for each B s A . 
Proof: The argument i s  an induction on 4 ,  the length of a 

derivation i n  G'. 

* 
Basis. Suppose 4  = 1. men A a x  E: C i n  G' and A -+ x is i n  - 

P' . Ry the construction A = { C  E V - ~1 C -+ x i s  i n  PI. Clearly t h i s  

holds i f  and only i f  R + x is i n  P fo r  each R s A. 



Induction S t q .  Suppose 4, > - ? and Claim 1 holds for  f i l l  derivn- - * 
t ions of length less than t. Then suppose A*xOA,-x l...A n x n ====3x 

i n  G' by a derivation of length 4,. This implies tha t  fo r  each i, 

* * 
i < - i < n, A i - = = r y i  E z and xoylx l...y x = X. By the construction, - = n n 

fo r  each B A there exis t  Ri E Ai so tha t  B -r xoR1x l. . .Bn~n i s  i n  P. 

* 
Moreover, the induction hypothesis implies tha t  R i = j y .  i n  G and 

1 

therefore 

B ===3 xOB1xl. . . Bnxn I-" x y x o 1 luoYnxn 
r X .  

Note tha t  Claim 1 implies tha t  

L(G') c L(G) 

To complete the proof, the following resul t  i s  needed. 
* 

Claim 2. For each x E z*, l e t  X = [ C  E V - ~1C-x i n  G). 

* * 
I f  B 5 x  i n  G then A-x i n  G'  for  some A such tha t  B s A C  - X. 

Proof: The argument i s  an induction on 4, the length of a 

derivation i n  G. 

* 
Basis. 4 = 1. Suppose B--9-x s C so B + x i s  i n  P. Then - 

A -+ x i s  i n  Pt with B E A = [ C  c V - C I C  -+ x i s  i n  PI. 
* 

Induction Step. Suppose B-xoBly ... Bnxn-xoylx l...yn~n = 
* 

x c C i n  G i s  a derivation of length 4,. 
* 

!There are derivations Bi-yi, all of which have length < 4,. By 

the induction hypothesis, there are  Ai 6 V' - Z so tha t  

and Bi E Ai. By the construction A -r xoqx l...Anxn i s  i n  Pt with 

* 
B F: A. ~ h u s  A----~)x o q ~ l . . . A n x n ~ x O y l x  l... y x -. x i n  G'. 

n n 

By Claim 2, L(G') 3 L(G) and hence L(G') = L(G).  - m 



It i s  easy to see tha t  t h i s  condition i s  compatible with 

conditions (a) through (f) and not compatible with (g). It i s  

interest ing t o  note tha t  f o r  any gramnar G, one can f5nd an equivalent 

grammar G' which i s  invert ible  and chain free.  On the other hand, 

there are  grammnrs G fo r  which there do not ex i s t  equivalent grammars 

which are invert ible ,  chain f ree  and A-fkee. An example of s ~ c h  a 

grammar i s  

s + ~ 1 1 )  

A 4 a ~ 1  a 

This f i r s t  r e su l t  provides an  opportunity to  exercise the defini-  

t ion  of cover. The grammar G' of Theorem 2.1 does not necessarily 

cover G. For example i f  G i s  the grammar 

Then G' i s  

which cannot cover G since it i s  unambiguous. However the grammar 

docs completely cowr  G.  Generalizing th i s  r e su l t  we obtain the 

fol I owing theorem : 



Theorem ? L A :  Tei.t G = (N, x, P, I .  S ( ) bc. a co..ltt.xt-free 

grammar. 'I'h6.n (; is comp1etcl.y covcrcd by an invertible grammar G ' .  

Proof': Wcl si.rnp1.y prc>scnt th(. constzwction. I n d a  tht.> r~ll~rnr~ntr, -- 

of I\i by thc intc\fv1rr, 1 , 2, . . . , I  N 1 . T,vt the indc.x ot' A c N hc  d<bnotcd 

T ( A ) .  Let L hcs n new symbol and construct G' = (N', T, P', ! S I 

as follows : 

N' = K U C L ]  

P' = { A - r x  L ~ ! A - ~ x  e P and I (A)  = i! U [ L +  A) 

Then (G',H) covers (G,P) under cp where H = P' - {L -+ A]  and r p :  H + P 

i is defined by r p ( ~  -+ x L ) = (A + x) for each A F: N, i = I ( A ) ,  

This result shows an application of the concept of covers as a 

research tool. Perhaps it is useful to explain the genesis of these 

results. 2.1 was a generalization of McNaughton's result on 

parenthesis grammars 1151. The work on covers came later, intuitively 

it was felt that the construction should not produce a cover. This 

followed *om the intuition provided by the construction of 

Theorem 2.1. However close investigation yielded the result of 2 . 1 A .  

It is true that the grammar G in the example above is not compl.etely 

covered by any A-free grammar. 

Prext we turn to a consideration of normal forms and a short 

exposition of covers. 

Theorem 2.2. For each context-free grasnmar G there is a context 

free g r a m  G' which is in normal form and which completely covers G. 

Proof: Let 4 = (v, Z, P, -Ls ) be a context-free grammar and - 
suppose that [ and 3 nre two new symbols not in V. We define a new 



context-free granrmar C' = (v', C, P', [s]) where 

The variables of the  new grammar me of the form [x] a,nd there are 

only a f in i t e  number of them. Define 

= [[a] + ala E z - [L]] 
P, = [[A] + A ~ A  -+ A is  i n  P) 

P3 = [[A] + [33JIA+ B i s  i n  P for A E V - z, I3 c V] 

4 P,, = (H -r [R][X](A -t Bx i s  i n  P for B c V, x c V ) 

and P = [Ax] -+ [A] [ x ] I A  c V, x c v', [Ax] tz V t  - E] 5 

Combining, l e t  P' = 6 P. and define H' = P2 U P U Pq. We define cp 
i=l 1 3 

from H' into P by 

v([A] + A )  = A +  A for  each [A] + A  i n  P, 

c~([A] + [B]) = A + B for  each [A] -+ [B] in P 
3 

rp([A] -+ [B] [XI)  = A 4 BX for each [A] + [B] [x] i n  

Clearly cp is  a one-to-one map from H' onto P. Consider the (phrase 

structure) grammar G" obtained by dropping the brackets i n  G' . Note 
* 

that  the rules corresponding to  P1 and P are identity maps on V while 5 
all other rules come f'rom P. It i s  now easy to  verify that  L(G') = 

L(G) = L(G") and that  cp maps the spasse parses into each other as 

required. I 
Another type of grammm which can be a cover i s  the operator 

form. 

Theorem 2.3. If G is  a reduced A-fkee context-free grammar then 

there is an operator grmmar G' which completely covers G. 



for each a in C - {I] and A in V - C. 

Fig* 3 

It is clear that S has the following property: 
* 

Claim 1. For each x, y in V , xqo,x) n nqo,y) f $ if and only 

if x = y. The (trivial) proof of Claim 1 is omitted. 
* 

Thus, Claim 1 implies that for each z e T(v ) there is a unique 

z' such that z c 972'). We call this correspondence cp and note that cp 
* * 

maps from (v') into V . 
Define G' = (v', E, P',IS~) where P' = P1 U P2 U P and 

3 
P1 = [ A  -b y l A  -r x is in P and y y  = x] 

(5 )Cf .  [8] for a definition of sequential transducers and their 
properties. 



P3 = { ( a , ~ )  + y l  A + x i s  i n  P, a c X ,  rp(ay) = x] 

k i 
/' . J 

i 

~~~ *om the constkction o f  q (i.e., -3') %hah cp-lx i s  

f i n i t e  and thus P' i s  a f i n i t e  se t  of productions. Also note that  G 

i s  an operator grammar because no y i n  q x )  can contain two adjacent 

occurrences of variables. 

Define a map I) *om P' into P as follows: 

(5) For each A -+ y i n  P , $(A + y) = A -+ cp(y) 1 

(ii) For each ( a , ~ )  + ( a , ~ ) y  in  P2 

( i i i )  For each ( a , ~ )  + y i n  P 
3 

g ( ( a , ~ )  -, Y) = A -, cp (ay) 
&< . ,' , (j " !,,&, +. 

SJ e c I ,, . ' 
L, 

Now, we can s t a r t  our verification that  we have a complete cover. 

* 
Claim 2. For each a c x, A s  V - C, and x C C 

* 
; A )  i f  A-axinG bycanonicalderivation (5, . . . ,n) ,  n c P  

R n i 

* 
then A - ax i n  G' by canonical derivation (xi, . . . , YC;) , n; c P1 

R 

r * , i. 1 

where i n ;  = n for each i, 1 < i 5 n and (a,~)-x i n  G 1  by i - R 
,. ! 

1 
canonical derivation ( n . .  n )  , each fl; c P1 and $ n; = ni for each 

i, 1 < i < n .  - - 
Proof: The argument i s  an induction on n and the t r i v i a l  basis - 

i s  omitted. 

Let ni = A. -+ x. for 1 < i < n and l e t  xl = uoB1u l...Bm~mwhere 
1 1 - - 

* * * 
u c Z Bi c V - 2. Let x = uOv1u v u where B.:=>v. c E for  i m m 1 1 



each i, 1 - < i - < m. Thus the sequence (xi, . . . ,\) factors into 

( Y C ~ ( ~ , ~ .  . . ) . . . x 1  . . . ) ) where ((4,1,.. . ,x ) is the 
l¶Pl %Pn i 9pi 

* 
generation sequence of B - v  m-i+l R m-icl for 1 < i < m. - - 

'PIC ,,,, . . , I  

Consider the production xi = 4 -+ u;clui ... cmu; where U: = u 
0. 

C1 = B1, and for each i so that 1 - < i - < m: 

If ui = h then " ui = (l)v and Ci = ( (1) vi, Bi), i 
*, 
I 

,If Ui 6 A then u; = u .L and Ci = Bi. 

Clearly u;clu; . . . c u' is in nxl) so @ni) = x2. m m Ry the induction 

hypothesis, there is ta canonical derivation (x;,~, . . . , n' ) of 
f ,Pi 

Y 

I t t for each i. Thus the sequence n 5 ($,xi ,l,..., x , r . . 9  x m,l' ...,fl' ) 19p1 wpm 

The second pest of the statement follows analogously with the 

modification that si = (a,~) + U& . . . C U' where s = (l)x. If' uo = ay, 
m m  

' P  

a E 8 thenpub 5 yIwhd'uO - A bkpJ.b# ub = A and C1 = (a,B1). W other 
, 't L 

quantities remain the dm:' in the proof of Claim 2. 

Next, we must turn to the comrerse. 
* .' I 

Claim 3. For each A r V - Z, x c E and a r L, if ( a , A ) A x  
R 

L ' * 
canonical derivation (rrl,. . . ,n )' then A --> n ax in C by canonical 

R 

derivation (p~~,.. . ,$a) . 



The proof of Claim 3 i s  again an induction. Since it i s  similar 

to  the proof of Claim 2, it i s  omitted. 

To complete the proof, we only need to note that L(G) = L(G') but 

th is  follows from Claims 2 and 3. I 
As an example of the construction, consider the following 

grammar : 

I -, D ~ I D  

D + 0(11213(415(6(7(819 

with V - C = {I,D). Using the construction, we obtain 

and for each i, 0 < i < 9, - - 

Note that the resulting grarmnar i s  not necessarily A-f'ree even i f  the 

original one i s .  

Theorem 2.3 i s  surprising. It was known 1101 that  every grammar 

was equivalent to  one i n  operator form but the use of the Greibach form 

i n  the construction of the operator form destroyed the structure of the 

trees i n  an essential way as the next result  w i l l  show. 

The previous results are  typical of the kind of positive theorem 

which can be obtained concerning covers. We can show that  not every 

transformation yields a cover. For instance, we w i l l  now show that  

parsing the Greibach no& form G' of a grammar  G i s  of no great help 

i n  parsing G since one must unravel the l e f t  recursions. 



Theorem 2.4. k t  G be the following context-free grammar: 

s -+ s o p l ~ o l 1  

There i s  no grammar G'  = (v', c', P', -L s'L ) i n  Greibach normal form 

such tha t  (G',H') covers (G,P) under cp for  any H' c - P' and y, mapping 

H' in to  P. 

Proof: Suppose there i s  a grammar G' = (v', 2'. P',L s'I ) i n  

Greibach form such tha t  G' i s  reduced and there exis t  H' c P' and rp so - 

tha t  (G',H') covers (G,P) under cp. 
* 

C l a i m  1. H' = P ' c  - (v' - C) x (c(v'- C) ).  

Proof: Suppose x E E' and 1 ~'1=*31x.L i n  G' with 
R 

canonical derivation n = (nl,. . .,n ) . Ihe H'-sparse generation of n, n 

n' has the property that(5) ~ ( n ' )  i s  a P-sparse generation of i x  L . 
But then cp (n') i s  a generation of 1 x 1 i n  G. Since each rule of P 

contributes exactly one terminal character t o  x thus n 2 lg(x) . 
Since each fli i n  P' contributes a t  l e a s t  one terminal character t o  x 

it follows tha t  lg(x) > - n. Thus n = lg(x) and each ni contributes 

exactly one terminal character t o  x, and each n. s H'. Since G' i s  
1 

reduced it follows tha t  H' = P' and each ni c P' contains exactly 

one tepninal character. So since G' i s  i n  Greibach noxmal form 

P' 5 N'X (EX) . 
Since every production in  P' contains exactly one terminal 

character, the following resu l t  holds. 

(5)If  n = (9, ..., n ) i s  a sequence of elements chosen *om s e t  Q and n 
(p i s  a p a r t i a l  flmction *om Q in to  Q'. Then if (n. ,.. .,n. ) is  

1, 1, 
-L J 

the subsequence of members of the domain of cp, ip(n) = (ip(ni,) ,..., 



* n r ' c  ' 

Claim 2. For any A i n  V '  - z, x i n  (v ')  , A = 5 x  in  C '  i4&-ewi4 
H 

( 4  = 

Next, we par t i t ion  the variables of V' accordin@; t o  the i r  "self  

embeddingf' properties. Define 
+ 

L = (A E V' - ,ZI A-JxAy fo r  some x,y L (v')*] and M = (v' - Z) - L. 
R 

Finally, define Q as the s e t  of all sentent ia l  forms which may be 

generated without using productions whose left-hand side i s  i n  L, i .e.,  

and A i ~  M for  each i, 1 - < i - < n). 

Since the words i n  Q come from t rees  of bounded height and hence 

of bounded width, we have established the following claim. 

Claim 3. Q i s  f i n i t e .  

Next, we must obtain more detailed information about derivations 

i n  G' .  

* * 
Claim 4. For each x c (v') , A E: V' - C, and z E: C ; i f  

I S ' L ~ ~ X A Z ~  i n  G' and # (x) = k then there i s  a yA c zk so 
R C 

t ha t  

l?roof: Let 1 S'L .=s l rdc l in  G t  by canonical derivation - 
R 

n * (q la Now cp(ni) is a generation i n  G of 1 S w l  for  some w c x . 

* 
( 6 ) ~ o r  each a E V and x i n  V , l e t  # a ( ~ )  denote the number of 

occurrences of a i n  x. Let # (x) = 
C 1 Fa(x) so # C (x) i s  the 

a s z  

number of occurrences terminals i n  x. 



First. note tha t  lg(w) = n since each production Cp(ni) contributes 

exactly one character t o  w. Also note by Claim 2 that n = #=(xAz) = 

a,(x) + +=(A) + g r r ( z )  = k + lg(z). So &(w) = ~ ( 2 )  + k. Now suppose 

d 4 u  in  G' by (n )m 
* 

Then 1 ' 1  - ! z i n  G' by 
R i i=n+l ' R 

m m * 
(fii) and (li) i-l is a derivation ! - s - u = ' -uz i - R 

i n  G. So since 4 ( w )  = ~ ( 2 )  + k, w = ( u ( ~ ) )  z. 'I'hus v uniquely deter- 

mines u(k' . So C l a i m  4 i s  established. 

C l a i m  4 immediately yields: 

C l a i m  5. For each A E Ls I(A) (7) has the property tha t  for  each 
* 

Y ~ '  y2 E ( 4  Y < 18(y2) implies zyl = y2 for sane G z . 
* 

Proof: Since A i s  i n  Ls there exis t  x, z e (v') so tha t  - 
A ' > xAz, and because G'  is  i n  Greibach form, f (x) >_ 1. lhus the 

R C 

number of occurrences of terminals which may preceed A i n  a sentent ial  

form is unbounded. 
* 

By C l a i m  4, w e  have shown tha t  for any n > 0, there exis t s  yA E Z , 
> b  * 

&(yA) = n a n d ; l ( ~ )  c ( yA] . Note tha t  a l l  s t r ings of length l e s s  than 

n i n  L(A) are suffixes of yA. 

To see tha t  the claim is sa t i s f ied ,  l e t  yl, y2 be in  L(A) and l e t  
* 

n = lg(y2) >_ lg(yl) . By the above there exis ts  y o I: , lg(y) = n so 
* 

t ha t  y = x y = x2y2 for  some x c E . Since Ig(y) = lg(yl) it follows 11 i * 
t ha t  xl = A and yl = x2y2 for  some x2 E C . 

Our last formal claim is s e t  theoretic i n  nature. 



Proof: Recalling tha t  L(s.) = L(S) = X+ w e  have tha t  - 

* 
Let x  be i n  Q,, x = xoA1x l...Ax n >  0 ,  xi e C , A. E 11, end n n '  - I 

X 

l e t  kx = # , (x) .  L e t  .j be any positive integer end d c f i n o  m : k + j .  
L X 

Denote by(') par t (  j) , the s e t  of all part i t ions of j. Let 

Since I L(A~)  t l  xi/ - < 1 by Claim 7. 

n  -1 
= a r t  j < c j  x 

X 

(i1..,i n  )E Partn ( j )  
X X 

for  some constant c. 

Let k = max { kx 1 x E Q] and n  = max [ n 1 x o Q] . Clearly k and n 
X 

ex is t  since Q i s  f i n i t e  by Claim 3. NOW by Claim 6, 

(') If j > - 0 we say tha t  (  , i ) is  a  par t i t ion  of j i f  il + . . . + i r r 
= y and each ik >_ 0 .  A par t i t ion  (il,. . . ,i ) with each i. > 0 i s  

r J 
said t o  have r parts.  Let partn( j)  be the s e t  of part i t ions of rj 

n-1 into exactly n p n r t ~ .  It io we12 known thnt 1 partn(J)  I < cJ for  

some c  > 0 ,  



S o  for i r k wo conclude 

i 
2 > in . This contradiction shows U [yl x =$y) f E* so 

X C Q  

L(G') f L(G) . Thus the theorem has been established, 



Section 2 

Phrase Detection 

The key t o  giving a generalized theory of phrase detection 

through precedence analysis i s  i n  the following definit ion. 

Definition. Let G = (v, C, P, 1 S ) be a context-free grammar. 

A s e t  T C  - V i s  said t o  be a token s e t  for  G i f  

(1) C c_ T 
* 

(2) For each A E: T, it i s  not the case tha t  A = J A  
* 

(3) For each A s T, B c V, A d B  implies R s T. 

The defini t ion of token s e t  i s  quite weak. Tokens must never 

completely disappear (i.e., generate a s t r ing  which does not contain 

a token) and every terminal character must be a token. 

It i s  c lear  tha t  the token se t s  of a grammar G form a sublat t ice  

of the l a t t i c e  of a l l  subsets of V. 'I'his l a t t i c e  has minimal element 
* 

C, neximal element M = [ A  c V I  not A -A), and for  any R c - V, R m a y  

be extended t o  a token s e t  by adjunction of more elements i f  and only 

i f  C c_ R c_ M. For the l a t t e r  case, the minimum token s e t  over R w i l l  

be ( A  c VIBAA for  some B E R). 

It w i l l  turn out tha t  a token s e t  must sa t i s fy  a stronger 

property ( i  .e., be an operator set)  fo r  precedence analysis t o  succeed. 

This i s  related t o  the 'kinding" between operators and operands which i s  

enforced by precedence relat ions.  

Definition. Let G = (v, C, P, 1 s 1 ) be a context-f'ree grarmnar 

and l e t  T be a token s e t  for  G. 

(1) T i s  a Colmerauer operator s e t  (2 for  short) i f  fo r  each x, 
* 

y e V ; A, B, C e V; A +xBCy i n  P implies B c T o r  C c T. 



(2) T i s  a Floyd operator s e t  (FOP for  short) i f  for  each x, 

* 
y s V ; A, B, C E V;  A + xBCy i n  P implies B c T or  Z,(C) 5 T where 

* -K 
$(c) = ( D  E v I C ~ D X  for  some x c V 1 .  

R 

(3) T i s  a strong operator s e t  (SOP for  short) i f  for  each x, 
* 

y g V , A y  By C c V; A + xBCy i n  P implies B E T or  C s C. 

- 
I f  T i s  an operator s e t  (of any type) then the elements of V - T = T 

m e  called operands. 

The following proposition i s  immediate. 

Propooition 3.1. Let C = (v, C, P,L SL ) be a context-fYee 

grammar and T a token s e t  for  G. I f  T i s  a SOP fo r  G then T i s  a FOP 

for  G. If T is  a FOP for  G then T is  a COP for  G. 

It i s  the concept of a SOP which plays the key role  i n  what 

follows. It w i l l  be seen that a "canonical precedence scheme" yields 

a canonical sparse parse i f  and only i f  the underlying operator s e t  i s  

a SOP. This w i l l  characterize the case i n  which Colmerauer's precedence 

scheme [2] yields the canonical parse and also w i l l  unify the precedence 

methods of Floyd [4] and of Wirth and Weber [lg]. 

Colmerauer [2] res t r ic ted  at tent ion t o  A-free grammess and 

considered a form of a COP. From th is ,  he obtained a necessary condi- 

t ion for  the existence of a canonical precedence parser. Our approach 

yields necessary and suff icient  conditions for the existence of such a 

parser. When T = C or  T = V, the definitions of COP and SOP coincide 

but they differ  a t  other points i n  the semilattice of operator sets.  

It i s  important t o  observe tha t  one can eas i ly  decide if a token 

s e t  T is  a SOP (FOP) (COP) for  a grammar G by examining the productions. 



Proposition 3.2 character izes  the  di f ference between these types 

of token s e t s .  The following example may be use fu l  i n  understandiny 

these  def in i t ions .  

Example : 

The token s e t s  a re :  

fa,s] {a,Al {a,S] {a,A,S] 

{a,S] i s  a COP but not a FOP or  SOP 

fa,A] i s  a FOP but not a SOP 

{a,A,S] i s  a SOP 

A t  the  poles of T = V or T = C the  concepts of FOP, COP and SOP 

coincide a s  the  following r e s u l t  shows. 



Theorem 3.1. L e t  G = (v, 2,  P, -L SL ) be a context-free grammar. 

(a) G i s  an operator grammar 

(i) i f  and only i f  C i s  a SOP. 

(ii) i f  and only i f  C i s  a FOP. 

(iii) i f  and only i f  C i s  a COP. 

(b) V i s  a token s e t  for  G 

( i )  i f  and only i f  V i s  a COP. 

(ii) i f  and only i f  V i s  a FOP. 

(iii) i f  and only i f  V i s  a SOP. 

(iv) i f  and only i f  G i s  A-free. 

Proof: (a) I f  G i s  an operator grammar then C i s  clear ly a SOP 

and hence a FOP and COP by Proposition 3.1. To complete the proof, it 

suffices t o  show tha t  i f  C i s  a COP then G is  an operator grammar. To 

do th is ,  note tha t  i f  C i s  a COP, then A -+ xBCy implies B E: C or  C c C 

which implies tha t  G i s  an operator grammar. 

(b) I f  V i s  a COP then it must be a token se t .  By Proposition 3.1, 

it suffices t o  show tha t  i f  V i s  a token s e t  then V i s  a SOP. To do 

t h i s  note tha t  A + xBCy implies B c V or C c V i s  a tautology. Note 

tha t  V i s  a token s e t  i f  and only i f  G i s  A-free. a 
Our next resul t  characterizes the dis t inct ion between FOP'S, COP'S 

and SOP'S. F i r s t  a new definition i s  required. 
* 

Definition. Let V be any f i n i t e  s e t  and T c  - V. A str ing x c V 

* 
i s  a T-infix s t r ing i f  for  each y, z c V ; A, B c V, x = yABz implies 

In our applications, T w i l l  be a token s e t  of the vocabulary V of 

some grannnm. Note tha t  T-infix s t r ings are substring closed, i.e., i f  

uvw i s  a T-infix s t r ing  then v i s  a T-infix string. 



Theorem 3.2. Let G = (v, C, P , l S  L ) be a reduced context-free 

grammar and T a token se t .  
* 

(a) T i s  a SOP i f  and only i f  for  each x, y e V ; A, B c: V; 

-K 
(b) Let G be reduced. T i s  a FOP i f  and only i f  for each x s V , 

, - I  * -1- , ,  - x implies x i s  R T-infix string. 
R 

exi:;t :Ari ng:; zl, . . . , z so tha t  
n-1 

* 
then there exis t  s t r ings yi e V SO tha t  

(ii) (*) and (*) have the same canonical(9) generation and 

(iii) each y i s  a T-infix string. i 

Proof of (a) : The r e su l t  is  t r ivial  i n  one direction and a 

straightforward induction i n  the other direction. 
* 

Proof of (b) : Let T be a FOP for  G and suppose tha t  1 s-!- a z  
R 

where z i s  a T-inf ix  string. It suffices to  show tha t  i f  z d z '  
R 

* 
then z' i s  also a T-infix string. I f  z s C , we are done so suppose 

* 
z = PAW, A C: V - C, w c C and z' = pvw. Since T i s  a FOP, we must 

have tha t  v i s  a T-infix s t r ing  and then w i s  a T-infix s t r ing.  If 
* 

p = A ,  we are done so suppose p = xB with x c: V , B c: V. 

(9)Condition ( i i )  means tha t  We parse tree of (*) is preserved so 
tha t  (*) i s  a reordered generation of (*) . The generation i s  
reordered i n  tha t  the variables in  zo are expanded in  a different  
order though the same productions are  used a t  the same places. 



Suppose, for the sake of contradiction, that z' = pvw is not a 

T-infix string. We must have that B $ T, vw = Cy for some C E V with 

C \ T because p is a T-infix string (it is a substring of z) and also 
w is a T-infix string. Now C cannot be the leftmost character of I? 

* 
since C E: r; and w e C . Thus C is the leftmost character of v and 
c E 

* 
k t  the canonical derivation of =3 @w be (zo, . . . , zn) . 

R 

Let i be the least integer so that there exist ~ ~ , . . . , y ~ - ~  SO that 

zi = py and zi+j = py2 for j = 0,.  ..,n-i. Let E be the leftmost 
0 

character of yo, that 

z = xBhv:. Surely E i 

minimality of i, zi-l 

is in P, x = w w and 
1 3  

But A E: L(E) and C c 

J 

is yo = mt. C E X ~ S ~ S  since vw f A] .  Then 

e V - C because A s Z(E) and A e V - C. By the 
* 

= w, Fw , with w2 c C and F in V - C, F + w BEwb 
2 3 

9 yo = w4W2. Since B 4 T and T is a FOP, $,(E) c - T. 

Z(A) ; so C e Z(E) C_ T. mus C E T which 

contradicts that C $ T. Therefore pvw = z' is a T-infix string. 

Conversely, suppose that G satisfies the condition of (b) and 

su.ppose that T is not a FOP for G. That is, there is a production 
* * 

A 4 xBCy in P with B T and there is z s V so that C=====3Dz with 
R 

* * 
I? 4 T. Since G is reduced, there is y' in C y a y t  and hence 

* 
A -xBCy -xB~zy'. Note that xBDzyl is not a T-infix string. 

R R 
* 

Since G is reduced, 1 SL & pAv for some p,v E V , so that 
ISI:&>~XBD~~'V and pxBDzytv is not a T-infix string. lhis 

contradiction establishes that T is a FOP for G. 

Proof of (c) : Let T be a COP for G. The argument is an 

induction on n where we assume that z is any T-infix string so that 
0 



with z a  T-infix string. We must show tha t  there exis t  yoy...,yn 
n 

so tha t  

with the same parse t r ee  as  (1) and each yi i s  a  T-infix string. 

I f  n  - c 1, the resul t  i s  immediate. I f  zl i s  a  T-infix string, 

SC 
the induction hypothesis applies t o  zl---'czn and so the induction 

* 
extends t o  zed zn and fin- we take zo = 1 s 1. . Thus we are  

done unless z i s  not a  T-infix string, i.e., z = pAw, zl = pvw where 
1 0 

z i s  a  T-infix s t r ing  and z  i s  not. ?%us p and w are T-infix strings.  
0 1 

Since T i s  a  COP for  Gy we know tha t  v  i s  a  T-infix s t r ing.  

Observe tha t  zi i s  a  T-infix s t r ing  i f  and only i f  z i L  i s  a  

T-infix string. Thus, we may assume, without loss  of generality tha t  

1.1 # A f w. Thus w e  can write p = p'U and w = Ww' with U, W g V. If 

v = A, then A -+ A i s  i n  P which implies tha t  A $ T since T i s  a  token 

set .  Thus U e T and W c T since pAw i s  a  T-infix string. Thus i f  

v  = I\, then p w  = pw i s  a  T-infix s t r ing  and we are done. So assume 

v k A. 

Let zo = pAw = Xo...X and zl = X1...X n j -1 Y1...Y p X j+l0 m 

= Z1.. .Z where the XiJYi, and Z.  are i n  V. Note tha t  v = Y1...Y . 
mcp-1 1 P 

I f  z i s  not a  T-infix s t r ing  then there exis ts  i so tha t  Ziml and 1 

Zi fl - T. I f  i < j or  i > j+p or  j c i < j+p-1 then Ziml E T or  

Z. e T since p, v, and w a re  T-infix strings.  Thusy i f  Ziml and Zi 
1 

are not i n  Ty we must have tha t  i = j o r  i = j-f-p. The two cases are 

similar so we only deal with the case where i = j. Then we have 

Z j-l = X j - l k  T so tha t  X = A r T since z  i s  a  T-infix string. 
j 0 



X 
The derivation uvw d z n  gives rise to the factorization 

* * * 
z = U'V'W' where u ==3ut, v =l--=>v', and w --w'. Let these 
n 

derivations be 

u = u o e . .  . - e u  = ut 
q 

v = v o j . .  .5 v = v' 
r 

W = W s. ..-W = w' 
0 S 

Since q, r, s - < n and u, v, w, u', v', and w' are T-infix strings the 

induction hypothesis applies and the derivations may be reordered as 

and 

where each u' v! and w! is a T-infix string. 
i' 1 1 

Consider the derivation 

Clah. Each string in derivation (3) is a T-infix string. - 
Proof: Note that if B s T and y, z are T-infix strings then yBz - 

is a T-infix string. From this fact and the fact that A c T, we 

observe that the following are all T-infix strings: 

uAwi for each i such that 0 5 i _< s; 

u'Aw' for each i such that 0 - < i 5 q. 

nus u'Aw' is a T-infix string. Also recall that ut,w' c Z' so write 

u' = and w = cw; for b, c c Z. 



By a previous remark, 3bv: i s  n T-infix s t r ing  for  each i such 

tha t  0 - < i _< r since b e C c - T. !I'hercfore u'bv!cwt i s  R T-infix 1 1 I. 

s t r ing  for  each i such tha t  0 5 i 5 r and t h i s  completes the proof of 

the claim. 

The r e su l t  now follows f ' rom the f a c t  t ha t  we have only reordered 

the derivation and not changed the generation t ree.  

Conversely, note tha t  i f  T i s  a token s e t  fo r  G and i f  the 

condj.tion holds, then if A -+ x i s  i n  P x must be a T-infix s t r ing.  

I f  x = xtICy then I3 c, T o r  C c T since x is. a T-inSix s t r ing  but t h i s  

means t ha t  T i s  a COP for  G. I 
The above theorem characterizes the relationships between the 

types of operator se ts .  The COP se t s  are  the d i rec t  generalization of 

the def ini t ion of operator grammar as presented by Floyd [51. 

Colmerauer adopted t h i s  def ini t ion i n  h is  work r2). The FOP are  the 

generalization of the definit ion of operator se t s  which s a t i s f i e s  

the constraint t ha t  every canonical sentent ial  form be an inf ix  s t r ing.  

This constraint i s  not strong enough for  the definit ion of canonical 

precedence scheme. The definit ion of SOP i s  exactly what i s  needed t o  

sa t i s fy  the f i r s t  par t  of clause ( iv)  (b) of the definit ion of 

canonical precedence scheme. In other words it may be stated as:  The 

operands i n  the "neighborhood" of an operator a re  reduced with tha t  

operator. This i s  the relationship between binding of operators t o  

operands and the re la t ive  precedence of operators. The following 

re su l t s  make t h i s  expl ici t .  

Theorem 3.2A: Let G = (v, C, P, 1 S 1 ) be a reduced context 

f'ree grammar with token s e t  T. Then T i s  an SOP i f f  



* 
* )  f o r  all x ,  y, z F: V , A F: D I y  iS 

* L s I --> x  A z e x  y I. then 
W R 

* * 
x s V T  and z c X  

-u 
Proof: I n  the forward d i rec t ion  note t h a t  z c X t r i v i a l l y  since 

the  der ivat ion is rightmost. Further A k C s ince  A -+ y i s  i n  P. 
* 

Theorem 3.2(a) showed t h a t  i f  T i s  a  SOP then f o r  any x ' ,  z F: V , 
A y  R 5 V, if 1 S I ~  x'B A z then B E T o r  A E 71. The previous 

H * 
two remarks combine t o  prove t h a t  x  = x'R f o r  some R P T. So x  € V T. 

Conversely, suppose T satisfies (*) . Proceed by contradict ion.  

* 
T f  T i s n ' t  an SOP thcn for  some C c V ;  H s F; A s N; u, v  e V , 

* 
C -+ u  l3 A v  i s  i n  P. Sincc G i s  reduced there  e x i s t  x, y, z c: V ; 

* 
v '  c C , such t h a t :  

* 
But x u  B V T so  (*) is  contradicted.  Thus T must be an SOP if (*) 

i s  s a t i s f i e d .  

Corollary 3.2A: Let G be a s  above. Then the token s e t  T i s  a 

SOP f o r  G iff 

(*') f o r  every xyz = A  x A . . .x A where 
0 1 1  n n  

then x = Ao. .  .A 
i -1 

Y = xiAI.. . A j - l ~ j  

z = A j ~ j + l . .  .X A  
n n 



In  order t o  simplify the presentation !n t h i s  section, we: w i l l  

only deal  with precedence detection methods which yield the canonical 

parse. More precisely, t h i s  means tha t  we w i l l  detect (using 

precedence relat ions)  the lef'tmost phrase which contains an operator. 

Repeated application of t h i s  detection, followed by reduction, leads 
* 

t o  an H-sparse parse where H = {A -t x i n  PI x $ (V - T) 1. 

In Section I+, an algorithm f o r  general parsing i.s given and the 

r e s t r i c t ion  t o  the canonical case i s  relaxed. 

We now formalize canonical precedence schemes. 

Definition. A canonical precedence scheme i s  a ?-tuple 

(G, T, c o y  S, a>) where 

( i )  G = (v, C, P, 1 S 1 ) i s  a context-f'ree grammar. 

( i i )  T i s  a token s e t  fo r  G. 

( i i i )  C o y  4, and .> a re  bin- relat ions on T which are pairwise 

dis joint .  



* 
(iv) for  any n > -- 9; xl, ..., x n E (V - T) ; A,A, ,...,A, E T; 

* * 
x, z o V ;  i f  -. 3 x A z  - A o 5 S . .  .xnAn by the 

R R 
rule A + y then ei ther  

(a) Y E (V - TI* 
or 

(b) there exist  0 < i 5 j < n so that  

x = A o ~ 5 . .  .Ai-l 

y = x A ... A x 
i i  j ; j + L  

. . .x A ' Aj+1Xj+2Aj+2 n n 

with 

Ai-l <' Ai, 

% - for each k such tha t  

i < k <  - j, 

and 

Further i f  G is  a grammar with SOP T we say G i s  T-precedence detectable 

i f  there exists  relations <*, 5,  *> such that  (G, T, <*, A , ->) i s  a 

canonical precedence scheme. I f  T = V we say G i s  simple precedence 

detectable and i f  T = C we say G is  Floyd precedence detectable. 

It should be clear (and we shal l  prove) that  t h i s  definition i s  an 

abstraction of the knawn precedence methods. Phrase detection w i l l  

proceed f r o m  l e f t  to  r ight  by searching fo r  a s tr ing of tokens bracketed 

by the r eh t i ons  as 

Note tha t  operands are ignored. Also note that  of xi and x must 
j +l 



be ir~cluded i n  y. 'l'hai, i s  all opcrnnds adja.cerl!. to a n  operator axe 

"bound" t o  tha t  operator when it i s  rcduccd. TE.lis i s  a i'unda~nental. 

assumption of precedence analysis. We have not investigated other 

binding schemes. 

Section I+ w i l l  explain more precisely how the scheme i s  used. 

Definition. A context-free grammar G = (v, C, P, 1- SL ) i s  

said t o  be P-rcduced if G i s  reduced and fo r  each A f S there ex is t s  
* 

x c zf so tha t  A -----"lx. 

I n  addition t o  being reduced, every variable different  from S 

can produce a t  l e a s t  one non-null word i n  a P-reduced grammar. It i s  

eas i ly  seen tha t  every e;rcmmar has an equivalent P-reduced grammar. 

Our next r e su l t  j u s t i f i e s  the def ini t ion of SOP';. 2 k 
sP 

1- 

Theorem 3.3. Let G = (v, C, P , l  SL ) be a P-reduced context d 
f ree  grammas: and l e t  T be a token s e t  fo r  G. I f  (G, IT, C*, & , *>) i s  

a canonical precedence scheme then T i s  a SOP. 

Proof: Suppose, for  the sake of contradiction tha t  T i s  not a - 
* 

SOP fo r  G. Then there i s  A e F, B, C s V - C; x, z s V so tha t  

C 4 xABz i s  i n  P. Let xABz = U1...U with A = Un and B = U 
"1 A %* 
+ * 

Since G is  P-reduced, there i s  y e C and y ,.. .,ym e V so tha t  
0 

B = Y o  W Y ~ ~ . . . * Y ~  = y. Let yi = Yi ...Yi fo r  each i. 
R 1 m 

Let i be the l e a s t  posit ive integer such tha t  Y i  e T fo r  some j. 
j + Clearly i exis t s  since y = y c T and hence Y e C c_ T. Since G i s  m "1 

P-reduced, there ex i s t  Vl2...,V ,+..., X c V; Wl, ..., W , 
"0 "12 "2 

Z1,...,Z E C SO tha t  n2 > 0, and 
n4 



* * ---- .- I sl ---- vl.. .vn q.. .w z v l  ... vn ul...u P...W 
R 2 3 R 2 "1 n3 n , 

We have Ung-l ;. UnA - A c T. L e t  k be the largest  integer l e s s  than 

n + n ouch tha t  Xk B 'P. Since X 1 r T, we know that k exis ts .  
A 2 1 = 

* 
Now ITn - B ---4 yi-,l so tha t  

I3 R 

The generation yi y. i s  by production. Yi-l,q + Y i  ...Y. - R 1 $9  199+r 

where Yiml i s  the rightmost variable of yi 1. We chose i so tha t  
9 9 - 

yi-1 
contained no tokens and yi was chosen t o  contain a token. Let 

'i,t be the leftmost token i n  yi and note tha t  q _< t _< q+r. lhus we 

have 

We claim tha t  

%+lo oXn2+ nA 'i-1,16 ~'i-l,~-l c (V - TI+ 

* 
because k < nA+n implies %+l...X 2 

G (V - T) and i was chosen n + n  
2 A 

so tha t  Yi - l...Yi-l,q-l E (V - T)+. 



Furthermore, Yi , q. . . Yi , q+r contains the leftmost token Yi,t. Since 

( G ,  T, <*, A , ->) i s  a canonical precedence scheme, we have 

Xk <* 'i, t 

and 

Xk+l. . .X nA+ n Yi-l,l*"Yi-l,q-lYi,qe **Yi,t-l = Yi,q* *Yi,t-l 
2 

[because from the defini t ion of a canonical precedence scheme 

Y = Yi,q* **Yi,q+r = ~ ~ A ~ . . . 4 p X ~ + ~ w i t h A  = Y  andhence 
3 j2t  

' Yi,q* *Yi,t-l 1. Hence Xk+l.. .X n + n2Yi-1,1* *Yi,q-l = A which j A 

contradicts (*) . Therefore T must be a SOP for  G. I 
It i s  also possible t o  obtain a converse and w e  sha l l  do t h i s  

shortly. Towards t h i s  end, we wish t o  characterize which families of 

t r i p l e s  of binary relat ions on T yield a canonical precedence scheme. 

We begin by finding minimal relat ions which must be contained i n  any 

relat ions which are  par t  of a precedence detection scheme. 

Definition. Let G = (v, C, P, S 1 ) be a context-flree grammar, 

* 
l e t  T be a token s e t  for  G, and l e t  H = { A  c V I A  d A] .  We define 

binary relat ions on V as  follows: 

* * 
A = [(A,B)IA -+ xBy i s  i n  P for  some y s V , x s (V - T) 3 

* * 
6 = {(A,B)IA+XBY i s  i n  P for  some y c V ,  x t: H )  

* * 
p = {(A,B)IB -+ xAy i s  i n  P for  some x s V , y c (V - T) 3 

* 
a I { (A,B)/ c -+ xAyBz i s  i n  P for  some x, z c V , 

Y c (V - T)*) U S ,  ( S S ~ ) )  U ( ( i , l ) l S  t T) 
* * 

y = { (A,B) I C + xAyBz i s  i n  P, x, z c V , y c H ) 

U { (s,-!-)l U {(L,L)ls E H I .  



I n  order t o  obtain a converse t o  the previous resu l t ,  an jmter- 

mediate lemma i s  required. 

Lemma 3.1. L e t  G = (v, C, P, 1.- S -i ) be a context-free grammar, 

* 
l e t  T be a token s e t  for G, and l e t  H = {A E V - C I A  --==*A). For 

* 
any n > - 0 ;  Ao, ..., A E V;  i f  - - =  Ao...An and i f  i i s  the 

n * 
l e a s t  integer so tha t  A$.. .An r Z then for any 0 5 j < k 5 n, we have 

* 
(a) i f  k < i and AJcl.. c (V - T)* then (A~ ,%)  E CIA 

* * 
(b) i f  k < i and Aj+l.. e H then (lI.,Ak) E Y6 

J * 
(c)  i f  i - < k, j > 0, and Aj+l...%-l c H then e i ther  

(A,,%) c p*y6* o r  A ~ . . . A ~  =IsI. 
* 

Proof: Let m be the number of steps i n  1 S 1 -----' A. . . .An and - 
the argument w i l l  be an induction on m. 

Basis: m = 0. Then we h a v e l l l  = A o q A 2  so that  n = i = 2. 

If k = 1 then j = 0 and we are  i n  cases (a) and (b) and we have 

(I ,s) E (a$) n ($*). I f  k = 2, then (a) and (b) are sat isf ied 

vacuously and (c) follows since AoqA,  = 1 SL . 
Induction Step. Suppose tha t  

* 
Let i' be the l e a s t  integer such tha t  CI, ... C r E and assume the 

9 

induction hypothesis holds for  Ao...A,. Note i' - < i. We establish 

(a) and (b) simultaneously. If k < i-1 o r  i+p 5 j then (a) and (b) 

follow from the induction hypothesis. Suppose tha t  i-2 < j < k < i+p 

(i.e., both operators i n  Bo.. .B ) , then since ( A ~  + Bo.. .B ) c P 
P - P 



* 
Cj+l* *Ck-l E (V - T)* implies ( C  ,ck) E a c - ah 

* 
while Cj+l...Ck-l E H 

* 
implies (cj  ,c~) c y c_ y6 . 

Furthermore, since i' - < i - < i+p, w e  know tha t  i f  i+p < k then i' - < k 

so tha t  k i t  and so (a) and (b) are  vacuous i n  t h i s  cage. Thus the 
* 

only remaining case i s  where j - < 1-2 < k < i+p. If Cj+l...Ck-l E: (V - T) , 
* 

we see t h a t  (a) of the induction hypothesis implies that  (cj  ) c a ~ .  

l?y the definition of A ,  we haw ( A ~  ,Ck) a. TWt thi  :: implio:; 

X * 
( (  i! ) q: (LA . l r (! . . .i: F, I I  , l.hc.~i ( 1 , )  01' I.ht. -I ntl~rc.l . lor~ hypothc.:; i:: .I '  .I+] k - J  

implj f x : ;  t h a t  (C , A  ) E y6*. Moreowr, the dcf ini t lon of 6 yields .I 1-1 

(Ai - l ,~k)  E 6 and hence (C ,C ) c yb*. Thus the induction has been 
j k 

extended. 

Next, we consider (c) . The induction hypothesis holds i f  

* 
j > - i+p. If 1-2 < j < i+p - < k then Cj+l.. .Ckml E H implies C .pA 

J i-1 

because H c  - (V - T). By the induction hypothesis, e i ther  

* * * * 
( A ~ - ~ , c ~ )  o p y6 which implies (C ,C ) p p y6 , or  LsL = AoA1A2 i n  

j k 

which case the r e su l t  a lso follows easily.  

If 1-2 < j < k < i+p then (c) follows from the def in i t ion  of y. 

* 
If j - < 1-2 < k < i+p then k >  - i' and C j+l.. .Ck-l E H implies 

* * 
(c j  , A ~ - ~ )  E yb by par t  (b) . Also (Ai-l,~k) E 6 SO t h a t  (C ,C ) e yb 3 k 

case i s  where 0 < j 5 i -2  < i+p < k. In  t h i s  case since 

* 
H , w e  have t h a t  k = i+p+l = i'. For Cg-l = 

so i' > k and we know K 2 i+p+l 2 i'. - 

Next we  claim t h a t  Ai - e H since Ai - Bo...B with each Br o H. 
P * 

This implies B =JA for each 0 < r < p so t h a t  Ai l&A. Thus r - - - 
* * * 

Aj+lw oAi-l o H and by the induction hypothesis (A j ,A.) 1 = (c j  ,ck) c p y6 



unless AoA1A2 

case (c ) .  

1 S O  =LSL.  I n  t h i s  case, Co...C ='Bo...BP- 
q 

0 i s  vacuous. Thus the induction has been extended for  

I 
We now constructively define the canonical precedence relations.  

Definition. Let C. = (v, 2,  P, -L,s-!- ) be a context-fkee grammar 

with token s c t  T. The T-canonical precedence relatioris for  G are 

defined as  

The following resul t  i s  the converse t o  the previous resul t  and 

indicates another application of SOP'S. 

Theorem 3.4, Let G = (v, 2 ,  P, 1 s - L  ) be a context-free grammar 

and T a token set.  Let <* = < a T '  = AT, and *> = => Then T* 

(G, Ty <*, A , *>) is  a canonical. precedence scheme i f  and only i f  

(a) <a, & , and *> are pairwise d is jo in t  

and (b) T i s  a SOP. 

Proof: Suppose (G, Ty <*, , *>) i s  a canonical precedence 

scheme. By Theorem 3.3, we see tha t  T i s  a SOP for  G and the relat ions 

must be pairwise d is jo in t  by definition. 

Conversely, suppose tha t  T i s  a SOP for  G = (v, C, P, 1 SL ) and 

l e t  <eTY& and .+be pairwise dis joint .  Assume tha t  T 

* Jt * 
and there exist n >  - 0, x E V , z o E , Ao,...,An E T; xly. ..,xn E (v-T)  

i t  
so tha t  xyz = AoxlA.,.. . .xnAn. We must ahow t ha t  e i ther  y E (V - T) or  



where w i s  a suff ix of x while w i s  a prefix of x 
i j+l '  

We f i r s t  
i j +l 

claim tha t  w = x To see that ,  note tha t  x I w W' for  somc 
j+l ,j+r j+l j+l 

* 
w'. Note w' c (V - T) since x i s ,a l so  w' c C* since w' i s  a pre- 

j-+l * 
fix of z in  the rightmost derivation (1). lhus w' c (V - T)* n Z = 

[A) since C E T. Thus w' = A and w ~ + ~  = x j+l 

Since A -+ y i s  the l a s t  production used i n  (I), it i s  immediately 

clear  tha t  % for each k such tha t  i - < k < j. By Lemma 3.1, 

.n 
par t  (a), we have tha t  (Ai - 1 , ~ )  c aX . From the definition of A,  we 

* 
know (A,Ai) E A so tha t  (Ai - l , ~ i )  c aX . Thus Ai - T A i' 

In a similar fashion, (Aj ,A) e p . Since w j+ l  = j+19 we see tha t  
* 

z = Aj+lz' for  some z' c Z . Thus, Lemma 3.l(c) implies tha t  
* * + * 

( A , A ~ + ~ )  c p y6 . Therefore (A ,A ) E p y6 . So A 
3 j+l 

*>T Aj+l and 

t h u s A  * > A  since => c *>. 
j J+l T - 

To complete the proof, we must prove tha t  wi = xi. Suppose tha t  

xi = mi. Note tha t  i f  Ig(xi) >_ 2 then part  (a) of Theorem 3.2 i s  

contradicted. Thus lg(xi) < 2. I f  x. = A then xi = r = v = A and we 
1 i 

are  done. Suppose tha t  lg(xi) = 1. men i f  v = A, we have wi = x 
i 

and we are through. Suppose v = x. and w - A, then x' = Ao%...Ai-l~i 
1 i -  * 

and xAz i s  a sentent ial  form. Thus 1 S  1 --"4 x'vAz with v s V - T 
and A 4 C. This contradicts part  (a) of Theorem 3.2 and shows tha t  

w i f A which implies xi = wi. The argument i s  complete. I 

there exis t  i and j with 0 c i - < j < n so tha t  x = A o ~ s ~ . . . ~ - 1 7  

y = x.A.. , .A.x " = Aj+lxj+lAj+2***xnAn' 
< o T A i 9  fo r  each k 

I 1 J j+l' 

1 n '40 I& 
7 A /. , ./ . - 

with i - < k < j we have % i Ak+l, and A *> A 
j T j+l0 

* 
Suppose tha t  y (V - T) . Then there exis t  0 < i - < j < n so 

tha t  

y = w A x ... A w i ii+l j j+l 



The previous result  justified calling <oT, 4, and .> precedence T 

relations. Next, we j u s t i e  calling these relations canonical 

Theorem 3.5. kt G = (v, C, P, 1 S I-) be a P-reduced context 

fkee grammar with token se t  T and l e t  <*, & , and *> be any three 

binary relations on T. (G, T, <., f , ->) i s  a canonical precedence 

scheme i f  and only i f  

(a) <*, , and => are pailwise disjoint, 

and (b) < O ~ C  - C O ,  : c G, and *'T~ o>, -T - 
and (c) T i o  a SOP. 

If (G, T, <., 2, , *>) i s  a canonical precedence scheme then so is 

Proof: Let (G, T, <., A , .>) be a canonical precedence scheme. - 
T must be a SOP from Theorem 3.3. By definition, the relations are 

pairwise disjoint 80 it suffices t o  prove (b) . 
Let A, B E T and suypose A kT Be This implies (A,B) c a so that 

* * 
there are C e V - C; x, z e V , y e (V - T) so that  C -+ xAyBz is  i n  P. 

* 
Since G is reduced, there exist u, v e V so that 

By the definition of a canonical precedence scheme, A 4 B and we have 

shorn -i, 5 . 
Suppose that  A <oT B. Then there exist C, D e V - c so that 

* 
(A,c) c: a, (c,D) c: 1 , and (D,B) e 1. Note that (A,c) e a implies that 

(10) * E -+ xAyCz i s  i n  P where y e (V - T) , while (D,B) e X implies 
* * 

D + ul3v i s  i n  P where u c (V - T) . We also have that  (c,D) c A 

('')We omit consideration of the other possibi l i t ies  (c,A) = (l,~), 
etc., as those cases are t r iv ia l .  



* 
implies C 4 s D t  with s B (V - T) . Since G i s  reduced, we have 

tha t  there exist  z', ztl e V)e 

* * 
Since y, s, and u are i n  (V - T) , we have tha t  ysu c: (V - T) . Thus 

A <* B and we have shown tha t  < o T c  - <* . 
* 

Suppose tha t  A +T B with A c T and B c L. Then (A,B) c P+Y6 . 
* 

There exist  C,  D e V - C; E e V so tha t  (A,c) e p, (c,D) c p , 
* 

(D,E) e y ,  and (E,B) e 6 . Fi r s t  note tha t  (A,c) e p implies C -, xAy 
* * * 

where y c (V - T) * while (c,D) E p implies D ===3 uCv where v c (V - T) . 
R 

Since (D,E) e y, we have F -+ 5DylEzl with yl E H* (which implies 

* * * 
Y~=JA) .  Lastly, (E.B) e 6 implies E A Y B u 2  with e H 

R R * .  
(so tha t  %-A) . 

R 

Combining these resul t s  with the fac t  tha t  G is reduced, we see 

tha t  there exis t  z', z", Z i  and u; so tha t  

Thus it follaws From the definition of a canonical precedence scheme 

tha t  A *> B. 



Conversely, suppose tha.t (a) ,  (b) ,  and (c) hold for  a system 

(G, T, <., A , a > ) .  By (a) ,  these relat ions are painrise dis joint .  

Wrrthermorc, Theorem 3.11 and (c) and (a) imply tha t  ( T, <sT, &T, 

i s  a canonical precedence scheme. To show tha t  ( G ,  T, <*, , a>) i s  :I 

canonical precedence scheme we argue as follows. Suppose 

4 xAz===Sxyz E Aoxl%. . .xnAn as  above. Let i, j be as above. 
R 

Since (G, T, <oT, -> ) i s  B canonical precedence rystem, we know -T' T 

tha t  

<* A 'i-1 T i 

% -T %+1 for  each k so tha t  i < k < j - 
and A j  o>T Aj+lb 

By (b) we have Ai - <- Ai, % A %+1 fo r  each i - < k < j, and A -> A 
3 j+lb 

Therefore (G, T, c* ,  5 , *>) i s  a l so  a canonical precedence scheme. 

Note tha t  i f  (G, T, C*, A , *>) is  a canonical precedence scheme, 

then (a),  (b) and (c) hold. So <. AT, and .zT are also pa imise  
T ' 

disjoint .  Hence (G, T, < a T ,  gT, .>T) i s  also a canonical precedence 

scheme by Theorem 3 . h .  Finally, the proof i s  complete. I 
Corollary. G has a canonical precedence scheme based on token 

s e t  T i f  and only i f  (G, T, <oT, 
-T' c-3 i s  a canonical precedence 

scheme. 

It may be of in t e res t  to show tha t  condition (c) cannot be 

removed i n  Theorem 3.5. Consider the grammar with productions 



Pick token set TI {l, a, b, B] . T is a COP and a FOP but not a SOP 
since A e V - T and B E: C. The T canonical precedence matrix is 

We will show that this is not a canonical precedence scheme. Consider 

We find that L < * b  and b *>l . Therefore y = Ab which is supposed to 

be the right-hand side of a production but is not. 

It is now clear that one can effectively decide if a grammar has 

a precedence detection scheme based on T. It is known that each context 

free language has a precedence detection scheme [ b ] .  

We now relate our study to the special cases given in the litera- 

ture. First, it should be noted that the theory developed by Floyd 

[ 5 ]  can be easily extended to include A-rules. Floyd's precedence 

relations are defined (using our notation), with token set C, as 

follows : 

c* = ak n (C x C) F 

=F = a n  (C x C) 

.>, = p+a n (I: x z) 

Now, we summarize the manner in which Floyd precedence fits into our 

scheme. 



'meorem 3.6. (G,  Z,  <eF, $, 0 ~ ~ )  i s  a canonical precedence 

scheme i f  and only i f  (G, C, <* .> ) i s  a canonical precedence 
C' C' C 

scheme. In th i s  case 

Proof: Suppose (G, L, <oF, $, o ~ )  i s  a canonical precedence - 
scheme. By lheorem 3.5, (G, Z, c . ~ ,  Ax, 3 ) i s  also and we have that 

C 

5 < . ,  5 5 5, and .> 
C = *>F. By the definitions, it is clear 

that  <. = <* 
C F -Z F -  C 

and = so that  we need only show that  *> c *> 

(for this ,  together with .> c .> , implies .> = ,> ). Let A, B e c C -  F C F 

and suppose that  A +F B (i.e., (A,B) e P'g). Thus there exists C 6 V 

so that  (A,c) e P+ and (c,B) e a. By the definition of p+, we have 

C c V - C. Since (c,B) e a, there exists a production E + xCyBz with 
* 

y e (V - C) . c is  a SOP by Theorem 3.3 so G must be an operator 

grarmnar by Theorem 3.1. Thus y = A which implies (c,B) e y. Therefore 

(A,B) e P'Y c pCyd* and so A *> 8. 
C 

Conversely, i f  (G,  2, C* , 5, -> ) i s  a canonical precedence 
C 

scheme, C must be a SOP and the previous argument holds. Therefore 

<* = <.p g = $, and *> = .> 
C C F 

so that  (G, Z, <aF, $, +F) i s  a 

canonical precedence scheme. 

The Floyd precedence relations axe not exactly the same as the 

C-canonical. precedence relations since the former are only defined i f  

C i s  a SOP for G, i.e., G i s  an operator gramma,r. I f  C is  a SOP then 

the two w e  identical. We chose the rather weak definition of a token 

se t  and fK>m it derived the fact  that  G must be an operator grammar i f  

c yields a canonical precedence scheme. In th is  sense Floyd's restr ic-  

t i o n  that G be an operator grammar was superfluous. 



Corollary. If G = (v, X, P, S 1 ) has a Z-canonical precedence 

scheme, then G i s  an operator grammar., 

We also are able t o  show tha t  

Corollary ( ~ i s c h e r ,  ~anachcr)  . If G i s  a Floyd precedence 

detectable grammar, then G is equivalent t o  an invert ible  Floyd pre- 

cedence detectable grammar. 

Proof: One need only observe tha t  the standard construction 171, - 
[ll], which deletes the A rules  f'rom G leaves the relat ions p ,  a, X 

invariant and the standard construction which deletes chain rules  from 

G, [7], [U], leaves CoF, %, and >F invariant. Ihe resulting grammar 

i s  A-fYee and chain-free so Proposition 2.1 can be invoked. Inspection 

of the construction of 2.1 shows tha t  it leaves p,a ,  h invariant. So 

the resul t ing grammar i s  an invert ible  Floyd precedence detectable 

gramaEcr. 

This i s  i n  

show tha t  Floyd 

Proposition 2.3 

dis t inct ion t o  simple precedence. Fischer's resu l t s  

precedence i s  weaker than s h p l e  precedence. 

shows tha t  t h i s  i s  not because G must be an operator 

gramnnar since any grammar may be turned in to  an operator grarmnar. 

Rather the weakness of the Floyd relat ions l i e s  i n  ignoring the non- 

terminal characters. 

Next, we consider the simple precedence methods developed by 

Pai r  

Take 

[l6] and by Wirth and Weber [18] and embed these in to  our theory. 

the token s e t  t o  be V and then define the simple precedence 

relat ions a f t e r  Wirth and Weber as: 

( I l ) ~ e c a J l  t ha t  t h i s  implies tha t  G is  A-free. 



It should be noted tha t  the simple precedence relat ions do not 

enjoy the same (lef't-to-right) symmetry properties as the Floyd 

relations.  

The simple precedence relat ions a re  d i s t inc t  from the V-canonical 

re lat ions.  The following grammar exhibits t h i s  difference. 

S -, AB 

A + a  

B + C  

C - P C  

The precedence matrices are:  



The Simple Relations f o r  G 

The V-Canonical Relations for  G 



Thus the simple precedence relat ions are not minimal i n  the sense 

of Theorem 3.5. We sha l l  now show tha t  these differences are not 

c r i t i c a l .  

Theorem 3.7. If G = (v, C, P, 1- S 1) i s  reduced then 

(G, V, <*V, %, .> ) i s  a canonical precedence scheme i f  and only i f  v 
(G, V, <oS, LS, *> ) i s  a canonicnl precedence scheme. S 

Froof: By 'Theorem 3.5, i f  (G, V, <oS, tS, *> ) i s  a canonical - S 

precedence scheme, then so i s  (c, V, <aV, >=, 0.J 

Suppose tha t  ( ,  V, <eV, 4, *> ) i s  a canonical preccdencc scheme. v 
By Tneorem 3.3, V i s  a SOP. It suffices t o  show tha t  coS, $, and .> S 

- -  are painrise d is jo in t  because <oV = <oS, - , and IS *>V 2 => S implies 

(by Theorem 3.5) tha t  (G, V, <aS, $, must be a canonical 

precedence scheme. 

Since <* 1 <a and 4 = $, v it follows tha t  <oS n fo = #. ~ h u s  S .J 

it suffices to  show tha t  (<oS U $) fl *>S = #. Suppose there exis ts  

4- * * * + 
(A,B) E p a h  and (A,B) E a h  since a h  = a h  U a = es U g,. Since G 

i s  A-free (because V i s  a token se t )  and reduced, there ex is t  b c C,  

* -n * 
z E C SO tha t  A --4 bz. Clearly ( ~ , b )  E A and hence ( ~ , b )  c p+a): 

* 
and ( ~ , b )  E: a h  . Since the token s e t  i s  V, note tha t  1 = 6 and a = y.  

* * + *  
Thus (A,b) c a h  and (A,b) c p + a h  = p y6 . Since b c Z, we have 

shown tha t  A *>V b and e i ther  

( i )  A <wV b 

or  ( i i )  A H b 

Therefore 



which implies tha t  <oV, $, and *> are not pairwise clisjoint. But, v 
(G, V, GV, 6, +) i s  a canonical precedence scheme and therefore (*) 

contradicts par t  (a) of Theorem 3.4. So we conclude tha t  the simple 

precedence relat ions a r e  dis jo in t  i f  the V-canonical re lat ions are. 4 
Pair defined the V-canonical re lat ions i n  h i s  paper [16]. 

The assumption tha t  G i s  reduced i n  Theorem 3.7 i s  cssent id.  as 

the following example shows. G i s  the following grammar 

S +  M I A  
A + a l &  

(G, V, CoV, $, *> ) i s  a canonical precedence scheme whose precedence v 
matrix i s  given below 

1 a s A R 

Next we compute the simple precedence relat ions for  G. 

1 a S A B 



Since A 5 B and A *>S B, we know that (G, V, <eS, fS, .> ) is not a S S 

canonical precedence scheme. 



Section 4 

Reduction 

We now present a general defini t ion of precedence analysis by 

relaxing the res t r ic t ion  tha t  the passer must detect the leftmost 

phrase. We wiU. require only tha t  it detect some phrase which may be 

reduced. We also discuss how the precedence relat ions may be used t o  

construct a parser for the g r a m .  We do t h i s  i n  the s p i r i t  of [23. 

Colmerauer introduces an automaton which operates on two push-down 

stacks using only the precedence relat ions between the topmost 

operators of the stacks t o  decide the next step. 

Our presentation i s  made more complex by our desire t o  define the 

relat ions on any COP and our desire t o  have the parser expl ici t ly  

generate the sparse parse of the input string. In order t o  do tha t  we 

need the following preliminary resul ts .  Fix grammar 

G = (v, C, P, 1 S 1 ) and l e t  T be a COP for  G. Define 

p(T) = C (A,~,Y) 1 (A -+ x) c H 
* 

and x e y  by productions i n  P - H] 
* 

where H = [ ( A  -+ x) E P I X  $ (V - T) 1. 
Consider the grammaz GT = (v, C, PT, 1 S 1) where 

* 
PT = (&Y) ( (A,x,y) c P(T) for some x) U { (s,A) I s c (V - T)) 
This is  the standard construction fo r  eliminating chains of operands 

and for  eliminating A rules  f m m  the grammar. 

Fi r s t  observe t h a t  

LRmma 4.1. Let G, T and H be as  above. Then for  any  T-infix s t r ing 
* * 

x = x o ~ ~ .  . .xnAn where xi E (V - T) U [ A ]  and Ai c T, if x y by 



a generation ( (B. -r z ni) 
where each Bi -t zi E (P-H) then 

1 i' 

(a) y = yo~y1. .  .Anyn where each yi E (v-T) U [A)  
* m. 

and (b) xi =====3 yi by canonical derivation ( B ~  + zi ) jil for each 
j j 

Proof: Induct an m. If m = 0 the resul t  i s  t r i v i a l .  If t rue - 
* 

for  m, consider the case mcl. Let x d y o A f i  ... Anyn under 
- * 

By the induction hypothesis yi B (T) exist .  Now 

consider ( B ~ ~  + z n ) . Since ( B ~ ~  -+ z 
rnJ-1' wl mcd f *' zm+l 

E m*. 
- 

Since T i s  a COP zmFl = A or zml E T. Now kl  since z Xm-1 E E)* 
n 

and T i s  a token set .  So Bml = y. for  some j. Thus ( B ~  + zi)i,l i s  
J * 

the derivation x=yo% ... A y A j+l.- . Y ~ - Y , ~ .  *AjzwlAj+l* *Yn* 

Clearly zwl i s  a T-infix s t r ing  since T i s  a COP. Also A 
j ' 

Aj+l e T so yo% ... A.z A ...y i s  an inf ix  s t r ing.  jmj-l j+l  n 

This new s t r ing  sa t i s f i e s  (a) and (b). So the induction i s  

extended. 

Observe tha t  t h i s  implies tha t  a T-infix s t r ing  generates a t  most 

a f i n i t e  number of d i s t inc t  T-infix s t r ings using rules chosen from 
* 

P-H. I n  part icular  note tha t  for  any (A + x) B P, {Y[ x =Y by rules 

chosen from P-H) i s  f in i te .  So P(T) i s  f i n i t e  and we conclude tha t  GT 

i s  a grammar. 

Our in teres t  i n  GT is  tha t  a precedence analyzer working with 

operator s e t  T will produce a parse of x i n  GT. However G covers 
T 

(G,H) so it follows tha t  one can view the parser as  producing an 

H-sparse parse of x i n  G. 

Define a two-stack automaton (n) a f t e r  Griff i ths  and Petrick: 

m= (V, k, I?) w i l l  be raid t o  be a two-stack automaton i f  

(u)This automaton bears a strong similar i ty  t o  the l i s t  automaton of 
Ginsburg and Hesrison [LO]. 



(1) V is  a f i n i t e  alphabet, 

and (2) c (V*) 'I i s  f in i t e .  We write 

The re la t ion  k- is  extended i n  the natural way: 

* 
for  each v, w e V i f  ( x , y ) E  (x',yl) then 

( ~ x , W ) t  (vx',y'w) 

n 
A sequence ( ( ~ ~ 9 ~ ~ 1  iZl s w h  tha t  (xi .yi) I-- ( x ~ + ~ ' Y ~ + ~ )  for 

i = 1,. . . ,n-1 i s  called a computation of a on ( 5 , ~ ~ ) .  It i s  

successful i f  (xnryn) E F. Let G y  T, P(T), GT and H be as  above and 

suppose <=, & , *> are three dis joint  binary relat ions on T. Then 

(G, T, <-, & , a>) i s  said t o  induce the two-stack automaton 

F = { ( L x , ~ )  ( x  = S or (~ ,y ,x )  r P(T) and 

Y C (V-T)*] 

and k i s  defined by cases: 

(i) for  each C E: F, ( A , C ) ~ ( C , A ) ~  

and ( i l )  for  each A, B s T, x e (F) U {A] 

and 

* 
(iii) for  each n > 0, A,Ao.. . . e T, xo9.. . ,X L (v-T) n 

(A0xO9* ( A o , s l )  

i f f  ( ~ , x , x ~ ~ x , .  . .An*,) r P(T) 



and A c. 
0 4 

and A. I Ai+l 
1 

for l < i c n  - 

and An -> %+1 

Note that (i), (ii), and (iii) are mutually exclusive since C*, , 
and *> are pairwise disjoint. If (x,y) (x' ,Y') by virtue of (iii) we 

say that this is a reduction stee, 
* 

For each 1 x 1 E Z and each successful computation, ((xi,yi)) 

of 01 started on (1 ,xl), we consider the subsequence of reduction 

steps 

(XI 'yi )I- (xi +19yi +I ) by virtue of (A.,z ,w ) c P(T) for each j. 
~ j j  

Note that may output several sequences on ( 1 , x l ) .  

We say that (G, Q, c., A, *>) is a precedence scheme if for any 

l x  1 E L(G), started on (1,~-L) outputs the H-sparse parses 

corresponding to all non-equivalent parses (I3 of 1 x 1  in G. 

This definition produces a two-stack automaton. For I FI 5 I P(T) I 
and we know P(T) is f'inite so F is finite, Similarly k-- is finite 

since (i) and (ii) contribute at most 2 1 VI elements to k- and (iii) 

2 contributes at most (V I I pT1 elements to k . 

(13)Recall that we defined two parses (derivations) to be equivalent 
if they have the same canonical derivation (i. e., same parse tree) . 



First we show that the length of any particular successful computa- 

tion of 01 started on a string of length n requires a number of steps 

linearly proportional to n. 

Theorem 4.1. Let 1 x - L  c L(G). Then if (G, Ty < a ,  A , 0,) is a 

precedence scheme inducing automaton , then outputs at least one 

H-sparse parse of x in less than (41 T - CI + 5) lg(x) + 1 steps. 

Proof: Let ((xi,yi)) be a successful computation of ; y t  on - 
P 1 x 1. Suppose it outputs sparse parse ((A~ + zip ni)) i=l. And 

th 
suppose the i- reduction uses (A~, z i' wi) E P(T) . 

First 

that since 

Note that 

we establish the bound p _< 2(I T - CI +1 ) %(x) . Observe 
the computation is successful, 

clauses (i) or (ii) of the definition of a or by clause (iii) if by 
* 

virtue of (~,vy,u~) c P(T) where lg(u2) = 1 for some B,yYuy E V , 
otherwise lg(xiyi) - = &3(u2) - 1 . So &3(xlY1) - &3(xnyn) = 

2 (4(wi) - 1) and 4(x) >_ I(lg(wi) - lllg(wi) >_ 2, 1 S i 5 PI! 
i=1 

Also we note that since the parse tree contains lg(x) occurrences 

of elements of zy 

So now we count {w I w e (V - c) , 1 5 i 5 p) . Consider the complete 
i i 

parse tree associated with the sparse parse. We may assume without loss 

of generality that there is no chain A =&A in the tree. So any 



chain contains a t  most I T - operators. l3wther every ( A ~ ,  zip wi) 
* 

where wi E (V  - X) corresponds t o  a chain Ai d w i .  Each chain i n  

the t r ee  terminates with a non-chain production, i.e.,  ( A  zi, wi) 

where wi c r or  lg(wi) 2 2. By the above there a re  a t  most 2 ~ ( x )  

such chains. So there a t  most 2 lg(x) chains each containing a t  

NOW consider &(yi) - l g ( ~ ~ - ~ ) .  On a reduction s tep  lg(yi) - 
lg(yiml) = +1 and on other steps lg(yi) - lg(yiWl) = -1. Also lg(yn) - 
lg(Y1) = -lg(x) since tha t  computation i s  successf'ul. But lg(yi) 

increases by one p times and decreases by one (n-1)-p times. The t o t a l  

change i s  -lg(x) so 

So n < - 2p + Ig(x) + 1. But p -  IT - ZI + 1) lg(x) 

so n - c ( 4 1 ~  - 21 + 5) lg(x) + 1. D 
If (G, Ty <. , , +) i s  a precedence scheme the following flow 

chart  models the automaton a. I n i t a l l y  the s t r ing  
* 

x c {1](~ - {I-}) {l], x = x x ... x i s  stored i n  character array 
1 2  n 

S[1: q. S[I] i s  the topmost operator of the l e f t  stack S[J] the top- 

most symbol of the l e f t  stack and s [ ~ ]  the topmost symbol of the r igh t  

stack. The algorithm succeeds i f  it ha l t s  with S[l] = S[J1 = 1- and 
* 

e i the r  J = 2 i n  which case we must have S - A  
* 

o r  J = 3 i n  which case we must have S-S[2]. Since the three 

relat ions a re  d is jo in t  the only nondeterminancy is introduced by the 

REDUCE function. 



I 

F T ,  J t Kc1 
< 

sCJl '- S F 1  

T F L t L+1 

V L 
T 

[ ~ t J l  ]-------.I 31 t J-1 1 'I 
A 

F 

v 
4- J1- v 

S [ J ~ ]  <* SCJ] 

T 

J 4- J1 

L t L-1 REDUCE FAIL 

EXIT 

The algorithm parses S[O] . . . ~ [ f l  i f  and only i f  it halts with SCO] 

... S[q  = y w i t h  y = I s l o r  y L L(V- T)I U I ] and A y .  

Fig. 3. 



We next remark tha t  (G, T, <-, f, *>) i s  a canonical precedence 

scheme i f f  it i s  a precedence scheme and i t s  induced automaton outputs 

only canonical H-sparse parses. 

In the case of canonical precedence Fig. 3 simplifies t o  Fig. !I. 

In t h i s  case the input stream i s  read only and there i s  only one 

stack. It corresponds t o  the c lass ica l  one-way PDA. 

This algorithm w i l l  produce canonical H-sparse parses of s t r ings 

i n  L(G) . 



REDUCE FAIL 
EXIT + 

S[J] t REDUCE s[J] ... S[K] 

OUTPUT (PRODUCTION, K) 

The a l g o r i t h m  parses S[O] ... S[X] i f  and only if it halts w i t h  S[O) 

... S[JJ - y w i t h  y =ISI or y a L(V- ~)1.. U { l - l - )  and L S L A ~ .  

Fig. 14. 



Note t h a t  i n  any case the  precedence re la t ions  do not de tec t  A 

ru les  o r  chain ru les  not involving operators.  Howcvcr it i s  a 

reasonably straightforward process t o  ignore these ru les  using the  

chain table .  The advantage of t h i s  was discussed with the  def in i t ion  

of sparse parse. 



One must discuss possible schemes for performing the reduce func- 

tiun in order to make the discussion of precedence detection complete. 

First we discuss a way of storing the set P(T) compactly. Suppose 

we construct an ( V-TI x ( 1  V-TI + 1) boolean matrix, CHAIN. CHAIN is 

indexed by x c: (v-T), y F: (v-T) U [ A ]  and CHAIN (x,y) = TRUE iff 

x d*y. Then by Lemma 4.1 given any (A -, x A x A ... A x ) c: P where 0 0 1 1  n n  

(~,x,y) c P(T) iff y = yoAoylA1...An~n and CHAIN (xi,yi) 

for i = 1,. . ., n. 
* 

SO given any (A -t x) c P and y c V if x = X1...X and y = Qo...s M 

where Xi and Q. c V, then the following algorithm answers yes or no 
J 

to the question (~,x,y) e P(T) . This provides a quick way of 

enumerating all relevant (~,x,y) e P(T) given y (hash coding of the 

A + x table will greatly reduce the number of candidates to be 

examined) . 
Now even if G is invertible the above algorithm may find more 

than one (~,x,y) e P(T) for a particular y. Consider the example 

S + A = B ~ A = C  

B + C  

Then (s, A = B, A = c), (S, A = C, A = C) e P(T) if = g T. 

In the case of an ambiguous grammar (like the one above) there is 

no hope of eliminating the nondeterminancy. REDUCE must return both 

possibilities. So we shall restrict attention to unambiguous grammars. 

In particular we shall examine the possibility of having REDUCE choose 

between the various members of P(T) on the basis of the context of y. 



Part  of The REDUCE Function 

Fig. 5. 



We now discuss the possibility of making reduce a determinist,ic 

function. We mentioned earlier that precedence analyzers are commonly 

required to be invertible. We will argue from a theoretical point of 

view that this is a very strong restriction. In particular it is known 

(~ischer [47) that invertible simple precedence grammars are a subset 

of the 1-state deterministic languages and of RRC (1,l) languages. We 

will show that if more powerful reduction algorithms are allowed one 

can parse correspondingly more powerful grammars. We shall do this only 

for simple precedence since it allows one to ignore A rules. These 

results also have implications for more general classes of token sets. 

The appendix contains the arduous proof of the following two 

results : 

Theorem 4.1. Every A-free grammar is completely covered by a A 

free normal form grammar. If the original grammar is LR(~) or BRC(~,~) 

or unambiguous, then the resulting grammar is LR (k) , BRC (n+r-1,m) or 
unambiguous respectively, where r = max {lg(x), 11 A -+ x is in P) . 

Theorem 4.2. (14) Every A-Pree normal form grammar is completely 

covered by a simple precedence grammar. If the original grammar is 

unambiguous, LR(~) or BRC(n,m) then the new grammar will be unambiguous, 

LR (k) reducible and BRC (n+l,m) reducible respectively. 

The exact constructions used in these proofs are of limited 

practical interest since they cause an explosion in the number of 

nonterminals. However they do yield the following result. 

lheorem 4.3. If G is a P-reduced grammar then G is 

covered by a simple precedence grammar. If the original grammar is 

unambiguous, or LR(~) or BRC(~,~) then the resulting simple precedence 

('l*'lhis result is a generalization of Theorem 3.4 of Pischer [4] . 



grammar will also be unambiguous, LR(~) reducible or ~R~(n+r,m) 

reducible where r = max { lg (x) 1 A -e x t: P) . 
Proof: Follows immediately from 4.1, 4.2 and the transitivity - 

of covers. 

The theoretical and practical implications of this result are 

quite interesting. First if each reduction step can be done in a 

number of elementary steps which is bounded by some constant then it 

follows from PropositAon 4.1 that the entire parsing al~orithm runs in 

linear time. 

If one accepts the definition of cover as an abstraction of the 

idea of equivalence or grammars with respect to parsing, then we conclude 

that any A-free LR(~) or BRC(~,~) grammar may be parsed using V- 

canonical precedence relations and LR(L) or BRC(~,~) reduction 

respectively. There is reason to believe that this is a technique for 

drastically reducing the number of "state sets" of LR(L) parsers [l], 

C131, C14) 



Section 5 

S m r y  and C o n c l u s i -  

Section 1 presented a short  and re la t ive ly  simple defini t ion of 

B R C ( ~ , ~ )  closely related t o  the defini t ion of LR(~) . Section 2 

introduced the concepts of sparse parse and of cover, It developed 

several r e su l t s  about covers which showed t h e i r  usefulness. The most 

interest ing r e su l t  was tha t  the Greibach normal form i s  a very weak 

form of cover hut the operator form gives a strong cover. It i s  

interest ing t o  ask whether every L R ( ~ )  grammar is  covered by a BRC(~ ,O)  

grammar. Knuth showed tha t  every m(k) grammar i s  equivalent t o  a 

BRC(~ ,O)  g r a m  and we conjecture tha t  t h i s  can be strengthened t o  be 

a strong form of cover. 

Section 3 gave a complete characterization of canonical precedence 

detection schemes. It did t h i s  i n  the s p i r i t  of Colmerauer. However 

it is done i n  greater  generali ty giving both necessary and suff ic ient  

conditions f o r  the existence of canonical precedence relations.  

We have not t reated the "higher order" schemes of Wirth and Weber 

and of McKeeman which define the relat ions on pa i rs  of s t r ings of 

operators ra ther  than simply on pairs  of operators. We mention i n  

passing tha t  a s  defined i n  [18] and elsewhere the (2,2) -precedence 

relat ions fo r  a normal form grammar are  vacuous! ('The f a c t  t ha t  t h i s  

e r ror  has gone unnoticed f o r  f lve  years is  eloquent testimony t o  the 

usefulness of higher-order precedence) . The introduction of token 

se t s  snaaller than V solves many of the problems which higher-order 

schemes a l so  solve. One may wonder a t  this. Especially since 

Theorem 4.3 shows tha t  i f  one relaxes the inve r t ib i l i t y  constraint 

then every grammar is coverod by a aimple precedence grammar. The 



advantages of small token sets are: 

(a) They allow A-rules, 

(b) They produce a sparse parse, 

( c) They require smaller precedence tables, 

(19) and (d) They may eliminate stratification. 

The advantage of (b) was described in Fig. 1. The extra work 

required by reducing phrases which contain operands (see REDUCE of 

Section 4) is compensated for by the elimination or long chains of 

operands with no semantic significance. Of course this requires that 

the grammrtr and operator set be chosen so that any production with 

semantic significance contain an operator. Stratification can always 

be eliminated by using the construction of Theorem 4.2. But this may 

destroy invertibility. It also multiplies the size of the gr-r. 

The gramfar ENLER shows the effects of this transformation. 

This points out a bane of precedence analysis. Theorem 2.lA shows 

that any grammar is completely covered by an invertible grammar and 

Theorem 4.2 shows that every grammar is completely covered by a simple 

precedence grammar. Fischer [4] shows that requiring both of these 

properties yields a proper sub-family of the family of BRC(~,~) languages. 
* 

Given even a simple language (e.g. ,  [ x  c (a,b) 1 # a ( ~ )  f nb(x) 1) it is 

quite difficult to construct a simple precedence grammar which is also 

invertible. 

This naturally suggests the possibility of using more general 

reduction schemes. Section 4 explored this possibility. It demon- 

strated that LR(k) @;r-s can be done if LR(k) reduction is 

( l o ) A n  operator B is stratified if there is some A so that 

(i) A t B and A <. B 

or (ii) B L A and A *> B 



allowed and, all that BRC(k,m) grammars can be done if BRC reduction 

is allowed. Section I+ made heavy use of the concept of a covering 

grammar. 

It also made recourse to the idea of the sparse parse consisting 

of those productions of the parse which contain operators. 

Section 4 also dealt with non-canonical precedence schemes. It 

showed that in all cases these schemes run in linear time. This 

Thesis fails to characterize the non-canonical precedence relations. 

Colmerauer has had partial success in this direction but it still 

remains as an open and very difficult problem. 
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Appendix 

Theorem 4.1. Let G = (v, x, P, 1 S -1. ) be a A-free context-free 

grarmnar. There ex is t s  a grammar G'  = (v' , C, P' , ,.- S ' ! ) and a 

production s e t  H'  c P' so tha t  (G',H') completely covers G where - 
( i )  G' is  a A-free normal grammar 

( i i )  I f  G is  unambiguous then so is  G' 

( i i i )  If G i s  L R ( ~ )  then so i s  G'  

(iv) If G is R R C ( ~ , ~ )  then G' i s  BRC(~+~-1,m) where 

r = max {l, lg(x)IA + x i s  i n  PI. 

Proof: Define G' = (v' , C, P' , A- [S] _L ) as  follows for  each - 
Y 

x tz V , l e t  [x] be a new character. Let 

+ V' = U {[AIIA c V] U { [ I s ~ ~ A  + xy i s  i n  P fo r  some x r v , y tz v*] 

and define 

We take H' = PI U P2 and P' = $ U  P U P,+. A canonical sentent ial  
3 

form x I s  said t o  be of 

C l a i m  1. Every canonical sentent ial  form of G' is  e i the r  of 

type 1 or  type 2. I f  (A + w, j) i s  a handle of a type 2 sentent ial  

form G', then A -r w is  i n  P2 U P 
3 ' 



Proof: The r e su l t  follows from a straightforward induction on 

the length of a generation. 
* * 

Next, define a homomorphism $ which maps (v') into (v) by 

* (A)  = A 

$(a) = a for  each a Q )= 

$(ryl) = y for each [yl e V' - C 
$(a l...an) = ((al) ...)( an) for a l l  al,...,a n o V' 

Remark 1. Let x be a canonical sentent ial  form of type 1 and l e t  

i be such tha t  0 - < i - < lg(x) . Then 

Remark 2. If x and x'  are  canonical sentent ial  forms and * * 
)(x) = $(xl) then x e x '  o r  x'-x. 

R R 

Now we define the map cp 

Claim 2. Let ( A ~  + be the canonical production sequence 

i n  G' of the derivation 

* 
1 [s] 1 xAny => xxny = X1. . .Xk with each Xi c V' 

R R 

* 
If j i s  the l e a s t  posit ive integer so tha t  X ... Xk c C , then 

j +l 

(a) (Y (Ai -+ xi) ) i s  a canonical generation i n  G of t ( u n y )  . 



(c) An + xn i s  i n  P4 i f  and only i f  xxny is a type 1 sentential 

form and i( (xxny) has handle (B + z, q) where j < q = Ig ((mn) = 

Is(=,) 

Proof: F i r s t  we observe tha t  - 
(+) i f  A + x i s  not i n  H' then $(A) = $(x) . 

(*) i f  A -+ x i s  i n  H' then c p ( ~  + x) = ($(A) + gr(x)). 

We now perform an induction on n. For n = 1, the resul t  i s  

straigbtfom~rd . For the  induction ateg, aeaume ( a ) ,  (b) , ~ l n d  (c) for 
n < m and suppone n w m. 

I f  A, + xn i s  not i n  H' then (*) implies that  y (x.Any) = ((xxny) 

so (a) follows inmediately from the induction hypothesis. I f  An + xn 

is in  H' , then (H) implies cp (A, -+ xn) = ( ( ( A ~ )  -+ ((x,) ) i s  i n  P. 

n 
Thus t ( x ~ ~ y )  =====S ( (xxy)  . Therefore rp(Ai + xi) i=l i s  a canonical 

R 

derivation of 9 (xxny) and (a) has been established. 

To prove (b),  suppose that  A + x i s  not i n  P4. I f  An + xn i s  n n 

i n  H then ( (xxy)  has handle (An + xn, lg(((xxn) ) ) by (a) . By the 

choice of H', xn contains no elements of X. Thus, lg(%) 5 j. Since 

the generation i s  r ight  most, lg(xxn) 2 j, and hence j = lg(xxn) or 

mn = XI.. .X Therefore ( A ~  + xn, 1g(i((x1.. .xj) ) ) i s  a handle of 
3 

*(xxy) .  On the other hand, suppose A + x is not i n  H which means n n 

tha t  % + xn is  i n  P We must have that  xAny i s  of type 2. By 3' 
Claim 1, "phy has a handle (B -+ z, k) where B -+ z i s  not i n  P4 so that  

$(xAny) - $(xx~Y) has handle (B -+ z, 1 g ( $ ( a n ) ) )  = (B -+ z, i g ( t ( ~ ~ . . . ~ ~ ) ) )  

by the induction hypothesis. Therefore (b) has been established. 

TO consider (c) , suppose that  An -+ xn i s  i n  P,+. Since An = [x,] 

* * 
and y c we must have that  xAny i s  of type 1. Thus x c L [ [ A ' J I A  c 

so tha t  5 i s  of type 1. Now, consider xAny = Xi.. .X [x ]X j n j+2a**Xk' 



(The s tr ing factors th i s  way since xx y = XI.. .X ) . The l eas t  integer n k * 
i such tha t  Xi+1. . .Xk i s  i n  Z must be j+l. F'urther $ ( x ~ ~ y )  = (xxny) 

since $(A,) = $([xn]) = ((x,) = xn c 2. Thus $ ( x ~ ~ y )  has handle 

(B -+ z, q). By (b),  i f  xAny = x'x y' and An - -* x ~ , ~  i s  not i n  Pq, n-1 

then q = Ig(((xl.. .Xj[xn])) > j. By the induction hypothesis, i f  

An-l -' Xn-l i s  i n  P then q > j+l > j. In e i ther  event, we have q > j. 4 

Conversely, suppose tha t  xxny is  of type 1 and j < q. I f  An -+ xn 

is  not i n  P,+, then (b) yields tha t  lg($(xxn)) = q. Since A + x i s  n n 

not in  Pq, xn t Z - [I.). ?bus, xxn = XI... X , and since xx y i s  of 
j n 

type 1, 1g(q(x1.. .xj)) = j. Therefore q = j but th i s  is  a contradiction 

which establishes (c)  and completes the proof of Claim 2. 

w. For each canonical sentential  form x, there i s  a unique 
* 

type 0 canonical sentential  form x'  so tha t  $(x) = $(xt)  and x ===+=x'. 

I f  G i s  unambiguous, then there i s  exactly one canonical derivation of 
* 

X w x ' .  
R 

Proof: In view of Remark 2, it suffices t o  show tha t  Y(x) = g ( x t ) .  

Let x = X1...Xn and l e t  j be the l eas t  positive integer such tha t  
* 

X . . .Xn i s  in  C . By Claim 1, x must be of type 1 or  of type 2. 
.¶ +l 

Case 1. x i s  a type 1 canonical sentential  form. Let k be the 
* 

l eas t  integer such tha t  \. . .Xj E [ [a] 1 R o 81 and note tha t  k - < j . 
Define x' = X1.. .Xk-l I(%. . . x ~ - ~ )  X j  . . .Xn and note (by inspection of 

* k 
P', especially P ~ )  t ha t  x ---r x' by derivation (xi -' (I (xi) ) i=j-l. Of 

R 

course + ( x )  = $(x'). Since, e i ther  k = 1 (which means X1 = 1) or 

Xk E V' - C, note tha t  x' i s  of type 0. 

We claim that  x' is the unique type 0 str ing such tha t  $ (x') = 

$ (x) . To see th is ,  suppose tha t  $ (x") = ~(r (x) and x" is  type 0. Then 



lg (x ' ) = lg (x") = n by Remark 1 and we have x" = Y1. . .Y and $ (Y ) = n i 

$(xi) for each i, 1 5 i 5 n. Clearly .Xn = Yk+l.. .Y n because 

each such Xi i s  either of the form [a] or a. If k = 1, we haw x' = x" 

and we would be done. If k > 1, then Xk = [A] with A c V' - E . Since 

( X  = ( (Y,) , we have Yk = Xk = $(%) and because x' and x" are type 

0 ,  it follows tha t  XI...% = Y1...Y k and hence x'  = X1...Xk $ ( % ) x ~  

. . .X = x" i s  unique. n * 
Suppose tha t  there were two canonical derivations of  x - e x ' .  

* R 
We already know that  i f  x =---3 y and y i s  type 0 with tp (y) = $ (x) then 

R 

y = x. Thus the only way tha t  there can be two such derivations i s  i f  

* + * 
x x x . But x"=--x' implies %-%.% i n  G' .  BY 

R R R R 
+ ( (x~) i n  G which implies that  G i s  Claim 2, we have y(xk) -. 

+ 
anibiguous, a contradiction. Therefore the derivation of x > X' 

must be unique. 

Case 2. x i s  a type 2 canonical sentential form. By inspection 

of P' , particularly P there i s  a unique str ing y so that  x -- y. 
3' 

I f  y i s  of type 2, repeat t h i s  production. After a t  most 

r = aax {lg(y) 1 A -* y i s  i n  PI- 2 steps, a unique str ing y' of type 1 i s  
* 

obtained. Note tha t  y => y' and \ ~ r  (y') = ~ ( x )  . Now we use Case 1 
R 

and the claim follows. 

Since Case 2 reduces t o  Case 1 and uniqueness has been shown for 

Case 1, then we are done. 

Claim 4. Let ( A ~  -r be a canonical derivation of 
* * * ~s-L------L'xz i n  G where z s C and x c (V (V - c)) U {A]. Then there 
R * 

i s  a unique type 0 sentential form yz i n  G'  where Y c (v') (v' - c)) U 
m 

A). Furthermore, there i s  a canonical generation ( B ~  -r zi) i=l i n  C' 


