The Supercomputer Class Evolution: A personal perspective

Gordon Bell
Microsoft Research, Silicon Valley Laboratory (1995-) 24 April 2013
Digital Equipment Corp. (DEC) 1960-1983

Abstract

Since my first visit to Livermore in 1961 seeing the LARC, the elegance of the 6600, and just observing computer evolution have been high points of my life as an engineer and computing observer. Throughout their early evolution, supercomputer architecture "trickled down" for use with other computers. In the mid 1990s the flow reversed when large computers became scalable and constructed from clusters of microprocessor-based computers that Livermore's Eugene Brooks wrote about in 1990. Unlike the two paths of Bell's Law that account for the birth, evolution, and death of other computer classes e.g. minicomputers, http://ieeeghn.org/wiki/index.php/STARS:Rise and Fall of Minicomputers supercomputers have doubled in performance every year for the last 50 years. While computer performance is the first order term to track their high performance, many other technologies e.g. FORTRAN, LINPACK, government funding policy, and applications have contributed to the extraordinary progress. I hope to trace the trajectory and contributors to this exciting class.

Events in Supercomputing

1936 Turing "On Computable Numbers"

1943 Colossus, first programmable computer, not Turing complete, for code breaking... built to a schedule, not to max technology that haracterizes supers; many Bombe's
1945 ENIAC built
1945 EDVAC Draft Report
1946 IAS Architecture. Preliminary discussion of the logical design of n electronic computing instrument. Burks, Goldstine, and von Neumann. Over a dozen x-IACS were built from the general desing 1953 IBM 701 Defense Calculator introduced for scientific calculator 36-bit version of IAS Architecture
1954 IBM 704; Successor was 1958: 709.
1957 Fortran first delivery. Current FORTRAN 2008
19597090 and 1108
1960 CDC 1604 (48 bits)
1960 LARC and 1961 Stretch
1962 Atlas commissioned
1964 CDC 6600 (. 48 MF) no more small computers
1964 IBM System 360
1965 Amdahl's Law arguing difficulty of multiprocessors and vectors 1967-68 IBM 360/91-95 introduced as "fighting machine" resulting in the CDC decree. 1969 CDC 7600 (3.3 ME)
1974 CDC STAR 100 (Mflops)
1975 ILLIAC IV connected to ARPAnet
1976 Cray 1 (26 MF)
1977 VAX-11/780 (.14) Became a Personal Supercompute
1978 Caltech Cosmic Cube
1982 Lax Report of the Panel on Large Scale Computing in Science and Engineering to NSB.
1982 Japanese Fifth Generation Computer Systems Project for AI
1983-93 Billion dollar SCI--Strategic Computing Initiative of DARPA IPTO response to Japanese Fifth Gen. 1990 redirected to supercomputing after failure to achieve AI goals

1. 1983 MatLab establishes a higher level language and programming interface
1982 Cray XMP... (1 GF)
2. 1984 NSF Establishes Office of Scientific Computing. 1985 NCSA awarded 5 year grant of $\mathbf{4 2 . 7} \mathbf{~ M}$
1985 Convex C-1 (3.0) \& Alliant FX-1... 8 Mini-supercomputers are born. 1986 Livermore Loops Livermore Fortran Kernels
1986 Ken Wilson declares simulation to be the third paradigm 1987 Bell CISE Interview posits parallelism. 1992: 5X, 1997: 100X
1987 nCUBE (1 K computers) achieves $400-600$ speedup, winning first Bell Prize at Sandia. Gustafson's Law as Amdahl's Law Corollary

1988 Mathmatica

1988 Ardent Personal Graphic Supercomputer (6.9-25)
1989 TMC CM2 SIMD with 64K PEs wins Bell Prize
1991 Eugene Brooks, Attack of the Killer Micros report; Supercomputing 90 1992 Intel Touchstone Delta at Sandia?
1993 CM5 (60 GF) 1024 processors
1993 Top 500 established using LINPACK Benchmark, 2012 Graph500, 1994 Bell and Gray define Bricks aka SNAP as "the way".
1994 Beowulf standard, and 1994 MPI-1 Standard
17. 1995 Death of o(50) companies in search of "the way" via DARPA SCI
18. 1995 ASCI > Advanced Simulation and Computing (ASC) Program

1995 Numerical Wind Tunnel (124 GF)
1997 ASCI Red (1 TF) at Sandia
1998 Gray Posits $4^{\text {th }}$ Paradigm of Science.
2000 RLX Rocket Logic introduces Blade package
2002 Earth Simulator (40 TF)
2008 IBM BlueGene (1.5 PF)
25. 2010 Graph 500 Rating
26. 2012 Cray Titan (17.6) GPU and CUDA
27. 2013 Green500

Personal Vignettes

1. Reminiscence: $1^{\text {st }}$ visit to Livermore,1961
2. Bell's Law for Birth and Death of Computer Classes
3. The Cray Era (1965-1990): Single Memory computers
4. "Killer Micros" transition
5. Massive Parallelism: Clusters
6. Grand Challenges, Benchmarks, Lists, Prizes, Threats
7. HPC aka Supercomputers versus Cloud computing
8. To the ExaFlops-- Continued diversity

PROGRAMMED DATA
 PROCESSOR - 1 MANUAL

$$
F-15 c \quad 6 / 63
$$

As delivered (George Michael)	As Modified ... Called "Romper Room"
4k words x 18 bits/word	8k words x 18 bits/word
Freiden flexowriter + fan folded Paper Tape reader/punch	Same typewriter + reels for Paper tape Reader + paper tape punch
Type 30 Direct View CRT + Type 31 High Precision 5" CRT + Camera and light pen	Direct View CRT + New Light Pen; 5" CRT + special phosphor, Mitchell camera, claw pull down, pin registered, $1,000 \mathrm{ft}$ magazines, special (CRT) dichroic filters and reference leg.
Ten frame/sec Mitchell pinregistered camera ...leaked light	Quadriphonic sound output + 10 bit D-to-A converters
	Telephone handset + microphone for sound input
4 Potter Magnetic tape handlers	4 IBM 729VI Magnetic tape handlers
2,000 crd/min Uptime Card reader folded cards very fast	1200 crd/min IBM 1402 card reader/punch
600 Ipm Analex printer	1200 Ipm IBM 1403 Printer
	Cal Comp Plotters; 12- and 30-inch widths
	Rand Tablet
	EYEBALL image digitizing
	Large Dark Room
	Mylar Paper Tape Reader/Punch
	IBM Selectric Typewriter

LLNL Visit 1999

Begin Bell's Law

Bell's Law for the formation of The Birth \& Death of Computer Classes

Hardware technology improvements i.e. Moore's Law for semiconductors,... disks, enable two evolutionary paths(t) for computers:

1. constant price, increasing performance direct consequence of Moore's Law
2. Constant or decreasing performance, decreasing cost by a factor $\mathrm{O}(10) \mathrm{X}$
.. Leads to new structures \& new computer class!
3. Spend more: build the largest computer that you can and that customers can afford.
Class = platform, price, use, market, interface, etc

The classes, sans phones, 2006

David Culler UC/Berkeley

The classes, sans phones, 2006

David Culler UC/Berkeley

Bell's Law - Production Volume

Bell's Law of Computer Class Formation

Technology enables two evolutionary paths:

1. constant price, increasing performance
2. constant performance, decreasing price

Time

$$
\begin{aligned}
& 1.26=2 \mathrm{x} / 3 \mathrm{yrs}-10 \mathrm{x} / \text { decade } ; 1 / 1.26=.8 \\
& 1.6=4 \mathrm{x} / 3 \mathrm{yrs}-100 \mathrm{x} / \text { decade } ; 1 / 1.6=.62
\end{aligned}
$$

In retrospect...by 1971, the next 40+ years of computing was "set in stone"

1. Moore's Law (1965) transistors/die double every 18 mos.
2. Intel 4004, Processor-on-a-chip (1971)

Clearly, by 1978 16-bit processor-on-a-chip
3. Bell et al 1971 observation...computers evolve:

1. At constant price (Moore's Law)
2. Less costly computers form a new class every decade (Bell's Law)
New technology, interfaces, manufacturers, uses, and markets create new classes

End Bell's Law

Supercomputer attributes (besides being today's largest computer)

- Function: calculate vs. record processing
- Fortran as the target language
- Quest for performance: Who can build the fastest?

Test limits: size, power, complexity, budget, time to market

- Price: How much do you have to spend?
- To buy, to build the building, to power, to run
- To program
- Use (market): science \& engineering simulation, design, climate, cryptography ...3d, time varying phenomena
- Scalability post 1995: Time, machine generation, problem size, and programming environments
- Programming environment (standards): MPI, Beowulf

Supercomputer Hardware: Speed \& parallelism

- Clock spood
- One memory (Scale un)
- Overlap of memory access and instruction execution
- Parallelism of a single instruction stream
- VLIW
- Pipelining
- Vector processing
- Multiprocessors-Scale up
- Multiple streams \& multi-threading scalability
- Multiple independent interconnected computers (Scale out) aka Clusters
- Multiprocessor nodes aka constellations
- Stream processing using GPUs
- FPGA ala Convey?

20 Supercomputing events

1. 1946 IAS Architecture. Preliminary discussion of the logical design of an electronic computing instrument. Burks, Goldstine, and von Neumann. Over a dozen x-IACS were built from the general design architecture including IBM's 701
2. 1957 Fortran first delivery. Current FORTRAN 2008

19597090 and 1108, CDC 1604 (scientific mainframe)
1960 LARC and 1961 Stretch; 1962 Atlas commissioned
1964 CDC 6600 (. 48 MF)
1964 IBM System 360; Scientific and Record Keeping computer
1965 Amdahl's Law: single processor vs multi-P's or vectors
1969 CDC 7600 (3.3 MF)
1976 Cray 1 (26 MF)
1978 Caltech Cosmic Cube first multicomputer
11. 1982 Cray XMP... (PK: $\mathbf{1}$ GF) The beginning of the end
12. 1987 nCUBE (1 K computers) achieves 400-600 speedup, winning first Bell Prize at Sandia. Gustafson's Law as Amdahl's Law Corollary
13. 1992 Intel Touchstone Delta at Sandia? Reaches 100 GF
14. 1993 CM5 (60 GF Bell Prize) 1024 processors (Linpack 236 GF)
15. 1993 Top500 established using LINPACK Benchmark
16. 1994 Beowulf and MPI-1 Standards established
17. 1997 ASCI Red (1 TF) at Sandia
18. 2008 IBM BlueGene (1.5 PF)
19. 2012 Cray Titan (17.6) GPU and CUDA

Five eras of Scientific Computing		
Period	Technology	${ }^{\text {Machines (artifacts) }}$
193x-1947	Electromechanical-vacuum tubes; one-of machines Search for "the computer"	Computing with cards at Los Alamos; IBM Multiplying calculator. Atanasoff, Colossus, Harvard Marks, BTL, Zuse, culminating in ENIAC. The EDVAC Report.
1947-1950s	Electronic Computing Era Vacuum Tube Scientific Calculators including von Neumann X-iacs	The Big Bang. First stored program computers that just work (Univac, IBM 701 and ERA); X-Iacs, Illiac, Maniac, etc Amdahl's WISC
1960s	Discrete transistors. Supercomputer Class forms. Build fast single instruction stream processors; FORTRAN established.	FORTRAN; LARC, STRETCH (61), plus 7090 and CDC 1604 workhorses Seymour Cray wins: CDC 6600 (64) \& 7600 (71)
$\begin{array}{\|l\|} \hline \text { Mid70s-mid } \\ \text { 90s } \\ \hline \end{array}$	ICS (bipolar) ...CMOS. Vector processor Era	Intro of Cray 1, vector processor 1975 and evolution takes over using multiple processors vector XMP, YMP, C-90, T-90
Mid 80s to the present	Scalables era (commodity killer micros including "game" processors)	Scalable computers using micros: How much money? Seitz Cosmic Cube c1985, move to Intel and others. 45 companies casualties.

There have been multiple eras of programming model stability

This stability has made possible remarkable advances in science and supported national security, but the programming model transitions are tough... and we are initiating one now....

Supercomputers evolution

- Evolution of single memory computers

Colossus: 1943, 194410 produced A Supercomputer?

Harvard Mark I aka IBM ASCC
 "I think there is a world market for maybe five computers." - Thomas J. Watson, Sr., 1943

IBM AUTOMATIC SEQUENCE C(ONTROLLED CALCULATOR

A Supercomputer?

Two seminal events: EDVAC recipe \& IAS

Other early "supercomputers"
Supercomputers?

Zuse Z3 (1941)

Univac 1 (1951)

Manchester/Ferranti Mark I (1951)

The IAS machines (1952) Courtesy of Burton Smith, Microsoft

Supercomputer Mainframes: LARC

- Begun in 1955 for Livermore and delivered in 1960
- Had dual processors and decimal arithmetic
- Employed surface-barrier transistors and core memory

Large transistorized calculators c1959-70 Not Supercomputers

IBM 704 >> IBM 7094
ERA/Univac $1103 \gg 1107$, 1108
CDC $1604 \gg$ CDC 3600
Philco 212
Burroughs Datatron >> B5000, etc.

Trickle down
1959: CDC 160 (Offline for CDC 1604)
1962: LINC (MIT Lincoln Laboratory)
Laboratory Instrument Computer
1963: DEC PDP-5
1965: DEC PDP-8

Supercomputer Mainframes: Stretch, Harvest

- IBM 7030 (STRETCH)
- Delivered to Los Alamos 4/61
- Pioneered in both architecture and implementation at IBM
- IBM 7950 (HARVEST)
- Delivered to NSA 2/62
- Was STRETCH + 4 boxes
- IBM 7951 Stream unit
- IBM 7952 Core storage
- IBM 7955 Tape unit

Courtesy of Burton Smith, Microsoft

Fortran 1957, '60, ... '08

Erich Bloch, Fred Brooks, Jr., and Bob Evans with Nick Donofrio

360 Revolution

40th Anniversary

Calculation and Record Keeping

CDC 6600 Console c1964

CDC 6600 registers

Fig. 17600 Syslem Communication

Amdahl's law... the limit of parallelism

- If w_{1} work is done at speed s_{1} and w_{2} at speed s_{2}, the average speed s is $\left(w_{1}+w_{2}\right) /\left(w_{1} / s_{1}+w_{2} / s_{2}\right)$
- This is just the total work divided by the total time
- For example, if $w_{1}=9, w_{2}=1, s_{1}=100$, and $s_{2}=1$ then $s=10 / 1.09 \cong 9$ (speed)
- This is not the average of s_{1} and s_{2}

Amdahl, Gene M, "Validity of the single processor approach to achieving large scale computing capabilities", Proc. SJCC, AFIPS Press, 1967

SIMD arrays: Illiac IV

- By the late 60 's, it was clear mainframes weren't enough
- To improve performance, SIMD array machines were built or proposed with many arithmetic processing units
- Solomon was an early Westinghouse SIMD array prototype
- The Illiac IV was a U. of Illinois/Burroughs project
- Funded by DARPA from 1964 onward, usable in 1975
- The chief architect, Dan Slotnick, from Westinghouse
- Designed for 256 arithmetic units, cut back to 64
- The thin-film memory system was a major headache
- After student demonstrations at Illinois in May 1970, the project was moved to NASA-Ames
- Languages, especially FORTRAN, aimed to use parallel loops to express parallelism

ILLIAC IV: Uof IL at NASA in1971

- 1964 project (U. of IL)
- Burroughs contract
- SIMD 64 PEs
- 10 MB disk/PE
- Moved to NASA
- 1975 on ARPAnet

CDC STAR 100 at LLNL

CDC Star 100

- Sept 74, 75
- 25 Mhz
- 50 Mflops
- Mem-mem vectors

Cyber 203, 205
=>
ETA Systems ('83-'89

- CMOS
- Liquid nitrogen
- SMP 8 proc.

Cray-1 c1976: Supercomputer

Cray 1 sans covers

 The Vector ISA- Unlike the CDC Star-100, no development contract
- Los Alamos got a one-year free trial. Los Alamos leased the system.
- Los Alamos developed or adapted existing software
- Cray-1 and Amdahl's law
- Scalar performance 2X the 7600
- Vector 160 Mflops

。 80 MHz clock

- Peak floating point ops vs. Instructions per second
- "Supercomputer" connotes a Cray-1

Shared Memory: Cray Vector Systems

- Cray Research, by Seymour Cray
-Cray-1 (1976): 1 processor
- Cray-2 (1985): up to 4 processors*
- Cray Research, not by Seymour Cray
- Cray X-MP (1982): up to 4 procs
- Cray Y-MP (1988): up to 8 procs
- Cray C90: (1991?): up to 16 procs
- Cray T90: (1994): up to 32 procs
- Cray X1: (2003): up to 8192 procs
- Cray Computer, by Seymour Cray
-Cray-3 (1993): up to 16 procs
- Cray-4 (unfinished): up to 64 procs

- All are UMA systems except the X1, which is NUMA Cray-2
*One 8-processor Cray-2 was built

VAXen (1977) a super-minicomputer became a "personal supercomputer"

Linpack (Mflops): VAX 11/780 0.14
Cray 126

Clock (MHz)
VAX 5
Cray 180

1982: The Lax Report to NSF's NSB

- Gresham's Law: VAXen are driving out supercomputers
- NSF needs to fund supercomputer access and centers
- 1984: NSF Establishes Office of Scientific Computing
- NCSA at U IL (1985)
- SDSC at UCSF
- Cornell
- Pittsburgh
- Von Neumann at Princeton etc.

Trickle Down: Small scale computers

- Mini-supercomputers (Convex and Alliant)
- Personal supercomputers (Ardent)

1987: The personal graphics supercomputer

Peak MIPS	$32-128$		
Peak Scalar MFLOPS	$16-64$	Linpack (Mflops):	
Peak Vector MFLOPS	$32-128$	Ardent (4) 24	
Memory MB	$32-512$	Cray 1	26
VO MB/s	$23-46$		
Disk Capacity MB (internal)	$380-2280$	Clock (MHz)	
Disk Capacity GB (external)	$1-50$	Ardent 32	
Bus BW MB/s	256	Cray 1	80
Dhrystones (KD)	$51-204$	Cost $\$ 120,000$	
VAX MIPS	$29-117$		
Whetstones (MW DP)	$28-112$		
Linpack (MF DP)	$10-12.4$		
Livermore Loops (MF HM DP)	$4.9-18$		
Vectors/s*	$100,000-300,000$		
Polygons/s**	$50,000-150,000$		
Spheres/s	2,000		
Pixels/s	$5.5-11 M$		

The Transition

MIT Whirlwind Computer c1952 Back to when computers are buildings

TSF computer room power is being scaled from 15MW to 30 MW

A5C

- Capitalize on the computational efficiencies (TF/MW and SF/TF)
- Capitalize on the electrical/mechanical system efficiencies
- Adding an additional 15MW into the TSF

Supercomputers evolution:
 Supercomputers become multicomputers

- Break from single memory computers
- Factors
- Japanese threat
- Clusters forming independently
- CMOS
- Powerful microprocessors cross-over TTL and ECL
- CS research interconnecting computers
- Parallel compiler efforts

1982: Threat or opportunity

- Threat = Funding opportunity

Kickoff of DARPA's SCI program c1984... Steve Squires, DARPA \& Gordon Bell, Encore seated at our "Cray".

10+ years later: "Killer micros" Clusters begin to be standard

Lost: The search for parallelism c1983-1997 DOE and DARPA Adv. Scici Comp. Initiative

- ACRI French-Italian program
- Alliant Proprietary Crayette
- American Supercomputer
- Ametek
- Applied Dynamics
- Astronautics
- BBN
- CDC >ETA ECL transition
- Cogent
- Convex > HP

Cray Computer > SRC GaAs flaw

- Cray Research > SGI > Cray Manage
- Culler-Harris
- Culler Scientific Vapor...
- Cydrome VLIW
- Dana/Ardent/Stellar/Stardent
- Denelcor
- Encore
- Elexsi
- ETA Systems aka CDC;Amdahl flaw
- Evans and Sutherland Computer
- Exa
- Flexible
- Floating Point Systems SUN savior
- Galaxy YH-1
- Gould NPL
- Guiltech
- Intel Scientific Computers
- International Parallel Machines
- Kendall Square Research
- Key Computer Laboratories searching again
- MasPar
- Meiko
- Multiflow
- Myrias
- Numerix
- Pixar
- Parsytec
- nCUBE
- Prisma
- Pyramid Early RISC

- Ridge
- Saxpy
- Scientific Computer Systems (SCS)
- Soviet Supercomputers
- Supertek
- Supercomputer Systems
- Suprenum
- Tera > Cray Company
- Thinking Machines
- Vitesse Electronics
- Wavetracer SIMD

VAX Strategy 1979 ... VMS Clusters 1984 big computers $=$ interconnected minicomputers

Caltech Cosmic Cube 8 node prototype ('82) \& 64 node ' 83 Intel iPSC 64 Personal Supercomputer ' 85

1989: The "killer micros" -Eugene Brooks, LLNL

Challenge: how do you utilize (program) a large number of interconnected, independent computers?

Clock speed and Moore's law

When the micro-processor's clock stopped

Amdahl's law... the limit of parallelism

- If w_{1} work is done at speed s_{1} and w_{2} at speed s_{2}, the average speed s is $\left(w_{1}+w_{2}\right) /\left(w_{1} / s_{1}+w_{2} / s_{2}\right)$
- This is just the total work divided by the total time
- For example, if $w_{1}=9, w_{2}=1, s_{1}=100$, and $s_{2}=1$ then $s=10 / 1.09 \cong 9$ (speed)
- This is obviously not the average of s_{1} and $s_{\mathbf{2}}$

Amdahl, Gene M, "Validity of the single processor approach to achieving large scale computing capabilities",
Proc. S.

Bell Prize for Parallelism, July 1987

IEEE Software launches annual Gordon Bell Award

Editor-In-Chief Ted Lewis has announced the First Annual Gordon Bell Award for the most improved speedup for parallel-processing applications. The wwo $\$ 1000$ awards will be presented to the person or teain that demonstrates the greatest speedup on a multiple-instruction, multiple-data parallel processor.

One award will be for most speedup on a general-purpose (multiapplication) MIMD processor, the other for most speedap on a special-purpose MIMD processor. Speedup can be accomplished by hardware or software improvements, or by a combination of the two.
To qualify for the 1987 awards, candidates mast submit documentation of their results by Dec. 1. Tbe winners will be announced in the March 1988 issue. This year's judges are Alan Karp of IBM's Palo Alto Scientific Center, Jack Dongarra of Argonse National Laboratory, and Ken Kennedy of Rice University.
For a complete set of rules, definitions, and submission suidelines, write to the Gordon Bell Award, IEEE Soff. ware, 10662 Los Vaqueros Cir., Los Alamitos, CA 90720.

Alan Karp:

Offers $\$ 100$ for a program with 200 X parallelism by 1995.

Bell, 1987 goals:
10 X by 1992
100 X by 1997

Researcher claims: 1 million X by 2002

Development of Parallel Methods
 For a 1024-Processor Hypercube

John L. GUSTAFSON, Gary R. MONTRY, and Robert E. BENNER Sandia National Laboratories, Albuquerque, New Mexico

March 1988

As printed in SIAM Journal on Scientific and Statistical Computing
Vol. 9, No. 4, July 1988, pp. 609-638.
(Minor revisions have been made for the Web page presentation of this paper. JLG 1995)

EDITOR'S NOTE

[This paper] reports on the research that was recognized by two awards, the Gordon Bell Award and the Karp Prize, at IEEE's COMPCON 1988 meeting in San Francisco on March 2.

The Gordon Bell Award recognizes the best contributions to parallel processing, either speedup or throughput, for practical, full-scale problems. Two awards were proposed by Dr. Bell: one for the best speedup on a general-purpose computer and a second for the best speedup on a special-purpose architecture. This year the two awards were restructured into first through fourth place awards because of the nature of the eleven December 1987 submissions. Bell presented the first place award of $\$ 1.000$ to the authors of [this paper1.

Gustafson's Law
 Benner, Gustafson, Montry winners of first Gordon Bell Prize
 $\mathbf{S}(\mathbf{P})=\mathbf{P}-\alpha \times(\mathbf{P}-1)$
 P is the number of processors,
 S is the speedup, and α, the non-parallelizable fraction of any parallel process

Intel Touchstone Delta

Worlton view c 1991

THE MPP BANDWAGON

CM-5 1992 1K Sparc computers Bell Prize winner

1994: Computers will All be Scalables

Thesis: SNAP: Scalable Networks as Platforms

- upsize from desktop to world-scale computer
- based on a few standard components

Because:

- Moore's law: exponential progress
- standards \& commodities
- stratification and competition

When: Sooner than you think!

- massive standardization gives massive use
- economic forces are enormous

1994 Meeting with Jim Gray
"the day I gave up on shared memory computers"
Copyright G Bell and J Gray 1996

HPC \& Cloud: Twins, Separated at Birth (Computation versus Storage Centric)

HPC: Separate Storage Area Network, two switches

Cloud: Attached Storage, single switch

Figure 4-6. Typical Beow ulf cluster configuration.

Lessons from Beowulf

- An experiment in parallel computing systems '92
- Established vision- low cost high end computing
- Demonstrated effectiveness of PC clusters for some (not all) classes of applications
- Provided networking software
- Provided cluster management tools
- Conveyed findings to broad community
- Tutorials and the book
- Provided design standard to rally community!
- Standards beget: books, trained people, software ... virtuous cycle that allowed apps to form
- Industry began to form beyond a research project

ASCI: Accelerated Strategic Computing Initiative =>ASC: Advanced Simulation and Computing
from Alex R. Larzelere II, History of ASCI, 1995-2005

ASCI Red 1997-2005

- January 1997
- 1.338 Tflops
- 6/1997
- Sandia NL
- 9,216 proc, 640 disks, 1,540 PS, 616 intercon
Figure 4-1. The ASCI Red system at Sandia.

First Clusters RLX Startup c2002
Defines blade...

Grand Challenges, Top(x), Prizes, Benchmarks, Kernels, and Threats

Top 500 1993-2012

- Cray Titan
- IBM Sequoia Blue Gene/Q
- Fujitsu K computer
- NUDT Tianhe-1A
- Cray Jaguar
- IBM Roadrunner
- IBM Blue Gene/L
- NEC Earth Simulator v
- IBM ASCI White
- Intel ASCI Red
- Hitachi CP-PACS v
- Hitachi SR2201 v
- Fujitsu Numerical Wind Tunnel v
- Intel Paragon XP/S140
- Fujitsu Numerical Wind Tunnel v
- TMC CM-5
- Intel Touchstone Delta

US, November 2012 - present)
US, June 2012 - November 2012)
Japan, June 2011 - June 2012)
China, November 2010 - June 2011)
US, November 2009 - November 2010)
US, June 2008 - November 2009)
US, November 2004 - June 2008)
Japan, June 2002 - November 2004)
US, November 2000 - June 2002)
US, June 1997 - November 2000)
Japan, November 1996 - June 1997)
Japan, June 1996 - November 1996)
Japan, November 1994 - June 1996)
US, June 1994 - November 1994)
Japan, November 1993 - June 1994)
US, June 1993 - November 1993)

Some Benchmarks \& Kernels

- Whetstones (1972) \& Dhrystones
- Spec, Specint, Specfp (1988)
- Livermore Loops (1986)
- TPM (1993)
- Linpack (1993)
- NAS parallel
- Graph (2011)
- Berkeley Dwarf Kernel/App (2011)

Livermore Loops c1986 (e.g.13)
Average \& Harmonic Mean

Some rules for supercomputer design

1. Performance, performance, and performance are the three objective criteria for a supercomputer design.
2. Amdahl's law generalized implies that everything matters... a variant of "no chain is stronger than its weakest link", especially when measuring links by harmonic mean of a set of benchmark kernels.
3. The scalar speed matters most and a super must be the fastest of comparable computers in its class... otherwise the harmonic mean measurement kills it as a super.
4. The vector speed can be arbitrarily high as costs allow. This is the advertised speed of the computer. The past rule of thumb is to have a vector unit which will produce two results per clock tick. Large increases over the scalar speed beyond a hundred provide a small benefit except for selected applications, making the computer, special purpose (e.g. a Connection Machine). The vector (peak) or advertised speed is the speed which the manufacturer guarantees the computer will not exceed on any application.
5. Allow no holes in the performance space (e.g. arithmetic function, input-output, mass storage) into which a benchmark can step, resulting in large performance losses.
6. Provide peaks in the performance space in order that extraordinary performance for a benchmark will result. Use this single number to advertise (characterize) the machine and to challenge other machines.
7. See Law \#1: Provide enough address bits for a decade of constant architecture implementation.
8. Build at least two generations of the architecture. No first design supercomputer has ever been perfect. Do it again after the first one.
9. Build on the work of others. Designing a super is hard. Understand exactly why and how every machine works and move forward using this knowledge and any residual software.
10. Make it easy to use. Have a great compiler and diagnostic tools to aid users in vectorization and parallelization. Training in academe is nil since computer science departments are not oriented to training people to use computers or deal with computers that produce numbers. Texts lacking re. programming a parallelism.
11. Have lots of resources when embarking on a supercomputer design. The fatality rate for companies making machines is at least 50%, and even though a design may be good, it has to be re-iterated.

Dwarf Popularity (Red Hot \rightarrow Blue Cool)

End Challenges... Threats

HPC and Clouds:

Separated at birth

HPC \& Cloud: Twins, Separated at Birth (Computation versus Storage Centric)

HPC: Separate Storage Area Network, two switches

Cloud: Attached Storage, single switch

Traditional Datacenter Builds

Monolithic design Typical large datacenter $=11$ football fields 8 construction

Huge \$\$\$
Long lead time

20 to 50 Megawatts

Typical construction costs $=\$ 10 \mathrm{M}$ to $\$ 20 \mathrm{M}$ per Megawatt
18 to 24 months from design to online

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten Dotted line extrapolations by C. Moore

C Moore, Data Processing in ExaScale-ClassComputer Systems, Salishan, April 2011

2015: 100 petaflops; 2018: 1 exaflops

- October 31, 2012: the Chinese government announced they are building Tianhe-2 a 100 petaflops supercomputer for completion in 2015.
- It also plans to have a one exaflop supercomputer online by 2018 using the Intel MIC multi-core processor architecture
- Given the current speed of progress, ... supercomputers will reach one exaflops (1018) (one quintillion FLOPS) by 2018.
- SGI plans to achieve a 500 fold increase in performance by 2018, and achieve one exaflops.

The End

