RJ 1487 (#22786)
December 30, 1974
Computer Science

ON THE NOTIONS OF CONSISTENCY AND PREDICATE LOCKS
IN A DATA BASE SYSTEM

K. P. Eswaran
J. N. Gray
R. A, Lorie
I. L. Traiger

IBM Research Laboratory
San Jose, Califormia 95193

ABSTRACT: Locking protocols in a shared data base are sub-
stantially different from those common to operating systems.
In data base systems, users access shared data under the
assumption that the data satisfies certain consistency con-
straints. This paper formally defines the concepts of
transaction, consistency and schedule and shows that consis-
tency implies that a transaction cannot request new locks
after rsleasing a lock. Then it is argued that a transaction
needs to lock a logical rather than a pnysical subset of the
data base. These subsets are specified by predlicates. An
implementation of predicate locks which satisfies the consis~-
tency condition is suggested. This paper is not concerned
with resource scheduling, preemption, backup or deadlock
(although these topics are mentioned).

1. Introduction

Much work has been done on the problem of sharing rescurces in an
operating system. However, there are basic differences between the
requirements of an integrated data base system and those of an operating
system. The underlying mechanism, locking, is the same so the issues of
scheduling, preemption, and deadlock persist; but the unit of locking is
fundamentally different. While fairly static locking schemes are
acceptable in a conventional operating system, a particular data base

transaction may lock an arbitrary logical subset of the data base.

Transactions lock such subsets in order to obtain a consistent view
of the system state. Asscciated with the data base are a large number of
semantic constraints. Transactions expect the state to satisfy these
constraints and in turn are not allowed to leave the data base in an
inconsistent state. The notion of consistency is a novel aspect of the
transaction model presented here. Yet the whole purpose of locking is to
insure that each transaction sees a consistent image of the state and so
the formulation of this notion is essential to a realistic model of the

locking problem.

The paper begins in general terms introducing the concepts of entity,
action, transaction, schedule, consistency, locking, deadlock, and
preemption. The discussion of this section is applicable to data base
systems and to more conventicnal environmenzs such as operating systems.

The principle result is that consistency implies that a transaction must

be constructed to have a growing and a shrinking phase. During the growing
phase it can request new locks. However, once a lock has been released,

the transaction cannot request a new one.

After this general discussion, a second section considers the
peculiarities of locking in a data base system. A phenomenon called
phantomg seems to imply that one must lock logical subsets of the data
base rather than locking individual records present in the data base. An
implementation of logical locks satisfying the requirements of consistency
is then proposed. For definiteness, this section is couched in terms of

a relational model of data.

2. General Properties of Locking

For gimplicity we first comsider a system with a fixed set of named
resources called entities., Each entity has a name and a value. A novel
aspect of the model is that we recognize that there is a set of assertions

about the system state. Examples of such assertions are:

. "A" 1s equal to "P"
. "C'" is the count of the free cells in "D"
. “E" is an index for "F"

Most such assertions are mnever explicitly stated in designing or using a
system and yet all programs and users depend on the correctness of these

assertions whenever they deal with the system state.

The assertions above are quite gimple; however, in practice assertions

become extremely complex. A complete set of assertions about a system

would no doubt be as large as the system itself. In practice there is
little reason for explicitly enumerating all such assertions but for the
purposes of this discussion we presume that a set of assertions, hereafter

called comsistency conmstraints, is explicitly defined and we say that the

state is congistent if the contents of the entities of the state satisfy

all the consistency constraints.

The system state is not static. It is continually undergoing changes
due to actions performed by processes on the entities. These modifications
usually break neatly inte independent sequences of actions called
transactions. In this paper it is assumed that all transactions, when
executed alone, transform the system state from a consistent state to a
new consistent state; that is transactions preserve consistency. One
might think that consistency could be enforced at each action but this is
not true. Transactions may need to temporarily violate the consistency
of the system state while modifying it. For example, in moving money from
one bank account to another there will be an instant during which one
account has been debited and the second not yet credited. This violates
a consistency constraint that the number of dollars in the system is
constant. To take a more abstract and complete example consider the two

transactions Tl and T2 of Figure 1:

Tl: A <« A+ 100 T2: A + A * 2

B « B+ 100 B « B * 2

Figure 1. Two Transactionms.

Suppose that the only assertion about the system state is that A = B.
Although when considered alone, both Tl and T2 conserve consistency they

have the following properties:

(1.a) temporary inconsistency: After the first step of Tl or T2,

A # B and so the sta- 1is inconsistent.
(1.b) conflict: TIf transaction T2 is scheduled to run between
the first and second steps of Tl then the end result is A

2 B which is an inconsistent state.

The fact that Tl run after T2 may not produce the same result as T2
run after Tl is not an issue of consistency. Transactions are not
commutative. We do not require determinism (i.e. all schedules produce
the same state); we require only that all schedules preserve consistency.

This is a major departure from most previous work on concurrency.

The problem of temporary inconsistency is inherent and implies that
enforcement of some consistency assertions cannot be done before the end
of a transaction. Conflict on the other hand is not inherent and is

undesirable. Yet another desirable property is reproducibility. Even if

there are no consistency constraints it 1is desirable in explaining the

operation of the system to be able to say that transactions always appear

to be run in some sequential order.

If transactions are run one after another with no concurrency then
the problem of conflict never arises and reproducibility is guaranteed.

Each transaction starts in a consistent state and, since transactioms

preserve consistency, each transaction ends in a consistent state. Any
inconsistencies seen by an in-progress transaction are due to changes it
has made to the state. If transactions were instantaneous, there would
be no penalty for a serial schedule for transactions., However,
transactions are not instantaneous and substantial performance gains can

be attained by running several transactions in parallel.

In most cases a particular transaction depends only on a small part
of the system state. Therefore, one technique for assuring consistency
is to partition entities into disjoint classes, such that each consistency
constraint falls within a single class. One can then schedule transactions
concurrently only if they use distinct classes of entities. Transactions
using common parts of the state can still be scheduled serially. If such
a policy is adopted then each transaction will see a consistent version
of the state. Unfortunately, it is usually impossible to examine a
transaction and decide exactly which subset of the state it will use. For
this reason the 'partition" scheme described above is abandoned in favor
of a more flexible scheme where individual entities are locked dynamically.
In this system, transactions lock entities for two reasons: they want to
prevent conflict with other transactions (i.e. lock out changes made by
other transactions) and they may want to temporarily suspend consistency

assertions on the locked entities.

For simplicity, this section ignores the distinction between shared

and exclusive access to an entity. It assumes that each action (other

than lock and unlock) modifies the entity. The generalization of this

section to the case of shared access 1is straightforward.

If transaction Tl attempts to lock entity ey

by transaction TZ then either Tl must wait for TZ to unlock e, or Tl must

preempt ey from TZ. If Tl waits and then T2 attempts to lock an entity

which 1s already locked

e, locked by Tl then Tz must wait or preempt. If both Tl and T2 wait,
then deadlock arises. The question of when to wait and when to preempt
is not the subject of this paper. The paper by Chamberlin, Boyce and
Traiger [1] presents a scheme for deciding which transaction to preempt.

When a resource is preempted, the preempted transaction must be backed

up.

Unlike operating systems where (task) backup 1s quite uncommon, data
base systems usually maintain a log of all changes made by each
transaction. This log forms an audit trail as well as being used for
backup. Backup arises not only from deadlock - preemption but also from
protection violations, hardware errors or human error. One backup
procedure for a transaction T 1is to undo all of its updates as recorded
in the log. Then all entities locked by T may be unlocked and T may be
reset to its initial state., As Davies and Bjork [2,3] point out, this
procedure may not work correctly after T has unlocked (committed) any
entities which it has modified. This implies that (update) locks should

be held to the end of a transactiocn.

There is a second reason for wanting transactions to unlock entities
as late as possible, namely consistency. As pointed out earlier, each
transaction wants to see a consistent view of the system state. In order
for locks to assure this, a transaction must not request a new lock after
releasing some lock. To state and prove this result we must proceed much

more formally.

Two actions lock and unlock are introduced. A transaction is said to

be well formed 1if
(2.a) It locks an entity before otherwise acting on it.
and (2.bH) It ends with no entities locked.

Note that a tramsaction may lock and unleck the same entity several times.

More formally, a transaction is a sequence (see footnote): T = ((T,

a, ei))2=l of n steps where T is the transaction name, a, is the action

i

at step i and e, is the entity acted upon at step i. A transaction has

locked entity e through step 1 if

(3.a) for some j £ 1, a, = lock and e, = e,

3 3

and (3.b) there is no k, j < k < i, such that a = unlock and e = e.

A transaction T is well formed if
(2.a") at each step 1 =1, ..., n, T has locked e through step i,
and (2.b') at step n, only e, is sti1ll locked by T and a = unlock.

Figure 2 shows two well formed versions of transaction Tl from Figure 1.

Tll:
T11 LOCK A
T1l1 A+ 100 -~ A
T11 UNLOCK A
T11 LOCK B
T11 B + 100 - B
T11 UNLOCK B

T12:
T12 LOCK A
T12 A+ 100 -~ A
T12 LOCK B
T12 UNLOCK A
T12 B+ 100 ~ B
T12 UNLOCK B

Figure 2. Two well formed versions of tramnsaction Tl of Figure 1.

Any sequence obtained by collating the actions of transactions

Tl,--',Tn is called a schedule for T °'-,Tn. If the schedule takes

l)

actions from one transaction at a time it is called a serial schedule. A

schedule for a set of transactions Tl,”--,Tn is any sequence S = ((Ti,

m
a;, ei))i=l such that for each j=1,+**,n

)esIT —Tj)il

That is, S contains T, and preserves its sequence of actions. Also, the

J
length of S is the sum of the lengths of the transactions Tl’...’Tn (i.e.
S contains only elements of Tl,"',Tn). A schedule S is serial if for

some permutation m, § = Tn(l) TW(Z) KR Tﬂ(n) (i.e. S is the concatenation
of the transactions). Figure 3 gives three examples of schedules for a

set of three transactions.

T,= ////// 1 2 }Tz

_ //

. DD
%// N\ ™

. .
\\N\N. ¢ I
__

L
NN

Figure 3. Schedules for three transactions Tl TZ T3

S2 is a serial schedule Each small

rectangle represents a transaction step.

10

Non-serial schedules run the risk of giving a transaction an
inconsistent view of the state. So we are particularly interested in
those schedules which are "equivalent" to serial schedules. The
equivalence between schedules hinges on the dependency relation of a

schedule.

The dependency relation induced by schedule S is a ternmary relation
on TXEXT (where T is the set of all transaction names in S and E is the
set of all entities) defined by (Tl’e’TZ) € DEP(S) 1iff for some 1<j:

(4.a) § = (+r", (T ,a5,8),0 0, (Tz,aj,e),"')

(46.b) There is no k such that i<k<j and e, = e

Informally, if (Tl, e, Tz) is in DEP(S) then entity e is an output of
Tl and an input of 'I'2 and Tl gives e to Tz. Again, we are assuming that
each action on an entity modifies the entity. If one distinguishes
"read-share' actions, then the dependency relation must be modified so
that entities which are only read by a transaction are not recorded as
outputs of the transaction (i.e. adjoin the clause "and a, or a

i 3

update action” to (4.a) and adjoin the clause 'and a, is an update action"

is an

to (4.b)).

Two schedules, Sl and 52 are equivalent 1if DEP(Sl) = DEP(SZ) and a
schedule Sl is consistent if it has an equivalent serial schedule. Figure

4 11lustrates these definitions. It shows three schedules, where Sl is

consistent, 52 is not consistent and S3 is serial (therefore consistent).

11

81 DEP(Sl) =
Tl A+ 100 ~» A {(Tl’ A’ TZ),(Tl’ B, Tz)}
T, A*2 =~ A
T, B+ 100~ B
T, B*2 -~ B
8y Tl A+ 100 - A DEP(SZ) =
T, A*2 -~ A {(Tl, A, Tz),(Tz, B, Tl)}
T, B *2 > B
T, B+ 100~ B
e =)
S; T, A+ 100~ A DnP(S3) DEP(Sl,
T, B+ 100~ B
T, A*2 > A
T, B*2 -~ B

Figure 4. Three schedules for Tl, T2 of Figure 1. Sl is equivalent

to serial schedule 83 and hence is consistent. 82 is

inconsistent.

It is very easy to explain and to reproduce the effect of a serial
schedule. The user thinks of a complete transaction as being an "atomic"
transformation of the state just as the scheduler thinks each action is
an atomic transformation of the state. He sees all the changes made by
transactions "before' his transaction starts and none of the changes of

transactions "after" his transaction completes (i.e. he sees a consistent

12

state). Any non-serial consistent schedule also has these properties.
This discussion vields the following important properties of serial
schedules:

(5.a) If T, and T, are any two transactions and e

1 2
entities then (T

1 and e, are any

1»€10T,) € DER(S) implies (T,,e,,T,) ¢
DEP(S).

More generally:

(5.b) The binary relation < on the set of transactions is defined

by: Tl<T2 if and only if (Tl,e,Tz) € DEP(S) for some entity
e. Then < is an acyclic relation which may be extended to
a total order of the transactioms.

Clearly any consistent schedule also has these properties. Conversely,

any schedule with property (5.b) is consistent.

We would like to further characterize those non-serial schedules which
are consistent. To do this it is necessary to consider the lock and unlock
actions of each step. Entity e is said to be locked by transaction T
through step k of schedule S if:

(6.a) There is a j < k such that S(j) = (T, lock, e).
and (6.b) There is no 3', j<j'<k such that S(j') = (T, unlock, e).
Schedule S is legal if for all k, if S(k) = (T, a, e) and e is locked by
T through step k, then

(7 e is not locked by any other transaction through step k.
Legal schedules observe the lock protocol that a tramsaction attempting
to lock an already~locked entity must wait. A schedule gives a history

of how transactions were processed. As the processing is being done, we

13

imagine a scheduler choosing a transaction step at each instant. This
scheduler allows lock actions on free entities but never chooses a lock
action on an already-locked entity. Such a scheduler only produces legal
schedules since it never chooses to run a lock step on an already-locked

entity.

The example schedule cf Figure 5 shows that not every legal schedule
is consistent. It is very important to know how transactions must be

constructed so that any legal schedule is consistent.

Clearly, if legality is to insure consistency then it 1is necessary
that each transaction lock each entity before otherwise acting on it and
that the transaction ultimately unlock each such locked entity. More
formally, using the definition of well formed tramsactioms (2.a'), (2.b'):

(8.a) Consistency requires that transactions be well formed.

To prove this consider any transaction Tl = (Tl, a, ei)ril=l which is not
well formed. Then for some step k, Tl does not have &y locked through
step k. Consider the (well formed) transaction T2 = (TZ’ lock, ek),(TZ,
unlock, ek), and the schedule § = (Tl(i)!i=l,°°',k-l), Tz(l), Tl(k), T,(2),
(Tl(i)|i=k+l,--~,n). Since (Tl, s Tz) and (TZ’ e s Tl) are both

in DEP(S), S is not equivalent to any serial schedule (by property 5.a).

So S 1is not consistent.

A less obvious fact 1is that consistency requires that a transaction
be divided into a growing and a shrinking phase. During the growing phase

the transaction is allowed to request locks. The beginning of the

shrinking phase is signaled by the first unlock action. After the first
unlock, a transaction cannot issue a lock action on any entity. More

formally, transaction T = ((T, as ei))2=l is two phase if for some j=<n,

i< implies a, # unlock,
i=j implies a, = unlock,
1> implies a, # lock.

Steps l,°++, j-1 are called the growing phase and steps j,**+, n are the

shrinking phase of T.

Transaction T1ll of Figure 2 is not two phase since it locks B after
releasing A. Transaction T12 of Figure 2 1s two phase. To see that T1ll
may see an inconsistent state consider the legal schedule S shown in Figure
5. 1In the schedule S, T1l2 sees A from Tll and Tll sees B from Tl2. So
S 1is not equivalent to any serial schedule and hence S§ is inconsistent.

In general

(8.b) Consistency requires that transactions be two phase.

15

>‘Tll gives A to T12

T12 gives B to T1l

S
T11 LOCK
T11 UPDATE
T11 UNLOCK
T12 LOCK
T12 LOCK
T12 UPDATE
T12 UPDATE
T12 UNLOCK
T12 UNLOCK
T11 LOCK
T1il UPDATE
Ti1 UNLOCK

DEP(S) = {(T11, A, T12),(T12, B, T11)}

Figure 5. A schedule for transactions T1l and T12 which is legal but not

consistent because T1ll is not two phase.

Conversely,

(8.¢) If each transaction in the set of transactions T = {Tl,°-°,Tn}

is well-formed and two-phase then any legal schedule for T is

consistent.

16

A sketch of the proof for this is fairly simple. Let S be any schedule

for T. Define the binary relation '<' on T by Ti<Tj iff (Ti, e, Tj) €

DEP(S) for some entity e. One can prove a lemma that < may be extended

to a total order << on T as follows.

First define the integer SHRINK(Ti) for each transaction Ti to be the

least integer j such that Ti unlocks some entity at step j of S:
SHRINK(Ti) = min {j|S(j) = (Ti’ unlock, e) for some entity e}.

If each transaction Ti is non-null then SHRINK(Ti) is well defined because

each Ti is well formed.

Now observe that for any transactions Tl and T2 and entity e, if (Tl,

e, TZ) € DEP(S) then SHRINK(Tl) is less than SHRINK(TZ). For if (Tl, e,
T2) € DEP(S) then by definition of DEP(S) there are integers i and j such

that
S = ("', (Tl, ai’ e), *°°, (Tzs aj’ e), **°)

and so that for any integer k between i and } e # e, Since § is legal,

e must be locked only by Tl through step i of S and e must be locked only

by T2 through step j of S. So a; = unlock and aj = lock. This immediately
implies that SHRINK(Tl) is less than or equal to i. Since T2 is two phase,

then no unlock by T2 preceeds step j of S so SHRINK(TZ) 1s greater than j.

17

Thus we have shown that if Tl<T2 then SHRINK(Tl) is less than
SHRINK(TZ). This implies property (5.b) and hence < can be extended to

a total order << on T.

Assume without loss of generality that Tl<<T2<<--~<<Tn. Induct on n
to show that S is equivalent to the serial schedule Tl°--,Tn. If n=1 the

result is trivial. The induction step follows in two steps.

First show that S is equivalent to the schedule

m

Vo=
$' =T, ((Ty, a;, &) €8T, =T)) ..

1

Then note that by hypothesis

m
LR I J
(T s ei) £ SIT z ‘l)[1 is equivalent to Tz, , T

10 34 n'

So §' is equivalent to Tl,Tz,---,Tn. But Tl,---,Tn is a serial schedule

so § 1s equivalent to a serial schedule and is consistent. Figure 6 gives

a graphic illustration c¢f the construction of a serial schedule from S.

To summarize then

(8.4) A necessary and sufficient condition for all legal schedules
to be consistent is that each transaction be well-formed

and two-phase.

18

S v S T, T Ts
\\] T T
*—
4
////%] 277 gl 277
M <\ %2777
M To ///////-—
MANN 77 777
AN 7////%] W
77 NN T 25 eileS]
MANN NN [TET N
DL MW
MAN 777 Ny
27 e \\\\\ T31 NN
LT NN AN
77z AR
NN\

(a) (b) (c)

Figure 6. A graphic illustration of the comstruction of a serial
schedule. The arrows show the dependencies of S.
Tl<< ']'.'2 << T3 and so S' has the same dependencies as
S. The induction hypothesis applies to S' to give

Ty, Ty, Ty

19

3. Predicate Locks

Section 2 introduced the notions of consistency and of locking and it
explored the locking protocols required by consistency. The discussion
was quite general and applies to any system which supports the concepts
of transaction and shared entity. Next we consider locking in a data base
environment. Aside from the problem of scale (billions of entities rather
than hundreds or thousands), there are substantial differences in the unit
of locking. These differences stem from associative addressing of
entities by transactions in a data base environment. It is not uncommon
for a transaction to want to lock the set of all entities with a certain
value (i.e. "key" addressing). Updating a seemingly unrelated entity may
add it to such a set, creating the problem of '"phantom" records. This

section explains this problem and proposes a spectrum of solutioms.

For definiteness we adopt the relational model of data (Codd [4]).
The data base consists of a collection of relations, Rl’RZ’...’Rn’ Each
relation can be thought of as a table or flat file. It is a homogeneous
set of distinct tuples (records). Each tuple consists of a fixed number
of fields. The columns of the relation are called domains. Each domain

has a name. Figure 7 shows an example of such a data base.

20

ACCOUNTS ASSETS
Location Number Balance Location Total
NAPA 32123 1050 NAPA 1337
ST HELENA 36592 506 ST HELENA 506
NAPA 5320 287
/ T
Assertions: 1) Account numbers are unique.

2) The sum of balances of accounts at

a location is equal to the total assets

at that location.

Figure 7.

The sample data base.

One approach would be to lock whole relations or domains whenever any

member of the relation or domain is referenced.

However, since there are

many more tuples than relations or domains this will not produce much

concurrency.

For example, two transactions making deposits in different

accounts could not run concurrently 1f they were required to lock whole

relations.

This suggests that locks should apply to as small a unit as possible

so that transactions do not lock information they do not need.

the natural unit of locking is the field or tuple of a relation.

Therefore

However,

a tuple 1s not an entity in the sense of section 2, since it has no name

21

which 1s separate from its value. This may seem odd at first, but it
stems from the fact that tuples are referenced by value rather than by

the address that their storage occupies.

To illustrate this point consider the example of a transaction Tl, on
the data base of Figure 7. The transaction checks the assertion that the
sum of Napa account balances is equal to the sum of Napa assets by:

(9.1 Associlatively addressing the ACCOUNTS relation, locking

any accounts located in Napa.

(9.2 Summing the balances in the locked accounts.

(9.3 Locking the Napa tuple in ASSETS and comparing its

value with the computed sum.

(9.4) Releasing all locks.

If a second transaction T2 inserts a new tuple in ACCOUNTS with Location

= Napa and adds its balance to the Napa assets and 1f T, is scheduled

2

between steps (9.2) and (9.3) of Tl then Tl will see an inconsistent state:
Tl will see the balance of the new account reflected in the ASSETS but
will not have seen the account in the ACCOUNTS relation. A similar problem

arises if '1‘2 merely transferred an account from St. Helena to Napa.

A still more elementary example is the test for the existence of a
tuple in a relation. If the tuple exists it 1s to be locked to insure
that no other transaction will delete it before the first transaction
terminates. If the tuple does not exist, ''it" should be locked to insure
that no other tramsaction will create such a tuple before the first

transaction terminates. In this case the ''mon-existence' of the tuple is

22

being locked. Such non-existent tuples are called phantoms. Inspection
of the earlier example shows that transaction Tl should lock not only all

existing Napa accounts but also all phantom Napa accounts.

As argued in the previous section, consistency requires that a
transaction lock all tuples examined, both real and phantom (i.e. it be
well formed). The set of all possible Napa accounts is the Cartesian
product: {Napa} x INTEGERS x INTEGERS. This set is infinite so there is
little hope of locking each individual phantom. Rather it seems natural
to lock the set of tuples and phantoms satisfying the predicate: Location
= Napa. More generally, if P is a predicate on tuples t of relation R
then P defines the set S where teS iff P(t). Transactions will be allowed
to lock any subset of a relation specified by such a predicate. We only

require that the truth or falsity of P depend only on t.

If such predicates are used as the unit of locking then a list of
locks becomes a (much smaller) list of sets identified by their predicates.
Locking the entire relation is achieved by using the predicate 'TRUE'
while locking the tuple (NAPA, 32123, 1050) is achieved by the predicate
t = (NAPA, 32123, 1050). However, one cannot directly apply the
formulation of locking and consistency in the previous section, because
entities were assumed to be uniquely named objects. In this gection we
extend the results on scheduling and consistency to apply to locks on

possibly overlapping sets of tuples.

23

First of all, if predicates are arbitrarily complex there is little
hope of deciding whether two distinct predicates define overlapping sets
of tuples (and hence whether they conflict as locks). In fact the problem
is recursively unsolvable (Kleene [5]), so it 1is not clear how to make
predicate locks "work."” A method for scheduling of predicate locks

is introduced first by example and then more abstractly.

In the sample data base of Figure 7 suppose that transaction Tl is

interested in all tuples in ACCOUNTS for which Location = Napa. A

transaction T2 starts during the processing of Tl. Tz is interested in

all tuples in ACCOUNTS with Location = Sonoma. When Tl declares its intent
to access Napa accounts by executing the action:
Tl LOCK ACCOUNTS: Location = Napa,

this predicate lock is associlated with T, and with the ACCOUNTS relation.

1
Later when T2 declares its intent to access Sonoma accounts by executing

the action:

T2 LOCK ACCOUNTS : Location = Sonoma
this predicate lock is alsoc associated with the ACCOUNTS relation. Before
T2 can be granted access to the Sonoma accounts, the lock controller must
check that Tz's lock does not conflict with locks held by other
transactions. 1In the case above, the controller must decide that the
predicates Location = Napa and Location = Sonoma are mutually exclusive.
In general, the controller must compare the requested predicate lock

against the outstanding predicate locks of other transactions on this

relation. If two such predicatas are mutually satisfiable (i.a. have an

24

existing or phantom tuple in common) then there is conflict and the request

must wait or preempt.

That is more or less how predicate locks work. It does not explain
how sharing works and finesses the fact that predicate satisfiability is
recursively unsolvable. 1In order to give a more complete explanation of

how predicate locks

'work', it is necessary to define how an action is
allowed or prohibited by a lock and how two locks may conflict. A
particular action on a single tuple may be denoted by:

n
(R, t, {(f RN

1034

meaning that field fi of tuple t of relation R is accessed in mode a,.
Two modes are distinguished here:
a; = read allows sharing with other readers,
while a, = write requires an exclusive lock on fi (update, insert, and
delete are all examples of write access).
The action reads those fields fi of tuple t such that ai=read and it writes

those fields fi of tuple t such that ai=write. Fields which are not

mentioned are not acted upon.
Reading the balance of account number 32123 would be an action:

(ACCOUNTS, (Napa,32123,1050), {(Number,read),(Balance,read)})

25

Note that this action does not read the location field. An update of the

balance by 50 dollars would be one action but involves two tuples, first

(ACCOUNTS, (Napa,32123,1050), {(Number,read),(Balance, write)})

and also

(ACCOUNTS, (Napa,32123,1100), {(Number,read),(Balance,write)})

because both tuples are written by the atomic update operation (one is
"deleted" and the other "inserted"). Further, consistency requires that

the Napa ASSETS tuple be updated by 50 dollars.

In the model of actions described above, the action specifies a tuple
by providing the values of all fields of the tuple. Although this is
formally correct, the examples above show that it is inappropriate for
the context at hand. The first example wants to read the balance of
account number 32123 and cares nothing about the location of the account.
Yet the model requires that the action specify both the balance and
location of the account as well as the account number. Similarly the
second transaction wants to read the balance and location of account number
32123 and then add 50 dollars to the balance of the account and to the

assets of the account's location.

If one considers the problem of reading the Napa tuple of ASSETS

without a-priori knowing its current balance the problem and its solution

26

becomes quite clear. The concept of action must be generalized to the
concept of access which acts on all tuples satisfying a given predicate.
This notion 1s comsistent with the idea of associative addressing which
returns the set of all tuples with designated values in given fields. To

access account number 32123 reading the balance, one specifies the access:
(ACCOUNTS, Number = 32123, {(Number, read), (Balance, write)})
which returns either a single tuple or no tuples since account numbers

are unique. An access which reads the location of and updates the balance

of account number 32123 would be denoted by:

(ACCOUNTS, Number = 32123, {(Locaticn, read),
(Number, read),

(Balance, write)}).

Consistency requires that such an access be followed by an access

(ASSETS, Location = 'Napa', {(Location, read),

(Balance, write)})

since we require that the assets be the sum of the balances at each

location.

An access to find the numbers of all Napa accounts would return a set

of tuples and would be denoted by:

27

(ACCOUNTS, Location = 'Napa', {(Location, read),

(Number, read)}).

To proceed more formally we need the following definitions. If the

relation R is drawn from the Cartesian product of sets Sl’ Sz,"-Sn,

n
(Re x S.) then any predicate P defined on all tuples (s,,***,s) € x §
Tgap 1 1 S |

is an admissible predicate for R. We ask that P be an effective test:

given a tuple t, P(t) = TRUE or P(t) = FALSE.
A particular access on relation R is denoted by:
n
®, ?, {(£,, apk)

where P is an admissible predicate. Such an access is equivalent to the

(possibly infinite) set of actions

(R, t, {(fi, ai)}?=l) where P(t) = TRUE, and where t ranges over

the Cartesian product underlying R.
In particular it reads all tuple~field pairs (t,fi) read by such actions

and writes all tuple-field pairs written by such actions. A predicate

lock on relation R is denoted by:

n
(R, P, {(fi, ai)}i=l)’

28

where P is an admissible predicate for R and each fi is a field locked
for access mode a,. It is further required that if the value of P depends
upon the value of field f then £ = fi for some i = 1,*++ . n (since the

predicate "reads' these fields).

n
An action (R, t, {(fi’ ai)}i=l) is said to satisfy predicate lock
[' ' 1y 1M
@®', ', {(£], ap)}) if
(10.a) R = R'
(10.b) P'(t) = TRUE

(10.¢) for each 1 = 1,*++,n, there is a j : (fi, ai) = (fj, a})

- ! = ! =
or (fi fj and a, read and aj write).

In the second clause of (10.c) we are assuming that write access implies

read and write access.

The action (R, t, {(fi’ ai)}2=l) conflicts with predicate lock
®', ', {(£], ap}]) 1f
(11.a) R = R'
(11.b) P'(t) = TRUE
(11l.¢) for some i, j:
fi = £, and either a, = write or aé = write.

1 1

To give an example, the predicate lock:

L = (ACCOUNTS, Location = Napa, {(Location, read), (Balance, read)})

1s satisfied by the action

29

(ACCOUNTS, (Napa, 3213, 1050), {(Location, read), (Balance, read)})

and is satisfied and conflicts with the action:
(ACCOUNTS, (Napa, 3213, 1050), {(Locatiom, write)})

Satisfiability and conflict are defined analogously for accesses.
Access A = (R, P, {(fi’ ai)}2=l) satisfies predicate lock L if and omnly
if for each tuple t in the Cartesian product underlying R, if P(t) is true
then action (R, t, {(fi ai)}?=l) satisfies L. Access A conflicts with
L if for some tuple t in the Cartesian product underlying R, P(t) is true

and action (R, t, {(fi, ai)}2=l) conflicts with L.

To give an example, the access which moves account #23175 from Napa

to Sonoma would be denoted:
(ACCOUNTS, (Location = 'Napa' Vv Locaticn = 'Sonoma')
A Number = 23175,

{(Location, write), (Number, read)}).

This access would require that the transaction have a lock on the ACCOUNTS

relation of the form:

n
(ACCOUNTS, P, {(f;, a)}]_;)s

30

where Location and Number are included among the fi’ write access is
allowed to Location and read access is allowed to Number. Further the
predicate P must be satisfied by the tuples:

(Napa, 23175,%)

(Sonoma, 23175, *).

That is, the lock predicate P must cover both the old and new values.

Note that we require an access to be covered by a single predicate
lock. 1If one holds two locks, one for Napa and another for Sonoma, then
the access would not satisfy either one and so would not be allowed. It
1s possible to relax this restriction so that an access 1s allowed if it

satisfies the union of the locks held by a transaction.

Two predicate locks are said to conflict if there is some action which
satisfies one of them and conflicts with the other. That is, 1f one lock

allows an access which is prohibited by the other lock.

Given these definitions, the notions of the previous section generalize
as follows. A transaction 1s a sequence of (transaction name, access) palrs.
A transaction is well formed if each access it makes satisfies some
predicate lock it holds through that step. A transaction is two phase 1f

it does not request predicate locks aftar releasing a predicate lock.

31

A schedule for a set of transactions is any merging of the composite
sequences. The dependency relation is defined by choosing (field, tuple,
relation) triples as the entities. Let E be the set of all such entities.
The notion of an access reading or writing such entities has already been
introduced. If S is a schedule for the set of transactions T, then the

dependency set of S is defined to be the set of triples:

(Tl, e, T2) € TXExT

such that for some integers i<j:

(12.1) S(i) = (Tl,Al) and Al reads or writes entity e,

(12.2) S(3) (TZ’AZ) and A2 reads or writes entity e

and not both Al and A2 simply reads e,
(12.3) for any k between { and j, if S(k) = (T3,A3)

then A3 does not write entity e.

Since infinite sets of tuples are involved, satisfiability and conflict
for accesses and predicate locks may not be decidable. The introduction
of simple predicates later in this section will give a decidable subset

of possible access predicates and lock predicates.

To implement arbitrary predicate locks, associate with the data base
a table called LOCK which is a binary relation between transactions and

predicate locks (see Figure 8).

32

LOCK

Transaction Predicate Lock

(ACCOUNTS, Location=Napa
Tl {(Location, read)

(Balance, write)})

T (ACCOUNTS, Balance < 500,
{ (Number, read),

(Balance, read)})

Figure 8. An example of the LOCK table.

The legal lock scheduler functions as follows. Transactions
are presumed to be two phase and well formed; the scheduler enforces this
rule. Any growing transaction may request any predicate lock. When this
happens, the scheduler tries to enter the transaction name and predicate
lock into the LOCK table. If the predicate lock does not conflict with
any other predicate lock in the table, it may be entered and granted
immediately. If the predicate lock does conflict with one or more locks
held by other transactions then the requestor must wait for the other
locks to be released or he must preempt the locks (or be preempted). As
commented earlier, this is a scheduling decision and not the proper topic
of this paper. Any transaction may release any predicate lock belonging
to it. This deletes the lock from LOCK and marks the transaction as
shrinking. If other transactions are waiting for tuples released by this
lock then they may be started. Each time a transaction T* makes an action

or access A the LOCK table is examined to £ind the set:

33

YES = {(T, L) € LOCK|A satisfies L and T = T*}

YES is a list of all the reasons T* should be allowed to make the access.

If YES is empty then T* is not well formed and it should be given an error.

It is clear that the scheduler described above has the properties:

(13.1) All transactions are well formed and two phase.

(13.2) If transaction T locks predicate P on relation R, then for
any tuple t in the Cartesian product underlying R such that
P(t)=TRUE, no other transaction may insert, delete or modify
the locked fields of t until T releases the predicate lock.

That is, predicate locks solve the problem of phantoms,

thereby providing consistency.
So the scheduler described produces legal schedules and by the results of
the previous section, gives each tramsaction a consistent view of the

state of the system.

Thus far we have ignored the details of how the scheduler decides
whether two locks conflict. 1In general this is a recursively unsolvable
problem (even if predicates are restricted to using the arithmetic
operators +, *, -, + as shown by Presburger [5]). The problem then is to
find an interesting class of predicates for which it is easily decidable

whether two predicates "overlap". We propose the following simple class

of predicates.

34

A simple predicate is any Boolean combination of atomic predicates.

Atomic predicates have the form:

<field name> <constant>

where constant is a string or number and field name is the name of some

field of the relation. For example

({Location = 'Napa' Vv Location = 'Santa Rosa')A

((Balance < 200) A (Balance > 10))
is a simple predicate with four atomic predicates.

Again, Presburger showed a decision procedure for a class of predicates
slightly more general than simple predicates (he allowed +, -, <, =, =,
>, mod and allowed any boolean combination of these operators and operands
on integers.) However his decision procedure is much more complicated than

the procedure for this simple set of predicates.

To decide whether two predicate locks L and L' conflict is a fairly
simple matter. Suppose L = (R, P, {(fi’ ai)}?___l) and that L' = (R', P',

{(£!, ai)}T=l) are two predicate locks. Then

35

(14.a) if R # R' there is no conflict as the locks apply to

different relations.
(14.b) if there is no field f such that fi=f and f5=f and either

ai=write or a5=write then there is no conflict.
(l4.c) otherwise there will be no conflict only if there is no

tuple t such that PAP'(t) is TRUE.

Similarly, to decide whether access A = (R', P', {(fi, ai)}§=l)
conflicts with lock L above consists of testing (l4.a), (14.b) and (l4.c)
above for access A. A will satisfy L if it passes the tests

(15.a) R = R', and

(15.b) for each 1 = 1,..., m there is a j such that fi = fj and ai

= read or aj = write, and
(15.¢) For any tuple t, if P'(t) is TRUE then P(t) is TRUE (i.e.
P' => P or equivalently P' A ~ P is not satisfiable).
Thus the conflict ~ satisfiability questions for both accesses and locks
have been reduced to the question of deciding whether a particular simple

predicate is satisfiable. But simple predicates are defined to have an

easy decision procedure.

The procedure is to organize PAP' of case (c¢) into disjunctive normal
form (Kleene [5]) and then for =ach disjunct see whether it is satisfiable
or not. Each such disjunct will be a conjunct of atomic predicates and

so this is trivial. Consider the example:

36

P = (Location = 'Napa' V Location = 'Santa Rosa') A
(Balance < 500 A Balance > 10)

P' = Location = 'Napa' A Balance = 700.
Then the disjunctive normal form of P A P' is

Location = 'Napa' A Balance < 500 A Balance > 10 A Balance = 700

vV Location = 'Santa Rosa' A Location = 'Napa' A Balance < 500
A Balance > 10 A Balance = 700

The first disjunct is not satisfied because Balance = 700 contradicts
Balance < 500 while the second has the added contradiction that Location
= 'Napa' and Location = 'Santa Rosa'. So P A P' is not satisfiable and

there is no conflict.

To give an example of conflict, suppose

P = (Location = 'Napa')

and P' = (Balance > 500)

Then P A P' is satisfiable by the tuple (Napa, 0, 501) and so the

predicates "overlap" and allow conflict.

In summary then, if only simple predicates are allowed in accesses
and predicate locks then predicate locks can be scheduled in the same way

ordinary locks are scheduled.

As mentioned before, predicate locks solve the problem of phantom

records. When coupled with the results on comsistency, predicate locks

37

can be used to comstruct consistent legal schedulers. The degenerate form
of predicates, locking entire relations with the predicate which is always
TRUE or locking a particular tuple by the predicate which is only TRUE

for that tuple gives the more conventional forms of locking. If the
desired set is not describable by a simple predicate then any 'larger’
simple predicate (i.e. a simple predicate which 1s implied by the desired
predicate) will be a suitable predicate for the lock. If only simple

predicates are used then predicate locks can be legally scheduled.

There are simple analogs to predicate locks in existing data-base
systems. For example in hierarchial systems such as IMS (IBM [7]) it is
common to lock a subtree of the hierarchy. This subtree is a logical set
of records (i.e. those with a given parent). Similarly, in a network
model it is desirable to lock all members of a "set” in the DBTG [6] sense

although DBTG lacks such a facility.

Lastly we observe that locking is a very dynamic form of authorization.
All the techniques we have described (predicate locks, simple predicates,
the YES set,...) apply to the problem of doing value dependent

authorization of access to data base records at the granularity of a field.

4. Summary
Section 2 introduced a very simple data model and discussed the notions
of transaction, consistency and locking. It argued that consistency

requires that transactions be two phase and well formed and conversely

38

that if all transactions are well formed and two phase then any legal

schedule is consistent.

Section 3 was couched in terms of the relational model of data. It
described the problems that associative addressing introduces: namely
phantom records entering and leaving the set of records locked by a
transaction. Predicate locks are proposed as a solution to this problem.
To schedule and enforce these locks, predicates are restricted to the
class of simple predicates. It is possible to gchedule simple predicate

locks in the same way "'ordinary' locks are scheduled.

6. Acknowledgements

The concept of consistency presented here grew out of discussions with
Ray Boyce, Don Chamberlin and Frank King. An earlier draft of the paper
was polished by helpful comments from Rudolph Bayer, Paul McJones and
Gianfranco Putzolu. We would like to thank Elizabeth Hoover for preparing

this manuscript.

(3]

[4]

(5]

(6]

39

References

_Chamberlin, D. D., Boyce, R, F., Traiger, I. L.; A deadlock-force

scheme for resource locking in a data-base enviromment, Proc. IFIP '74
Congress, North Holland, pp. 340-343 (1974).

Davies, C. T., Recovery semantics for a DB/OC System, NCC,

pp. 136-141 (May 1973).

Bjork, L. A., Recovery scenario for a DB/OC System, NCC,

pp. 142-146 (May 1973).

Codd, E. F., A relational model for large shared data banks,

CACM, Vol. 13, No. 6, pp. 377-387 (June 1970).

Kleene, S. C., Introduction to Metamathematics, Van Nostrand Company,

p. 204 (1852).
IBM Information Management System for Virtual Storage (IMS/VS),

Conversion and Planning Guide, pp. 38-44, Form No. SH20-9034,

IBM, Armonk, New York.

CODASYL, Data base task group report, ACM New York (1971).

40

FOOTNOTE

The sequence S=sl,°~-,sn is denoted (si)2=l' The subsequence of

elements satisfying condition C is denoted (siESIC(si))z=l by analogy

with the notation for sets. The ith element of S is denoted by S(i).

