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Linear sequential machines (LSM's for short) are considered over arbitrary fields. 
Various finiteness conditions are given for sequential machines and LSM's with these 
properties are characterized. It is shown that the set of all input/output pairs character- 
izes an LSM. The effect on realizations of varying the ground field is studied. A 
number of algorithms are given for the solution of specific problems. Decision proce- 
dures are given for the equivalence problem for LSM's. The problem of determining 
if one state is accessible from another is discussed and a number of results are presented. 

In the last ten years, a great deal of research has been concerned with linear sequential 
machines (LSM's for short). See [6],  [Ill and [I31 for a summary of some of this work. 
In  the present paper, LSM's are considered over arbitrary fields. Most physical 
systems involve fields such as the rational numbers, the real numbers, or the complex 
numbers. General systems over a finite field are of interest, but the finiteness assump- 
tion makes an LSM a special case of a finite automaton and this special family is not a 
very important class of finite automata. 

Many of the results known about finite LSM's are valid for the case of an arbitrary 
LSM. I t  is interesting to note that no decision problems have previously been raised 
concerning LSM's. Since we consider infinite LShl's, we shall explore certain decision 
problems. In order to do this, we must describe a field effectively. This leads naturally 
to the theory of computable fields studied by Rabin [IZ]. This theory, by necessity, 
rules out such interesting and important fields as the real numbers or complex numbers. 
Thus, the theory is very restrictive. 

The  present paper is divided into six sections. In Section 1,  various finiteness con- 
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ditions are considered on sequential machines. LSM's satisfying these conditions are 
characterized. In Section 2, the sequential relations of LSM's are introduced. A proof 
is given that two LSRI's with the same relation are (functionally) equivalent. Section 3 
is concerned with linear realizations of sequential machines. The  effect of changing 
fields is studied with respect to realizations. In Section 4, the study of decision prob- 
lems is begun by showing that it is decidable whether or not two LSM's are equivalent. 
In Section 5, a variety of decision problems are considered. Section 6 is devoted to 
the problem of determining whether one state is reachable from another. 

The  remainder of this introduction gives the formal definitions of sequential 
machines and LSM's as \\ell as our notational conventions. 

DEFINITION. A sequential machine is a 5-tuple A1 = (Q, 2, A, 6, A) where 

(i) Q is a nonempty set of states. 

(ii) 2 is a nonempty set of input symbols. 

(iii) A is a nonempty set of output symbols. 

(iv) 6 is a map from Q x 2 into Q called the direct transition function. 

(v) A is a map from Q x 2 into A called the output function. 

JYe shall say that a sequential machine M = (0, Z, A ,  6, A) is finite when Q, 2, and 
A are finite. 

It  is necessary to extend the transition function to a mapping' from Q x Z* into Q. 
This is done in the conventional manner as follows. 

DEFISITION. Let il1 = (Q, Z, A ,  6, A) be a sequential machine. For each q E Q, 
x E Z*, and a E Z. 

qq ,  4 = q, 

6(q, xa) = 6(a(q, x), a). 

There are two common extensions used for the output function A. I t  will be necessary 
for us to use both of them. 

DEFINITION. Let iZI = (Q, 2 ,  A ,  6, A) be a sequential machine. For each q E Q, 
x E Z" and a E 2, 

4 %  4 = 4 
Yq, 4 = q q ,  x) w q ,  4 ,  a), 

and 

A(q, xa) = A(%, x), a). 

If X and Y are sets of words, then the product of X  and Y is the set {xy I x E X ,  y E Y )  
where xy is the concatenation of x and y. For i > 1 ,  write X'+' = X i X  and X +  = u , > ~  Xi. 
Let A be the null word and write X* = X +  LJ {A) .  For any word x, lg(x)  denotes the l e tg th  
of x. Finally, let @ denote the empty set. 
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Thus A,(x) = A(q, x) is a length preserving function2 from Z* into A* which is the 
concatenation of the output symbols produced by the individual input symbols. 
4,(.v) = 4(q, .v) is a map from Z+ into A which gives the last output symbol produced 
by A2 when started in state q and reading input x. 

A principal concern of system theorists is the input-output behavior of these 
machines. 

DEFINITION. Let M = (Q, Z, A ,  6, A) be a sequential machine. Define 

and 
F ( J W  = {Ag I q 6 Ql, 

R(M) = {(x, 4 9 ,  x))l x E Z*, q E Q). 

F(M) is the set of functions computed by M, one function for each internal state. R(M) is 
the sequential relation of M which consists of all input-output pairs of M. 

Two sequential machines MI and M2 over the same input and output alphabets are 
said to be equivalent [relationally equivalent] if F(M,) = F(M2) [R(Ml) = R(M2)]. It  is 
always true that functional equivalence implies relational equivalence, but the con- 
verse is false in general [7]. 

We now introduce the special class of machines with which we shall deal. 
If F is a field and m is a nonnegative integer, let F,,, be the vector space of column 

vectors of dimension m over F .  Note that F, = (0). 

DEFINITION. A linear sequential machine M(LSM for short) is a sequential machine 
M = (Q, Z, A ,  6, A) with the following special properties. There exists a field F and 
nonnegative integers n, k, and 1 such that Q = F, , 2 = F, , and A = F, . Further- 
more there exists an n x n matrix A ,  an n x k matrix B ,  an 1 x n matrix C and an 
1 x k matrix D such that for each (q, a )  E Q x Z 

6(q, a )  = Aq + Ba, 
h(q, a) = Cq + Da. 

Such a linear sequential machine M will sometimes be denoted by (F, n, k, l ,A,B,C,D),  
( F , A , B , C , D ) o r < F , n , k , 1 , 6 , A ) .  

In the preceding definition, we allow n = 0. In this case, matrices A,  B ,  and C 
are null and the output function is A : a -+ D a  which describes a combinational 
switching network which is linear. This is the "memoryless" case. 

It  is possible to deal with LSM's in terms of linear functions and abstract vector 
spaces rather than matrices and F,, , etc. This leads to shorter proofs, but overlooks 
certain questions of representability and effectiveness. For this reason, we employ 
matrices. 

A function p from Z* to A* is length preserving if lg(vx)  = lg(x).  
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Note that if the field F is finite, then M is finite. In general, most results about 
LSM's are valid over arbitrary fields. We shall assume F is arbitrary for much of the 
remainder of this paper. 

The  following facts are well known3. 

PROPOSITION. Let M = (F, A ,  B, C ,  D) be an LSM. 

(a) For each state q E F,, , and a, ,..., at-, in Fk , t > 0, 

For q, q' E F, , x in Fk+, c in F .  

(c) S(q + cq', x) = 6(q, x) + cS(ql, 02g(x)).4 

(4 %q + cq', x) = A(q, x) + cqqt ,  OIQ'"'). 

(e) A(q -k cq', x) = h(q, x) + ch(q', 01g(x)).5 

(f) h(q, x) = I(q, oZg(")) + I(o, x). 

We shall also need certain facts concerning equivalent states and minimal machines 

PI 

DEFINTIOX. Let Mi  = (Qi , 2, A ,  Si , hi), i = 1, 2 be two sequential machines. 
State q, in Q, is said to be equivalent to state q, in Q, (written q, = q,) if 

for all x in Z*. A sequential machine is said to be minimal if it has no distinct equivalent 
states. 

The  main result on minimization of LSM's is stated below and is due (inde- 
pendently) to Gill [6] and to Cohn and Even [2]. 

THEOREM. For each LSM M,  one can tyfectively construct an LSRl A!' such that 
A/' is minimal and F(M)  = F(M1). 

In both [6] and [2 ] ,  the ISM'S are defined over finite fields, but some of thc results are true 
over arbitrary fields and others are true over arbitrary "computable" fields. Con~putable fields 
are discussed in Section 4. 

O 1 g ( r )  denotes the zero-vector of F,  concatenated with itself Ig(x) times. 
The concatenation is componentwise. For any c E F, x = a, ... a,, a, 6 F,  , n e  have cv - 

(cad . . . (cad. 
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In  order to discuss whether or not M' is unique in the previous theorem, the 
following concepts are required. 

DEFINITION. Let Mi  = (Qi , Z,  A ,  4, hi) be sequential machines for i = 1, 2. 
There is a lzomomorphism p, from M, into (onto) M2 if p, is a map from Q, into (onto) 
Q2 such that for each (q, a) E Q, x Z, ~ 6 ~ ( q ,  a)  = 62(vq, a)  and X,(q, a) = h2(vq, a). 
MI is isomorphic to &I2 if g, is a one-to-one homomorphism from MI onto M2 . 

In the preceding theorem, M '  is unique up to isomorphism. See [9] for other prop- 
erties of homomorphisms and LSM's. 

In this section, we introduce some finiteness conditions on sequential machines. 
Some of these conditions, particularly the finite memory concept, are intimately 
related to LSM's. We give the relations between the various properties and charac- 
terize LSM's with these properties. 

I t  is hoped that this section will clear up a certain amount of confusion in the 
literature concerning finite memory and definite automata. 

Let M = (Q, Z, A ,  6, A) be a sequential machine. With each positive integer p, 
we associate eight conditions which M may or may not satisfy. 

(0) (Feedback free condition) For each x E CpZ*; 
41 92 Q, X) = 6(q2 , 

(1) For each x E PZ*; q, , q, E Q, 
qq1 9 x) - % ? 2  , x). 

(2) For each x E ZPZ*; q E Q, 6(q, x) = 6(q, x(p)).G 
A 

(3) For each x E ZPZ*; q E Q, A(q, x) = A(q, x'p)). 
(4) (Definite condition) For each x E DZ* and each q, , q2 EQ, 

J(q1 , x) = A(q2 , x ( ~ ) ) .  

(5) (Finite memory condition) For each x E ZYZ*; ql,  q2 E Q, 
h(ql , x) = h(q, , x) implies S(ql , x) = 6(q, , x). 

(6) (p-Diagnosability Condition) For each x E ZPC*; ql , q, E Q, 
X(q, , x) = h(q, , x) implies q, - q2 . 

(7) For each x E D Z * ;  ql , qz E Q, 
h(ql , x) = h(q2 , x) implies 9, = q, . 

For each x E ZPZ*, write x = y ~ ( ~ '  where x(" denotes the last p symbols of x. 
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Condition (0) is a formal version of the "feedback free" definition. Condition (I)  
is a weaker version of condition (0), equivalent to it for minimal machines. Conditions 
(2) and (3) (which are equivalent) are variants of the conditions of definiteness [a] but 
are not equivalent to it.' Condition (4) is the definition of definiteness while (5) is the 
definition of the finite memory property ([I], [6]). Condition (6) says that all sufficiently 
long sequences are "diagnosing sequences" [6]. Condition (7) is a different definition 
of diagnosing sequences due to Cohn [I]. 

bye now begin to relate the conditions. 

PROPOSITION 1.1. If M is a sequential machine which satisfies condition (i)  (0 < i < 7) 
for p = pa , then Ail satisjies condition (i)  for a l lp  2 pa . 

The  proof is obvious and is omitted. Now we relate conditions (I) and (0). 

PROPOSITION 1.2. Let M be a sequential machine. (0) implies (1) and if M is minimal, 
(1) implies (0). There exists a finite LSM which satisfies (1) for p = 1, but does not 
satisfy (0) for any p 2 1. 

Proof. Obvious. 
We now consider (7). 

PROPOSITION 1.3. (7) implies (6) and if M is minimal (6) implies (7). There exists 
a finite LSM which satisjies ( 6 )  but does not satisfy (7). 

Proof. Obvious. 
Kext we relate (1) and (2). 

THEOREM 1 .l. (1) implies (2), but there exists a Jinite minimal LSM which satisjies 
(2) for p = 1 ,  but does not satisfy (I)  for any p 3 1 .  

Proof. Let A! = (Q, Z, A ,  6, A )  be a sequential machine. Let x E ZI'Z* and write 
x = y d p ) .  For any ql E Q, 

where q, == 6(q1 , y). If M satisfies condition (l), 6(q, , x(*'))  - 6(q2 , x'*')) so that 
6(q1 , x) = 6(q1 , ~ ' 1 ' ) )  and so M satisfies condition (2). 

Consider the LShI A4 = (GF(2), ( I ) ,  (O), (I), (0)). Clearly M satisfies (2) for 
p -- 1 ,  but does not satisfy (1) for any p 2 1. 

Next, we establish the relationship between (2) and (3). 

If M is a sequential machine with an initial state which is connected then conditions (2) 
and ( 3 )  are equivalent to conditions (4) and (1).  
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THEOREM 1.2. Let M = ( Q ,  Z, A,  6, A) be a sequential machine. Condition (2 )  holds 
for p [i.e.,.for each x E ZIPZ1*; q EQ, S(q, x )  = S(q, x(Pb)] i f  and only if condition (3 )  holds 
for p + 1 [i.e., for each x E Cp+lC*, I(q,  X) = hn(q, x(P+l))]. 

Proof. Let q E Q and x E Zp+lZ*. Write x = ya where a E Z. 

using condition (2). Thus 

A A 

h(q, ya)  = ̂h(q, y(P)a) = h(q, x(p+l)). 

Conversely, suppose that x E ZpflZI* and that S(q, x )  f S(q, x'p)). Then there 
exists z E C+ such that 

I(q,  x z )  # A(q, ~ ' ~ ' z ) .  (*> 

However, by condition (3 )  for p + 1. 

I(,, x z )  = I(q,  (xz)(P+')). 

Since z # A, we note that (xz)(p+l) = (x(P)z)(P+l). Therefore, 

using condition (3)  again. But J(q,  x z )  = x'")z) contradicts (c)  and establishes 
that 6(q, x )  = S(q, x'p)). 

Next, we relate conditions (5)  and (6). 

THEOREM 1.3. (6 )  implies (5 )  but there exists a jinite minimal sequential machine M 
which satisfies (5)for p = 1 but does not satisfy (6 )  for any p 3 1 .  Moreover, for LSM's,  
(5)  and (6)  are equivalent. 

Proof. T o  show that (6) implies ( 5 ) ,  assume X(ql , x )  = A(q, , x )  for each .r E ZIPZ*; 
q1 , q2 E Q. Then 9, = q, by (6). By the "right congruence property" of = (cf [dl), 
S(q1 , x )  - 6(q, , x). 

Let A2 = ( { q o ,  ql}, (0, I ) ,  (0, 13, S ,  A) where S(q, , a )  = q, for i, a E (0, 1). 
A(qo , a )  = a and X(q, , a)  = 1 for a E (0, 1). M satisfies (5) for p = 1, but does not 
satisfy (6) for any p ,> I .  

Suppose M is linear and (5)  holds. Let q, , q, E Q and x E ZpZ* and assume that 
A(ql , x )  = A(q, , x). Then 6(q1 , x )  = 6(q2 , x)  and for all y E Z* 
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From this and the hypotheses 

Thus h(ql , Oi) = h(q2, Oi) for all i 3 0. [This is true for i 3 lg(x) by the above 
equality and for i < Ig(x) by the fact that h is length preserving]. By using the same 
identity, ((c) of the first Proposition) X(ql , z) = X(q, , z) for all z E Z*. Thus q, - q, . 

The  relations between (3) and (5) are now derived. 

THEOREM 1.4. There exists a finite minimal sequential machine which satisfies (3) 
for p - 1, but does not satisfy (5) for any p 1. However, if M is an LSM, then (3) 
implies (5). There exists a finite minimal LSM which satisfies (5) for p = 2, but does not 
satisfy (3) for any p 3 1. 

Proof. Let Ml = ({q, , q,), (0, 11, (0, 11, 6, A) where S(q, , a)  = qi for i = 1, 2; 
a E Z; X(q, , 1) = 1 and X(qi , a) = 0 in all other cases. Clearly, M, satisfies (3) for 
p = 1, but does not satisfy (5) for any p 2 1. 

Let M be an LSM which satisfies (3). We are going to prove that it also satisfies 
(5).8 For any q E Q, x E Z+, 

where +(x) is a vector depending on x alone and such that if x is a sequence of 0 vectors, 
+(x) = 0. (See Proposition, part (b) in the introduction.) 

By choosing x = Ot+l i.e., a sequence of t + 1 zero vectors we see that for any 
t > p - 1  

CAt = CAP-1 

since M satisfies (3). 
Now let x E D Z * ;  q1 , q2 E Q and h(ql , x) = h(q, , x). Then 

= CAPp1q2 + +(x), 
and so CAP-lq, = CAP-lq, . 

8 It is well known that every LSM satisfies (5) for some p ( [ l ] ,  [6]) .  Here we prove that if an 
LSM satisfies (3)  for a given p,  it will satisfy (5) for the same p. 
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Hence S(q, , x )  =- 6(q2 , x )  and M satisfies (5). 
T o  complete the proof, consider M 2  = (GF(2), A, B ,  C ,  D )  where 

M, satisfies ( 5 )  for p = 2, but does not satisfy (3) for any p 3 1 as can be seen by 
checking q = (t). 

Next we relate conditions ( I )  and (4) .  

THEOREM 1.5. A sequential machine M satisfies ( I )  for p i f  and only i f  it satisfies ( 4 )  
forp + 1 .  

Proof. Suppose that condition ( 1 )  is satisfied for p. Let q, , q2 E Q, x E Z*, z E Zp,  
a E 2. Then 

A h 

i ( q l  , sza)  = W ( q l  , x) ,  za )  = @(6(q1 , x), 4, a). 

A 

h(ql , .ma) = %(6q2 , z ) ,  a )  = , za)  = ̂A(q, , (xza)'p+l)) 

because (xza)'P+l) =- za. So M satisfies (4) for p + 1. 
Suppose M satisfies (4) for p + 1. Let q, , q, E Q,  x E ZPZ*, x E Zf. Then 

A 

2(q1 , x z )  = 4 9 ,  , (.t.z)'pfl)) = ̂A(q2 , xz) .  

Therefore 6(ql , x )  = 6(q2 , x )  and so ill satisfies ( 1 )  for p. 

In the following theorem, we describe the implications between (4 )  and (5) .  

THEOREM 1.6. If a sequential machine satisfies (4 )  for p + 1 ,  it satisfies ( 5 )  for p.  
However, there exists a finite minimal LSM which satisfies (5) for p = 1 ,  but does not 
satisfy (4 )  for any p 2 1. 
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Proof. If a sequential machine Arl satisfies (4) for p + 1, then it satisfies (1) for p 
(Theorem 1.5). But then A4 obviously satisfies (5) for p as well. 

The  LSM (GF(2), (I), (0), ( I ) ,  (0)) is such that it satisfies (5) for p = 1,  but does 
not satisfy (4) for any p >, 1. 

In order to complete our picture concerning the relations between the eight condi- 
tions, we need only consider whether (0) implies (7). 

THEOREM 1.7. There exists a jinite minimal sequential machine M which satisfies (0) 
for p = 1, but does not satisfy (7) for any p 2 I. There exists a jinite LSM M' which 
satisjies (0) for p = 1, but does not satisfy (7) for any p 2 1. However, if a minimal LSM 
satisfies (01, it also satisfies (7). 

Proof. M = ((q, , q,), (0, I), (0, l), 6, A) where S(q,, a) = ql for i, a E (0, 1) and 
A(q, , a) = a ,  A(q, , a) = 0 for a E (0, 1) satisfies (0) for p = 1 but does not satisfy (7) 
for any p 3 1. 

M' = (GF(2), (O), (O), (O), (0)) satisfies (0) for p = 1 but does not satisfy (7) for 
anyp  2 1. 

If a minimal LSM satisfies (0) for p, it satisfies (1) for p (Proposition 1.2). But then 
it satisfies (4) for p + 1 (Theorem 1.5), and (5) for p (Theorem 1.6). Therefore it 
satisfies (6) for p (Theorem 1.3) and since it is minimal, (7) for p as well (Proposition 
1.3). 

We can also verify the following simple proposition whose straight forward proof is 
omitted. 

PROPOSITION 1.4. If a sequential machine M satisfies (7) then h g  is minimal. 

Our results can be summarized by the following two tables. If at the ith row and 
jth column (start the indexing at 0 and take p - 1 = max(p - 1,  I)), the table has a 

( )  then if a (linear) sequential machine satisfies (i) for p then it satisfies ( j )  
for r. 

N then there is a finite minimal (linear) sequential machine which satisfies (i) 
for somep, but does not satisfy (j) for any p 3 1. 

('LN) then if a minimal (linear) sequential machine satisfies (i) for p, then it 
satisfies (j) for p, but there is a finite (linear) sequential machine which 
satisfies (i) for some p but does not satisfy ( j )  for any p >, 1. 

As an example of how these tables are obtained from the theorems, we give the 
reasoning behind the N in the 7th row and the 0th column of Table 11 (for LSM's). 

Suppose we were wrong in placing an N there. Then every finite minimal LSM 
which satisfies (7) for some p will satisfy (0) for some q 3 1. Let M be the finite 
minimal LSM which satisfies (5) for p = 2 but does not satisfy (3) for any p >, 1 
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TABLE I 

Y Y Y  1 - Y Y N N  

lV I 
X ~ Y  Y N ~ N  

1 P P + l ~  N i N  1 I 
- 1  

hT y 1 1' N N N  ' N  
I p - 1  

--I 1 I I I -- -- 

YIN 1 Y Y Y Y Y N N 
p l p - 1  P - 1  

I I P l  P P - 1  

N I N  Y N 
1 I L v N N i  .V N -V N N  P I  I Y 

lV 

Y,N Y 

1 I I P I P  ---- 

A~ 1 y l y  
P P I P  

(Theorem 1.4.) M satisfies (6) for p = 2 (Theorem 1.3.) and since it is minimal, 
M satisfies (7) for p = 2 (Proposition 1.3). By the assumption above M satisfies (0) 
for some q 3 1. But then J3 satisfies (1) for q (Proposition 1.2), iZ.3 satisfies (2) for q 
(Theorem 1.1 .) and ill satisfies (3) for q $- 1 (Theorem 1.2.). This contradicts the 
choice of M and so proves that we were right in putting N in the 7th row and 0th 
column of Table 11. 

There is a convenient pictorial summary of the tables which can be obtained as 
directed graphs. A directed path from node i to node j corresponds to a Y in the 
( i ,  j) entry of the table. No path corresponds to a N or a YIN. Equivalent conditions 
are encircled. 

These graphs clearly indicate the relative strength of conditions (0)-(7). 
Next, we turn to the conditions under which linear machines have these properties. 

THEOREM 1.8. Let M = ( F ,  A, B,  C ,  D)  be an L S M .  M is feedback free [i.e., 
satisfes condition (0) for p ,  where p is minimal] i f  and only if A is nilpotentg of degree p. 

A matrix A is said to be nilpotent of degree p-if p is the least positive integer for which AP = 0. 
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TABLE I1 

RELATIONS BETWEEN THE CONDITIONS FOR LSM's 

N I Y Y  N i Y  
P - 1  I P P 

Y 1' 
P 1 P - 1  

FIG. 1. Graph for Sequential Machines. 

Y YIN / 
P P 

Y YIN 

P I P  

Y 1 YIN 

Y 

P I P I  

FIG. 2. Graph for LSM's. 


