
 1

A Measure of Transaction Processing Power1
Anon Et Al

February 1985

ABSTRACT

Three benchmarks are defined: Sort, Scan and DebitCredit. The first two benchmarks
measure a system's input/output performance. DebitCredit is a simple transaction
processing application used to define a throughput measure: Transactions Per Second
(TPS). These benchmarks measure the performance of diverse transaction processing
systems. A standard system cost measure is stated and used to define price/performance
metrics.

TABLE OF CONTENTS

Who Needs Performance Metrics?.................................. 2

Our Performance and Price Metrics 4

The Sort Benchmark .. 6

The Scan Benchmark.. 7

The DebitCredit Benchmark 8

Observations on the DebitCredit Benchmark.......................... 10

Criticism ... 11

Summary ... 13

References .. 14

1 A condensed version of this paper appears in Datamation, April 1, 1985. This paper was scanned from
the Tandem Technical Report TR 85.2 in 2001 and reformatted by Jim Gray.

 2

Who Needs Performance Metrics?

A measure of transaction processing power is needed -- a standard that can measure and
compare the throughput and price/performance of various transaction processing systems.

Vendors of transaction processing systems quote Transaction Per Second (TPS) rates for
their systems. But there isn't a standard transaction, so it is difficult to verify or compare
these TPS claims. In addition, there is no accepted way to price a system supporting a
desired TPS rate. This makes it impossible to compare the price/performance of different
systems.

The performance of a transaction processing system depends heavily on the system
input/output architecture, data communications architecture and even more importantly
on the efficiency of the system software. Traditional computer performance metrics,
Whetstones, MIPS, MegaFLOPS, and GigaLIPS, focus on CPU speed. These measures
do not capture the features that make one transaction processing system faster or cheaper
than another.

This paper is an attempt by two dozen people active in transaction processing to write
down the folklore we use to measure system performance. The authors include
academics, vendors, and users. A condensation of this paper appears in Datamation
(April 1, 1985).

We rate a transaction processing system's performance and price/performance by:
• Performance is quantified by measuring the elapsed time for two standard batch

transactions and throughput for an interactive transaction.
• Price is quantified as the five-year capital cost of the system equipment exclusive of

communications lines, terminals, development and operations.
• Price/Performance is the ratio Price over Performance.

These measures also gauge the peak performance and performance trends of a system as
new hardware and software are introduced. This is a valuable aid to system pricing, sales,
and purchase.

We rate a transaction processing system by its performance on three generic operations:
• A simple interactive transaction.
• A mini-batch transaction which updates a small batch of records.
• A utility that does bulk data movement.

We believe this simple benchmark is adequate because:
• The interactive transaction forms the basis for the TPS rating. It is also a litmus test

for transaction processing systems –it requires the system have at least minimal
presentation services, transaction recovery, and data management.

• The mini-batch transaction tells the IO performance available to the Cobol
programmer. It tells us how fast the end-user IO software is.

 3

• The utility program is included to show what a really tricky programmer can squeeze
out of the system. It tells us how fast the real IO architecture is. On most systems, the
utilities trick the IO software into giving the raw IO device performance with almost
no software overhead.

In other words, we believe these three benchmarks indicate the performance of a
transaction processing system because the utility benchmark gauges the IO hardware, the
mini-batch benchmark gauges the IO software, and the interactive transaction gauges the
performance of the online transaction processing system.

The particular programs chosen here have become part of the folklore of computing.
Increasingly, they are being used to compare system performance from release to release
and in some cases, to compare the price/performance of different vendor's transaction
processing systems.

The basic benchmarks are:
DebitCredit: A banking transaction interacts with a block-mode terminal connected via

x.25. The system does presentation services to map the input for a Cobol program
which in turn uses a database system to debit a bank account, do the standard
double-entry bookkeeping and then reply to the terminal. 95% of the transactions
must provide one-second response time. Relevant measures are throughput and
cost.

Scan: A mini-batch Cobol transaction sequentially scans and updates one thousand
records. A duplexed transaction log is automatically maintained for transaction
recovery. Relevant measures are elapsed time and cost.

Sort: A disc sort of one million records. The source and target files are sequential.
Relevant measures are elapsed time and cost.

A word of caution: these are performance metrics, not function metrics. They make
minimal demands on the network (only x. 25 and very minimal presentation services),
transaction processing (no distributed data), data management (no complex data
structures), and recovery management (no duplexed or distributed data).

Most of us have spent our careers making high-function systems. It is painful to see a
metric which rewards simplicity - faster than fancier ones. We really wish this were a
function benchmark. It isn't.

Surprisingly, these minimal requirements disqualify many purported transaction
processing systems, but there is a very wide range of function and usability among the
systems that have these minimal functions.

 4

Our Performance and Price Metrics

What is meant by the terms: elapsed time, cost and throughput? Before getting into any
discussion of these issues, you must get the right attitude. These measures are very rough.
As the Environmental Protection Agency says about its mileage ratings, “Your actual
performance may vary depending on driving habits, road conditions and queue lengths --
use them for comparison purposes only”. This cavalier attitude is required for the rest of
this paper and for performance metrics in general --if you don't believe this, reconsider
EPA mileage ratings for cars.

So, what is meant by the terms: elapsed time, cost and throughput?

Elapsed Time is the wall-clock time required to do the operation on an otherwise empty

system. It is a very crude performance measure but it is both intuitive and
indicative. It gives an optimistic performance measure. In a real system, things
never go that fast, but someone got it to go that fast once.

Cost is a much more complex measure. Anyone involved with an accounting system

appreciates this. What should be included? Should it include the cost of
communications lines, terminals, application development, personnel, facilities,
maintenance, etc.? Ideally, cost would capture the entire "cost-of-ownership". It is
very hard to measure cost-of-ownership. We take a myopic vendor's view: cost is
the 5-year capital cost of vendor supplied hardware and software in the machine
room. It does not include terminal costs, application development costs, or
operations costs. It does include hardware and software purchase, installation, and
maintenance charges.

This cost measure is typically one fifth of the total cost-of -ownership. We take this
narrow view of cost because it is simple. One can count the hardware boxes and software
packages. Each has a price in the price book. Computing this cost is a matter of inventory
and arithmetic.

A benchmark is charged for the resources it uses rather than the entire system cost. For
example, if the benchmark runs for an hour, we charge it for an hour. This in turn
requires a way to measure system cost/hour rather than just system cost. Rather than get
into discussions of the cost of money, we normalize the discussion by ignoring interest
and imagine that the system is straight-line depreciated over 5 years. Hence an hour costs
about 2E-5 of the five-year cost and a second costs about 5E-9 of the five year cost.

Utilization is another tough issue. Who pays for overhead? The answer we adopt is a
simple one: the benchmark is charged for all operating system activity. Similarly, the disc
is charged for all disc activity, either direct (e. g. application input/output) or indirect
(e.g. paging).

 5

To make this specific, let’s compute the cost of a sort benchmark which runs for an hour,
uses 2 megabytes of memory and two, discs and their controllers.

Package Package cost Per hour cost Benchmark cost
Processor 8OK$ 1.8$ 1.8$
Memory 15K$.3$.3$

Disc 50K$ l. l$ l. l$
Software 50K$ 1.1$ 1.1$

 4.3$

So the cost is 4.3$ per sort.

The people who run the benchmark are free to configure it for minimum cost or
minimum time. They may pick a fast processor, add or drop memory, channels, or other
accelerators. In general the minimum-elapsed-time system is not the minimum-cost
system. For example, the minimum cost Tandem system for Sort is a one processor two
disc system. Sort takes about 30 minutes at a cost of 1.5$. On the other hand, we believe
a 16 processor two disc Tandem system with 8 Mbytes per processor could do Sort
within ten minutes for about 15$ - six times faster and 10 times as expensive. In the IBM
world, minimum cost generally comes with model 4300 processors, minimum time
generally comes with 308x processors.

The macho performance measure is throughput --how much work the system can do per
second. MIPS, GigaLIPS, and MegaFLOPS are all throughput measures. For transaction
processing, transactions per second (TPS) is the throughput measure.

A standard definition of the unit transaction is required to make the TPS metric concrete.
We use the DebitCredit transaction as such a unit transaction.

To normalize the TPS measure, most of the transactions must have less than a specified
response time. To eliminate the issue of communication line speed and delay, response
time is defined as the time interval between the arrival of the last bit from the
communications line and the sending of the first bit to the communications line. This is
the metric used by most teleprocessing stress testers.

Hence the Transactions Per Second (TPS) unit is defined as:

TPS: Peak DebitCredit transactions per second with 95%of the transactions
having less than one second response time.

Having defined the terms: elapsed time, cost and throughput, we can define the various
benchmarks.

 6

The Sort Benchmark

The Sort benchmark measures the performance possible with the best programmers using
all the mean tricks in the system. It is an excellent test of the input-output architecture of
a computer and its operating system.

The definition of the sort benchmark is simple. The input is one- million hundred-byte
records stored in a sequential disc file. The first ten bytes of each record are the key. The
keys of the input file are in random order. The sort program creates an output file and fills
it with the input file sorted in key order. The sort may use as many scratch discs and as
much memory as it likes.

Implementers of sort care about seeks, disc IO, compares, and such. Users only care how
long it takes and how much it costs. From the user’s viewpoint, relevant metrics are:

Elapsed time: the time from the start to the end of the sort program.

Cost: the time weighted cost of the sort software, hardware packages it uses.

In theory, a fast machine with a 100 MB memory could do it in a minute at a cost of 20$.
In practice, elapsed times range from 10 minutes to 10 hours and costs vary between 1$
and 100$. A one hour 10$ sort is typical of good commercial systems.

 7

Scan Benchmark

The Sort benchmark indicates what sequential performance a wizard can get out of the
system. The Scan benchmark indicates the comparable performance available to end-
users: Cobol programmers. The difference is frequently a factor of five or ten.

The Scan benchmark is based on a Cobol program that sequentially scans a sequential
file, reading and updating each record. Such scans are typical of end-of-day processing in
online transaction processing systems. The total scan is broken into mini-batch
transactions each of which scans a thousand records. Each mini-batch transaction is a
Scan transaction.

The input is a sequential file of 100 byte records stored on one disc. Because the data is
online, Scan cannot get exclusive access to the file and cannot use old-master new-master
recovery techniques. Scan must use fine granularity locking so that concurrent access to
other parts of the file is possible while Scan is running. Updates to the file must be
protected by a system maintained duplexed log which can be used to reconstruct the file
in case of failure.

Scan must be written in Cobol, PLI, or some other end-user application interface. It must
use the standard IO library of the system and otherwise behave as a good citizen with
portable and maintainable code. Scan cannot use features not directly supported by the
language.

The transaction flow is:
 OPEN file SHARED, RECORD LOCKING
 PERFORM SCAN 1000 TIMES

BEGIN --Start of Scan Transaction
 BEGIN_TRANSACTION
 PERFORM 1000 TIMES
 READ file NEXT RECORD record WITH LOCK
 REWRITE record
 COMMIT_TRANSACTION
 END --End of Scan Transaction
 CLOSE FILE

The relevant measures of Scan are:

Elapsed time: The average time between successive BeginTransaction steps. If the
data is buffered in main memory, the time to flush to disc must be included.

Cost: the time-weighted system cost of Scan.

In theory, a fast machine with a conventional disk and flawless software could do a Scan
in .1 seconds. In practice, elapsed times range from 1 to 100 seconds while costs range
from .001$ to .1$. Commercial systems execute Scan for a penny and take about ten
seconds.

 8

DebitCredit Benchmark

The Sort and Scan benchmarks have the virtue of simplicity. They can be ported to a
system in a few hours if it has a reasonable software base - a sort utility, a Cobol
compiler, and a transactional file system. Without this base, there is not much sense
considering the system for transaction processing.

The DebitCredit transaction is a more difficult benchmark to describe or port - it can take
a day or several months to install depending on the available tools. On the other hand, it
is the simplest application we can imagine.

A little history explains how DebitCredit became a de facto standard. In 1973 a large
retail bank wanted to put its 1,000 branches, 10,000 tellers and 10,000,000 accounts
online. They wanted to run a peak load of 100 transactions per second against the system.
They also wanted high availability (central system availability of 99.5%) with two data
centers.

The bank got two bids, one for 5M$ from a minicomputer vendor and another for 25M$
from a major-computer vendor. The mini solution was picked and built [Good]. It had a
50K$/TPS cost whereas the other system had a 250K$/TPS cost. This event crystallized
the concept of cost/TPS. A generalization (and elaboration) of the bread-and-butter
transaction to support those 10,000 tellers has come to be variously known as the TPl,
ET1, or DebitCredit transaction [Gray].

In order to make the transaction definition portable and explicit, we define some extra
details, namely the communication protocol (x. 25) and presentation services.

The DebitCredit application has a database consisting of four record types. History
records are 50 bytes, others are 100 bytes.

• 1,000 branches .1MB random access
• 10,000 tellers 1 MB random access
• 10,000,000 accounts 1 GB random access
• a 90 day history 10 GB sequential access

The transaction has the flow:
DebitCredit:
 BEGIN-TRANSACTION
 READ MESSAGE FROM TERMINAL (100 bytes)
 REWRITE ACCOUNT (random)
 WRITE HISTORY (sequential)
 REWRITE TELLER (random)
 REWRITE BRANCH (random)
 WRITE MESSAGE TO TERMINAL (200 bytes)
 COMMIT-TRANSACTION

A few more things need to be said about the transaction. Branch keys are generated
randomly. Then a teller within the branch is picked at random. Then a random account at

 9

the branch is picked 85%of the time and a random account at a different branch is picked
15% of the time. Account keys are 10 bytes; the other keys can be short. All data files
must be protected by fine granularity locking and logging. The log file for transaction
recovery must be duplexed to tolerate single failures. Data files need not be duplexed.
95%of the transactions must give less than one second response time. Message handling
should deal with a block-mode terminal (e.g. IBM 3270) with a base screen of 20 fields.
Ten of these fields are read, mapped by presentation services and then remapped and
written as part of the reply. The line protocol is X. 25.

The benchmark scales as follows. Tellers have 100 second think times on average. So at
10 TPS, store only a tenth of the database. At 1TPS, store one hundredth of the database.
At one teller, store only one ten thousandth of the database and run .0l TPS.

Typical costs for DebitCredit appear below. These numbers come from real systems,
hence the anomaly that the lean-and-mean system does too many disc IOs. Identifying
these systems makes an interesting parlor game.

 K-inst IO TPS K$/TPS ¢/T Packets
Lean and Mean 20 6 400 40 .02 2

Fast 50 4 100 60 .03 2
Good 100 10 50 80 .04 2

Common 300 20 15 150 .75 4
Funny 1,000 20 1 400 2.0 8

The units in the table are:
K-inst: The number of thousands of instructions to run the transaction. You might think

that adding 10$ to your bank account is a single instruction (add). Not so, one
system needs a million instructions to do that add. Instructions are expressed in 370
instructions or their equivalent and are fuzzy numbers for non-370 systems.

DiscIO: The number of disc IOs required to run the transaction. The fast system does two
database IOs and two log writes.

TPS: Maximum Transactions Per Second you can run before the largest system saturates
(response time exceeds one second). This is a throughput measure. The good
system peaks at 50 transactions per second.

K$/TPS: Cost per transaction per second. This is just system cost divided by TPS. It is a
simple measure to compute. The funny system costs 400K$ per transaction per
second. That is, it costs 400K$ over 5 years and can barely run one transaction per
second with one second response time. The cost/transaction for these systems is
.5E-8 times the K$/TPS.

¢/T: Cost per transaction (measured in pennies per transaction). This may be computed
by multiplying the system $/TPS by 5E-9.

Packets: The number of X. 25 packets exchanged per transaction. This charges for
network traffic. A good system will send two x. 25 packets per transaction. A bad
one will send four times that many. This translates into larger demands for
communications bandwidth, longer response times at the higher costs. X. 25 was
chosen both because is standard and because it allows one to count packets.

 10

Observations On The DebitCredit Benchmark

The numbers in the table on page 9 are ones achieved by vendors benchmarking their
own systems. Strangely, customers rarely achieve these numbers - typical customers
report three to five times these costs and small fractions of the TPS ratings. We suspect
this is because vendor benchmarks are perfectly tuned while customers focus more on
getting it to work at all and dealing with constant change and growth. If this explanation
is correct, real systems are seriously out of tune and automatic system tuning will reap
enormous cost savings.

The relatively small variation in costs is surprising - the TPS range is 400x but the
K$/TPS range is 10x. In part the narrow cost range stems from the small systems being
priced on the minicomputer curve and hence being much cheaper than the mainframe
systems. Another factor is that disc capacity and access are a major part of the system
cost. The disc storage scales with TPS and disc accesses only vary by a factor of 5.
Perhaps the real determinant is that few people will pay 400 times more for one system
over a competing system.

There are definite economies of scale in transaction processing - high performance
systems have very good price/performance.

It is also surprising to note that a personal computer with appropriate hardware and data
management software supports one teller, scales to .01 TPS, and costs 8K$ - about
800K$/TPS! Yes, that's an unfair comparison. Performance comparisons are unfair.

There are many pitfalls for the data management system running DebitCredit. These
pitfalls are typical of other applications. For example, the branch database is a high-
traffic small database, the end of the history file is a hotspot, the log may grow rapidly at
100 TPS unless it is compressed, the account file is large but it must be spread across
many discs because of the high disc traffic to it, and so on. Most data management
systems bottleneck on software performance bugs long before hardware limits are
reached [Gawlick], [Gray, et. al.]

The system must be able to run the periodic reporting – sort-merge the history file with
the other account activity each night to produce 1/20th the monthly statements. This can
be done as a collection of background batch jobs that run after the end-of-day and must
complete before the next end-of-day. This accounts for the interest in the Scan and Sort
benchmarks.

 11

Criticism

Twenty four people wrote this paper. Each feels it fails to capture the performance bugs
in his system. Each knows that systems have already evolved to make some of the
assumptions irrelevant (e. g. intelligent terminals now do distributed presentation
services). But these benchmarks have been with us for a long time and provide a static
yardstick for our systems.

There is particular concern that we ignore the performance of system startup (after a
crash or installation of new software), and transaction startup (the first time it is called).
These are serious performance bugs in some systems. A system should restart in a
minute, and should NEVER lose a 10,000 terminal network because restart would be
unacceptably long. With the advent of the 64 Kbit memory chip (not to mention the l
Mbit memory chip), program loading should be instantaneous.

The second major concern is that this is a performance benchmark. Most of us have
spent our careers making high-function systems. It is painful to see a metric which
rewards simplicity – simple systems are faster than fancy ones. We really wish this were
a functionality benchmark. It isn't.

In focusing on DebitCredit, we have ignored system features that pay off in more
complex applications: e. g. clustering of detail records on the same page with the master
record, sophisticated use of alternate access paths, support for distributed data and
distributed execution, and so on. Each of these features has major performance benefits.
However, benchmarks to demonstrate them are too complex to be portable.

Lastly, we have grave reservations about our cost model.

First, our “cost” ignores communications costs and terminal costs. An ATM costs 50 K$
over 5 years, the machine room hardware to support it costs 5 K$. The communications
costs are somewhere in between. Typically, the machine room cost is 10%of the system
cost. But we can find no reasonable way to capture this "other 90%" of the cost. In
defense of our cost metric, the other costs are fixed, while the central system cost does
vary by an order of magnitude,

Second, our “cost” ignores the cost of development and maintenance. One can
implement the DebitCredit transaction in a day or two on some systems. On others it
takes months to get started. There are huge differences in productivity between different
systems. Implementing these benchmarks is a good test of a system's productivity tools.
We have brought it up (from scratch) in a week, complete with test database and scripts
for the network driver. We estimate the leanest-meanest system would require six months
of expert time to get DebitCredit operational. What's more, it has no Sort utility or
transaction logging.

 12

Third, our “cost” ignores the cost of outages. People comprise 60% of most DP budgets.
People costs do not enter into our calculations at all. We can argue that a system with
10,000 active users and a 30 minute outage each week costs 100 K$/TPS just in lost labor
over five years. Needless to say, this calculation is very controversial.

In defense of our myopic cost model, it is the vendor's model and the customer's model
when money changes hands. Systems are sold (or not sold) based on the vendor's bid
which is our cost number.

 13

Summary

Computer performance is difficult to quantify. Different measures are appropriate to
different application areas. None of the benchmarks described here use any floating point
operations or logical inferences. Hence MegaFLOPS and GigaLIPS are not helpful on
these applications. Even the MIPS measure is a poor metric - one software system may
use ten times the resources of another on the same hardware.

Cpu power measures miss an important trend in computer architecture: the emergence of
parallel processing systems built out of modest processors which deliver impressive
performance by using a large number of them. Cost and throughput are the only
reasonable metrics for such computer architectures.

In addition, input-output architecture largely dominates the performance of most
applications. Conventional measures ignore input-output completely.

We defined three benchmarks, Sort, Scan and DebitCredit. The first two benchmarks
measure the system's input/output performance. DebitCredit is a very simple transaction
processing application.

Based on the definition of DebitCredit we defined the Transaction Per Second (TPS)
measure:

TPS: Peak DebitCredit transactions per second with 95%of the transactions
having less than one second response time.

TPS is a good metric because it measures software and hardware performance including
input-output.

These three benchmarks combined allow performance and price/performance
comparisons of systems.

In closing, we restate our cavalier attitude about all this: “Actual performance may vary
depending on driving habits, road conditions, and queue lengths. Use these numbers for
comparison purposes only”. Put more bluntly, there are lies, damn lies and then there are
performance measures.

 14

References

[Gibson] Gibson, J. C., "The Gibson Mix", IBM TR00.2043, June 1970.

[Gawlick] Gawlick, D., "Processing of Hot Spots in Database Systems", Proceedings of
IEEE COMPCON, San Francisco, IEEE Press, Feb.1985

[Gray] Gray, J., "Notes on Database Operating Systems", pp. 395-396. In Lecture Notes
in Computer Science, Vol. 60, Bayer-Seegmuller eds., Springer Verlag, 1978

[Gray2] Gray, J., Gawlick, D., Good, J. R., Homan, P., Sammer, H.P., "One Thousand
Transactions Per Second", Proceedings of IEEE COMPCON, San Francisco, IEEE
Press, Feb. 1985. Also, Tandem TR 85.1.

[Good]Good, J. R., "Experience With a Large Distributed Banking System", IEEE
Computer Society on Database Engineering, Vol. 6, No. 2, June 1983.

[Anon Et Al] Dina Bitton of Cornell, Mark Brown of DEC, Rick Catell of Sun, Stefano
Ceri of Milan, Tim Chou of Tandem, Dave DeWitt of Wisconsin, Dieter Gawlick of
Amdahl, Hector Garcia-Molina of Princeton, Bob Good of BofA, Jim Gray of
Tandem, Pete Homan of Tandem, Bob Jolles of Tandem, Tony Lukes of HP, Ed
Lazowska of U. Washington, John Nauman of 3Com, Mike Pong of Tandem,
Alfred Spector of CMU, Kent Trieber of IBM, Harald Sammer of Tandem, Omri
Serlin of FT News, Mike Stonebraker of Berkeley, Andreas Reuter of U.
Kaiserslutern, Peter Weinberger of ATT.

