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ABSTRACT 
This paper describes the evolution of a notation, ISP (Instruction Set 

Processor), which was originally developed for defining the instruction set, 
data-types and operations and the interpreter of a computer, giving essentially 
the same information as in a programming manual. ISP has been used in a book 
(Bell and Newell, 1971), in programming manuals, and papers to describe many 
computers. As part of the evolution of the language, much consideration has 
been given to the readability and simplicity of the notation as a descriptive 
tool, as well as to some other properties such as extensibility and fidelity, 
required b y  the notation as a design tool. ISP has also been extended (evolved) 
t o  handle Register Transfer (RT) systems for description, simulation and design 
purposes, including a flow chart form used in the Register Transfer Module 
System (Bell, Grason and Newell, in press). For RT design i t  has been necessary 
to  incorporate additional facilities to describe the switching circuits (i.e. 
combinational and sequential components). 
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INTRODUCTION 

Five major levels of a hierarchy in digital systems can be recognized, for 
which we are interested in formally defining using notations and/or computer 
recognized languages. They are: 

PMS level (System level).- The top level of description, evaluates the 
gross properties of the computer system. Its elements are processors, memories, 
switches, peripheral units etc, and the parameters are costs, memory capacities, 
information flow rates, power etc. 

Programming level.- The basic components are the machine instructions, 
operations and the interpretation cycle (which are defined at the RT level). 
The behavior of the processor is determined by the nature and sequence of i,ts 
operations. This sequence is given by a set of bits in primary memory (a 
program) and a set of interpretation rules. Thus, if we specify the nature of 
the operations and the rules of interpretation, the actual behavior of the 
processor depends solely on the initial conditions and the particular program. 

Register Transfer level (Functional level).- Data flow and control operate 
i n  discrete steps. A combination of switching circuits is used to form 
registers, register-transfer and other data operations. The elements 
(registers) are combined (transformed) according to some rule and then stored 
(transfered) in another register. The rules of transformation can be almost 
anything, from simple transfers to complex logical and arithmetic expressions. 

Switching circuit level (Sequential and Combinational sublevels).- The 
system structure is given by a collection of gates and flip-flops, and the 
behavior b y  a set of boolean equations. Timing is carried out at a finer degree 
than at the preceding level, a time unit being usually in the order of a gate 
delay. 

Circuit level.- Gates are described as some interconnection of diodes, 
transistors, resistors, etc. according to electrical circuits laws. Most of 
the discrete properties of the previous two levels are lost, and timing is 
carr ied out at a finer degree, where transient behavior is usually a very  
important consideration. 

The PMS and Circuit levels, by their continuous treatment of time, belong 
to  a different category of design than the other intermediate levels, and wil l  
not be dealt with here. 

For each of our levels of interest, there is a certain need to be formal, 
for  communications purposes, and to have a representation that is convenient to  
use in the design process, so that concepts can be stated easily, partially 
completed designs can be studied, and analysis can take place. Finally, there 
should be a convenient, unambiguous mapping of the notation into physical 
objects. The mapping is not part of the notation, but of the particular 
description, thus allowing many possible mappings. 



The ISP notation was developed to do a descriptive task: To be able to  
formalize the information normally given in basic machine manuals and if 
possible to supplement and eventually replace what are known as "programming 
reference manuals"; for instance, the DEC PDP-11/45 Processor Handbook (DEC, 
1971), carries a description of the processor in ISP. Hence the essential 
requirements were of readability, completeness, flexibility and brevity. In 
evolving the language, the intent was to present a notation which could 
represent almost any design at the Programming, RT and Switching levels, in  a 
structural and formal way, so that it could be easily converted to hardware o r  
t o  a microprogrammed interpreter. Other requirements were that the notation 
should also be a design tool, not merely a descriptive tool. Doing this we 
expect to produce programs which can analyze designs, simulate them, and in  some 
cases carry out limited design activities (e.g. ISP description of the data and 
control parts of a particular RT scheme). 

Relationship to other work.- There has been considerable related work for 
our three levels of interest (below the PMS level); in particular, APDL 
(Darringer, 1969) can be considered a predecessor of ISP. At the Programming 
level, the monumental description of the IBM/360 in APL (Falkoff, lverson and 
Sussenguth, 1964) is the most impressive. In Europe, several versions of Algol, 
including Algol 68, have evolved and been used to describe several computers. 
There have been programs written in Algol, APL, Fortran and various machine 
Assembly languages to simulate a given computer. As a by-product, these 
descriptions define the machine in a fundamentally RT language. 

At the RT level, there have been numerous languages, although the first 
informal use in a text appears to be that of Bartee, Reed and Lebow (1962). 
Schorr (1962) describes an early language for this purpose. Chu wrote about CDL 
in 1964. He has written two books about this (Chu, 1970, 1972) and a simulation 
program exists. Again, when a particular RT structure such as a stored program 
computer or a microprogrammed computer is designed, it is essentially tr ivial t o  
convert i ts flowchart definition into a conventional RT-like programming 
language. Thus there is a significant lack of need to produce a definitive RT 
language. 

At the switching circuit level, simulators have been used for some time, 
both because they are needed (it is too costly to build LSI chips and experiment 
w i th  them) and because the alternative of writing a realistic simulation in  a 
conventional programming language is difficult. Most universities havs their 
own logic design simulators for clocked sequential, delay-less circuits. For 
this later type, however, a standard programming language is adequate. 



LANGUAGE REQUIREMENTS 

What properties are desired in a language for writing behavioral and 
structural descriptions of a digital system? 

RT languages are similar to most programming languages sjnce they both 
carry out register assignments. The parallel nature of hardware suggests that 
i t  could be useful to at least have a special notation, even though programming 
languages such as FORTRAN can be used for this purpose. 

We can divide the set of properties in two classes: one of them consists 
of the requirements for a scientific notation used in a design process; and the 
other has to deal directly with the objects we are devising, namely digital 
systems, particularly computers. 

GENERAL PROPERTIES 

A) Readability.- The notation is going to be used as a conveyor of 
information, not only between man and machines but among humans, who do not all 
have the same experience or involvement in the design. A description in this 
notation should be precise, conscise and elegant (considerations o f '  typography, 
character sets, formats, the way operations such as array accesses are 
described, etc.), it should be usable as the ultimate source of information 
about the object. Information should be extracted from the context rather than 
b y  syntax which clouds the description (e.g. register declarations, keywords 
etc.). 

B) Familiarity.- Primitive concepts in the language should be named and 
used in a way consistent with general practice. 

C) Generality.-The notation should describe the elements occurring in  the 
universe of interest, and at several levels of detail (in a hierarchical way), 
b y  supressing repetitive or unnecessary detail. 

D) Simplicity.- There should be few primitive concepts, and they shoul,d be  
used consistently throughout the description, avoiding special cases of more 

. general concepts, or things that are of relative importance or that imply a 
specific implementation. 

E) Unambiguity.- The interpretation of a description should be unique. 

SPECIFIC PROPERTIES 

A) Extensibility.- The language should be able to extend gracefully b y  
defining constructs in terms of elements already in the language. This also 
gives the capability to describe machines in a hierarchical fashion. 

B) Fidelity.- The organization of the description should reflect the 
organization of the machine, making the intentions of the designers transparent 
t o  the users, humans or simuiation/production automation processes. Thus, at 



the lowest level it must be able to describe physical elements (e.g. gates, 
flip-flops, delay lines...). 

C )  Timing and Concurrency.- Machines are essentially parallel and this 
implies that concurrency should be the rule rather than the exception. 

D) Syntactically simple (writable).- The notation is a tool for designers 
and descriptions should be written by them and not (necessarily) by programmers. 

E) Hardware independence.- The notation should be relatively independent 
of any hardware technology, machine organization, timing mode, design procedure 
o r  simulation/ production techniques. This is somewhat in conflict with the 
f idelity property. 

F) Separability.- The notation should be able to express the dichotomy 
between data and control. It should express the structure and behavior of the 
data flow, which implies the behavior of the control part. Also separability 
should permit the function of a primitive (e.g. an AND gate) to be described in  
an independent fashion. 



HARDWARE REQUIREMENTS 

The three intermediate hardware levels: Programming, Register Transfer and 
Switching can all be described using a single language. In fact, conventional 
programming languages have been used. The issue is, however, how much they must 
be  changed to reflect parallelism, timing and the structure of the object being 
represented. 

The RT and Switching circuit levels can be considered by treating thom as 
t w o  different design problems. Actually, the RT level is a generalization of 
the Switching level, the structural elements are arrays of identical subsystems 
belonging to that level, i.e., registers are made of flip-flops and gates, 
dr iven by  clocks (or clock-like signals). The behavior is described b y  
transformations (functions) and transfers between registers. The key element 
that sets this level appart is the appearance of control (the ability to perform 
these transformations and transfers in a selective way) as an explicit entity. 
Later, a (conceptually) graceful way of treating both levels in a continuous 
fashion will be given. The reason for this approach is that, although the RT 
level is a perfectly valid level of design, it has not been fully defined and 
understood (it is not a problem of youthfulness, the level was recognized as 
such in the early 50's). As a consequence we do not have a proven and accepted 
(complete?) set of primitive elements. Also, there is no accepted design 
formlstyle, and usually informal flow-chart and data path diagrams are used 
here. The result is that a designer, working at the RT level must ocasionally 
descend one level (to the gate level) to describe precisely a particular piece 
of hardware. Contrast this with the gate level of design, with the 
traditionally accepted set of primitives (AND, OR, FLIP-FLOP etc.) where ' i t  is 
indeed rare for a designer to have to describe a gate in terms of diodes o r  
transistors. 



DATA OPERATORS, DATA TYPES and CARRIERS 

The Switching and RT levels will be related by providing a common notation 
and a few primitive entities: The first element is the data-operation which 
produces bit patterns with new meaning. They do the processing by  transforming 
information. Data-operations work on data-types, composed of a value (meaning) 
and a representation (encoding). Associated with each data-type there is a 
carrier, used in storing and transmitting the data-types. 

DATA-OPERATIONS.- Create information (instances of data-types) with new 
meaning, in which process it may destroy some existing information. The 
data-operation takes its input (the data-type carriers) operates on the data and 
presents the output (the resulting data-type carriers). The complexity of a 
data-operation ranges from a transfer path between carriers, a combinational 
network, to more complex arithmetic expressions, including sequences of simpler 
data-operations, e.g.: 

NAME SYMBOL EXAMPLE 
concatenation A B 
extraction <...> A<1> 
transfer t A t ... 
add + N + M  
and A A A B  

DATA-TYPES.- Encode a value into an information medium. This encoding ranges in  
complexity from a single bit to a highly complex entity (a floating point 
number, wi th one or two signs, exponent and mantissa fields, posibly using , 

different arithmetic representations such as excess-n, sign-magnitude, ones or  
two's-complement etc.), e.g., BIT, BYTE (usually 8 bits), CHARACTER (6, 7 or 8 
bits), DIGIT, FLOATING POINT, COMPLEX, WORD. 

CARRIERS.- Are hierarchically organized information structures, in which 
each level consists of a number of sub-carriers all identically organized. Th'is 
decomposition eventually yields elementary carriers that can not be decomposed 
further (e.g. a bit carrier). Almost all information in computers is organized 
i n  these terms, for instance, a memory consists of a number of words, each of a 
number of characters, each of a number of bits, e.g., BIT, BYTE, HALF WORD, 
WORD, DOUBLE WORD. 

The number of subcarriers at any level of decomposition is given b y  
bracketed lists of names (if specific names are associated with the 
sub-carriers) or constants (positive or negative numbers), much like array 
declarations in FORTRAN or ALGOL. The range operator (":") is used to  denote 
abbreviated list of elements, e.g., A<S;P;15:O> is a 18 bit register. 

There are two types of carriers in ISP, the difference being the relative 
latency of the value associated with the carrier: 

1) The first type corresponds to memory elements (flip-flops, registers, 
memories) and are declared by giving the name of the carrier and a description 
of  the structure, e.g.: 



M[0:255]<0:11> A memory (carrier) with 256 words (subcomponents), each of 
12 bits. 

ACC<S;O:ll> A 13 bit register, the first one is named "S", for purely 
mnemonic reasons. The name is "local" to the register ACC and stands for itself 
( i t  is not to be evaluated like an expression). 

2) The second type of carrier (memoryless) is defined to be the output of 
combinational circuits. They are declared using the define operator (":="), i ts 
action being that every time the carrier (the left hand side) is used, the 
defining expression (the right hand side) is evaluated. We can think of them as 
wires, the data-types being signals propagating along them, e.g.: 

C := A A B an AND gate with inputs A and B and output (wire) C, or C := 
AND (A,B). Constant signals can be defined likewise: D := 1, as can more 
complex (memoryless) carriers: 

X<O:l l >  := Y<O:l l >  A -(W<5:1 l >  W<0:4> v Z<O:l l> )  a network wi th 
inputs W, Y and Z and output X (12 bits). 

Carriers do not necessarily have bits as the most elementary components; 
in  fact a carrier can be denoted as a structure of elements each of which can 
assume values out of some arbitrary alphabet (the alphabet for bits being "0" 
and "1"). This is denoted by appending to the carrier declaration a base 
operator ("L") and a "size" operand, e.g., A<O:3> 3- 16, A is a register of 4 
elements, each one can assume as value a hexadecimal digit (they are not 16 bits 
! ). 



DELAY AS A DATA OPERATION 

One of the major limitations in practical logical circuits is the presence 
of "inertia" in the response of the circuit, a time during which the occurrence 
of a transition between values of a signal is held. Delays are also introduced 
in links due to the finite signal propagation speed. In many applications i t  is 
important to merge the occurrence of events (signals) arriving through different 
(delaywise that is) paths, between specific time limits. 

These different instances of delays can be described in a uniform way b y  
treating them explicitly rather than by burying the delay in the internal 
constitution of a gate or introducing "busy-waits" in delay units or links. An 
element, then, can be described by two components, the operative one being an 
ideal version of the element and an inertial component which describes and 
accounts for the delay of the real element. This has the advantage that the 
level of detail or realism in the description is left up to the user. Idealized 
elements can be used or the delay can be treated at a more global level. For 
instance, the delay of an arithmetic unit which performs an addition can be 
described without mentioning individual gate delays. Another advantage in this 
treatment is that there is a consistent and formal way to express certain 
peculiarities of the elements such as response times, rising and falling 
signals, inertial responses (in which the switching signal that triggers the 
event is required to be stable for some minimum amount of time), etc. 

The way delays are treated will differ from most simulation techniques in  
use. In most cases, the simulation of delays results in the "scheduling" of an 
event at some future time (the event being the ideal version of the operation). 
This violates a conceptual understanding of the time lag, in that what is 
actually wanted is the occurrence of the event at the present time, based upon 
past history. The current scheme has the advantage that now ideal and real 
(practical) elements can be mixed in a description without doing violence to  the 
notation. A special function with two parameters, PREVIOUS, is introduced: 
PREVIOUS(t,l) will deliver as result the value of the variable (signal) "I" , 
I 1  11 t units of time ago, e.g.: 

C := A A B "ideal" (delayless) AND gate. 

C := PREVIOUS(~~,A) A PREVIOUS(td,B) AND gate with constant delay of t d  
units. 

OUT := (IN A PREVIOUS(tr,IN)) v (-IN A PREVIOUS(tf,lN)) an identity gate 
(amplifier?) with different response times to rising and falling signals, the 
signal being "IN". 



CONTROL-OPERATORS INDUCED BY THE RT LEVEL 

A control-operation is a circuit that evokes operations in  o ther  
components. There are two kinds: evoke and evoke-next. The f irst one includes 
the  test ing of conditions under which the evoking occurs. These conditions can 
v a r y  i n  complexity from a single bit test, to a boolean operation, t o  arithmetic 
and relational expressions. 

In the evoke type, the control operation has the following format: 
condition => action-sequence, where the condition is a boolean expression t o  b e  
tes ted  and the action-sequence describes which operat ions take place. There are 
t w o  important features in the action-sequence. The first is that each action in 
the  sequence may itself be conditional (i.e. evocations can be nested). The 
second is that some actions are sequentially dependent on each other, because 
t he  resul t  of one is used as an input to the other; on other ocassions, a set of  
actions are independent, and can occur in parallel (this is the normal 
situation, and therefore the default assumption). 

A set of parallel actions is given by  a list of actions, using the ";" as 
separator. e.g.: A t B ; B t A will exchange the contents of registers A and B. 

The sequential case is denoted by  the use of the evoke-next t ype  o f  
control. When sequencing is required, the term NEXT is used as a delimiter. 
e.g.: A + B ; NEXT B + A transfers the contents of register B t o  A and then 
t ransfers  i t  back to  B (equivalent to: A t B). 



PRIMITIVES INDUCED BY THE PROGRAMMING LEVEL 

(The example at the end of the paper may be useful to complement the 
fo l lowing definitions). 

Instructions are special cases of data-types, with a fixed par t  of  the 
format being the operation-code and the rest being interpreted depending o n  the 
instruction. The effect of each instruction is described b y  an 
instruction-expression, similar to  the evoke control operation: condition => 

action-sequence, where the condition is usually of the form: op-code = number, 
and the action-sequence describes what transformations of data take place 
be tween what memories. These take the transfer form, i.e.: memory-expression t 
data-expression. The data-expression describes the transformation of  
informat ion ( i f  any) and the information pattern that is to  be placed in the 
memory described b y  the memory expression. 

Memory-expressions specify the contents of a memory (a carrier) according 
t o  some "address". An address is a data type, which is usually an integer, 
although, sometimes, there are special data-operations that work  only o n  
addresses (i.e. address-expressions) to  compute addresses. 

The carrier structure is given in the declaration b y  bracketed lists of  
dimensions. Square brackets ("[" and "I") specify those dimensions where the 
accessing is done through some "addressing" scheme (switching). Angle brackets 
("<" and ">") are required in the declaration and are used t o  describe the  
carrier 's substructure. 

The carrier is accessed through its identifier followed b y  a descript ion 
o f  the structure of the "result". This structure is similar to  that used in the 
declaration insofar as number of dimensions is concerned, although angle 
brackets are not required when it is understood (i.e. from the declaration) 
what  is the number of bits involved. The difference appears, in the format and 
number of  elements inside the bracketed lists. These list elements o r  selectors 
can b e  not only names or constants but also expressions or bound pairs o f  
expressions (address-expressions, using the range operator). Furthermore, bound 
pa i rs  used as selectors do not have any relationship wi th bound pairs used i n  
the  declaration; they imply an abbreviated list of element names and can in fact 
cross bound pairs defined in the declaration, can reverse the ordering of  names 
(implying a reversing of the relative ordering of the elements) and may even b e  
used when no bound pairs were used in the declaration. 

Interpreters are control entities that select and execute ( in terpret )  
instructions, taking the system through sequences of steps which change the 
s ta te  of  the system, sometimes permanently, setting the initial conditions f o r  
the next instruction. Interpreters are described b y  action-sequences that 
include control and data-oparations. 

Parenthesis are used to group actions allowing nesting of action 
sequences; parenthesized action sequences become actions and can therefore b e  
executed (initiated would be a better term) concurrently b y  wr i t t ing them in 



l ists using the ";" as delimiter. 

WAIT expressions are used to delay or hold the execution of an action 
sequence, pressumably while some other actions are taking place in parallel, 
e.g. : 



THE LANGUAGE, ISP 

Among the goals for the notation is the ability to describe any register, 
data-type or operation desired by the designer of a particular computer, and i t  
has a rich set of extension' facilities, including alias declarations, text 
replacement, operator and process declarations, etc. Registers, operators, 
macros etc, are not required to be declared using explicitly reserved words. 
These do have to be declared of course, but the list of declarations is simply a 
list. Local declarations can be used to provide more flexibility; these 
declarations are given before the action sequence that describes the operator o r  
process. 

There is complete flexibility in the choice of names; in fact, the period 
(".") is included as a name character, allowing phrase-like names, e.g., 
Longname. Moreover, names can be built up of arbitrary characters b y  enclosing 
any string of characters in single quotes. As a further consideration, in  
naming carrier elements no restriction is put on the ordering of elements in the 
structure, and naming and ordering of elements in the substructure can be used 
interchangeably. The range operator (":") denotes a range or abreviated list of 
values. 

There is a facility to declare registers which hold information in any 
base, not necessarily binary; similarly, in writing most numbers, base 1'0 is 
used, although in some cases a change in number base may be desired. This is 
indicated, in  both cases, by the base operator ("3.") followed by  the desired 
base. 

Infix notation was chosen for all register transfers rather than 
functional, prefix or postfix, simply because it is the most used in both 
engineering and programming cultures. When the designer defines a new operator, 
he is allowed to define this operation in infix mode, although functional 
notation can be used. 

Registers can also be partial registers (defining them as subregisters of 
an already declared register) or a concatenation of registers. The 
concatenation operator (" ") is like any other infix operator, but i t  is 
natural for i t  to appear on both sides of a transfer operation. 

The use of reserved words has been avoided. Practically the only reserved 
keywords are NEXT, WAIT and PREVIOUS. A large character set, including upper 
and lower case, special symbols etc, is used, but the notation can be used wi th 
smaller character sets (e.g. ASCII), and the transliterations of the special 
characters are simple and intuitive, for instance, ":=" is a primitive character 
i n  ISP and the transliteration is a ":" followed by a "=". 

The policy for the use of comments requires a duplicate set of italized 
characters. Comments can appear anywhere in the description, and can be of any 
length or contain any character. For publication purposes, as is the case w i th  
ALGOL, this is easily done, but it is no doubt too much to expect from a 
computer implementation. 
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EXAMPLE 
ISP Description of a Pedagogical Computer, (Chu, 1970). 

Register Declarations 
A\Accumulator~0:17>; 
D\Program.Counter<O:ll>; 
R\lnstruction.Register<0:17>; 
F<O:5> := R<O:5>; 
C\Address<O:l l >  := R<6:17>; 
G\Go; 
Primary Memory 
M[O:4096]<0:17>; 
Console Switches 
Power.on; 
Start.on; 
Stop.on; 
Interpreter 
Console.activity := (Power.on => GtO; NEXT 

(Stop.on=>GtO);(Start.on=>Gtl;NEXT Interpreter); NEXT 
Console.activity ); 

Interpreter:=(RtM[C];DtD+l;NEXT Execute.lnstruction); 
Instruction Set 
Execute.lnstruction := ( 

Add := (F = 0 => A + A + M[C]); 
Sub := (F = 1 => A + A - M[C]); 
Jop := (F = 2 A A<O> => D t Address); 
Sto := ( F = 3 => M[C] t A); 
Jmp := (F = 4 => D t Address); 
Shr := (F = 5 => A t Shiftxight A); 
Cil := (F = 6 => A t A<1:17> A<O>); 
Cla := (F = 7 => A t 0; NEXT A t M[C]); 
Stp := (F = 8 => G t 0; NEXT Hold); 

(F = 9 => ); 
(F = 10 => Hold); 
(F 2 11 => ); 

NEXT Share); 
Share := ((G => Interpret); (-. G => Hold) ); 
Hold := ((1 G => C c 0; D 6 0); (G => Share) ) 


