
RJ 1487 (#22786)
December 30, 1974
Computer Science

ON THE NOTIONS OF CONSISTENCY LW PREDICATE LOCKS
IN A DATA BASE SYSTZM

K. P. Eswaran
J. N. Gray
R. A. Lor ie
I. L. Traiger

I3M Research Laboratory
San Jose, Ca l i fo rn ia 95193

ABSTRACT: Locking protocols i~ a shared d a t z base a r e sub-
s t a n t i a l l y d i f f e r e n t from those common t o opesztinq systems.
I n d a t a base systems, users access shared data uzder the
assumption t h a t the da ta s a t i s f i e s c e r t a i n cor,sistency con-
s t r a i n t s . This ?aper f o m l l y def ines the concepts of
t r ansac t ion , consistency and schedule and shows t h a t consis-
tency implies t h a t a t r ansac t ion cannot request new locks
a f t e r r e leas ing a lock. Then i t is argued t k a t a t r ansac t ion
needs t o lock a l o g i c a l r a t h e r than a physical subset of the
da ta base. These subsets a r e spec i f i ed by predicates . An
implementation of p red ica te locks which s a t i s f i e s the consis-
tency condit ion is suggested. This paper is not coccerned
with resource scheduling, preenptioc, backup o r dcadlock
(although these top ics a r e mentioned).

1. In t roduc t ion

Much work has been done on t h e problem of s h a r i n g resources i n an

ope ra t ing system. However, t h e r e a r e b a s i c d i f f e r e n c e s between t h e

requirements of an i n t e g r a t e d d a t a base system and those of an ope ra t ing

system. The under ly ing mechanism, lock ing , is t h e same so t h e i s s u e s of

schedul ing , preemption, and deadlock p e r s i s c ; bu t t h e u n i t of locking is

fundamentally d i f f e r e n t . While f a i r l y s t a t i c locking schemes a r e

accep tab le i n a convent ional ope ra t ing system, a p a r t i c u l a r d a t a base

t r a n s a c t i o n may lock an a r b i t r a r y l o g i c a l subse t of t h e d a t a base.

Transac t ions lock such s u b s e t s i n o rde r t o o b t a i n a c o n s i s t e n t view

of t h e system s t a t e . Asscciated wi th t h e d a t a base a r e a l a r g e number of

semantic c o n s t r a i n t s . Transac t ions expect t h e s t a t e t o s a t i s f y t h e s e

c o n s t r a i n t s and i n t u r n a r e not allowed t o l eave t h e d a t a base i n an

i n c o n s i s t e n t s t a t e . The no t ion of cons i s t ency is a novel a spec t of t he

t r a n s a c t i o n model presented he re . Yet t h e whole purpose of locking is t o

i n s u r e t h a t each t r a n s a c t i o n s e e s a c o n s i s t e n t image of t he s t a t e and s o

t h e formula t ion of t h i s no t ion is e s s e n t i a l t o a r e a l i s t i c nodel of t h e

locking problem.

The paper begins i n gene ra l terms in t roduc ing t h e concepts of e n t i t y ,

a c t i o n , t r a n s a c t i o n , schedule , cons i s t ency , locking , deadlock, and

preemption. The d i s c u s s i o n of t h i s s e c t i o n is a p p l i c a b l e t o d a t a base

systems and t o more convent ional environmenzs such a s ope ra t ing systems.

The p r i n c i p l e r e s u l t is t h a t cons is tency impl ies t h a t a t r a n s a c t i o n must

be cons t ruc t ed t o have a growing and a sh r ink ing phase. During t h e growing

phase i t can r eques t new locks . However, once a lock has been r e l e a s e d ,

t h e t r a n s a c t i o n cannot r eques t a new one.

A f t e r t h i s gene ra l d i scuss ion , a second s e c t i o n cons ide r s t h e

p e c u l i a r i t i e s of locking i n a d a t a base system. A phenomenon c a l l e d

phantoms seems t o imply t h a t one must lock l o g i c a l subse t s of t h e d a t a

base r a t h e r than locking i n d i v i d u a l records p re sen t i n t h e d a t a base. An

implementation of l o g i c a l locks s a t i s f y i n g t h e requirements of cons is tency

is then proposed. For d e f i n i t e n e s s , t h i s s e c t i o n is couched i n terms of

a r e l a t i o n a l model of d a t a .

2. General P r o p e r t i e s of Locking

For s i m p l i c i t y w e f i r s t cons ider a system wi th a f i xed s e t of named

r e sources c a l l e d e n t i t i e s . Each e n t i t y has a name and a va lue . A novel

a spec t of t h e model is t h a t w e recognize t h a t t h e r e is a s e t of a s s e r t i o n s

about t h e system s t a t e . Examples of such a s s e r t i o n s a r e :

"A" is equal t o "7"

"C" is t h e count of t h e f r e e c e l l s i n "D"

"E" is an index f o r "F"

Most such a s s e r t i o n s a r e never e x p l i c i t l y s t a t e d i n des igning o r us ing a

system and y e t a l l programs and u s e r s depend on che co r rec tnes s of t hese

a s s e r t i o n s whenever they d e a l w i th t h e system s t a t e .

The a s s e r t i o n s above a r e q u i t e s imple ; however, i n p r a c t i c e a s s e r t i o n s

become extremely complex. A complete set of a s s e r t i o n s about a system

would no doubt be as large as the system itself. In practice there is

little reason for explicitly enumerating all such assertions but for the

purposes of this discussion we presume that a set of assertions, hereafter

called consistency constraints, is explicitly defined and we say that the

state is consistent if the contents of the entities of the state satisfy

all the consistency constraints.

The system state is not static. It is continually undergoing changes

due to actions performed by processes on the entities. These modifications

usually break neatly into independent sequences of actions called

transactions. In this paper it is assumed that all transactions, when

executed alone, transform the system state from a consistent state to a

new consistent state; that is transactions preserve consistency. One

might think that consistency could be enforced at each action but this is

nct true. Transactions may need to temporarily violate the consistency

of the system state while modifying it. For example, in moving money from

one bank account to another there will be an instant during which one

account has been debited and the second not yet credited. This violates

a consistency constraint that the number of dollars in the system is

constant. To take a more abstract and complete example consider the two

transactions T1 and T2 of Figure 1:

Figure i. Two Transactions.

Suppose that the only assertion about the system state is that A = B.

Although when considered alone, both T1 and T2 conserve consistency they

have the following properties:

(1.a) temporary inconsistency: After the first step of T1 or T2,

A * B and so the stat is inconsistent.

(1.b) conflict: If transaction T2 is scheduled to run between

the first and second steps of T1 then the end result is A

* B which is an inconsistent state.

The fact that T1 run after T2 may not produce the same result as T2

run after T1 is not an issue of consistency. Transactions are not

cammutative. We do not require determinism (i.e. all schedules produce

the same state); we require only that all schedules preserve consistency.

This is a major departure from most previous vork on concurrency.

The problem of temporary inconsistency is inherent and implies that

enforcement of some consistency assertions cannot be done before the end

of a transaction. Conflict on the other hand is not inherent and is

undesirable. Yet another desirable property is reproducibility. Even if

there are no consistency constraints it is desirable in explaining the

operztion of the system to be able to say that transactions always appear

to be run in some sequential order.

If transactions are run one after another with no concurrency then

the problem of conflict never arises and reproducibility is guaranteed.

Each transaction starts in a consistent state and, since transactions

preserve consistency, each transaction ends in a consistent state. Any

inconsistencies seen by an in-progress transaction are due to changes it

has made to the state. If transactions were instantaneous, there would

be no penalty for a serial schedule for transactions. However,

transactions are not instantaneous and substantial performance gains can

be attained by running several transactions in parallel.

In most cases a particular transaction depends only on a small part

of the system state. Therefore, one technique for assuring consistency

is to partition entities into disjoint classes, such that each consistency

constraint falls within a single class. One can then schedule transactions

concurrently only if they use distinct classes of entities. Transactions

using common parts of the state can stili be scheduled serially. If such

a policy is adopted then each transaction will see a consistent version

of the state. Unfortunately, it is usually impossible to examine a

transaction and decide exactly which subset of the state it will use. For

this reason the "partition" scheme described above is abandoned in favor

of a more flexible scheme where individual entities are locked dynamically.

In this system, transactions lock entities for two reasons: they want to

prevent conflict with other transactions (i.e. lock out changes made by

other transactions) and they may want to temporarily suspend consistency

assertions on the locked entities.

For si~plicity, this section ignores the distinction between shared

and exclusive access to an ertity. It assumes that each action (other

than lock and unlock) modifies the entity. The generalization of this

section to the case of shared access is straightforward.

If transaction T attempts to lock entity e which is already locked
1 1

by transaction T then either T1 must wait for T2 to unlock e or T must 2 1 1

preempt el from T2. If T1 waits and then T2 attempts to lock an entity

e2 locked by T then T must wait or preempt. If both T1 and T2 wait, 1 2

then deadlock arises. The question of when to wait and when to preempt

is not the subject of this paper. The paper by Chamberlin, Boyce and

Traiger [l] presents a scheme for deciding which transaction to preempt.

When a resource is preempted, the preempted transaction must be backed

Unlike operating systems where (task) backup is quite uncommon, data

base systems usually maintain a log of all changes made by each

transaction. This log forms an audit trail as well as being used for

backup. Backup arises not only from deadlock - preemption but also from
protection violations, hardware errors or human error. One backup

procedure for a transaction T is to undo all of its updates as recorded

in the log. Then all entities locked by T may be unlocked and T may be

reset to its initial state. As Davies and Bjork [2,3] point out, this

procedure may not work correctly after T has unlocked (committed) any

entities which it has modified. This implies that (update) locks should

be held to the end of a transaction.

There is a second reason for wanting transactions to unlock entities

as late as possible, namely consistency. As pointed out earlier, each

transaction wants to see a consistent view of the system state. In order

for locks to assure this, a transaction must not request a new lock after

releasing some lock. To state and prove this result we must proceed much

more formally.

Two actions - lock and unlock are introduced. A transaction is said to

be well formed if

(2. a) It locks an entity before otherwise acting on it.

and (2.b) It ends with no entities locked.

Note that a transaction may lock and unlock the same entity several times.

More formally, a transaction is a sequence (see footnote) : T = ((T,

ai, ei) of n steps where T is the transaction name, a is the action i

at step i and e is the entity acted upon at step i. A transaction has i

locked entity e through step i if

(3.4 for some j 5 i,
a l

= lock and e = e,
j

and (3.b) there is no k, j < k < i, such that ak - unlock and ek = e.

A transaction T is well formed if

(2.a') at each step i = 1, . . . , n, T has locked e through step i,
i

and (2.b') at step n, only en is still locked by T and an = unlock.

Figure 2 shows two well formed versions cf transaction T from Figure 1.
1

LOCK

A + 100 -+

UNLOCK

LOCK

B + 100 -+

UNLOCK

TI2 :

T12 LOCK A

T12 A + 100 -+ A

T12 LOCK B

T12 UNLOCK A

TI2 B + 100 -+ B

T12 UNLOCK B

Figure 2. Two well formed versions of transaction T1 of Figure 1.

Any sequence obtained by collating the actions of transactions

T1,-*,Tn is called a schedule for T1,***,Tn. If the schedule takes

actions from one transaction at a time it is called a serial schedule. A

schedule for a set of transactions T * - ,T is any sequence S = ((Ti, 1' n

ai, ei))L1 such that for each j=l,***,n

That is, S contains T and preserves its sequence of actions. Also, the
j

length of S is the sum of the lengths of the transactions T ***,T (i.e. 1' n

S contains only elements of T1,*.*,Tn). A schedule S is serial if for

some permutation T, T =TT(l) ~ (2) "' TT(n) (i . e . S is the concatenation

of the transactions). Figure 3 gives three examples of schedules for a

set of three transactions.

Figure 3. Schedules for three transactions T I' 5 , 5 .
S is a serial schedule. Each small 2

rectangle represents a transaction step.

Non-serial schedules run the risk of giving a transaction an

inconsistent view of the state. So we are particularly interested in

those schedules which are "equivalent" to serial schedules. The

equivalence between schedules hinges on the dependency relation of a

schedule.

The dependency relation induced by schedule S is a ternary relation

on TxExT (where T is the set of all transaction names in S and E is the

There is no k such that i<k<j and e
k = e.

Informally, if (TI, e, T2) is in DEP(S) then entity e i

set of all entities) defined by (T, ,e,T,) E DEF(S) iff for some i<j :

.s an output

TI and an input of T2 and T gives e to T2. Again, we are assuming that 1

each action on an entity modifies the entity. If one distinguishes

"read-share" actions, then the dependency relation must be modified so

that entities which are only read by a transaction are not recorded as

outputs of the transaction (i.e. adjoin the clause "and a
i Or aj is an

update action" to (4.a) and adjoin the clause "and ak is an update action"

Two schedules, S1 and S2 are equivalent if DEP(S) = DEP(S2) and a
1

schedule S1 is consistent if it has an equivalent serial schedule. Figure

4 illustrates these definitions. It shows three schedules, where S1 is

consistent, S is not consistent ar,d S is serial (therefore consistent). 2 3

Figure 4. Three schedules for T T of Figure 1. S is equivalent 1' 2 1

to serial schedule S 3 and hence is consistent. S2 is

inconsistent.

It is very easy to explain and to reproduce the effect of a serial

schedule. The user thinks of a complete transaction as being an "atomic"

transformation of the state just as the scheduler thinks each action is

an atomic transformation of the state. He sees all the changes made by

transactions "before" his transaction starts and none of the changes of

transactions "after" his transaction completes (i.e. he sees a consistent

state). Any non-serial consistent schedule also hes these properties.

This discussion yields the following important properties of serial

schedules:

(5. a) If T and T are any two transactions and e and e2 are any 1 2 1

entities then (T T 1 E DEP(S) implies (T2,e2,T1) f! Yel' 2

DEP (S) .
More generally:

(5.b) The binary relation < on the set of transactions is defined

by: T1<T2 if and only if (Tl,e,T2) E DEP(S) for some entity

e. Then < is an acyclic relation which may be extended to

a total order of the transactions.

Clearly any consistent schedule also has these properties. Conversely,

any schedule with property (5.b) is consistent.

We would like to further characterize those non-serial schedules which

are consistent. To do this it is necessary to consider the lock and unlock

actions of each step. Entity e is said to be locked by transaction T

through step k of schedule S if:

(6.a) There is a j I k such that S(j) = (T, lock, e) .
and (6.b) There is no j', j<jl<k such that S(jl) = (T, unlock, e).

Schedule S is legal if for all k, if S(k) = (T, a, e) and e is locked by

T through step k, then

(7) e is not locked by any other transaction through step k.

Legal schedules observe the lock protocol that a transaction attempting

to lock an already-locked entity must wait. A schedule gives a history

of how transactions were processed. As the processing is being done, we

imagine a scheduler choosing a transaction step at each instant. This

scheduler allows lock actions on free entities but never chooses a lock

action on an already-locked entity. Such a scheduler only produces legal

schedules since it never chooses to run a lock step on an already-locked

entity.

The example schedule of Figure 5 shows that not every legal schedule

is consistent. It is very important to know how transactions must be

constructed so that any legal schedule is consistent.

Clearly, if legality is to insure consistency then it is necessary

that each transaction lock each entity before otherwise acting on it and

that the transaction ultimately unlock each such locked entity. More

formally, using the definition of well formed transactions (2.a1), (2.b') :

(8.a) Consistency requires that transactions be well formed.

n To prove this consider any transaction T = (TI, ai, ei)i=l which is not
1

well formed. Then for some step k, T does not have e locked through
1 k

step k. Consider the (well formed) transaction T = (T2, lock, ek), (T2, 2

unlock, ek), and the schedule S = (Tl(i) ! izl, * * * ,k-11, T2(1), Tl(k), T2(2),

T i 1 1 , , . Since (TI, e T2) and (T2, ek, TI) are both k'

in DEI?(S), S is not equivalent to any serial schedule (by property 5.a).

So S is not consistent.

A less obvious fact is that consistency requires that a transaction

be divided into a growing and a shrinking phase. During the growing phase

the transaction is allowed to request locks. The beginning of the

shrinking phase is signaled by the first unlock action. After the first

unlock, a transaction cannot issue a lock action on any entity. More

n formally, transaction T = ((T, ai, ei))i=l is two phase if for some jSn,

i < j implies a i t unlock,

i = j implies a = unlock, i

i'j implies a * lock. i

Steps 1,*-*, j-1 are called the $rowing phase and steps j , * * * , n are the

shrinking phase of T.

Transaction T11 of Figure 2 is not two phase since it locks B afcer

releasing A. Transaction T12 of Figure 2 is two phase. To see that T11

may see an inconsistent state consider the legal schedule S shown in Figure

5. In the schedule S, T12 sees A from T11 and TI1 sees B from T12. So

S is not equivalent to any serial schedule and hence S is inconsistent.

In general

(8.b) Consistency requires that transactions be two phase.

/ TI1 LOCK A /

TI2 UPDATE B 'TITl2 gives B to TI1

TI1 LOCK

I

TII UPDATE A i
TI1 UNLOCK

T12 LOCK TI1 gives A to T12

DEP (S)

T12 LOCK B

Figure 5. A schedule for transactions T11 2nd T12 which is legal but not

consistent because T11 is not two phase.

'

Conversely,

(8.c) If each transaction in the set of transactions T = CT~,.*-,T,?

is well-formed and two-phase then any legal schedule for T is

consistent.

/ T12 UPDATE A

A ske tch of t h e proof f o r t h i s is f a i r l y s imple. Let S be any schedule

f o r T. Define t h e b ina ry r e l a t i o n ' < ' on T by T <T i f f (Ti, e , Tj) E
i j

DEP(S) f o r some e n t i t y e . One can prove a lemma t h a t < may be extended

t o a t o t a l o rde r << on T a s fo l lows.

F i r s t d e f i n e t h e i n t e g e r SHRINK(T.) f o r each t r a n s a c t i o n T t o be t h e
1 i

l e a s t i n t e g e r j such t h a t T unlocks some e n t i t y a t s t e p j of S :
i

SHRINK(Ti) = min {j 1 S (j) = (Ti, unlock, e) f o r some e n t i t y e l .

I f each t r a n s a c t i o n T is non-null then SHRINK(T.) is w e l l def ined because
i 1

each T is w e l l formed.
i

Now observe t h a t f o r any t r a n s a c t i o n s T and T2 and e n t i t y e , i f (TI, 1

e, T2) E DEP(S) then SHRINK(Tl) i s l e s s than SHRINK(T2). For i f (TI, e,

T2) E DEP(S) then by d e f i n i t i o n of DEP(S) t h e r e a r e i n t e g e r s i and j such

t h a t

and s o t h a t f o r any i n t e g e r k between i and j ek * e . Since S is l e g a l ,

e must be locked only by T through s t e p i of S and e must be locked only
1

by T2 through s t e p j of S. So a i = unlock and a = lock. This immediately
1

impl ies t h a t SHRINK(T) is l e s s than o r equal t o i. Since T2 is two phase, 1

then no unlock by T2 preceeds s t e p j of S s o SHRINK(T) is g r e a t e r than j .
2

Thus we have shown that if T <T then SHRINK(T) is less than 1 2 1

SHRINK(T2). This implies property (5 .b) and hence < can be extended to

a total order << on T.

Assume without loss of generality that T <<T <<***<<T . Induct on n
1 2 n

to show that S is equivalent to the serial schedule TI*-*,T,. If no1 the

result is trivial. The induction step follows in two steps.

First show that S is equivalent to the schedule

Then note that by hypothesis

So S' is equivalent to T1,T2;**,Tn. But TlYg**,T is a serial schedule n

so S is equivalent to a serial schedule and is consistent. Figure 6 gives

a graphic illustration of the construction of a serial schedule from S.

To summarize then

(8.d) A necessary and sufficient condition for all legal schedules

to be consistent is that each transaction be well-formed

and two-phase.

Figure 6. A graphic illustration of the construction of a serial

schedule. The arrows show the dependencies of S.

T << T2 << Tg and so S' has the same dependencies as
1

S. The induction hypothesis applies to S' to give

3. Predicate Locks

Section 2 introduced the notions of consistency and of locking and it

explored the locking protocols required by consistency. The discussion

was quite general and applies to any system which supports the concepts

of transaction and shared entity. Next we consider locking in a data base

environment. Aside from the problem of scale (billions of entities rather

than hundreds or thousands), there are substantial differences in the unit

of locking. These differences stem from associative addressing of

entities by transactions in a data base environment. It is not uncomon

for a transaction to want to lock the set of all entities with a certain

value (i.e. "key" addressing). Updating a seemingly unrelated entity may

add it to such a set, creating the problem of "phantom" records. This

section explains this problem and proposes a spectrum of solutions.

For definiteness we adopt the relational model of data (Codd [4]) .

The data base consists of a collection of relations, R1,R2,-**,R,. Each

relation can be thought of as a table or flat file. It is a homogeneous

set of distinct tuples (records). Each tuple consists of a fixed number

of fields. The columns of the relation are called domains. Each domain

has a name. Figure 7 shows an example of such a data base.

ACCOUNTS

Location I Number / Balanc.1
NAPA 1 32123 1 1050 I

ST HELENA 1 36592 I 506 1

ASSETS

Location Total
--

NAPA 1337

ST HELENA 506

Assertions : 1) Account numbers are unique.

2) The sum of balances of accounts at

a location is equal to the total assets

at that location.

Figure 7. The sample data base.

One approach would be to lock whole relations or domains whenever any

member of the relation or domain is referenced. However, since there are

many more tuples than relations or domains this will not produce much

concurrency. For example, two transactions making deposits in different

accounts could not run concurrently if they were required to lock whole

relations.

This suggests that locks should apply to as small a unit as possible

so that transactions do not lock information they do not need. Therefore

the natural unit of locking is the field or tupie of a relation. However,

a tuple is not an entity in the sense of section 2, since it has no name

which is s e p a r a t e from i t s va lue . This may seem odd a t f i r s t , bu t i t

stems from t h e f a c t t h a t t u p l e s a r e re ferenced by va lue r a t h e r than by

t h e address t h a t t h e i r s t o r a g e occupies .

To i l l u s t r a t e t h i s po in t cons ide r t h e example of a t r a n s a c t i o n T on 1'

t h e d a t a base of F igure 7 . The t r a n s a c t i o n checks the a s s e r t i o n t h a t t h e

sum of Napa account ba lances is equal t o t h e sum of Napa a s s e t s by:

(9.1) Assoc ia t ive ly address ing t h e ACCOUNTS r e l a t i o n , locking

any accounts l oca t ed i n Napa.

(9.2) Summing t h e ba lances i n t h e locked accounts .

(9 . 3) Locking t h e Napa t u p l e i n ASSETS and comparing i t s

va lue wi th t h e computed sum.

(9 . 4) Releasing a l l l ocks .

I f a second t r a n s a c t i o n T i n s e r t s a new t u p l e i n ACCOUNTS wi th Location
2

= Napa and adds i t s ba lance t o t h e Napa a s s e t s and i f T2 i s scheduled

between s t e p s (9.2) and (9.3) of T then TI w i l l s e e an i n c o n s i s t e n t s t a t e :
1

T1 w i l l s e e t h e ba lance of t h e new account r e f l e c t e d i n t h e ASSETS but

w i l l no t have seen t h e account i n t h e ACCOUNTS r e l a t i o n . A s i m i l a r problem

a r i s e s i f T merely t r a n s f e r r e d an account from S t . Helena t o Napa. 2

A s t i l l more elementary example i s t h e t e s t f o r t h e e x i s t e n c e of a

t u p l e i n a r e l a t i o n . I f t h e t u p l e e x i s t s i t is t o be locked t o i n s u r e

t h a t no o t h e r t r a n s a c t i o n w i l l d e l e t e i t be fo re t h e f i r s t t r a n s a c t i o n

te rminates . I f t h e t u p l e does not e x i s t , "it" should be locked t o i n s u r e

t h a t no o t h e r t r a n s a c t i o n w i l l c r e a t e such a t u p l e be fo re t h e f i r s t

t r a n s a c t i o n t e rmina te s . I n t h i s ca se t h e "non-existence" of t he t u p l e is

being locked. Such non-existent t u p l e s a r e c a l l e d phantoms. In spec t ion

of t h e e a r l i e r example shows t h a t t r a n s a c t i o n T should lock not only a l l 1

e x i s t i n g Napa accounts but a l s o a l l phantom Napa accounts .

A s argued i n t h e previous s e c t i o n , cons is tency r e q u i r e s t h a t a

t r a n s a c t i o n lock a l l t u p l e s examined, both r e a l and phantom (i . e . i t be

w e l l formed). The s e t of a l l p o s s i b l e Napa accounts is t h e Car t e s i an

product: (~ a ~ a) x INTEGERS x INTEGERS. This s e t is i n f i n i t e so t h e r e is

l i t t l e hope of locking each i n d i v i d u a l phantom. Rather i t seems n a t u r a l

t o l ock t h e s e t of t u p l e s and phantoms s a t i s f y i n g t h e p red ica t e : Location

= Napa. More gene ra l ly , i f ? is a p r e d i c a t e on t u p l e s t of r e l a t i o n R

then P d e f i n e s t h e set S where t eS i f f P (t) . Transac t ions w i l l be allowed

t o lock any subse t of a r e l a t i o n s p e c i f i e d by such a p r e d i c a t e . We only

r e q u i r e t h a t t h e t r u t h o r f a l s i t y of P depend only on t .

I f such p r e d i c a t e s a r e used a s t h e u n i t of locking then a list of

l ocks becomes a (much sma l l e r) l ist of s e t s i d e n t i f i e d by t h e i r p r e d i c a t e s .

Locking t h e e n t i r e r e l a t i o n is achieved by us ing t h e p r e d i c a t e 'TRUE'

whi le l ock ing t h e t u p l e (NAPA, 32123, 1050) is achieved by t h e p r e d i c a t e

t = (NAPA, 32123, 1050). However, one cannot d i r e c t l y apply t h e

formula t ion of locking and cons is tency i n t h e previous s e c t i o n , because

e n t i t i e s were assumed t o be uniquely named o b j e c t s . I n t h i s s e c t i o n w e

extend t h e r e s u l t s on schedul ing and coos is tency t o apply t o l ocks on

poss ib ly over lapping sets of t u p l e s .

F i r s t of a l l , i f p r e d i c a t e s a r e a r b i t r a r i l y complex t h e r e is l i t t l e

hope of dec id ing whether two d i s t i n c t p r e d i c a t e s d e f i n e overlapping sets

of t u p l e s (and hence whether they c o n f l i c t a s l o c k s) . I n f a c t t h e problem

is r e c u r s i v e l y unsolvable (Kleene 151 1, s o i t is not c l e a r how t o make

p r e d i c a t e l ocks "work." A method f o r schedul ing of p r e d i c a t e locks

is in t roduced f i r s t by example and then more a b s t r a c t l y .

I n t h e sample d a t a base of F igure 7 suppose t h a t t r a n s a c t i o n T is
1

i n t e r e s t e d i n a l l t u p l e s i n ACCOUNTS f o r which Location = Napa. A

t r a n s a c t i o n T2 s t a r t s dur ing t h e process ing of T T2 is i n t e r e s t e d i n 1'

a l l t u p l e s i n ACCOUNTS wi th Location = Sonona. When T1 d e c l a r e s i ts i n t e n t

t o acces s Napa accounts by execut ing t h e accion:

T1 LOCK ACCOUNTS: Location = Napa,

t h i s p r e d i c a t e lock is a s s o c i a t e d wi th T1 and wi th t h e ACCOUNTS r e l a t i o n .

L a t e r when T2 dec la ros i ts i n t e n t t o acces s Sonoma accounts by execut ing

t h e ac t ion :

T2 LOCK ACCOUNTS : Location = Sonoma

t h i s p r e d i c a t e l ock is a l s o a s s o c i a t e d wi th t h e ACCOUNTS r e l a t i o n . Before

T can be granted acces s t o t h e Sonoma accounts , t h e lock c o n t r o l l e r must 2

check t h a t TZ1s lock does no t c o n f l i c t wi th locks he ld by o t h e r

t r a n s a c t i o n s . I n t h e case above, t h e c o n t r o l l e r must dec ide t h a t t h e

p r e d i c a t e s Location = Napa and Location = Sonoma a r e mutual ly exc lus ive .

I n gene ra l , t h e c o n t r o l l e r n c s t compare t h e reques ted p r e d i c a t e lock

a g a i n s t t h e ou t s t and ing p r e d i c a t e l ocks of o t h e r t r a n s a c t i o n s on t h i s

r e l z t i o n . I f two such p r e d i c a t e s a r e mutual ly s a t i s f i a b l e (i . e . have an

existing or phantom tuple in common) then there is conflict and the request

must wait or preempt.

That is more or less how predicate locks work. It does not explain

how sharing works and finesses the fact that predicate satisfiability is

recursively unsolvable. In order to give a more complete explanation of

how predicate locks "work", it is necessary to define how an action is

allowed or prohibited by a lock and how two locks may conflict. A

particular action on a single tuple may be denoted by:

meaning that field f of tuple t of relation R is accessed in node ai.
i

Two modes are distinguished here:

a = read allows sharing with other readers, i

while ai = write requires an exclusive lock on f (update, insert, and i

delete are all examples of write access).

The action reads those fields fi of tuple t such that a -read and it writes
i

those fields f of tuple t such that ai=write. Fields which are not i

mentioned are not acted upon.

Reading the balance of account number 32123 would be an action:

(ACCOUNTS, (Napa, 32123,1050), ((Number ,read), (aalance,read) 1)

Note t h a t t h i s a c t i o n does not read t h e l o c a t i o n f i e l d . An update of t h e

balance by 50 d o l l a r s would be one a c t i o n but involves two t u p l e s , f i r s t

(ACCOUNTS, (Napa, 32123,1050), { (Number , r e a d) , (Balance, w r i t e) 1)

and a l s o

because both t u p l e s a r e w r i t t e n by t h e atomic update ope ra t ion (one is

"deleted" and t h e o t h e r " in se r t ed") . Fu r the r , cons is tency r e q u i r e s t h a t

t h e Napa ASSETS t u p l e be updated by 50 d o l l a r s .

I n t h e model of a c t i o n s descr ibed above, t h e a c t i o n s p e c i f i e s a t u p l e

by provid ing t h e va lues of a l l f i e l d s of t h e t u p l e . Although t h i s is

formal ly c o r r e c t , t h e examples above show t h a t i t is inappropr i a t e f o r

t h e context a t hand. The f i r s t example wants t o read t h e ba lance of

account number 32123 and c a r e s noth ing about t h e l o c a t i o n o f t h e account .

Yet t h e model r e q u i r e s t h a t t h e a c t i o n s p e c i f y both t h e ba lance and

l o c a t i o n of t h e account a s w e l l a s t h e account number. S i m i l a r l y t h e

second t r a n s a c t i o n wants t o read t h e ba lance and l o c a t i o n of account number

32123 and then add 50 d o l l a r s t o t h e ba lance of t h e account and t o t h e

a s s e t s of t h e accoun t ' s l o c a t i o n .

I f one cons ide r s t h e problem of reading t h e Napa t u p l e of ASSETS

wi thout a - p r i o r i knowing i t s c u r r e n t ba lance t h e problem and i ts s o l u t i o n

becomes q u i t e c l e a r . The concept of a c t i o n must be genera l ized t o t h e

concept of acces s which a c t s on a l l t u p l e s s a t i s f y i n g a given p r e d i c a t e .

This no t ion is c o n s i s t e n t wi th t h e idea of a s s o c i a t i v e address ing which

r e t u r n s t h e s e t of a l l t u p l e s w i th des ignated va lues i n given f i e l d s . To

access account number 32123 reading t h e ba lance , one s p e c i f i e s t h e access :

(ACCOUNTS, Number = 32123, (Number, r e a d) , (Balance, w r i t e) 1)

which r e t u r n s e i t h e r a s i n g l e t u p l e o r no t u p l e s s i n c e account numbers

a r e unique. An access which r eads t h e l o c a t i o n of and updates t he ba lance

of account number 32123 would be denoted by:

(ACCOUNTS, Number = 32123, ((Location, r e a d) ,

(Number, read) ,

(Balance, w r i t e) 1) .

Consistency r e q u i r e s t h a t such an acces s be followed by an access

(ASSETS, Location = 'Napa' , ((Locat ion , r e a d) ,

(Balance, w r i t e) 1)

s i n c e w e r e q u i r e t h a t t h e a s s e t s be t h e sum of t h e ba lances a t each

loca t ion .

An access t o f i n d t h e numbers of a l l Napa accounts would r e t u r n a s e t

of t u p l e s and would b e denoted by:

(ACCOUNTS, Location = ' ~ a p a ' , C (Location, read) ,

(Number, read) 1) .

To proceed more formal ly we need t h e fo l lowing d e f i n i t i o n s . I f t h e

r e l a t i o n R is drawn from t h e Car t e s i an product of sets S1, S 2 , - S
n n '

n
(R c x S) then any p r e d i c a t e P def ined on a l l t u p l e s (s l , * * * , s n) &

x S i is1 i
id

is an admiss ib l e p r e d i c a t e -- f o r R. We ask t h a t P be an e f f e c t i v e t e s t :

given a t u p l e t , P (t) = TRUE o r P (t) = FALSE.

A p a r t i c u l a r acces s on r e l a t i o n R is denoted by:

where P is an admiss ib le p r e d i c a t e . Such an acces s is equ iva len t t o t h e

(poss ib ly i n f i n i t e) s e t of a c t i o n s

R , t , , a) 1) where P (t) = TRUE, and where t ranges over

t h e Car t e s i an product underlying R .

I n p a r t i c u l a r i t r eads a l l t u p l e - f i e l d p a i r s (t , f i) read by such a c t i o n s

and w r i t e s a l l t u p l e - f i e l d p a i r s w r i t t e n by such a c t i o n s . A p r e d i c a t e

l ock on r e l a t i o n R is denoted by: -

where P is an admiss ib le p r e d i c a t e f o r R and each f i is a f i e l d locked

f o r access mode a It i s f u r t h e r r equ i r ed t h a t i f t h e va lue of P depends
i'

upon t h e v a l u e of f i e l d f t hen f = f f o r some i = l , * * * , n (s i n c e t h e
i

p r e d i c a t e "reads" t h e s e f i e l d s) .

An a c t i o n (R, t { (f i , a is s a i d t o s a t i s f y p r e d i c a t e l ock

(lO.b) P ' (t) = TRUE

(1O.c) f o r e a c h i - 1 , - * * , n , t h e r e i s a j : (f i , a i) * (f ; , a;)

o r (f i = f ' and a = read and a ' = w r i t e) .
j i 1

I n t h e second c l a u s e of (10.c) w e a r e assuming t h a t w r i t e acces s impl ies

read and w r i t e access .

The a c t i o n (R, t , , ai) I:31) c o n f l i c t s wi th p r e d i c a t e l ock

R ' , P' , f , a;) I:=1) i f

(1 l . a) R = R t

(1 l . b) P 1 (t) = TRUE

(11. c) f o r some i, j :

f i = f ' and e i t h e r a = w r i t e o r a ' = w r i t e .
1 i j

To g i v e an example, t h e p r e d i c a t e lock:

L = (ACCOUNTS, Locat ion = Napa, { (Location, read) , (Balance, read) I)

is s a t i s f i e d by t h e a c t i o n

)
(ACCOUNTS, (Napa, 3213, 1050), { (Location, read) , (Balance, read) 1)

and is s a t i s f i e d and c o n f l i c t s w i t h t h e ac t ion :

(ACCOUNTS, (Napa, 3213, 1050), { (Locat ion , w r i t e)))

S a t i s f i a b i l i t y and c o n f l i c t a r e def ined analogously f o r accesses .

Access A = (R, P , { (f i , a i)) s a t i s f i e s p r e d i c a t e lock L i f and only

i f f o r each t u p l e t i n t h e C a r t e s i a n product under ly ing R, i f P(t) i s t r u e

then a c t i o n (R, t , { (i t , a)) s a t i s f i e s L . Access A c o n f l i c t s wi th

L i f f o r some t u p l e t i n t h e Car t e s i an product under ly ing R, P (t) is t r u e

and a c t i o n (R, t , { (t i , a) 1) con£ l i c t s w i t h L .

To g ive an example, t h e acces s which moves account /I23175 from Napa

t o Sonoma would be denoted:

(ACCOUNTS, (Location = 'Napat v Locaticn = 'Sonoma')

A Number = 23175,

{ (Location, w r i t e) , (Num'oer , read) 1) .

This acces s would r e q u i r e t h a t t h e t r a n s a c t i o n have a l ock on t h e ACCOUNTS

r e l a t i o n of t h e form:

where Location and Number a r e included among t h e f w r i t e access is
i'

allowed t o Location and read acces s i s allowed t o Number. Fu r the r t h e

p r e d i c a t e P must be s a t i s f i e d by t h e t u p l e s :

(Napa, 23175, *)

and

(Sonoma, 23175, *) .

That is , t h e lock p r e d i c a t e P must cover both t h e o ld and new va lues .

Note t h a t we r e q u i r e an acces s t o be covered by a s i n g l e p r e d i c a t e

lock. I f one holds two l ocks , one f o r Napa and another f o r Sonoma, t hen

t h e acces s would not s a t i s f y e i t h e r one and so would no t be allowed. It

is p o s s i b l e t o r e l a x t h i s r e s t r i c t i o n s o t h a t an acces s is allowed i f it

s a t i s f i e s t h e union of t h e locks he ld by a t r a n s a c t i o n .

Two p r e d i c a t e l ocks a r e s a i d t o c o n f l i c t i f t h e r e is some a c t i o n which

s a t i s f i e s one of them and c o n f l i c t s w i th t h e o t h e r . That is, i f one lock

al lows an acces s which is p r o h i b i t e d by t h e o t h e r lock.

Given t h e s e d e f i n i t i o n s , t h e no t ions of the previous s e c t i o n g e n e r a l i z e

a s fol lows. A t r a n s a c t i o n is a sequence of (t r a n s a c t i o n name, acces s) p a i r s .

A t r a n s a c t i o n is w e l l formed i f each acces s i t makes s a t i s f i e s some

p r e d i c a t e l ock i t holds through t h a t s t e p . A t r a n s a c t i o n is two phase i f

i t does not r eques t p r e d i c a t e l ocks a f t e r r e l e a s i n g a p r e d i c a t e lock.

A schedule f o r a set of t r a n s a c t i o n s is any merging of t h e composite

sequences. The dependency r e l a t i o n is def ined by choosing (f i e l d , t u p l e ,

r e l a t i o n) t r i p l e s a s t h e e n t i t i e s . Let E be t h e s e t of a l l such e n t i t i e s .

The no t ion of an acces s reading o r w r i t i n g such e n t i t i e s has a l r eady been

in t roduced. I f S is a schedule f o r t h e set of t r a n s a c t i o n s T, then t h e

dependency s e t of S is def ined t o be t h e s e t of t r i p l e s :

such t h a t f o r some i n t e g e r s i<j:

(12.1) S (i) = (T , A) and A reads o r w r i t e s e n t i t y e , 1 1 1

(12.2) S (j = (T ,A) and A reads o r w r i t e s e n t i t y e 2 2 2

and no t both A and A2 simply reads e , 1

(12.3) f o r any k between i and j , i f S(k) = (T A) 3' 3

then A3 does not w r i t e e n t i t y e .

Since i n f i n i t e sets of t u p l e s a r e involved, s a t i s f i a b i l i t y and c o n f l i c t

f o r acces ses and p r e d i c a t e l ocks may no t be dec idable . The i n t r o d u c t i o n

of s imple p r e d i c a t e s l a t e r i n t h i s s e c t i o n w i l l g ive a dec idable subse t

of p o s s i b l e acces s p r e d i c a t e s and lock p r e d i c a t e s .

To implement a r b i t r a r y p r e d i c a t e l ocks , a s s o c i a t e w i th t h e d a t a base

a t a b l e c a l l e d LOCK which is a b ina ry r e l a t i o n between t r a n s a c t i o n s and

p r e d i c a t e l ocks (see Figure 8) .

I (ACCOUNTS, Location-Napa I

LOCK

Transac t ion P r e d i c a t e Lock

T1

I C (Number, r e a d) ,

{ (Location, read)

(Balance, w r i t e) 1)

2

I I (Balance, read) 1) I

(ACCOUNTS, Balance < 500,

F igure 8 . An example of t h e LOCK t a b l e .

The l e g a l l ock scheduler func t ions a s fo l lows. Transac t ions

a r e presumed t o be two phase and w e l l formed; t h e scheduler enforces t h i s

r u l e . Any growing t r a n s a c t i o n may r eques t any p r e d i c a t e lock. When t h i s

happens, t h e scheduler t r i e s t o e n t e r t h e t r a n s a c t i o n name and p r e d i c a t e

lock i n t o t h e LOCK t a b l e . I f t h e p r e d i c a t e lock does not c o n f l i c t wi th

any o t h e r p r e d i c a t e lock i n t h e t a b l e , i t may be en te red and granted

immediately. I f t h e p r e d i c a t e l ock does c o n f l i c t w i th one o r more locks

he ld by o t h e r t r a n s a c t i o n s then t h e r eques to r must wai t f o r t h e o t h e r

l ocks t o be r e l eased o r he must preempt t h e locks (o r be preempted). A s

commented e a r l i e r , t h i s is a schedul ing dec i s ion and not t h e proper t o p i c

of t h i s paper. Any t r a n s a c t i o n may r e l e a s e any p r e d i c a t e lock belonging

t o i t . This d e l e t e s t h e lock from LOCK and marks t h e t r a n s a c t i o n a s

sh r ink ing . I f o t h e r t r a n s a c t i o n s a r e wa i t ing f o r t u p l e s r e l eased by t h i s

l ock then they may be s t a r t e d . Each time a t r a n s a c t i o n T* makes an a c t i o n

o r access A t h e LOCK t a b l e is examined t o f i a d t h e s e t :

YES = ((T , L) E L O C K ~ A s a t i s f i e s L and T t T*)

YES is a l i s t of a l l t h e reasons T* should be allowed t o make t h e acces s .

I f YES is empty then T* is n o t w e l l formed and i t should b e given an e r r o r .

It is c l e a r t h a t t h e scheduler descr ibed above has t h e p r o p e r t i e s :

(13.1) A l l t r a n s a c t i o n s a r e w e l l formed and two phase.

(13.2) I f t r a n s a c t i o n T locks p r e d i c a t e P on r e l a t i o n R , then f o r

any t u p l e t i n t h e Car t e s i an product underlying R such t h a t

P(t)=TRUE, no o t h e r t r a n s a c t i o n may i n s e r t , d e l e t e o r modify

t h e locked f i e l d s of t u n t i l T r e l e a s e s t h e p r e d i c a t e lock.

That is p r e d i c a t e locks s o l v e t h e problem of phantoms, - -9

thereby provid ing cons is tency .

So t h e schedu le r desc r ibed produces l e g a l schedules and by t h e r e s u l t s of

t h e previous s e c t i o n , g ives each t r a n s a c t i o n a c o n s i s t e n t view of t h e

s t a t e of t h e system.

Thus f a r we have ignored t h e d e t a i l s of how t h e scheduler dec ides

whether two locks c o n f l i c t . I n gene ra l t h i s is a r e c u r s i v e l y unsolvable

problem (even i f p r e d i c a t e s a r e r e s t r i c t e d t o us ing t h e a r i t h m e t i c

ope ra to r s +, *, -, + a s shown by Presburger [5]) . The problem then is t o

f i n d an i n t e r e s t i n g c l a s s of p r e d i c a t e s f o r which i t is e a s i l y dec idable

whether two p r e d i c a t e s "overlap". We propose t h e fo l lowing simple c l a s s

of p r e d i c a t e s .

A s imple p r e d i c a t e is any Boolean combination of atomic p r e d i c a t e s .

Atomic p r e d i c a t e s have t h e form:

where cons t an t is a s t r i n g o r number and f i e l d name is t h e name of some

f i e l d of t h e r e l a t i o n . For example

((Locat ion = 'Napal V Location = 'Santa R o s a ') ~

((Balance < 200) A (Balance > 1 0))

is a s imple p r e d i c a t e w i th fou r atomic p r e d i c a t e s .

Again, Presburger showed a d e c i s i o n procedure f o r a c l a s s of p r e d i c a t e s

s l i g h t l y more gene ra l than simple p r e d i c a t e s (he allowed +, -, <, =, *,
>, mod and allowed any boolean combination of t hese ope ra to r s and operands

on i n t e g e r s .) However h i s dec i s ion procedure is much more complicated than

t h e procedure f o r t h i s s imple set of p r e d i c a t e s .

To dec ide whether two p r e d i c a t e l ocks L and L' c o n f l i c t is a f a i r l y

n
s imple ma t t e r . Suppose L a (8, P, {(fi, ai) and that L' = (R' , P' ,

i (f;, a;) a r e two p r e d i c a t e l ocks . Then

(14.a) i f R # R ' t h e r e is no c o n f l i c t as t h e locks apply t o

d i f f e r e n t r e l a t i o n s .

(14.b) i f the re i s no f i e l d f such t h a t fi=f and f ' = f and e i t h e r
1

a w r i t e o r a ' w r i t e then the re is no c o n f l i c t . i 1
(14.c) otherwise the re w i l l be no c o n f l i c t only i f the re is no

tup le t such t h a t PAP' (t) is TRUE.

Similar ly , t o decide whether access A = R , P I , , a;) I t l)

c o n f l i c t s wi th lock L above c o n s i s t s of t e s t i n g (l 4 . a) , (14.b) and (14.c)

above f o r access A . A w i l l s a t i s f y L i f i t passes the t e s t s

(15.a) R = R ' , and

(15.b) f o r each i = 1, ..., m the re is a j such t h a t f ' = f and a '
i j i

= read o r a = w r i t e , and
j

(1 .5 .~) F o r a n y t u p l e t , i f P 1 (t) i s T R U E t h e n P (t) isTRUE (i . e .

P' => P o r equivalent ly P' A - P is not s a t i s f i a b l e) .

Thus t h e c o n f l i c t - s a t i s f i a b i l i t y quest ions f o r both accesses and locks

have been reduced t o t h e question of deciding whether a p a r t i c u l a r simple

p red ica te is s a t i s f i a b l e . But simple p red ica tes a r e defined t o have an

easy decis ion procedure.

The procedure is t o organize PAP' of case (c) i n t o d i s junc t ive n o r m 1

form (Kleene [5]) and then f o r aach d i s j u n c t see whether i t is s a t i s f i a b l e

o r not . Each such d i s junc t w i l l be a conjunct of atomic predicates and

so t h i s i s t r i v i a l . Consider the example:

P = (Location = 'Napa' v Location a 'Santa Rosa') A

(Balance < 500 A Balance > 10)

P' = Location = 'Napa' A Balance = 700.

Then the d i s junc t ive normal form of P A P' is

Location = 'Napa' A Balance < 500 A Balance > 10 A Balance = 700

V Location = 'Santa ~ o s a ' A Location 'Napa' A Balance < 500

A Balance > 10 A Balance = 700

The f i r s t d i s j u n c t is not s a t i s f i e d because Balance = 700 con t rad ic t s

Balance < 500 while t h e second has t h e added contradic t ion t h a t Location

= 'Napa' and Location = 'Santa Rosa'. So P A P ' is not s a t i s f i a b l e and

the re is no c o n f l i c t .

To give an example of c o n f l i c t , suppose

P = (Location = 'Xapa')

and P ' = (Balance > 500)

Then P A P' is s a t i s f i a b l e by t h e tup le (Napa, 0 , 501) and so the

predicates "overlap1' and allow c o n f l i c t .

In summary then, i f only simple predicates a r e allowed i n accesses

and p red ica te locks then p red ica te locks can be scheduled i n the same way

ordinary locks a r e scheduled.

As mentioned belcore, p red ica te locks solve the problem of phantom

records. When coupled with the r e s u l t s on consistency, predicate locks

can be used to construct consistent legal schedulers. The degenerate form

of predicates, locking entire relations wich the predicate which is always

TIWE or locking a particular tuple by the predicate which is only TRUE

for that tuple gives the more conventional forms of locking. If the

desired set is not describable by a simple predicate then any 'larger'

simple predicate (i.e. a simple predicate which is implied by the desired

predicate) will be a suitable predicate for the lock. If only simple

predicates are used then predicate locks can he legally scheduled.

There are simple analogs to predicate locks in existing data-base

systems. For example in hierarchial systems such as IMS (IBM 171) it is

common to lock a subtree of the hierarchy. This subtree is a logical set

of records (i.e. those with a given parent). Similarly, in a network

model it is desirable to lock all members of a "set" in the DBTG [6] sense

although DBTG lacks such a facility.

Lastly we observe that locking is a very dynamic form of authorization.

All the techniques we have described (predicate locks, simple predicates,

the YES set, . . .) apply to the problem of doing value dependent

authorization of access to data base records at the granularity of a field.

4. Summary

Section 2 introduced a very simple data model and discussed the notions

of transaction, consistency and locking. It argued that consistency

requires that transactions be two phase and well formed and conversely

t h a t i f a l l t r a n s a c t i o n s a r e w e l l formed and two phase t hen any l e g a l

schedule is c o n s i s t e n t .

Sec t ion 3 w a s couched i n terms of t h e r e l a t i o n a l model of d a t a . It

desc r ibed t h e problems t h a t a s s o c i a t i v e add re s s ing in t roduces : namely

phantom reco rds e n t e r i n g and l e a v i n g t h e s e t of r eco rds locked by a

t r a n s a c t i o n . P r e d i c a t e l ocks a r e proposed a s a s o l u t i o n t o t h i s problem.

To schedule and en fo rce t h e s e l ocks , p r e d i c a t e s a r e r e s t r i c t e d t o t h e

c l a s s of s imple p r e d i c a t e s . It is p o s s i b l e t o schedule s imple p r e d i c a t e

l ocks i n t h e same way "ordinary" l ocks a r e scheduled.

6. Acknowledgements

The concept of cons i s t ency p re sen ted h e r e grew out of d i s c u s s i o n s w i th

Ray Boyce, Don Chamberlin and Frank King. An e a r l i e r d r a f t of t h e paper

w a s po l i shed by h e l p f u l comments from Rudolph Bayer, Paul McJones and

Gianfranco Putzolu . W e would l i k e t o thank E l i z a b e t h Hoover f o r p repa r ing

t h i s manuscript .

7. References

[I] Chamberlin, D. D., Boyce, R. F., Traiger, I. L.; A deadlock-force

scheme for resource locking in a data-base environment, Proc. IFIP '74

Congress, North Holland, pp. 340-343 (1974).

[2] Davies, C. T., Recovery semantics for a DB/OC System, NCC,

pp. 136-141 (May 1973) .
[3] Bjork, L. A., Recovery scenario for a DB/OC System, NCC,

pp. 142-146 (May 1973).

[4] Codd, E. F., A relational model for large shared data banks,

CACM, Vol. 13, No. 6, pp. 377-387 (June 1970).

[5] Kleene, S. C., Introduction to Metamathematics, Van Nostrand Company,

p. 204 (1952) .
[6] IBM Information Management System for Virtual Storage (IMs/VS) ,

Conversion and Planning Guide, pp. 38-44, Form No. SH20-9034,

IBM, Armonk, New York.

[7] CODASYL, Data base task group report, ACM New York (1971).

FOOTNOTE

n
The sequence S=s - * , Sn is denoted (si) i=l.

1'
The subsequence of

n
elements satisfying condition C is denoted (sics I c(si)) i=l by analogy
with the notation for sets. The ith element of S is denoted by S(i).

