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ABSTRACT: Locking protocols  i~ a shared d a t z  base a r e  sub- 
s t a n t i a l l y  d i f f e r e n t  from those common t o  opesztinq systems. 
I n  d a t a  base systems, users  access shared data  uzder the  
assumption t h a t  the  da ta  s a t i s f i e s  c e r t a i n  cor,sistency con- 
s t r a i n t s .  This ?aper f o m l l y  def ines  the  concepts of 
t r ansac t ion ,  consistency and schedule and shows t h a t  consis- 
tency implies t h a t  a t r ansac t ion  cannot request  new locks 
a f t e r  r e leas ing  a lock.  Then i t  is  argued t k a t  a t r ansac t ion  
needs t o  lock a l o g i c a l  r a t h e r  than a physical  subset  of the  
da ta  base. These subsets  a r e  spec i f i ed  by predicates .  An 
implementation of p red ica te  locks which s a t i s f i e s  the  consis- 
tency condit ion is suggested. This paper is not coccerned 
with resource scheduling, preenptioc,  backup o r  dcadlock 
(although these top ics  a r e  mentioned). 



1. In t roduc t ion  

Much work has  been done on t h e  problem of s h a r i n g  resources  i n  an 

ope ra t ing  system. However, t h e r e  a r e  b a s i c  d i f f e r e n c e s  between t h e  

requirements  of an i n t e g r a t e d  d a t a  base  system and those  of an ope ra t ing  

system. The under ly ing  mechanism, lock ing ,  is t h e  same so  t h e  i s s u e s  of 

schedul ing ,  preemption, and deadlock p e r s i s c ;  bu t  t h e  u n i t  of locking  is  

fundamentally d i f f e r e n t .  While f a i r l y  s t a t i c  locking  schemes a r e  

accep tab le  i n  a  convent ional  ope ra t ing  system, a  p a r t i c u l a r  d a t a  base 

t r a n s a c t i o n  may lock  an a r b i t r a r y  l o g i c a l  subse t  of t h e  d a t a  base.  

Transac t ions  lock  such s u b s e t s  i n  o rde r  t o  o b t a i n  a c o n s i s t e n t  view 

of t h e  system s t a t e .  Asscciated wi th  t h e  d a t a  base a r e  a  l a r g e  number of 

semantic c o n s t r a i n t s .  Transac t ions  expect  t h e  s t a t e  t o  s a t i s f y  t h e s e  

c o n s t r a i n t s  and i n  t u r n  a r e  not  allowed t o  l eave  t h e  d a t a  base i n  an 

i n c o n s i s t e n t  s t a t e .  The no t ion  of cons i s t ency  is a  novel  a spec t  of t he  

t r a n s a c t i o n  model presented  he re .  Yet t h e  whole purpose of locking  is t o  

i n s u r e  t h a t  each t r a n s a c t i o n  s e e s  a  c o n s i s t e n t  image of t he  s t a t e  and s o  

t h e  formula t ion  of t h i s  no t ion  is e s s e n t i a l  t o  a  r e a l i s t i c  nodel  of t h e  

locking  problem. 

The paper begins  i n  gene ra l  terms in t roduc ing  t h e  concepts  of e n t i t y ,  

a c t i o n ,  t r a n s a c t i o n ,  schedule ,  cons i s t ency ,  locking ,  deadlock,  and 

preemption. The d i s c u s s i o n  of t h i s  s e c t i o n  is  a p p l i c a b l e  t o  d a t a  base  

systems and t o  more convent ional  environmenzs such a s  ope ra t ing  systems. 

The p r i n c i p l e  r e s u l t  is t h a t  cons is tency  impl ies  t h a t  a t r a n s a c t i o n  must 



be cons t ruc t ed  t o  have a  growing and a  sh r ink ing  phase. During t h e  growing 

phase i t  can r eques t  new locks .  However, once a  lock  has  been r e l e a s e d ,  

t h e  t r a n s a c t i o n  cannot r eques t  a new one. 

A f t e r  t h i s  gene ra l  d i scuss ion ,  a  second s e c t i o n  cons ide r s  t h e  

p e c u l i a r i t i e s  of locking  i n  a  d a t a  base system. A phenomenon c a l l e d  

phantoms seems t o  imply t h a t  one must lock  l o g i c a l  subse t s  of t h e  d a t a  

base  r a t h e r  than  locking  i n d i v i d u a l  records  p re sen t  i n  t h e  d a t a  base.  An 

implementation of l o g i c a l  locks  s a t i s f y i n g  t h e  requirements  of cons is tency  

is  then proposed. For d e f i n i t e n e s s ,  t h i s  s e c t i o n  is couched i n  terms of 

a  r e l a t i o n a l  model of d a t a .  

2. General P r o p e r t i e s  of Locking 

For s i m p l i c i t y  w e  f i r s t  cons ider  a  system wi th  a  f i xed  s e t  of named 

r e sources  c a l l e d  e n t i t i e s .  Each e n t i t y  has  a name and a  va lue .  A novel  

a spec t  of t h e  model is  t h a t  w e  recognize  t h a t  t h e r e  is a s e t  of a s s e r t i o n s  

about t h e  system s t a t e .  Examples of such a s s e r t i o n s  a r e :  

"A" is  equal  t o  "7" 

"C" is t h e  count of t h e  f r e e  c e l l s  i n  "D" 

"E" is an index f o r  "F" 

Most such a s s e r t i o n s  a r e  never e x p l i c i t l y  s t a t e d  i n  des igning  o r  us ing  a  

system and y e t  a l l  programs and u s e r s  depend on che co r rec tnes s  of t hese  

a s s e r t i o n s  whenever they d e a l  w i th  t h e  system s t a t e .  

The a s s e r t i o n s  above a r e  q u i t e  s imple ;  however, i n  p r a c t i c e  a s s e r t i o n s  

become extremely complex. A complete set of a s s e r t i o n s  about a  system 



would no doubt be as large as the system itself. In practice there is 

little reason for explicitly enumerating all such assertions but for the 

purposes of this discussion we presume that a set of assertions, hereafter 

called consistency constraints, is explicitly defined and we say that the 

state is consistent if the contents of the entities of the state satisfy 

all the consistency constraints. 

The system state is not static. It is continually undergoing changes 

due to actions performed by processes on the entities. These modifications 

usually break neatly into independent sequences of actions called 

transactions. In this paper it is assumed that all transactions, when 

executed alone, transform the system state from a consistent state to a 

new consistent state; that is transactions preserve consistency. One 

might think that consistency could be enforced at each action but this is 

nct true. Transactions may need to temporarily violate the consistency 

of the system state while modifying it. For example, in moving money from 

one bank account to another there will be an instant during which one 

account has been debited and the second not yet credited. This violates 

a consistency constraint that the number of dollars in the system is 

constant. To take a more abstract and complete example consider the two 

transactions T1 and T2 of Figure 1: 

Figure i. Two Transactions. 



Suppose that the only assertion about the system state is that A = B. 

Although when considered alone, both T1 and T2 conserve consistency they 

have the following properties: 

(1.a) temporary inconsistency: After the first step of T1 or T2, 

A * B and so the stat is inconsistent. 

(1.b) conflict: If transaction T2 is scheduled to run between 

the first and second steps of T1 then the end result is A 

* B which is an inconsistent state. 

The fact that T1 run after T2 may not produce the same result as T2 

run after T1 is not an issue of consistency. Transactions are not 

cammutative. We do not require determinism (i.e. all schedules produce 

the same state); we require only that all schedules preserve consistency. 

This is a major departure from most previous vork on concurrency. 

The problem of temporary inconsistency is inherent and implies that 

enforcement of some consistency assertions cannot be done before the end 

of a transaction. Conflict on the other hand is not inherent and is 

undesirable. Yet another desirable property is reproducibility. Even if 

there are no consistency constraints it is desirable in explaining the 

operztion of the system to be able to say that transactions always appear 

to be run in some sequential order. 

If transactions are run one after another with no concurrency then 

the problem of conflict never arises and reproducibility is guaranteed. 

Each transaction starts in a consistent state and, since transactions 



preserve consistency, each transaction ends in a consistent state. Any 

inconsistencies seen by an in-progress transaction are due to changes it 

has made to the state. If transactions were instantaneous, there would 

be no penalty for a serial schedule for transactions. However, 

transactions are not instantaneous and substantial performance gains can 

be attained by running several transactions in parallel. 

In most cases a particular transaction depends only on a small part 

of the system state. Therefore, one technique for assuring consistency 

is to partition entities into disjoint classes, such that each consistency 

constraint falls within a single class. One can then schedule transactions 

concurrently only if they use distinct classes of entities. Transactions 

using common parts of the state can stili be scheduled serially. If such 

a policy is adopted then each transaction will see a consistent version 

of the state. Unfortunately, it is usually impossible to examine a 

transaction and decide exactly which subset of the state it will use. For 

this reason the "partition" scheme described above is abandoned in favor 

of a more flexible scheme where individual entities are locked dynamically. 

In this system, transactions lock entities for two reasons: they want to 

prevent conflict with other transactions (i.e. lock out changes made by 

other transactions) and they may want to temporarily suspend consistency 

assertions on the locked entities. 

For si~plicity, this section ignores the distinction between shared 

and exclusive access to an ertity. It assumes that each action (other 



than lock and unlock) modifies the entity. The generalization of this 

section to the case of shared access is straightforward. 

If transaction T attempts to lock entity e which is already locked 
1 1 

by transaction T then either T1 must wait for T2 to unlock e or T must 2 1 1 

preempt el from T2. If T1 waits and then T2 attempts to lock an entity 

e2 locked by T then T must wait or preempt. If both T1 and T2 wait, 1 2 

then deadlock arises. The question of when to wait and when to preempt 

is not the subject of this paper. The paper by Chamberlin, Boyce and 

Traiger [l] presents a scheme for deciding which transaction to preempt. 

When a resource is preempted, the preempted transaction must be backed 

Unlike operating systems where (task) backup is quite uncommon, data 

base systems usually maintain a log of all changes made by each 

transaction. This log forms an audit trail as well as being used for 

backup. Backup arises not only from deadlock - preemption but also from 
protection violations, hardware errors or human error. One backup 

procedure for a transaction T is to undo all of its updates as recorded 

in the log. Then all entities locked by T may be unlocked and T may be 

reset to its initial state. As Davies and Bjork [2,3] point out, this 

procedure may not work correctly after T has unlocked (committed) any 

entities which it has modified. This implies that (update) locks should 

be held to the end of a transaction. 



There is a second reason for wanting transactions to unlock entities 

as late as possible, namely consistency. As pointed out earlier, each 

transaction wants to see a consistent view of the system state. In order 

for locks to assure this, a transaction must not request a new lock after 

releasing some lock. To state and prove this result we must proceed much 

more formally. 

Two actions - lock and unlock are introduced. A transaction is said to 

be well formed if 

(2. a) It locks an entity before otherwise acting on it. 

and (2.b) It ends with no entities locked. 

Note that a transaction may lock and unlock the same entity several times. 

More formally, a transaction is a sequence (see footnote) : T = ((T, 

ai, ei) of n steps where T is the transaction name, a is the action i 

at step i and e is the entity acted upon at step i. A transaction has i 

locked entity e through step i if 

(3.4 for some j 5 i, 
a l 

= lock and e = e, 
j 

and (3.b) there is no k, j < k < i, such that ak - unlock and ek = e. 

A transaction T is well formed if 

(2.a') at each step i = 1, . . . , n, T has locked e through step i, 
i 

and (2.b') at step n, only en is still locked by T and an = unlock. 

Figure 2 shows two well formed versions cf transaction T from Figure 1. 
1 



LOCK 

A + 100 -+ 

UNLOCK 

LOCK 

B + 100 -+ 

UNLOCK 

TI2 : 

T12 LOCK A 

T12 A + 100 -+ A 

T12 LOCK B 

T12 UNLOCK A 

TI2 B + 100 -+ B 

T12 UNLOCK B 

Figure 2. Two well formed versions of transaction T1 of Figure 1. 

Any sequence obtained by collating the actions of transactions 

T1,-*,Tn is called a schedule for T1,***,Tn. If the schedule takes 

actions from one transaction at a time it is called a serial schedule. A 

schedule for a set of transactions T * -  ,T is any sequence S = ((Ti, 1' n 

ai, ei))L1 such that for each j=l,***,n 



That is, S contains T and preserves its sequence of actions. Also, the 
j 

length of S is the sum of the lengths of the transactions T ***,T (i.e. 1' n 

S contains only elements of T1,*.*,Tn). A schedule S is serial if for 

some permutation T, T =TT(l) ~ ( 2 )  "' TT(n) ( i . e .  S is the concatenation 

of the transactions). Figure 3 gives three examples of schedules for a 

set of three transactions. 

Figure 3. Schedules for three transactions T I' 5 ,  5 .  
S is a serial schedule. Each small 2 

rectangle represents a transaction step. 



Non-serial schedules run the risk of giving a transaction an 

inconsistent view of the state. So we are particularly interested in 

those schedules which are "equivalent" to serial schedules. The 

equivalence between schedules hinges on the dependency relation of a 

schedule. 

The dependency relation induced by schedule S is a ternary relation 

on TxExT (where T is the set of all transaction names in S and E is the 

There is no k such that i<k<j and e 
k = e. 

Informally, if (TI, e, T2) is in DEP(S) then entity e i 

set of all entities) defined by (T, ,e,T,) E DEF(S) iff for some i<j : 

.s an output 

TI and an input of T2 and T gives e to T2. Again, we are assuming that 1 

each action on an entity modifies the entity. If one distinguishes 

"read-share" actions, then the dependency relation must be modified so 

that entities which are only read by a transaction are not recorded as 

outputs of the transaction (i.e. adjoin the clause "and a 
i Or aj is an 

update action" to (4.a) and adjoin the clause "and ak is an update action" 

Two schedules, S1 and S2 are equivalent if DEP(S ) = DEP(S2) and a 
1 

schedule S1 is consistent if it has an equivalent serial schedule. Figure 

4 illustrates these definitions. It shows three schedules, where S1 is 

consistent, S is not consistent ar,d S is serial (therefore consistent). 2 3 



Figure 4. Three schedules for T T of Figure 1. S is equivalent 1' 2 1 

to serial schedule S 3  and hence is consistent. S2 is 

inconsistent. 

It is very easy to explain and to reproduce the effect of a serial 

schedule. The user thinks of a complete transaction as being an "atomic" 

transformation of the state just as the scheduler thinks each action is 

an atomic transformation of the state. He sees all the changes made by 

transactions "before" his transaction starts and none of the changes of 

transactions "after" his transaction completes (i.e. he sees a consistent 



state). Any non-serial consistent schedule also hes these properties. 

This discussion yields the following important properties of serial 

schedules: 

(5. a) If T and T are any two transactions and e and e2 are any 1 2 1 

entities then (T T 1 E DEP(S) implies (T2,e2,T1) f! Yel' 2 

DEP (S) . 
More generally: 

(5.b) The binary relation < on the set of transactions is defined 

by: T1<T2 if and only if (Tl,e,T2) E DEP(S) for some entity 

e. Then < is an acyclic relation which may be extended to 

a total order of the transactions. 

Clearly any consistent schedule also has these properties. Conversely, 

any schedule with property (5.b) is consistent. 

We would like to further characterize those non-serial schedules which 

are consistent. To do this it is necessary to consider the lock and unlock 

actions of each step. Entity e is said to be locked by transaction T 

through step k of schedule S if: 

(6.a) There is a j I k such that S(j) = (T, lock, e) . 
and (6.b) There is no j', j<jl<k such that S(jl) = (T, unlock, e). 

Schedule S is legal if for all k, if S(k) = (T, a, e) and e is locked by 

T through step k, then 

( 7 )  e is not locked by any other transaction through step k. 

Legal schedules observe the lock protocol that a transaction attempting 

to lock an already-locked entity must wait. A schedule gives a history 

of how transactions were processed. As the processing is being done, we 



imagine a scheduler choosing a transaction step at each instant. This 

scheduler allows lock actions on free entities but never chooses a lock 

action on an already-locked entity. Such a scheduler only produces legal 

schedules since it never chooses to run a lock step on an already-locked 

entity. 

The example schedule of Figure 5 shows that not every legal schedule 

is consistent. It is very important to know how transactions must be 

constructed so that any legal schedule is consistent. 

Clearly, if legality is to insure consistency then it is necessary 

that each transaction lock each entity before otherwise acting on it and 

that the transaction ultimately unlock each such locked entity. More 

formally, using the definition of well formed transactions (2.a1), (2.b') : 

(8.a) Consistency requires that transactions be well formed. 

n To prove this consider any transaction T = (TI, ai, ei)i=l which is not 
1 

well formed. Then for some step k, T does not have e locked through 
1 k 

step k. Consider the (well formed) transaction T = (T2, lock, ek), (T2, 2 

unlock, ek), and the schedule S = (Tl(i) ! izl, * * *  ,k-11, T2(1), Tl(k), T2(2), 

T i  1 1 ,  , . Since (TI, e T2) and (T2, ek, TI) are both k' 

in DEI?(S), S is not equivalent to any serial schedule (by property 5.a). 

So S is not consistent. 

A less obvious fact is that consistency requires that a transaction 

be divided into a growing and a shrinking phase. During the growing phase 

the transaction is allowed to request locks. The beginning of the 



shrinking phase is signaled by the first unlock action. After the first 

unlock, a transaction cannot issue a lock action on any entity. More 

n formally, transaction T = ((T, ai, ei) )i=l is two phase if for some jSn, 

i < j  implies a i t unlock, 

i = j  implies a = unlock, i 

i'j implies a * lock. i 

Steps 1,*-*, j-1 are called the $rowing phase and steps j , * * * ,  n are the 

shrinking phase of T. 

Transaction T11 of Figure 2 is not two phase since it locks B afcer 

releasing A. Transaction T12 of Figure 2 is two phase. To see that T11 

may see an inconsistent state consider the legal schedule S shown in Figure 

5. In the schedule S, T12 sees A from T11 and TI1 sees B from T12. So 

S is not equivalent to any serial schedule and hence S is inconsistent. 

In general 

(8.b) Consistency requires that transactions be two phase. 



/ TI1 LOCK A / 

TI2 UPDATE B 'TITl2 gives B to TI1 

TI1 LOCK 

I 

TII UPDATE A i 
TI1 UNLOCK 

T12 LOCK TI1 gives A to T12 

DEP (S) 

T12 LOCK B 

Figure 5. A schedule for transactions T11 2nd T12 which is legal but not 

consistent because T11 is not two phase. 

' 

Conversely, 

(8.c) If each transaction in the set of transactions T = CT~,.*-,T,? 

is well-formed and two-phase then any legal schedule for T is 

consistent. 

/ T12 UPDATE A 



A ske tch  of t h e  proof f o r  t h i s  is  f a i r l y  s imple.  Let  S be any schedule 

f o r  T. Define t h e  b ina ry  r e l a t i o n  ' < '  on T by T <T i f f  (Ti, e ,  Tj)  E 
i j 

DEP(S) f o r  some e n t i t y  e .  One can prove a lemma t h a t  < may be  extended 

t o  a t o t a l  o rde r  << on T a s  fo l lows.  

F i r s t  d e f i n e  t h e  i n t e g e r  SHRINK(T.) f o r  each t r a n s a c t i o n  T t o  be t h e  
1 i 

l e a s t  i n t e g e r  j such t h a t  T unlocks some e n t i t y  a t  s t e p  j of S :  
i 

SHRINK(Ti) = min {j 1 S ( j )  = (Ti, unlock,  e )  f o r  some e n t i t y  e l .  

I f  each t r a n s a c t i o n  T is non-null then  SHRINK(T.) is w e l l  def ined  because 
i 1 

each T is w e l l  formed. 
i 

Now observe t h a t  f o r  any t r a n s a c t i o n s  T and T2 and e n t i t y  e ,  i f  (TI, 1 

e, T2) E DEP(S) then  SHRINK(Tl) i s  l e s s  than  SHRINK(T2). For i f  (TI, e,  

T2) E DEP(S) then by d e f i n i t i o n  of DEP(S) t h e r e  a r e  i n t e g e r s  i and j such 

t h a t  

and s o  t h a t  f o r  any i n t e g e r  k between i and j ek * e .  Since S is l e g a l ,  

e must be locked only  by T through s t e p  i of S and e must be locked only 
1 

by T2 through s t e p  j of S. So a i  = unlock and a = lock.  This  immediately 
1 

impl ies  t h a t  SHRINK(T ) is l e s s  than o r  equal  t o  i. Since T2 is two phase,  1 

then  no unlock by T2 preceeds s t e p  j of S s o  SHRINK(T ) is  g r e a t e r  than j .  
2 



Thus we have shown that if T <T then SHRINK(T ) is less than 1 2  1 

SHRINK(T2). This implies property (5 .b)  and hence < can be extended to 

a total order << on T. 

Assume without loss of generality that T <<T <<***<<T . Induct on n 
1 2  n 

to show that S is equivalent to the serial schedule TI*-*,T,. If no1 the 

result is trivial. The induction step follows in two steps. 

First show that S is equivalent to the schedule 

Then note that by hypothesis 

So S' is equivalent to T1,T2;**,Tn. But TlYg**,T is a serial schedule n 

so S is equivalent to a serial schedule and is consistent. Figure 6 gives 

a graphic illustration of the construction of a serial schedule from S. 

To summarize then 

(8.d) A necessary and sufficient condition for all legal schedules 

to be consistent is that each transaction be well-formed 

and two-phase. 



Figure 6. A graphic illustration of the construction of a serial 

schedule. The arrows show the dependencies of S. 

T << T2 << Tg and so S' has the same dependencies as 
1 

S. The induction hypothesis applies to S' to give 



3. Predicate Locks 

Section 2 introduced the notions of consistency and of locking and it 

explored the locking protocols required by consistency. The discussion 

was quite general and applies to any system which supports the concepts 

of transaction and shared entity. Next we consider locking in a data base 

environment. Aside from the problem of scale (billions of entities rather 

than hundreds or thousands), there are substantial differences in the unit 

of locking. These differences stem from associative addressing of 

entities by transactions in a data base environment. It is not uncomon 

for a transaction to want to lock the set of all entities with a certain 

value (i.e. "key" addressing). Updating a seemingly unrelated entity may 

add it to such a set, creating the problem of "phantom" records. This 

section explains this problem and proposes a spectrum of solutions. 

For definiteness we adopt the relational model of data (Codd [ 4 ] ) .  

The data base consists of a collection of relations, R1,R2,-**,R,. Each 

relation can be thought of as a table or flat file. It is a homogeneous 

set of distinct tuples (records). Each tuple consists of a fixed number 

of fields. The columns of the relation are called domains. Each domain 

has a name. Figure 7 shows an example of such a data base. 



ACCOUNTS 

Location I Number / Balanc.1 
NAPA 1 32123 1 1050 I 

ST HELENA 1 36592 I 506 1 

ASSETS 

Location Total 
-- 

NAPA 1337 

ST HELENA 506 

Assertions : 1) Account numbers are unique. 

2) The sum of balances of accounts at 

a location is equal to the total assets 

at that location. 

Figure 7. The sample data base. 

One approach would be to lock whole relations or domains whenever any 

member of the relation or domain is referenced. However, since there are 

many more tuples than relations or domains this will not produce much 

concurrency. For example, two transactions making deposits in different 

accounts could not run concurrently if they were required to lock whole 

relations. 

This suggests that locks should apply to as small a unit as possible 

so that transactions do not lock information they do not need. Therefore 

the natural unit of locking is the field or tupie of a relation. However, 

a tuple is not an entity in the sense of section 2, since it has no name 



which is s e p a r a t e  from i t s  va lue .  This  may seem odd a t  f i r s t ,  bu t  i t  

stems from t h e  f a c t  t h a t  t u p l e s  a r e  re ferenced by va lue  r a t h e r  than by 

t h e  address  t h a t  t h e i r  s t o r a g e  occupies .  

To i l l u s t r a t e  t h i s  po in t  cons ide r  t h e  example of a  t r a n s a c t i o n  T on 1' 

t h e  d a t a  base  of F igure  7 .  The t r a n s a c t i o n  checks the  a s s e r t i o n  t h a t  t h e  

sum of Napa account ba lances  is equal  t o  t h e  sum of Napa a s s e t s  by: 

(9.1)  Assoc ia t ive ly  address ing  t h e  ACCOUNTS r e l a t i o n ,  locking  

any accounts  l oca t ed  i n  Napa. 

(9.2)  Summing t h e  ba lances  i n  t h e  locked accounts .  

( 9 . 3 )  Locking t h e  Napa t u p l e  i n  ASSETS and comparing i t s  

va lue  wi th  t h e  computed sum. 

( 9 . 4 )  Releasing a l l  l ocks .  

I f  a  second t r a n s a c t i o n  T i n s e r t s  a  new t u p l e  i n  ACCOUNTS wi th  Location 
2  

= Napa and adds i t s  ba lance  t o  t h e  Napa a s s e t s  and i f  T2 i s  scheduled 

between s t e p s  (9.2)  and (9.3) of T  then  TI w i l l  s e e  an i n c o n s i s t e n t  s t a t e :  
1 

T1 w i l l  s e e  t h e  ba lance  of t h e  new account r e f l e c t e d  i n  t h e  ASSETS but  

w i l l  no t  have seen  t h e  account i n  t h e  ACCOUNTS r e l a t i o n .  A s i m i l a r  problem 

a r i s e s  i f  T merely t r a n s f e r r e d  an account from S t .  Helena t o  Napa. 2 

A s t i l l  more elementary example i s  t h e  t e s t  f o r  t h e  e x i s t e n c e  of a  

t u p l e  i n  a  r e l a t i o n .  I f  t h e  t u p l e  e x i s t s  i t  is  t o  be locked t o  i n s u r e  

t h a t  no o t h e r  t r a n s a c t i o n  w i l l  d e l e t e  i t  be fo re  t h e  f i r s t  t r a n s a c t i o n  

te rminates .  I f  t h e  t u p l e  does not  e x i s t ,  "it" should be locked t o  i n s u r e  

t h a t  no o t h e r  t r a n s a c t i o n  w i l l  c r e a t e  such a  t u p l e  be fo re  t h e  f i r s t  

t r a n s a c t i o n  t e rmina te s .  I n  t h i s  ca se  t h e  "non-existence" of t he  t u p l e  is  



being locked.  Such non-existent  t u p l e s  a r e  c a l l e d  phantoms. In spec t ion  

of t h e  e a r l i e r  example shows t h a t  t r a n s a c t i o n  T should lock  not  only  a l l  1 

e x i s t i n g  Napa accounts  but  a l s o  a l l  phantom Napa accounts .  

A s  argued i n  t h e  previous  s e c t i o n ,  cons is tency  r e q u i r e s  t h a t  a  

t r a n s a c t i o n  lock  a l l  t u p l e s  examined, both r e a l  and phantom ( i . e .  i t  be  

w e l l  formed). The s e t  of a l l  p o s s i b l e  Napa accounts  is  t h e  Car t e s i an  

product:  ( ~ a ~ a )  x INTEGERS x INTEGERS. This  s e t  is i n f i n i t e  so  t h e r e  is 

l i t t l e  hope of locking  each i n d i v i d u a l  phantom. Rather  i t  seems n a t u r a l  

t o  l ock  t h e  s e t  of t u p l e s  and phantoms s a t i s f y i n g  t h e  p red ica t e :  Location 

= Napa. More gene ra l ly ,  i f  ? is a p r e d i c a t e  on t u p l e s  t of r e l a t i o n  R 

then P d e f i n e s  t h e  set S where t eS  i f f  P ( t ) .  Transac t ions  w i l l  be allowed 

t o  lock  any subse t  of a  r e l a t i o n  s p e c i f i e d  by such a p r e d i c a t e .  We only  

r e q u i r e  t h a t  t h e  t r u t h  o r  f a l s i t y  of P depend only  on t .  

I f  such p r e d i c a t e s  a r e  used a s  t h e  u n i t  of locking  then a list of 

l ocks  becomes a (much sma l l e r )  l ist of s e t s  i d e n t i f i e d  by t h e i r  p r e d i c a t e s .  

Locking t h e  e n t i r e  r e l a t i o n  is achieved by us ing  t h e  p r e d i c a t e  'TRUE' 

whi le  l ock ing  t h e  t u p l e  (NAPA, 32123, 1050) is achieved by t h e  p r e d i c a t e  

t = (NAPA, 32123, 1050). However, one cannot d i r e c t l y  apply t h e  

formula t ion  of locking  and cons is tency  i n  t h e  previous  s e c t i o n ,  because 

e n t i t i e s  were assumed t o  be uniquely named o b j e c t s .  I n  t h i s  s e c t i o n  w e  

extend t h e  r e s u l t s  on schedul ing  and coos is tency  t o  apply t o  l ocks  on 

poss ib ly  over lapping  sets of t u p l e s .  



F i r s t  of a l l ,  i f  p r e d i c a t e s  a r e  a r b i t r a r i l y  complex t h e r e  is l i t t l e  

hope of dec id ing  whether two d i s t i n c t  p r e d i c a t e s  d e f i n e  overlapping sets 

of t u p l e s  (and hence whether they c o n f l i c t  a s  l o c k s ) .  I n  f a c t  t h e  problem 

is r e c u r s i v e l y  unsolvable  (Kleene 151 1, s o  i t  is not  c l e a r  how t o  make 

p r e d i c a t e  l ocks  "work." A method f o r  schedul ing  of  p r e d i c a t e  locks  

is  in t roduced f i r s t  by example and then  more a b s t r a c t l y .  

I n  t h e  sample d a t a  base  of F igure  7 suppose t h a t  t r a n s a c t i o n  T is 
1 

i n t e r e s t e d  i n  a l l  t u p l e s  i n  ACCOUNTS f o r  which Location = Napa. A 

t r a n s a c t i o n  T2 s t a r t s  dur ing  t h e  process ing  of T T2 is  i n t e r e s t e d  i n  1' 

a l l  t u p l e s  i n  ACCOUNTS wi th  Location = Sonona. When T1 d e c l a r e s  i ts  i n t e n t  

t o  acces s  Napa accounts  by execut ing  t h e  accion:  

T1 LOCK ACCOUNTS: Location = Napa, 

t h i s  p r e d i c a t e  lock  is a s s o c i a t e d  wi th  T1 and wi th  t h e  ACCOUNTS r e l a t i o n .  

L a t e r  when T2 dec la ros  i ts  i n t e n t  t o  acces s  Sonoma accounts  by execut ing  

t h e  ac t ion :  

T2 LOCK ACCOUNTS : Location = Sonoma 

t h i s  p r e d i c a t e  l ock  is a l s o  a s s o c i a t e d  wi th  t h e  ACCOUNTS r e l a t i o n .  Before 

T can be granted  acces s  t o  t h e  Sonoma accounts ,  t h e  lock  c o n t r o l l e r  must 2 

check t h a t  TZ1s  lock  does no t  c o n f l i c t  wi th  locks  he ld  by o t h e r  

t r a n s a c t i o n s .  I n  t h e  case  above, t h e  c o n t r o l l e r  must dec ide  t h a t  t h e  

p r e d i c a t e s  Location = Napa and Location = Sonoma a r e  mutual ly exc lus ive .  

I n  gene ra l ,  t h e  c o n t r o l l e r  n c s t  compare t h e  reques ted  p r e d i c a t e  lock  

a g a i n s t  t h e  ou t s t and ing  p r e d i c a t e  l ocks  of o t h e r  t r a n s a c t i o n s  on t h i s  

r e l z t i o n .  I f  two such p r e d i c a t e s  a r e  mutual ly s a t i s f i a b l e  ( i . e .  have an 



existing or phantom tuple in common) then there is conflict and the request 

must wait or preempt. 

That is more or less how predicate locks work. It does not explain 

how sharing works and finesses the fact that predicate satisfiability is 

recursively unsolvable. In order to give a more complete explanation of 

how predicate locks "work", it is necessary to define how an action is 

allowed or prohibited by a lock and how two locks may conflict. A 

particular action on a single tuple may be denoted by: 

meaning that field f of tuple t of relation R is accessed in node ai. 
i 

Two modes are distinguished here: 

a = read allows sharing with other readers, i 

while ai = write requires an exclusive lock on f (update, insert, and i 

delete are all examples of write access). 

The action reads those fields fi of tuple t such that a -read and it writes 
i 

those fields f of tuple t such that ai=write. Fields which are not i 

mentioned are not acted upon. 

Reading the balance of account number 32123 would be an action: 

(ACCOUNTS, (Napa, 32123,1050), ( (Number ,read), (aalance,read) 1) 



Note t h a t  t h i s  a c t i o n  does not  read  t h e  l o c a t i o n  f i e l d .  An update of t h e  

balance by 50 d o l l a r s  would be one a c t i o n  but  involves  two t u p l e s ,  f i r s t  

(ACCOUNTS, (Napa, 32123,1050), { (Number , r e a d ) ,  (Balance, w r i t e )  1 )  

and a l s o  

because both t u p l e s  a r e  w r i t t e n  by t h e  atomic update ope ra t ion  (one is 

"deleted" and t h e  o t h e r  " in se r t ed" ) .  Fu r the r ,  cons is tency  r e q u i r e s  t h a t  

t h e  Napa ASSETS t u p l e  be updated by 50 d o l l a r s .  

I n  t h e  model of a c t i o n s  descr ibed  above, t h e  a c t i o n  s p e c i f i e s  a  t u p l e  

by provid ing  t h e  va lues  of a l l  f i e l d s  of t h e  t u p l e .  Although t h i s  is 

formal ly  c o r r e c t ,  t h e  examples above show t h a t  i t  is inappropr i a t e  f o r  

t h e  context  a t  hand. The f i r s t  example wants t o  read t h e  ba lance  of 

account number 32123 and c a r e s  noth ing  about t h e  l o c a t i o n  o f  t h e  account .  

Yet t h e  model r e q u i r e s  t h a t  t h e  a c t i o n  s p e c i f y  both t h e  ba lance  and 

l o c a t i o n  of t h e  account a s  w e l l  a s  t h e  account number. S i m i l a r l y  t h e  

second t r a n s a c t i o n  wants t o  read t h e  ba lance  and l o c a t i o n  of account number 

32123 and then  add 50 d o l l a r s  t o  t h e  ba lance  of t h e  account and t o  t h e  

a s s e t s  of t h e  accoun t ' s  l o c a t i o n .  

I f  one cons ide r s  t h e  problem of reading  t h e  Napa t u p l e  of ASSETS 

wi thout  a - p r i o r i  knowing i t s  c u r r e n t  ba lance  t h e  problem and i ts  s o l u t i o n  



becomes q u i t e  c l e a r .  The concept of a c t i o n  must be genera l ized  t o  t h e  

concept of acces s  which a c t s  on a l l  t u p l e s  s a t i s f y i n g  a given p r e d i c a t e .  

This  no t ion  is  c o n s i s t e n t  wi th  t h e  idea  of a s s o c i a t i v e  address ing  which 

r e t u r n s  t h e  s e t  of a l l  t u p l e s  w i th  des ignated  va lues  i n  given f i e l d s .  To 

access  account  number 32123 reading  t h e  ba lance ,  one s p e c i f i e s  t h e  access :  

(ACCOUNTS, Number = 32123, (Number, r e a d ) ,  (Balance, w r i t e )  1) 

which r e t u r n s  e i t h e r  a s i n g l e  t u p l e  o r  no t u p l e s  s i n c e  account numbers 

a r e  unique. An access  which r eads  t h e  l o c a t i o n  of and updates t he  ba lance  

of account  number 32123 would be denoted by: 

(ACCOUNTS, Number = 32123, ( (Location,  r e a d ) ,  

(Number, read) , 

(Balance, w r i t e )  1) . 

Consistency r e q u i r e s  t h a t  such an acces s  be followed by an access  

(ASSETS, Location = 'Napa' , ( (Locat ion ,  r e a d ) ,  

(Balance, w r i t e )  1 )  

s i n c e  w e  r e q u i r e  t h a t  t h e  a s s e t s  be t h e  sum of t h e  ba lances  a t  each 

loca t ion .  

An access  t o  f i n d  t h e  numbers of a l l  Napa accounts  would r e t u r n  a s e t  

of t u p l e s  and would b e  denoted by: 



(ACCOUNTS, Location = ' ~ a p a '  , C (Location,  read)  , 

(Number, read)  1) . 

To proceed more formal ly  we need t h e  fo l lowing d e f i n i t i o n s .  I f  t h e  

r e l a t i o n  R is drawn from t h e  Car t e s i an  product  of sets S1, S 2 , - S  
n  n '  

n  
( R c  x S ) then  any p r e d i c a t e  P def ined  on a l l  t u p l e s  ( s l , * * * , s n )  & 

x S i  is1 i 
id 

is an admiss ib l e  p r e d i c a t e  -- f o r  R.  We ask  t h a t  P  be an e f f e c t i v e  t e s t :  

given a  t u p l e  t ,  P ( t )  = TRUE o r  P ( t )  = FALSE. 

A p a r t i c u l a r  acces s  on r e l a t i o n  R is  denoted by: 

where P is an admiss ib le  p r e d i c a t e .  Such an acces s  is equ iva len t  t o  t h e  

(poss ib ly  i n f i n i t e )  s e t  of a c t i o n s  

R ,  t ,  , a )  1 )  where P ( t )  = TRUE, and where t ranges over  

t h e  Car t e s i an  product  underlying R .  

I n  p a r t i c u l a r  i t  r eads  a l l  t u p l e - f i e l d  p a i r s  ( t , f i )  read  by such a c t i o n s  

and w r i t e s  a l l  t u p l e - f i e l d  p a i r s  w r i t t e n  by such a c t i o n s .  A p r e d i c a t e  

l ock  on r e l a t i o n  R is  denoted by: - 



where P is an admiss ib le  p r e d i c a t e  f o r  R and each f i  is  a f i e l d  locked 

f o r  access  mode a It i s  f u r t h e r  r equ i r ed  t h a t  i f  t h e  va lue  of P depends 
i' 

upon t h e  v a l u e  of f i e l d  f  t hen  f = f  f o r  some i = l , * * * , n  ( s i n c e  t h e  
i 

p r e d i c a t e  "reads" t h e s e  f i e l d s ) .  

An a c t i o n  (R, t { ( f i ,  a  is  s a i d  t o  s a t i s f y  p r e d i c a t e  l ock  

(lO.b) P '  ( t )  = TRUE 

(1O.c) f o r e a c h i - 1 , - * * , n ,  t h e r e i s a j  : ( f i ,  a i ) * ( f ; ,  a;) 

o r  ( f i  = f '  and a = read and a '  = w r i t e ) .  
j i 1 

I n  t h e  second c l a u s e  of (10.c) w e  a r e  assuming t h a t  w r i t e  acces s  impl ies  

read and w r i t e  access .  

The a c t i o n  (R, t ,  , ai) I:31) c o n f l i c t s  wi th  p r e d i c a t e  l ock  

R '  , P' , f ,  a;) I:=1) i f  

(1 l . a )  R = R t  

(1 l . b )  P 1 ( t )  = TRUE 

(11. c )  f o r  some i, j : 

f i  = f '  and e i t h e r  a  = w r i t e  o r  a '  = w r i t e .  
1 i j 

To g i v e  an example, t h e  p r e d i c a t e  lock:  

L = (ACCOUNTS, Locat ion = Napa, { (Location,  read)  , (Balance, read)  I )  

is s a t i s f i e d  by t h e  a c t i o n  



) 
(ACCOUNTS, (Napa, 3213, 1050), { (Location,  read)  , (Balance, read)  1) 

and is s a t i s f i e d  and c o n f l i c t s  w i t h  t h e  ac t ion :  

(ACCOUNTS, (Napa, 3213, 1050),  { (Locat ion ,  w r i t e ) ) )  

S a t i s f i a b i l i t y  and c o n f l i c t  a r e  def ined  analogously f o r  accesses .  

Access A = (R, P ,  { ( f i ,  a i ) )  s a t i s f i e s  p r e d i c a t e  lock  L i f  and only 

i f  f o r  each t u p l e  t i n  t h e  C a r t e s i a n  product  under ly ing  R,  i f  P(t) i s  t r u e  

then a c t i o n  (R, t ,  { ( i t ,  a ) )  s a t i s f i e s  L .  Access A c o n f l i c t s  wi th  

L i f  f o r  some t u p l e  t i n  t h e  Car t e s i an  product  under ly ing  R, P ( t )  is t r u e  

and a c t i o n  (R, t ,  { ( t i ,  a )  1 )  con£ l i c t s  w i t h  L .  

To g ive  an example, t h e  acces s  which moves account /I23175 from Napa 

t o  Sonoma would be  denoted: 

(ACCOUNTS, (Location = 'Napat v Locaticn = 'Sonoma') 

A Number = 23175, 

{ (Location,  w r i t e )  , (Num'oer , read)  1)  . 

This  acces s  would r e q u i r e  t h a t  t h e  t r a n s a c t i o n  have a l ock  on t h e  ACCOUNTS 

r e l a t i o n  of t h e  form: 



where Location and Number a r e  included among t h e  f  w r i t e  access  is 
i' 

allowed t o  Location and read  acces s  i s  allowed t o  Number. Fu r the r  t h e  

p r e d i c a t e  P must be  s a t i s f i e d  by t h e  t u p l e s :  

(Napa, 23175, *) 

and 

(Sonoma, 23175, *) . 

That  is ,  t h e  lock  p r e d i c a t e  P must cover both  t h e  o ld  and new va lues .  

Note t h a t  we r e q u i r e  an acces s  t o  be covered by a s i n g l e  p r e d i c a t e  

lock. I f  one holds  two l ocks ,  one f o r  Napa and another  f o r  Sonoma, t hen  

t h e  acces s  would not  s a t i s f y  e i t h e r  one and so would no t  be allowed. It 

is p o s s i b l e  t o  r e l a x  t h i s  r e s t r i c t i o n  s o  t h a t  an acces s  is allowed i f  it 

s a t i s f i e s  t h e  union of t h e  locks  he ld  by a  t r a n s a c t i o n .  

Two p r e d i c a t e  l ocks  a r e  s a i d  t o  c o n f l i c t  i f  t h e r e  is some a c t i o n  which 

s a t i s f i e s  one of them and c o n f l i c t s  w i th  t h e  o t h e r .  That is, i f  one lock  

al lows an acces s  which is p r o h i b i t e d  by t h e  o t h e r  lock.  

Given t h e s e  d e f i n i t i o n s ,  t h e  no t ions  of the previous s e c t i o n  g e n e r a l i z e  

a s  fol lows.  A t r a n s a c t i o n  is  a  sequence of ( t r a n s a c t i o n  name, acces s )  p a i r s .  

A t r a n s a c t i o n  is w e l l  formed i f  each acces s  i t  makes s a t i s f i e s  some 

p r e d i c a t e  l ock  i t  holds  through t h a t  s t e p .  A t r a n s a c t i o n  is two phase i f  

i t  does not  r eques t  p r e d i c a t e  l ocks  a f t e r  r e l e a s i n g  a p r e d i c a t e  lock.  



A schedule  f o r  a  set  of t r a n s a c t i o n s  is any merging of t h e  composite 

sequences. The dependency r e l a t i o n  is  def ined  by choosing ( f i e l d ,  t u p l e ,  

r e l a t i o n )  t r i p l e s  a s  t h e  e n t i t i e s .  Let  E be t h e  s e t  of a l l  such e n t i t i e s .  

The no t ion  of an acces s  reading  o r  w r i t i n g  such e n t i t i e s  has  a l r eady  been 

in t roduced.  I f  S is a  schedule  f o r  t h e  set of t r a n s a c t i o n s  T, then  t h e  

dependency s e t  of S is  def ined  t o  be  t h e  s e t  of t r i p l e s :  

such t h a t  f o r  some i n t e g e r s  i<j:  

(12.1) S ( i )  = (T , A  ) and A reads  o r  w r i t e s  e n t i t y  e ,  1 1  1 

(12.2) S (j = (T ,A ) and A reads  o r  w r i t e s  e n t i t y  e  2 2 2 

and no t  both  A and A2 simply reads  e ,  1 

(12.3) f o r  any k  between i and j ,  i f  S(k)  = (T A ) 3' 3 

then  A3 does not w r i t e  e n t i t y  e .  

Since i n f i n i t e  sets of t u p l e s  a r e  involved,  s a t i s f i a b i l i t y  and c o n f l i c t  

f o r  acces ses  and p r e d i c a t e  l ocks  may no t  be dec idable .  The i n t r o d u c t i o n  

of s imple p r e d i c a t e s  l a t e r  i n  t h i s  s e c t i o n  w i l l  g ive  a  dec idable  subse t  

of p o s s i b l e  acces s  p r e d i c a t e s  and lock  p r e d i c a t e s .  

To implement a r b i t r a r y  p r e d i c a t e  l ocks ,  a s s o c i a t e  w i th  t h e  d a t a  base 

a  t a b l e  c a l l e d  LOCK which is a  b ina ry  r e l a t i o n  between t r a n s a c t i o n s  and 

p r e d i c a t e  l ocks  ( see  Figure  8 ) .  



I (ACCOUNTS, Location-Napa I 

LOCK 

Transac t ion  P r e d i c a t e  Lock 

T1 

I C (Number, r e a d ) ,  

{ (Location,  read)  

(Balance, w r i t e )  1 )  

2 

I I (Balance, read) 1) I 

(ACCOUNTS, Balance < 500, 

F igure  8 .  An example of t h e  LOCK t a b l e .  

The l e g a l  l ock  scheduler  func t ions  a s  fo l lows.  Transac t ions  

a r e  presumed t o  be two phase and w e l l  formed; t h e  scheduler  enforces  t h i s  

r u l e .  Any growing t r a n s a c t i o n  may r eques t  any p r e d i c a t e  lock.  When t h i s  

happens, t h e  scheduler  t r i e s  t o  e n t e r  t h e  t r a n s a c t i o n  name and p r e d i c a t e  

lock  i n t o  t h e  LOCK t a b l e .  I f  t h e  p r e d i c a t e  lock  does not  c o n f l i c t  wi th  

any o t h e r  p r e d i c a t e  lock  i n  t h e  t a b l e ,  i t  may be en te red  and granted 

immediately. I f  t h e  p r e d i c a t e  l ock  does c o n f l i c t  w i th  one o r  more locks  

he ld  by o t h e r  t r a n s a c t i o n s  then  t h e  r eques to r  must wai t  f o r  t h e  o t h e r  

l ocks  t o  be r e l eased  o r  he must preempt t h e  locks  ( o r  be preempted). A s  

commented e a r l i e r ,  t h i s  is  a  schedul ing  dec i s ion  and not  t h e  proper t o p i c  

of t h i s  paper.  Any t r a n s a c t i o n  may r e l e a s e  any p r e d i c a t e  lock  belonging 

t o  i t .  This  d e l e t e s  t h e  lock  from LOCK and marks t h e  t r a n s a c t i o n  a s  

sh r ink ing .  I f  o t h e r  t r a n s a c t i o n s  a r e  wa i t ing  f o r  t u p l e s  r e l eased  by t h i s  

l ock  then they  may be s t a r t e d .  Each time a t r a n s a c t i o n  T* makes an a c t i o n  

o r  access  A t h e  LOCK t a b l e  is examined t o  f i a d  t h e  s e t :  



YES = ( (T ,  L)  E L O C K ~ A  s a t i s f i e s  L and T t T*) 

YES is a l i s t  of a l l  t h e  reasons  T* should be allowed t o  make t h e  acces s .  

I f  YES is  empty then  T* is n o t  w e l l  formed and i t  should b e  given an e r r o r .  

It is c l e a r  t h a t  t h e  scheduler  descr ibed  above has  t h e  p r o p e r t i e s :  

(13.1) A l l  t r a n s a c t i o n s  a r e  w e l l  formed and two phase. 

(13.2) I f  t r a n s a c t i o n  T locks  p r e d i c a t e  P on r e l a t i o n  R ,  then f o r  

any t u p l e  t i n  t h e  Car t e s i an  product  underlying R such t h a t  

P(t)=TRUE, no o t h e r  t r a n s a c t i o n  may i n s e r t ,  d e l e t e  o r  modify 

t h e  locked f i e l d s  of t u n t i l  T r e l e a s e s  t h e  p r e d i c a t e  lock.  

That is p r e d i c a t e  locks  s o l v e  t h e  problem of phantoms, - -9 

thereby provid ing  cons is tency .  

So t h e  schedu le r  desc r ibed  produces l e g a l  schedules  and by t h e  r e s u l t s  of 

t h e  previous  s e c t i o n ,  g ives  each t r a n s a c t i o n  a c o n s i s t e n t  view of t h e  

s t a t e  of t h e  system. 

Thus f a r  we have ignored  t h e  d e t a i l s  of how t h e  scheduler  dec ides  

whether two locks  c o n f l i c t .  I n  gene ra l  t h i s  is  a r e c u r s i v e l y  unsolvable 

problem (even i f  p r e d i c a t e s  a r e  r e s t r i c t e d  t o  us ing  t h e  a r i t h m e t i c  

ope ra to r s  +, *, -, + a s  shown by Presburger  [ 5 ] ) .  The problem then is t o  

f i n d  an  i n t e r e s t i n g  c l a s s  of p r e d i c a t e s  f o r  which i t  is e a s i l y  dec idable  

whether two p r e d i c a t e s  "overlap". We propose t h e  fo l lowing simple c l a s s  

of p r e d i c a t e s .  



A s imple  p r e d i c a t e  is any Boolean combination of atomic p r e d i c a t e s .  

Atomic p r e d i c a t e s  have t h e  form: 

where cons t an t  is  a s t r i n g  o r  number and f i e l d  name is t h e  name of some 

f i e l d  of t h e  r e l a t i o n .  For example 

( (Locat ion  = 'Napal V Location = 'Santa  R o s a ' ) ~  

((Balance < 200) A (Balance > 1 0 ) )  

is a s imple p r e d i c a t e  w i th  fou r  atomic p r e d i c a t e s .  

Again, Presburger  showed a d e c i s i o n  procedure f o r  a c l a s s  of p r e d i c a t e s  

s l i g h t l y  more gene ra l  than  simple p r e d i c a t e s  (he allowed +, -, <, =, *, 
>, mod and allowed any boolean combination of t hese  ope ra to r s  and operands 

on i n t e g e r s . )  However h i s  dec i s ion  procedure is  much more complicated than  

t h e  procedure f o r  t h i s  s imple set of p r e d i c a t e s .  

To dec ide  whether two p r e d i c a t e  l ocks  L and L' c o n f l i c t  is a f a i r l y  

n 
s imple ma t t e r .  Suppose L a (8, P, {(fi, ai) and that  L' = (R' , P' , 

i (f;, a;) a r e  two p r e d i c a t e  l ocks .  Then 



(14.a) i f  R # R '  t h e r e  is no c o n f l i c t  as t h e  locks apply t o  

d i f f e r e n t  r e l a t i o n s .  

(14.b) i f  the re  i s  no f i e l d  f  such t h a t  fi=f and f ' = f  and e i t h e r  
1 

a w r i t e  o r  a ' w r i t e  then the re  is no c o n f l i c t .  i 1 
(14.c) otherwise the re  w i l l  be no c o n f l i c t  only i f  the re  is no 

tup le  t such t h a t  PAP' ( t )  is TRUE. 

Similar ly ,  t o  decide whether access A = R , P I ,  , a;) I t l )  

c o n f l i c t s  wi th  lock L above c o n s i s t s  of t e s t i n g  ( l 4 . a ) ,  (14.b) and (14.c) 

above f o r  access A .  A w i l l  s a t i s f y  L i f  i t  passes the  t e s t s  

(15.a) R = R ' ,  and 

(15.b) f o r  each i = 1, ..., m the re  is a  j such t h a t  f '  = f  and a '  
i j i 

= read o r  a  = w r i t e ,  and 
j 

(1 .5 .~)  F o r a n y t u p l e t ,  i f  P 1 ( t )  i s T R U E t h e n P ( t )  isTRUE ( i . e .  

P' => P o r  equivalent ly  P' A - P is not s a t i s f i a b l e ) .  

Thus t h e  c o n f l i c t  - s a t i s f i a b i l i t y  quest ions  f o r  both accesses and locks 

have been reduced t o  t h e  question of deciding whether a  p a r t i c u l a r  simple 

p red ica te  is s a t i s f i a b l e .  But simple p red ica tes  a r e  defined t o  have an 

easy decis ion procedure. 

The procedure is t o  organize PAP' of case (c) i n t o  d i s junc t ive  n o r m 1  

form (Kleene [ 5 ] )  and then f o r  aach d i s j u n c t  see  whether i t  is s a t i s f i a b l e  

o r  not .  Each such d i s junc t  w i l l  be a conjunct of atomic predicates  and 

so t h i s  i s  t r i v i a l .  Consider the  example: 



P = (Location = 'Napa' v Location a 'Santa Rosa') A 

(Balance < 500 A Balance > 10) 

P' = Location = 'Napa' A Balance = 700. 

Then the  d i s junc t ive  normal form of P A P' is 

Location = 'Napa' A Balance < 500 A Balance > 10 A Balance = 700 

V Location = 'Santa ~ o s a '  A Location 'Napa' A Balance < 500 

A Balance > 10 A Balance = 700 

The f i r s t  d i s j u n c t  is not  s a t i s f i e d  because Balance = 700 con t rad ic t s  

Balance < 500 while t h e  second has t h e  added contradic t ion t h a t  Location 

= 'Napa' and Location = 'Santa Rosa'. So P A P '  is  not s a t i s f i a b l e  and 

the re  is no c o n f l i c t .  

To give an example of c o n f l i c t ,  suppose 

P = (Location = 'Xapa') 

and P '  = (Balance > 500) 

Then P A P' is s a t i s f i a b l e  by t h e  tup le  (Napa, 0 ,  501) and so the  

predicates  "overlap1' and allow c o n f l i c t .  

In summary then, i f  only simple predicates  a r e  allowed i n  accesses 

and p red ica te  locks then p red ica te  locks can be scheduled i n  the  same way 

ordinary locks a r e  scheduled. 

As mentioned belcore, p red ica te  locks solve  the  problem of phantom 

records. When coupled with the  r e s u l t s  on consistency,  predicate  locks 



can be used to construct consistent legal schedulers. The degenerate form 

of predicates, locking entire relations wich the predicate which is always 

TIWE or locking a particular tuple by the predicate which is only TRUE 

for that tuple gives the more conventional forms of locking. If the 

desired set is not describable by a simple predicate then any 'larger' 

simple predicate (i.e. a simple predicate which is implied by the desired 

predicate) will be a suitable predicate for the lock. If only simple 

predicates are used then predicate locks can he legally scheduled. 

There are simple analogs to predicate locks in existing data-base 

systems. For example in hierarchial systems such as IMS (IBM 171) it is 

common to lock a subtree of the hierarchy. This subtree is a logical set 

of records (i.e. those with a given parent). Similarly, in a network 

model it is desirable to lock all members of a "set" in the DBTG [6] sense 

although DBTG lacks such a facility. 

Lastly we observe that locking is a very dynamic form of authorization. 

All the techniques we have described (predicate locks, simple predicates, 

the YES set, . . . )  apply to the problem of doing value dependent 

authorization of access to data base records at the granularity of a field. 

4. Summary 

Section 2 introduced a very simple data model and discussed the notions 

of transaction, consistency and locking. It argued that consistency 

requires that transactions be two phase and well formed and conversely 



t h a t  i f  a l l  t r a n s a c t i o n s  a r e  w e l l  formed and two phase t hen  any l e g a l  

schedule  is c o n s i s t e n t .  

Sec t ion  3 w a s  couched i n  terms of t h e  r e l a t i o n a l  model of d a t a .  It 

desc r ibed  t h e  problems t h a t  a s s o c i a t i v e  add re s s ing  in t roduces :  namely 

phantom reco rds  e n t e r i n g  and l e a v i n g  t h e  s e t  of r eco rds  locked by a  

t r a n s a c t i o n .  P r e d i c a t e  l ocks  a r e  proposed a s  a  s o l u t i o n  t o  t h i s  problem. 

To schedule  and en fo rce  t h e s e  l ocks ,  p r e d i c a t e s  a r e  r e s t r i c t e d  t o  t h e  

c l a s s  of s imple  p r e d i c a t e s .  It is  p o s s i b l e  t o  schedule  s imple  p r e d i c a t e  

l ocks  i n  t h e  same way "ordinary" l ocks  a r e  scheduled.  
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FOOTNOTE 

n 
The sequence S=s - *  , Sn is denoted (si) i=l. 

1' 
The subsequence of 

n 
elements satisfying condition C is denoted (sics I c(si)) i=l by analogy 
with the notation for sets. The ith element of S is denoted by S(i). 


