
A DEC VIEW OF HARDWARE SYSTEMS DESIGN

C. GORDON BELL J. CRAIG MUDGE * JOHN E. McNAMARA

DIGITAL PRESS

Copyright 0 1978 by Digital Equipment Corporation

All rights reserved. Reproduction of this book, in
part or in whole, is strictly prohibited. For copy in-
formation contact Digital Press, Educational Ser-
vices, Digital Equipment Corporation, Bedford,
Massachusetts 01730.

Printed in U.S .A

1st Printing, September 1978
Documentation Number JB066-A
Library of Congress Catalog Card Number 77-91677
ISBN 0-932376-00-2

The manuscript was created on a DEC Word Pro-
cessing System and, via a translation program, was
typeset on Digital’s DECset-8000 Typesetting Sys-
tem.

Cover and display pages designed by Elliott N.
Hendrickson.

To the people at Digital, especially
the engineers, and Ben

FOREWORD

The progress which has brought the number of computers in use in the world
from dozens to millions within a generation has not been the result of a single
discovery or the work of a single inventor or company. Rather, men and women
from fields as diverse as semiconductor physics and mechanical engineering have
studied long hours and worked with various measures of inspiration and per-
spiration to make the discoveries and develop the technologies needed to advance
the state of the art in computer technology.

There are several aspects of the progress in computer technology which have
made it an exceptionally exciting and rewarding field for the people involved.
First of all, a great many of the major steps forward, such as the invention of the
transistor, have taken place within our lifetimes. Secondly, there has been an
opportunity to associate with many fine colleagues whose brilliance, courage of
conviction, and capacity for endless work have been a great inspiration. Finally,
there has been the great promise of computers - their ability to free men’s minds
of repetitive and boring tasks, their ability to reduce the cost of producing goods,
their ability to improve the lives of so many people in so many ways - and the fun
and excitement of working with them.

In the chapters of this book, various authors relate some of their experiences in
the past twenty years, draw some conclusions about how computer technology
got to where it is, and project into the future from some of the trends they have
seen. While it is impossible in a single book to capture all of the excitement and
challenge of these years, they have done an admirable job for which they are to be
commended. Hopefully, this glimpse into the past and present will encourage the
students of the future to enter the computer engineering field and bring with them
ideas, ambition, and courage.

Kenneth H. Olsen
President
Digital Equipment Corporation

V

.

PREFACE

This book has been written for practicing computer designers, whether their
domain is microcomputers, minicomputers, or large computers, and for those
who by their contact with computer are students of design - users, programmers,
designers of peripherals and memories, and students of computer engineering and
computer science.

Computer engineering is a collage of different activities and disciplines, only
one of which - the technical aspects (multiplier design, the behavior of synchro-
nizer circuits, and series/parallel tradeoffs, for example) - is covered by conven-
tional texts. This book uses the case study method to show how all the different
factors (technology push, the marketplace, manufacturing, etc.) form the real-
world constraints and opportunities which influence computer engineering.

Computer engineering can be thought of as a multivariable mathematical prob-
lem in which the engineer searches for an optimum within certain constraints.
Unfortunately, an optimum in one variable is rarely an optimum in another, and
thus a major portion of computer engineering is the search for reasonable com-
promises. A common method used to aid the search is to assign weights to various
system variables and to seek a weighted optimum. The weights vary with the
intended application. In one situation, speed might receive the maximum weight;
in another, instruction set compatibility might be the most important; and in yet
another, reliability might be paramount. The number of dimensions to the prob-
lem is large, and the meaningful measures for them are few. For example, the cost
variable is multidimensional and includes manufacturing, development, and field
support costs. In addition, there are numerous interdependencies among the vari-
ables such as the relationships between instruction set, machine organization,
logic design, and circuit design. These relationships and the contraints that con-
trol the weighting of the variables change with time. For example, the cost func-
tion changes when different subsystems use different technologies, and this
influences the relationships. In addition, constraints such as maintainability and

vii

viii PREFACE

compatibility vary in importance from year to year. Finally, while some of the
relationships, such as the time-space tradeoff in adder design, are well under-
stood, others, particularly those involving marketing factors, are not.

Because no theory exists to undergird this multidimensional design problem,
we believe that there is no substitute for an extensive, critical understanding of the
existing examples of designed and marketed systems. Therefore, this book uses
the case study approach. For examples, we have used the thirty DEC computers
that have been built over the twenty years that the company has existed, plus
some PDP-I I-based machines built at Carnegie-Mellon University. Carnegie-
Mellon’s machines explore interconnect structures that we feel will form the basis
of future generations.

The association between DEC and Carnegie-Mellon has produced not only
some interesting machines to examine but also some of the written material for
this book. People in universities can and do write, whereas engineers directly
involved in design work are less inclined or encouraged to publish their work.

A substantial portion of the material contributed by DEC authors is historical.
We strongly believe that historical information is worth the expense in terms of
writing, reading, and learning; machine design principles and techniques change
slowly. In fact, the machines currently being designed are based on principles that
have been understood and used for years, and we are often asked, “Are we run-
ning out of design issues?” Yes, we feel technology provides the forcing function
for new designs, not new principles.

Learning about design is always important. Although new designs often appear
to be a reapplication of old principles, in the process of being reapplied they
change and go beyond their first application. Design is learned by examining and
emulating previous designs plus incorporating general principles, new use, and
new technology. Indeed, the microcomputer developments draw (or should draw)
extensively from the minicomputers. As we build new structures, we should be
able to avoid the pitfalls of the immediate past design.

We have intentionally restricted our scope to DEC computers. The reason is
obvious: we can speak with first-hand knowledge. If we had used other com-
panies’ designs, our data would have been less accurate, and some factors, e.g.,
design styles, would have been omitted. The main reason, however, is a key part
of the philosophy of the book. To understand machine design evolution, the
effects of changes in the underlying technologies, and time-invariant principles,
we must analyze a family beginning at birth and follow it over several generations
of technology. Four series of DEC computers allow such an analysis. DEC com-
puters also provide an opportunity to study another dimension of computer engi-
neering - the coexistence of complementary (and sometimes competing) products.
Particular design efforts must compete for resources (design talent, manufac-
turing-plant capacity, and software, marketing, and sales support). DEC com-
puters have, in general, been designed to be complementary and to avoid
overlapping or redundant products. Thus, another set of constraints can be seen
at work in the design space.

PREFACE ix

The book concerns itself with general purpose computers which are intended to
be widely available commercially. The engineering of computers for highly spe-
cialized applications, for which only a few copies are built, is not treated. More-
over, because not all major principles of computer architecture and computer
engineering are embodied in the DEC computers, the reader may want to examine
other designs, as well. For example, the reader cannot learn about descriptor
architectures, array processors, list-processing machines, or general purpose
emulators from this book.

At one time consideration was given to postponing the publication of a book
until 1982, at which time DEC will celebrate its twenty-fifth anniversary. This
idea was rejected because another five years would further impede the collection
of data about the early machines. More importantly, the twenty-year period of
DEC modules and computers (1957-1977) has extended from the early second
generation to the fourth generation. Today, the processor of several DEC com-
puters occupies a single large-scale integrated circuit consisting of several thou-
sand transistors, whereas in 1957 only one transistor could be fabricated on a
single piece of germanium. In another five years, the design, manufacture, and
distribution of computers will be radically different - so much so as to merit a new
book.

We expect an increasingly larger number of people to be involved in computer
engineering and hence students of this material, because we expect computers as
we know them today will disappear within ten years! With the processor-on-a-
chip, the number of computer sysfems designers (users) has risen by several orders
of magnitude.

In the area of large computer systems, the buyers and users are also clearly the
computer designers: they select components (from the set of available com-
ponents) and interconnect them to form specific structures. It is essential for us all
to have a model of the price, performance, and reliability parameters and how
they vary with time. Previous generations have focused first on the invention of
the computer, next on the understanding of price/performance tradeoffs, and
most recently on manufacturing - especially the fabrication of the semiconductors
that now drive computer evolution. In the next five years, design will focus on
applications: conventional applications will be more efficient, computers will be
extended to reach new applications, and life-cycle costs will receive more atten-
tion. For the computer engineer, the evolution of DEC machines provides an
excellent perspective on the influence of applications on design. For those of us
who must deal with design goals, constraints, and objective functions to improve
reliability, availability and maintainability, it is imperative that we first clearly
understand previous design problems.

For the programmers who use computers and are a part of the computer design
process, understanding this material is mandatory in order to know the rules of
the game. We say comparatively little about software, other than how it has
influenced hardware design. The increasing role of software functions in the hard-
ware domain is a clear process that has allowed (and forced) computer archi-
tecture to change. The engineering of DEC software will be treated in subsequent

.

X PREFACE

volumes, perhaps one on language translators and one on operating systems. We
hope also that future volumes will be devoted to mass storage devices, terminals,
and applications.

Two notations, ISP and PMS, were introduced in the book, Computer Struc-
tures [Bell and Newell, 19711. We continue to use them in this book, especially
since they have left the realm of notations and have become working design tools.
ISP was introduced to describe the instruction set processor of a computer - the
machine seen by the program (and programmer). ISP is now used for machine
description, simulation, verification of diagnostics, microprogramming, auto-
matic assembler generation, and the comparison of computer architectures. The
evolution and improvement of ISP is principally due to needs of the Army/Navy
Computer Family Architecture (CFA) project and the work of Mario Barbacci.
The latest version, ISPS, is being used within DEC for implementing processors,
simulators, etc. ISPS language descriptions of current DEC machines (PDP-8,
PDP-IO, PDP-I 1, VAX-11) and several terminals have been made. We hope that
these will be made widely available and so further stimulate the use of machine-
description languages. The widespread application of good languages would help
alleviate two current design problems: first, that of hand-crafted design tooling
keeping up with the rate of introduction of new technologies and second, the
problem of managing the ever-increasing complexity of computer structures. The
PDP-8 description presented in Appendix 1 has been verified by machine diagnos-
tics, in contrast to conventional descriptions.

PMS (processor-memory-switch) notation (given in Appendix 2) has not yet
been widely used in formal methods to aid design. It has, however, been used
extensively to describe computer structures. A prototype system which recognizes
PMS and performs several performance analysis functions was constructed by
Knudsen [19721. Currently, ISPS is being extended to include the interconnection
of computational blocks so that PMS and ISPS form a single system describing
structure and behavior. In this book, we use PMS t o describe functional blocks.
However, all PMS components are enclosed to form a block diagram, unlike the
original stick notation.

The book begins with three introductory chapters. The first presents the major
themes to be illustrated by the book. We show that computer evolution has been
based primarily on semiconductor and magnetic recording technologies. These
technologies determine costs, and therefore price, performance, reliability, size,
weight, power, and other dimensions which constitute the physical characteristics
of the machines. The major theme of the book is that technology has enabled (or
forced) three types of computers to be built:

1 .
2.
3.

Machines with constant performance and decreasing cost.
Machines with contant cost and increasing performance.
Radically new (large or small) structures, often research machines, which
create new computer classes outside the evolution possibilities.

PREFACE xi

Chapter 2 traces the evolution of memory and logic technology. Engineering is
firmly rooted in economics and inherently practical. Packaging (including com-
ponent interconnections) is covered in Chapter 3 for a very pragmatic reason: of
the total product cost of a small computer system, 50 percent is due to packaging
and power, and these costs are rising. To further emphasize the practical aspects
of engineering in Chapter 3 , a section on high-volume manufacturing is included;
the result of a designer’s creativity must not only work but be buildable by pro-
duction-line methods.

Following the introductory chapters are five parts:

I . In the Beginning

11. Beginning of the Minicomputer

111. The PDP-11 Family

IV. The Evolution of Computer Building Blocks

V. The PDP-IO Family

The introductions to each part describe what to look for in the evolution of
each machine: its interaction with designers, technology, and use (marketplace).
More importantly, we have tried to point out the classic (timeless - so far) design
principles. Data that has become available since the original papers were pub-
lished is also included.

Part I describes modules, the product on which DEC was initially founded.
Chapter 5 shows how modules evolved and assimilated semiconductor technology
in order to build computers.

The PDP-1 and other 18-bit machines and the PDP-8 began the minicomputer
phenomenon as described in Part 11. Although six computers form the 18-bit
family, there is only one chapter devoted to them, primarily because there has
been a dearth of written papers; this chapter was written for Computer Engineer-
ing. Chapter 7 shows the historical development of the 12-bit machines, and
Chapter 8 explores the structure of the PDP-8 in detail.

Part 111, nearly two-thirds of the book, is based on the PDP-1 1. The PDP-I 1
has been implemented with multiple technologies and multiple design goals at a
given time, Le., a set of machines to span a performance range. Because of cost
and performance goals, a number of problems have had to be solved to permit
subsetting (for the LSI-11) and supersetting (for the larger memory PDP-11/70
and for VAX-11).

Part IV is devoted to module set evolution. Chapter 18 describes the Register
Transfer Modules (RTMs, also called PDP-I6), a set of modules for building

xii PREFACE

digital systems. Although these modules were unsuccessful in the marketplace,
they were the forerunner of the bit-slice approach now widely used for implement-
ing mid-range processors and special-purpose digital systems. Chapter 20 de-
scribes a set of modules based on the PDP-I l computer, called Computer Mod-
ules, which grew out of the original RTM research and were used to construct
Cm *, a multi-microprocessor system.

Part V covers the PDP-IO. Prior to the publication of the paper reproduced
here as Chapter 21, very little had been published at the engineering level. The
published literature had emphasized operating systems, languages, networks, and
applications.

Computer Engineering is modeled after Computer Structures [Bel I and Newell,
19711 and is intended to complement the subject matter therein. Computer Struc-
tures treats the design of instruction set architectures; Computer Engineering treats
the design of machines which implement instruction sets. Computer Structures
covers a broad range of ISP structures and PMS structures, from early stack
machines and bit-serial machines, through list processors and higher level lan-
guage machines, to supercomputers. By giving the seminal Burks, Goldstine, and
von Neumann paper and the Whirlwind paper, it reaches far back into history.
Computer Engineering on the other hand, takes a much narrower set of lSPs (four)
and examines their implementations in detail. Instruction set design is mentioned
only as it interacts with implementation. We focus on four computer families
from both the designer and the historical viewpoint. In particular, we emphasize
the lower level technological, economic, organizational, and environmental forces
affecting the evolution of DEC computer families.

Although this book is principally for designers and students, it will also be of
interest (as an historical record) to DEC employees who have been involved i n the
design, manufacture, distribution, and servicing of the computers.

Our recommendations for the use of this text in university curricula are based
on teaching experience, requests from academic colleagues for material to teach
design, and our participation in curriculum development. The book directly ad-
dresses the philosophy of the IEEE Computer Society Task Force on Computer
Architecture [Rossman et al., 19751: “To appreciate how the architectures of
computer systems develop, one must analyze complete systems.” As such, Com-
puter Engineering serves to complement Buchholz [1962], Bell and Newell [1971],
and Blaauw and Brooks [in preparation] in a course on computer architecture, for
example, IEEE course CO-3.*

For undergraduate courses on computer organization, such as IEEE CO-1*
and the ACM courses 13 and A2t, we believe that the book could be used as a
supplementary text. In a course on computer engineering, using the style given in

*“A Curriculum in Compute r Science and Engineering-Committee Report.” Model Curricula Suh-

t“Curr iculum 68,” Commun. ACM, I / . 3, pp. 151-197. March 1968.
committee, IEEE Computer Society, EHOl 19-8, January 1977.

PREFACE xiii

the syllabus of CO-2* (I/O and Memory Systems) as a model, this could be a
primary text, provided that material on other manufacturers’ computers is made
available to show different viewpoints.

ACKNOWLEDGEMENTS

We gratefully acknowledge our contributing authors, whose insights have
greatly enhanced the scope of this book, and our colleagues at DEC, who assem-
bled information, and provided subject matter expertise and advice.

We would like to thank R. Eckhouse, R. Glorioso, S. Fuller, J . Lipovski, and P.
Jesse1 whose critiques of the preliminary drafts of the introductory chapters and
book outline proved very helpful. We would also like to thank J. Cudmore, R.
Doane, R. Elia-Shaoul, S. Fuller, L. Gale, L. Hughes, R . Peyton, and S. Teicher,
who provided data for Chapter 2 and valuable critiques of earlier drafts. We also
acknowledge the reviewers of the second draft of the manuscript, to whose criti-
cisms we have especially tried to respond. We received instructive comments and
evaluations from D. Aspinall, G . Blaauw, R. Clayton, D. Cox, J. Dennis, P.
Enslow, D. Freeman, J. Grason, J. Gray, W. Heller, G . Korn, J. Lipcon, J. Mar-
shall, E. McCluskey, c . Minter, M. Moshell, E. Organick, W. Schmitt, B.
Schunck, I . Sutherland, J. Wakerly, and J. Wipfli. We would like to extend special
thanks to H . Stone for his extensive and particularly useful review comments.

We are also indebted to many for their support in producing Computer Engi-
neering. We are particularly indebted to Heidi Baldus of Digital Press who coordi-
nated the production of Computer Engineering and whose encouragement kept us
going through a number of difficult times. For their expertise and patience, we
thank the Technical Documentation group, especially Denise Peters. We also
thank Mary Jane Forbes and Louise Principe for their constant support in the
course of this book’s development and production. The manuscript creation and
preparation on the DEC Word Processing System, followed by transmission to
the DECset-8000 Typesetting System, permitted numerous drafts and rapid crea-
tion of the final typeset material.

C.G.B.
J.C.M.
J.E.M.

August 19 78

C.G. Bell, J.C. Mudge, and J.E. McNamara: Seven Views of Computer Systems.
C.G. Bell, Digital Equipment Corporation and Carnegie-Mellon Univer-
sity; J.C. Mudge and J.E. McNamara, Digital Equipment Corporation.

C.G. Bell, J.C. Mudge, and J.E. McNamara: Technology Progress in Logic and
Memories. C.G. Bell, Digital Equipment Corporation and Carnegie-Mellon
University; J.C. Mudge and J.E. McNamara, Digital Equipment Corpo-
ra ti on.

C.G. Bell, J.C. Mudge, and J.E. McNamara: Packaging and Manufacturing.
C.G. Bell, Digital Equipment Corporation and Carnegie-Mellon Univer-
sity; J.C. Mudge and J.E. McNamara, Digital Equipment Corporation.

K.H. Olsen: Transistor Circuitry in the Lincoln TX-2. Copyright 0 1957 by
AFIPS. Reprinted, with permission, from the Proceedings of the Western
Computer Conference, 1957, pp. 167-171. This work was supported jointly
by the U S . Army, Navy, and Air Force under contract with M.I.T. K.H.
Olsen, Lincoln Laboratory M .I.T. (currently with Digital Equipment Cor-
poration).

R.L. Best, R.C. Doane, and J.E. McNamara: Digital Modules, the Basis for
Computers. R.L. Best, R.C. Doane, and J.E. McNamara, Digital Equip-
ment Corporation.

C.G. Bell, G . Butler, R. Gray, J.E. McNamara, D. Vonada, and R. Wilson: The
PDP-1 and Other 18-Bit Computers. C.G. Bell, Digital Equipment Corpo-
ration and Carnegie-Mellon University; G. Butler et al., Digital Equipment
Corporation.

C.G. Bell and J.E. McNamara: The PDP-8 and Other 12-Bit Computers. C.G.
Bell, Digital Equipment Corporation and Carnegie-Mellon University; J.E.
McNamara, Digital Equipment Corporation.

xv

xvi AC K N 0 W LE DG E M E NTS

C.G. Bell, A. Newell and D.P. Siewiorek: Structural Levels ofthe PDP-8. Revised
and updated version of Chapter 5, “The DEC PDP-8,” Computer Struc-
tures: Reading and Examples, C.G. Bell and A. Newell, McGraw-Hill Book
Co., New York, 1971. C.G. Bell, Digital Equipment Corporation and Car-
negie-Mellon University; A. Newell and D.P. Siewiorek, Carnegie-Mellon
University.

C.G. Bell et al.: A New Architecture for Minicomputers - The DEC PDP-I 1 .
Copyright c 1970 by AFIPS. Reprinted, with permission, from the Pro-
ceedings of the Spring Joint Computer Conference, 1970, pp. 657-675. C.G.
Bell, Digital Equipment Corporation and Carnegie-Mellon University.
Those who have contributed subject matter expertise include R. Cady, H.
McFarland, B.A. Delagi, J.F. O’Loughlin, R. Noonan, and W.A. Wulf.

W.D. Strecker: Cache Memories for PDP-I 1 Family Computers. Copyright ‘
1976 by the Institute of Electrical and Electronics Engineers, Inc. Reprinted,
with permission, from the Proceedings of the 3rd Annual Sjlmposium on
Computer Architecture, 1976, pp. 155-158. W.D. Strecker, Digital Equip-
ment Corporation.

J.V. Levy: Buses, The Skeleton of Computer Structures. J.V. Levy, Digital Equip-
ment Corporation (currently with Tandem Computers, Inc.).

M.J. Sebern: A Minicomputer-Compatible Microcomputer System: The DEC
LSI-I 1 . Copyright ‘e 1976 by the Institute of Electrical and Electronics Engi-
neers, Inc. Reprinted, with permission, from the Proceedings 01’ the IEEE,
June 1976, Vol. 64, No. 6. Manuscript received by IEEE on October I O ,
1975; revised December 12, 1975. M.J. Sebern, Digital Equipment Corpo-
ation (currently with Sebern Engineering, Inc.).

J.C. Mudge: Design Decisions for the PDP-1 1/60 Mid-Range Minicomputer.
Copyright 0 1977 by the Computer Design Publishing Corp. Reprinted,
with permission, from Computer Design, August 1977, pp. 87-95. Appears
under title “Design Decisions Achieve Price/Performance Balance in Mid-
Range Minicomputers” in Computer Design issue. J.C. Mudge, Digital
Equipment Corporation.

E.A. Snow and D.P. Siewiorek: Impact of Implementation Design Tradeoffs on
Performance: The PDP-1 I , A Case Study. Copyright (L 1978 by Edward A.
Snow and Daniel P. Siewiorek. This research was supported in part by the
National Science Foundation under grant GJ-32758X and by an IBM fel-
lowship. Engineering documentation was supplied by the Digital Equip-
ment Corporation. E.A. Snow (currently with Intel Corp.) and D.P.
Siewiorek, Carnegie-Mellon University.

R.F. Brender: Turning Cousins into Sisters: An Example of Software Smoothing
of Hardware Differences. R.F. Brender, Digital Equipment Corporation.

ACKNOWLEDGEMENTS xvii

C.G. Bell and J.C. Mudge: The Evolution of the PDP-I 1. Chapter includes mate-
rial from “What Have We Learned From the PDP-ll?” by C.G. Bell, in
Perspectives on Computer Science: From the 10th University Symposium at
the Computer Science Department, Carnegie-Mellon University, A. Jones
(Ed.), Academic Press, Inc., 1978. C.G. Bell, Digital Equipment Corpo-
ration and Carnegie-Mellon University; J.C. Mudge, Digital Equipment
Corporation.

W.D. Strecker: VAX-I 1/780: A Virtual Address Extension to the DEC PDP- 11

C.G

T.M

S.H

Family. Copyright 0 1978 by American Federation of Information Process-
ing Societies, Inc. Reprinted, with permission, from the Proceedings of the
National Computer Conference, June 1978, pp. 967-980. W.D. Strecker,
Digital Equipment Corporation.

Bell, J. Eggert, J . Grason, and P. Williams: The Description and Use of
Register Transfer Modules (RTMs). Copyright @ 1972 by the Institute of
Electrical and Electronics Engineers, Inc. Reprinted, with permission, from
the IEEE Transactions on Computers, May 1972, Vol. C-21, No. 5 , pp.
495-500. Manuscript received by IEEE February 19, 1971; revised May 11,
1971. C.G. Bell, Digital Equipment Corporation and Carnegie-Mellon Uni-
versity; J. Eggert, Digital Equipment Corporation (currently with Eggert
Engineering); J. Grason, Carnegie-Mellon University (currently with Bell
Laboratories); P. Williams, Digital Equipment Corporation (currently with
Data Terminal Systems, Inc.).

McWilliams, S.H. Fuller, and W.H. Shenvood: Using LSI Processor Bit-
Slices to Build a PDP-I 1 - A Case Study in Microcomputer Design. Copy-
right 0 1977 by AFIPS. Reprinted, with permission, from the Proceedings qf
the National Computer Conference, 1977, pp. 243-253. This work was par-
tially supported by the Advanced Research Projects Agency (ARPA) of the
Department of Defense under contract F44620-73-C-0074, monitored by
the Air Force Office of Scientific Research. T.M. McWilliams, Carnegie-
Mellon University (currently with Stanford University and Lawrence Liver-
more Laboratory, University of California); S.H. Fuller, Carnegie-Mellon
University (currently with Digital Equipment Corporation); W.H. Sher-
wood, Carnegie-Mellon University (currently with Digital Equipment Cor-
poration).

Fuller, J.K. Ousterhout, L. Raskin, P. Rubinfeld, P.S. Sindhu, and R.J.
Swan: Multi-Microprocessors: An Overview and Working Example. Copy-
right @ 1978 by Institute of Electrical and Electronics Engineers, Inc. Re-
printed, with permission, from the Proceedings of the ZEEE, February 1978,
Vol. 61, No. 2, pp. 216-228. Manuscript received by IEEE November 1 I ,
1977. This work was supported in part by the Advanced Research Projects
Agency of the Department of Defense under Contract F44620-73-C-0074,
which is monitored by the Air Force Office of Scientific Research, and in

xviii ACKNOWLEDGEMENTS

part by the National Science Foundation under Grant GJ 3275XX. The LSI-
1 Is and related equipment were supplied by Digital Equipment Corpo-
ration. S.H. Fuller, Carnegie-Mellon University (currently with Digital
Equipment Corporation); J.K. Ousterhout et al., Carnegie-Mellon Univer-
sity.

C.G. Bell, A. Kotok, T.N. Hastings, and R . Hill: The Evolution of the DECsys-
tem-IO. Copyright l i ' 1978 by the Association for Computing Machinery.
Reprinted, with permission, from the Conzniunications oJthr A C'M. January
1978, Vol. 21, No. I , pp. 44-63. C.G. Bell, Digital Equipment Corporation
and Carnegie-Mellon University; A . Kotok, T.N. Hastings, and R. Hill,
Digital Equipment Corporation.

M . Barbacci: Appendix 1 - A n ISPS Primer for the Instruction Set Processor. M .
Bar bacci, Carneg ie- Me1 Ion University .

J.C. Mudge: Appendix 2 - The PMS Notation. J.C. Mudge, Digital Equipment

C.G. Bell, J.C. Mudge, and J.E. McNamara: Appendix 3 - Performance. C.G.
Bell, Digital Equipment Corporation and Carnegie-Mellon University; J.C.
Mudge and J.E. McNamara, Digitdl Equipment Corporation.

Corporation.

TRADEMARKS

The following trademarks appear in Computer Engineering: A DEC' View oJHcrrd-
ware Systems Design.

Company
Computer Automation Corporation

Digital Equipment Corporation

Fairchild Camera and Instrument
Corporation

of Singer Company
Friden Company - A Division

Gardner-Denver Company

Teletype Corporation

Trade mark
Naked Mini

D EC

DECUS
DIBOL
Fa st b us
FOCAL
Massbus
RSTS

Unibus

Macrologic

DECSY STEM-20

TOPS- 10

Flex o w ri ter

Wire-wrap

Teletype

DECsystem- I O
DECtape
DDT
DIGITAL
Flip Chip
LSI-I I
PDP
RSX
TOPS-20

Xerox Corporation Xerox 6500 color graphics printer

Foreword ... v

Preface .. vii

Acknowledgements ... xv

1 Seven Views of Computer Systems 1
C. Gordon Bell, J. Craig Mudge, and
John E. McNarnara

Technology Progress in
Logic and Memories ... 27 2

C. Gordon Bell, J. Craig Mudge, and
John E. McNarnara

3 Packaging and Manufacturing 63
C. Gordon Bell, J. Craig Mudge, and
John E. McNarnara

PART I
IN T H E BEGINNING .. 93

Transistor Circuitry

Kenneth H. Olsen
4 in the Lincoln TX-2 .. 97

Digital Modules,
The Basis for Computers ... 103 5

Richard L. Best, Russell C. Doane, and
John E. McNarnara

xix

xx CONTENTS

PART I1
BEGINNING OF T H E MINICOMPUTER 1 19

The PDP-1 and Other 8 18-Bit Computers ... 123
C. Gordon Bell, Gerald Butler, Robert Gray,
John E. McNamara, Donald Vonada, and
Ronald Wilson

The PDP-8 and Other 7 12-Bit Computers ... 175
C. Gordon Bell and John E. McNamara

8 Structural Levels of the PDP-8 209
C. Gordon Bell, Allen Newell, and
Daniel P. Siewiorek

PART I11
THE PDP-11 FAMILY .. 229

A New Architecture

-The DEC PDP-I 1 ... 241
9 for Minicomputers

C. Gordon Bell, Roger Cady,
Harold McFarland, Bruce A. Delagi,
James F. O’Loughlin, Ronald Noonan, and
William A . Wulf

Cache Memories for PDP-11
Family Computers .. 263

William D. Strecker

Buses, The Skeleton of
Computer Structures .. 269

J o h n V . Levy

A M in icomputer-corn pa tible

The DEC LSI-I 1 ... 301
12 Microcomputer System:

Mark J . Sebern

CONTENTS xxi

Design Decisions for the 13 PDP- 1 1 /60 Mid-Range Minicomputer 3 15
J. Craig Mudge

Impact of Implementation

The PDP-1 1, A Case Study ... 327
14 Design Tradeoffs on Performance:

Edward A. Snow and Daniel P. Siewiorek

Turning Cousins into Sisters:
An Example of Software Smoothing
of Hardware Differences ... 365

95
Ronald F. Brender

86 The Evolution of the PDP-1 1 .. 379
C. Gordon Bell and J. Craig Mudge

VAX- 1 1 /780: 77 A Virtual Address Extension
to the DEC PDP-1 1 Family .. 409

William D. Strecker

PART IV
EVOLUTION OF
COMPUTER BUILDING BLOCKS 429

The Description and Use of
Register Transfer Modules (RTMs) 441

C. Gordon Bell, John Eggert, John Grason,
and Peter Williams

Using LSI Processor Bit-Slices
to Build a PDP-I1 - A Case Study 19
in Microcomputer Design ... 449

Thomas M. McWilliarns, Samuel H. Fuller,
and William H . Sherwood

Multi-Microprocessors: 2o An Overview and Working Example 463
Samuel H. Fuller, John K. Ousterhout, Levy Raskin,
Paul I . Rubinfeld, Pradeep S. Sindhu,
and Richard J. Swan

xxii CONTENTS

P A R T V
T H E PDP-10 FAMILY .. 485

21 The Evolution of the DECsystem-IO 489
C. Gordon Bell, Alan Kotok,
Thomas N. Hastings, and Richard Hill

Appendix 1
An ISPS Primer for the
Instruction Set Processor Notation 5 19

Mario Barbacci

Appendix 2
The PMS Notation ... 537

J. Craig Mudge

Appendix 3
Performance ... 541

C. Gordon Bell, J . Craig Mudge, and
John E. McNamara

Bibliography ... 553

Index .. 563

Seven Views of Computer Systems
C. G O R D O N BELL, J. CRAIG MUDGE,

and JOHN E. M c N A M A R A

A computer is determined by many factors,
including architecture, structural properties, the
technological environment, and the human as-
pects of the environment in which it was de-
signed and built. In this book various authors
reflect on these factors for a wide range of DEC
computers - their goals, their architectures,
their various implementations and realizations,
and occasionally on the people who designed
them.

Computer engineering is the complete set of
activities, including the use of taxonomies, the-
ories, models, and heuristics, associated with
the design and construction of computers. It is
like other engineering, and the definition that
Richard Hamming (then at Bell Laboratories)
gave is especially appropriate: engineers first
turn to science for answers and help, then to
mathematics for models and intuition, and fi-
nally to the seat of their pants.

In the few decades since computers were first
conceived and built, computer engineering has
come from a set of design activities that were
mostly seat-of-the-pants based to a point where
some parts are quite well understood and based

on good models and rules of thumb, such as
technology models, and other parts are com-
pletely understood and employ useful theories
such as circuit minimization.

In this chapter, seven views are presented that
the authors have found useful in thinking about
computers and the process that molds their
form and function. They are intentionally inde-
pendent; each is a different way of looking at a
computer. A computer scientist or mathemati-
cian sees a computer as levels-of-interpreters.
An engineer sees the computer on a structural
basis, with particular emphasis on the logic de-
sign of the structure. The view most often taken
by a buyer is a marketplace view. While these
people each favor a particular view of com-
puters, each typically understands certain as-
pects of the other views. The goals of Chapter 1
are to increase this understanding of other
views and to increase the number of representa-
tions used to describe the object of study and,
hence, improve on its exposition. Thus, “The
Seven Views of Computer Systems” forms a
useful background for the subsequent chapters
on past, present, and future computers.

1

2 COMPUTER ENGINEERING

VIEW 1 : STRUCTURAL LEVELS OF A
COMPUTER SYSTEM

I n Computer Stuctures [Bell and Newell,
19711, a set of conceptual levels for describing,
understanding, analyzing, designing, and using
computer systems was postulated. The model
has survived major changes in technology, such
as the fabrication of a complete computer on a
single silicon chip, and changes in architecture,
such as the addition of vector and array data-
types.

As shown in Figure I , there are at least five
levels of system description that can be used to

PMS LEVEL

MS

I , 4 , I
I

,I i REGISTER i ,'
TRANSFER I
LEVEL

I
I

A I

I /
ELECTRICAL
CIRCUIT ULTIVIBRATOR
LEVEL

TRANSISTOR

DEVICE
LEVEL

P A R E A N AREA P A R E A N A R E A

Figure 1.
Bell and Newell [! 97 1 I

Hierarchy of computer levels, adapted from

describe a computer. Each level is characterized
by a distinct language for representing the com-
ponents associated with that level, their modes
of combination, and their laws of behavior.
Within each level there exists a whole hierarchy
of systems and subsystems, but as long as these
are all described in the same language, they do
not constitute separate levels. With this general
view, one can work up through the levels of
computer systems, starting at the bottom.

The lowest level in Figure 1 is the device level.
Here the components are p-type and n-type
semiconductor materials, dielectric materials,
and metal formed in various ways. The behav-
ior of the components is described in the lan-
guages of semiconductor physics and materials
science.

The next level is the circuit level. Here the
components are resistors, inductors, capacitors,
voltage sources, and nonlinear devices. The be-
havior of the system is measured in terms of
voltage, current, and magnetic flux. These are
continuously varying quantities associated with
various components; hence, there is continuous
behavior through time, and equations (includ-
ing differential equations) can be written to de-
scribe the behavior of the variables. The
components have a discrete number of termi-
nals whereby they can be connected to other
components.

Above the circuit level is the switching circuit
or logic level. While the circuit level in digital
technology is very similar to the rest of elec-
trical engineering, the logic level is the point at
which digital technology diverges from elec-
trical engineering. The behavior of a system is
now described by discrete variables which take
on only two values, called 0 and 1 (or + and -,
true and false, high and low). The components
perform logic functions called AND, OR,
NAND, NOR, and NOT. Systems are con-
structed in the same way as at the circuit level,
by connecting the terminals of components,
\ \ : \ i L , i , !I1 %Ichy identify their behavioral values.

SEVEN VIEWS OF COMPUTER SYSTEMS 3

After a system has been so constructed, the laws
of Boolean algebra can be used to compute the
behavior of the system from the behavior and
properties of its components.

In addition to combinational logic circuits,
whose outputs are directly related to the inputs
at any instant of time, there are sequential logic
circuits which have the ability to hold values
over time and thus store information. The prob-
lem that the combinational level analysis solves
is the production of a set of outputs at time t as
a function of a number of inputs at the same
time t . The representation of a sequential
switching circuit is basically the same as that of
a combinational switching circuit, although one
needs to add memory components. The equa-
tions that specify sequential logic circuit struc-
ture must be difference equations involving
time, rather than the simple Boolean algebra
equations which describe purely combinational
logic circuits.

The level above the switching circuit level is
called the register transfer (RT) level. The com-
ponents of the register transfer level are regis-
ters and the functional transfers between those
registers. The functional transfers occur as the
system undergoes discrete operations, whereby
the values of various registers are combined ac-
cording to some rule and are then stored (trans-
ferred) into another register. The rule, or law, of
combination may be almost anything, from the
simple unmodified transfer (A t B) to logical
combination (A t B A (AND) C) or arithmetic
combination (A t B + (PLUS) C). Thus, a
specification of the behavior, equivalent to the
Boolean equations of sequential circuits or to
the differential equations of the circuit level, is a
set of expressions (often called productions)
that give the conditions under which such trans-
fers will be made.

The fifth and last level in Figure 1 is called
the processor-memory-switch (PMS) level. This
level, which gives only the most aggregate be-
havior of a computer system, consists of central
processors, core memories, tapes, disks, in-

put/output processors, communications lines,
printers, tape controllers, buses, teleprinters,
scopes, etc. The computer system is viewed as
processing a medium, information, which can
be measured in bits (or digits, characters,
words, etc.). Thus, the components have capaci-
ties and flow rates as their operating character-
istics.

The program level from the original set of
levels shown in Bell and Newell has been
dropped because it is a functional rather than a
structural level.

Many notations are used at each of the five
structural levels. Two of the less common ones
are the processor-memory-switch (PMS) and
instruction set processor (ISP) notations. A
complete description of these notations is given
in Bell and Newell [1971: Chapter 21. Those as-
pects of P M S that are used in this book are de-
scribed in Appendix 2. The ISP notation has
evolved to the ISPS language, which is de-
scribed in Appendix l .

VIEW 2: LEVY’S LEVELS-OF-
INTERPRETERS

In contrast to the Structural View, this view is
functional. According to this view, presented by
John Levy [1974], a computer system consists
of layers of interpreters, much like the layers of
an onion.

An interpreter is a processing system that is
driven by instructions and operates upon state
information. The basic interpretive loop, shown
in Figure 2, is most familiar at the machine lan-
guage level but also exists at several other levels.

To formalize the notion of Levels-of-Inter-
pretation, one can represent a processing sys-
tem by the diagram in Figure 3.

The state information operated on by an in-
terpreter is either internal or external. This can
best be understood by considering the “onion
skin” levels of the five processing systems that
form a typical airline reservation system. These
levels are listed in Table 1.

4 COMPUTER ENGINEERING

The Level 0 system is the logic that sequences
the Level 1 micromachine. The Level 1 system is
a microprogrammed processor implemented in
real hardware. It is the machine seen by the
logic designer. The Level 2 system is the central
processing unit (CPU). It is the machine seen by
the machine language programmer. The Level 3
system shown here is a FORTRAN language
processing system. The Level 4 system is an air-
line reservation system. Four of these five sys-
tems form the hierarchy shown in Figure 4,
where each system is an interpreter that se-
quences through multiple steps in order to per-
form a single operation for the next level
interpreter. The highest level system, the airline
reservation system, is an interpreter operating
on messages received from outside of the sys-
tem. It tests and modifies states and generates

FETCH INSTRUCTION
POINTED TO BY

UPDATE

DECODE
INSTRUCTION

EXECUTE INSTRUCTION

Figure 2. The basic interpretive
loop ILevy. 19741.

I 1

messages to send back outside the system, thus
performing a single operation for the outermost
interpreter.

In practice, few systems are levels of pure in-
terpreters, although layers are present. Devia-
tions from the model have occurred for both
hardware and software reasons. In the hard-
ware deviation case, the micromachine shown
in Level 1 is often not present, but rather the
Level 2 central processing unit is implemented
directly using Level 0 sequential controllers.
This practice of skipping Level 1 was initially
due to the lack of adequate read-only memories
but is now generally limited to the case of very
high speed machines such as the Cray 1 and the
Amdahl V6 which cannot tolerate the fetch and
execute cycle times associated with a control
store.

r

I FI L E V E L 4 (APP LICATIONI

TRANSACTION
PROCESSING

LEVEL3
[FORTRAN] STATEMENTS

LEVEL2
INSTRUCTIONS IPROCESSORI A Fm CONSOLE RATOR

LEVEL 1
MICRoCoDE [MICRO MACHINE] IU 1 * ~ c o N s o L E MAINTENANCE

I I
LEVEL0

ISEClUENTIAL
MACHINE-

NOTSHOWNl

Figure 3 A processmg system [Levy. 19741. Figure 4 A hlerarchy of interpreters [Levy, 19741

SEVEN VIEWS OF COMPUTER SYSTEMS 5

Table 1,

Level 4 Instruction: Seat allocation request message

Five Levels-of-Interpreters for an Airline Reservation System [Levy, 19741

Interpreter: Airline reservation system

Internal state: Number of requests pending at this moment
Location of passenger list on a disk file
Number of lines connected to system

Number of reserved seats on a given flight
Airline name for a given flight

External state:

Level 3

Level 2

Level 1

Instructions:

Interpreter:

Internal state:

External state:

Instructions:

Interpreter:

Internal state.

External state:

Instructions:

Interpreter:

Internal state:

External state:

FORTRAN statement codes

FORTRAN execution system

Memory management parameters
User name
Main storage size
Location of disk files
Interrupt enable bits
Expression evaluation stack
Dimensions of arrays

Subroutine names
Values of data in arrays
Statement number
Program size
Value of an expression
DO-loop variable value
Printed characters on line printer

Machine language instructions

Processor

Program registers
Condition codes
Program counter

Data in main memory
Disk controller registers

Microcode

Micromachine

Instruction register
Flip-flops holding error status
Stack of microprogram subroutine links

Program registers
Condition codes
Program counter

Level 0 Instructions: Hardwired combinational network

Interpreter: Sequential machine controlling the

Internal state:

External state: Micromachine, console

micromachine

Clock, counters, etc., controlling
micromachine timing

6 COMPUTER ENGINEERING

There are two primary software driven depar-
tures from the pure interpreter model: (1) high
level languages are usually executed by a com-
piler rather than by an interpreter, and (2) some
layers are bypassed when more ideal primitives
exist at deeper levels. Figure 5 illustrates this
bypassing process. A pure interpreter imple-
mentation of FORTRAN would use an object
time system (OTS) for all FORTRAN C oper-
ations designated in the figure. The object time
system would require an operating system
(OPSYS) for the interpretation of some of its
operations, and the operating system in turn

Figure 5 Levels-of-interpreters with "pipes" that by-
pass levels FORTRAN operation C is interpreted by an
OTS function which in turn is interpreted by the oper-
ating system which is interpreted by the ISP FORTRAN
operation A has a pipe directly to the ISP interpreter

would be interpreted by the instruction set in-
terpreter (ISP interpreter). However, the A op-
erations in the figure would be directly
interpreted by the instruction set interpreter.

I n the final analysis, the number of levels is
just another tradeoff. Performance consid-
erations lead to the deletion of levels; com-
plexity leads to the addition of levels. Having
presented the pure interpreter model, one can
now return to the Onion-Skin-Layered Model

to better understand how the different layers re-
late.

The macromachine hardware can be thought
of as a base level interpreter. It is most often
extended upward with an operating system.
There may be several operating system levels so
that the machine can be built up in an orderly
fashion. A kernel machine might manage and
diagnose the hardware components (disks, ter-
minals) and provide synchronizing operations
so that the multiple processes controlling the
physical hardware can operate concurrently.
Next, more complex operations such as the file
system and basic utilities are added, followed by
policy elements such as facilities resource man-
agement and accounting. As viewed through
the operating system, one sees a much different
machine than that provided by the basic in-
struction set architecture. In fact, the resultant
machine is hardly recognizable as the archi-
tecture most usually given by a symbolic assem-
bler. It includes the basic machine but has more
capable 1 / 0 and often the ability to be shared
by many programs (or tasks).

Operating systems designers believe all these
facilities are necessary in order to implement
the next higher level interpreter - the standard
language. The language level may include inter-
preters or compilers to translate back to the ma-
chine architecture for ALGOL, BASIC,
COBOL, FORTRAN, or any of the other
standard languages and their dialects.

V I E W 3: PACKAGING L E V E L S - O F -
INTEGRATION

This is a structural view that packages the
various components (hardware and software)
into levels. The levels for DEC computers in
1978 were as follows:

9 Applications
8 Applications components
7 Special languages
6 Standard languages

SEVEN VIEWS OF COMPUTER SYSTEMS 7

5 Operating systems
4

3 Boxes
2 Modules (printed circuit boards)
1 Integrated circuits

Cabinets (to hold complete hardware
systems)

This view is the most important in the book,
because it shows how computer systems are ac-
tually structured and, hence, how their costs are
structured. As a structural view of the object
being sold, however, it is completely a function
of the technology, the: organization building the
system, and the marketplace, all of which are
changing so rapidly that the view could better
be titled “Dynamic Levels-of-Integration.”
There are three major changes taking place:

I . Changes in the hardware levels, where
the shrinking in physical size of func-
tions has three effects:
a. Lower levels subsume higher levels.
b. The semiconductor component sup-

plier is forced to assume higher and
higher level design responsibilities.

c. Levels disappear.
Changes in the software levels, again
with three effects:
a. Each level grows in size as more

functionality is added over time.
b. More levels are added as mini-

computers are applied to a broader
range of applications.

c. Functions migrate downward from
level to level.

Changes in the hardware/software inter-
face, where software functions migrate
into hardware for higher performance.

2.

3.

For the first of these areas of change, hard-
ware levels, it is interesting to note that inter-
connection and packaging now constrain and
limit design more than any other factor, exclud-
ing the basic lowest level component (semi-
conductor) technology.

The constraint caused by the interconnection
and packaging takes place because most manu-
facturing costs are associated with the physical
structure. As interconnection levels must be in-
troduced to build complex structures, many
usually undesirable side effects occur. Electrical
interconnection requires cables which require
space and interfere with cooling airflow. Long
interconnections increase signal transmission
delays, and these reduce performance. Signal
transmission not only makes the computer sus-
ceptible to electromechanical interference but
also may radiate electromagnetic waves that
need to be controlled.

Figure 6 shows the costs of various levels-of-
integration versus time for small computers.
The cost depends partly on implementation and
architecture word length. As the word length is
made shorter, there are some savings, particu-
larly for very small computers, because some
levels-of-integration cease to exist. For ex-
ample, most hand-held calculators are imple-
mented using 4-bit, stored program computers
with fixed programs that occupy a single in-
tegrated circuit. There are associated modules,
backplanes, boxes, and cabinets - but all are
contained in a single package that fits in the
hand.

Semiconductors, the lowest level of tech-
nology, have had the greatest price decline (Fig-
ure 6). Modules have a lesser price decline
because they are a mix of integrated circuits,
printed circuit boards, component insertion la-
bor, and testing labor. The price decline for the
integrated circuit portion of the module cost is
moderated by the labor-intensive nature of
module fabrication, thus producing a price de-
cline for modules that is markedly less than that
for integrated circuits. At the box level-of-in-
tegration, power supplies and metal or plastic
boxes are also labor-intensive and further mod-
erate the price decline provided by the in-
tegrated circuits. Finally, as boxes are
integrated (by people) and applied at a system

8 COMPUTER ENGINEERING

-
n

”

NAKED MINI

GENERATION
1 Pc ON A CHIP

100 -

r
10 I \ I

1960 1975 1980

TIME -
Figure 6.
integration versus time.

Machine price for various levels-of-

level (by people), the price decline almost dis-
appears.

Many of the cost improvements brought
about by new technology are derivative. They
are by-products of using less power and less
space, thus avoiding the labor-intensive levels
of packaging integration.

An astute marketing-oriented person might
ask, “How, with all the technology, can we do
something unique so that we can maximize the
benefit from the technology without having to
pay so much for labor-intensive items such as
packaging?” One answer: “Reduce prices by
not providing a power supply and mounting
hardware. Let the user provide all added-on
parts and mount the computer as needed. In

this way, the price, though not necessarily the
total cost to the user, is reduced. We’ll sell at the
board level.” Computer Automation followed
this philosophy when it introduced the Naked
Mini so that users could supply more added
value (packaging and power technology).

A similar effect can be seen in the PDP-11
series since the PDP-l1/20’s introduction in
1970. At that time, the 4,096-word PDP- 1 1 /20
(mounted in a box) sold for $9,300. In 1976, the
boxed version of an LSI- 1 1 cost $1,995, reflect-
ing a factor of 4.7 improvement over the PDP-
11/20. The 4,096-word core memory module
used in the PDP-11/20 sold for $3,500, while a
16,384-word metal-oxide semiconductor (MOS)
memory module for an LSI-11 sold for $1,800,
reflecting a factor of 7.8 improvement.

The changing levels-of-integration have also
changed the domain of the semiconductor sup-
pliers. In the early 1970s, Intel, North American
Rockwell, and other semiconductor companies
began to use the higher semiconductor densities
to reduce the number of levels-of-integration by
packaging a complete processor-on-a-chip.
These organizations had assimilated logic de-
sign, but were frustrated because their custom-
ers could really not identify higher functionality
units (beyond memory) requiring on the order
of 1,000 gates on a chip. Also, the speed of these
high density units was quite low.

They discovered that the best finite state ma-
chine to make was just a simple computer, be-
cause it provided the finite state machine plus
the useful functions that were not covered by
switching circuit theory. It was “simply a small
matter of programming” to do something use-
ful. Whereas programs for these simple com-
puters cost $1 to $100 per instruction to write,
the prices for processors-on-a-chip have fol-
lowed a very steep decline of up to 50 percent
price reduction per year.

Robert Noyce of Intel developed Figure 7 in
October 1975. It illustrates what has been hap-
pening in the semiconductor industry and has
been modified slightly to show the technology

SEVEN VIEWS OF COMPUTER SYSTEMS 9

7- r
COMPUTATION
S E R V I C E

t APPLICATIONS r
!SYSTEM
TASKS

SYSTEM
INTEGRATION I

t b
SOFTWARE MICRO

COMPUTER

ARCHITECTURE
OEC

SEMICONDUCTOR
LOGIC DESIGN SUPPLIER TASKS

DEVICE DESIGN

1960 1970 1980

YEAR

N O T E
Each change of level of integrat ion has forced
the component supplier to assulme additional responsibilities

Figure 7. Semiconductolr (Noyce) manufacturer’s
levels-of-integration versus time.

that DEC has assimilated with time. It indicates
the breadth that sem xconductor manufacturers
now have in technology, starting from the semi-
conductor device level, through Noyce’s view of
the various levels-of-integration, and contin-
uing into end-user applications.

The Levels-of-Integration View can be sum-
marized as components of one level being com-
bined into a system at the next highest level in a
hierarchy. A level denotes a single conceptual
design discipline or set of interacting disciplines
which determine the function, structure, per-
formance, and cost of the constituent level.
“Level” is a deceptive word, because as Figure
8 shows, the structure is actually a lattice, or
network, style of hierarchy rather than the clas-
sical tree style of hierarchy. In Figure 8 various
standard languages can be used on any of sev-
eral different hardware/software systems,
which in turn can be implemented on several
different processors. Ehch processor is available
in several different boxes.

I
APPLICATION

t
L A N G U A ~ E

t
H A R D W A ~ E /
SOFTWARE
SYSTEM ,

HARDWARE t

MDS BIPOLAR

Figure 8 .
not just a tree-structured hierarchy of
eight distinct levels.

A computer system is a network,

VIEW 4: A MARKETPLACE VIEW OF
COMPUTER CLASSES

Because it is the complete marketplace pro-
cess that produces the computer, this view is the
most complex. In terms of marketability, a
computer can be characterized as a function of
price, performance, and time of introduction in
what might appear to be a commodity-like envi-
ronment.

Because various computers operate a t differ-
ent performance rates and at various costs,
computation can be purchased in multiple
ways, and price/performance ratios will thus af-
fect marketability. For example, computation
can be supplied by a shared large, central batch
computer; each organizational entity can own

10 COMPUTER ENGINEERING

and operate a shared minicomputer; an individ-
ual can operate a single desk-top system; or
each individual can operate a programmable
calculator.

The price/performance ratio is not the sole
factor determining marketability, however.
Program compatibility with previous machines
is important. Compatibility considerations are
based on the economic necessity of using a com-
mon software base. The computer user’s invest-
ment in software dwarfs that of the computer
manufacturer, if the machine is successful. For
example, if there is only one man-year of soft-
ware investment associated with each of the
50,000 PDP-l Is, and each man-year costs about
$40,000 and produces something on the order
of 5,000 instructions, there is then a cumulative
investment of $2 billion and 250 million lines of
program for the PDP-11. This investment is
roughly the same scale as the original hardware
cost.

Thus, while rapidly evolving technology per-
mits new designs to be more cost-effective -
even radical - in a price/performance sense,
there must be backward (in time) compatibility
in order to build on and preserve the user’s pro-
gram base. The user must be able to operate
programs unchanged to take advantage of the
improvements brought about by technology
changes.

In a similar way, compatibility over a range
of machines at a given time allows a user to se-
lect a machine that matches his problem set
while having the comfort that the problems can
change and there will be a sufficiently large or
small machine available to solve the new prob-
lems.

For these reasons, nearly all modern com-
puter designs are part of a compatible computer
family which extends over price and time. Tech-
nology provides basic improvements with each
new generation at approximately six-year inter-
vals, and most new designs usually provide in-
creased performance at constant price.

The influence of technology on the com-
puters that are built and taken to the market-
place is so strong that the four generations of
computers have been named after the tech-
nology of their components: vacuum-tubes,
transistors, integrated circuits (multiple transis-
tors packaged together), and large-scale in-
tegrated (LSI) circuits.

Each electronic technology has its own set of
characteristics, including cost, speed, heat dis-
sipation, packing density, and reliability, all of
which the designer must balance. These factors
combine to limit the applicability of any one
technology; typically, one technology is used
until either a limit is reached or another tech-
nology supersedes it.

Design Alternatives

When an improved basic technology becomes
available to a computer designer, there are four
paths the designs can take to incorporate the
technology:

1.

2.

3 .

4.

Use the newer technology to build a
cheaper system with the same perform-
ance.
Hold the price constant and use the tech-
nological improvement t o get an in-
crease in performance.
Push the design to the limits of the new
technology, thereby increasing both per-
formance and price.
Find a drastically new structure using
the computer as a basic archetype (e.g.,
calculators) such that the design can be
considered off the evolutionary path.

Figure 9 shows the trajectory of the first three
design alternatives. I n general, the design alter-
natives occur in an evolutionary fashion as in
Figure 10 with a first (base) design, and sub-
sequent designs evolving from the base.

SEVEN VIEWS OF COMPUTER SYSTEMS 11

0

c L
-

DESIGN STYLE 3

DESIGN STYLE 2

DESIGN STYLE 1

t

ly 0

1 w L c
TIME TIME

Figure 9.
evolutionary path.

Three design styles on the Figure 10.
design B.

Evolution from the base

In the first design style, the performance is
held constant, and the improved technology is

finite amount of money is available because the
benefit - avoiding annihilation - is infinite.

used to build lower price machines which at-
tract new applications. This design style has as
its most important consequence the concept of
the minimal computer. The minimal computer
has traditionally been the vehicle for entering
new applications, since it is the smallest com-
puter that can be constructed with a given tech-
nology. Each year, as the price of the minimal
computer declines, new applications become
economically feasible.

The second, constant cost alternative uses the
improved technology to get better performance
at a constant price and will usually yield the
best increase in total system cost and effective-
ness, for reasons which will be discussed
shortly.

The third alternative is to use the new tech-
nology to build the most powerful machine pos-
sible. New designs using this alternative often
solve previously unsolved problems and, in
doing so, advance the state-of-the-art. This de-
sign alternative must be used cautiously, how-
ever, because going too far in price or
performance (i.e., building beyond the tech-
nology) is dangerous and can lead to a zero per-
formance, high-cost product. There are usually
two motivations for operating at this leading
edge: preliminary research motivated by the
knowledge that the technology will catch up;
and national defense, where an essentially in-

Table 2 shows the effect of pursuing the two
design strategies of (1) constant performance at
decreased price, and (2) constant price at in-
creased performance. The first column gives the
base case at a given time t . Because this is the
base case, the price, performance, and
price/performance ratio of the computer are all
1. As the computer is applied to a particular en-
vironment, operational overhead is added at a
cost of 2 to 4 times the original cost of the com-
puter; the total cost to operate the computer be-
c o m e s 3 t o 5 t imes h i g h e r , a n d t h e
performance/total cost ratio is reduced to be-
tween 0.33 and 0.2 (depending on the total
cost).

Now assume the same operating environ-
ment, with the same fixed (overhead) costs to
operate, at a new time t + 1, when technology
has improved by a factor of 2. Two alternative
designs are carried out; one is at constant
price/higher performance, and the other is at
constant performance/lower price (columns 2
and 3). The application is constant in three
cases (columns 1-3), and a new application is
discovered for the fourth case (column 4). Both
the constant-cost and constant-performance de-
signs give the same basic performance/cost im-
provement - when only the cost of the
computer is considered. However, when one

12 COMPUTER ENGINEERING

Table 2.

introduction Ti me

Using New Technology for Constant Price and Constant Performance Designs

(generation) t t + l t f l t + l

Design style Base case Constant price/ Constant Constant
increased performance/ performance/
performance decreased decreased

Application Base Base Base New base

Computer price 1 1 0.5 0.5

price price

Operating costs
(range)

2 -4 2 -4 2-4 1-2

Total cost 3-5 3-5 2.5-4.5 1.5-2.5

Performance 1 2
(and improvement)

Improvement
(in total cost)

Performance/price
(computer only
and improvement)

Performance/
total cost

1 1

1 2

1 1

0.83-0.9 0 .5

2 2

0.33-0.2 0.66-0.4 0.4-0.22 0.66-0.4

Improvement 1 2
(in performance/total cost)

1.21 -1.1 2

considers the high fixed overhead costs associ-
ated with the application (columns l-3), there is
a relatively small improvement in perform-
ance/cost, although there has been a cost sav-
ings of 17 to 10 percent. The greatest gains
come in applying the computer with greater
performance and getting the attendant factor of
2 gain in performance and in price/per-
formance ratio.

To summarize, the constant price/increased
performance design style gives a better gain be-
cause operating costs remain the same. Its gain
can only be equalled by the constant-perform-
ance design style when operating costs are
halved upon its application. This only occurs
when a new application is tackled, such as that
shown in column 4.

Computer Classes

Applying the three design styles shown in
Figure 9 over several generations produces the
plot given in Figure 11. These figures lead t o
one of the most interesting results of the Mar-
ketplace View, which is that computer classes
can be distinguished by price and named as fol-
lows: submicro (to come in the next generation -
say by 1980), micro, mini, midi, maxi, and super.
The classes midi and maxi are sometimes re-
ferred to by the single, nondescriptive name,
main frame.

When one distinguishes computer classes by
price, a new range of price can be made possible
by new technology and create a new class. The

SEVEN VIEWS OF COMPUTER SYSTEMS 13

\

I

Figure 11. Price versus time for each machine class.

new class appears at the low end of the price
scale where the minimal computer is introduced
at a significantly lower price level than existing
computers.

The measure used to define a new class is
price, whereas the measure defining an estab-
lished class is performance. This is because once
a new class has become established in the mar-
ketplace, the users become familiar with what
computers of that class can do for their appli-
cations and tend to characterize that class on a
performance basis. The characterization of ex-
isting classes on a performance basis is impor-
tant to this discussion because at each new
technology time, performance increases by one
category, and midi performance becomes avail-
able on a mini, for example.

The effect of technology upon computer clas-
ses can be summarized in the following thesis:

Continual application of technology via
the two major design styles results in: (1)
price declines creating new classes of
computers, (2) new classes becoming es-
tablished classes, and (3) established
classes being encroached upon.

Some question may arise as to how much of a
price reduction is necessary to create a new
class. The continuity implied by the thesis is de-
ceptive in that it suggests that new classes come
about by the continual application of the con-
stant performance/decreasing cost style of de-
sign. Viewing the industry as a whole, this is
true. However, a new class is usually not cre-
ated by the same organization that is designing
computers in existing classes. A new company,
or new organization within a company, is usu-
ally required to provide the requisite fresh view-
point needed to create a new class. It is the fresh
viewpoint and not some arbitrary amount of
price reduction that creates a new class.

For both the minicomputer and micro-
computer, a fresh organization broke out. A
fresh viewpoint was needed because existing or-
ganizations, like most human organizations, act
to preserve the status quo, and adopt the in-
creased performance/constant price design al-
ternative for the existing customer base, as
indicated by the analysis given in the discussion
of Table 2. A new organization with a fresh
viewpoint goes after new applications and new
customers with a new minimal computer that
establishes a new class.

As a by-product of the use of new tech-
nology, conflicts occur within the established
computer classes. An established computer
class, which is defined on the basis of perform-
ance, is encroached upon by constant
cost/higher performance successors from the
class below it. Moreover, suppliers within a
class are, by their dominant constant

14 COMPUTER ENGINEERING

price/higher performance evolution, operating
to move up out of their class.

While movement by computer designs and
computer suppliers between and among the var-
ious classes may be encouraged by price and
performance trends, the speed with which that
movement occurs is moderated by the software
compatibility considerations discussed earlier.
The computer class thesis is not meant to imply
that each class implements the same instruction
set processor and processor-memory-switch
configurations with the only difference being
speed. Rather, much specialization occurs in
each class, and many of the attributes of the
higher performance machines appear in sub-
stantially less degree in the lower performance
classes. For example, there are more data-types
in the larger machines, their address spaces
(both physical and virtual) are larger, and the
software support is generally broader. Re-
sources devoted to increasing reliability and
availability are more common in the higher
priced machines. The PDP-I 1 Family, from the
LSI-11 up to the VAX-11/780, exemplifies
these functionality differences.

Definition of the Minicomputer

The concept of computer classes that can be
distinguished by price and named submicro, mi-
cro, mini, midi, maxi, and super may be of as-
sistance in finding a definition for t he
minicomputer, a definition which has thus far
been rather elusive. While the classes suggest
that minicomputers are those computers whose
prices fall between microcomputers and midi-
computers, and thus somewhere near the
middle of the range of computers available, ear-
lier definitions [Bell and Newell, 1971aJ use the
term mini to denote minimal.

The Marketplace View defines new computer
classes according to price and established com-
puter classes according to performance. This
would suggest that a definition of the mini-
computer should include some historical data

on price and some comments on performance,
or at least some indication of performance by a
discussion of applications and configurations.
In 1977 Gordon Bell provided such a hybrid
definition for the Director of Computer Re-
sources, U. s. Air Force. The definition was as
follows:

MINICOMPUTER: A computer
originating in the early 1960s and predi-
cated on being the lowest (minimum)
priced computer built with current tech-
nology. From this origin, at prices rang-
ing from 50 to 100 thousand dollars, the
computer has evolved both at a price re-
duction rate of 20 percent per year and
has also evolved to have increased func-
tionality and a slightly higher price with
increasing functionality and perform-
ance.

Minicomputers are integrated into
systems requiring direct human and pro-
cess interaction on a dedicated basis (ver-
sus being configured with a structure to
solve a wide set of problems on a highly
general basis).

Minicomputers are produced and dis-
tributed in a variety of ways and levels-
of-integration from: printed circuit
boards containing the electronics; to
boxes which hold the processor, primary
memory, and interfaces to other equip-
ment; to complete systems with periph-
erals oriented to solving a particular
application(s) problem. The price
range(s) for the above levels-of-in-
tegration, in 1978, are roughly: 500 to
2,000; 2,000 to 50,000; and 5,000 to
250,000.

This discussion of the Marketplace View has
been a qualitative explanation of the effect of
technology on the computer industry. It is an
engineering view, rather than one that would be
given by technology historians or economists.
The 20 years described in this book and the in-
dividual cost and performance measures surely
invite analysis by professionals. The studies re-
ported in Phister [1976] and Sharpe [I9691 are a
good departure point.

SEVEN VIEWS OF COMPUTER SYSTEMS 15

VIEW 5: AN APPLICATIONS/
FUNCTIONAL VIEW OF COMPUTER
C LASS E S

Because of the general purpose nature of
computers, all of the functional specialization
occurs at the time of programming rather than
at the time of design. As a result, there is re-
markably little shaping of computer structure
to fit the function to be performed.

The shaping that does take place uses four
primary techniques.

1. PMS level configuration. A con-
figuration is chosen to match the func-
tion to be performed. The user (designer)
chooses the amount of primary memory,
the number and types of secondary
memory, the types of switches, and the
number and types of transducers to suit
his particular application.

2. Physical packaging. Special environmen-
tal packaging is used to specialize a com-
puter system for certain environments,
such as factory floor, submarine, or
aerospace applications.
Data-type emphasis. Computers are de-
signed with data-types (and operations
to match) that are appropriate to their
tasks. Some emphasize floating-point
arithmetic, others string handling. Spe-
cial-purpose processors, such as Fast
Fourier Transform processors, belong in
this category also.
Operating system. The generality of the
computer is used to program operating
systems that emphasize batch, time shar-
ing, real-time, or transacting processing
needs.

3 .

4.

Current Dimensions of Use

In the early days of computers, there were
just two classifications of computer use: scien-
ti$c and commercial. By the early 1970s, com-
puter use had diversified to seven different

functional segmentations: scientific, business,
control, communication, f i le control, terminal,
and timesharing. Since that time, very little has
changed in terms of functional characterization,
but two points are worthy of mention. First, file
control computers still have not materialized as
mainstream separate functional entities, despite
isolated cases such as the IBM 3850 Mass Stor-
age System; second, terminal computers have
evolved to a much higher degree than expected.

The high degree of evolution in terminals has
been due to the use of microprocessors as con-
trol elements, thus providing every terminal
with a stored program computer. Given this
generality, it has been simple to provide the ter-
minal user with facilities to write programs. In
turn, this phenomenon has affected the evolu-
tion of timesharing (when using the term to de-
note close man-machine interaction as opposed
to shared use of an expensive resource).

Functional segmentation into categories with
labels such as business, control, communication,
and f i le control reflects a naming convention
rooted in t h e old two-category scien-
tific/commercial tradition. An alternative clas-
s i f i c a t i o n , m o r e use fu l t o d a y , i s t h e
segmentation scheme shown in Table 3. It is
based on the intellectual disciplines and envi-
ronment (e.g., home based) that use and de-
velop the computer systems. It shows the
evolving structures in each of the disciplines,
permitting one to see that nearly all the environ-
ments evolve to provide some form of direct,
interactive use in a multiprogrammed environ-
ment. The structures that interconnect to me-
chanical processes are predominately for
manufacturing control. Other environments,
such as transportation, are also basically real-
time control. Another feature of discipline-
based functional segmentation is that each of
the disciplines operates on different symbols.
For example, commercial (or financial) envi-
ronments hold records of identifier names for
entities (e.g., part number) and numbers which
are values for the entity (e.g., cost, number in
inventory).

16 COMPUTER ENGINEERING

Table 3. Discipline/Environment-Based
Functional Segmentation Scheme

Commercial environment

Records storage and processing
Traditional batch data entry

Business analysis (includes calculators)'

Scientific, engineering, and design

Traditional batch computation*
Data acquisition
Interactive problem solving*

Signal and image processing*

Manufacturing

Financial control for industry. retaiVwholesale. and
distribution
Billing. inventory, payroll. accounts receivable/
payable

Transaction processing against data base

Numbers, algorithms, symbols, text, graphs, storage,
and processing

Real time (includes calculators and text processing)

Data base (notebooks and records)

Record storage and processing
Batch'
Data logging and alarm checking
Continuous real-time control
Discrete real-time control
Machine based
People/parts flow

Communications and publishing
Message switching
Front-end processing
Store and forward networks
Speech input/output
Terminals and systems
Word processing, including computer conferencing
and publishing

Transportation systems
Network flow control
On-board control

Education
Computer-assisted instruction

Drill and practice
Library storage

Home using television set

Algorithms, symbols, text storage, and processing

Entertainment, record keeping, instruction, data base
access

*Implies continuous program development

The scientific, engineering, and design dis-
ciplines use various algorithms for deriving
symbols or evaluating values. Texts, graphs,
and diagrams, the major ways of representing
objects, have to be processed. For these envi-
ronments, the computer has changed from a
calculator (it was initially funded to do tra-
jectory calculations for ballistic weapons) to a
sophisticated notebook for keeping specifica-
tions, designs, and scientific records. Whereas
the minicomputer was initially only used as a
transducer to collect data to be analyzed on
larger machines, it has since evolved to direct
recording and analysis of time-varying signals
and images and even to direct analysis and con-
trol. With minicomputers taking on such addi-
tional capabilities, connections to larger
computers are used solely in a network fashion
to handle graphic display and control functions.

The function of computers in both the manu-
facturing and the commercial environments has
evolved from simple record keeping to direct
on-line human control.

Process control computers have evolved from
their initial use of assisting human operators
(controllers) with data logging and alarm condi-
tion monitoring to full control of processes with
either human or secondary computer backup.
The structure of the computer and the control
task vary widely depending on whether the pro-
cess is continuous (e.g., refinery, rolling mill) or
discrete (e.g., warehouse, automotive, appliance
manufacturing).

Transportation applications for aircraft,
trains, and eventually automotive vehicles are
forms of real-time control that use both discrete
and continuous control. Control is carried out
in two parts: on board the vehicle and in the
network (airspace, highway) that carries the ve-
hicles. The transportation control function dic-
tates three unique characteristics for the
computer structure:

1. Very high reliability. Society has placed
such a high value on a single human life

SEVEN VIEWS OF COMPUTER SYSTEMS 17

that all computers in this environment
cannot appreciably raise the likelihood
of a fatality.
Very small size for on-board computers.
Extreme operating and storage temper-
ature range for on-board computers - es-
pecially for automotive vehicles.

2.
3.

Communications and message-based com-
puters have evolved from telephone switching
control, message switching, and front ends to
other computers to become the dominant part
of communications systems. With these evolv-
ing systems, the communications links have
changed from analog-based transmission to
sampled-data, digital transmission. By using
digital transmission, data and voice (and video)
can ultimately be used in the same system.

Word processing (i.e., creation, editing, and
reproduction) together with long term storage
and retrieval and transmission to other sites
(i.e., electronic mail) have evolved from several
systems:

1. Conventional teletypewriter messages
and torn-tape message switching (e.g.,
TWX, Western Union, Telex).
Terminals with local storage and editing
(e.g., Flexowriters, Teletype (with paper
tape reader and punch), magnetic card/
magnetic tape automatic typewriters,
and the evolving stand-alone word pro-
cessing terminals for office use).
Large, shared text preparation systems
for centralized documentation prepara-
tion, newspaper publication, etc.

4. Large systems with central filing and
transmission (distribution). These will
negate the need for substantial hard
copy. With these systems, text can be
prepared either centrally with the system
or with local intelligent word processing
systems.
Computer conferencing. People can sit
at terminals and converse with others
without leaving their office.

2.

3.

5 .

The education-based environment implies a
system which is a combination of transaction
processing (for the human interaction part), sci-
entific computation as the computer is required
to simulate real world conditions (Le., phys-
ical/natural phenomena), and information re-
trieval from a data base. These systems are
evolving from the simple drill-and-practice sys-
tems which use a small simple algorithm,
through simulation of particular real world
phenomena, to knowledge-based systems which
have a limited, but useful, natural language
communications capability.

Home-based computers are beginning to
emerge. The dominant use to date is in provid-
ing entertainment in the form of games that
model simple, real world phenomena, such as
ping-pong. Appliances are beginning to have
embedded computers that have particular
knowledge of their environments. For example,
computer-controlled ranges can cook in fairly
standard ways. Alternatively, cooking can be
controlled by embedded temperature sensors.
Simple calculators to record checkbooks have
existed for quite some time. These will soon
evolve to provide written transactions for re-
cording and control purposes. Many domestic
activities are in essence scaled-down versions of
commercial, scientific, educational, and mes-
sage environments.

With the evolution of each computer class,
one can see several cases of machine structures
which begin as highly specialized and evolve to
being quite general. This evolution is driven by
applications in accordance with the Appli-
cations/Functional View of Computer Classes.

The applications-driven evolution toward
generality applies to both hardware and soft-
ware. As a hardware example, consider the case
of a computer installations using large, highly
general computers, where minicomputers are
applied to offload the large computers. The first
application of the minicomputer is thus on a
well-defined problem, but then more problems
are added, and the minicomputer system is soon

18 COMPUTER ENGINEERING

performing as a general computation facility
with the help of a general purpose operating
system. A similar effect occurs in software,
where operating systems take on multiple func-
tions as they evolve with time because users
specify additional needs, and operating systems
designers like to add function. Thus, a COBOL
run-time environment might be added to a
simple FORTRAN-based real-time operating
system. At the next stage, a comprehensive file
system might be added. In the hardware system,
the next step in the evolution is usually offload-
ing the minicomputer; in the software case, the
next step is often the development of a new
small, simple, and fast operating system.

Part of this evolution is due to the inherent
generality of a computer, and part is a con-
sequence of constant-cost design philosophy.
The evolution is observable in computers of all
classes, including calculators. The early scien-
tific calculators evolved from just having logs,
exponentials, and transcendental functions to
include statistical analysis, curve fitting, vec-
tors, and matrices.

Machines, then, evolve to carry out more and
more functions. Since a prime discriminant is
data-type, Figure 12 is presented to show an es-
timate of data-type usage for various appli-
cations, using mostly high level data-types, e.g.,
process descriptions. The estimates shown are
very rough, because attempts to measure such
distributions to date have not shown marked
differences across applications (except for nu-
merical versus non-numerical) because the
data-types have not been of a sufficiently high
level.

VIEW 6: THE PRACTICE OF DESIGN

Whereas previous views emphasized the ob-
ject being designed, this is a view of the design
process which gives rise to the object. Two
models of design, those of Asimow and Simon,
are presented, followed by some remarks on
factors that particularly influence computer de-
sign.

N U M E R I C A L COMPUTATION

? WORD PROCESSING

F C O M M U N I C A T I O N S

PROGRAM DEVELOPMENT

2 REAL T I M E PROCESS CONTROL

Th TRANSACTION PROCESSING

Figure 12. Data-type usage by application.

In Introduction to Design [1962], Asimow
gives a general perspective of engineering design
and how the formal alternative generators and
evaluating procedures are used. He also in-
dicates where these formalisms break down and
where they do not apply. He defines engineering
design as an activity directed toward fulfilling
human needs, based on the technology of our
culture.

Asimow distinguishes two types of design:
design by evolution and design by innovation.

SEVEN VIEWS OF COMPUTER SYSTEMS 19

GENERAL n PRINCIPLE

Figure 13. Philosophy of design. The feedback be-
comes operable when a solution is judged to be in-
adequate and requires improvement. The dotted
elements represent a particular application [Asimow.
1962:5].

While there are examples of both in this book,
design by evolution predominates both in this
book and in the computer industry. Asimow's
first diagram (Figure 13), called Philosophy of
Design, shows the basic design process. Asi-
mow lists the following principles [Asimow,
1962: 5-61.

1.

2.

3.

4.

5 .

Need. Design must be a response to indi-
vidual or social needs which can be satis-
fied by the technological factors of
culture.
Physical realizability. The object of a de-
sign is a material good or service which
must be physically realizable.
Economic worthwhileness. The good or
service, described by a design, must have
a utility to the consumer that equals or
exceeds the sum of the proper costs of
making it available to him.
Financial feasibility. The operations of
designing, producing, and distributing
the good must be financially suppor-
table.
Optimality. The choice of a design con-
cept must be optimal among the avail-
able alternatives; the selection of a

6 .

7.

8.

9.

10.

11 .

12.

13.

manifestation of the chosen design con-
cept must be optimal among all per-
missible manifestations.
Design criterion. Optimality must be es-
tablished relative to a design criterion
which represents the designer's com-
promise among possibly conflicting
value judgments that include those of the
consumer, the producer, the distributor,
and his own.
Morphology. Design is a progression
from the abstract to the concrete. (This
gives a vertical structure to a design proj-
ect.)
Design process. Design is an iterative
problem-solving process. (This gives a
horizontal structure to each design step.)
Subproblems. In attending to the solu-
tion of a design problem, there is uncov-
ered a substratum of subproblems; the
solution of the original problem is de-
pendent on the solution of the sub-
problem.
Reduction of uncertainty. Design is a pro-
cessing of information that results in a
transition from uncertainty about the
success or failure of a design toward cer-
tainty.
Economic worth of evidence. Information
and its processing has a cost which must
be balanced by the worth of the evidence
bearing on the success or failure of the
design.
Bases for decision. A design project (or
subprobject) is terminated whenever
confidence in its failure is sufficient to
warrant its abandonment, or is contin-
ued when confidence in an available de-
sign solution is high enough to warrant
the commitment of resources necessary
for the next phase.
Minimum commitment. In the solution of
a design problem at any stage of the pro-
cess, commitments which will fix future

20 COMPUTER ENGINEERING

design decisions must not be made be-
yond what is necessary to execute the im-
mediate solution. This will allow the
maximum freedom in finding solutions
to subproblems at the lower levels of de-
sign.
Communication. A design is a descrip-
tion of an object and a prescription for
its production; therefore, it will have ex-
istence to the extent that it is expressed
i n the available modes of commu-
nication.

14.

Asimow goes on to define the phases of a
complete project.

1. Feasibility study. The purpose is to deter-
mine some useful solutions to the design
problem. It also allows the problem to
be fully defined and tests whether the
original need which initiated the process
can be realized. Here the general design
principles are formulated and tested.
Preliminary design. This is the sifting,
from all possible alternatives, to find a
useful alternative on which the detailed
design is based.
Detailed design. This furnishes the engi-
neering description of a tested and pro-
ducible design.

2.

3 .

While the above are the primary design
phases, there are four succeeding phases result-
ing from the need for production and con-
sumption by the outside world.

4. Planning the production process. This is
really another design process which is
simply a special case of design. The goal
is to design and build the system that will
produce the object.
Planning for distribution. This activity in-
cludes all aspects related to sales, ship-
ping, warehousing, promotion, and
display of the product.

5 .

6. Planning for consumption. This includes
maintenance, reliability, safety, use, aes-
thetics, operational economy, and the
base for enhancements to extend the
pro duct life.

7. Retirement of the product.

Obviously all of these activities overlap one
another in time and interact as the basic design
is carried out. Phister [1976] posits a model of
this process (Figures 14 and IS) and gives the
amount of time spent in each activity (Figure
16) for a hardware product.

Simon uses a more abstract model of design
for human problem solving, which he calls gen-
erate and test. In The Sciences of the Artificial,
Simon [19691 discusses the science of design and
breaks the problem into representing the design
problem alternatives, searching (Le., generating
alternatives), and computing the optimum.
When it is too expensive to search for the opti-
mwn, as is often the case, satisfactory alterna-
tives (which Simon calls satisficing alternatives)
must be selected and tested. For most parts of
computer design, the design variables are se-
lected on the basis of satisfactory rather than
optimal choice. Simon also discusses the tools

TECHNOLOGY DEVELOPMENT

PRODUCT DEVELOPMENT 6 MANUFACTURING

I I I 1 I
0 1 2 3 4

TIME (YEARS)

Figure 14. Hardware product development
schedule I, comprehensive view [Phister. 19761

SEVEN VIEWS OF COMPUTER SYSTEMS 21

TECHNOLOGY DEVELOPMENT

CIRCUIT
LOGIC REClUIREMENTS

PRODUCT
SPECIFI

161

PURCHASING --

. . .
SPECIFI
CATIONS

PROJECT
PLAN ..

PROTOTYPE
CONSTRUCTION

DEVELOPMENT

MANUFACTURING . . .
REWORK

I I I I I I I 1
0 3 6 9 12 15 I 8 21 24

TIME lMONTHS1

Figure 15.
development organization details [Phister. 19761.

Hardware product development schedule 1 1 ,

DIAGNOSTICS 12511 PRODUCT

L
0

16%) ; 7:;
5
g

DOCUMENTATION
115%)

I I
20 24

15%)
I

0 4 8 12 16

ELAPSED TIME FROM START OF PROJECT [MONTHS1

PRODUCT 1
PLANNING

NOTE
Excluder 40 man-months of technology engmeermg
to develop ten plug-in modules.

Figure 16.
a $50.000 processor in 1974 (Phister. 19761.

Hardware development costs for developing

of design, including the use of simulation both
as an alternative to building the complete sys-
tem and as a method to evaluate the behavior of
various alternatives.

In addition to his contribution of the gener-
ate and test design model to the Practice of De-
sign View, Simon's work has also contributed
indirectly to the first three views discussed ear-
lier in the chapter. In his discussion of the im-
portance of the design hierarchy, Simon
introduced the notion of architecture of com-
plexity.

In the search for design optima, whether it be
by generate and test or some other algorithm,
the problem of design representation is often
encountered. The more representations one has,
the larger the number of design problems that
can be tackled and, hence, the closer one can get
to a global optimum. Most disciplines have at
least two representations: schematic and visual.
I n chemical engineering, heat balance is ob-
tained by thermodynamic equations, not from a
plant piping diagram. In the design of power
supplies, transformer design is accomplished
using equivalent circuits, not by using physical
representations. In the design of computer
buses, most designers work with timing dia-
grams, although state diagrams and Petri nets
are alternative representations.

In general, the importance of alternative rep-
resentations in computer engineering is not well
understood. The large number of representa-
tions that exist at the programming level is de-
ceptive. There are many different algorithmic
languages, but they differ mostly in syntax, not
in semantics.

I t is too simplistic to think that computer de-
sign should be a well-defined activity in which
mathematical programming can be employed to
obtain optimum solutions. There are major
problems, five of which are listed below:

1 .
2.

The cost function is multivariable.
The primary measure, performance, is
not well understood.

22 COMPUTER ENGINEERING

3.

4.

5.

The objective function that relates cost
and performance is not understood.
Objectives are not as objective as they
look.
There is a dynamic aspect (because the
technology changes rapidly) which is
hard to quantify.

These problems are explored i n the following
extract from a discussion of design given in Bell
et af., [1972a:23-24].

Objectives can often be stated as max-
imizing or minimizing some measure on
a system. A system should be as reliable
as possible, as cheap as possible, as small
as possible, as fast as possible, as general
as possible, as simple as possible, as easy
to construct and debug as possible, as
easy to maintain as possible - and so on,
if there are any system virtues that have
been left out.

There are two deficiencies with such
an enumeration. First, one cannot, in
general, maximize all these aspects at
once. The fastest system is not the
cheapest system. Neither is it the most
reliable. The most general system is not
the simplest. The easiest to construct is
not the smallest, and so on. Thus, the
objectives for a system must be traded
off against each other. More of one is
less of another and one must decide
which of all these desirables one wants
most and to what degree.

The second deficiency is that each of
these objectives is not so objective as it
looks. Each must be measured, and for
complex systems there is no single satis-
factory measurement. Even for some-
thing as standardized as costs there are
difficulties. Is it the cost of the materials
- t he components? Does one use a listed
retail cost or a negotiated cost based on
volume order? What about the cost of
assembly? And should this be measured
for the first item to be built, or for sub-
sequent items if there are to be several?
What about the costs of design? That is
particularly tricky, since the act of de-
signing to minimize costs itself costs

money. What about cost measured in
the time to produce the equipment?
What about the cost of revising the de-
sign i f it isn’t right; this is a cost that may
or may not occur. How does one assign
overhead or indirect costs? And so on.
I n a completely particular situation one
can imagine an omniscient designer
knowing exactly which of these costs
count and being able to put dollar fig-
ures on each to reduce them all to acom-
mon denominator. I n fact, no one
knows that much about the world they
live in and what they care about.

The dilemma is real: there is no reduc-
ing the evaluation of performance in the
world to a few simple numbers. The so-
lution is to understand what systems ob-
j e c t i v e s a r e : t h e y a r e g u i d e s t o
understanding and assessing system be-
havior in various partial aspects. Vari-
ous measures for each type of objective
are developed, and each shows some-
thing useful. Since all measures are par-
t i a l a n d a p p r o x i m a t e (e v e n
conceptually), rough and ready mea-
sures that are easy to make, display and
understand are often to be preferred to
more exact and complex measures.
Standard measures are to be developed
and used, even if not perfect. Experience
with how a measure behaves on many
systems is often t o be preferred to a bet-
ter, but unique, measure with which no
experience exists.

Although this book does not systematically
treat all the different system measures, many of
them are illustrated throughout the book. Table
4 provides a guideline, listing in one place the
components that contribute to overall cost and
performance.

The following list points out some tradeoffs,
taken from experience, among the various ac-
tivities.

System Cost Versus Component Cost.
DEC sells products at each of the packaging
levels-of-integration - from chips to turnkey ap-
plication systems. Because each product is con-
structed from lower packaged levels, and
because the levels model (View 3: Packaging

SEVEN VIEWS OF COMPUTER SYSTEMS 23

Table 4.
for a System [Bell et al., 1972a:24]

Cost and Performance Components

Cost Components
Arising from the design effort

Specifying
Designing (drawing. checking, verifying)
Prototyping
Packaging design
Describing (documenting)
Production system design
Standardizing

Arising from production
Buying (parts)
Assembling
Inspecting
Testing

Arising from selling and distribution
Understanding
Configuring (i.e., user designing)
Purchasing
Applying

Repairing
Remodeling
Redesigning
Retiring

Performance Components
Arising from designing, producing, and selling environ-
ment

For a single task

Operating in the environment (heat. humidity, vibra-
tion, color, power, space)

For a set of tasks
operation times
operation rate
memory size and utilization

mean time between failures (MTBF)
availability (percent)
mean time to repair (MTTR)
error rate (detected, undetected)

Reliability, availability, maintainability, and error rate

Levels-of-Integration) strictly applies, it is very
difficult to have designs that are optimally com-
petitive at every level. For example, i f DEC sold
just hardware systems (cabinet level) it would
not need a boxed version of its central proces-

sors. The box level could then be deleted and
the price of the systems product would be pro-
portionately lower. When primitives are to be
used as building blocks, there is a cost associ-
ated with providing generality. For example,
some boxes have too much power for most of
their final applications because the powering
was designed for the worst possible con-
figuration of modules within the box. (Some
boxes have too little power because increased
logic density was accompanied by increased
power density, permitting new worst-case con-
figurations in existing boxes.)

Initial Sales Price Versus User Life Cycle
Cost. There is a cost associated with parts that
break and have to be repaired and maintained.
Nearly every part of the computer can be im-
proved over a range of a maximum of a factor
of 10 to provide increased reliability (extended
mean time between failure) for a price. To the
extent that these costs are added, the product
will be less competitive in terms of a higher pur-
chase price. However, if the total life cycle costs
are considered, the product may still be better
even at the higher initial cost.

Reliability, Availability, Maintainability
(and Producibility) Versus Performance. By
designing to take advantage of the fastest com-
ponents and operating them at the limit of their
capability, one is able to have increased per-
formance. In doing so, the tradeoff is clear: pro-
ducibility, reliability (error rate), and
maintainability (ease of fixing) all generally suf-
fer.

Performance Versus Cost. This is the most
traditional design tradeoff. In addition to the
conventional product selection, the planning of
a computer family further increases the selec-
t ion/ t radeo ff process.

Early Shipment Versus Product Life and
Quality. Delivering products before they are
fully engineered for manufacture is risky. If
faults are found that have to be corrected in the
factory or field, the cost far outweighs any early
product availability.

24 COMPUTER ENGINEERING

Length of Time to Design Versus Product
Life. By allowing more time for design, a prod-
uct can be designed in such a way that it is eas-
ier t o enhance. On the other hand, i f
prospective customers, especially new custom-
ers, are faced with a choice between the com-
petitor’s available nonoptimum product and
your unavailable optimum product, they may
not be willing to wait.

Operating Environment Versus Cost. Here
there are numerous tradeoffs even within a con-
ventional environment. In each of the packag-
ing dimensions (heat, humidity, altitude, dust,
electromagnetic interface (EMI), etc.), there are
similar tradeoffs that may appeal to unique
markets or may simply translate to increased re-
liability in a given setting. The Norden 11/34M
is an example of packaging to provide a PDP-11
for the aerospace environment.

The principles of computer design and the
optimization efforts associated with those prin-
ciples are parts of computer science and elec-
trical engineering, the responsible disciplines.
From computer science come many of the tech-
nical aspects (such as instruction set archi-
tecture), much of the theory (such as algorithms
and computational complexity), and almost all
of the software design (such as operating sys-
tems and language translators) applied in the

practice of computer engineering. However, in
their construction, computers are electrical; and
the discipline that has fundamental responsi-
bility is electrical engineering. Thus, discussion
of the Practice of Design View concludes with
Table 5 , a set of maxims compiled by Don Vo-
nada, an experienced DEC engineer. Many
other engineers in many other companies have
developed similar sets of maxims.

VIEW 7: THE BLAAUW
CHARACTERIZATION OF COMPUTER
DESIGN

Another view is based on the work of Blaauw
[19701. He distinguishes between architecture,
implementation, and realization as three sepa-
rable levels in the construction of anything, in-
cluding computer structures.

The architecture of a computer system de-
fines its functionality (behavior) as it appears to
the machine level programmer and can be char-
acterized by the instruction set processor (ISP).
The implementation of a computer system is the
actual hardware structure - the register transfer
(RT) level behavior and data-flow organization.
This also includes various algorithms for con-
trolling a machine as it interprets an archi-
tecture. Realization encompasses the actual

Table 5. Vonada‘s Engineering Max ims

1. There is no such thing as ground.
2 . Digital circuits are made from analog parts.
3 . Prototype designs always work.
4. Asserted timing conditions are designed first; unasserted timlng conditions are found later.
5. When all but one wire in a group of wires switch, that one will switch also.
6. When al l but one gate in a module switches, that one will switch also.
7 . Every little pic0 farad has a nano henry all its own.
8. Capacitors convert voltage glitches to current glitches (conservation of energy).
9. Interconnecting wires are probably transmission lines.

10. Synchronizing circuits may take forever to make a decision.
1 1. Worse-case tolerances never add - but when they do, they are found in the best customer’s machine.
12. Piagnostics are highly efficient in finding solved problems.
13. Processing systems are only partially tested since it is impractical to simulate a l l possible machine states
14. iwlurphy’s Laws apply 95 percent of the time. The other 5 percent of the time is a coffee break.

SEVEN VIEWS OF COMPUTER SYSTEMS 25

technologies used and includes the kind of logic
and how it is packaged and interconnected. Re-
alization includes all the details associated with
the physical aspects of the machine.

Modern architectures (ISPs) usually have
multiple (RT) implementations. For example,
the LSI- 1 1, PDP- 1 1 /40, and PDP- 1 1/60 are dif-
ferent implementations of the same basic PDP-
1 1 instruction set. Sometimes, although rarely,
a particular implementation has more than one
realization. For example, the IBM 7090 has the
same architecture and implementation (Le., the
same ISP and RT structure) as the IBM 709.
The difference lies in realization: the 709 used
vacuum tubes, the 7090 transistors. For a more
recent example, two models of the PDP-11 ar-
chitecture that share the same implementation
are the DEC PDP-11/34 and Norden’s
1 1/34M. The realization differs, however, as
the latter uses militarized semiconductor com-
ponents and component mountings, and a dif-
ferent packaging and cooling system. Table 6
attempts to clarify the distinguishing character-
istics of architecture, implementation, and reali-
zation.

This book concentrates on the realization
and implementation columns in Table 6. In-
struction set architecture is discussed only in-
sofar as it interacts with the other two
characteristics. There are also some differences
between the views of Blaauw and Brooks [in
preparation] and those expressed in this book.
It is important to try to reconcile these differen-
ces, because everyone engaged in computer en-
gineering uses the words “architecture,”
“implementation,” and “realization” - quite
often b mean different things. This book will
not limit the definition of architecture to just a
machine as seen by a machine language pro-
grammer. Instead, it will use architecture to
mean the ISP associated with any of the ma-
chine levels described in View 2, Levels-of-In-
terpreters. Therefore, architecture standing
alone will mean the machine language, the ISP.
This book will also use architecture of the micro-
programmed machine as seen by a micro-
programmed machine’s microprogrammer,
architecture of the operating system as the com-
bined machine of operating system and ma-
chine language, and architecture of a language

Table 6.
in preparation: Chapter 11

Characteristics of Design Areas [Blaauw and Brooks,

Architecture Implementation Realization
~

Purpose Function Cost and Buildable and
performance maintainable

Product Principles of Logic design Release to
operation manufacturing

Lists and Language Written Block diagram.
algorithms expressions diagrams

Quality Consistency Broad scope Reliability
measure

Physical

sequential machine physical
(at logic level) implementation

Meanings ISP RT level machine;
(used herein) Machine ISP microprogrammed realization;

26 COMPUTER ENGINEERING

for each language machine. For example, AL-
GOL, APL, BASIC, COBOL, and FORTRAN
all have as separate and distinct architectures as
a PDP-10 and a PDP-11 do. This use of archi-
tecture, because it describes behavior, is quite
consistent with that of Blaauw. Moreover,
when applied to software structures, Blaauw’s
framework fits well. There are two implementa-
tions, FORTRAN IV-PLUS (an optimizing
compiler) and the initial FORTRAN IV of the
one ANSI FORTRAN architecture. Moreover,
different implementations use different realiza-
tion techniques: some use BLISS, others use as-
sembler language.

Although Blaauw and Brooks define imple-
mentation and realization clearly, these defini-
tions are not widely used. The main problem is
that both terms are sensitive to technology
changes and, hence, interact closely. Computer
engineers tend to overuse and intermix them so
that the two words are used interchangeably.
This is reflected in this book, where they are
used to have roughly the same meaning (e&,
“The KIlO processor for the PDP-10 was im-
plemented using high-speed (H-Series) transis-
tor-transistor logic.”). In Table 6 , definitions
are given for the two words so that the reader
may further relate descriptions back to these
definitions. “Implementation” is the register
transfer level machine, roughly the micro-

programmed machine; “realization” is the
physical realization, the physical implementa-
tion in terms of packaging and technology.

The most useful distinction is between archi-
tecture, on the one hand, and implementation
(subsuming realization), on the other. Seeing
the distinction clearly enables one to preserve
architectural compatibility between machine
models, and this is crucial if users’ and manu-
facturers’ software investments are to be pre-
served. Implementation can then be as dynamic
as desired, being continually changed by tech-
nology. Architecture must remain static for
long periods (10 years is a common goal).

In 1949 Maurice Wilkes, only one month af-
ter his EDSAC computer was operational and
before any stored program computers in the
United States were operating, had already per-
ceived the value in having a series, or set, of
computers share the same instruction set:

When a machine was finished, and a
number of subroutines were in use, the
order code could not be altered without
causing a good deal of trouble. There
would be almost as much capital sunk in
the library of subroutines as the machine
itself, and builders of new machines in
the future might wish to make use of the
same order code as an existing machine
in order that the subroutines could be
taken over without modification.

2

It is customary when reviewing the history of
an industry to ascribe events to either market
pull or technology push. The history of the auto
industry contains many good examples of mar-
ket pull, such as the trends toward large cars,
small cars, tail fins, and hood ornaments. The
history of the computer industry, on the other
hand, is almost solely one of technology push.

Technology push in the computer industry
has been strongest in the areas of logic and
memory, as the case studies in the following
chapters indicate. Where the following chapters
give examples of the effects of the technology
push in these areas, this chapter explores indi-
vidual elements of that push, with particular
emphasis on the role of semiconductors.

Semiconductor devices are discussed from
the viewpoint of the user because, until recently,
DEC has always bought its semiconductors (es-
pecially integrated circuits) from semiconductor
manufacturers, and its engineers (users of in-
tegrated circuits) have viewed the integrated cir-
cuit as a black box with a carefully defined set
of electrical and functional parameters. Most
design engineers will probably continue to hold
that view (and be encouraged to do so), even

Technology Progress in
Logic and Memories

C GORDON BELL, J CRAIG MUDGE,
and JOHN E. M c N A M A R A

though some integrated circuits will be supplied
by an in-house design and manufacturing facil-
ity. The advantages and disadvantages of in-
house integrated circuit design will be discussed
later in the chapter.

The portion of the discussion dealing with
semiconductors begins by presenting a family
tree of the possible technologies, arranged ac-
cording to the function each carries out and
showing how these have evolved over the last
two or three generations to affect computer en-
gineering. The cost, density, performance, and
reliability parameters are briefly reviewed; the
application of semiconductors, using various
logic design methods, is then discussed with
particular emphasis on how the semiconductor
technology has pushed the design methods.

The discussion of the use of semiconductors
in logic applications is followed by a section on
memories for primary, secondary, and tertiary
storage. While semiconductors have been a
dominant factor in technology push within the
computer industry. for both logic and memory
applications, magnetic recording density on
disks and tapes has evolved rapidly, too, and
must be understood as a component of cost and
as a limit of system performance.

27

28 COMPUTER ENGINEERING

The section on memory is followed by a sec-
tion containing some general observations
about technology evolution: how technology is
measured, why it evolves (or does not), cases of
it being overthrown, and a general model for
how its use in computers operates and is man-
aged.

SEMICONDUCTOR LOGIC TECHNOLOGY

A single transistor circuit performing a primi-
tive logic function within an integrated circuit is
among the smallest and most complex of man-
made objects. Alone, such a circuit is in-
trinsically trivial, but the fabrication process re-
quired for a set of structures to form a complete
integrated circuit is complex. For users of
digital integrated circuits there are several rele-
vant parameters:

I .

2.

3.
4.

5.

The function of an individual circuit in
the integrated circuit, the aggregate
function of the integrated circuit, and
the functions of a complete integrated
circuit family such as the 7400-series.
The number of switching circuit func-
tions per integrated circuit. This quan-
tity and density is a measure of the
capability of the integrated circuit and
the ingenuity of the designers.
cost .
The speed of each circuit and the speed
of the integrated circuit and set of in-
tegrated circuits within a family. The
semiconductor device family (transistor-
transistor logic = TTL, Schottky TTL =
TTL/S, emitter-coupled logic = ECL,
metal oxide semiconductor = MOS,
complementary MOS = CMOS, silicon
on saphire = SOS, integrated injection
logic = I2L) usually determines this per-
formance.
The number of interconnections (pins)
to communicate outside the integrated
circuit.

The reliability. This is a function of the
circuit technology, the density, the num-
ber of pins, the operating temperature,
the use (or misuse), and the maturity (ex-
perience) of the manufacturing process.
Power consumption and speed-power
product. A frequently used metric is the
speed-power product, where the delay
through a typical gate is multiplied by
the power consumption of the gate. For
a particular technology, the speed-power
product tends to be constant because
short gate delays usually are accom-
panied by high power consumption. A
technical advance that lowers the speed-
power product is considered note-
worthy.

Figure 1 shows a family tree (taxonomy) of
the most common digital integrated circuits.
The least complex functions are in the upper
portion of the figure, and the most complex are
at the bottom. In addition, the circuits are or-
dered by generation, starting with the second
generation on the left side of the figure and
progressing to the fifth generation on the right
side. The circuits are clustered roughly by the
regularity of the function and whether memory
is associated with the function. Circuit regu-
larity is important in large-scale integrated cir-
cuits because it is desirable to implement
regular structures to minimize area-consuming
interconnections and, thus, to simplify layout
and understanding and to aid testing.

As indicated in Figure 1, the branching of the
integrated circuit family tree began in earnest at
the beginning of the third generation. At that
time, advances in integrated-circuit technology
permitted collections of basic logic primitives
(AND, NAND, etc.) and sequential circuit
components (flip-flops, registers, etc.) to oc-
cupy a single integrated circuit rather than an
entire module. This had the benefit of providing
a drastic reduction in size between the second
and third generation computer designs, as

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 29

SECOND THlRO FOURTH FIFTH
GENERATION GENERATION GENERATION GENERATION

I I I I I
SEOUEN

GATEARRAV

PLA

FPLA
TRAN

SWRAM ISLOW WRITE1

'ccEss L R O M
EA0 ONLY
-PROM

LEAROM
O C C D

LOGIC SEQUENTIAL
AND
MEMORY

LPC ENCRYPTION

I I I I I
SECOND THlRO FOURTH FIFTH

GENERATION GENERATION GENERATION GENERATION

Figure 1 .
functions.

Family tree of digital integrated circuit

shown most vividly by comparing the PDP-9
and PDP-15 (Chapter 6), but it also had the
drawback that modules contained a wide vari-
ety of functions and were thus specialized.

As the densities began to approach 100 gates,
the construction of complete arithmetic units
on a single chip became possible. The earliest
and most famous function, the 74181 arithmetic
logic unit (ALU) shown in Figure 2, provided
up to 32 functions of two 4-bit variables. By the

fourth generation, it became possible to con-
struct on a single chip very large combinational
circuits, such as a complete 16 X 16-bit multi-
plication circuit (e.g., the TRW Corp. multi-
plier) requiring about 5,000 gates.

Progress during the fourth and fifth gener-
ations has not been without its problems, how-
ever. Without well defined functions such as
addition and multiplication, semiconductor
suppliers cannot provide high density products
in high volume because there are few large-
scale, general purpose universal functions. The
alternative for users is to interconnect simple
logic circuits (AND gates, flip-flops), but that
does not permit efficient use of the technology,
and the cost per function remains high (about
that of the third generation) because the printed
circuit board and integrated circuit packaging
costs (pins) limit the cost reduction.

To address these problems, two methods of
effectively customizing large-scale integrated
circuit logic are included in Figure 1 and dis-
cussed in greater detail later in the chapter.
These are the programmable logic array (PLA)
and the gate array (also called master slice). The
programmable logic array (PLA) is an array of
AND-OR gates that can be interconnected to
form the sum-of-products terms in a com-
binational logic design. Gate arrays are simply
a large number of gates placed on the chip in
fixed locations where they can be inter-
connected during the final metalization stages
of semiconductor manufacture.

There is a special branch of the tree shown in
Figure 1 purely for memory functions. Memory
is used in the processor as conventional mem-
ory, but it can also be used as an alternative to
conventional logic for performing com-
binational logic functions. For example, the in-
puts to a combinational function can be used as
an address, and the output can be obtained by
reading the contents of that address. Memory
can also be used to implement sequential logic
functions. For example, it can be used to hold
state information for a microprogram. Because

H H H H
l H H H
H l H H
1 1 "
H H l H
1 H l H
H l l H
1 1 1 H
H H H l
1 H H 1
H l H 1
1 l H l

H H l l
l H 1 1
H l l l
1 1 1 1

3s 1s 2s ES

"ol13eleS

E + V = j H H 1 H

E @ V = j H 1 1 H

& t V = j H H H 1
E O V = j 1 H H 1

a = j i H 1 H

a E = j i 1 1 H

-
a = j H 1 H 1

a + a = j 1 i H i -

no zp

no zg

3 t131ndw03 OE

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 31

memories have so many uses, this branch is dis-
cussed separately in the memory section of this
chapter.

The remainder of the interesting logic func-
tions include combinations of logic and mem-
ory. There are various special functions such as
linear predictive coding algorithms for use in
real-time applications and data encryption al-
gorithms for use in communication systems.
One of the most useful communications func-
tions, and the first one to use large-scale in-
tegration, is the Universal Asynchronous
Receiver/Transmitter (UART).

There is a special branch for bit-slice com-
ponents that can be combined to form data
paths of arbitrary widths. These are being used
to construct most of today’s high speed digital
systems, mid-range computers, and computer
peripherals. Although there have been several
bit-slice families, the A M D Corp. 2900-series
whose register transfer diagram is shown in Fig-
ure 3 has become the most widely used. Note
that all the primitives of this series were present
in the Register Transfer Module Family (Chap-
ter 18), including the microprogrammed control
unit referred to as the Programmed Control Se-
quencer.

The final branch of the tree in Figure 1 is the
most complex and is used to mark the fourth
(microprocessor-on-a-chip) generation of tech-
nology and the beginning of the fifth (com-
puter-on-a-chip) generation. The fourth
generation is marked by the packaging of a
complete processor on a single silicon die; by
this standard, the fifth generation has already
begun since a complete computer (processor
with memory) now occupies a single die. The
evolution in complexity during each generation
simply permits larger word length processors or
computers to be placed on one chip. At the be-
ginning of the fourth generation, a 4-bit proces-
sor was the benchmark; toward the end of the
fourth generation, a complete 16-bit processor
such as the PDP-11 could be placed on a single
chip.

G
P

R s
C.+. I

8 FUNCTION ALU Fz ISIGNI
OVERFLOW
F = 0000

OUTPUT DATA SELECTOR
OUTPUT
ENABLE

DATA OUT

Figure 3. AMD2900 four-bit microprocessor slice
block diagram (registers and data path).

Gates per Chip

The function performed by a chip is clearly
dependent on the number of gates that can be
placed on a chip. Thus, density in gates per chip
is the single most important parameter deter-
mining chip functionality. By this measure, one
can predict the functions likely to be imple-
mented by just following the tree. It should be
noted that the whole tree is relatively alive and
has dense areas of new branches everywhere ex-
cept at the top, where unconnected gate and
register structures have been relatively static. In

32 COMPUTER ENGINEERING

the growing areas, as density increases suf-
ficiently, a new branch grows. For example, the
processor-on-a-chip started out as a 4-bit pro-
cessor (or rather as 2 chips for a single proces-
sor) and then progressed to 8-bit and then 16-
bit processors on a single chip. Similar effects
can be observed with the arithmetic logic unit
and with memories.

The number of gate circuits per chip not only
determines chip functionality, it also is the mea-
sure of density as seen by a user (Figure 4). This
metric is the product of the circuit area and the
number of circuits per unit area. Progress in
lithography has led to a reduction of conductor
linewidths and a corresponding reduction of
circuit size to yield higher speeds and higher
densities. Linewidths have decreased from 10
microns in early large-scale integrated circuit
chips to 6 microns in the LSI-11 chips, and
more recently to 3 or 4 microns in Intel's 8086.
Linewidths of less than a micron have been
achieved at the research level, but they require
electron beam techniques instead of present
photographic methods of production. The pro-
cessing techniques to create semiconductor ma-
terials have also been improved for better man-
ufacturing yields (and lower costs). Circuit and
device innovation (such as reducing the number
of transistors per memory cell) have also con-
tributed to density and yield increases.

The result given in Figure 4 is exponential
and indicates that the number of bits per chip
for a metal oxide semiconductor (MOS) mem-
ory doubles every two years according to the
relationship:

Number of bits per chip = 2t-1962

There are separate curves, each following this
relationship, for read-only memories in pro-
totype quantities, read-only memories in pro-
duction quantities, read-write memories in
prototype quantities, and read-write memories
in production quantities. Thus, depending on
the product and the maturity of its production
process, products lead or lag behind the above

SSI MSI LS1

262 144
1262KI

65.536
165KI

16.384
116KI

3 4.096
1410

0

1.024
I l K I

z
256

t
5 " 54

16

4

1

1959 1964 1969 1974 1979

YEAR

Figure 4. Components per single integrated circuit die
versus time. Number of components per circuit in the
most advanced integrated circuits has doubled every
year since 1959. when the planar transistor was devel-
oped. Gordon E. Moore, then at Fairchild Semiconductor,
noted the trend in 1964 and predicted that it would con-
tinue (from [Noyce. 1977:67]; courtesy of Scientific
American).

state-of-the-art time line by one to three years
according to the following rules:

Bipolar read-write memories lag by two to
three years.
Bipolar read-only memories lag by about
one year.
MOS read-only memories lead by one
year.

This model gives the availability of various
sizes of semiconductor memories as shown in
Figure 5. The significance of various size mem-
ory availabilities is that they determine (tech-
nology push) when certain architectures and
implementations can occur. The chapter dis-
cussing the PDP-11 (Chapter 16) uses this
model to show how semiconductors accomplish
this push.

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 33

TIME
lg80

0 -

2 -
z
w
I 1975-
c
3 - L:
I -
2 1970

a -

$ -

0 -

I - I 1 9 6 5 -

L -
D -
a

z
W

P 1960

Y -
m

I l:!
s -
Q -

W

L 1950-

--
1945

cost

1

-

-

-

WHlRLWlNOi i

CAMBRIDGE(

MANCHESTER(
EDSAC

MARK 1

sos

I 21

ECL- l00K

NHOS

TTLILS

PMOS

ECLlOK

TTLIL

TTL / t

TTL

RTL

DTL
IC PATEN1

SILICON
CONTROLLEL

RECTIFIEF

TRANSISTOF
I P O l N l

CONTACT

SEMlCO
LOG1

I8ITS/CHlP

65.536

16.384

4.096

1.024
MOS

TL/S

CL

I TRANS

TX I
38 * 256 X 25

COR

MI1
WHlRLWlNl
16 X 32 X 3

COR

H g DELA'
L lN l

STORAGI
TUB!

IWlLLlAM
TUBE

lB ITS /
CHIP1

4 096

1 0 2 4

256

64

16

UCTOR -ME1
'CH RFADI F,

WRITE READ

I8ITS/CHlPI

8 1 9 2

4 096

2.048

1 0 2 4

256

POP 9
ROPE

MEMORY

F 0 A M E R S
AND

:APACITORS
RUMS FOR

181/360

2020 SUPER

156 i 12
VAX 11

POP 11/60

HEX SIZE
1 1 5 6 x 8 5
EXTENDED

OUAD SIZE
1104 8 5 1

p o p e l

I B M d p o P FLlPCHlF 1 2 5 x 5
SYSTEM/

360 INTRO PDP 6 5 I 5 1 pDp5rp4 POP 1

MIT LINCOLN
LA8STX 2 t

SYSTEMS
A N 0 LA8

MODULES I
MIT LINCOLN

LABS T X 0
BELL LABS

LEPRECHAN
ITRANSISTORI

MODULE t ENlAC

1" - MACHINES 0

NMOS
ECL 10K

TTL/S

M SERIES

TTL
ISWITCH TO
+POLARITY
LOGIC1

2 M H z - R
i O M H i - 8
1 MHz-R
l O M H z

1 MHz
ICO-GATE

500 i H Z

5 M H z

DEC
LOGIC
CLOCK
SPEED
C

R E A 0 ONLY (ESP DECl MODULES

RITE IBIPOLARI

Figure 5. Logic and memory technology evolution timeline

for memory arrays, the price is set in essentially
the same way as the price of a commodity like

After density, the most important character-
istic of integrated circuits is cost. The cost of
integrated circuits is probably the hardest of all
the parameters to identify and predict because it
is set by a complex marketplace. For circuits
that have been in production for some time, and

eggs or bacon is set; and users generally con-
sider these integrated circuits as very similar to
commodities, with the attendant benefits, costs,
and problems (having a sufficient supply). In
low volumes, integrated circuit prices are pro-
portional to the die cost (which is proportional

3 4 COMPUTER ENGINEERING

1 0 0 0

Y

Q
y 1 0 0 -

0 1 0 -

e 0 1 -

z

0

4 W

to the die area); but at higher volumes, assem-
bly, testing, packaging, and distribution be-
come the dominant cost factors. Furthermore,
for those low volume circuits that have not yet
reached commodity status, the prices also de-
pend on the strategy of the supplier - whether
he is willing to encourage competition.

Two curves are presented to reflect the price
of various components (transistors) imple-
mented in integrated circuits. Figure 6 shows
the price per gate for MOS and TTL circuits as
a function of time and scale of integration.
Table 1 gives some idea of how circuit density
(in elements) relates to actual function.

The cost history of integrated circuits is re-
flected very dramatically in the cost history of a
special class of integrated circuits, semi-
conductor memory. The semiconductor mem-
ory cost curves, given in Figure 7, are also
interesting because of the important role of
memory in past and future computer structures.
As shown in the figure, the 1978 cost per bit was
roughly 0.084 and 0.07$ per bit for the 4-Kbit
and 16-Kbit integrated circuit chips, respec-
tively, giving costs of $3.30 and $1 1.50.

Two factors influence the cost of integrated
circuits: density i n bits per integrated circuit
and cost per bit. The two factors have not had
equal influence in reducing costs because, while
chip density has improved by a factor of 2 each
year (Figure 4) [Noyce, 19771, the cost per bit
(at the integrated circuit level) has not declined
by a factor of 2 every two years. The equation
for the line drawn in Noyce's [I9771 Figure 7 is:

-
NUSSBAUM 119751

I I I I
Y E A R

Figure 6. Price per gate versus time

0 5

0 2

-
II)

$ 0 1

-

0 0 5 "

0 02

0 01
1973 1975 1977 1979 1981 1983

YEAR

Cost/bit (Q) = 0.3 X 0.721-1974

It is interesting to note that the cost decline
compares favorably with the price decline in
core memory over the period since 1960-1970
for the 18-bit computers (Chapter 6), and with
the memory price declines in both the PDP-8
(Chapter 7) and the PDP-10 (Chapter 21).

Figure 7 . Cost per bit of integrated circuit memory ver-
sus time. Cost per bit of computer memory has declined
and should continue to decline as is shown here for suc-
cessive generations of random-access memory circuits
capable of handling from 1,024 (1 K) to 65,536 (65 K)
bits of memory. Increasing complexity of successive cir-
cuits is primarily responsible for cost reduction, but less
complex circuits also continue to decline in cost (adapted
liuiri INoyce. 1977:69]; courtesy of Scientific American).

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 35

Table 1. The Number of Areal Elements to Implement Logic Functions in Different Technologies

MOS Bipolar

Function N M O S PMOS CMOS ECL l T L 12L

Inverter 2 2 2 7 3 1
2-input gate 3 3 3 o r 4 a 3 1
8-input gate 9 9 9 o r l 6 14 3 2
R/S latch 6 6 6 0 r 8 12 6 2
Memory cell (dynamic) 2 2 2 2
Memory cell (static) 6 6 6 4-6 4-6 4
D flip-flop 2 0 20 20 or 28 28 2 0 9

- -

- 26 11 JK flip-flop 20 20 20 or 36

Performance

The performance for each semiconductor
technology evolves at different rates depending
on the cumulative learning associated with the
design and manufacturing processes together
with marketplace pressure to have higher per-
formance for the particular technology. One
may hypothesize that each technology can be
looked at as being relatively appealing or rele-
vant to the psi-ticular design(er) styles associ-
ated with various computer marketplaces. One
would then expect the evolution to continue
along the lines shown in Table 2.

DEC's use of the various integrated circuit
technologies shown in Table 2 is probably typi-
cal of most of the computer industry: TTL for
mid- and high-sized minicomputers; ECL for
the larger scale machines (PDP-IO); MOS for
memories, microprocessors, and specialized
high density circuits; and CMOS for special mi-
crocomputers, especially those intended for bat-
tery operation.

Some of the lesser used technologies such as
I'L (integrated-injection logic) and SOS (silicon
on saphire) have been omitted from the table.
12L features high density and very low power
consumption, but it is slow as initially imple-
mented. SOS MOS enhances CMOS speed by
removing stray capacitance, making it com-

parable with low power Schottky (TTL/LS)
speed while retaining MOS complexity capabili-
ties. Both 12L and SOS have been touted as re-
placements for various technologies shown in
the table. But, if an entrenched technology has
evolved for some time and continues to evolve,
it is difficult for alternative technologies to dis-
place it because of the investment in process
technology and understanding. Semiconductors
appear to be characteristic of other technologies
in that usually only a single technology is used
for a given problem.

The early technologies, RTL (resistor transis-
tor logic), TRL (transistor resistor logic), and
DTL (diode transistor logic) have also been
omitted from the table. These technologies are
important historically because they were used in
the first integrated circuits. However, many
manufacturers, including DEC, did not use
them in computers (RTL was used in DEC in-
dustrial control modules) because they did not
represent a sufficient advance over the discrete
transistor circuits already being used. In addi-
tion, early circuits were packaged in flat pack-
ages and metal cans rather than in the dual in-
line package used today, and automated manu-
facture using the components was thus not eco-
nomically feasible.

Table 3 gives the speed-power product and
the gate delay, the two most useful measures of

36 COMPUTER ENGINEERING

Table 2. Characteristics of Dominant (1 978) Semiconductor Technologies

Type Evolution Use

TTL (transistor-transistor logic) TTL Logic, bus interfacing
TTL/Schottky Higher speed than TTL
TTL/LS Same speed as TTL, but low power

ECL (emitter-coupled logic) MECL 11. Ill High and higher performance
Easier to work with
Evolving to gate array design

MECL 10 K. 100 K

MOS (metal oxide semiconductor) p-channel Low cost
n-channel Greater densities, cost

Evolving to performance (memory)
Evolving to shorter channels: HMOS. DMOS,
VMOS

CMOS (complementary MOS) CMOS Low power, higher speed
Better noise immunity

Table 3. Gate Delay of Various Semiconductor Technologies [Luecke, 1976:53]*

Type
of

Year Logic

Gate Power Speed- Power
Delay Dissipation Product
(nanoseconds 1 (milliwatts) (picojoules)

I 1963
11964
1965
1967
1968
1970
1972

1967
1974

1970
1973
1973
1974
(1976
(1978

1975
1976

DT L
RTL
TTL
TTUH-series
TTL
TTL (Schottky)
TTL (low power Schottky)

EC L
ECL

PMOS
NMOS
CMOS
sos
NMOS
HMOs

IZL
12L

-
10

5
30

3
10

2
0.7

200
100
30
15
4
0.9

35
20

-
-
10
2 0

1
20

2

30
43

0.1
0.1
1 .o
0.05
1
1

0.085
0.05

2001
1801
100
100
3 0
60
20

60
3 0

2 0
10
30

7.5

0.91
41

3.0
1 .o

*The four entrles in brackets have been added by the authors

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 37

performance, for the various technologies as
they have evolved with time. The speed-power
product metric for a technology at a given time
indicates what performance versus power trade-
offs the user can make. There are limits to this
tradeoff. Only about one watt can be dissipated
by the off-the-shelf integrated circuit package,
and tradition in integrated circuit package de-
sign has been strong. The table was formulated
by Jerry Luecke of Texas Instruments (TI) at a
time when I2L technology had just been in-
troduced (October, 1975) by TI.

Reliability

Over the past 15 years, the failure rate for
standard integrated circuits has been reduced
by two orders of magnitude to the neighbor-
hood of 0.01 percent per 1,000 hours. This cor-
responds to I O 7 hours (about a millenium) mean
time to failure (MTTF) per component. Figure
8, from a recent survey article by Hodges
[1977:63], shows the trend. The lower curves
show the higher reliability obtained when more
extensive testing and screening are employed.
The improved MTTF of between IO8 and IO9
are obtained at a cost increase of 4 to 100 times
per component.

'0 l W 0 0 100

WITH HI REL

--- -1
L W I T H CAPTIYE/CONTROLLED

Ooool t LINE ASSEMBLY

1961 1963 1965 1967 1969 1911 1973 1915 1977

YEAR

Figure 8 Failure rate of silicon integrated circuits
(Rate of 0 0001 percent per 1,000 hours is 1 0 9 hours
mean time to failure) [Hodges. 1977 631

I/O Connections

The number of pins per integrated circuit
package has risen relatively slowly because of
the mechanical handling equipment (e.g., sort-
ers, bonders, testers, inserters) to the point
where 48 pins has just become accepted in 1978.
The packages of the 1980s will no doubt go be-
yond 100 with the ability for multiple die per
pack age,

The Large-Scale Integrated Circuit
Dilemma

As indicated in the discussion of Figure 1, a
dilemma involving a search for universal cir-
cuits has developed in the manufacture of large-
scale integrated (LSI) circuits. The economics
of the LSI industry make i t essential that in-
tegrated circuit suppliers produce circuits with a
high degree of universality. This is because the
learning curve of a manufacturing process
causes cost to be inversely proportional to vol-
ume, and for a design to be sold in high volume,
it must be usable in a large number of appli-
cations. However, the trend in circuit com-
p l ex i ty , which a l l o w s s e m i c o n d u c t o r
manufacturers to put more transistors o n a con-
stant die area each year, tends to increase spe-
cialization of function, lowering the volume and
raising the price.

The LSI product designer is therefore contin-
ually in search of universal primitives or build-
ing blocks. For a certain class of applications,
such as controller applications, the micro-
processor is a fine primitive and has been so ex-
ploited [Noyce, 19771. For other applications,
circuit complexity can embrace even higher
functionality at the processor-memory-switch
level. The Intel 827X is an interesting example:
two processors, a 1.25-microsecond byte-pro-
cessor and a 250-nanosecond bit-processor, are
combined in one large-scale integrated circuit
[Louie et al., 19771.

38 COMPUTER ENGINEERING

Moore [I9761 discusses the LSI dilemma in a
paper on the role of the microprocessor in the
evolution of microelectronic technology. He
points out that a similar situation existed when
integrated circuits were first introduced. Users
were reluctant to relinquish the design pre-
rogative they had when they built circuits from
discrete components. It was not until sub-
stantial price reductions were made that the im-
passe was broken. Then the cost advantages
were sufficient to force users to adopt the new
technology circuits.

The first high functionality, high universality
circuit that comes to mind is the micro-
processor-on-a-chip. For many applications, in-
c l u d i n g m o s t c o m p u t e r s y s t e m s , t h e
microprocessor-on-a-chip is not a cost-effective
building block, and other solutions to the di-
lemma a re used. For example, micro-
programming is a highly general way of
generating control signals for data path ele-
ments, and table lookup using read-only memo-
ries is a highly general technique. Both methods
are attractive because they use memory, an in-
herently low cos t LSI c i rcu i t . Micro-
programming, however, does have limitations.
The extra level of interpretation extracts a per-
formance penalty, and some potential data path
parallelism is often given up to reduce cost. A
more subtle, but practical, limitation is the de-
velopment cost of microcode. Assuming the
writing rate to be 700 microwords per man-year
for wide-word, unencoded (horizontal) micro-
machines, a desire to limit the effort to 20-24
man-years would limit the maximum control
store size to about 16 Kwords. This maximum
will tend to increase in the future, when the use
of better microprogramming tools increases the
microcode writing rate beyond 700 microwords
per man-year.

At the register transfer level, the standard mi-
croprogramming design method is (conserva-
tively) twice as expensive per instruction as
conventional programming. Moreover, because
microinstructions are usually not as powerful as

conventional instructions, more micro-
instructions than conventional instructions are
usually required to solve a given problem.
These two factors, more expense per instruction
and more instructions, cause a microprogram
to be five to ten times as expensive as a conven-
tional program to solve the same problem.
However, the instruction execution speeds of a
microprogrammed controller are at least 10
times faster than the instruction execution
speeds of a conventional mini.

The characteristics of microprocessor and
read-only memory design methods of creating
customized results from universal large-scale in-
tegrated circuits are summarized, along with the
characteristics of a number of other methods, in
Table 4.

Table 4.
Building Blocks

Design Techniques for Various LSI

Technique Degree
Building for Varying of Permanence
Block Function Generality of Change

Computer
module

Micro-
processor

Bit-slice

ROM

PROM

EAROM,
EPROM

P LA

FPLA

Gate
array

RAM

Program Very
high

Program High

Microprogram Medium

Factory mask Very
change high

Field change Very
high

Field change Very
high

Factory mask Medium
change

Field change Medium

Factory mask Medium
change

Write Very high

None

Low to
medium

Medium

Irreversible

Irreversible

Low

Irreversible

Irreversible

Irreversible

None

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 39

The increased basic circuit functionality
available at each new generation has not only
been an important part of semiconductor de-
sign, but has also caused design methods to
change with the generations. This book pro-
vides examples, as summarized in Table 5.

The design of most relatively high speed
digital systems (including low- to mid-range
minicomputers) is carried out using standard
register transfer integrated circuits complete
with data path and memory. For higher per-
formance computers, there is no alternative t o
using either tightly packed standard integrated
circuits or building a unique set of integrated
circuits using some form of customization. The
high performance IBM and Amdahl machines,
for example, use custom ECL circuits or gate

Table 5. Design M e t h o d versus Generation

arrays to improve packaging. Although Sey-
mour Cray continues to build his high speed
computers (the CDC 6600, 7600 and Cray 1)
with no custom logic, he does so by using im-
pressively dense modules with high density in-
terconnection and freon cooling.

The current spectrum of integrated circuits
and their use is summarized in Table 6.

The Changing Nature of System Design

With the advent of the processor-on-a-chip,
digital system design has been, or soon will be,
converted completely to computer system de-
sign (design at the processor-memory-switch
level of Chapter 1, View 1). Problems such as
controlling a CRT, controlling a lathe, building

Design Method

Generations
Examples in

First Second Third Fourth Fifth this Book

Combinational and sequential; use of
"standard" modules, integrated circuits

Read-only memory and PLA: micro-
programming

Microprogramming with standard RT ele-
ments (high performance) minor logical
design

Programming using micros and logic for
interfaces

PMS design using completely specified
and predesigned microcomputer com-
ponents

Customized chip design and standard
(logic) design (high performance)

S S S - - 18-bit:
PDP-8

- - m - PDP-9:
PDP-1 1

S

- - - S m CMU- 11

- P P S X LSI-11

- - m m m LSI-11

s - The standard method for most digital systems
m - Done by manufacturers of basic equipment
x - Alsoused
p - Prelude to micros. also done using minis

40 COMPUTER ENGINEERING

Table 6. Integrated Circuit Organization and Use in Various Computers

Unique Performance
Organization Technology Chips (MIPS) cost Examples

Microcomputer

Microprocessor

Microprocessor

Microprocessor

Bit-slice
(micro-
programmed)

Gate array

Medium-scale
integration

Gate array

Small-scale
integration

MOS. very
large-scale
integration
(VLSI)

MOS

MOS

MOS

l T L

TLL

TT L

EC L

EC L

1

1

2-4

> 4

Few

Most

Few

All

Std.

0.1 Lowest Intel 8048, MOSTEK
3870

Intel 8080, Zilog 280.
Motorola 6800

DEC LSI-1 1,
Fairchild F-8

Burroughs 880.
National IMP 16

DEC 11/34
Floating-point
Processor

Raytheon RP16.
IBM Series 1

DEC VAX 1 1 /780.11/70.
HP 3000

IBM 37011 68,
Amdahl47Oh6

8 0 Highest CRAY 1

a billing machine, or implementing a word pro-
cessing system become computer system design
problems similar to those attacked over the first
three generations. The hardware part of the de-
sign, the interface to the particular equipment,
is straightforward. The major part of the design
is the programming. Since the late 1940s, three
generations have learned about computer de-
sign, especially programming. The first gener-
ation discovered and wrote about it. Then it
was rediscovered and applied to minicomputer
systems. This time, it is being learned by every-
one who must use and program the micro-
computer. Each time, for each individual or
organization, the story is about the same:
people start off by programming (using binary,

octal, or hexadecimal codes) small tasks, using
no structure or method of synchronizing the
various multiple processes; the interrupt mecha-
nism is learned, and the symbolic assembler is
employed; and finally some more structured
system, possibly an operating system, is em-
ployed. Occasionally, users move to high level
languages or macroassemblers.

I n view of this cyclical history, it seems likely
that current digital systems design practice,
which consists of building simple hardware in-
terfaces to relatively poorly defined buses to-
gether with programming the application, will
be relatively short lived. The design method of
the future (fifth generation) will be at the PMS
level component, although at the moment there

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 41

are several factors that prevent this from being
done reliably and cheaply by large numbers of
engineers.

One factor which impedes this progress to the
fifth generation is the (fundamental) inter-
connect problem. Currently, many small-scale
integration components are required to handle
the mismatch between microprocessor chips
and memory and 1 / 0 subsystems. Further-
more, buses are hard to specify, as will be dis-
cussed in Chapter 1 1 ,

Another impediment is that system level be-
havior (the interaction of processors, memories,
and transducers via switches and links) is less
understood than is interaction at the register
transfer level.

Of substantial assistance in easing the transi-
tion to the fifth generation would be base level
operating systems that were embedded in hard-
ware. These should be placed in read-only
memory to give a feeling of permanence so that
users would be less likely to embark on the ex-
pensive, unreliable rediscovery path.

In summary, standard components must be
built that can be interfaced to a wide range of
external systems, via clearly defined links, using
parameters that are specified by a field pro-
gramming method (instead of using logic design
and building with interconnection on modules).
I n this way, the complexity of individual in-
tegrated circuits can be increased; and with a
standard method for interconnection, higher
volume and lower costs will result.

Design Costs versus Unit Costs

Before discussing the alternatives associated
with integrated circuit design, it is important to
characterize the various costs. Figure 9 shows,
at a crude level, what the relative design costs
might be for various inter- and intra-integrated
circuit design methods. The design cost is highly
variable depending on the project size, its goals,
the manufacturing volumes expected, and most
important, the computer aided design programs
that are available.

1 CUSTOM
DESIGN /

0 u INTRA IC
DESIGN

GATE ARRAY

HYPOTHETICAL
UNIVERSAL LOGIC
ARRAVSISEE NOTEL

I R O M I P L A DRIVEN DESIGNS
STANOAROCkts LOGIC DESIGN

-MICROPROGRAMMING

-PROGRAMMING ~ USING

J MICROPROCESSORS

I
S S I MSI LSI VLSl

CIRCUIT DENSITY -
NOTE

None e x i s t to date

Figure 9
density using various design methods

Current design cost (or time) versus circuit

The lowest design cost is achieved by staying
completely away from modifying the integrated
circuits, except for programming read-only
memories. There are two elements to the cost of
read-only memories, programming cost and
parts cost. The programming cost has already
been discussed, so this discussion is limited to
parts cost. There are two kinds of read-only
memories, the programmable read-only mem-
ory (PROM) and the masked read-only mem-
ory (ROM). PROM chips have a higher initial
cost than ROMs, but they provide some inven-
tory advantages in a manufacturing environ-
ment because a common stock of unpro-
grammed parts can be divided into various pro-
grammed parts rather than stocking a full sup-
ply of each required part. In many high volume
applications, however, the cost of the extra test-
ing steps involved in the common stock ap-
proach, plus the extra piece part costs for
PROMS, make masked ROMs preferable.

The design costs discussed in the preceeding
paragraphs are summarized in Figure 10, which
shows the costs for conventional programming,
costs for microprogramming, and the design

42

z
0

:
0 z

r

0 0

z
c?
w
0

COMPUTER ENGINEERING

1 CUSTOM DESIGN

STANDARD CELL

GATE ARRAY
IASSUME A FAMILY1

STANDARD CIRCUITS.
LOGIC DESIGN

ROMIPLA DESIGN
USING CDMBINATIONAL
DESIGN

MICROPROGRAMMING
STANDARD PARTS
DESIGN

PROGRAMMING

I I I I
SSI MSI LSI VLSl

CIRCUIT DENSITY --C

Figure 10.
density for various design techniques.

Manufacturing costs versus LSI circuit

costs for methods which use combinational
techniques rather than programming tech-
niques. These latter methods, employing read-
only memories and programmable logic arrays,
will be discussed shortly. The most costly ap-
proach of all shown in Figure 10, excluding in-
tra-IC design, is design using standard circuits
and associated design techniques.

Design of Integrated Circuits (Intra-IC
Design)

Despite the prospects of higher design cost
with custom integrated circuits than with stand-
ard integrated circuits, and, in some cases,
higher manufacturing cost, there are numerous
reasons that a designer is often forced to design
integrated circuits. These are summarized in
Table 7.

There are some drawbacks to custom in-
tegrated circuit design. These are listed in Table
8.

The use of custom integrated circuits to re-
duce the number of discrete components or to
reduce the total number of integrated circuits in
a machine improves the reliability because the
reliability of a system is mostly a function of the

number of explicit physical connections, includ-
ing the bonds to the semiconductor die. Thus,
the anticipated reliability of two equal function-
ality designs can be compared by counting dis-
crete circuit pins, integrated circuit pins,
module pins, and connector pins.

Gate Array Design

The most straightforward and extensively
used intra-integrated circuit design method is to
modify an existing design. I f this approach can-
not be used, the next most straightforward
method is to use arrays of gates and inter-
connect them to form the desired function. De-
sign with gate arrays occurs in a completely
defined environment because there is only one
circuit from which the gate is formed and the
gate can be completely characterized. The man-
ufacture of gate arrays is fairly simple because
the fabrication technique of all but the last few
semiconductor processing steps is identical for
all designs. The customization, accomplished
by interconnection of the gates by metal, is car-
ried out last. Interconnection is a well under-
stood aspect of logic design and is used t o form
the more complex macrostructures (various
flip-flop types, adders, etc.) and then to form
the higher levels of design by using arrays of
gate arrays. A disadvantage of gate arrays is
that gate array design methods do not permit
the high density possible with the more custom
methods because device placement is fixed.

It should be noted that gate array design is
not a new idea brought about by the need for a
simple method of customizing large-scale in-
tegrated circuits. Instead, it was one of the de-
sign philosophies advocated in the first few
generations. The concept then was to have a
single module containing a set of gates, and all
subsequent logic design would be done in terms
of that module. For example, flip-flops would
be constructed by interconnecting the gates. A
design predicated on a single module type im-
mensely simplifies the spare stocking and ser-
vicing aspects, and it is possible to troubleshoot

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 43

Table 7. Reasons To Do Custom integrated Circuit Design

1.

2.

3.

A performance advantage can be gained.

Product life cycle costs can be lower if diagnosability and reliability features are added

Diagnostic labor can be a high percentage of printed circuit board manufacturing cost. Diagnosis to the chip level
can be sped up by features within the chip, and by a lower chip count, with a resultant lower manufacturing cost.

Data buses can be absorbed entirely within a chip to avoid bus interface costs. Even shortening a data bus from
multi-board to single-board length may reduce cost and/or improve performance by reducing stored energy and its
attendant drive/speed penalties.

Innovations concealed within a chip are difficult for competitors to study and duplicate

Performance barriers rnay be breakable only through custom large-scale integration. In central processor design
especially. and perhaps for certain memory interface applications, a custom integrated circuit approach rnay be the
only practical way to get around conflicting issues of size. power, capacitance, etc.

In some engineering environments there are extremely small amounts of space or very little power.

4.

5.

6.

7.

Table 8. Reasons Not To Do Custom Integrated Circuit Design

1. For designs in the 100-500 equivalent gate complexity range, it may take up to a year to do the design with
primitive design tools.

For designs in the 100-500 equivalent gate complexity range, it rnay take up to $100,000 to do the design

Unless substantial product volumes are obtained, the chip cost will be high relative to off-the-shelf chips.

A decision will have to be made whether to have the design done by an outside vendor or within the company. This
can be a very complicated and expensive decision.

The logic design and logic partitioning for large-scale integrated circuit design is different from that of conventional
logic design, and designers used to dealing with conventional design will have to assimilate new knowledge to
design large-scale integrated circuits themselves or even to talk with integrated circuit designers.

2.

3.

4.

5.

a problem by simply replacing circuits accord-
ing to a pattern. Designers did not find these
advantages important enough at that time,
however, so the gate array concept was set aside
until it was rediscovered by integrated circuit
designers.

A representative gate array is a Raytheon
RA-116. It has 300 TTL Schottky gates, of two
cluster configurations, each repeated twelve
times within the 160 mil X 160 mil chip:

Type 1
3 external driver gates (4-input NAND)
5 internal driver gates (3-input NAND)
5 internal expansion gates (3-input
NAND)

2 external driver gates (4-input NAND)
5 internal driver gates (3-input NAND)
5 internal expansion gates (3-input
NAND)

Type 2

44 COMPUTER ENGINEERING

Within each cluster, the expansion gates may
be combined with the driver gates to form 7 or 8
input NAND gates and AND-OR-INVERT
circuits with up to six product terms. The gates
have a typical propagation delay of 5-6 nanose-
conds and dissipate 5.5-6 milliwatts per driver
and 1 milliwatt per OR expander. Two metal
layers are used for interconnect, and the result-
ing circuitry can be connected to the outside
world by means of 56 external pins, including
power and ground.

Because the use of integrated circuit gate ar-
rays is recent, data on package count reduction
is scarce, but one informal study for the Ray-
theon RP- 16 aerospace computer measured a
nine to one replacement ratio and an overall im-
provement by a factor of 2 over a system con-
structed with standard components [Parke,
19781.

A 920-gate MOS array of 3 input NOR gates
has been reported by Nakano et al., [1978]. Its
3-nanosecond gate delay illustrates the per-
formance potential as the metal oxide semi-
conductor process continues to progress toward
smaller, faster gates. For truly high speed appli-
cations, an ECL gate array can be used. These
devices, with subnanosecond speeds, exploit the
inherent properties of current mode logic to ob-
tain a particularly flexible element [Gaskill et
al., 19761.

Standard Cell Design

An alternative to gate array design is stand-
ard cell design. Standard cell design is identical
to the logical design of the first few generations
because there is a previously designed, well
characterized set of primitive components
(AND gates, flip-flops) in which the design is
carried out. The advantage of the standard cell
design methods is that special functions can be
mixed on the chip in greater variety. There may
also be a density advantage over gate arrays.
However, in some schemes each cell occupies a
different space and has a fixed shape. Careful

planning of the cell arrangements is necessary
to minimize loss of space. Hence, the improve-
ment in packing density is not as substantial as
direct comparisons between standard cell tech-
nology and gate array technology might a t first
indicate. In addition, if there are a large number
of circuit types, their interconnection rules may
not be characterized well enough to achieve a
quick, cheap design that works the first time.

Custom Design

Custom design is in some ways a variant of
the standard cell because designers typically
have a set of favorite circuits which they inter-
connect to create designs for specified appli-
cations. With custom design, the designer can
(theoretically) specify a circuit for each use
within a particular logic design. For example,
upon observing that a particular gate or flip-
flop only drives a certain load, the designer can
modify that gate or flip-flop to provide only the
appropriate driving capability. Therefore, with
custom design, the whole integrated circuit can
theoretically be an optimum size, since each
part is no larger than i t need be. The advantages
are clearly size, cost, and speed. The design
costs are high because each part can, in prin-
ciple, be customized. The quality of the circuit
design is totally dependent on the designer, who
must analyze each circuit geometry in terms of
his expectation of performance, operating mar-
gins, etc. To the extent that this analysis is car-
ried out, the circuit is clearly optimal.

Universal Logic Arrays, PROMS, and ROMs

Also shown in Figure 9 is a hypothetical line
for universal logic arrays. For at least 15 years,
academicians have studied the possibility of de-
signing a single array of logical design elements,
or a collection of such arrays, that could be in-
terconnected on a custom basis to carry out a

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 45

given function. The gate array can be looked at
as the simplest example of this type of design.
While many are skeptical that such a device ex-
ists, a line representing it is placed on the graph
as a target for those who search for the one
truly universal logic array.

Both programmable read-only memories and
masked read-only memories are commonly
used, but trivial, forms of the truly universal ar-
rays, because they can be used in a table lookup
fashion to create several functions of a number
of input variables. For example, a 1,024 word
read-only memory arranged in a 256 X 4-bit
fashion can generate 4 independent functions of
8 variables. This is a distinct alternative for us-
ing a conventional gate structure to carry out
combinational functions. A disadvantage of
this method is that the required read-only mem-
ory size doubles for each additional input vari-
able.

Programmable Logic Arrays

The progammable logic array (PLA) is a
combinational circuit which remedies the dis-
advantages of the read-only memory implemen-
tation of combinational functions by allowing
the use of product terms rather than completely
decoding the input variables. Figure 11 shows a
typical circuit, which consists of separate AND
and OR arrays. Inputs are connected to the
AND array, and outputs are drawn from the
OR array. Each row in the programmable logic
array can implement an AND function of se-
lected inputs or their complements, thus form-
ing a Boolean product term, and the OR array
can combine the product terms to implement
any Boolean function.

A simple application is operation-code de-
coding. For the PDP-11, the 16-bit Instruction
Register could be directly connected to a pro-
grammable logic array and the output thereof
used to specify the address of the microprogram
that executed that instruction. Three different

types of operation-code decoding are custom-
arily applied to PDP-I 1 instructions: source
mode decoding, destination mode decoding,
and instruction decoding. With a program-
mable logic array implementation, a PLA could
be used for each of these decoding operations,
and only three chips would be required. A read-
only memory implementation, on the other
hand, would require 128 K X 8 bits for address
mode decoding and 64 K X 8 bits for instruc-
tion decoding. Using 2 K X 8-bit read-only
memories, 33 chips would be required. For this
reason, modern minicomputers, such as the
PDP- 1 1 /34, use programmable logic arrays
rather than read-only memories or com-
binational logic for instruction decoding. The
technique is also extended downward into mi-
crocomputers such as the LSI-l l , where pro-
grammable logic arrays are used to conserve the
die area used by the microcomputer control
units.

The programmable logic array becomes an
even more useful building block when it is made
field programmable - the FPLA. The program-
mable connectors shown in Figure 1 1 are fu-
sible nichrome links that are burned out when
the unit is programmed.

When a register is added to the outputs of the
programmable logic array and incorporated in
the same integrated circuit, a simple sequential
machine is obtained in one package. Since regis-
ter circuit packages are pin intensive, adding
registers to programmable logic arrays (or to
read-only memories) permits about a factor of 2
package count reduction in typical applications.

The first programmable logic arrays had
propagation times of the order of 150 nanose-
conds and were thus suitable building blocks
for slow, low-cost computers. Propagation
times of 45 nanoseconds are quite common to-
day, and the programmable logic array is now
more widely used. An attractive application
with these higher speed components is the re-
placement of the small-scale integration and

~~

46 COMPUTER ENGINEERING

MEMORY

FPLA

PROGRAMMABLE
CONNECTORS

H E A D HEAD

Figure 1 1. Signetics field programmable logic array
(FPLA) (courtesy of Signetics Corporation, from Signetics
Field Programmable Logic Arrays - An Applications
Manual, February 1977; copyright @ 1977 by Signetics
Corporation).

Figure 12.
of Mernorex Corporation and S.H. Puthuff. 1977).

Family tree of memory technology (courtesy

medium-scale integration packages used to im-
plement the control logic for Unibus arbitration
in PDP-I 1 computers.

A more complex application than instruction
decoding has been documented [in Logue et al.,
19751. An IBM 7441 Buffered Terminal Con-
trol Unit was implemented using program-
mable logic arrays and compared with a version
implemented with small- and medium-scale in-
tegration. The programmable logic array design
included two sets of registers fed by the OR ar-
ray (PLA outputs): one set fed back to the
AND array (PLA inputs); the other set held the
PLA outputs. A factor of 2 reduction in printed
circuit board count was obtained with the pro-
grammable logic array version. The seven pro-
grammable logic arrays used in the design
replaced 85 percent of the circuits in the small-
and medium-scale intregration version. Of these
circuits, 48 percent were combinational logic
and 52 percent were sequential logic.

MEMORY TECHNOLOGY
The previous section discussed the use of

memory for microprogramming and table
lookup in logic design, but that is not the princi-
pal use of memory in the computer industry.
The more typical use of memory components is
to form a hierarchy of storage levels which hold
information on a short-term basis while a pro-
gram runs and on a longer term basis as per-
manent files. Figure 12 shows the various
technologies employed in these memory appli-
cations. Although the principal focus of this
section is on core and semiconductor memories,
slower speed electromechanical memories
(drums, disks, and tapes) are considered super-
ficially, as their performance and price im-
provements have pushed the computer
evolution. Because the typical uses for memory
usually require read and write capabilities,
write-once or read-only memory such as video
disks is excluded from the discussion.

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 47

Measurement Parameters

Because memory is the simplest of com-
ponents, it should be possible to discuss mem-
ory using a minimal number of measurement
parameters. One of the most important parame-
ters is the state of development of the memory
technology at the time the other parameters are
measured, relative to the likely life span of that
technology. Unfortunately, this is one of the
most difficult parameters t o quantify, although
its effects are readily observable, principally in
the rate of change of the other parameters asso-
ciated with that technology. Thus, in new tech-
nologies many of the parameters vary rapidly
with time. This is particularly true of semi-
conductor memory price, which has declined at
a compound rate of 28 percent per year (which
amounts to about 50 percent in two years). The
price is expressed only as price/bit, but it is im-
portant to know the price (or size) of the total
memory system for which that price applies. T o
get the lowest price per bit, a user may be forced
to a large system because of economy of scale.

Performance for cyclical memories, both the
electromechanical types such as disks and the
electronic types such as bubbles, is expressed in
two parameters: the time to access the start of a
block of memory and the number of bits that
can be accessed per second after the transfer be-
gins. Other parameters, such as power con-
sumption, temperature sensitivity, space
consumption, and weight, affect the utility of
memories in various applications. In addition,
reliability measures are needed to see how much
redundancy must be placed in the memory sys-
tem to operate at a given level of availability
and data integrity.

In summary, the relevant parameters for a
given memory are:

I . State of development of the technology
at the time the measurements are taken
relative to the likely life span of the tech-
nology.

2. Price per bit.
3 . Total memory size or total memory

4. Performance.
price.

a. Access time to the first word of the
block.

b. Time to transfer each word (data
rate) in the block.

5. Operational power, temperature, space,

6 . Volatility.
7. Reliability and repairability.

weight.

As indicated by the rapidity of the parameter
changes, a good example of a technology that is
young relative to its expected total lifetime is
semiconductor memory. Figure 7 gives past
prices and expected future prices of semi-
conductor memory. As mentioned above, these
memories have declined in price every two years
by 50 percent, and that rate of decline is ex-
pected to continue well into the 1980s because
of continued increases in semiconductor den-
sities. Figure 13, a graph by Dean Toombs of
Texas Instruments, shows memory size versus
performance with time for random-access mem-
ories, and cyclically accessed charge-coupled
devices (CCDs) and magnetic bubbles.

Core and Semiconductor Memory
Technology for Primary Memory

The core memory was developed early in the
first generation for Whirlwind (1953) and re-
mained the dominant primary memory com-
ponent for computers until it began to be
superseded by semiconductor technology. The
advent of the I-Kbit memory chip in 1972
started the demise of core as the dominant
primary memory medium, and the crossover
point occurred for most memory designs with
the availability of the 4-Kbit semiconductor
chip in 1974.

Over the period since the early 1960s, the
price of core memory declined roughly at a rate

48 COMPUTER ENGINEERING

RANDOM ACCESS SERIAL ACCESS ,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

19-80 18-79

16-71
71-78

0 01 0 1 1 100 low l O M O

ACCESS TIME lMlCROSECONDSl

Figure 13. Memory size versus access time for various
memories and yearly availability (courtesy of Dean
Toombs. Texas Instruments. Inc.)

7 1

6 (

5 c

4 (

3 c

02

-
YI

: 1 0

2

0 -

0

0 5

0 4

0 3

2 0

0 1

\
0 CORE/SEMICONOUCTOR

MEMORY CROSS OVER

PRICE

1965 1910 1915 1987
YEAR

Figure 14
various market surveys and future predictions

Cost per bit of core memory estimated by

of 19 percent per year. This decline can be seen
in the DEC 12-bit machine memory prices, the
DEC 18-bit machine memory prices, and in the
IBM 360/370 memory prices (since 1964). The
price of PDP-10 memory has declined at 30 per-
cent per year, although it is unclear why. A pos-
sible reason is that the modular memory
structure had a high overhead cost; with sub-
sequent implementations, the memory module
size was increased, thereby giving an effective
decrease in overhead electronics and packaging
costs and a greater decrease in the cost per bit.

The cost of various memories was projected
by several technology marketing groups in the
period 1972-1974. Each study attempted to
analyze and determine the core/semiconductor
memory crossover point. Three such studies are
plotted in Figure 14 along with Turn’s [I9741
memory price data and Noyce’s [1977a] semi-
conductor memory cost (less overhead electron-
ics) projection. Most crossover points were
projected to be in 1974, whereas one study
showed a 1977 crossover. Even though all stud-
ies were done at about the same time, the varia-
tion in the studies shows the problem of getting
consistent data from technology forecasts.

While these graphs of core and semi-
conductor prices and performance permit an
understanding of trends in the principal use
areas for these devices, additional information
is needed for disk and tape memory in order to
complete the collection of memory technologies
that can be used to form a single memory hier-
archy.

Disk Memories

Disk memories are a significant part of most
systems costs in the middle-range minicomputer
systems; in larger systems, they dominate the
costs.

Although access time is determined by the
rotational delays and the moving head arm
speed, the single performance metric that is
most often used is simply memory capacity and
the resultant cost/bit. In the subsequent section

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 49

on memory hierarchies, it will be argued that
performance parameters are less important
than cost because more higher speed memory
can be traded off to gain the same system level
performance at a lower cost.

Memory capacity is measured in disk surface
areal density (i.e., the number of bits per in2)
and is the product of the number of bits re-
corded along a track and the number of tracks
of the disk. Figure 15 shows the progress in
areal recording densities using digital recording
methods. Figure 16 shows the price of the state-
of-the-art large, multiple platter, moving head
disks. Note that the price decline is a factor of
I O in 9 years, for a price decline of 22 percent
per year.

Figure 17 shows the performance plotted
against the price per bit for the technology in
1975 and 1980.

MOVING
/ H E A D

1' DISK

FLEXIBLE
,DISK

0' /TAPE

1955 1960 1965 1970 1975 1980 1985

YEAR

Figure 15.
recording media (courtesy of Memorex Corporation,
1978).

Areal density of various digital magnetic

YEAR

Figure 16. Price per bit of large, moving head disks and
semiconductor memories (courtesy of Mernorex
Corporation, 1977).

100
-BIPOLAR

1975

1 Y S 1 I n s I S
1 0 5

10 6 I I I
1 10 9 1 0 6 10 3 1000

ACCESS TIME ISECONDSi

Figure 17. Memory trends, 1975-1 980 (courtesy of
Memorex Corporation. 1978).

50 COMPUTER ENGINEERING

Magnetic Tape Units

Figure 18 shows the relevant performance
characteristics of magnetic tape units. The data
is for several IBM tape drives between 1952 and
1973. It shows that the first tape units started
out at 75 inches per second and achieved a
speed of 200 inches per second by 1973. Al-
though this amounts to only a 5 percent im-

1000
1100001

F 100
f 11.0001

0 -

4

4

4 0

0

10
l100l

1

DATA RATE 0

RECORDING

I5%NEARI

LEGEND

TAPE UNIT SPEED
Iincherlsecond)

TAPE RECORDING DENSITY
icharscters/mchl

TAPE DATA RATE 0 IKbytes/recondl

1960 1970

YEAR

Figure 18 Characteristics of various IBM magnetic
tape units versus time

provement per year in speed over a 21-year
period, this is a rather impressive gain consid-
ering the physical mass movement problems in-
volved. It is akin to a factor of 3 improvement
in automobile speed.

The bit density (in bits per linear inch) has
improved from 100 to 6,250 in the same period,
for a factor of 62.5, or 23 percent per year. With
the speed and density improvements, the tape
data rate has improved by a factor of 167, or 29
percent per year.

Tape unit prices (Figure 19) are based on the
various design styles. Slow tape units (mini-
tapes) are built for lowest cost. The most cost
effective seem to be around 75 inches per sec-
ond (the initial design), if one considers only the
tape. High performance units, though dis-
proportionately expensive, provide the best sys-
t em cost effectiveness .

Memory Hierarchies

A memory hierarchy, according to Strecker
[1978:72], “is a memory system built of a num-
ber of different memory technologies: relatively
small amounts of fast, expensive technologies
and relatively large amounts of slow, in-
expensive technologies. Most programs possess
the property of locality: the tendency to access a

t)

4 -

3 -

1125 62501

ISPEED RECORDING DENSITY Icharllnll

0 I I 1 I 1 I l l l I I I I 1 1 1 1
10 kHz 100 knz 1 Mb

TRANSFER RATE IKbytedsecOndl

Figure 19.
tape drives and controllers (1978).

Relative cost versus transfer rate for various

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 51

small, slowly varying subset of the memory lo-
cations they can potentially access. By exploit-
ing locality, a properly designed memory
hierarchy results in most processor references
being satisfied by the faster levels of the hier-
archy and most memory locations residing in
the inexpensive levels. Thus, in the limit a mem-
ory hierarchy approaches the performance of
the fastest technology and the per bit cost of the
least expensive technology.”

The key to achieving maximum performance
per dollar from a memory hierarchy is to de-
velop algorithms for moving information back
and forth between the various types of storage
in a fashion that exploits locality as much as

possible. Two examples of hierarchies which de-
pend on program locality for their effectiveness
are the one level store (demand paging), first
seen on the Atlas computer [Kilburn et al.,
19621, and the cache, described by Wilkes
[I9651 and first seen on the IBM 360/85 [Lip-
tay, 19681. Because both of these are automat-
ically managed (exploiting locality), they are
transparent to the programmer. This is in con-
trast to the case where a programmer uses sec-
ondary memory for file storage: in that case, he
explicitly references the medium, and its use is
no longer transparent.

Table 9 lists, in order of memory speed, the
memories used in current-day hierarchies.

Table 9. Computer System Memory Component and Technology

Part

Transparency
(To Machine Characteristics on
Language
Programs)

Which Its Use Is
Based

Microprogram memory Yes Very fast

Processor state No Very small. very fast register set (e.g., 16 words)

Alternative processor state Yes
context

Same (so speed up processor context swaps)

Cache memory Yes Fast. Used in larger machines for speed

Program mapping and
segmentation

Yes Small associative store

Primary (program) memory No

Paging memory

Local file memory

Yes

No

Relatively fast. and large depending on proces-
sor weed

Can be electromechanical, e.g., drum, fixed head
disk, or moving head disk. Can be CCD or bub-
bles.

Usually moving head disk, relatively slow, low
cost.

Archival files memory Yes (preferably) Very slow, very cheap to permit information to
be kept forever.

52 COMPUTER ENGINEERING

There is a continuum based on need together
with memory technology size, cost, and per-
formance parameters.

The following sections discuss the individual
elements of the heirarchy shown in Table 9.

Microprogram Memories. Nearly every
part of the hierarchy can be observed in the
computers in this book. Part I l l describes PDP-
1 1 implementations that use microprogram-
ming. These microprogram memories are trans-
parent to the user, except in machines such as
the PDP-I 1 /60 and LSI-11 which provide user
microprogramming via a writable control store.
Mudge (Chapter 13) describes the writable con-
trol storage user aspects associated with the
11/60 and the user microprogramming.

In retrospect, DEC might have built on the
experience gained from the small read-only
memory used for the PDP-9 (1967) and ex-
ploited the idea earlier. In particular, a read-
only memory implementation might have pro-
duced a lower cost PDP-l1/20 and might have
been used to implement lower cost PDP-10s
earlier.

I n principle, it is possible to have a cache to
hold microprograms; hence, there could be an-
other level to the hierarchy. At the moment, this
would probably be used only in high cost/high
performance machines because of the overhead
cost of the loading mechanism and the cache
control. However, like so many other technical
advances, it will probably migrate down to
lower cost machines.

Processor State Registers. To the machine
language program, the number of registers in
the processor state is a very visible part of the
architecture. This number is solely dictated by
the availability of fast access, low cost registers.
I t is also occasionally the means of classifying
architectures (e.g., single accumulator based,
general register based, and stack based).

I n 1964, even though registers were not avail-
able in single integrated circuit packages, the
PDP-6 adopted the general register structure

because the cost of registers was only a small
part of the system cost. In Chapter 21 on the
PDP-IO, there is a discussion of whether an ar-
chitecture should be implemented with general
registers in an explicit (non-transparent) fash-
ion, or whether the stack architecture should be
used. Although a stack architecture does not
provide registers for the programmer to man-
age, most implementations incur the cost of reg-
isters for the top few elements of the stack. The
change in register use from accumulator based
design to general register based design and the
associated increase in the number of registers
from 1 to 8 or 16 can be observed in com-
parisons of the 12-bit and 18-bit designs with
the later PDP-IO and PDP-11 designs.

Alternative Processor State Context
Registers. As the technology improved, the
number of registers increased, and the proces-
sor state storage was increased to provide mul-
tiple sets of registers to improve process context
switching time.

Cache Memory. In the late 1960s, the cache
memory was introduced for large scale com-
puters. This concept was then applied to the lat-
est PDP-10 processor (KLIO). It was applied to
the PDP- 1 1 /70 in 1975 when the relatively large
(1 Kbit), relatively fast (factor of 5 faster than
previously available) memory chip was in-
troduced. The cache is described and discussed
extensively in Chapter 10. It derives much
power by the fact that it is an automatic mecha-
nism and is transparent to the user. It is the best
example of the use of the principle of memory
locality. For example, a well designed cache of 4
Kbytes can hold enough local computational
memory so that, independent of program size,
90 percent of the accesses to memory are via the
cache.

Program Mapping and Segmentation. A
similar memory circuit is required to manage
(map) multiprogrammed systems by providing
relocation and protection among various user
programs. The requirements are similar to the

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 53

cache and may be incorporated in the caching
structure. The PDP-IO models with the KIlO
processor use an associative memory for this
mapping function, and the VAX 11/780 uses a
64-entry, 2-way associative memory.

Paging Memory. The Atlas computer [Kil-
burn, et al., 19621 was designed to have a single,
one level, large memory. This structure ulti-
mately evolved so that multiple users could
each have a large virtual address and virtual
machine. The paging mechanism works because
of the locality exhibited by program references.
Denning pointed out the clustering of pages for
a given program at a given time and introduced
the notion of the working set 119681. For most
programs, the number of pages accessed locally
is small compared with the total program size.
Initially, a magnetic drum was used to imple-
ment the paging memory; but as disk tech-
nology began to dominate the drum, both fixed
head and moving head disks (backed up with
larger primary memories) were used as the pag-
ing memories. Denning’s tutorial article [19701
is an excellent discussion of this section of the
memory hierarchy. In the next few years, the
relatively faster and cheaper charge coupled de-
vice semiconductor memories and bubble mem-
ories are clearly the candidates for paging
memories. Hodges [19751 compares the candi-
dates for paging memory in terms of reliability,
power, cost per bit, and packaging.

Local File Memory and Archival File
Memory. For local file memory in medium-
sized to large-scale systems there is no alterna-
tive to disks. Archival files, however, are usu-
ally kept on magnetic tapes, which permit files
to be stored cheaply o n an indefinite basis.
There are usually fewer memory technologies
used in smaller systems than in larger systems
because the smaller systems cannot afford the
overhead costs (disk drives, tape drives, etc.) as-
sociated with the various technologies. At most,
two levels of storage would probably exist as
separate entities in smaller systems.

Alternatively, one might expect a com-
bination of floppy disk, low cost tape, and mag-
netic bubbles to be used to reduce the primary
memory size and to provide file and archival
memory. Currently, the floppy disk operates as
a single level memory. Here there are two alter-
natives for technology tradeoff using parts in
the hierarchy: a tape or floppy disk can be used
to provide removability and archivability,
whereas bubbles or charge-coupled devices can
be used to provide performance. The Strecker
paper [19781 quoted at the beginning of this sec-
tion on memory hierarchies elaborates on these
concepts.

MEASURING (AND CREATING)
TECHNOLOGY PROGRESS

The previous sections have presented tech-
nology in terms of exponentially decreasing
prices and/or exponentially increasing perform-
ance. This section presents a basis for this con-
stant change rate. The progress of a particular
technology as a function of time, qt), has been
classically observed to be:

T(t) = K X e c t

where K = the base technology at the beginning
of the time frame, and c = a learning constant.

This can be converted to a yearly improvement
rate, r , by changing the base of the exponential
to:

T (t) = T X rt-[O

where T = the base technology at to, and r =
yearly increase (or decrease) in the technology
metric.

This is the same form used for declining (or in-
creasing) cost from base c:

c = c x r t-tO

54 COMPUTER ENGINEERING

Clearly there are manufactured goods that
neither improve nor decrease in price exponen-
tially, although many presumably could with
the proper design and manufacturing tooling
investments. The notion of price decline is com-
pletely tied to the cumulative learning curves of
(I) people building a product for a long time,
(2) process improvement based on learning to
build it better, and (3) design improvement by
engineers learning from the history of design.
Production learning per se is inadequate to
drive cost and prices down because, after an ex-
tremely long time in production, more units
contribute little to learning. With inflation in la-
bor costs, the costs actually rise when the learn-
ing is flat. In order to provide a base for
predicting the inflationary effect, the consumer
price index has been plotted in Figure 20.

Learning curves do not appear to be under-
stood beyond intuition. They are (empirical)
observations that the amount of human energy,
En, required to produce the nth item is:

E n = K X n d

where K and d a r e learning constants. Thus, by
producing more items, the repetitive nature of a
task causes learning, and the time (and perhaps

YEAR

Figure 20.
1967 as base.

Consumer Price Index using

cost) to produce an item decreases with the
number produced and not with the calendar
time in which an object is produced.

In his study of technology progress, Fusfeld
[19731 took six items, chose a measure of prog-
ress in the production thereof, and plotted that
measure against cumulative units produced. In
each case, he found a relationship of the form:

Ti = a X i h

where i is the number of units produced and Ti
is the value of his selected technology progress
measure at the ith unit - the same as the learn-
ing curves would predict.

The graph for turbojet engines, where he used
fuel consumed per pound as the technology
measure, is reproduced in Figure 21. The results
for all six items studied are shown in Table 10.

Where two values are given for the tech-
nology progress constant, a second rate of prog-
ress was observed after a significant shift in the
industry occurred. For example, such a shift oc-
curred in the automobile industry in the late
1920s when the acceptance of the automobile,
the development of a new tire, and the expan-
sion of the public road network operated con-
currently to change the nature of the industry.

I " "

8 0
RECIPROCAL OF
SPEClFlC WEIGHT

RECIPROCAL OF SPECIFIC

CUMULATIVE JET
ENGINE PRODUCTIOI

0
0 8

8.000 10,000 12.000 14,000 16,000

NUMBER PRODUCED

Figure 21.
turbojet engines [Fusfeld, 19731.

Technology progress functions for

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 55

Examination of the table will reveal sub-
stantial variations in the technology progress
constant from item to item. This is probably be-
cause most of the technologies represented
above are mechanically oriented with associ-
ated physical limits. Computer technology is
electronically oriented and has not yet reached
its limits. In essence, the table is comparing sys-
tems constrained by Newton’s Laws with those
constrained by Maxwell’s Equations.

Using the two formulas,

T(t) = K X e Ct

and

T i = a X i b

Fusfeld [I9731 related the unit learning curve
concept to the more conventional, timely view
of technology progress when the number of
units produced increases exponentially with
time, that is, relations expressed in the first two
formulas are equivalent when the condition ex-
pressed by the following formula holds:

This previous formula indicates that the pro-
duction rate is a constant fraction of the total
production to date - i.e., production occurs
with exponential growth.

While the Fusfeld information shows inter-
esting results, it does not explain why tech-
nology improves exponentially, nor does it

explain why cost declines exponentially. Learn-
ing curves and an exponential increase in the
quantity of items produced may depress cost,
but simple production learning does not ac-
count for the rapid technology changes in the
integrated circuit, for example, where totally
different production processes have been
evolved to support the greater technology.

I n the computer industry, the mobility of
technical personnel from company to company
has certainly been a significant factor in tech-
nology innovation. The strongest force toward
technology innovation in the computer in-
dustry, however, has been the computer users.
They have been doing a significant portion of
the inventing, both in hardware development
and in software development. Although the
case studies in this book indicate several specific
places where users have influenced hardware
design, it would be a substantial oversight not
to mention the profound effect users had on the
creation of PL/ 1 and COBOL. Furthermore, all
applications work is done first by users and
then developed by manufacturers at a later date
along the lines of the above model.

The Influence of Technology Innovation on
cost

The cost of computing is the sum of the costs
which correspond to the various levels-of-in-
tegration described in Chapter 1, plus the oper-
ational costs. The levels are integrated circuits,

Table 10. Fusfeld‘s 11 9731 Measures of Technology Progress

Item Measure, Ti

Change
Quantity Technology Observed Total
Produced (i) Progress (b) In Study Change

~ ~~~ ~

Light bulbs Lumens/bulb 10’0 0.04; 0.19 33 80
Automobiles Vehicle h.p. 3 X 10’; 108 0.1 1 ; 0.74 10 6; 13
Titanium Psi/$/l6 3 x 108 0.3; 1 ; 1.04 10 3 50
Aircraft Maximum speed 2 x 1 0 5 0.33-1.2 6 56

2 2.9 x 1 0 4 Turbojet engines Fuel consumed. weight 1.6 x 1 0 4 1.06
Computers Memory size X rate 1 0 5 2.51 109 3.5 x 1012

56 COMPUTER ENGINEERING

boards, boxes, cabinets, operating systems,
standard languages, special languages, appli-
cations components, and applications. In prac-
tice, each additional level-of-integration is often
looked at as overhead. Using standard account-
ing practice, the basic hardware cost, at the low-
est level, is then multiplied by an overhead
factor at each subsequent outer level. While an
overhead-based model may work operationally
for a stable set of technologies, such a model
will not adequately allow for rapidly evolving
technologies or the elimination of levels. By ex-
amining each level, observations can be made
about the use and substitution of technology.
More importantly, conclusions can be drawn
about how structures are likely to evolve.

Cost, Performance, and Economy of Scale
For most technologies used in the computer

industry, there is a relationship between cost,
performance, and economy of scale:

Performance = k X costs X r

where k = base case performance, s = economy
of scale coefficient, r = rate of improvement of
technology, and t = calendar time.

There are four possibilities for the effect of
economy of scale on the production of any de-
vice. These are:

1.

2.

3.

4.

Economy of scale holds. A particular
object can be implemented at any price,
and the performance varies exponen-
tially with price.

Performance = k X prices; s > 1
Linear price performance relationship.
a. Performance = k X price
b. Performance = base + K X price
Constant performance, price independ-
ent.

Only a particular device has been imple-
mented. The performance (or size) is a
linear sum of such devices.

Performance = n X (k X price)

Performance = k

Sometimes, economy of scale effects are ob-
served in situations where they would not nor-
mally be expected. For example, assume a
performance improvement feature exists that
costs the same whether it is added to a large
computer or added to a small computer. Add-
ing that feature to a product that is already high
priced will have a modest effect (say 5 percent)
on the cost but a substantial effect (say 100 per-
cent) on the performance. Adding the same
constant cost feature to a lower cost product
will have a substantial effect (say 200 percent)
on the cost but only a performance effect (again
100 percent) similar to that obtained with the
higher cost system. This condition is especially
true in disks and computer systems. Use of a
particular recording method employing costly
logic for encoding/decoding, or addition of a
cache memory, is often employed to the high
priced systems first. With time and learning, the
technique can then be applied to lower cost sys-
tems. For example, cache, a nearly perfect ex-
ample of the constant cost add-on, first
appeared in such large machines as the IBM
360/85 in 1968 and later migrated down to large
minicomputers such as the PDP-11/70 in 1975.
On a research basis, cache even reached the
small minicomputer, the cache-based PDP-8/E
at Carnegie-Mellon University (Chapter 7).

In Figure 22, the cost of the lowest price unit
is kept to a minimum and decreases, while the
cost of the mid-range product continues to in-
crease. The cost of the highest performance
product increases the most, because it can af-
ford the overhead costs. Looking at the basic
technology metric, there are really three curves,
as shown in Figure 23. The first curve repre-
sents the application of new technology to a
high cost/high performance product to get a
substantial performance improvement. With
time, the technology evolves and is reapplied to
the mid-range products (the first level copy),
and finally, several years later, the technique be-
comes commonplace and is applied to low cost

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 57

OF SCALE

SMALL
IMlN COST1 -1

COST = C base X C -- ---

Figure 22. Cost versus time

t+

Figure 23. Technology versus time

products (second level copies). The resultant
cost/performance ratios are shown in Figure
24.

The management of technology by applying
it to products in various price and performance
ranges occurs in a more or less ordered fashion
in most industries, but has not occurred to the
extent that it has in the computer industry. This
is probably because no other industries have
evolved in the same rapid and broad fashion as
have the computer and semiconductor in-
dustries. The computer industry is fundamen-
tally driven by the semiconductor technology
push on the one hand, and by IBM on the
other. IBM follows the strategy of applying
technology on an economy of scale basis. This
permits the technology to be first tested at the
high performance/high price lower volume sys-
tems before being introduced in higher volume
production. The following examples (from
IBM) show this at work. In printing, the high
price/low volume to low price/ high volume in-
troduction cycle was followed in the use of dot
matrix printing, chain printing, ink-jet printing,
and computer printing as a precursor to systems
products using xerography. In magnetic stor-
age, the cycle saw the basic technology for large
disks as a precursor to the use of similar tech-
nology on smaller disks.

Technology Substitution

The cost and performance of a computer sys-
tem are roughly the additive and multiplication
functions, respectively, of the parts. The tech-
nologies represented in those parts each evolve
at their own rates. Usually, when one com-
ponent begins to dominate the cost (e.g., pack-
aging) or constrain the performance, then
pressure occurs to more rapidly change and im-
prove the associated technology to avoid the
cost or Derformance bottleneck. Sometimes a

Figure 24 CostAechnoJogy versus time slowly evolving technology is j u s t eliminated as

58 COMPUTER ENGINEERING

a substitute is found. The following is a list of
some of the substitutions that have occurred:

1. Semiconductor memories are now used
in place of core memories. Since the lat-
ter has evolved more slowly in terms of
price decline, semiconductors are now
used to the exclusion of cores. (This has
not occurred where information must be
retained in the memory during periods
of time without power.)

2. Read-only semiconductor memories are
now substituted for semiconductor logic
elements.
In a similar way, programmable logic ar-
rays can be potentially substituted for
read-only memories, and true content
addressable memories can replace vari-
ous read-write and read-only memories.
The judicious use of charge-coupled de-
vices or bubble memories can cause
drastic reduction (and quite possibly the
elimination) of the use of MOS random-
access memories for primary memory.
The fixed head disk could be eliminated
at the same time.
Fer small systems, the main operational
memories could be completely nonelec-
tromechanical; electromechanical mem-
ories (e.g., tape cassettes and floppies)
would be used for loading files into the
system and for archives. For even lower
cost systems, semiconductor read-only
memories could replace cassettes and
floppies for program storage, as in pro-
grammable calculators.

3.

4.

5 .

After a while those components of computer
system cost which are decreasing less rapidly
than other components, remaining static, or are
rising (like the packaging and power) may be-
come a significant fraction of the total cost. Be-
cause costs are additive, the exponential
decrease in some costs, such as those for semi-
conductor logic and memories, will cause the

costs that are not similarly decreasing to be
more evident. This causes pressure for struc-
tural change and may cause new packaging, for
example, to become an especially important at-
tribute of a new design. For instance, although
the PDP-8 is normally considered to be the first
minicomputer, it postdates the CDC 160 (1960)
and DEC’s PDP-5 (1963). However, the PDP-8
was unique in its use of technology because:

It eliminated the full frame cabinets used
by other systems. This also presented a
new computer style such that users could
embed the computer in their own cabi-
nets. A separate small box held the pro-
cessor, memory, and many options.
Automatic wire-wrap technology was
used to reduce printed circuit board in-
terconnection cost. This also eliminated
errors and reduced checkout time.
Printed circuit board costs were reduced
by using machine insertion of com-
ponents.
The Teletype Corporation Model 33
Automatic Send Receive (ASR) tele-
printer (also used on PDP-5) was con-
nected as t he peripheral . I t had a
combined printer, keyboard, and paper
tape 1/0 device (for program loading). It
eliminated the paper tape reader and
punch.

Technology Progress, Product
Development, and the State-of-the-Art Line

If there were no such thing as technological
progress, there would be no such thing as an
obsolete product. In such a situation, it would
not matter when a product was introduced into
the market, as it would be technically equal to
the other products available. In the computer
industry, this is far from the case: for computer
processors, peripherals, and systems, there is a
state-of-the-art line that indicates the average
technological level at which present products

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 59

are being offered. Since higher technology has
generally meant better price/performance, new
products introduced in the market must have a
proper relationship to the state-of-the-art line.
The following paragraphs elaborate on the in-
teraction between technology progress, product
development, and the state-of-the-art line.

The complete development process can be en-
visioned as a pipeline process with the following
stages: research, applied research, advanced de-
velopment (product breadboard), development,
test, sell/build, and use. In this model, ideas
and information flow through the various or-
ganizations in a process-like fashion, culminat-
ing in a product. Each product type has a
different set of delays associated with the parts
of the pipeline. At the end of the pipeline, the
“education of use” delay occurs while the pros-
pective customers are taught how the product
meets their needs; this delay culminates in mar-
ket demand. For well defined, commodity-like
products such as disks and primary memory,
the education of use delay is zero, as each user
“knows” the product. For a new language, on
the other hand, there is a large education of use
delay, and the market demand usually develops

The disk supply process is a good example of
the pipeline nature of the development process.
The technology (as measured by the number of
bits per areal inch) doubles about every two
years (i.e., the density improves 41 percent per
year). IBM is estimated to invest about 100 mil-
lion dollars per year in the development and as-
sociated manufacturing process pipelines.
Because of this massive investment, the IBM
disks essentially establish the state-of-the-art
line in a structure that is typified by Figure 23.
Using the pipeline development process, devel-
opment of competitive disks by other com-
panies would lie somewhere about four to six
years behind the state-of-the-art line. This can
be seen by looking at the development process
and taking into account the delays through each

slowly.

stage. To be more competitive, the disk industry
short circuits various delays by engaging in re-
verse engineering; this results in only two-year
lags. In reverse engineering, the tools are mi-
crometers and reverse molds. At the time of the
first shipment of a new product by the tech-
nology leader, the product is purchased by com-
petitors and basically copied on a function per
function basis. The more successful designs use
pin for pin compatibility to take maximum ad-
vantage of the leader’s design decisions.

From the process, it is also easy to see how
merely copying competitive products guaran-
tees products that will be at least two years be-
hind leadership products and lagging behind
the state-of-the-art. Nonetheless, if there is a
strong market function which operates to define
products based on existing product use, and if
the design and manufacturing process at the
copying company is quite rapid, such a strategy
can be effective. The copying process can also
be very effective for software products because,
while there are no delays associated with manu-
facture, the time to learn about the product pro-
vides a time window in which copiers can catch
up with the leaders.

A high technology, exponentially increasing
(volume) product is denoted by:

Exponential yearly cost improvement
(price decline) rates through product
technology improvements as measured
by price decline of greater than 20 per-
cent (e.g., disk price this year = 0.8 last
year’s disk price, CPU = 0.79, primary
memory = 0.7).

Short product life (less than 4 years).

Various types of learning curves. Some
products require very little learning,
while others require a great deal of learn-
ing or require re-learning because of per-
sonnel turnover or the frequent hiring of
additional personnel.

60 COMPUTER ENGINEERING

The Product Problem (Behind the State-of-
the-Art)

Typical product situations, including com-
petitive “problems,” can be seen in Figure 25.
When a product is introduced to the market, it
has a relationship to the state-of-the-art line.
There are five possible situations:

1.

2.

3.

4.

Ideal (on the state-of-the-art line).

Advanced (moves below the line).

Late (slip in time to the right).

Expensive (more than expected in cost,
straight above the line).

Late and expensive (to the right and
above the line).

5 .

Situations 3, 4, and 5 are product problems
because they are behind the state-of-the-art line
and, hence, less competitive. This implies in-
creased sales costs, lower margins, loss of sales,
and so on. Note that a late product could be
acceptable if somehow the cost were lower.
Similarly, an expensive product is acceptable if
it appears earlier in time.

EFFECTIVE L A T E N E S S

EFFECTIVE
OVER COST

- O B

IDEAL NEXT
0 4 PRODUCT

c = 08t

0 1 2 3 4 6 6
T I M E (YEARS1

Figure 25
product cost problems and timing problems.

Use of the state-of-the-art line to model

Time Is Money (and vice versa)

Thus, product problems can be solved by ei-
ther:

1. Movement in time (left) to get on the
line.

2. Movement in cost (straight down) to get
on the line.

With exponential price declines, a family of
products over a long time will follow a cost
curve. c:

c = b X r f

where c = cost at time, t (in years), b = base
cost, and r = rate of price decline.

With dc = change in cost above (or below) to
get back to the state-of-the-art line and dt = de-
lay (or advance) in time to get back to the state-
of-the-art line, let:

f = dc /c = fraction of cost away from line
f = 1 - r d t = (poor cost, expressed as
project slip)

and:

dt = In (1 - f) /ln(r) = (poor timing, ex-
pressed as poor cost)

These formulas permit the interchange of time
and money (cost). For example, in disks or cen-
tral processors where r = 0.8 and 111.8 = 0.22,
note:

f = 1 - 0.8dt

A one-year slip is equal to a 20 percent cost
overrun.

dr = - 4.45 X in (1 - f)

A 10 percent cost increase is equal to a 0.47-
year slip.

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 61

Engineering, Manufacturing, and Inflation
Effects

Engineering, by establishing the product di-
rection, has the greatest effect on the product.
However, since most product problems may
have multiple components, it is worth looking
at each.

1 . Timing.
a. Engineering. Schedule slips translate

into a competitive cost problem as a
sub state-of-the-art, late product.

b. Manufacturing. Building up the
learning curve base quickly by mak-
ing many units before the design is
mature is risky, but it has a high
payoff when considering the appar-
ent cost and/or delay.

-
10 + z
YI z

P
8
10

0
*
Y 0
c
10 0 v

u
-
s

2. cost.
A number of components and organiza-
tions contribute to the total product cost
in an evolutionary fashion, as shown in
Figure 26.

\ NET = f ILEARNING TECHNOLOGY
INFLATION. FUNCTIONALITYI

-y4 MANUFACTURING ASSEMBLY
ILEARNINGI

NEW TECHNOLOGY.
MATERIALS

INFLATION FACTOR

INCREASE IN FUNCTIONALITY
IENGlNEERlNGl

Figure 26.
product cost.

The various components that contribute to

a. Engineering. Perhaps the major de-
terminant of cost by the product de-
sign - number of parts, ease of
assembly, etc. The most common
cost problems occur by continued
product enhancement during the de-
sign stage to provide increased func-
tionality (called “one-plussing the
design”). One-plussing often occurs
because the market had not been
modeled before the design was be-
gun, and without a model of the
market, engineering is a ship with-
out a rudder.

b. Manufacturing. Direct labor and
manufacturing overhead really mat-
ter when determining productivity.
Making major changes in the design
of a product or the location of man-
ufacture for a product starts a new
learning curve and serves to stretch
the production time out, and the in-
creased costs associated therewith
put false pressure on engineering to
design new products. One curve in
Figure 26 shows the direct costs as-
sociated with manufacturing assem-
bly. Some learning should take place
as long as product volumes increase
exponentially, to get a net lower
cost. New technology materials
show the greatest cost improvement
for computers, assuming that semi-
conductors and other electronic ma-
terials continue to improve with
time. By capital equipment invest-
ment (tooling), there can be stepwise
cost reductions in materials costs.

c. Inflation. While not a direct cost
function, it combines with labor cost
to negate the downward cost trends
that were obtained from learning ef-
fects.

62 COMPUTER ENGINEERING

d. Compound Cost. The costs are taken
altogether. In terms of a sub state-
of-the-art product, the costs are
compound.

3. Manufacturing learning. Learning curves
and forgetting curves really matter. Left
alone, a typical product may go down
three alternative paths (Figure 27):
a. c = b X 0.95‘

(a decrease of 5 percent/year)
b. c = b

(staying constant with little atten-
tion)
c = b X 1.06‘
(increasing with inflation as little
learning occurs after many units are
produced)

Where c = cost at time, t (in years), and
b = base cost.

c.

M id-Life Kicker for Product Rejuvenation

By enhancing an existing product (the “mid-
l ife k i c k e r ”) , o n e c a n i m p r o v e t h e
cost/performance metric of a given product.
This is non-trivial, and for certain products
must be inherent @e., designed in). Under these
conditions, improvements in cost go immedi-
ately to get the product back onto the state-of-
the-art line. For example, a factor of 2 in per-
formance halves cost/performance. The effect

OBSOLESCENCE At ,
AT-T PROOUCTWITH

FORGETTING

CONSTANT COS1
P R O B L E M
AT T I M E ,

T t

Figure 27.
manufacturing learning.

Product cost versus time within

of doubling the density of a disk is to move the
product back to the state-of-the-art line by a
time shift. The preceding formula gives:

dt = 4.45 X In (0.5) = 3.1 years

This situation is shown in Figure 28 and is com-
pared with a 5 percent per year learning curve.

SUMMARY

The discussions above have attempted to
show how technology progress, particularly in
the areas o f semiconductor logic, semi-
conductor memories, and magnetic memory
media, have influenced progress in the com-
puter industry and have provided choice and
challenge for computer design engineers.

As was implied in the Structural Levels-of-
Integration and Packaging Levels-of-In-
tegration Views of Chapter 1, computer engi-
neering is not a one-dimensional undertaking
and is not simply a matter of taking last year’s
circuit schematics and this year’s semi-
conductor vendor catalogues and turning some
kind of design process crank. Instead, it is much
more complicated and includes many more di-
mensions.

Two additional dimensions with which a dis-
cussion of computer engineering must deal, be-
fore going on the DEC computers as case
studies, are packaging and manufacturing.
These are discussed in Chapter 3.

I P

0 1 1 3 4 5

TIME

Figure 28.
of cost/function.

Product cost improvement by enhancement

3

Packaging and Manufacturing
C. G O R D O N BELL, J. CRAIG MUDGE,

and J O H N E. M c N A M A R A

As indicated in the previous chapter, com-
puter engineering is more complicated than
simply applying new technology to existing de-
signs or designing new structures to exploit new
technology. To design a successful new com-
puter, the engineer must often deal with issues
of packaging, manufacturing, software com-
patibility, marketing, and corporate policy.
Some of these issues have been briefly referred
to in the first two chapters, and some are be-
yond the scope of this text. However, two issues
that can and should be discussed before explor-
ing the case studies are packaging and manufac-
turing. Both of these are crucial to DEC, as well
as to the computer industry in general.

GENERAL PACKAGING

Packaging is one of the most important ele-
ments of computer engineering, but also one of
the most complex. The importance of packag-
ing spans the size and performance range of
computers from the super computers (CDC
6600, CDC 7600, Cray 1) to the pocket calcu-
lator. Seymour Cray, the designer of the super
computers cited, has described packaging as the
most difficult part of the computer designer’s

job. The two major problems he cites are heat
removal and the thickness of the mat of wires
covering the backplane. (The length of the wires
is also important.) His rule of thumb indicates
that with every generation of large computer
(roughly five years), the size decreases by
roughly a factor of 5, making these problems
yet worse. In his latest machine, the Cray 1, the
C-shaped physical structure is an effort to re-
duce the time-consuming length of backplane
wires while providing paths for the freon cool-
ing system by having wedge-shaped channels
between the modules.

At the opposite end of the size and perform-
ance range, pocket calculators are also greatly
influenced by packaging. In fact, they are deter-
mined by packaging. The first hand-held scien-
tific calculator, the Hewlett-Packard HP35, was
simply a new package for a common object, the
calculator, which had been around for about a
hundred years. It was not until semiconductor
densities were high enough to permit implemen-
tation of a calculator in a few chips, and not
until those chips could be repackaged in a par-
ticular fashion, that the hand-held calculator
came into existence. Currently this embodiment
is synonymous with the calculator name, but

63

64 COMPUTER ENGINEERING

other forms are appearing. The calculator
watch, the calculator pencil, the calculator
alarm clock, and the calculator checkbook have
all been advertised.

Between the two extremes of super computers
and calculators, packaging has also been impor-
tant in minicomputers and large computers. In
particular, packaging seems to be the dominant
reason for the success of the PDP-8 and the
minicomputer phenomenon, although market-
ing, the coining of the name, and the ease of
manufacture (also part of packaging) are alter-
native explanations. The principal packaging
advantage of the PDP-8 over predecessor ma-
chines was the half-cabinet mounting which
permitted it to be placed on a laboratory bench
or built into other equipment, both locations
being important to major market areas.

The Packaging Design Problem

The importance of packaging is equalled only
by its complexity. The complexity stems from
the range of engineering disciplines involved.
Packaging is the complete design activity of in-
terconnecting a set of components via a me-
chanical structure in order to carry out a given
function. To package a large structure such as a
computer, the problem is further broken into a
series of levels, each with components that carry
out a given function. Figure 1 shows the hier-
archy of levels that have evolved in the last
twenty years for the DEC computers. There are
eight levels which describe the component hier-
archy resulting in a computer system.

For each packaging level there is a set of in-
terrelated design activities, as shown in Figure
2. The activities are almost independent of the
level at which they are carried out, and some
design activities are carried out across several
levels.

While the initial design activities indicated in
Figure 2 are each aimed at solving a particular
problem, the solving of one problem in com-
puter engineering usually creates other prob-

INTERCONNECTION COMPONENT HOLDING
STRUCTURE

COMPUTER
SYSTEM

EXT CABLES CABINETS ROOM.FLOOR

INT CABLES INOTES 121 CABINET CONSOLE POWER
FRAME

BACKPLANES lBPl
INT CABLES INOTEPl B O X l F R A M E

WIRE
PCB A N 0 MODULES MODULE HOLDERS.

INOTE 31
CONNECTORS

pcB OISCRET- ~ ~ ~

lN", .-
A

P R ~ T E D ,,< CIRCUITBOARD
IPCBI

h N LINE , . . -
PACKAGE

IDIPI

POLYSlLlCON SUBSTRATE

NOTES
1
2
3 Sometimer hand wired
4

N o t present # n second generation
Can be taken together as a single level bn later generations

Third and fourth genera110ns only

Figure 1.
fourth generation computer systems.

Eight-level packaging hierarchy for second t o

lems as side effects. For example, the integrated
circuits and other equipment that d o informa-
tion processing require power to operate. Power
creates a safety hazard and is provided by
power supplies that operate at less than 100 per-
cent efficiency. These side effects create a need
for designing insulators and providing methods
of carrying the heat away from the power sup-
ply and the components being powered. In this
way, cooling problems are created. Cooling can
be accomplished by conducting heat to an out-
side surface so that it may be carried away by
the air in a room. Alternatively, cooling can be
done by convection: a cabinet fan draws air
across the components to be cooled and then
carries the heated air out of the package into the

PACKAGING AND MANUFACTURING 65

I,
4 I

cc
I
I--
I

I
I
I *

I
,-e ELECTROMAGNETlC

SAFETY

MECHANICAL CHAAACTEAISTICS
IE G VIBRATION SIZE WEIGHT1

ACOUSTIC NOISE

COST TO

MANUFACTURE SERVICE . BUY MODIFY
s n i p DISCARD

DESIGN OPERATE

I VISUAL IMPRESSION I I [SHAPE. COLOR.TEXTUREI
PACKAGE

COMPONENTS

FUNCTIONAL BEHAVIOR AND . HOLDING STRUCTURE 1 PERFORMANCE FOR TASK
[MAINLY LOGICAL AND
MEMORY SYSTEM DESIGN)

RELIABLE SIGNAL TRANSMISSION 1
COOLING HEATING
HUMIDITY ENVIRONMENT

HEAT I E G WATERTIGHT) 4
I
I

I
I

POWER CONVERSION { ANDCONTROLPART }
I SYSTEMINTERFACE

Figure 2.
design activities.

Packaging - a set of closely interrelated

room. I n either case, the air conditioning sys-
tem is left with the problem of carrying the heat
away, and the fans associated with that system
are added to the fans associated with the com-
puter to create acoustical noise pollution in the
room, making it more difficult for people to
work. Furthermore, if the computer is used in
an unusually harsh environment, a special heat
exchanger is required in order to avoid con-
tamination of the components within the com-
puter by the pollutants present in the cooling
airflow.

Finally, the mechanical characteristics of a
particular package such as weight and size

directly affect manufacturing and shipment
costs. They determine whether a system can be
built and whether it can be shipped in a certain
size airplane or carried by a particular distribu-
tion channel such as the public postal system.
The mechanical vibration sensitivity character-
istics determine the type of vehicle (ordinary or
special air ride van) in which equipment can be
shipped.

It is also necessary to examine the particular
design parameter in order to determine whether
it is a constraint (such as meeting a particular
government standard), a goal (such as min-
imum cost), or part of a more complex objective
function (such as price/performance). Table 1
lists the various kinds of design activities and
constraints, goals, or parts of more complex ob-
jective functions that they determine. The table
also gives the dimensions of various metrics
(e.g., cost, weight) available to measure the de-
signs; many of these metrics are used in sub-
sequent comparisons.

Given the basic design activities, one may
now examine their interaction with the hier-
archy of levels (Le., the systems) being designed
(see Table 2). This is done by looking at each
level and examining the interaction of the de-
sign activities for that level with other design
activities (e.g., function requires power, power
requires cooling, cooling requires fans, fans cre-
ate noise, and noise requires noise suppression).

Computer Systems Level. The topmost
level in Table 2 is the computer system, which
for the larger minicomputers and PDP-IO com-
puters consists of a set of subsystems (proces-
sor, memories, etc.) within cabinets, housed in a
room, and interconnected by cables. The func-
tional design activity is the selection and inter-
connection of the cabinets, with a basic
computer cabinet that holds the processor,
memory, and interfaces to peripheral units.
Disks, magnetic tape units, printers, and termi-
nals occupy free standing cabinets. The func-
tional design is usually carried out by the user
and consists of selecting the right components

66 COMPUTER ENGINEERING

Table 1. Design Activities, Metrics, and Environment Goals and Constraints

Design Activity Environment and (Metrics]

Primary function and
performance (e.9.. memory)

Market, the consumer of the system
[Memory size in bits, operation rate in bitslsec]

Human engineering

Visual/aesthetics

Human factors criteria, competitive market factors

Market, other similar objects, the environment in which the object is to exist

Acoustic noise

Mechanical

Electromagnetic radiation

Power

Cooling and environment

Government standards, operating environment, market
[Decibels in various frequency bands]

Shippability by various carriers, handling, assembly/disassembly time
[Weight, floor area, volume. expandability, acceleration, mechanical frequency
response]

Government standards, must operate within intended environment
[Power versus frequency]

Operating environment, market
[watts, voltage supply range]

Market, intended storage and operating environment, government standards
[Heat dissipation, temperature range, airflow, humidity range, salinity, dust par-
ticle, hazardous gas]

Safety Government standards

cost
Cost/rnetric ratios

[Costlperformance (its function) - costlbit and cost/bit/sec, costlweight.
costlarea. cost/volume, costlwattl

Density metrics [Weight/volume. watts/volume, operation rate/volume]

Power metrics [Operation ratdwatt; efficiency = power out/power in]

Reliability (Reliability - failure rate (mean time between failures). availability - mean time
to repair)

to meet cost, speed, number of users, data base
size, language (programming), reliability, and
interface constraints. Aside from the functional
design problem, cooling and power design are
significant for larger computers. For smaller
computers, accessibility, acoustic noise, and vis-
ual considerations are significant because these
machines become part of a local environment
and must “fit in.”

Cabinet Level. Since the cabinet is the low-
est level component that users interface to and
observe, physical design, visual appearance,
and human factors engineering are important
design activities. For the computer hardware
designer, on the other hand, the component
mounted in the cabinet is usually the largest sys-
tem. Functional design efforts ensure that the
various components (Le., boxes) that make up a

PACKAGING AND MANUFACTURING 67

Table 2. Interrelationship of Hierarchy of Levels and Design Activities

Level of Packaging

Design Chip Computer
Activi ty Chip Carrier Module Backplane Box Cabinet System

Functional Logic c Configuration Selection of
electrical options right

components
by user

Human
Interface

Visual

Acoustic

Circuit design
physical
layout

Mechanical Buildable
and signal
transmission

Electromagnetic Noise coupling
interface and rejection

of radio
frequency
interference
(RFI)

Power Special
on-chiD

Cooling and Chip to
other cooling
environment special

environment

Safety

Dominant Circuit
design logic
activities

Physical Physical What fits Boxes and
layout layout and operates operable

configurations

Location of Placement
console, size for use
for use

Visible, Determines Set of .cabs,
bought for system attractive
integration appearance place to be

Ai r f low c Quiet for
vibration operators

and users

Shippable c Floor load
and room size
serviceable

In terlin tra-
module noise
coupling, RFI
containment
and shielding

RFI P Away from
containment, RFI input
external R F I (outside
shield ope rating

range)

Dist. and Dist. and Control, Interconnect By user
regulation regulation dist. and with computer special power

regulation system supplies for
high
availability

IC module IC to Module
cooling cooling
special
environment

Power for
various
systems

Logic L

Cooling and Source
covering

Determines Determines
safety if user safety
used at
this level

lnterbox
coupling to
room air
environment

Mechanical, Configuration User
power, visual, configuration
cooling, EMI, shipping design
acoustic EMI, safety

The box and backplane levels can be considered as a single level (alternatively, the box level may be eliminated in large systems).

68 COMPUTER ENGINEERING

cabinet level system will operate correctly when
interconnected. Safety and electromagnetic in-
terference characteristics are important because
the cabinet serves as the outermost place in
which shielding can be installed. Cooling and
power distribution must be considered, since a
number of different boxes may be mounted
within the same cabinet. Finally, the mechani-
cal structure of a cabinet must be designed to
maintain its physical integrity when shipped.

Box Level. Box level functional design con-
sists of taking one or more backplanes, the
power supplies for the box, and any user inter-
face such as an operator’s console and inter-
connecting them mechanically (see Figure 3).
For systems that are not sold at the box level,
no separate box is required, and the power sup-
ply and backplanes are mounted directly in a
cabinet (see Figure 4) or other holding structure

such as a desk or terminal case, so that box and
backplane design merge. If systems are sold at
the box level, then the visual characteristics may
be important; otherwise, the design is basically
mechanical and consists of cooling, power dis-
tribution, and control of acoustic noise. The
structure must be sound to protect the unit dur-
ing shipment.

Of all the dimensions to consider in the de-
sign, perhaps the most important is how the box
(or module mounting structure) is placed in a
cabinet. This placement affects airflow, ship-
pability, configurability, cable placement, and
serviceability, and is a classical case of design
tradeoffs. The scheme that provides the best
metrics, such as packaging density and weight,
may have the poorest access for service and the
most undesirable cable connection character-
istics. These characteristics are given in Table 3.

Table 3. Fixed, Drawer, and Hinged Box/Cabinet Mounting

Mounting Service Access Cabling Density Cooling Applicability

Fixed Good for either Best (i.e..
backplane or module. shortest)
but not both unless a
thin cabinet is used

Good for thin
or rear
cabinet
power supply
mounting

Best Box not needed:
(known) box can be used

Drawer One-side access Long and
movable

Drawer (with tilt) Good
for service

Drawer vertical Very good
mounting modules

Longer and
more movable
than non-tilt
version

Long and
movable

Short

Very high

Very high

High

Medium

Can be High density, self-
cooled* contained

Can be
cooled*

Hinged (module Very good Good (if Separate box is
backplane) fans are awkward

fixed to
cage)

*Density restricts cabinet airflow.

PACKAGING AND MANUFACTURING 69

REMOVABLE SIDE PANEL WEMOVhBLE TOP COVER

(a) Front view (with top cover)

BACKPLANE UNIT MODULE SIDE

\
POWER SUPPLY

\
POWER SUPPLY FAN

(b)

Figure 3.

Side view (with top cover removed).

PDP-1 1/05 computer box.

(a) Front view (with top cover)

Ib)

Figure 3. PDP-11106 computer box.

Side view (with top cover removed).

..

~~

70 COMPUTER ENGINEERING

Figure 4. Major components and assemblies of PDP-1 1/70 mounted in standard DEC cabinet

PACKAGING AND MANUFACTURING 71

Backplane Level. This level of design is the
final level of interconnection for the computer
components that are designed to stand alone,
such as a basic computer disk or terminal.
Backplane design is part of the computer’s log-
ical design. In second generation machines such
as the PDP-7 (Figure 24a, Chapter 6), the back-
plane was wire-wrapped. In the early 1970s
printed circuit boards were used to interconnect
modules (Figure 5). Secondary design activities
include holding, powering, and cooling the
modules so they will operate correctly. Since the
signals are transmitted on the backplane, there
is an electromagnetic design problem. For in-
dustrial control systems whose function is to
switch power mains voltages, additional safety
problems are created.

Module Level. In the second generation,
module level design was a circuit design activity
taking discrete circuits and interconnecting
them to provide a given logic function. In the
third and fourth generations, this interface be-
tween circuit and logic design moved within
chip level design, so that module level design
became the process of dealing with the physical
layout problems associated with logic design.

7 B A C K P A N E L P I N S

,LAYER4

IPLATEDTHROUGH

TO LAYER 11

LAYER 1
1-5 VI

I G R O U N D I

LIPLATED THROUGH
TO LAYER 11

Module level design is basically electronic, so
power, cooling, and electromagnetic inter-
ference (cross talk) considerations dominate.

Integrated Circuit Package and Chip
Level. Most integrated circuits used in the com-
puter industry today are sold in a plastic or ce-
ramic package configuration that has two rows
of pins and is called a dual inline package
(DIP). The majority of the integrated circuits in
the module shown in Figure 6 are 16-pin DIPS.
Because of the popularity of this packaging
style, the terms “integrated circuit,” “chip,”
and “DIP” are often used interchangeably. This
is not strictly correct; an integrated circuit is ac-
tually a 0.25- X 0.25-inch portion of semi-
conductor material (die or chip) from a 2- to 4-
inch diameter semiconductor wafer. Except for
cases where multiple die are packaged within a
single DIP, the integrated circuit, chip, and DIP
can be discussed as a single level.

Design considerations at the integrated cir-
cuit level include power consumption, heat dis-
sipation, and electromagnetic interference.
Because some integrated circuits are designed to
operate in hostile environments, there is consid-
erable mechanical design activity associated

Figure 5.
backplane.

Cross-section of a printed circuit Figure 6. LSI-1 1 processor with 8 Kbytes of memory
and microcode for commercial instruction set.

PACKAGING AND MANUFACTURING 71

Backplane Level. This level of design is the
final lcvel of interconnection for the computer
components that are designed to stand alone,
such as a basic computer disk or terminal.
Backplane design is part of the computer's log-
ical design. In second generation machines such
as the PDP-7 (Figure 24a. Chapter 6). the back-
plane was wirbwrappcd. In the early 19709
printed circuit boards were used to intewnnwt
modulcs (Figure 5). Secondary design activities
include holding, powering, and cooling the
modules so they will operate correctly. Since the
signals arc transmitted on the backplane, there
is an electromagnetic design problem. For in-
dustrial control systems whose function k to
switch power mains voltages, additional safety
problems arc created.

Module Level. In the second generation,
module level design was a circuit design activity
taking discrete circuits and interconnecting
than to provide a given logic function. In the
third and fourth generations, this interface be-
tween circuit and logic design moved within
chip level design, so that module level d a i i
bccame the process of dealing with the physical
layout problems associated with logic d c s i

.

Module level design is basically elcctronic, so
power, cooling, and electromagnetic inter-
ference (cross talk) considerations dominate.

Inte@rated Circuit Padug. and Chip
Lwol. Most integrated circuits used in thtcom-
puter industry today are sold in a plastic or cc-
ramic package configuration that has two rows
of pins and is called a dual inline package
(DIP). The majority of the integrated circuits in
the module shown in Figure 6 are lbpin DIPS.
Because of the popularity of this pack-
style, the terms "integrated circuit," "chip,"
and "DIP" are often uscd interchangeably. This
is not strictly correct: an integrated circuit is ac-
tually a 0.25- X 0.25-inch portion of semi-
conductor material (die or chip) from a 2- to 4
inch diameter semiconductor wafer. Except for
cases where multiple die are packaged within a
sin& DIP, the integrated cucuil, chip, and DIP
can be discussed as a singk level.

Design considerations at the integrated cir-
cuit level include power consumption, heat die
sipation, and electromagnetic interference.
&cause some integrated circuits are designed to
operate in hostile environments, them is consid-
erable mechaRical design activity associated

Figure 6.
backohm.

Ocm8-wction of a pintad circuit

-I-
Figure S. LSI-ll paces so^ with S Kbyt.s of mlll~ly
and microcode f a cornmrcid knhlchon set.

72 COMPUTER ENGINEERING

with packaging, interconnection, and manufac-
turing.

The Packaging Evolution

Figure 7 shows the relation of packaging and
the computer classes for the various computer
generations. For each new generation there is a
short, evolutionary transition phase. Ulti-
mately, however, the new technology is re-
packaged such that a complete information
storage or processing component (bit, register,
processor) occupies a small fraction of the space
and costs a small fraction of the amount it did

in the prior generation. Discrete events mark
packaging characteristics of each generation,
starting from 1 bit per vacuum tube chassis in
the first generation and evolving to a complete
computer on a single integrated circuit chip in
the fifth generation. Not only the size of the
packaging changed, but also the mounting
methods. In the first generation, logic units
were permanently mounted in racks, where they
were removable for ease in servicing in later
generations.

While the timeline of Figure 7 shows the
packaging evolution of a complete computer,
Table 4 shows how a particular component,

45 50 55 60 65 7 0 7 5 80

I I I I I I I I

V A C U U M TUBE +SECOND-

GENERATION F-FIRST
TRANSISTOR

P A C K A G I N G

H O L D I N G P-ROOM-CABINET- BDX- BOARD-CHIP

1 BITICHASSIS 1 B I T / M O D U L E 1 R E G / M D D U L E REG O N A CHIP P O N A CHIP C O N A C H I P
IF IXEDI

SUPER ERA 1101 U N l V A C l l O 3 C D C 1 6 0 4 C D C 6 6 0 0 C D C 7 6 0 0 CRAY 1

M A I N F R A M E ENlAC EDSAC 7 0 4 1090 S/360 P D P 6 S / 3 7 0

M I N I W H I R L W I N D LGP-30 P D P 1 P D P 8 PDP 1 1 / 7 0 VT78

M I C R O 8008 LSI 11

H A N D - H E L D

T E R M I N A L
IDESK TOPI

H P 3 5 STORED P R O G R A M

D U M B INTELLIGENT

Figure 7 . Timeline evolution of packaging.

Table 4.
Telegraph Line Controller

Packaging Hierarchy Evolution for Universal Asynchronous Receiver/Transmitter (UART)

Generation

Early Second Late Second Early Third Late Third Late Fourth

Backplane,
Modules. 2 modules Module,
Discrete Discrete IC. I c.
Circuit Circuit Chip Chip Chip area

PACKAGING AND MANUFACTURING 73

now called the Universal Asynchronous Re-
ceiver/Transmitter (IJART), has evolved.

The UART logic carries out the function of
interfacing to a communications line that car-
ries serial data and transforms the data to paral-
lel on a character-by-character basis for entry
into the rest of the computer system. The
UART has three basic components: the se-
rial/parallel conversion and buffering, the in-
terfaces to both the computer and to the
communication line, and the sequential con-
troller for the circuit.

The UART is probably the first fourth gener-
ation computer component, since it is some-
what less complex than a processor yet rich
enough to be identifiable with a clean, standard
interface. *

THE DEC COMPUTER PACKAGING
GENERATIONS

With this general background on packaging,
one can examine the DEC packaging evolution
more specifically and against the general arche-
type of Figure 1. Figure 9 shows how the hier-
archies have changed with the technology
generations. The figure is segmented into the
different product groupings. A product is iden-
tified as being at a unique level if it is sold at the
particular packaging level. The first DEC com-
puters (i.e., PDP-1 to PDP-6) were sold at the
cabinet level as complete hardware systems. Al-
though the PDP-8 was available at the cabinet
level for complete systems, it was significantly
smaller than the previous machines and was
principally sold at the mechanical box level.

Figure 8.
of the late second generation.

4707 t ransmi t te r line unit

*Historically. D E C played a significant part in the development of the UART technology. With the PDP-I . the first UART
function was designed using 500-KHz systems modules and was used in a message switching application as described in
Chapter 6. T h e interface was called a line unit and was subsequently repackaged in the late second generation as two
extended systems modules (Figure 8). T h e UART function was also built into the PDP-8/1 using two modules that were
substantially smaller than those for the PDP-I . In the 680/1, a PDP-II/I-driven message switch, the UART function was
accomplished by programmed bit sampling. Late in the third generation (or at the beginning of the fourth generation), some
designers from Solid State Data Systems of Long Island, N.Y., worked with Vince Bastiani a t D E C and developed a UART
that occupied il single chip. This subsequently evolved into the standard integrated circuit and is used throughout the
industry.

PACKAGING AND MANUFACTURING

now called the Universal Asynchronous Re-
ccivcr/Transmittcr (UART), has evolved.

The UART logic carried out the "fundtion 0s
interfacing to a communicationa line t b t 001-
rim serial data and transforms the data to pard-
le1 on a charnckr-by-character basis for entry
into the r a t of the computer system. The
UART has three baric component% the 11c.
rial/parallel conversion and buffcripg, the in-
terfaces to both the computer apd to the
communication linc, and the ,rcqraatial con-
trolla for the cimit .

The UART is probablythe futt fourth gener-
ation computer component, since it is some-
what lars complw than a prbcsuor yet rich
enough to be identifiable with a dean, standnrd
intcrfacc.'

THE DEC COMPUTER PACKAOlNQ
QIIILRAT-

With t b i general background on packaging,
one can excwllno the DEC packaging evolution
more specifsally end againat the general ucho
type of Figure I . F i r s 9 rhowr how the hkr-
archia have changed with tke ta0an0-
generations. The figure ir ncgmcnted into Ihe
different product groupings. A product i i idea-
tificd as bbtni at ~uniqucbsvcl ff It
particular packngiug hwl. "he Iln
p m (Le,, PbP.1 ra PDp-6j
cabinet level 81 c o n ~ ~ b ~ b ~ ~ . AI-
thoogh the PDP-8 vli avJtrble at the &Mmt

prindpally mld at the matrslcraicrl bag h l .

b It w dgflfliormrv
I

74 COMPUTER ENGINEERING

GENERATIONS SECOND-THIRD-FOURTH-

COMPUTER
(NOTE 11
I S HELD BY

CABINET

BOX
[SLIDE OR
FIXED I N
CABINET1

PDP-8. 81s.
LINC.8.
P O P - 1 4
IRSERIES
FLIP CHIPI

BACKPLANE

NOTES

1 Processor. memory . and basic

2 Evolut ion f r o m box with m u l t i p l e backplanes

I/O control ler logic

in terconnected by cables t o a single

box and b a c k p l a n e L e , 1 level) .

M O D U L E

M O D U L E S

IM SERIES
FLIP CHIPSI

LEGEND

\
(MODULE S E R I E S) - -- EVOLUTION - PART OF H I E R A R C H Y

\

M O D U L E It IC c n i P

C M O S 8
(B O A R 0 ONLY1

Figure 9 DEC physical structure (packaging) h i e r a r c h i e s by technology generation

Subsequently, computer systems became avail-
able at the backplane level (LSI-1 l), and at the
module level (CMOS-8).

The original packaging hierarchy for most of
DEC’s second generation computers used a rel-
atively common packaging scheme based on the
PDP- 1 . The most significant change occurred
late in the second generation when Flip Chip
modules (Figure 9) were introduced so that
backplanes could be wire-wrapped automat-
ically.

The change to wire-wrap technology not only
reduced costs and increased production line
throughput, it also enabled the box-level pro-
duction of computers. The change to wire-wrap
and two level products (box and cabinet) is
clear in the second generation. The offering of

products at these two levels continued into and
through the third generation.

With the advent of the fourth generation,
large-scale integration permitted the construc-
tion of a complete minicomputer processor on a
single module. Although components are sold
as separate modules (e.g., processor, commu-
nications line interfaces, additional primary
memory), a complete system requires a back-
plane; thus, the lowest level for the product is
the backplane. For larger systems, a power sup-
ply is combined and placed in a metal box. A
typical example of such a product is the LSI-11,
which is marketed at three levels as shown in
Figure 9.

The late fourth generation has brought the
processor-on-a-chip, and another packaging

PACKAGING AND MANUFACTURING 75

level to the price list. An example of the proces-
sor-on-a-chip is the CMOS-8, described in
Chapter 7. The new packaging level offered to
the customer is the CMOS-8 module, which is a
single-board complete computer with proces-
sor, 16-Kword memory, and all the optional
controllers to directly interface up to five pe-
ripheral options.

DEC Boxes and Cabinets

Since the function of the cabinet and box is to
hold backplanes that in turn hold modules that
in turn hold circuit level components, the metric
of electronic enclosures is the number of printed
circuit boards they hold. The earliest DEC
method of mounting was to place the back-
planes directly in a 6-foot-high cabinet which
held 19-inch-wide equipment in a 22- X 30-inch
floor space and weighed about 185 pounds. Fig-
ure 10 shows the top view of the various cabi-
nets used to hold module backplanes and boxes
for minicomputers since 1960. The changes to
the basic DEC 6-foot cabinet have mainly been
for improved producibility. The latest (circa
1973) was to use riveted upright supporting
members so the cabinet could be assembled eas-
ily without requiring bulk space for shipment
and storage.

The original cabinet used the entire cabinet as
an air plenum so that air was forced between
the modules and out the front doors. When the
PDP-7 used the same cabinet and the module
mounting frame cut off the airflow, it was nec-
essary to add fans to the back doors to blow air
at the modules. Since cooling was one of the
weak points in the PDP-7, the PDP-9 used a
self-contained mounting and cooling structure
in which air was circulated between the modules
with air pulled in from outside without going
through the cabinet.

A second, later packaging method, initiated
with the PDP-8, packaged the metal-boxed
minicomputer inside the 6-foot cabinet. Figure
I I shows the significant boxes that have been

used to package minicomputers both within the
6-foot cabinet and freestanding. The box pack-
aging history begins with the PDP-8. The rows
of Figure 1 1 indicate the four ways that are
available to access the circuitry (fixed, book,
slides, and tilt for access). The PDP-8 design
was followed by the PDP-8/S design which ori-
ented the modules with the pins up for access to
the backplane. By tilting (rotating) the box, the
handle side of the modules could be accessed.
For the PDP-8/1 (not shown), modules were
mounted in a vertical plane.

Several fixed backplane module mounting
structures were formed beginning with the
PDP-8/A (1975), which was the first DEC mini-
computer since the PDP-5 to be mounted in a
fixed structure in a cabinet.

DEC Backplanes

Backplanes provide the next level-of-in-
tegration packaging below cabinets and boxes;
they are used to hold and interconnect a set of
modules which form a computer or an option
(e.g., processor, memory, or peripheral con-
troller). Figure 12 gives the relative cost of in-
terconnecting backplane module pins. Here the
cost per interconnection is roughly the same as
with a printed circuit module interconnection
(Figure 13). This can be somewhat misleading
because backplanes require a negligible cost for
testing and few failures occur during testing.

Figure 12 shows various kinds of inter-
connection technologies. Even though there are
exponential increases in quantities produced,
the cost continues to increase in the long run
with only occasional downward steps. The
greatest cost decline occurred when inter-
connections were carried out using automatic
wire-wrap machinery, but the PDP-8/E was
equally significant by being the first DEC com-
puter to use a completely wave-soldered back-
plane. Figure 12 also shows how effectively the
module pins were used (Le., whether all avail-
able pins were used).

76 COMPUTER ENGINEERING

’ l 2 5 X 121 25 132x241 32
SYSTEMS MODULES 160-641 FLIP CHIP MODULES

POP 1. 4. 5 6. ORIGINAL CABINET 1641 POP 1

w
166-691

POP 9 LlNC 8 POP 12

50 INCHES HIGH

PSANDPC m
FLIP CHIP 167-121

K A 1 0 . K I K L

CABINET
TO HOLD

METAL BOXES

167- I
ALLPOP11S

WINCHES HIGH

CABLING AREA

4 i N : H E s k

ALLCABINETS 72 INCHES H I G H

TOP VIEWS

PO- POWER SUPPLY
PC - P W E R CONTROLLEl

HEX FLIP CHIPS POP 11/60 1771 SUPER HEX FLIP CHIP VAX 11l780 I781

NOTE
60 INCHES HIGH Air m 1 w 5

st top PS
under modules

1
SUPER HEX 1781

DECSYSTEM 2020

Figure 10. Cabinets used to hold various DEC computers (in fixed, book. and box configurations).

PACKAGING AND MANUFACTURING 77

SLIDES A N 0 BOOK

32 INCHES HIGH

21 INCHES HIGH

FLIP CHIP

PDP 8/A EA11 N B A l l P

HEX AND
QUAD

175. 761

IFRONTOR BACK1
1771

PDP 11/03.

EXT HEX
1771

PDP-11/10

SLIDES A N D TILT

EXT QUAD
1721

PS = POWER SUPPLY
PC = POWER CONTROLL6 R

c

31 INCHES HIGH

EX1 HEX-BA11-F
ISlMlLARTO PDP-B/I -681

POP-11/45.40. 70lPROCESSORl
1721

PDP 11/20
ISlMlLAR TOPDP 8 /EI

3

EXT HEX
1741

PDP 11/04.34.70 IMEMORVI
OPTIONS
BA11-K

. .. -. . . -
PDP 11/041BASEDON P O P - l l I O 5 I

Figure 1 1. Boxes used to hold various DEC PDP-8 and PDP-1 1 series minicomputers.

78 COMPUTER ENGINEERING

z
0
0 w z
z 0

z
2
0

w

5

36
HANOWIRED
A N 0
SOLDERED I WAVE SOLDERED

pLlo
ITWISTED PAIR AND

PC BOARD1

LEGEND

30 t -COST/AVAILABLE PIN

2 8 -

26 -
24 -
2 2 -

20 -
18 -

16 -
14 -

12 -
10 -
8 -

6 -

--- COST/ACTUAL PIN
0

-PINSfINZ ON BACKPLANE I

I

- POP W E IOMNIBUS-
ALLWAVE
SOLDERED
PC BOARD1

11178C

1960 1965 1910 1975 1980
YEAR

Figure 12. Relative cost per possible and actual inter-
connection versus time for various DEC computer back-
planes; also pin density (in pins per in2) versus time.

2 0 I 1

w

4

18 -
16 -
14 -
12 -
10 -
8 -

6 -

4 -

2 -

1960 1965 1970 1975 1980
YEAR

Figure 13.
printed circuit board modules versus time.

Relative cost per interconnection on DEC

DEC Modules

Since the function of modules is to inter-
connect and hold components, the metrics for
modules are the area for mounting the com-
ponents and the cost of each circuit inter-
connection. For minicomputers, the emphasis
has been to have larger modules with more
components packed on a module as a means to
lower the interconnection cost. Figure 14 shows
the area of DEC modules and the number of
external pins per module versus time. Because
integrated circuit densities have been increas-
ing, in effect providing lower interconnection
costs, a given module automatically provides
increased interconnects simply by packaging
the same number of integrated circuits on a
module. Obviously, one does not want to credit
this effect to improved module packaging. By
increasing the components per module, the cost
per interconnect can be reduced provided the
cost to test the module increases less rapidly
than the increase in components. The emphasis
on module size is usually most intense for larger
systems, where a relatively large number of
modules are needed to form a complete system.

Until recently, the increase in module area
was accompanied by increases in the number of
pins available to interconnect to the backplane.
In the case of the VAX-11/780 and the DEC-
SYSTEM 2020, the number of pins did not in-
crease significantly over previous designs,
although the board area was 50 percent larger.
I n these cases, the number of integrated ciruits
that could be cooled limited the density. In
other cases, either the number of pins or the
module size limited the module's functionality.
There are similar effects throughout the gener-
ations.

I n the early second generation Systems Mod-
ule designs, the number of pins and the circuit
board area (in square inches) were about the
same. Components were fairly large and loosely
packed on modules. With the Flip Chip series,
circuits were modified to pack a larger number

PACKAGING AND MANUFACTURING 79

200

150

-
N 5
5
4

0
IL U

vi 1oc

I

5c

0

I . L
I

LARGE, FLIP CHIP E X T E N D E D I

A P----
I
I

~~

I E X T E N D E D -

M O D U L E A R E A

NVIMBER OF PINS
I I N T E R C O N N E C T I O N S TO
BACKPLANE

PDP 6

P - PIN L IMITED
M - M D D U L E L IMITED

B ~ 8AI.ANCED P D P 6n

MEM A

(IUAD

IP 11/20

i HEX f D P 11/05

I /

PDP

REG

a
U A R U A T

a

CHIP a

A

E X T E N D E D
DOUBLE O M

LS1-11/2

I I I I I I I I I 1 I
1958 1960 1962 1964 1966 1968 1970 1972 1974 1976 1978 7980

YEAR

Figure 14. Module printed circuit board area and number of pins per module versus time for DEC modules.

of smaller components on a single module, us-
ing automatic component insertion equipment,
and some of the space-consuming components
(e.g., pulse transformers) of the earlier circuits
were removed so that a module design was a
better balance between area and pins. As a re-
sult, the early second generation Flip Chip
modules had higher packing densities than
comparable Systems Modules.

With the beginning of the third generation,
the need for more printed pins to the backplane
was clear because so many interconnections

were made on the computer's backplane. The
PDP-8/1 was the first DEC integrated circuit
computer, and the packaging philosophy
strictly followed that of the second generation.
As a result, the sudden increase in component
functions meant that the modules were drasti-
cally lacking in pins. By putting pins on both
sides of the module, the number of pins for a
double-height module (20 in2) was increased
from 36 to 72, which was still inadequate. As-
suming that each integrated circuit has 14 signal
pins and a module has 70 signal pins, only 5

80 COMPUTER ENGINEERING

integrated circuits could be placed on a board
and still have pins brought out to the backplane
pins, although the 20-in2 area of the module
could potentially hold 20 integrated circuits.

Although the 8 / I was packaged using the 20-
in2 72-pin modules, it was clear that another
packaging scheme was necessary to utilize in-
tegrated circuits, modules, pins, and back-
planes. Thus, when the PDP-11/20 and the
PDP-8/E were designed (about 1970), they used
larger modules in order to carry the large num-
ber of intramodule interconnections required
when many integrated circuits were placed on a
single module.

It is interesting to note that in a recent case of
a processor using high density integrated cir-
cuits, the LSI-11/2, the module area was too
large to have a single option on a module, and
since the LSI-11 Bus only required a few sig-
nals, the number of pins was more than ade-
quate. Here, the modules were functionality
limited rather than pin limited. Figure 14 in-
dicates situations in which either pins or mod-
ules limited the design.

Although the size of the module is important
in determining the systems that can be built,
how they are serviced, and how they are manu-
factured, the important module metric is the
cost per interconnection on the printed circuit
board (and remainder of the system). Figure 13
shows how this has varied with time. Here one
can see that the introduction of Flip Chip mod-
ules initially increased costs (because learning
had to start almost anew).

Interconnection costs consist of the costs of
the printed circuit board, the insertion of the
components on the module, and the testing of
the module. Printed circuit board costs have
been decreasing with time, reflecting benefits
both of learning and of placing more integrated
circuits on a single module, giving a compound
economy-of-scale effect. The cost to assemble
the components on the module have decreased
rapidly, reflecting the increasing use of auto-
matic component insertion machines. Testing

has not been a significant cost component in
module manufacturing, although it does repre-
sent a substantial cost by the time the module
has been integrated into a system and delivered
to the customer’s site. The total cost per inter-
connection has been decreasing, but the trend
may either remain constant or even increase as
greater use of large-scale integration decreases
the number of total connections in a system but
makes the remaining interconnections more ex-
pensive to assemble and test.

Many of the important problems in packag-
ing, specifically heat and electromagnetic inter-
ference, originate not from a computer’s logic
but rather from the power supplies that power
the logic.

POWER SUPPLIES

Although logic functions can be performed
using small quantities of electrons and can thus
be accommodated in very small physical struc-
tures, the power to move those electrons at use-
ful speeds comes from power supplies which do
not scale down in size as readily as the logic
functions they support. Power supply tech-
nology has not provided the impressive in-
creases i n capability per dollar or capability per
cubic foot that semiconductor technology has.
Power supplies involve such materials proper-
ties as voltage breakdown limits, dielectric con-
stants, magnetic permeability, and heat
conductivity. Since these properties vary with
physical dimension, increased capabilities in
terms of voltage breakdown rating, capaci-
tance, inductance, or heat dissipation are
gained by making the component physically
larger.

The performance criteria for power supplies
are predominantly determined by the appli-
cation for which they are designed. These cri-
teria are given in terms of various efficiencies of
volume, weight, power conversion, and cost. It
is somewhat difficult to compare the various
supplies because all are available at different

PACKAGING AND MANUFACTURING 81

Table 5. Characteristics of Power Supply Types

Terminal Processor and Memory Disk and Tape

Power (watts)

Use

Quantity in system

Cost sensitivity

Size

Weight

Reliability

Features

250-2500

Logic

Low to medium

Low

Important. especially in
boxed computers

Relatively unimportant

Very important

Power line sensing,
battery backup

100-500

Very low noise for head
electronics; high current for
servos

Medium

Medium

Not important

Not important

Important

0-1 50

High voltage for CRT; high
current for mechanical
motions

High

High

Very important

Very important

Important

times, produced in different quantities, de-
signed for different reliabilities, and available
with different features.

For the computer industry, power supplies
can be divided into three main categories: pro-
cessor and memory power supplies, disk and
tape power supplies, and terminal power sup-
plies. Each of these product categories has a
unique set of requirements, which are summa-
rized in Table 5.

Three of the four efficiency measures, cost (in
relative cost per watt), weight (in watts per
pound), and volume (in watts per in3), are
plotted for processor power supplies in Figures
15 and 16. The plots in Figure 15 use a time
axis; those in Figure 16, a watts-of-output axis.
The fourth efficiency measure, power con-
version (watts out per watts in), is given in Fig-
ure 17 using a time axis.

The cost of a power system is very dependent
on the unit’s electrical size and technology. The
features required on the units such as power line
monitoring (ac low, dc low), battery backed-up

power, and servicing aids also significantly in-
fluence the cost. Since the cost is size depend-
ent, a relative metric, dollars per watt, is chosen
for processor power supplies.

In the cost characteristics the different bands
of cost curves are technology dependent: they
span new, mature, and obsolete technologies.
For example, the cost of power supply tech-
nology until just recently depended on iron and
copper prices and labor costs. Now, costs of
power supply technology tend to track semi-
conductor costs as a result of the widespread
use of line switching power supplies. Bands
within the cost curves represent the size depend-
ency; larger power supplies are the most cost-
effective, with one exception (Figures 15a and
16a).

The size of power supplies for minicomputers
has been important, especially for the boxed
versions. The volume occupied by logic has de-
creased for the constant functionality com-
puter; however, power requirements have
declined far less than logic volume, and hence

82 COMPUTER ENGINEERING

25

20

m 15 ,
(0

2

1 0

0 9
0 :250 WATTS 0

0 8 0

A
A LINE SWITCHING

a -

-

-

I 0 >400WATTS

1962 1954 1965 1968 1910 1972 1974 1976 1978 1980

YEAR

(a) Cost efficiency (in relative cost per watt).

0
LINE SWITCHING

0

2 STAGE
,LOW VOLTAGE

SWITCHING

0 0
.FERRORESONANT IPOP-11

1952 1964 1966 1966 1970 1972 1974 1976 1978 1980

YEAR

(b) Weight efficiency (in watts per Ib)

LINE SWITCHINGO 0 8

" 7 I

0 1 I I I I I I I
1962 1954 1966 1968 1970 1972 1974 1976 1978 1980

YEAR

1 0

0 9
A

" : P I I I I I , 1
0

0 100 200 300 400 500 600 700

WATTS

(a) Cost efficiency (in relative cost per watt).

(b) Weight efficiency (in watts per Ib).

ASWITCHING

0 6

0 1M) 2 W 3W 400 500 600 700

WATTS

(c) Volumetric efficiency (in watts per in3). (c) Volumetric efficiency (in watts per ins).

Figure 15. Cost, weight, and volumetric efficiencies Figure 16. Cost, weight, and volumetric efficiencies
versus time for various DEC computer power supplies. versus size for various DEC computer power supplies.

PACKAGING AND MANUFACTURING 83

4 3O

k 20

10

- 6 2 0 0 W A T T S

- 0 > 4 0 0 W A T T S

-
0 1 I I I I I I I 1

Figure 17. Power supply efficiency (watts out per
watts in) versus time for various DEC computer power
supplies.

0 1

0 1

0'

v) z
0:

2

o a

0 1

0

.M

.
PDP 8 IA

.L
.F

.I(

.P

.N

. E * D .
PDP %/A

1972 1974 1976 191

YEAR

Figure 18.
DEC computer boxes.

Heat density (kilowatts per ft3) of various

power densities have increased. Where 250
watts used to suffice for a 10.5 X 19 X 25-inch
box, 800 watts is now required, and the space
for the power supply has barely increased. This
has put substantial constraints on the weight
and efficiency of power systems; and, at times,
space utilization has been (inadvertently) traded
for cost, manufacturability, and serviceability.

In response to these space pressures, there
has been a constant gain in volumetric effi-
ciency (Figure 156) over the years with the
highly dense power supplies on the top of the
band and the modular packaged units on the
bottom. With the introduction of line switching
power supplies, this curve made a quantum
jump. The increase in volumetric efficiency,
plotted relative to time in Figure 156, is plotted
relative to power output in Figure 16b.

Power supply technology determines not only
volumetric efficiency but also the weight of the
unit. Here again the use of high frequency line
switcher technology rather than low frequency
transformer technology has produced marked
results - in this case, two distinct curves.

The weight efficiency (watts per pound) has
been fairly constant over time but has shown a
slight improvement as larger supplies were built
(Figure 16c).

Finally, Figure 17 shows how power supply
efficiency is improving with time. Note that
with direct line switching, efficiencies of 70 per-
cent are expected. This efficiency permits the in-
crease in volumetric efficiency because there is
less heat to dissipate.

HEAT

Although the volumetric measures of module
area and the size of the cabinet are also impor-
tant, the amount of heat that the enclosure is
capable of dissipating is the most important
metric of reliability. Table 6 gives some of the
important metrics of several of the recent DEC
computer boxes.

Figure 18 gives the heat density for the vari-
ous boxes. The amount of heat dissipated by the

84 COMPUTER ENGINEERING

Table 6. Expansion Box Characteristics

Module Heat Heat
Weight Size Volume In Density Space Box Used

Model On Year (Ib) (ft3) Modules ft3 (kW) (kW/ft3) Efficiency

BA11-D 11/35 1974 100 2.6 24 hex 0.93 0.7 0.27 0.35
BA11-E 11/45 1972 100 2.6 27 quad 0.7 0.7 0.27 0.27
BAl1-F 11/40* 1972 260 5.3 44 hex 1.7 2.2 0.42 0.32
BA11-K 11/04? 1974 110 2.6 24hex 0.93 1 .o 0.38 0.36
BA11-L 11/04 1976 50 1.3 9 hex 0.35 0.55 0.43 0.27
BA11-M 11/03 1975 25 0.5 4quad 0.1 0.25 0.54 0.24
BA11-N 11/03 1977 40 1.0 9quad 0.23 0.24 0.31 0.22
BA11-P 11/60 1977 100 3.0 29 hex 1.1 1.1 0 .36 0.22
BA8-CA 8/A 1975 117 2.4 20quad 0.52 1.2 0.50 0.22
H9300 8/A 1977 55 1.1 10quad 0.26 0.3 0.26 0.24
H9500$ 111780 1978 344 43.4 67 exthex 3.7 6.0 0.15 0.10

*Also 11/45 and 1 1/70.
?Also 11/34 and 11/70 memory.
$Actually a cabinet.

box (in kilowatts per cubic foot) has been rela-
tively constant with time. There has been great
variation about the norm, and the very high
heat dissipation of the first PDP-8/A (due to
high packing density and a relatively inefficient
power supply) resulted in the next design being
of lower density. The space utilization follows a
similar path, although the efficiency appears to
be declining (Figure 19). This decline is hardly
noticeable and is even surprising in light of
more efficient power supplies which make it
possible to place more components in a given
enclosure. The cost-effectiveness of the average
enclosure, as measured by the material cost, is
declining with time as measured by the relative
cost of materials per cubic foot of modules held
(Figure 20).

The time chart gives a completely erroneous
view of the situation because economy of scale
is not considered. Figure 21 shows how the rela-
tive cost of box materials varies with the volume
(in number of hex modules). Here the upward
trend of the previous figure is not apparent, but
it merely occurs because later packages are for
smaller numbers of modules.

AN OVERVIEW OF MANUFACTURING

Although the result of a design project is an
entity which is manufactured, very little is writ-
ten about manufacturing i n the computer engi-
neering literature. Such literature generally
discusses algorithms, logic design, and circuit
technology. Yet for a computer to be com-
mercially successful, it must be manufacturable,
economically operable, and serviceable. More-
over, for most of the computer engineering dis-
cussed in this book, because the designs are
intended for volume production, engineering
costs are small (1 to 10 percent) compared with
other product and life cycle costs. The product
cost is determined by the price of the com-
ponents and the manufacturing process; the life
cycle cost includes the purchase price, the oper-
ational costs, and service costs.

For production, machines must be easy to as-
semble and test, repair must be rapid, engineer-
ing changes must be introduced smoothly, and
the production line cannot be held up because
of shortages of components - all parts of tradi-
tional manufacturing considerations.

PACKAGING AND MANUFACTURING 85

0 4

0 3

z
0
4.
N 2

2 0 2

i
YI "

0 1

0

. N

POP 8 I A

1
1972 1974 1978 197

YEAR

Figure 19.
foot) of various DEC computer boxes.

Space utilization (ft3 of modules per cubic

4

3

c
0

e 2

4
LT

1

0 I I I
1972 1974 1976 19;

YEAR

Figure 20.
ft3 of modules held) of various DEC computer boxes.

Cost payload (relative cost of materials per

4

3

c
0

4

1

C
10 20 30 40

NO OF HEX MODULES

Figure 21. Relative cost of box materials versus num-
ber of hex size modules for various DEC minicomputer
boxes.

The Life Cycle of a Product
Figure 22 shows a simplistic process flow for

the major phases and milestones in the life of a
product. In reality, planning and designs for
many of the phases go on concurrently. The
early research, advanced development, and def-
initional phases are not shown. Often, products
proceed from the idea stage to the engineering
breadboard and are then terminated because
they do not meet original goals or because bet-
ter ideas arise.

To facilitate changes, t he engineering
breadboard is usually built with wire-wrapped
rather than printed circuit boards if the circuit
technologies used permit the long wire lengths
characteristic of wire-wrapped boards. At or
before the breadboard stage, manufacturing
start-up schedules are made. Other organiza-
tions formulate and execute plans: systems engi-
neering, for product test/verification; software
engineering, for special software and veri-
fication; marketing, for promotion and product
distribution; sales, for training; field service, for
training and parts logistics; and software sup-
port.

86 COMPUTER ENGINEERING

b
LIMITED

RELEASE OF
PRODUCT B E G I N

PRODUCTION

DESIGN

MANUFACTURING

Figure 22. A simplified process flow for the major
phases and milestones in the life of a product.

After the engineering breadboard has been
debugged, construction of engineering pro-
totypes begins. The engineering prototypes test
the design using the actual printed circuit mod-
ules that will be used in manufacturing. Usually
a number of prototypes are constructed, the
number varying from 10 to 100 depending on
the complexity, cost, and anticipated product
volume. All processors and peripherals in the
planned systems configurations are tested in
conjunction with the prototypes. The complete
system must meet the product specifications
and must run all of the system software.

The requirement that all of the system soft-
ware be run is an excellent supplement to the
normal testing of prototypes. It is especially
useful when the product being designed is a pro-
cessor with a mature architecture because more
system software is then available. Because the
number of possible states and state sequences in
a computer system is very large, a diagnostic
test which exercises every one is impractical. Di-
agnostic programs and microdiagnostics there-
fore test a judiciously chosen subset of all states.
Such programs are not perfect in their coverage,
however, and system software is run as well.
Thus, the more software that is available to test

a prototype, the less likely it is that a design er-
ror will go unfound. The general problem of
testing requires much more work before it can
be considered mature. One would like to see,
for example, the automatic generation of veri-
fication programs from an ISP description of
the architecture being built.

Design maturity testing with a number of en-
gineering prototypes verifies the design and jus-
tifies the risk of releasing the design t o
manufacturing. Tests for reliability and func-
tionality are conducted. Environmental tests for
shock, temperature, humidity, static discharge,
radiation, power interrupt, and safety are also
conducted at this stage.

The release to manufacturing is a major mile-
stone. The product is placed under formal engi-
neering change control to ensure that everyone
knows what version of the documentation is
current; specifications and documentation are
available for the product and manufacturing
process. For the integrated circuits, sources of
supply and testing procedures are in place. Pro-
cess control tapes are ready for the numerically
controlled machine tools, such as component
insertion, backplane wiring, and printed circuit
board drilling machines. Any special tooling for
the mechanical packaging has been obtained.
Testing at all levels has been specified; test pro-
grams for computer-controlled testers have
been written, special test equipment has been
built, and diagnostic programs are ready.

For some products, particularly processors, a
pilot run is manufactured. The pilot run shakes
down and verifies the actual manufacturing
process by building a small number of units, us-
ing the product, and processing documentation
at the manufacturing plant.

Product announcement usually occurs during
the design maturity testing period but can occur
at any time - often as early as when the
breadboard works or as late as the first cus-
tomer shipment, depending on the marketing
strategy. This strategy is clearly a function of
the volume, novelty, and competitive needs.

PACKAGING AND MANUFACTURING 87

Figure 23. Overview of manufacturing computer system flow

Process maturity testing verifies that the
product is being manufactured with the desired
cost, quality, and production rate. After process
maturity testing, the steady state phase of man-
ufacturing continues (with possible per-
turbations due to the introduction of product
enhancements, engineering change orders, or
process changes to lower product costs) until
the product is phased out.

Manufacturing Process Flows

An overview of a manufacturing process is
given in Figure 23 which shows how a product
moves through the various factories. There are
often different plants for boards, peripherals,
memories, and central processors. Integration
from the other stages and stock storage occurs
at the stage called “final assembly and test”
(Figure 24). Here, the software system that is to
be run , operations manuals, and other docu-
mentation are also integrated and tested.

Figure 25 gives the complete flow for a typi-
cal volume manufacturing line, the PDP-I 1/60
central processor facility in Aguadilla, Puerto
Rico.

Testing

Since testing occurs at each stage in the man-
ufacturing process, dedicated logic must be
added to the design to provide physical access
probes for the test equipment. To test a particu-
lar function, it must be specifiable, invokable,
and observable. For example, the function of an
adder can be clearly specified, but it cannot be
easily invoked or observed if its inputs and out-
puts are etch runs on a printed circuit board.
Several testing strategies are used: add signal
lines from the adder to the backplane where
there are adequate probe access points, probe
directly onto the module etch or pins, and sub-
sume the adder in a function whose inputs a n d
outputs can be more easily controlled and ob-
served. The problems of observation and con-
trol exist at all levels-of-integration. Examples
of observation points at each level for the PDP-
11/60 are given in Table 7.

The problem of testability must be addressed
at design time. Providing access for testing al-
ways incurs added product cost (extra logic and
module pins or circuit pins) but lowers manu-
facturing cost and field service costs. As gate

88 COMPUTER ENGINEERING

Table 7. Examples of Observation Points a t Each Structural Level for the PDP-11/60

Level in Stage in
Computer 0 bservation Manufacture
Hierarchy Point of Computer Example

Electrical circuit Transistor contacts on Semiconductor
metallization layer fabrication Wafer test with microprobe

Switching circuit Leads on IC Incoming inspection IC tester
package of ICs

Register transfer Etch run Module Probe on module
(module-specific tester)

Register transfer Backplane Module Memory exerciser for cache

Central processor Unibus Central processor Unibus voltage margin tester

Central processor Contents of memory Central processor Diagnostic programs at subsystem
level, e.g.. memory management unit
or processor instruction
set tests

Computer Contents of memory System integration Peripheral diagnostic programs

Computer Unibus System integration Bus exerciser

Figure 24. Final assembly and test (FA&T) for computer systems.

88 COMPUTER ENGINEERING

Tabla 7.

Lml in Stag8 in
C o m p w Ob.m.t ion Manuhoturn
Hler8rShv Point Of CornpuMr Example

Electrical circuit Transistor contectson Semiconductor

Switching circuit Lead8 on IC h o m i n g inspection IC tester

Register transfer Etch run Module Pmba on mcdule

Exampler of Observation Points at Each btructural Level for the PDP-ll/BO

msfallization layer h b r i i b n Wafer tart with micmprcbe

package of IC8

Irncdule-specific tester)

Register transfer 86ckplllM Modulo Memory exerciser for cache

Central procensor Unibus - i F - - u u Unibus wltage margin tester

Central proc~uor Conmtn of memory Cmwd pauor Diagnostic programs at subsystem
lmi. e.g.. memory management unit
or pmcsroor instruction
WL tern

Computer Conmnts of memory Synsm intagration P e r i p k a l diagnostic programs

Computer Unibus System integration Bur exerciser

Fiwre 24. Final slumhly and 0.t I F A W for computer syrtemr.

PACKAGING AND MANUFACTURING 89

P

b

MEMORY TEST

I
I
I

TESTED MODULES

T------

OPTION TESTED MODULES_(r---+--7--c--T ---- - -----
INTEGRATION MEMORY

SUPPLIES I ,4, I

z REPAIR

ISOLATION
A N 0 MODULE

REPLACEMENT a REPAIR

4-1
A N 0 REPAIR

Figure 25. The process flow for the PDP-1 1/60 manufacturing plant in Aguadilla. P.R

density per chip continues to increase, the prob-
lem worsens. One solution, which is economical
in 1 / 0 connections, is to design every storage
element as a shift register which can be loaded
in parallel (normal mode) or serially loaded
(with an invoking state) or serially read (with
the state to be observed). Eichelberger and Wil-
liams [1977] report on such a scheme for gate
array designs. The individual shift register
latches are connected to form one or more inde-

pendent shift registers which are connected to
the leads of the gate array package.

The testing which occurs at the various stages
of the manufacturing process can be classified
into three types according to the different fail-
ure modes anticipated. Type 1, a static test, is
intended to find process-related faults. Exam-
ples are solder shorts, open-circuit etch con-
nections, dead components, and incorrectly
valued resistors. Figure 26 shows a GenRad

90 COMPUTER ENGINEERING

Figure 26. GenRad Corp. (GR) tester for modules.
Figure 27. Quick-Verify (QV) station to verify that
tested modules operate within a system.

Figure 28. Chambers for thermal cycling operating modules.

PUTER ENGINEERING

figure 26. GenRad Cow. {GR) tester for modules.

. .

Figure 27. Quick-Verify (QV) station to veriry that
tested modules operate within a eystern.

PACKAGING AND MANUFACTURING 91

Corp. (GR) tester of the type first used (Figure
25) to detect this type of fault. A module-spe-
cific program in the tester guides the operator
through a fault-finding procedure. Approx-
imately 95 percent of all Type 1 failures are di-
agnosed and repaired at this step.

Type 2 is dynamic. It seeks to detect faults
which are caused by timing parameters being
out of specification range, by logic in-
compatibilities, and by other functional prob-
lems. Figure 27 shows a tester (Figure 25)
performing this type of test.

Type 3 is the reliability or burn-in test. The
manufacturing process includes extensive ther-
mal cycling to ensure that component “infant
mortality” cases are discovered early during
manufacturing because it is more expensive to
find defective components at the later, more in-
tegrated systems level. For some components,

notably integrated circuits, thermal cycling is
done when the components are received from
the vendor. In addition, thermal cycling and
burn-in are done near the end of the production
process for entire processors and options. The
temperature/humidity environmental chambers
used, which house twelve or sixteen processors
each, are shown in Figure 28. Test chambers to
heat entire computer systems are also used.

ACKNOWLEDGEMENTS

We gratefully acknowledge the following col-
leagues who provided data for this chapter and
valuable critiques of earlier drafts: Jim Cud-
more, Russ Doane, Sam Fuller, Lorrin Gale,
Dick Gonzales, Jim Scanlan, Henk Schalke, Joe
Smith, Steve Teicher, and Dave Widder.

Opposite:

DEC Systems Modules.

6

In the Beginning

Because modules were DEC’s first product, and for many years their major
product, it is appropriate to study the history of DEC’s modules and the influence
of technology on their development. The history of modules is a subset of the
history of computers, and many of the views of computers expressed in Chapter 1
apply as readily to modules. In particular, the Structural View and the Packaging
Levels-of-Integration View plainly apply. Further, a study of module history
shows the effects of progress in semiconductor technology, as discussed in Chap-
ter 2, and demonstrates on a small scale many of the packaging and manufac-
turing concepts discussed in Chapter 3.

With the advent of microprocessors, the distinction between a module and a
computer has become blurred, and complete computer systems have become
available at the printed circuit board/module level of packaging integration. The
structural levels (Chapter 1, Figure 1) found on a single module have changed
from solely circuit level to logic level, then to register transfer level, and finally to
processor-memory-switch level. These developments will be explored more fully
in Part IV, “The Evolution of Computer Building Blocks”; the discussion here is
limited to the simpler modules that characterized the first 18 years of DEC’s
computers.

The two chapters in this part consist of a 1957 paper by Ken Olsen and a
historical review by Dick Best. Both of these papers, but in particular the Olsen
paper, give a glimpse of how early computer design was heavily weighted toward
the electrical circuit level shown in Figure I of Chapter 1. As indicated above, the
capability of modern technology to package complete switching circuit level and
register transfer level systems into single chips has been a motivating force moving
computer design toward the PMS level. There has also been increased activity
“downward” however, as is also shown in Figure 1 of Chapter 1. To fit the mod-
ern, more complex systems into chips, increased attention to the lowest level (the
device level) has also been required. Since this has been more the domain of the
materials scientist than the computer scientist, it is not discussed in detail here.

While module design and computer design have evolved a great deal in the past
18 to 20 years, certain aspects of the Olsen paper reflect design methods which
have counterparts today. In particular, convenient maintenance was plainly one
of the important goals in the TX-2 circuit design effort. The use of a single, stand-
ard type of flip-flop and the use of a minimum number of different plug-in units
were important elements in meeting that goal. These features simplified the de-
sign, simplified maintenance training, and reduced the variety of spare modules

95

96 IN THE BEGINNING

that needed to be stocked. A voltage adjusting (margining) system for identifying
marginal circuits was another important feature of the TX-2 circuit design.

Today, computer engineers generally try to use a limited number of flip-flop
types (or RAM types, etc.) because they have certain favorites whose character-
istics they understand well and because the cost of bringing new parts into a com-
pany is very high. The old reasons - to simplify design, training, and stocking of
spares - continue to apply as well. Even though keeping the number of different
plug-in units (modules) to a minimum continues to have these advantages, this
cannot be done as easily as it once was, principally because the increased func-
tionality now available has customized modules to such a great degree. For ex-
ample, in the case of an LSI-11, the computer is a single module.

Modern designs do not use margining except in special cases where the refresh
clock cycles of dynamic memories are altered to detect failures. However, special
maintenance logic is often included in current designs. The idea of built-in main-
tenance features is in some ways similar to the old margining idea: in other ways it
is a substantial deviation because additional parts are required, and the old de-
signers were extremely careful of the parts count. The emphasis on low com-
ponent cost and parts count expressed in these chapters may seem odd to modern
designers, but the gradual lessening of this concern (as discussed in Chapter 4)
serves as an excellent example of the declining cost of electronic technology and of
semiconductor technology in particular.

In summary, the modules chapters which follow form a starting point, both in
time and in technology, for a study of how the views, concepts, and trends de-
scribed in the first two chapters have applied in the development of DEC modules
and computers.

Transistor Circuitry
in the Lincoln TX-2

KENNETH H. OLSEN

C I R C U IT CON FIG U RAT1 0 NS

Only two basic circuits are needed to perform
most of the logical operations in the TX-2 com-
puter: a saturated transistor inverter and a satu-
rated emitter follower. To the logical designer
who works with them, these circuits can be con-
sidered as simple switches that are either open
or closed.

The schematic diagram of an emitter follower
and the symbol used by the logical designers is
shown in Figure 1. With a negative input, the
output is “shorted” to the -3 V supply as
through a switch. When several of these emitter
followers are combined in parallel, as in Figure

2, any one of them will clamp the output to -3
V. We then have an OR circuit for negative sig-
nals and an AND circuit for positive signals.
The transistor inverter is shown in Figure 3 with
its logic symbol. Basic AND, OR circuits result
from the connection of these simple switches in
series or parallel (Figures 4 and 5) . More com-
plex networks like the TX-2 carry circuit use
these elements arranged in series-parallel (Fig-
ure 6).

In Figure 3 the resistor R I is chosen so that
under the worst combinations of stated com-
ponent and power supply variations, the drop

-3 v
-3 v

I

Figure 1. Emitter follower.

=&OUT -3 v

Figure 2. Parallel emitter follower.

97

98 IN THE BEGINNING

across the transistor will be less than 200 mV
during the “on-condition.’’ Rz biases the tran-
sistor base positive during the off condition to
provide greater tolerance to noise, Zoo, and sig-
nal variations. Capacitance C was selected to
remove all of the minority carriers from the
base when the transistor is being turned off. The
effect of C on a test circuit driven by a fast step
is shown in Figure 7. Note that the delay due to
hole storage is only a few millimicroseconds.

We run the circuits under saturated condi-
tions to achieve stability and a wide tolerance to

I I
GND
P + l O V

T

1
-10 v I

Figure 3. Inverter.

G N D

7

Figure 4 . Parallel inverters.

I TOUT
-10 v

parameters without the need for clamp diodes.
Unlike vacuum tubes, which always need an ap-
preciable voltage across them for operation, a
transistor requires practically no voltage across
it. In spite of the delay in turning off saturated
transistors, these circuits are faster than most
vacuum tube circuits. Faster circuit speed is not
due to the fact that the transistors are faster
than vacuum tubes, but because they operate at
much lower voltage levels. A vacuum tube takes
several volts to turn it from fully “on” to fully
“off’: a transistor takes less than 1 V.

CARRV’FROM

~~

Figure 6. TX-2 carry circuits

INPUT
-3 v

-3 O m v OUTPUT W I T H C

-3 O m v OUTPUT W I T H O U T C

C l O V
?

-3 v
Tt = T U R N - O F F TIME

Figure 5 . Series inverters. Figure 7. Turn-off time

TRANSISTOR CIRCUITRY IN THE LINCOLN TX-2 99

FLI P-F LOP

On the basis of previous experience, we de-
cided that the advantages of having one stan-
dard flip-flop were worth some complication in
TX-2 circuitry. The circuit diagram of the flip-
flop package in Figure 8 is basically an Eccles-
Jordan trigger circuit with a 3-transistor ampli-
fier on each output. The input amplifiers isolate
the pulse input circuits and give high-input im-
pedance. The amplifiers give enough delay to
allow the flip-flop to be set at the same time that
it is being sensed. Figure 9 shows the waveforms
of this flip-flop package when complemented at
a IO-megapulse rate. The rise and fall times,
about 25 millimicroseconds, are faster than one
normally sees in a single inverter or an emitter
follower because on each output there is an in-

p Z E R O l N

verter that pulls to ground and an emitter fol-
lower that pulls to -3 V. Figure 10 is a plot of
the pulse amplitude necessary to complement
the flip-flop at various frequencies. Note the in-
dependence of trigger sensitivity to pulse repeti-
tion rate. This circuit will operate at a 10-
megapulse rate, twice the maximum rate at
which it will be used in TX-2.

The TX-2 circuits reproduced most often
were designed with a minimum number of com-
ponents to achieve economies in manufacture
and maintenance. The design of less frequently
reproduced circuits made liberal use of com-
ponents - even redundancy - to achieve long
life and broad tolerance to component varia-
tions. The goal was system simplicity and high
performance with a lower total number of com-
ponents than might otherwise be possible. For

P O N E IN
I I MC B

i + l O V I

I INPUT AMPLIFIER 1-I

GROUND

ZERO
OUT

I

1
I

I 1 I
4 -10 v

4 -3 v

Figure 8. TX-2 flip-flop.

100 IN THE BEGINNING

OUTPUT
IUNLOADED)

OUTPUT LOADED
WITH 100 MMFD.
low 0

TRIGGER
PULSES
I10 MCSI

u
0 100 200 300 400 600 600

MlLLlMlCROSECONDS

20 c a *--(I

I

"1" SIDE T = 7 0
-20

20 40 60 80
"0" SIDE, T

Figure 11. Tau margins

Figure 9. Flip-flop waveforms

3 0

- 2 5
I- d 2 0

Y 1 0 - 0 6

1 6

0 2 4 6 8 1 0

FREClUENCY IMCSI

Figure 10. Trigger sensitivity

example, the number of flip-flops in the TX-2 is
small compared to the gates which transfer in-
formation from one group of flip-flops to an-
other. So the flip-flops were allowed to be
relatively complicated, but the TX-2 transfer
gates were made very simple. A transfer gate is
only a single inverter. The emitter is connected
to the output of the flip-flop being read, and the
collector is connected to the input of the flip-
flop being set. The output impedance of the
flip-flop is so low that, when the output is at the
ground level, a pulse on the base of the transfer
gate shorts the input of the other flip-flop to
ground and sets its condition.

MARGINAL C H ECKl N G

We planned, of course, to incorporate mar-
ginal checking in the design of these circuits so

10 20 30 40

" 0 ' SIDE, 6

Figure 12. Beta margins

that, under a program of regularly scheduled
maintenance, deteriorating components could
be located before they caused failure in the sys-
tem. We also found it practical to use the tech-
nique during the design of the circuits to locate
the design center of the various parameters and
to indicate the tolerance of circuit performance
to these parameters. A further application of
marginal checking has been found in other sys-
tems during shakedown and initial operation to
pinpoint noise and other system faults not
serious enough to cause failure and therefore
very difficult to isolate by other means.

The operating condition of the inverters is in-
dicated by varying the +10 V bias. In the flip-
flop schematic in Figure 8, the inverters were
divided into two groups for marginal checking,
and the two leads labeled MCA and MCB were

TRANSISTOR CIRCUITRY IN THE LINCOLN TX-2 101

20

l o

5
g o
U
I -10

MARGIN SUPPLY IVOLTSI

.-- .-.-.e .---
e-.-.. 0 .

20

1
2 4 0

PULSE AMPLITUDE IVOLTSI

Figure 13. - 1 0 V supply margins.
Figure 16. Pulse margins.

Figure 14. -3 V supply margins

Figure 15. Temperature margins. Figure 17 TX-2 plug-in unit

varied one at a time for most critical checking
of the circuit. The following curves show the
locus of failure points for various parameters as
a function of the marginal checking voltage.
Figure 11 shows the tolerance to tau, a measure
of hole storage, and Figure 12 shows the toler-
ance to beta, the current gain. Operating mar-
gins for supply voltages, temperature, and pulse
amplitude are shown in Figures 13 through 16.

PAC KAGl NG

The number of types of plug-in units was
kept small for ease of production and to keep
the number of spares to a minimum. The cir-
cuits are built on dip-soldered etched boards,
and the components are hand soldered in solid
turret lugs. The boards are mounted in steel
shells shown in Figure 17 to keep the boards

MLm

Figure 14. -3 V supply margin&

Figure 15. T e m m m margins.

varied one at a time for most critical checking
of the circuit. The following curvcls h o w the
locus of failure points for various parameters as
a function of the marginal checking voltage.
Figure 1 1 shows the tolerance to tau, a measure
of hole storqc and Figure 12 show the toler-
ance to beta. the cumnt gain. Operating mar-
gins for supply voltaga, temperature, and p u k
8mpIitude are shown in Figures 13 through 16.

F i 16. P u b margins.

Figure 17. TX-2 plug-in unit.

PACKAQINO

The number of types of plug-in units WSI
kept smalf for case of production and to keep
the number of spar= to a minimum. Tbe cir-
cuits are built on digsoldered ctched boards,
and the cumponenu are hand soldered in solid
turret Iugs. The boards are mounted in stcel
shells shown in Figure 17 to keep the boards

102 IN THE B E G I N N I N G

Figure 18. TX-2 back panel.

from flexing. The male and female contacts are
machined and gold plated. The sockets are
hand wired and soldered in panels (Figure 18).

simplicity of the circuits has encouraged a de-
gree of logical sophistication that would not
have been chanced before.

CONCLUSION ACKNOWLEDGEMENTS

The result of these design considerations is a
5-megapulse control and arithmetic element
that will take less than 40 square feet of space
and dissipate less than 800 watts of power. The

A number of people took part in the work
reported here. Major contributions were made
by B. M. Gurley, J. R. Fadiman, R. A. Hughes,
K . H. Konkle, and M. E. Petersen.

102 in THL BEGINNING

1
i

P i 1&. TX-2 k c k mnd.

simplicity of the circuits has mcouragcd a de-
gree of logical sophistication that would not
have bwn chanced before.

ACKNOWLEDGEM€NTS

A n u m k af p p l e took part in the work
reported Ime, Major contributions wwc made
by B. M. Gurlcy, 3, R. Fadiman, R, A, Hugha,
K. H. Konkle, and M. E. Petmm.

5

The circuits and design concepts described in
Chapter 4 were the basis for the subsequent de-
velopment of DEC modules. In Chapter 5, the
discussion of this development is broadened to
include not only circuits and design concepts
but also packaging and the effects of progress in
semiconductor technology. DEC modules are
impor tan t because the progress in semi-
conductor technology that has formed the ma-
jor element of the technology push driving the
computer industry is evident in the history of
DEC modules on a scale convenient for close
examination and understanding.

The first modules produced by DEC were
called Digital Laboratory Modules and were in-
tended to sit on an engineer’s workbench or be
mounted in a scientist’s equipment rack. To fa-
cilitate the rapid construction of logic systems
Lsing these modules, interconnection was ac-
complished with simple cords equipped with
banana plugs. As shown in Figure 1, the mod-
ules were mounted in aluminum cases 1-3/4 X
4- 1 /2 X 7 inches in size. All of the logic signals
were brought out to the front of the case, where
they appeared on miniature banana jacks
mounted in a schematic diagram of the logic
function performed by the module. The mod-

Digital Modules,
The Basis for Computers

RICHARD L. BEST, RUSSELL C. DOANE,
and JOHN E. McNAMARA

ules were offered in three speed ranges with
compatible signal levels. The three speed ranges
were 5 MHz (1957), 500 kHz (1959), and 10
MHz (1960).

The Digital Laboratory Module product line
was supplemented by the Digital Systems Mod-
ules. These modules, samples of which are

Figure 1. Digital Laboratory Modules.
103

5

Digital Modules,
The Basis for Computers

RICHARD 1. B B T , RUSSELL C. DOME,
and JOHN E. McNAMAAA

I .

1 os

104 IN THE BEGINNING

Figure 2. Digital System Modules.

BASE -

I

COLLECTOR * +10 v I I EMITTER

I
CIRCUIT 1

1 I

Figure 3.
inverter used in digital system modules

Schematic drawing of an

shown in Figure 2, were identical to the Labora-
tory Modules in circuitry, signal levels, and
speed range, but they had a different packaging
scheme. The System Module packaging was de-
signed for rack mounting and used 22-pin Am-
phenol connectors at the backs of the modules
rather than banana plugs at the front. The 22-
pin connectors were originally available only in
a soldered connection version, but a taper pin
version was later offered. The System Module

mounting method was chosen for the PDP-I
computer, as it permitted a wired panel of 25
modules to be mounted in a 5-1/4-inch section
of standard 19-inch rack.

The circuits used in both module series were
based on the M.I.T. Lincoln Laboratory TX-2
computer circuits described in Chapter 4. All of
the TX-2 basic circuits were used, except those
gates which used emitter followers. The emitter
follower gates were not short circuit proof, and
it was felt that misplaced patch cords in Labo-
ratory Module configurations or slipping scope
probes in System Module configurations would
cause a high fatality rate for those circuits.

What follows is a brief review of some of the
circuits to indicate how much present day logic
design differs from the logic design of 20 years
ago. Today designers deal with arithmetic logic
units and microprocessors as units, whereas in
the early 1960s, single gates and flip-flops were
units.

In the early module designs, most logical op-
erations were performed using saturating PNP
germanium transistors. While the use of transis-
tors in radios and television sets relies on the
linear relationship between base current and
emitter-to-collector current to provide the am-
plification of radio frequency and audio fre-
quency signals, the use of t ransis tors in
computer circuits (except those using emitter-
coupled logic (ECL)) relies primarily on the be-
havior of transistors in either the saturated state
or the cutoff state. The use of transistors in such
circuits can best be appreciated from the simple
examplexhown in Figure 3.

Figure 3 is a schematic drawing of an in-
verter. When the emitter is at ground and the
base lead is brought to a sufficiently negative
voltage, the resulting base current will saturate
the transistor, effectively connecting the emitter
to the collector. If , on the other hand, the base
is grounded, then no base current flows, no
emitter-to-collector current flows, and the tran-
sistor is in the cutoff state. The collector would
then assume the voltage of the negative voltage

104 IN THE BEGINNING

rn a :--
I m

L,

Y f
I

I
1

aleulr &

shown in Rgure 2, wem idmticnl to the Labora-
tory Modules in ddtry, signal Imla, and
speed r-, but tIwy bad a different psckagh~
achemu. The System Module packagia was de- w ibr rack mounting and used 22-pin Am-
phaol wnn~~tors at the backs of the mdulm
rathw &an banana plugs at the Front. The 2 2
pin cenmctom wem originally available only in
a soldered oonnection vqaioa, but a t a p pin
m i o n waa later offered, The Spm M d u k

mounting method was chosen for the PDP-I
computer, as it permitted a W i d panel of 25
m d u k to be mounted in a 5-1/4-inch section
of standard Isinch rack.

The circuits used in both module series wcre
based on the M.I.T. Lincoln Laboratory TX-2
computer circuits descriked in Chapter 4. All of
the TX-2 basic circuits were used, except those
gate which used emitter followers. The emitter
folIoower aata wcre not short circuit proof, and
it was felt that misplaced patch cords in Lab
ratory Module confgurations or slipping scope
probm in System Module configurations would
c a w 8 high fatality rate for thoat circuits.

What follows is a brief review of some of the
circuits to indicate how much present day logic
& i differs from the logic d d g n of 20 yeam
ago. Today designers deal with arithmetic logic
units and micropromsum as unit$ whereas in
the early 19605, single gates and flipflops were
units.
In the early module ddgns, mod logid op

erationr wtfe performed uising saturating PNP

tors in mdioi and television s& relies on the
linear relationehip bet- bmc cumnt and
emitter-to-collector c u m t to provide the am-
plificatiioa of radio frequency and audio fre-
quency signals, the use of transistors in
computer circuits (except those u h g emitter-
coupled logic (ECL)) d i m primhly on the bp
havior of transistors in either the saturated a t e
or the cutoff state. The uw of tmnsiptors in such
dmits can best be appreciated from the h p k
exampleghown in Figure 3.

figure 3 is a schematic drawing of an in-
verter. When tRc emitter is at ground and the
hsc kad is brought to a sufficiently negative
voltage, the resuitiq barn current will saturate
the transistor, e f f a i d y connecting the emitter
to the doetor. If, on the other hand, the base
h grounded, then no bast current flows, no
emiuer-tocollector current flows, and the tcrmn-
shtor is in the cutoff state. The collector wuId
then assume the vdtage of the nqgatiw mhap

garmanium msistors. While the use of mda-

DIGITAL MODULES. THE BASIS FOR COMPUTERS 105

I
1 COLLECTOR

EMITTER

I

Figure 4. Symbolic drawing of an inverter.

source, were it not for the clamp diode which
limits the voltage of the collector to -3 volts.

To facilitate maintenance, the + 10-volt bias
supply shown in Figure 3 was adjustable for
margin checking, a feature which had been used
in the TX-2 and which is discussed in Chapter 4.

To simplify the logic drawings, a symbolic
drawing like that in Figure 4 was customarily
used to represent the inverter circuit. Note that
neither Figure 3 nor Figure 4 shows the emitter
directly connected to ground or the collector
directly connected to the negative supply.
Rather, a dotted line is used on the drawings to
indicate that Laboratory Modules and System
Modules often used a series connection of up to
three inverter gates between the negative supply
and ground to accomplish various logic func-
tions. Parallel and series-parallel arrangements
were also used, as shown in the sample circuits
in Figure 5 .

The Digital Laboratory Modules and the
Digital System Modules used a dual polarity
logic system employing both levels and pulses.
The logic voltage levels were -3 volts and
ground. Correspondence between the logic
state, ONE or ZERO, and the voltage levels of
-3 and ground were indicated at each point in
the logic diagram by a diamond. The diamond

to.

Figure 5.
arrangements of inverters.

Sample circuits using series and parallel

defined the necessary voltage level for the ac-
tion desired. A solid diamond denoted that a
-3-volt level was an assertion, and a hollow di-
amond indicated that a ground level was an as-
sertion. This convention gave two signal names
to one physical signal: if a given asserted signal
A was passed through an inverter, four signals
resulted, as shown in Figure 6 .

A logic function lower in cost yet equivalent
to both the series and parallel inverter arrange-
ments used diodes added to the circuit of Figure
3 to form AND or OR gates, as shown in Fig-
ures 7 and 8.

Except for very small amounts of delay, the
inputs and outputs of these circuits changed si-
multaneously; thus, no information was stored.
The storage of information was accomplished
by bistable devices called “flip-flops” whose
state was controlled by the application of pul-
ses. Before discussing the construction of flip-
flops, it is therefore necessary to briefly describe
pulses, which were an important type of logic
signal.

A pulse, as the name implies, was a very well
controlled, short event in which a logic signal
was asserted. Pulses were used for computer
clocks and for carrying out the register transfer
operations between the registers. Pulses were

106 IN THE BEGINNING

L-0

NOT A

1: 0 1-31

INVERTED SIGNAL-

l l '"'177, 1-31 A 1 4 1 A 4 0 101
0101 1 01-31 1 11-31

Figure 6.
dual polarity logic.

Signal naming convention for DEC

I

CIRCUIT 'I SYMBOL ' + 1 o v I

Figure 7. AND gate for negative signals.

r

A

B + :& I

I
+ 1 o v I

SYMBOL
CIRCUIT

Figure 8. OR gate for negative signals

generated by pulse amplifiers which were block-
ing oscillator circuits employing pulse trans-
formers. The pulse transformer had both
terminals of its secondary winding available so
that either positive or negative pulses could be
obtained, depending upon which terminal was
grounded. A negative pulse (ground to - 3 volts
and back to ground) was represented in the
logic drawings by a solid triangle, and a positive
pulse (ground to + 3 volts and back to ground)
was represented by a hollow triangle. These sig-
nals were normally distributed on twisted pair
and could travel the long distances needed in
large digital systems like the PDP-1 without
degradation.

Pulse amplifiers were important elements be-
cause they produced high energy (high fan-out),
standardly shaped pulses which could be used
to gate a complete 18-bit register as a single log-
ical signal. The use of pulses and buf-
fered/delayed output flip-flops is emphasized
because the concept of gating a pulse at the
source and using the gated pulse to transfer
data from register to register on a parallel basis
used a minimum of logic compared to other
methods in use at that time. Some other meth-
ods used a common clock and dual rank flip-
flops for register output delays or used clocked
serial logic and delay lines to store register con-
tents.

Returning to the discussion of gates and flip-
flops, a primitive flip-flop can be obtained by
interconnecting two grounded emitter inverters
as shown in Figure 9. When one inverter is cut
off, its output is negative. This holds the other
inverter on, which in turn holds the first in-
verter off. If another inverter circuit is added to
the circuit in Figure 9, the circuit in Figure 10 is
obtained.

The application of a negative pulse to the in-
put of the additional inverter changes the state
of the flip-flop. In the actual implementations
of DEC Laboratory Module flip-flops, buffer
amplifiers were added to the outputs to permit a
single flip-flop to drive the inputs of many other

DIGITAL MODULES, THE BASIS FOR COMPUTERS 107

Figure 9. Primitive flip-flop.

t T

INPUT m
Figure 10. Primitive flip-flop with inverter

gates. The buffer amplifiers also provided de-
lays at the outputs of the flip-flops such that the
output did not change until after the activating
pulse was over. This permitted the state of the
flip-flop to be sensed while the flip-flop was
being pulsed, a necessary feature for the simple
implementation of shift registers, simultaneous
data exchange between two registers, counters,
and adders.

Collections of the inverters, gates, and flip-
flops just described were packaged in appropri-
ate quantities (i.e., as many as would fit within
the module size and pin constraints) and sold as
Laboratory Modules and System Modules.

There were a relatively small number of module
types available in the Laboratory Module
Series. For example, the first product line, the
100 Series, included:

103
110
20 1
302
402
406
410

50 1
602
650

667
80 1

6 inverters
2 6-input negative diode NORs
1 buffered flip-flop
1 one-shot
1 clock pulse generator
1 crystal clock
1 Schmitt trigger circuit pulse gener-
ator
3 level standardizers
2 pulse amplifiers
1 tube pulser (15 volt, 100 nanosecond
pulses)
4 level amplifiers (0 to -15 volts)
1 relay

By contrast, there were many System Module
types developed. With their higher packing den-
sity, lower cost, and fixed backplane wiring,
they were used for computers, memory testers,
and other complex systems of logic.

It is interesting to note that a large percentage
of the modules on the above list were designed
for generating and conditioning of the pulses
and levels used in the relatively small number of
logic circuits. Reference to a present day in-
tegrated circuit catalog reveals few pulsing and
clocking circuits but a great many logic circuits.
The emphasis on pulses was one of economy, as
previously noted.

Register transfer level structures and the Sys-
tem Module logic diagrams can easily be corol-
lated, both because of the use of pulse
ampli fiers to evoke operations and because of
the buffered/delayed flip-flops. Figure 11
shows in simplified form the interconnection of
two PDP-I registers and lists some of the regis-
ter transfer commands that could be used in
conjunction with these registers. Typical exam-
ples of such register arrangements in the PDP-I
were the Accumulator (AC), which was the

108 IN THE BEGINNING

:A)A;Vc(MB ACI} - 7, 17,
AC

I A C - A C
AC 0 M B + AC
A C + l - A C

ETC m M B < 0 1 7 >

WITH REGISTER TRANSFER SIMPLIFIED
CONTROLSIGNALS SHOWN

Figure 1 1 .
Accumulator (AC).

Register transfer representation of PDP-1

r
m & R R V IN

FROM ACCI
[SEE NOTE) I 1

I 1 1

I"- MB<,+1>

NOTE
Input at leest significant bit asneratsr AC + 1 -AC.

Figure 12.
AC<j>.

Logic diagram of PDP-1 Accumulator bit,

basic register in which all arithmetic operations
were carried out, and the Memory Buffer (MB)
register.

Figure 12 shows the logic diagram for one bit
of the Accumulator and Memory Buffer for op-
erations given in the register transfer diagram.
The operation to clear the Accumulator is car-
ried out by a pulse amplifier connected to all 18
bits of the Accumulator, with logic a t the input

of the pulse amplifier to specify the conditions
under which the Accumulator is to be set to
ZERO. Complementing the Accumulator. is
done by a transistor at one of the com-
plementing inputs, C1, which receives a nega-
tive control pulse. Addition is a two-step
process in which the Accumulator and Memory
Buffer are half-added to the Accumulator using
an exclusive-OR operation (where an Accu-
mulator bit is complemented if the correspond-
ing Memory Buffer bit is a ONE), and then the
carry operation is performed. A carry at a given
bit position is initiated to the next bit if the
Memory Buffer is ONE and the Accumulator is
ZERO. Once a carry is started as a bit, it will
continue to propagate if each bit of the Accu-
mulator is a ONE. The propagation is done via
a standard pulse at the propagation output P2.
In a similar way, a ONE can be added to the
Accumulator by pulsing the least significant bit
of the Accumulator which, if it is a ONE, will
create a carry that will propagate along all the
digits that are ONE, complementing each bit of
the Accumulator to ZERO as it propagates.

In 1960 DEC began building modules with
slightly different circuitry than that described
above. While t ransis tor inverters, buf-
fered/delayed flip-flops, and their associated
pulse logic were the best choice for 5- and 10-
MHz logic, capacitor-diode (C-D) gates and
unbuffered flip-flops were found to be prefer-
able for low speed logic because greater logic
density and lower cost could be achieved.

A positive capacitor-diode gate is illustrated
in Figure 13. With both the level input and the
pulse input at ground for sufficent time to allow
the capacitor charge to reach 3 volts, a negative
level change or a negative pulse a t the pulse in-
put will cause a positive pulse to appear at the
output. Such gates could drive the direct set in-
put of any flip-flop which required a positive
pulse and were built into some unbuffered flip-
flop inputs to be used for shifting and counting,
using the capacitor as a delay element. Often

DIGITAL MODULES, THE BASIS FOR COMPUTERS 109

one inverter would drive many capacitor-diode
combinations in the same module.

A negative capacitor-diode gate is illustrated
in Figure 14. With the level input at -3 and the
capacitor input at ground for a sufficient time
to allow the charge on the capacitor to become
stable, a negative level change or a negative
pulse at the capacitor input will cause the tran-
sistor to conduct. The conducting transistor
grounds the output for an amount of time de-
termined by the gate time constant or the input
pulse width, whichever is shorter. Gates of this
type could be used to set and clear unbuffered
flip-flops by momentarily grounding the correct
flip-flop outputs in a fashion similar to the in-
verter gate that was added to Figure 9 to obtain
Figure 10.

The principal advantages of the capacitor-
diode gates were:

1. The level input to the gate was used to
charge a capacitor and was isolated from
the rest of the circuit by a diode. Thus,
no dc load was presented to the circuit
driving the level input of a capacitor-
diode gate.
The resistor-capacitor time constant of
the gate required that the conditioning
level be present a certain amount of time
before the pulse input occurred. This in-
troduced a delay between the application
of a new gate level and the time the gate
was conditioned, and allowed the sam-
pling of unbuffered flip-flop outputs at
the same time that the flip-flop was
being changed.

3. The resistor-capacitor combination dif-
ferentiated level changes, permitting a
level change to create a pulse.

2.

The use of saturating micro alloy diffused
transistor (MADT) transistors and toroidal
pulse transformers appeared to be nearing an
operating limit at I O MHz. The pulses needed
to operate the circuits shown in the previous di-

CIRCUIT SYMBOL i
Figure 13. Positive C-D gate.

OUTPUT

INPUT

INPUT+

LEVEL
INPUT

LEVEL
INPUT

CIRCUIT SYMBOL

Figure 14. Negative C-D gate

agrarns were 40 percent of the cycle time of 10-
MHz logic (40 nanoseconds), which tightly con-
strained transformer recovery time and made it
difficult to design circuits that were not exces-
sively sensitive to repetition rate. Furthermore,
gate delays were large enough to prevent some
needed logic configurations from propagating
within the 100 nanosecond interval implied by
the IO-MHz rating.

A major break with previous circuit geo-
metries appeared necessary. The use at IBM (in
the IBM 7030 “STRETCH” machines) of non-
saturating logic encouraged an exploration in

110 IN THE BEGINNING

that direction. The project was called the “VHF
Logic” project because operation at 30 MHz or
better (the bottom end of the very high fre-
quency (VHF) radio band) was the goal.

The complex 30-MHz flip-flops were pack-
aged one to a module (Figure IS), with the re-
sult that a great many interconnections were
needed to implement logic functions. In systems
designed for 30-MHz operation, the use of leads
longer than a few centimeters was expected to
require special care; hence, it was thought es-
sential for ease of use that a satisfactory trans-
mission line hookup medium be available. A
new solid wall coaxial cable had just been in-
troduced, the 50-ohm impedance version of
which was chosen to hook up the VHF mod-
ules. It appeared to have a strong enough center
conductor for practical hookup between mod-
ules without being too bulky for easy hand-
bending.

Due to the low impedance needed for the
coaxial cable connections, substantial driving
current was necessary to achieve adequately
high signal voltages, and considerable power
had to be dissipated. The ability to drive a load
at any point along the transmission line was
deemed necessary for practical hookup, and 3-
volt swings had to be available to insure com-
patibility with existing modules. These needs
were met by choosing a 60-milliampere output
current, producing a 1.5-volt swing on a
double-terminated 50-ohm line and a 3-volt
swing with a 50-ohm load when interfacing to
existing slower logic. These voltage and current
levels required the addition of heat sinks to the
output transistors. This was accomplished by
installing spring clips that fastened the-cases of
the transistors directly to the connector pins,
exploiting the connectors as heat sinks and at
the same time providing a minimum inductance
connection from the transistor collector (com-
mon to the case) out of the module.

The VHF modules contained a novel delay
line implementation which has reappeared in
recent days in the emitter-coupled logic boards

used in the latest PDP-IO processor (KLIO).
Flip-flop output delay was provided by a 10-
nanosecond stripline etched onto the printed
circuit board. A meander pattern was selected
with a degree of local coupling between the
loops t o achieve a 7 to 1 delay-to-risetime ratio.
Both the delayed and undelayed ends of this 50-
ohm stripline were made available at the mod-
ule pins. The undelayed outputs switched sim-
ultaneously with the flip-flop outputs, allowing
a subsequent gate to subtract a delayed flip-flop
output from the undelayed complement output
side of the flip-flop and produce a 10-nanose
cond pulse when the flip-flop changed state.

The performance of the VHF modules was
rated at 30 MHz, which was the limit of the
module testers used on the production floor.
Bench testing demonstrated 40-MHz capability
with the promise of 50-MHz performance if ad-
equate testing apparatus could be found. Rise-
times were better than 1 nanosecond.

Modules delivered to customers were used to
build satisfactory high performance systems,
but the need for such high performance was not
widespread. In addition, the product devel-
opment cycle was, by the standards of the time,
quite long (two years) and enthusiasm for the
VHF modules among DEC engineers waned,
further slowing product momentum. Despite
their failure as a product, with only eight mod-
ules in the series, the VHF modules eventually
made a contribution to computer progress. To
produce timesharing systems, t he PDP-6
needed a way of comparing relocated addresses
at very high speed. A high speed register com-
parator was quickly designed using current
mode logic similar to that in the VHF modules.

As a series of general purpose products for
engineers to use, the VHF modules were too
costly and their wiring too inconvenient. Fur-
ther developments in general purpose logic
modules were to lie in the opposite direction:
toward cheaper, more compact, easier to use,
and slower units.

112 IN THE BEGINNING

By 1964, because of the decreasing cost of
semiconductors during the early 1960s, the cost
of System Module mounting hardware and of

wiring had become a significant portion of the
total system cost. In response to this trend, a
new type of module was developed which was a
2.5- X 5-inch printed circuit card with a color-
coded plastic handle (Figure 16). The printed
circuit card provided its own mechanical sup-
port - there was no metal frame around it as
there had been in the System Module design.
The new modules, called Flip Chip modules,
plugged into 144-pin connector blocks that
could support eight such modules, providing 18
pins per module. While the improvements in the
cost of module mounting hardware realized
with the new modules were important, the ma-
jor advantage of the new Flip Chip modules
was that automatic Gardner-Denver Wire-wrap
equipment could be used to wire the module
mounting blocks.

The first series of the new modules was desig-
nated the R-Series and was identified by using
red handles. The R-Series circuits were a reac-
tion to the rather complicated set of rules devel-
oped for using the previous products. The goal
was to make these modules easy to use and in-
expensive. Integrated circuits were not used be-
cause they were more expensive than discrete
components, and the computer industry had
not yet decided on the type of integrated circuit
to use. The building block for R-Series logic
was the diode gate, an example of which is
shown in Figure 17. The other basic circuit was
the diode-capacitor-diode (D-C-D) circuit
shown in Figure 18. The diode-capacitor-diode
gate was used to standardize inputs to active de-
vices such as flip-flops and to produce the logic
delay necessary to sense and change flip-flops at
the same time.

A second series of the new modules was de-
veloped for the first PDP-8s. This series was
called the S-Series, although it also had red han-
dles. The S-Series modules used the same cir-
cuits as their R-Series counterparts, but with
variations in the values of the load resistors and
diode-capacitor-diode gate storage Capacitors
to obtain greater speed.

Figure 16.
PDP-7 and PDP-8.

Single and double Flip Chip modules used in

2 IN THE BEGINNtNG

By 1%4, because of the decreasing cost of
semiconductors during the early I-, the cost
of System Module mounting hardware and of

wiring had bccome a significant portion of tk
total systan cwt. In rapom to this md, a
w w ,typ ofmodulo was dwe- which wu a

f i
I

, ,.

DIGITAL MODULES, THE BASIS FOR COMPUTERS 113

NPUTS

-15 v

1 5 V

NODE

P OUTPUT

+ N o m

DIODE GATE SVMBOI

Figure 17. Diode gate.

The B-Series with blue handles was essen-
tially the same as the 6000 Series of IO-MHz
System Modules, except that it was repackaged
on new 2.5- X 5-inch cards and used silicon
transistors rather than germanium transistors.
The new silicon transistors were a mixed bless-
ing. While they had temperature sensitivity
characteristics superior to those of the germa-
nium transistors, and their voltage drop charac-
teristics permitted the elimination of the bias
resistor to +10 volts, they did not saturate as
well as the germanium transistors. Because they
did not saturate well, the voltage between the
collector and the emitter in the saturated state
was not as low as it was with germanium tran-
sistors. This meant that the series arrangement
of three inverters discussed in conjunction with
the dotted lines in Figure 4 could not be used.
Instead, only two of the silicon transistor in-

OUTPUT

f
OUTPUT

Figure 18. D-C-D gate.

INPUT

- 1 5 v

p OUTPUT

PULSE
INPUT

LEVEL
INPUT

be connected in series if the output was in-
tended to drive another inverter. The first com-
puter to use the B-Series modules was the PDP-
7, and the series was heavily used and extended
by the first PDP-IO processor (KAIO).

Analog applications were the target market
for the A-Series modules, which had amber
handles. This series, still being manufactured
today, includes analog multiplexers, oper-
ational amplifiers, sample and hold circuits,
comparators, digital-to-analog converters, ref-
erence voltage supplies, analog-to-digital con-
verters, and various accessory modules. The
development rate of analog modules peaked in
1971 with 38 new types and declined to 5 new
types in 1977.

While all of the preceding modules had been
designed as user-arrangeable building blocks,
the green handled G-Series was intended for

114 IN THE BEGINNING

modules that would be sold only as part of a
system. For example, all of the DEC core mem-
ory circuits have been in the G-Series because a
core memory system is sufficiently complex that
a cookbook approach using a standard series of
modules is not appropriate. The G-Series is still
actively used today for circuits other than logic,
generally in peripheral devices such as disks,
tapes, and terminals.

Like the A-Series and G-Series, the W-Series
(white handle) is still manufactured and is used
to provide input/output capability between
Flip Chip modules and other devices. Lamp
drivers, relay drivers, solenoid drivers, level
converters, and switch filters are included in
this family, but the only modules used widely
today are those modules which include cable
termination modules and blank boards upon
which the user can mount integrated circuits
and wire-wrap them together.

While the W-Series modules provided a vari-
ety of interface capabilities, their circuitry was
still too fast for typical industrial applications.
Computer logic, by its very nature, is high speed
and provides noise immunity far below that re-
quired in small-scale industrial control systems
located physically close to the process they con-
trol.

Unfortunately, industrial electrical noise is
not predictable to the nearest order of magni-
tude. Thus, attempts to solve noise problems
with high level logic, whose voltage thresholds
were merely a few times greater than computer
logic thresholds, did not work well.

A new series of modules was developed, the
K-Series (with blac(K) handles), which relied
on a combination of voltage, current, and time
thresholds to protect storage elements such as
flip-flops and timers from false triggering. Since
industrial controls typically interact with phys-
ically massive equipment which moves slowly
relative to electronic speeds, time thresholds are
particularly attractive. There are four ways of
exploiting these:

Using basic 100 KHz slow-down circuits
everywhere.
Making optional 5 KHz slow-down cir-
cuits available.
Providing transition-sensitive (edge-de-
tecting) circuits with hysteresis to allow
additional discrete capacitor loading of
the input when all else fails.

Replacing the conventional monostable
multivibrator or “one-shot’’ circuit with
a timing circuit which has both a low im-
pedance and hysteresis at the input.

The hardware for the K-Series was specifi-
cally designed to tit the NEMA (National Elec-
trical Manufacturers Association) enclosures
traditionally used with relay implemented in-
dustrial controls. The K-Series used the same
connectors as the other Flip Chip modules,
however. Sensing and output terminals were
provided with screw terminals and indicator
lights, and appropriate arrangements were
made to interface with 120-volt ac devices.
Wire-wrap terminals were protected from exter-
nal voltages but were available for oscilloscope
probes. Magnetically latched reed relays and
diode arrays that could be programmed by
snipping out diodes were provided as memory
elements that would retain data during power
failures.

Gating in early K-Series modules was accom-
plished with discrete diode-transistor circuits
such as that shown in Figure 19. Other K-Series
modules used integrated circuits for the logic
functions. In these designs the inputs t o the in-
tegrated circuits were protected with fil-
ter/trigger circuits which filtered out the noise
and then restored the fast risetimes required by
the integrated circuits. Outputs were protected
from output-induced noise and converted to
standard K-Series signals by circuits similar to
those used in the discrete logic gates.

DIGITAL MODULES, THE BASIS FOR COMPUTERS 115

+5 v

EXPANSION A N 0 4 f
INPUTS

OR
EXPANSION

- -

4 03

Figure 19. K-Series circuit.
Figure 20. Basic TTL NAND gate circuit.

Unlike other DEC modules, the K-Series
modules were not directly useful for construct-
ing computers or computer data processing
subsystems due to their low speed and high
cost. They did play an important part in bring-
ing digital logic into industrial applications, and
the noise protection techniques developed for
these modules were useful in the design of the
PDP- 14 Industrial Controller (Chapter 7).

By 1967 the electronics world had settled on
transistor-transistor logic (TTL) and the dual
in-line package (DIP) as the technology and
package of choice for integrated circuits. I n ad-
dition, the cost for logic functions implemented
in TTL integrated circuits had dropped below
that of discrete circuit implementations. With
much more logic fitting into the same printed
circuit board area, a single Flip Chip card could
now accommodate much more complicated
functions. However, there were not enough
connector pins available to get the necessary
signals on and off the card. The answer to the
problem was to keep the cards the same size,
but to have etch and associated contacts on
both sides of the printed circuit board. This in-
creased the number of contacts from 18 to 36,
and a new series with magenta handles (the M-
Series) was born. Subsequently, some G-Series
and W-Series modules were also designed with
integrated circuits and double-sided boards.

The advent of transistor-transistor logic
brought the first power supply and signal level

change in DEC’s history. The -15-volt and
+ IO-volt supplies were no longer required.
Only a single +5-volt supply was needed to sup-
ply the logic signals which were now 0 and +3
volts. The packaging was kept consistent, how-
ever, as the old single-sided modules could be
plugged into the new connector blocks. Careful
attention to pinning arrangements allowed half
of the circuits of a double-sided module to be
used in a single-sided block.

The basic TTL circuit is the NAND gate
shown in Figure 20. Since the change to TTL
logic brought a change in logic symbols, a
sample of the new symbology is also shown in
Figure 20.

The input of the TTL gate is a multiple emit-
ter transistor. I f either input is at or near
ground (0 to 0.8 volts), transistor QI becomes
saturated, bringing the base voltage of transis-
tor Q2 low, turning off transistor Q3 while turn-
ing on transistor Q4, and making the output
high (+2.4 to +3.6 volts). If both inputs are
high (above 2 volts), Q2 has base current sup-
plied to it through the collector diode of Q I ,
turning Q2 on. This in turn provides base cur-
rent to Q3, saturating it and cutting off Q4,
making the output low (0 to 0.4 volts).

Like the transistor inverter circuits discussed
in conjunction with System Modules, TTL
NAND gates can be cross-connected to form
flip-flops.

116 IN THE BEGINNING

The first generation of M-Series modules was
used in a redesign of the PDP-8, called the
PDP-8/1. The circuits used in these modules
used TTL integrated circuits which were called
7400 series integrated circuits because of a
growing tendency in the semiconductor in-
dustry to standardize part numbers for TTL cir-
cuits, calling a package of 4 NAND gates a
7400, a package of 6 inverters a 7404, etc. Soon
there was a need in the computer industry for
higher speed circuits. This need led to the devel-
opment of the 74H00 series. The 74H00 circuits
were similar to those in the earlier 7400 series,
but they were faster and used much more
power. The first PDP-11 (the PDP-I 1/20), the
second PDP-10 processor (KI IO), and the PDP-
8/E used both 7400 and 74H00 series integrated
circuits. The PDP-l1/45, designed between
1970 and 1972, used Schottky TTL, a circuitry
with such rapid switching speeds and high
power consumption that four-layer boards had
to be used such that the inner layers of power
and ground etch could provide both shielding
and an adequate supply of power and ground.

In 1972 work began on a new PDP-IOproces-
sor, the KLIO. This used current switching non-
saturating logic from several vendors, including
the MECL (Motorola Emitter Coupled Logic)
10,000 series. This line of circuits is in some
ways an integrated circuit version of the V H F
modules. The basic gate is shown in Figure 21.

In the circuit shown in Figure 21, transistor
Q6 has a temperature compensated, internally
generated reference voltage of - 1.3 volts on its
base. The outputs drive 50-ohm terminated
transmission lines returned to -2 volts. There is
a complementary pair of outputs so that the cir-
cuit is both an OR and a NOR gate. At 25 de-
grees Celsius the upper level will be between
-0.81 and -0.96 volts, while the lower level
will be between - 1.65 and - 1.85 volts. The cir-
cuits, like the Schottky circuits, are so fast that
multi-layer boards are required. In addition, a
great deal of care i n signal line termination is
required. As with the previous logic families
studied, flip-flops can be created. The ECL
master-slave flip-flops are quite complex, typi-
cally requiring 32 transistors and 7 diodes.

OR
O U T P U T

NOR
O U T P U T

A C D VEE
\ J

V
I N P U T S

1-5 2 VI

Figure 2 1 ECL circuit.

DIGITAL MODULES, THE BASIS FOR COMPUTERS 11 7

YEAR

5 8 Bo 6 2 6 4 66 68 7 0 7 2 7 4 76

L F - 7 1 0 0 0 SERIES SYSTEMS

5 CLOCK MHZ Z O M O D U L E S I .

PDP 4 PDP 5

500 knz
A N D 1 MHz

3000 SERIES

I 5000-SERIES LAB Bow-SERIES
SYSTEMS - l o M H z

8000 SERIES SYSTEMS 30 MHz

IBI BLUE SERIES .
FLIPCHIP

IRI RED - 1

IAIAMBER

t- -
I

ANALOG

- I SPECIAL PURPOSE

-
I W I WHITE

-
INTERFACE

IBI BLACK
K SERIES -

I
I M I MAGENTA -

-
I I N O T D R A W N T O SAME SCALE1

t t t t t
TECHNOLOGIES USED TTL TTL/H TTUS ECL N M O S CMOS

Figure 22. Modules introduced each year at DEC.

118 IN THE BEGINNING

As the various module circuit technologies
developed, more logic functionality tit in a
given space, and the space provided on individ-
ual logic modules was increased. The modules
used in the PDP-8/1, PDP-8/L, PDP-10 (KI10
processor), and PDP-15 were single (2.5 X 5-
inch) and double (5 X 5-inch) general purpose
modules, and these machines had relatively low
packing densit ies because most inter-
connections were carried out on the wired back-
plane. The PDP-8/E (and, to a lesser extent, the
PDP-I 1/20) used 8.5 X 10.4-inch “extended
quad’ modules which were functionally special-
ized and eliminated many of the backplane con-
nections required in previous designs. By 1973,
the “hex” module (8.5 X 15.6 inches) was
widely used, principally in the PDP-11 family.
By 1978 two DEC computers, the VAX 11/780
(1977) and the DECSYSTEM 2020 (1978), were
using 12 X 15.6-inch “super hex” modules to-

further reduce interconnection cost by placing
more logic on a single module.

An evolution in circuits has continued as the
technology has changed. As integrated circuits
have become more functional by the reduction
of the size of their active elements, each new
computer introduced is smaller, faster, and less
costly than its predecessor. While only DEC ex-
amples have been mentioned here, the trend to-
ward smaller, faster, and less costly computers
has been consistent for all computer manufac-
turers.

The chart in Figure 22 shows the number of
module types introduced each year from 1957
to 1977.

ACKNOWLEDGEMENTS
We gratefully acknowledge the review assist-
ance offered by Allan Kent, Tom Stockebrand,
Phil Tays, and Don White.

Opposite:

PDP-8.

1

I

Beginning of the Minicomputer

In November 1960, the first PDP-1 computer was delivered. This machine and
the 49 other PDP-1s that followed established Digital Equipment Corporation in
the computer busirtess. Four and a half years later, in April 1965, the first PDP-8
was delivered. This machine, and the 40,000 PDP-8s that followed, established the
concept of minicomputers, leading the way to a multibillion dollar industry. In
the chapters of Part 11, the development of DEC's 12-bit and 18-bit computers are
explored in detail, with special attention paid to the factors influencing their de-
velopment, the technology used in their implementation, and the reception of
each machine in the marketplace. Sections of these chapters were co-authored by
the designers or key project team members of the machine where possible. This
permits a glimpse into the thoughts of the designers as they recollect and critique
the designs in the light of subsequent developments.

Chapter 6 begins with a discussion of the PDP-I, showing the influence of
various M.I.T. machines and exploring the design goals of the PDP-I, many of
which are only speculations at this late date. The discussion of the PDP-I is fol-
lowed by brief discussions of the PDP-4, PDP-7, and PDP-9. The PDP-15, the
most significant of the 18-bit machines in terms of longevity, number in use, and
product range, is also discussed. The architectural changes that made the PDP-15
substantially different from the PDP-4, 7, and 9 are not included in the PDP-15
discussion, but an interesting retrospective view of the design goals and decisions
is included. Thus, this section provides a good model of how design should be
carried out and reviewed - hopefully, on an a priori basis.

The final section of Chapter 6 on 18-bit machines compares them in terms of
cost, performance, and physical metrics. This section can be read independently
of the machine design descriptions. Here, it is important for designers to realize
that there is a continuity to design and that subsequent designs have to be better
along one or more of the evaluation dimensions. Ignoring or not understanding
the dimensions can lead to failure in the marketplace.

Chapter 7 describes the PDP-5 and the PDP-8 Family of 12-bit machines.'The
original PDP-8 is described, along with the various implementations of the same
instruction set that occurred over the following fifteen years. Included is a brief
discussion of the latest implementation, a computer on a single 40-pin chip. The
chapter concludes with a discussion of the technology, price, and performance of
the 12-bit computers, including a number of charts.

Chapter 8 is a top-down, hierarchical description of the implementation of the
PDP-8 computers; it is based on material from Computer Structures by Bell and

121

122 BEGINNING OF THE MINICOMPUTER

Newell [1971]. This chapter includes some use of ISP and PMS notation, and
readers who are unfamiliar with these notations are advised to study Bell and
Newell, read Appendices 1 and 2, or scan this chapter lightly.

ACKNOWLEDGEMENTS

Although the reviewers of Part I1 are credited elsewhere, Wes Clark and Dan
Siewiorek deserve special thanks. Wes reviewed the draft for historical content
and contributed various early memos and technical reports, and Dan did a great
deal of work revising and clarifying the PDP-8 hierarchical description.

The PDP-I and Other
18-Bit Computers

C. G O R D O N BELL, GERALD BUTLER, ROBERT GRAY,
JOHN E. McNAMARA, D O N A L D VONADA,

and R O N A L D WILSON

THE PDP-1

Although Digital Equipment Corporation
was formed in 1957 with the explicit goal of
constructing computers, the company’s first
computer, the PDP-1, was not demonstrated
until almost two years later. The principal
backer of DEC, American Research and Devel-
opment headed by General Georges F. Doriot,
was somewhat skeptical that a computer com-
pany could be successful. They were enthusias-
tic, however, about the business possibilities in
logic modules for laboratory and system use,
and they felt that the plan to build computers
should be conditional upon building a solid
base in the module business.

After a year of operation, DEC met its profit
and sales goals and was permitted to move on
to the construction of computers. However,
Ken Olsen felt it would be worthwhile to wait
an additional year to obtain more business ex-
perience and to build a larger customer and fi-
nancial base. Thus, it was not until the summer

of 1959 that an engineer, Ben Gurley, was hired
to design and build the PDP-1. Ben headed
computer engineering until he left in 1962. In
addition to logic and computer design, he spe-
cialized in complex analog circuitry, including
the circuits for core memories and displays. The
displays (including high precision and color
point plotting) were pivotal to DEC’s success,
and many of the display circuits that he de-
signed remained unchanged until the 1970s. His
death in 1963 was a tragic loss to computer en-
gineering and the industry.

Ben Gurley and other engineers* at DEC had
worked at the Massachusetts Institute of Tech-
nology (M.I.T.) Computer Laboratory o n
Whirlwind and had then gone on to develop
computers at the M.I.T. Lincoln Laboratory.
As a result, the machines constructed at the
M.I.T. campus and at Lincoln Laboratory
greatly influenced the design and construction
of the PDP-1. In fact, the DEC System Modules

*Harlan Anderson, Dick Best, Ken Olsen, Stan Olsen, and Bob Savell.

123

124 BEGINNING OF THE MINICOMPUTER

that formed the basis of the PDP-1 were directly
patterned after the circuits of the TX-0 and the
TX-2 computers at M.I.T., as discussed in
Chapter 5.

The TX-0 and TX-2 computers were among
the most advanced machines of their time and
were the offspring of M.I.T.’s Whirlwind [Ever-
ett, 1951; Redmond and Smith, 19771, a com-
puter that was operational in 1950. Whirlwind
(Figure 1) was an important ancestor of the TX-
0, the PDP-I, and modern minicomputers be-
cause of the short word length (16 bits), because
of the high speed operation, and because of the
people involved in its development. The high
speed operation was accomplished by using an
M . I .T.-developed random-access storage tube
rather than a drum for primary memory. Sub-
sequently, performance was further upgraded
by using the core memory that was developed
by Jay Forrester at M.I.T. in 1951 [Forrester,
195 1].*

To test the Whirlwind core memory, a special
computer called the Memory Test Computer
(MTC) was developed by a design team headed
by Ken Olsen, a recent M.I.T. graduate. The
core memory worked so well that it was imme-
diately moved t o Whirlwind. A 4-Kword mem-
ory was built for MTC, permitting MTC t o be
operated as a special purpose computer for sev-
eral years.

MTC is shown in Figure 2 as it was first as-
sembled and operated in a factory building near
M.I.T. Its word length was selected t o be 16 bits
because that was the size of the Whirlwind
memory being tested and because 16 bits were
adequate to represent the data for M.I.T.’s
Project Lincoln air defense applications.

The MTC turned out to be a useful training
ground for the designers (especially K. Olsen)

when they went to Project Lincoln’s new facil-
ity, Lincoln Laboratory in Lexington, Massa-
chusetts. The MTC packaging, circuits, and
toggle switches influenced the subsequent TX-0
design. The MTC packaging used various
standard radio relay racks and had a somewhat
homely appearance; this encouraged the design-
ers to be more concerned about appearance in
the future. The MTC circuits used significantly
smaller modules than those in Whirlwind and
used a gated pulse delay line clock for control
rather than the synchronous clock used in
Whirlwind. In addition, MTC used a dc bus for
gating registers to one another that was carried
out on an open-wired bus (versus coaxial cable)
that ran the entire length of the computer. The
MTC toggle switches formed a memory of 32
registers. As it turned out, when the 512 toggle
switches were put together, they formed about
the most unreliable part of the computer. At the
time, lifetesting in large batches was not done;
hence, the experience with the MTC toggle
switches formed the basis for significant im-
provement of switch designs in the TX-0.

Although the speed of the MTC was about
the same as the speed of Whirlwind, it was not
fully used, perhaps because it lacked the soft-
ware and peripherals.

Like the MTC, the TX-0 was designed as a
test device. It was designed to test transistor cir-
cuitry, to verify that a 256 X 256 (64-Kword)
core memory could be built [Mitchell and 01-
sen, 19561 and to serve as a prelude to the con-
struction of a large-scale 36-bit computer, the
TX-2. The transistor circuitry being tested fea-
tured the new Philco SBTlOO surface barrier
transistor, costing $80, which greatly simplified
transistor circuit design. The work on the 256 X
256 core memory, using vacuum-tube drivers,

*Whirlwind was dismantled in 1959 a n d moved to Wolf Research and Development where it was reassembled and operated
until the 1970s. Whirlwind is now part of the Digital Distributed Museum Project, al though the first core memory module
a n d other parts have been given to the British Science Museum, the Smithsonian. a n d other museums.

THE PDP-1 AND OTHER 18-BIT COMPUTERS 125

Figure 1. M.I.T. Whirlwind computer (courtesy of M.I.T. Lincoln Laboratory).

Figure 2. M.I.T. Memory Test Computer (MTC) used to test first core memory (courtesy of M.I.T. Lincoln Laboratory).

was done by William Papian and Dick Best
[Best, 19571 and proceeded independently of
work on the computer.

The original TX-0 (Figure 3) had a number of
1/0 devices. After it was moved to M.I.T., the
largest device was a 12-inch point-plotting cath-
ode ray tube (designed by Ben Gurley) and light
pen console, giving the TX-0 some physical re-

semblance to Whirlwind. In addition to the
cathode ray tube, there was a high speed (300
characters per second) Ferranti paper tape
reader and a Friden Flexowriter that was used
as both a typewriter and paper tape punch.
There was also a large bank of toggle switches,
some of which formed the two program acces-
sible registers and some of which formed the

T .

THE P D P t AND OTHER 1 &BIT COMRJTERS 125

Fww 1. M.I.T. Whirlwind computer (ww d M.I,T. U n d n bbwstoryl.

Figurn d. wI.1.T. Memory Tear wrnpuwr IMW u d to teat first con memwy kourte~y of M.I.T. Lincoh Laborarmy).

was done by William Papian and Dick &st
[Best, 19571 and proceeded independently of
work on the compum.

The original TX-O (Figure 3) had a number of
I/O devices. After it was moved to M.I.T., tho
largest device- WM a 12-inch point-plotting cath-
ode ray tube (ddsJBtLcd by Ben GurIey) and light
pen ronsole. giving tlw TX-O iome physical re

semblance to Whirlwind. In addition to the
cathode ray tube, there was a high sped (3W
characters per second) Emanti paper tape
mdw and a Friden Flexowriter that was used
as both a typewfriter and paper tape punch.
There was also I large bank of toggle m,
some of which formad the two program am-
Able registers and some of which formed the

126 BEGINNING OF THE MINICOMPUTER

Figure 3. Lincoln Laboratory TX-0 computer (courtesy of M.I.T. Lincoln Laboratory).

first 16 memory locations, permitting direct en-
try of variables. However, despite the multiple
1 / 0 devices, the TX-0 had no program inter-
rupt mechanism.

The two program accessible registers were
called the Accumulator and the Live Register.
The Accumulator was used for logic functions
and the Live Register was used for controlling
and buffering transfers to various 1 / 0 equip-
ment. The initial version of the TX-0 had only
four instructions encoded in two bits, leaving
sixteen bits to access the large, 64-Kword mem-
ory. Three of the instructions accessed memory:
“store in location,” “add from location,” and
“transfer if Accumulator is negative to loca-
tion.” The fourth instruction, “operate,” was
for program controlled 1 /0 transfers and in-
cluded commands that could be combined to
produce a large number of instructions. The
combining process was called “micro-
programming” because bits in the instruction

specified particular register transfer operations
and could be programmed. Among the instruc-
tions that could be created were “clear the right
half of the Accumulator,” “cycle the Accu-
mulator right one position,” and “start the pa-
per tape reader.” The operations encoded in the
instruction could occur at any one of six pos-
sible times during the instruction; thus, a multi-
function instruction could be formed, such as
one to display a point on the screen and to gen-
erate a new pseudo-random point.

In 1958 the TX-0 was transferred (by Earl
Pugh and John MacKenzie) from Lincoln Lab-
oratory to the M.I.T. campus for laboratory ex-
periment control and for teaching. The memory
size was reduced from 64 Kwords to 4 Kwords
but used one of the first all-transistor driven
core memories. A second memory stack was
later added to provide 8 Kwords. In 1960 Pro-
fessor Jack Dennis assumed the management of
TX-0 and extended the architecture in an up-

126 BEGINNING OF THE MINICOMPUTER

ment. The inhid version of the TX-0 had bnly
four inatructions encoded in two bits, leaving
sixteen bits to accw the large, 6+Kword mem-
ory. Three of the instructions a d memory:
“store in location,” “add from location,” and
“transfer if Accumulator is negative to l a -
tion.” The f a d imstrdon, “owate,” w~
for program caoatroued I/O transfern and in-
dudsd commands that could be cumbined to
p d r m c e a large number of instructioim The
combining process was called “micro-
programming” b u s e bit6 in the imtrudion

THE PDP-1 AND OTHER 18-BIT COMPUTERS 127

Figure 4. Lincoln Laboraton/ TX-2 computer (courtesy of M.I.T. Lincoln Laboratorv).

ward compatible fashion to include an index
register and more instructions.*

Following the completion of the original TX-
0 at Lincoln, work began on what became the
TX-2 [Clark, 1957; Frankovich and Peterson,
19571. The TX-2 was a large machine, using
22,000 transistors compared to the 3,600 in the
TX-0 (Figure 4). A principal design goal of the
new machine was to create an 1/0 organization
that would be far more efficient than that of ex-
isting machines. To accomplish this, the idea of
a separate 1 / 0 processor was rejected, and a
minimum buffering scheme with direct transfers
to memory was chosen instead. Additional pro-
gram sequences with associated program

counters were provided to facilitate the 1/0
transfers, using the processing facilities of the
central processor to effect the 1 / 0 transfers.
This 1 / 0 system [Forgie, 19571 formed much of
the basis for the PDP-1 Sequence Break System
and nearly all subsequent DEC computer de-
signs.

In addition to the 1/0 system improvements,
the TX-2 featured increased parallelism. There
were separate adders for indexing, program
counter incrementation, and instruction execu-
tion. The increase in word length from 18 bits
for the TX-0 to 36 bits for the TX-2 permitted
the construction of a 36-bit arithmetic unit that
could be reconfigured dynamically and in-

*The TX-0 remained in service at M.I.T. until 1975, when it was purchased by DEC for display in the Digital Distributed
Museum Project.

-
THE PDP-1 AND OTHER 18-BIT COMPUTE1 127

128 BEGINNING OF THE MINICOMPUTER

cluded 4 X 9-bit, 2 X 18-bit, 9/27-bit, and 36-
bit arithmetic.*

By the time the PDP-1 was designed in 1959,
most of the important ideas of logical organiza-
tion, such as addressing, address modification,
sequencing control, arithmetic, and 1/0 con-
trol, had been invented. However, the major ad-
vances in the hardware realizations of these
concepts were yet to come. Machines were just
entering the second (transistor) generation. A
review o f the state of the art in logical organiza-
tion is given in [Beckman et al., 19611. A review
of the state of the hardware art in core memo-
ries is given in Rajchman [1961], and examples
of the transistor circuitry used at the time are
given in Chapter 4.

There is no record of the goals, constraints,
and objectives of the PDP-1 design. It is clear
that the PDP-1 instruction set processor was a
reaction to the TX-0, but it is unclear whether
an effort to make the PDP-1 compatible to the
TX-0 was ever considered. It seems unlikely be-
cause there was little software when TX-0 ar-
rived at M.I.T. As it turned out, it is fortunate
that no such effort was pursued because the
TX-0 was continuously extended, making com-
patibility a difficult goal to achieve. Instead of
being program compatible with the TX-0, the
PDP-l was oriented toward being producible
by a commercial enterprise and usable by a va-
riety of programmers. To this end, it had more
instructions than the TX-0 and a simpler 1 / 0
structure for ease in interfacing. In contrast to
the existing large-scale scientific and business
computers, the PDP-1 had a much shorter word
length (18 bits) and a simpler instruction set (28
instructions). The 1 / 0 structure included a se-
quence break option (the name given to the six-
teen channel interrupt mechanism) and a high

speed channel (now called Direct Memory Ac-
cess). The hardware implementation of the ma-
chine used DEC’s 5 MHz 10Wseries system
modules and a 4-Kword memory which was
later expanded to 64 Kwords. The processor
and memory occupied four cabinets.

The registers and functional units of the
PDP-1 ‘are shown in Figure 5, a diagram taken
from the original PDP-I programming manual.
The PDP-1 registers were named after those of

I I I

CONTROL EQUIPMENT

Figure 5. PDP-1 processor register transfer diagram.

*TX-2 operated until 1977, when it was dismantled. In the last decade of its use, it was modified and operated as a multi-
programmed timesharing system (Forgie, 19651. The machine was used for a variety of applications. Two notable works
included Sutherland’s Sketchpad [1963], an interactive graphic design program, and the first computer network experiment
between Lincoln Laboratory and the System Development Corporation computer [Marill and Roberts, 19661.

THE PDP-1 AND OTHER 18-BIT COMPUTERS 129

the TX-0, except for the TX-0’s Live Register,
which was renamed the Input-Output Register.
The 1/0 register was also used as the Multi-
plier-Quotient register when used as an accu-
mulator extension. An appreciation of the
relatively high cost of logic at the time of the
PDP-1’s design can be obtained from the fact
that an index register was rejected because of
the high cost.

Even more important than the cost of logic

To make it a commercially viable machine,
the PDP-I had not only more instructions than
the TX-0, but also a simplified 1/0 structure to
permit various 1 / 0 devices to be easily inter-
faced to the computer. One of the first user
manuals was the Input-Output Systems Manual,
which described the methods available for inter-
facing. These methods, now standard in mini-
computer and microcomputer design, included:

was the cost of memory, which had a major im-
pact on the machine’s price. Since the cost of
memory so strongly determined the machine’s
price, a 4-Kword minimum was selected for the
PDP-1, although a 1-Kword system also ap-
peared in the price list.

The instruction format used the 18 bits in a
fashion quite different from the 2 bits for in-
struction/l6 bits for address method of the

1. Program controlled transfers.
2. Program controlled transfers using the

Sequence Break System (now called an
interrupt system).

3. Multiple channel interrupt programmed
control.

4. High speed channel data transmission
(now called Direct Memory Access).

original TX-0. In the PDP-I, five bits were used
to encode the instruction, one bit was used for
indirect addressing, and twelve bits were used
for addressing the 4-Kword memory. Because
the machine was oriented to control appli-
cations and low cost was a goal, the only data-
types which were included were word, integer,
and Boolean vector (logical). Hence, just seven
data operators (+, -, X, /, AND, OR, and
EXCLUSIVE OR) for the one accumulator
structure and some control instructions were re-
quired.

The first description of the PDP-1 order code
by Harlan Anderson, DEC’s Vice President, ap-
peared in a company memorandum dated Octo-
ber 27, 1959. That two-page memo assigned the
order code and the instruction names for the 24
instructions that were used in the initial design.
A few instructions were later added to improve
subroutine calling; thus, 28 instructions were
eventually used in production machines. The in-
struction set description of the PDP-1 is given
in Figure 6, and the corresponding description
for the PDP-4 is also shown for purposes of
comparison.

The first method, program controlled trans-
fers, was a well established method, but the sec-
ond method was a unique capability. The
Sequence Break System permitted a program to
handle much of the processing associated with
1 / 0 devices instead of using special hardwired
controllers. Each time that an 1/0 device had
information to be transferred to memory, it
caused an interrupt to the processor and the
processor handled the transfer. This was a
marked change from the large computers that
used extensive (and expensive) 1 / 0 processors,
such as the IBM 7090 channels. A single IBM
channel was more expensive than a PDP-I.

The 1 /0 character rates for devices such as
magnetic tapes and drums exceeded the rates
which could be handled by the program, so in-
formation was transmitted directly to the PDP-
1’s memory in blocks under the control of the
device. Inter-block control was handled by the
interrupt facility, however. This basic scheme is
still in use in today’s DEC computers.

A block diagram of the magnetic tape control
unit used on the PDP-1 is shown in Figure 7.

130 BEGINNING OF THE MINICOMPUTER

pdpl .=
Begin (ocJ !One's Complement

** Processor.State **

AC\Accumulator<O: I7>.
IO\Input.Output.Register<O:l7>,
PC\Program,Counter<6: I7>.
OV\Overtlow< >.
PF\Prograrn.Flags< 1:6>.
RUN< >

** MemoryState * *

M\Meinory[O:4095]<0: I7>.

** Console.State **

TWS\Test.Word.Switches<O.17>.
SS\Sense.Switches< 1.6>,
AS\Address.Switches<O: I5>,

** Instruction.format **

i\,instruction<O: 17>.
op<O:4> ' = i<O:4>.
ih< > := i<5>.
y<6:17> := i<6:17>.
cli< > := i<6>.
lat< > := i<7>.
cma< > := i<8>,
hlt< > := i<9>,
cla< > .= i < l O > .
lap< > := i < l l > ,
stf< 0 3 > := i<14:17>.
clf<O:3> := i<14:17>.
s p i i > := i<7>.
szo< > := i<8>.
sLa< > := i<9>,
spa< > := i < l O > .
m a < > := i < l l > .
szs<O:2> := i<12:14>.
szf<0:2> := i<15.17>.

** Effective Address * *

z<6: I7> : =
Begin
z = y Next
Repeat Begin

I f Not ib 3 Leave z Next

7 = ih@y = M[y]<5:17>
End

End.

! Operation Code
! Indirect Bit
! Address
! Clear IO
! OR AC and Test Switches
! Complement AC
! Halt
! Clear AC
! Load PC
I Set Program Flags
! Clear Program Flags
! Skip i f Positive IO
! Skip if Zero OV
! Skip ifZero AC
! Skip i f Positive AC
! Skip i f Negative AC
! Skip if Zero Switches
! Skip i f Zero Flags

! indefinite indirect

pdp4 : =
Begin {tcl ! Two's Complement

** Processor.St;ite **

AC\Accumulator<O 17>.

PC\Program.Counter<S: i 7 > ,
L\Link< >.

RUN< >

** Memory.State **

M\Memory[O:8191]<O:l7>.

* * ConsokState **

ACS\AC.Switches<O: I7>.

AS\Address.Switches<O: 12>,

** Instruction.Format * *

i\instruction<O: 17>.
op<O:3> := i<O3>.
ih< > '= i<4>.
y<5:17> := i<5:17>,
cla< > := i<5>.
cll< > := i<6>,
rt< > := i<7>.
hlt< > := i<l2>.
rar< > := i<13>,
ral< > := i<14>.
oas< > := i<l5>.
cml< > := i<16>,
cma< > := i<17>.
is< > .= i<8>.
szl< > := i<9>,
snl< > := i<9>,
m a < > := i < I O > ,
sLa< > := i < l O > ,
spa< > := i < l l > ,
$ma< > := i < l l > .

** Effective.Address **

z<5:17> :=
Begin
z = y Next

I f Not ib 3 Leave z Next

! Operation Code
! Indirect Bit
! Address
!Clear AC
!Clear L
! Rotate Twice
! Halt
! Rotate Right
! Rotate Left
! O R AC and Switches
! Complement L
!Complement AC
! Invert Sense of Skip
! Skip if Zero Link
! Skip if Non-Zero Link
! Skip if Non-Zero AC
! Skip if Zero AC
! Skip if Positive AC
! Skip i f Negative AC

I f L Eqv #OOOI?
z = M[z]<5:17>

End.

M(z] = M[z] + I Next

Figure 6 PDP-1 and PDP-4 ISPS description (courtesy of Mario Barbacci) (part 1 of 5)

THE PDP-l AND OTHER 18-BIT COMPUTERS 131

** 1nstruction.lnterpretation * *

interp '=
Begin
Repeat Begin

I f Not RUN 3 Stop()Next
i = M[PC] Next
PC = PC + I Next
execute()
End

End.

execute : =
Begin
Decode op 3

! Load and Store Group
lac :=AC = M[z()], ! Load Accumulator
lio .=IO = M[7()]. ! Load 1/0 Register
law :=AC<= ib@y. ! Load Immediate (sign extension)
dac :=M[r()] = AC, ! Deposit Accumulator
dio :=M[z()] = IO, ! Deposit I/O Register
dap =M[z()]<6:17> = AC<6:17>, ! Dep. Address Part
dip =M[z()] < 0 5 > = AC<O:5>,! Deposit Instruction Part
drm :=M[z()] = 0, ! Deposit 0 in Memory

! Arithmetic and Logical Group
add :=Begin

Begin

OV@AC = AC + M[z()]Next
If AC Eqv #777777 = > AC = 0
End.

sub .=Begin
OV@AC = AC - M [z()] Next
I f AC Eqv #777777 = > AC = 0
End,

If10<17> 3 AC = AC + /us/ M[r()]Next
AC@lO = (ACCIO) SrO 1 Next
I f AC Eqv #777777 3 AC = 0
End,

dis : = Begin ! Division Step
AC@IO = AC<I:17>810@(Not AC<O>)Next
If 10<17> 3 AC = AC - /us/ M[z()]Next
IfNot 10<17> 3 AC = AC + Ius M[z()] + I Next
I f AC Eqv #777777 3 AC = 0

mus :=Begin ! Multiplication Step

End,

:=AC = ACOr M[z()],
and. :=AC = AC And M[z()].
ior
xor. :=AC = AC Xor M[z()].
! Program Control Group

i m p .=PC = L(),
jsp :=Begin !Jump and Save PC

!Jump

AC = OV~'0oooO@PC Next

End,
PC = y

** 1nstruction.lnterpretation **

interp :=
Begin
Repeat Begin

If Not RUN 3 Stop() Next
I = M[PC] Next
PC = PC + I Next
execute()
End

End,

execute =
Begin
Decode op +

Begin
' Load and Store Group
lac =AC = M[r()],

drm :=M[r()] = 0.

! Arithmetic and Logical Group
add :=Begin

L@AC = AC + /oc/ M[z()] Next
I f AC Eqv #717777 3 AC = 0
End,

tad '=L&AC = AC + /IC/ M[z()],

and. :=AC = AC And M[z()].

xor. :=AC = AC Xor M[r()].
! Program Control Group
jmp : = P C = L(),
jms := Begin

M [r ()] = LC'OOOO@PC Next
P C = z + I
End,

Figure 6 PDP-1 and PDP-4 ISPS description (courtesy of Mario Barbacci) (part 2 of 5)

132 BEGINNING OF THE MINICOMPUTER

cal.jda :=Begin
Decode ib 3

Begin
cal :=Begin ! Subroutine Call

M[#100] = AC Next
AC = OV@'OOOOO@PC Next
PC = # I O 1
End,

M [z()] = AC Next
AC = OV@'OOOOO@ PC Next
P C = y + l
End
End

jda : = Begin ! Jump and save AC

End,

AC = M[z()] + 1 Next
I f AC Eqv #777777 3 AC = 0 Next
M[z] = AC
End,

AC = M [z()] + I Next
I f AC Eqv #777777 3 AC = 0 Next
M[z] = AC:
I f AC GeqO 3 PC = PC + I
End,

idx :=Begin ! Index

isp :=Begin ! Increment and Skip if Positive

sad : = I f AC Neq M[z()] 3 PC = PC + I . ! Skip if AC Differs
sas :=lfACEqlM[z()] 3 P C = P C + I,!SkipifACisSame
xct :=Begin ! Execute

i = M[z()] Next
Restart exec
End,

iot :=undefined(),
sft :=shift.rotate.group(),
skp :=skip.group(),
opr := operate.group(),

Otherwise := RUN = 0

End,

skip< >.

End
! Undefined Operations

! Result of Condition Tests

sk ipgoup :=
Begin
skip = 0 Next
Decode ib 3

Begin
0 : = Begin ! True Test

If szo And (OV Eqv 0) 3 (skip = I ; OV = 0);
IfszaAnd(ACEqlO)+skip = I ;
I f spa And (AC Geq 0) 3 skip = I ;
If sma And (AC Lss 0) + skip = I ;
I f sp iAnd(IOGeqO)3skip = I ;
Decode szs 3

Begin
#O : = No.Op(),
#7 :=IfSSEqlO+skip= I ,
Otherwise:= IfSS<szs> EqvO 3 skip = I

! Test Sense Switches

End;

cal :=Decode ib 3

0 : = Begin
Begin

M[#20] = L@'OOOO@PC Next

PC = #21
End.

M[M[N2O]C = L@'OOOO@PC Next

PC = M[N20] + (us1 I
End

1 := Begin

End,

isz :=Begin ! Increment and Skip if Zero
M[z] = M[z()] + 1 Next

I f M[z] EqlO => PC = PC + I
End,

sad :=IfACNeqM[z()]+ P C = PC + I ,

xct :=Begin
i = M [z()] Next
Restart exec
End,

iot :=Undefined(),

opr.law := Decode ib 3
Begin

O\opr ' = operate.group(),
I\law.= AC y

End,
Otherwise := RUN = 0

End,

skip< >.

skip.group : =
Begin
skip = 0 Next
Decode is +

Begin
0 : = Begin ! True Test

End

! Result ofcondition Tests

IfsnlAnd(LXor0) +sk ip= I ;
IfszaAnd(AC EqlO) 3 skip = 1;

I f sma And (AC Lss 0) 3 skip = 1
End.

Figure 6. PDP-I and PDP-4 ISPS description (courtesy of Mario Barbacci) (part 3 of 5).

THE PDP-1 AND OTHER 18-BIT COMPUTERS 133

Decode szf 3
Begin

#o : = No.Op(),
#7
Otherwise := I f PF<srf> eqvO 3 skip = I

End,

! Test Program Flags

:=If PF Eql 0 3 skip = I ,

End

I : = Begin ! Reverse Test
I f szo And (OV Xor 0) = > (skip = I : OV = 0);

Ifsza And (AC Neq 0) 3 skip = 1:
I f s p a A n d (A C L s s 0) 3 skip= I :
lfsma And (AC Geq 0) 3 skip = I :
I f s p i A n d (I O L s s 0) 3 skip= 1 ;
Decode szs 3

Begin
! Test Sense Switches

#o ’= No.Op(),
#7 := l fSS NeqO 3 skip = I ,
Otherwise := IfSS<szs> XorO 3 skip = I

End;
Decode szf 3

Begin
#o := No.Op(),
#7 := I fPFNeqO+skip= I ,
Otherwise := If PF<szf> Xor 0 3 skip = 1

End

! Test Program Flags

End

End Next
If skip 3 PC = PC + I ! Skip
End,
operate.group : =
Begin
If hlt 3 RUN = 0:

If cla 3 AC = 0:
I f cli + 10 = 0;

Decode clf 3
Begin
#01:#06:= PF<clf<l:3>> = 0,
#o7:=PF=#OO.
Otherwise := No.Op()
End;

Decode stf 3
Begin
#11:#16:= PF<stf<l:3>> = I ,
#17:= PF=#77,
Otherwise := No.Op()
End Next

I f lat 3 AC = AC Or TWS Next
If lap 3 Begin

AC<O> = AC<O> Or OV:
AC<1:5> = 0:
AC<617> = PC
End Next

If cma 3 AC = Not AC

End,

1 := Begin ! Reverse Test
l f sz lAnd(LEqvO)3skip= I ;
lfsna And (AC Neq 0) 3 skip = I ;

lfspa And (AC Geq 0) 3 skip = 1
End

End Next
If skip 3 PC = PC + I
End,
operdte.group : =
Begin
I f hlt 3 RUN = 0;
skip.group() Next
I f cla 3 AC = 0
If CII 3 L = 0,
I f rt 3 shift.rotate.group() Next

I f oas 3 AC = AC Or ACS:

I f cma 3 AC = Not AC;
If cml 3 L = Not L;
shift.rotate.group()
End,

! Shift and Rotate Operations

hardware function ones(x<0:8>)<03>,

! Shift and Rotate Operations

!Count Number of 1’s in x

!Skip

Figure 6. PDP-1 and PDP-4 ISPS description (courtesy of Mario Barbacci) (par t 4 of 5).

134 BEGINNING OF THE MINICOMPUTER

shift.op<0:3> : = i<5:8>,

shift.n<0:8> := i<9:17>.

shift.rotate.group : =
Begin
Decode shift.op 3

! Rotates
#Ol\ral
I I\rar
#02\ril
#12\ril
#O3\rcl
#13\rcr
! Shifts
#05\sal := Decode AC<O> 3

Begin

:= AC = AC Slr Ones(shift.n),
:= AC = AC Srr Ones(shift.n),
:= IO = 10 SlrOnes(shift.n),
:= IO = 10 Srr Ones(shift.n),
:= AC@IO = (AC@IO) Slr Ones(shift.n),
:= AC@IO = (AC@IO) SrrOnes(shift.n),

Begin ! AC Left
0 := AC = AC SI0 Ones(shift.n),
1 := AC = AC SI1 Ones(shift.n)

End,
:= AC = AC SrdOnes(shift.n), #15\sar

#06\sil := Decode 10<0> 3
Begin

0 := IO = lOSIOOnes(shift.n),
I := IO = IOSII Ones(shift.n)

End,
#l6\sir
#07\scl := Decode AC<O> 3

:= 10 = IO Srd Ones(shift.n),

Begin
0 := ACOlO = AC@IO SI0 Ones(shift.n),
1 := ACOIO = AC@IO SI1 Ones(shif1.n)

End,
#17\scr
Otherwise := Undefined()

End

:= AC@IO = (AC@IO) Srd Ones(shift.n),

End

!Shift Conditions

! Shift Count

shift.rotate.group : =
Begin

! AC Left
! AC Right
! 10 Left
! IO Right
! AC@lO Left
! AC@IO Right

! AC Right

! IO Left

! 10 Right

! AC@IO Left

End ! End of Description

! AC@IO Right

If raI 3 L@AC = (L@AC) Slr 1;
I f rar 3 L@AC = (L@AC) Srr I

End

End ! End of Description

Figure 6. PDP-1 and PDP-4 ISPS description (courtesy of Mario Barbacci) (part 5 of 5).

This controller, which operated under program
control, used a minimum of hardware, but it
used 100 percent of the processor’s time when it
was reading or writing data. For high speed op-
eration, the various tape movement signals were
connected directly into the program flags. To
minimize hardware, there were no word buffers
in the controller; instead, characters were as-
sembled in the processor’s 1 / 0 register. While a
controller that requires 100 percent of a
$1 20,000 computer’s attention would not be de-
signed today, this structure is identical to mod-

ern day microprocessor-based controllers that
occupy 100 percent of a much cheaper proces-
sor’s time. Thus, each computer generation
goes exactly through all the stages of evolution
of the predecessor generations. (A similar con-
cept, the “wheel of reincarnation,” is discussed
in the Chapter 7 description of displays.)

The PDP-I engineering prototype (I /A) is
shown in Figure 8. It was first shown in Boston
at the Eastern Joint Computer Conference i n
December 1959. The cathode ray tube was in-
tegrated into the console, as shown in Figure 9,

THE PDP-1 AND OTHER 18-BIT COMPUTERS 135

I M A G T A P E PDP-, j T A P E C O N T R O L

I UNIT I T;:EgT
I
I I

i
STATE
LEVELS

I
I
I
f I
I

I

I

I

LOCAL
CONTAOL

ELECTRONICS

COMMAND
BUFFER

I

Figure 7.
from PDP-1 register transfer diagram.

Program control-based magnetic tape control

Figure 8. PDP-l/A prototype (circa 1960).

.

m L
Figurn 8. PDP- 1 /A pototyp (circa 1980).

1 3 6 BEGINNING OF THE MINICOMPUTER

Figure 9. PDP-l /A CRT console.

Figure 10 . PDP-l /B at BBN (circa 19601.

but this design was subsequently dropped for
cost reasons. The use of a cathode ray tube in-
tegrated into the console never returned to the
DEC main line of computers, except briefly in a
few PDP-6s and in the LINC and PDP-12 lab-
oratory computers. In modern fourth gener-
ation (large-scale integration) computers, the

entire computer is integrated into the cathode
ray tube housing.

Bolt, Beranek, and Newman (BBN), a con-
sulting firm in Cambridge, Massachusetts, pur-
chased the first production machine (I /B) for
delivery in November 1960. This machine is
shown in Figure 10. A third machine, similar to

36 BEGINNING OF THE MvllNlCOMPUTER

Figure 9. POP-1 /A CRT oonsole.

Figure- 10. PDP-l/B at BBN (circa 19601.

but tm oe%ign was su-tiy e &g
cost m o n s . Tbt use of a oath&,= f
tegratcd into the coaools
DEC main line ofcomp

matory computers. Io nsodern fourth sner-
ation (1-e integration) compuka, the

foW pDp-6~ and in the

tatiru computer is i n ~ r t t e d into the cathode

Baht, Berm&, and Nearrnan (BBN), a con-
8-g firm in CarnbrMgc, Massachusetts, pur-
chrised tho fimt production machine (1/B) for
deliwry in November 1960. T ~ ~ I I machiqe is
sbmn in Figure IO. A third machine,.similar to

ray tubs busing.

THE PDP-1 AND OTHER 18-BIT COMPUTERS 137

Figure 1 1 . PDP-l/C production version (circa 1961)

the 1/A and 1/B, was constructed for internal
use.

After building the first three machines, it was
clear that modifications were needed to im-
prove producibility, lower production costs,
and improve reliability. The separate console
required many cables, and the connectors be-
tween the console and the computer were unre-
liable. For this reason, the final design (called
the PDP- 1 /C) used an operator/maintenance
console integrated into the cabinets, as shown
in Figure 11. The cabinets were produced by
DEC and were designed as air plenums to im-
prove air flow by having air enter at the bottom
of the cabinet and flow past all the modules.
The PDP-1/C cabinet design and module
mounting scheme were used directly in the
PDP-4 and PDP-5 computers and have re-
mained relatively unchanged (except for airflow
direction) through the years. They are being
used in housings of the smaller metal-boxed
minicomputers and in options of the third (in-

tegrated circuit) and the fourth (large-scale in-
tegrated circuit) generations.

The PDP-I/C design used four cabinets in-
stead of the three cabinets of the earlier versions
and preassigned the space in those cabinets for
improved producibility and configuration con-
trol. Each of the multiply-divide, sequence
break, memory extension control, and high
speed channel options had an assigned location.
Figure 12 shows the numerous options that
were offered for the PDP-1. Figure 13 shows a
side view of a typical cabinet and shows the
space for interconnecting to other options. Ex-
pansion was accommodated by adding bays to
the basic four-bay mechanical structure and by
interconnecting stand-alone options via cables.
Rather than the bused connection scheme com-
monly used today, the PDP-1 used a radial in-
terconnect system. The radial design of the 1/0
structure and the free-standing controllers for
the magtape, displays, card equipment, printer,
and other devices made cabling relatively easy.

THE PDP-1 AND OTHER 18-BIT COMPUT€RS 137

the 1/A and 1/B, was cxlnstrnrctod for internal

After building the first three machines, it WM
ckar that mdfmt€omi wcru wedd to im
prow producibility, lower prdroctIsn mts,
and improve &ability, The -tu console
required many cables, and the coirmctws b
twcen the console and the computa w m mre
liable. For this m n , the final d d g n (d e d
the PDP-I/C) usedkan operator/maintcnance
console integrated into the cabinets, ehown
h Fuure 1 I . The cabinets - prod& by
DEC and were designed aa air plcmm~~ to im-
prwe air flow by having air enter at tbi bottom
of the cabinst and how past dl tb modules,
The PDP-l/C cabinet ddgn and m h k
mountiq &am wcrc wed directly in the
PDP-4 and PDP-5 computers and have to-
mained relatively unchastgd (except fur airflow
direction) through the pars. They arc being
used in housing of tbe am- mctd-boxcd
miniwmputem and in optima of ttae third Qn-

w.

138 BEGINNING OF THE MINICOMPUTER

~~

CENTRAL PROCESSOR OPTIONS

(UP TO 151

MEMORY EXTENSION CONTROL

TYPE 120 . ,
STANDARD

PDP-1
READER CENTRAL PROCESSOR

INCLUDING MULTl CHANNEL
SEQUENCE BREAK. AUTOMATIC CONSOLE

I/O TRANSFER CONTROL

/ / I I \ \ \ \ \

I REA,DER 11 I T Y E 1 11 PRlN:ER ~

TYPE 421 TYPE 51 TYPE 510 TYPE 64
CONTROL CONTROL CONTROL CONTROL

IIP T n 9 LIP m *

ULTRA-PRECISION
5-INCH
SCOPE CONTROL

TYPE 31

U P T O 8

TAPE

TYPE 50 I B M 129 PRINTER

CARD
READER

TAPE CAR0
PUNCH

I .INPUT/OUTPUT OPTIONS

Figure 12. PDP-l system block d i a g r a m

As with device controllers, history is repeating
itself today in this area, as new fourth gener-
ation designs are returning to radial inter-
connect due to the decreased cost of logic, the
high cost of interconnect, and the need to
bound the system.

The additional year of module design be-
tween American Research and Development's
permission to construct computers and DEC's
actual commencement of computer construc-

tion had permitted more low speed (500 KHz)
modules to be designed. These newer modules
used the same circuit techniques as their prede-
cessors, but they used less expensive, slower
transistors. These new modules were used for
the 1/0 equipment. The PDP-1 was built from
only 34 module types, including memory mod-
ules. Each module type was fully general pur-
pose, except the five module types that were
used for the analog memory circuitry. The mod-
ule types are shown in Table 1.

THE PDP-1 AND OTHER 18-BIT COMPUTERS 139

CONSOLE CENTRAL PROCESSOR

Figure 13. PDP-l/C logic layout diagram

Because of its short word length and high
speed, the PDP-I was particularly suited to the
laboratory and scientific control applications
that were to emerge later in the second gener-
ation. The small, scientific computers from
Bendix (G- 15) and Librascope (LGP-30) had
longer word lengths and cost less than the PDP-
1, but they were slower because of their serial
design which was dictated by the use of a drum
as primary memory. This slow speed limited the
utility of these machines in computation, con-
trol, and laboratory applications.

There were some market credibility problems
which inhibited PDP-I sales. It was an unortho-
dox machine in that it had high speed, a short
word length, and no built-in floating-point
arithmetic. Also, potential buyers doubted that
a company with only 100 employees and less
than a million dollars in sales could be a reliable
and long-lived computer supplier.

The first few PDP-1s were sold for the antici-
pated applications in scientific computation
and real-time control. Users directly interacted
with the computer via its typewriter, cathode
ray tube, and console. Customers included:
Lawrence Livermore Laboratory (for periph-

Table 1. PDP-1 Modules

High Low
Speed Speed
5MHz 500KHz

Circuit Type Clock Clock

Inverters. gates, decoders 7 5

Pulse amplifiers, delay lines 4 2

Flip-flop configurations 2 3

Special drivers, 4 2

Core memory circuits 5 -

22 12

signal conditioning

- -

era1 support processing to their large scientific
calculators and for graphics I/O); Bolt, Ber-
anek and Newman (for psycho-acoustics and
general computer science research); and Atomic
Energy of Canada Limited (for pulse height
analysis and van de Graaf generator experiment
control). The most important sale in terms of
DEC’s future was to International Telephone
and Telegraph (ITT), which used PDP-1s in
message switching systems.

Nearly half of the PDP-1s constructed were
used, as the ADX 7300, for the ITT message
switching application. The application was, in
essence, the automation of a torn tape switching
center. In a torn tape switching center, messages
are received punched o n tape, and the tapes are
hand carried to a tape reader appropriate to the
message’s destination. I n the computerized ver-
sion, up to 256 teleprinter lines could be
switched under program control in a store and
forward scheme on a character-by-character
basis using the interrupt facility of the PDP-I.
The PDP-1 was uniquely suited for this appli-
cation because of its high speed and high per-
formance Sequence Break System which
permitted low cost teleprinter line interfaces.

140 BEGINNING OF THE MINICOMPUTER

Aside from the experience gained from hav-
ing to produce computers that could run unat-
tended and without service, the most important
result of the ITT order was that it allowed DEC
to build a number of identical machines without
special engineering. This in turn provided a pro-
duction base with decreased costs (as described
in Chapter 3) and a discipline to be less special
systems oriented. The first few machines or-
dered by other customers had been nearly all
different, requiring DEC to build options that
were sold only a few times. In addition, many of
those machines had interfaces that were unique
to the applications.

I t should be noted that because the hardware
for the PDP-I was relatively inexpensive, DEC
could afford to stock an ample supply of basic
modules for building special interfaces. Con-
structing interfaces and specialized hardware
was relatively easy compared to modern day
hardware design. Also, design errors could be
corrected with simple wiring changes - a much
easier process than that demanded by the mod-
ern day, where expensive printed circuit boards
have fine etch lines to be cut and read-only
memories to be changed. Finally, the special in-
terfaces and controllers for the PDP-I were
quite simple compared to modern designs.

While the ITT sale was important to DEC’s
future, the Bolt, Beranek, and Newman (BBN)
sale was important to the future of the entire
computer industry because it was one of the
events leading to the development of time-
sharing. A number of computer scientists at
M.I.T. and BBN believed that it was necessary
to provide interactive access to computers. The
only way to make this economically viable was
to simultaneously share the computer among
the users. Three experiments were carried out to
demonstrate its feasibility: the IBM 7090 system
at M.I.T. [Corbato et al., 19621 which later be-
came the Compatible Time Sharing System
(CTSS), the multiuser PDP-I at M.I.T. [Den-
nis, 19641 which was operational in 1963, and
the shared PDP-I at BBN [McCarthy et al.,
19631.

Batch multiprogramming [Strachey, 19591
was an important part of the design of the
Stretch computer [Buchholz, 19621 and the
Atlas computer [Kilburn et a[., 19621. They
were oriented toward hardware efficiency in
that they aimed for high utilization of all com-
ponents. Timesharing, on the other hand, was
concerned with the efficiency of the people try-
ing to use the computer - the efficiency of the
man-computer interaction [Corbato et al..
19621.

A set of requirements was identified for a
timesharing system. Unless the workload was
restricted to programs that were specially de-
signed to run concurrently and to programs
that were error-free, one needed the following:

I . Memory protection.
2. Program and data relocatability.
3. A supervisor program.
4. A timed return to the supervisor.
5. Interpretive execution of the 1/0 in-

structions.

The BBN timesharing system began oper-
ation in September 1962. Five teleprinter users
shared the upper 4 Kwords of memory; the
lower 4 Kwords held the supervisor program,
called the “channel 17 routine.” The modifica-
tions to the PDP-I to effect timesharing were
embodied in the “restricted mode” of oper-
ation. They matched the above requirements in
the following way:

I . Memory protection. Switching between
the two 4-Kword areas required the use
of an 1/0 instruction.
Program and data relocatability. Because
only one user was resident at one time,
this was not needed.

3. A supervisor program. The channel 17
clock routine fulfilled this function.

4. A timed return to the supervisor. The
channel 17 clock generated an interrupt
every 20 milliseconds.

2.

THE PDP-1 AND OTHER 18-BIT COMPUTERS 141

5 . Interpretive execution of 1/0 instructions.
Whenever the PDP-I was in restricted
mode, an attempt to obey an 1 / 0 in-
struction caused a sequence break.

The TYC Control Language, a debugging aid
adapted from the DDT language devised for the
PDP-I and its predecessor languages, was re-
garded as important because it allowed direct
language program debugging. The “restricted
mode” modifications, a high speed swapping
drum, and the use of the new multiport memory
designed for the PDP-6 formed the PDP-I/D
design. Timeshared computers were built and
operated at BBN, Stanford, and M.I.T. These
timesharing efforts later influenced the use of
timesharing in the PDP-6 (Chapter 21).

THE PDP-4

About two years after the PDP-I was first
shown, the notion of a much smaller machine
developed during discussions of process control
applications with Foxboro Corporation and
various other customers. A machine called the
DC-12 Digital Controller was proposed. This
would be a 12-bit computer oriented toward
process control data collection and laboratory
data processing. During the preparation of the
proposal, the CDC 160 was studied, and the
DEC engineers briefly considered building a
copy or version of the IO-bit L-1 computer de-
signed by Wes Clark at Lincoln Laboratory.
However, the principal idea input for the
Digital Controller came from another Wes
Clark computer, the Laboratory Instrument
Computer (LINC).

The DC- 12 Digital Controller was never built
by that name; instead, it became the PDP-5
(Chapter 7). Some of the ideas studied in the
LINC and L-1 were used in other DEC ma-

chines, including the machine that became the
PDP-I successor, the PDP-4 (Figure 14). The
PDP-2 designation was saved for a possible 24-
bit machine, but none was ever built. DEC also
never built a PDP-3, although one was designed
on paper as a 36-bit machine.*

The decision to make the next machine an 18-
bit machine, rather than a 12-bit machine, was
taken very lightly when it was made in Decem-
ber of 1962. In retrospect, i t may have been a
poor decision, but the reasoning went some-
what as follows.

Based on the programming experience of the
TX-0, Gordon Bell felt that an 18-bit machine
significantly simpler than the PDP-1 could be
built and that simple machines with few instruc-
tions for a given number of data-types would
perform nearly as well as those with more in-
structions. This feeling was based on the use of
Whirlwind, TX-0 as it evolved through its vari-
ous versions, and the PDP-I. This was later
proven to be true, as the PDP-4 was imple-
mented in less than half the space of the PDP-I
and provided 5/8 the performance for 1/2 the
price. There is some question, however, as to
how much of the size reduction was due to the
simpler architecture, how much to the sub-
stantially better logic design implementation,
and how much to the increased logic packing
density.

Gordon Bell had conceived the idea of auto-
incrementing memory registers. This allowed
vectors to be accessed easily instead of using in-
dex registers. The auto-incremented memory
registers performed about as well as index regis-
ters and were much less expensive to imple-
ment.

The PDP-I had used one’s complement arith-
metic, which was especially poor for the fast
multiple precision operations and floating-
point arithmetic that DEC’s customers needed.

* I n 1960 a customer (Scientific Engineering Institute. Waitham. Massachusetts) built a PDP-3. It was later dismantled and
given to M.I.T.: as of 1974, it was up and running in Oregon.

142 BEGINNING OF THE MINICOMPUTER

Figure 14. PDP-4

Multiple precision operations required the de-
tection of carry or borrow and the ability to add
or subtract the result into the next most signifi-
cant word. One’s complement (especially as im-
plemented on PDP-1) did not conveniently
provide this capability, whereas two’s com-
plement arithmetic did. Therefore, the PDP-4
was designed to use two’s complement arith-
metic and to use the Link bit idea from the Lin-
coln Laboratory L-1 design to permit the
efficient programming of multiple precision
arithmetic operations.

Two control instructions were changed so
that they would not affect the Accumulator and
interfere with arithmetic instructions. The
“jump to subroutine” instruction was changed

to store the return link in the program area.
This convention would not be used today be-
cause it destroys the state of subroutines, thus
precluding reentrant programming, and it
makes the use of read-only memory difficult.
The other change was that the “index and skip”
instruction operated on memory only.

Those PDP-1 features that cost logic but
added little to performance were eliminated.
Among these were program flags, sense
switches, and the wired-in program (read-in
mode) that controlled the automatic reading of
paper tape.

The PDP-I had used 4-Kword memory with
memory bank switching, an arrangement that
was common when the useful software required

OF THE MIN KOMPUTER . .-
‘ I

Figure 14. POP-4.

Multiple precision operations required the d s
tection of carry or borrow and the ability to add
or subtract the m u l t into the next most simifi-
cant word. One’s complement (especially as im-
plemented on PDP-1) did not conveniently
provide this capability, whereas two’s corn-
plement arithmetic did. Therefore, the PDP4
was designed to use two’s complement arith-
metic and to use the Link bit idca from the Lin-
coln Laboratory L-I design to permit the
efficient programming of multiple precision
arithmetic operations.
Two control instructions were changed so

that they would not aflect the Accumulator and
interfere with arithmetic instructions. The
“jump to subroutine” instruction was changed

c.

to store the return link in the program area.
This convention would not be used today b
-use it datroys the state of subroutines, thus
precluding reentrant programming, and it
makw the use of read-only memory difficult.
The other change was that the “index and skip”
instruction optrated on memory only.
Those PDP-I features that cost logic but

added little to performance were eliminated.
Among these wero program flags, stnie
switches, and the wired-in program (read-in
mode) that controlled the automatic reading of
paper tape.

The PDP-I had used 4-Kword memory with
memory bank switching, an arrangement that
was common when the useful software required

THE PDP-1 AND OTHER 18-BIT COMPUTERS 143

8 Kwords of memory. It was felt that 8 Kwords
of directly addressable memory would be ideal.
The corollary to Parkinson’s Law that pro-
grams expand to fill any physical memory size
was clearly not understood. However, it turned
out that most PDP-4s stayed within the 8-
Kword constraint, although the machine could
operate with up to 32 Kwords of memory.

It was decided that the goal was to build a
modular design such that the optional equip-
ment cost would be associated with the option
rather than wired into all of the machines. It
was also decided that the Teletype Corporation
Model 28 should be used instead of a modified
IBM Model B typewriter such as that used on
the PDP-1. It was felt that this would provide a
lower failure rate, less time to repair, and lower
cost.

The logic design of the PDP-1, although quite
straightforward, was optimized in the PDP-4 by
eliminating redundant terms and encoding the
instructions in ways that would simplify the im-
plementation. (The only way to get a signifi-
cantly smaller machine was to start over with a
new instruction set processor.) However, the ex-
isting peripherals and memories for the PDP-1
could be used immediately to assist the imple-
mentation of the new machine. This was an-
other important factor in favor of building a
new 18-bit machine rather than going to a 12-
bit design.

In addition to the hardware design consid-
erations, software offerings were an important
consideration. The PDP-1 users and the pros-
pective customers for the new machine were
adamant about writing process control appli-
cations in a high level language. The designers
at DEC briefly considered providing ALGOL
60, but decided that it would be better to pro-
vide a FORTRAN I1 for the new machine. It
turned out that FORTRAN was used some-
what for computation, but most users stayed
with assembly language programming, espe-
cially where real-time programming was con-
cerned.

The designers had a fairly clear idea of the
intended market for the new machine. Like its
predecessor, the PDP-1, the PDP-4 was to be
used predominately for process control, with
some use in the laboratory for pulse height
analysis, data gathering, and other similar ap-
plications. In fact, during the planning for the
PDP-4, meetings were being held with Foxboro
Corporation about applications at Nabisco for
baking control and with Corning Glass about
the control of a glass tube manufacturing pro-
cess. The meetings with Foxboro may have
been another factor in the 12-bit versus 18-bit
decision, as Foxboro favored the longer word
length due to their previous experience with a
24-bit RCA control computer. When the PDP-4
machines were produced, both Foxboro and
Corning bought them.

The simplifications achieved in the PDP-4
can best be appreciated by comparing the PDP-
1 and PDP-4 ISPs, as shown in Figure 6, and
the register transfer structures, as shown in Fig-
ures 5 and 15.

As with the PDP-1, the major design goal of
the 1 / 0 system was that users be able to connect
equipment easily. The use of an 1 / 0 bus struc-
ture such as party line or daisy chain was not
considered for the PDP-4, although one was de-
veloped one year later for the PDP-5. Instead,
the design effort focused on improving the ex-
isting radial scheme to achieve greater periph-
eral compatibility. The 1/0 section, called the
Real-Time Control (Figure 16), included the
ability to interface with PDP-1 peripherals.
There was a small taper pin patch panel where
cable drivers and input gates could be patched
to the cables which radiated out to the peripher-
als from the main computer cabinets. The input
capabilities were somewhat better than the
cable drive capabilities, as the process control
operations of that day were really more process
monitoring than process control, a reflection of
industry’s distrust of the reliability of com-
puters for actual control applications. The sim-
plicity of the 1 /0 distribution contributed a

SWITCHES iACSI
I
I
I

REGISTER IIR: LEVELS AND PULSES
FOR ALL REGISTERS

PROGRAM
COUNTER lPCl

MEMORY

DISTRIBUTOR

MEMORY

I
INFORMATION DEVICE

INFORMATION
TRANSFER ---- CONTROL

Figure 15. PDP-4 processor/real-time option register
transfer diagram.

great deal to the compactness of the PDP-4. A
complete PDP-4 with card reader, magnetic
tape, display, and other options required three
bays, but many systems could fit within the two
standard bays (Figure 17), making PDP-4 sys-
tems less than half the size of comparable PDP-
1 systems.

In addition to the physical aspects of the 1 / 0
system, the logical design of the 1 / 0 system in-
cluded some new features. One of these was the
ability to count events. Event counting was im-
portant in scientific applications such as pulse
height analysis, and the first customer to ex-

ARITHMETIC AND CONTROL ELEMENl - .

INTERFACE

I
REAL TIME

OPTION
TYPE 26

PRINTER KEYBOARD
AND CONTROL TYPE 66

PROGRAMMED MAGNETIC
TAPE CONTROL

TYPE 64

PRECISION CRT

TYPE 32

(SEE NOTE1

TYPE 41 4

I

1 TAPLPUNCHAND 1
CONTROL TYPE 75

CARD PUNCH
CONTROL 5 TYPE 40 4

RELAYBUFFER
TYPE 61.4

TO OTHER

EOUIPMENT
- OUTPUT

INPUT/OUTPUT
EQUIPMENT

- FROMOTHER NOTE
INPUT ELlUlPMENT Included rn a standard PDP 4

Figure 16. PDP-4 block diagram

press a need for it was the Columbia University
Physics Department. It was also important in
process control applications such as metering
flows and counting discrete items. Options such
as the 16-channel clock implemented the event
counting feature by having the option access a
memory cell and then rewrite its contents plus
one, thus changing the contents of memory as it
was rewritten. Counting could occur at event
rates up to the 125-KHz memory rate.

This method of event counting lead to the de-
sign of a relatively low cost, high performance
Direct Memory Access feature called the Three

THE PDP-1 AND OTHER 18-BIT COMPUTERS 145

1

BAY 1 BAY 2 -
1A 2A

--
MEMORY

1 8 2B

INTERNAL -- MODULE -

CONTROL UNIT _- -
1C PROCESSOR 2C

AND

UNIT -
1o ARITHMETIC 2D

1E 2E --
REAL TIME

BAY 2 BAY 1

1 F

i n
- BLANK

1 J

READER
CONTROL

PUNCH
lL CONTROL

KEYBOAROIPRINTER
1~ CONTROL

2F CONTROL

2n

000000
2J IN lOUT PLUGS

2K

2L CONTROL
UNITS

FOR -
2M O P T I O N A ~

EOUIPMENT -

VARIABLE POWER
SUPPLY 734

POWER CONTROL
PANEL

813 MARGINAL CHECK
SWITCH PANEL

BLANK

POWER SUPPLY
728

735

POWER SUPPLY
728 BLANK

POWER SUPPLY POWER SUPPLY
728 728

POWER SUPPLY POWER SUPPLY
728 728

BLANK BLANK -
PLENUM DOOR LAYOUT

1N BLANK

1 operator Control Panel

2N

Figure 17. PDP-4 logic layout diagram

Cycle Data Break. This feature was first used in
the magnetic tape controller that was designed
for the PDP-4, and it has been used extensively
since then in PDP-8 options (Chapter 7). The
Three Cycle Data Break method of Direct
Memory Access works as follows:

I . During the first cycle, the word count
(stored as a word in memory) is in-
cremented. The word count is the nega-
tive of the length of the block to be
transferred, and the incrementation step
indicates that the present transfer is re-
ducing the number of words left to be
transferred by one.
During the second cycle, the current ad-
dress pointer (also stored as a word in
memory) is incremented. The current ad-
dress pointer indicates the memory ad-
dress to which or from which the data
transfer is to take place.

2.

3 . During the third cycle, the actual data
transfer between the memory and the
1/0 device takes place.

In addition to changes in the instruction set
processor and the 1 / 0 system, the PDP-4
differed from the PDP-1 in the module tech-
nology used, as was discussed in Chapter 5.
During the manufacture of the PDP-I, DEC
had been extending its main business, the sale of
logic modules, by extending the lower cost,
slower speed 500-KHz versions of the 5-MHz
modules that were used in the PDP-1. The new
500-KHz modules, evolving to 1 MHz, were 50
percent less expensive to build than the 5-MHz
modules because they used germanium alloy
transistors rather than micro alloy diffused
transistor (MADT) transistors. They were also
substantially easier to use and more reliable be-
cause of their lower data rate and wider clock
pulses. Two additional circuit design techniques

146 BEGINNING OF THE MINICOMPUTER

reduced the cost and increased reliability by re-
ducing the number of active elements. Rather
than use a transistor per gate as in the earlier
designs, a diode-transistor logic design was
used. In addition, capacitor-diode gates were
used for the AND gates associated with register
transfers.

The changes in the technology not only per-
mitted lower cost, greater noise immunity, and
greater reliability, they also permitted greater
densities. This made it possible, in some cases,
to design entire device controls on a single mod-
ule. Because the modules had only 22 pins (18
pins for signals), the increased densities could
not be applied directly to the more complicated
logic functions. To solve this problem, a 10-pin
connector was added on the back of each mod-
ule for the register transfer gating signals. In
this way, bit-slice architecture could be used,
packaging one bit of the Accumulator register
and all of the associated input gates on a single
module (Figure 18).

An interesting device with multiple stable
states was devised to simplify the control sec-
tion of the PDP-4. It was a generalization of the
flip-flop to n stable states, using n NAND gates
in a cross-coupled way with each NAND gate
having n-1 inputs. A patent was awarded for this
circuit, and it was subsequently used in other
computers and in the module product line.

Maintenance did not represent such a high
portion of the product cost as it does today, and
the designers of the PDP-4 did not feel that the
fraction of the total system represented by the
memory justified such present day features as
parity memory. Nonetheless, maintenance was
a major consideration in the PDP-4 design,
motivating the simplicity of architecture,
straightforwardness of implementation, care in
logic design, and clarity of the maintenance
documentation. The machine instruction set de-
scription occupied only one letter-size page.
The logic design flow chart (a state diagram) OC-

cupied only one D-size (22 X 34 inch) drawing,
and the design drawings for the processor occu-

A C C A R R Y OUT

110 l N P U l

NOTE
P102 and RE mpute m e disconnected If computer
includes real time option type 25

Figure 18. PDP-4 Accumulator bit-slice
register transfer diagram.

pied seven D-size sheets. To facilitate under-
standing the machine operation, each signal
name on the drawings had a mnemonic prefix
identical to the drawing name (e.g., AC) in-
dicating from which of the seven drawings that
signal originated. This convention has been car-
ried forward through many other DEC ma-
chines.

The operator’s console, shown in Figure 19,
included several functions to assist mainte-
nance. The console switches (Read, Read Next,
Write, Write Next, Start, Continue) could be re-
peated at a clock rate varied by a speed control

THE PDP-1 AND OTHER 18-BIT COMPUTERS 147

Figure 19. PDP-4 operator console

on the console. This simplified testing by per-
mitting easy use of an oscilloscope. In addition,
simple checks on memory could be performed
by using the console Read and Write switches
and observing the results on the console lights.

Because the PDP-1 had been generally used
in dedicated applications, the users had written
their own programs. M.I.T., for example, had
contributed a good macroassembler, linking
loader, and interactive debugging program -
DDT. BBN had contributed various sub-
programs. DEC had invested very little in PDP-
1 software and thus had no concern for the cost
of writing system software or for the concept
that a new machine should capitalize on pre-
vious systems programming. It was easy for
people at DEC to believe that a small part of
the savings achieved by building a simpler ma-
chine could be used to pay for the writing of
new software for that machine.

I n the present day, designers of new com-
puters realize that program compatibility is a
constraint and that any new machine must be
on an improving cost/performance line. (This is
discussed in greater detail in Chapters 2 and
15.) At the time that compatibility decisions
were being made with regard to the PDP-4,
about 20 PDP-1s had been installed out of an
eventual population of 50. Looking back from
today’s vantage point, a compatible machine
might have been built that would have inter-

preted most of the PDP- 1 programs and offered
the same improved cost/performance ratios as
the PDP-4 did, but still not have been very
much larger than the original PDP-4.

The PDP-4 was a limited success. While it
met the corporate profit standard, it did not sell
as well as had been expected. The market de-
mands were not as completely elastic as they
had been for the PDP-I, and 5/8 of the per-
formance for 1/2 the price was not good
enough. According to the evolution model dis-
cussed in the final section of this chapter, a ma-
chine with a lower price should have had the
same performance as the PDP-I, or else it
should have been priced much less than the
PDP- 1 to compensate for the relatively poor
performance. In summary, the PDP-4 was not
aggressive enough in performance or in price.
There is an additional reason for the poor fi-
nancial showing of the PDP-4. Experience with
other machines that were the first of a series,
such as the PDP-5, PDP-6, LINC-8, PDP-14,
and PDP-I 1/20, indicates that the financial per-
formance of the first machine is always the
poorest of the series, largely because of the lack
of a software and hardware option base. The
PDP-7, 9, 9/L, and 15 were necessary succes-
sors that used the software and hardware op-
tion base created by the PDP-4.

THE PDP-7

In many ways the original concept of the
PDP-7 (or what was finally named the PDP-7)
started with the design of the PDP-l/D. The in-
itial plans were to simply repackage the PDP-1,
using some higher density systems modules, and
to reduce the processor cycle time. The goal was
to use these changes to produce a lower price
machine with much better performance. This
goal was met quite well in the PDP-7, as it had a
greater performance/price gain over its prede-
cessors than any other DEC 18-bit computer.

The plan to simply repackage the PDP-I was
abandoned when consideration was given to the

THE PDP-1 AND OTHER 18-BIT COMPUTERS 147

preted most of the PDF1 programs and offerad
the same improved cost/pwformaace mtiaa as
the PDP4 did, but still not have been very n much larger than the urininal PDP-4.

on the console. This simplified tcarthg by p
rnitting easy use of an oscitloscope. In addition,
simple checks on memory could be performed
by using the console Read and Write awitchea
and observing the results on the console lights.

Becaw the PDP-I had been generalb used
in dedicated applications, the users had written
their own programs. M.I.T., for example, had
contributud B good macromcmbler, linking
loader, and interactive debugging program -
DDT. BBN had contributed various sub-
programs. DEC had invested very Ettk in PDP-
1 software and thus had no concern for the cost
of writing system software or for the concept
that a new machine should Capitaiize on pra
viow systems programming. It waa easy for
people at DEC to believe that a small part d
the savings achieved by building a simpler ma-
chine codd be used to pay for the writing of
new software for that machine.

In the p r a n t day, deignerrs of new com-
puters realize that program compatibility is a
constraint and that any new machine must be
on an improving cust/ptrformance line. (This is
discussed in greater detail in Chapters 2 and
15.) At the time that compatibility dcchions
w m beiqp made with regard to tbe PDP4,
about 20 PDP-1s bad been instalfed out of an
eventual population of 50. Looking back from
today's vantage point, a compatible machine
might have been built that would have inter-

I

'

md the corporate profit standard, it did not dl
as well a1 had been expected, The market de-
mands were not as completay elastic aa tbty
had b#n for the PDP-I, and 5/8 of the par-
formame for 112 the price was not good
enough. According to the evolutioa model d b
cussed in the final section of this chapter, a ma-
chine with a lower price shodd haw had the
m e performance as the PDP-I, or clw it
should haw been priced much l a than the
PDP-I to compensrte for the relatively poor
performance. In summary, the PDP-4 was aot
aggressive enough in performana or in price.
There is an additional reason for the poor fi-
nancial showing of the PDP-4. Experience with
other machines that were the fint of a serial

and PDP-I 1/20, indicms that the finamid per-
formance of the First machine is always the
pornst of the series, largely because of the lack
of a software and hardware option bast. The
PDP-7, 9, 9/L, and 15 w m raecesmry sums-
SOIS that used h e software and her&- op-
tion base created by the PDP-4.

S U C ~ a~ thF PDP-5, PDP-6, LINGS, PDP-14,

THE POP-7

In many ways the original concept of the
PDP-7 (or what was finally named the PDP-7)
started with the design of the PDP-I /D. The in-
itial pIans were to simply repackage the PDP- I,
using some higher density systems modules, and
to reduce the prowisor cycle time. T'he goal was
to use thest change3 to produce a lower price
machine with much better performance. This
goal was met quite well in the PDP-7, as it had a
greater performance/price gain over its ptsda
cessors than any other DEC I s b i t computer,

The plan to simply repackage the PDP-1 was
abandoned when consideration was Bivm to the

148 BEGINNING OF THE MINICOMPUTER

relative sizes of the existing software and pe-
ripheral option bases of the PDP-l and the
PDP-4. The PDP-4 had more extensive soft-
ware than the PDP-1, including an operating
system and a FORTRAN compiler. The PDP-4
also had a much larger peripheral hardware op-
tion base than the PDP-1. Therefore, the goal of
program compatibility with the PDP-4 was
added to the goal of a substantial perform-
ance/price improvement, and the 1 / 0 interface
scheme for the new machine was constrained to
match the timing and structure of the past com-
puters. Although sounding quite broad, these
goals were rather restrictive, especially the re-
quirements for program and peripheral com-
patibility. The sales goal was truly broad,
however. That goal was to sell 120 systems,
more machines than the total of all other DEC
computer systems sold to date.

To sell all those systems, a substantial ad-
vance in performance would be required. Thus,
the performance goal was to decrease the cycle
time from 8 microseconds to 1.75 micro-
seconds, the practical limit of core memories at
the time. This was a rather ambitious goal and
required designing a new core memory system
and a new set of modules, the B-Series, which
were Flip Chip modules based on the IO-MHz
systems modules (Chapter 5). These new mod-
ules were used for the central processor and
memory. Originally, they were also used in the
1/0 section of the system, but that was sub-
sequently redesigned to use primarily 2-MHz
R-Series modules, as will be described near the
end of this section. (Note the similarity to the
PDP- 1, where cheaper, lower speed, 500-KHz
modules were used in the l/O.)

Program compatibility between the PDP-7
and the PDP-4 was maintained generally, but
was slightly modified in the 1 / 0 section to facil-
itate the introduction of the ASCII 8-level code.
The PDP-4 console teleprinter had been a Tele-
type Corporation Model 28 KSR teleprinter
that used Baudot (5-level) code. A shift to AS-
CII (8-level) code had already started in the in-

dustry, so the PDP-7 was designed to use the
Teletype Corporation Model 33 KSR. This
change necessitated that all programs determine
whether they were running on a PDP-4 or on a
PDP-7 so that they could determine how to in-
terpret the characters typed on the console tele-
p r i n t e r . O t h e r t h a n t h i s , a n u p w a r d
compatibility was maintained. Downward com-
patibility was not maintained, as the PDP-7 had
some additional instructions, a trap feature,
and a multilevel interrupt option to allow multi-
user environments. In addition, the program
read-in mode of PDP-1 days returned to the
console. This feature permitted the user to press
a key and cause a paper tape, punched in a spe-
cial format with address and data or termi-
nating address, to be loaded into the computer’s
memory. (Figure 20 shows the PDP-7 operator
console.)

The structure of the processor with its regis-
ters and the interfaces to 1/0 and memory are
shown in Figure 21. Note that the structure and
style of the design was essentially the same as
that used in the earlier designs, but modified for
the higher speed technology. The PDP-7 and
the PDP-4 had identical architectures and sim-
ilar implementations, but they had radically dif-
ferent realizations. Although the 1 / 0 section
and the new options were designed to operate at
the 1.75 microsecond cycle rate, to use the
slower PDP-4 compatible 1 /0 equipment, spe-
cial pulses were used to implement a slow cycle
of 8 microseconds.

r

Figure 20. PDP-7 operator console.

148 BEGINNING OF THE MINICOMPUTER

THE PDP-1 AND OTHER 18-BIT COMPUTERS 149

ADDRESS

SKIP

CONTROL

ADDRESS
SWITCH

REGISTER
15

CI

PROGRAM
COUNTER A

1 6

-

FROM INPUTIOUTPUT
EQUIPMENT USING DATA
BREAK TRANSFERS

M A
CONTROL

MEMORY
ADDRESS
REGISTER

15

ADDRESS

TOCORE

FROM INPUTIOUTPUT
EQUIPMENT USING
PROGRAMMED STATUS
CHECKS

PULSE INTERFACE

r-L REGISTER F l
FROM INPUTIOUTPUT w-----l -i ACCUMYLATOR

EQUIPMENT VIA THE
INFORMATION COLLECTOR
OFTHE INTERFACE

TO INPUTIOUTPUT
EQUIPMENTVIATHE INFORMATION a-1
DISTRIBUTOR OF THE I CONTROL I

DATA '7' INTERFACE

FOR INPUTIOUTPUT
EQUIPMENTUSING DATA
BREAK TRANSFERS

INCREMENTMB

rF-t---
DIRECTCONNECTION 1 I

MEMORY
BUFFER

REGISTER
18

M B
C 0 N T R 0 L

~' REGISTER MINOR STATES IINSTRUCTION STATES1

AVAILABLE FOR ANY

OF INTERFACE
4

L 4 I

BREAK
REOUEST

ADDRESS ACCEPTED

DATA READY

TRANSFER DIRECTION

DATA BREAK REQUEST

PROGRAM
INTERRUPT

I SYNC

AVAILABLE FOR
INPUTIOUTPUT
EQUIPMENT
USING DATA BREAK
TRANSFERS

DIRECT CONNECTlOh
AVAILABLE FOR ANY
INPUTIOUTPUT
EQUIPMENT

PROGRAM

INTERRUPT

CLOCK

REAL-TIME
CLOCK

GENERATOR

SPECIALPULSES
SPECIAL
PULSE

TIMING PULSES ..
IT1 THROUGH T71 CONTROL

REQUEST
SLOW CYCLE

TlMlNG
SIGNAL

GENERATOR

CONTROL

Figure 21. PDP-7 processor and I10 section register transfer diagram.

150 BEGINNING OF THE MINICOMPUTER

The system diagram of the PDP-7 (Figure 22)
shows the options and the general inter-
connection scheme. It was fundamentally the
same structure as its predecessors and was de-
signed for use with many of the earlier periph-
eral controllers.

Physically, the PDP-7 was larger than the
PDP-4 because the console was mounted on the
side plane to facilitate maintenance instead of
on the end as in PDP-1 and PDP-4. This per-
mitted a service man to both look at a scope
and operate the console. Also, the paper tape
1 / 0 equipment, which had been on an extra

table in the PDP-I and PDP-4, was now housed
in the third bay of the main computer cabinets.
Figure 23 shows that the number of logic panels
for the processor of the PDP-7 was the same as
that for the PDP-4, even though the circuit
board area of the modules in the PDP-7 (3,348
in2) was slightly larger than that in the PDP-4
(3,300 in2). Although it does not show in the
diagrams or in the photos, a significant portion
of the volume of the PDP-4 was cable con-
nectors to various subassemblies. The PDP-7
improved the cabling by having all of the con-
nectors in the backplane so that all of the wiring

DISPLAY

L

Et--- READER

PRINTER

REMOTE

I I I I I 1

I

I

1

Figure 22. PDP-7 system block diagram.

THE PDP-1 AND OTHER 18-BIT COMPUTERS 151

BLANK

I

could be done in a single wiring operation. The
PDP-7 was thus the first DEC computer de-
signed for automated wire-wrapping. Mechani-
cal block holders were designed to mount the
connector blocks for the modules and cable
connectors in the cabinets and a semi-automatic
wire-wrapping technique was developed to al-
low a much higher speed production of wire-
wrapped backplanes. Also, a Gardner-Denver
fully automatic Wire-wrap machine was or-
dered and programs to control i t were devel-
oped.

The PDP-7 (shown in Figure 24) was a suc-
cessful product. The design costs, excluding
module and labor costs, were less than $100,000
from the start of the project to completion of
the first prototype. Time was considered a very
important factor in the design of the PDP-7.

I 1 1 CORE MEMORY1

SYSTEMS MODULES
MOUNTING PANEL

BAY 3 BAY 2 BAY 1

I 11111

MOUNTING PANEL
IREMOVED FOR 161

MOUNTING PANEL

PANEL A N 0
TELETYPE DRIVER

STEP-OOWN
POWER SUPPLY

TRIPLE FAN
MOUNTING PANEL

POWER SUPPLY
728

POWER SUPPLY

The project started on April 1, 1964, and the
first production system was delivered on De-
cember 22 of the same year. The entire logic im-
plementation was undertaken by Ron Wilson
and one assistant, Jack Williams. Later, a Field
Service representative, Don Zereski, literally
hand-built the first production system to be de-
livered to Bell Laboratories. The memory con-
trol and stack were designed by a memory
design engineer, Derrick Chin, who coordi-
nated his design with the processor logic design.
Despite the hand-building of the first unit, the
production of the PDP-7 was the beginning of
several mass production techniques at DEC,
and it was an important machine in the history
of DEC 18-bit computers.

The development problems that were over-
come were quite formidable. A complete new

BAY 1 BAY 2 BAY 3

BLANK
INDICATOR PANEL INDICATOR PANEL BLANK

I

A MEMORY LOGIC
B

AIR BAFFLE PANEL
MARGINALCHECK

PANEL -

NK -I
REAR VIEW FRONTVIEW

Figure 23. PDP-7 front and back logic layout.

152 BEGINNING OF THE MINICOMPUTER

(a) Front.

(b) Rear.

Figure 24. PDP-7

line of modules, the Flip Chip series, was devel-
oped (although IO-MHz circuits had been
tested in the PDP-6). New connector blocks had
to be obtained to hold the modules, a design
effort that was concurrent with similar efforts
for the PDP-8. New wire-wrap techniques had
to be devised to ease the labor requirements so
that systems could be wired faster. Toward this
end, a program was ultimately developed for
the PDP-4 to do wire-routing and to control the
Gardner-Denver machine. System layouts had
to be developed to facilitate wire-wrapping. The
mechanical packaging and cooling had to be al-
tered to accommodate the new wiring panels, as
the existing PDP-1, PDP-4, and PDP-5 air ple-
num scheme was completely blocked by the new
connector blocks. The memory performance
goals (1.75 microseconds) were difficult to
achieve, as the best memory performance to
date was that of the PDP-6, which was 2 micro-
seconds. All of the above had to be done within
the cost goals.

As the design phase of the PDP-7 neared an
end and production models were being deliv-
ered, two developments occurred that suggested
the possibility of an improved production
model. One of these was the R-Series module
developments. These modules were lower speed
than the B-Series modules that formed the pro-
cessor, but they were lower in cost and more
complete in the range of functions available.
After analyzing the configurations that the cus-
tomers were ordering, the designers came up
with a new 1 / 0 panel that used R-Series mod-
ules as much as possible and was prewired for
several of the most popular peripheral controls,
thus reducing the amount of special wiring re-
quired to produce a system. This improved sys-
tem was called the PDP-7/A.

With the PDP-7/A completed, the designers
contemplated the possibilities of a next gener-
ation system that would use the new tools that
were now in place, such as the Gardner-Denver
fully automatic Wire-wrap machine. The design
criteria for the new machine would be that it be
completely wire-wrappable using the automatic

152 BEGINNING OF fH E MINICOMPUTER

line of modulm, the Flip Chip Ma, was devd
oped (although 1GMAz circuits had bum
tested in the PDP4). New cunnbctor blocks had
to be obtained to hold the modules, a
dfwt that was concurrent with s i m h efforts
for the PDP-8. New Wire-wrap techniqua had
ta be devised to caw the labor requirements ~3
that system a u l d ba wired faster. Toward this
ad, a program was ultimatdy dmlopd far
the PDP-4 to do wire-routing and to control the

to be developed to facilitate wirompping. The
mechanical packaging and c d n g had to be al-
tered to accommodate the new wiring panels, as
thA mdtiting PDP-1, PDP-4, and PDP-5 air pla
num scheme was complctcly biocked by tbe new
cumstor bl&. The memory prfonaance
BO& (1,75 microseconds) w e n difkult to
achieve, as the bat memory performance to
date was that of the PDP-6, whicb was 2 micro-
seconds. All of the above had to be dow within

As the dmign ph- of the PDP-7 Ileared an
end and production models w m being deliv-
4, two developments occurred that suggested
the pQlbility of an improved production
model. One of thw was the R W a module
dwdopments. Tbeso modula were lower sped

ces8or, but they were luwm in cost and mure
complott in the range of functions available.
A M analyzing tho m&uratiom that the CUI+
tomers were ordering, the designers came up
with a now I/O panel that wed R-seria mod-
uledl as much as powible and was prewired for
several of the mort popular pwiphcrd contfols,
thus reducing t h o amount of special wiring re
q u i d to produce a system. This improved sys-

With the PDP-’I/A completed, the daignars
contemplated the possibilitia of a next gener-
ation system that would we the new toola that
were now in place, such as the Gmdner-Denver
fully automatic Wk-wrap machine. Ths design
criteria for the new machine would be that it be
aompletaly wire-wrappabk wing the automatic

Gardoer-Denv~ m d h . S Y S W lay0Uta had

the COSt BOab.

than the B-We m o d u l ~ that f o m d the P~O-

tcm WM d a d the PDP-’I/A.

THE PDP-1 AND OTHER 18-BIT COMPUTERS 153

machine and that a system with 8 Kwords of
memory sell for approximately $35,000. The
new machine was called the PDP-7/X.

To meet the goals set for the new machine, a
new cabinet design was started that would
mount the wire-wrap panels on door-type
frames. These frames opened to allow access ei-
ther to the connector side for oscilloscope trac-
ing or to the module handle side for module
replacement. The new cabinets also dealt with
two problems involving the air flow. One of
these was that the air flow needed to be in-
creased due to the high density of the new logic,
and the second was that the existing air flow
method pulled air from the floor, which was
sometimes dirty. To solve these two problems, a
horizontal air flow system was implemented.

To control the system costs, which were be-
coming a major factor, the computer was di-
vided both logically and physically into three
divisions: memory, central processor, and in-

put/output logic. This was done to permit the
calculation and control of costs more accurately
and to divide the computer into the largest
single panels that the Gardner-Denver machine
could wrap,

The cabinet design and system partitioning
completed, the logic design moved ahead
smoothly. At this time, Larry Seligman, who
had designed the Extended Arithmetic Element
for the PDP-7, took over the project from Ron
Wilson. By this time, the project had changed
its name from PDP-7/X to PDP-9.

THE PDP-9

The basic logic and hardware for the PDP-9
(Figure 25) were the same as that used in the
PDP-7. Although some integrated circuits were
available, no standards had yet been set, and
there were no cost or speed advantages to be
gained. Therefore, the logic used discrete PNP

Figure 25. PDP-9.

THE POP1 AND OTHER 1&Bm COMPUTERS 183

machine and that a system with 8 Kwords of
memory d l for approximately S35,Wl. The
new machine was called tbe PDP-7/X.
To meet the goals set for the new machine, a

new cabinet dasign was started that would
mount the wire-wrap panels on dmr-type
frames. Thm frames opened to dlow ei-
ther to the connector side for odllompe trap
ing or to tht modufe handle side for module
replac;emmt. Tbe new cabinets also dealt with
two problems involving the air flow. One of
theae was that the air flow needed to be in-
creased due to the high density of the new logic,
and the sscond was that the existing air flow
method pulIcd air from the floor, which was
sometimes dirty. To solve these two problems, P

horizontal air flow system was implommtod.
To control the system costs, which were be-

coming a major factor, the computer was di-
vided both logically and physically into three
divisions: memory, central promisor, and in-

put/output logic. Thk was done to permit the
calculation and control of costs mort accurately
and to divide the oomputer into the largd
singie panels that the Gardner-bnver machine

The cabinet deign and system partitiming
compktd, the logic da@n moved ahead
smoothly. At this time, Larry &Jigman, who
h a d d t p i e n e d t h u E x ~ A r i ~ E l e m s m t
for the PDP-7, took wer the project from Ron
Wilson. By thirs time, the project had &angal
its name from PDP-’I/X to PDP-9.

could wrap *

THE P OP-0

The buic logic and hardware for the PDP-9
(Figure 25) were the same as that ucd in the

available, no standanla bad yet been set, and
there wcm no cost or spe#l advantagm to k

PDP-7. Altbwgh S Q ~ C ht4gratcrl Circuit0 w ~ f f

gaiaod. Therefore, the lo& used dhcrete PNP

Figurm 25. PDP-9.

154 BEGINNING OF THE MINICOMPUTER

transistor, capacitor-diode circuitry operatir,g
with signal levels of - 3 volts and ground. The
modules were about 2.5 X 5 inches or 5 X 10
inches and were plugged into an assembly of
144-pin connector blocks interconnected by 24-
gauge wire-wrap.

The major technology advance of the PDP-9
over the PDP-7 was in memory. A new memory
had been designed that used a 2-1/2 D driv-
ing/sense structure. The 2-1/2 D system re-
quired only three wires through each core in the
stack, rather than the four wires used in earlier,
coincident current designs such as that used in
the PDP-8 memory. The new memory obtained
a cost advantage by being oriented in an 8-
Kword organization rather than a 4-Kword or-
ganization. The costs of the discrete component
logic in the machine were still high compared to
those of memory, so the cost advantage was not
as exciting as the second advantage of the new
memory, which was speed. The new memory
had a cycle time of 1 microsecond as opposed to
1.75 microseconds for the memory in the PDP-
7. Because memory speed limited system per-
formance, the new memory would permit the
system performance of the PDP-9 to be 1.75
times better than that of the PDP-7.

The structure of the PDP-9 processor is
shown in Figure 26. It was a great deal simpler
than earlier designs and used a general data
path through the adder rather than the ad hoc
register structure of the earlier machines. The
basic PDP-9 implemented the PDP-4 instruc-
tion set processor and the Extended Arithmetic
Element option using microprogrammed con-
trol. It was the first DEC computer to use this
technique.

In addition to being a technological advance-
ment, the PDP-9 was an interesting precursor of
things to come. A 64-word, 36-bit, 212-nanose-
cond read-only, transformer-coupled, rope
memory was used as the microprogrammed
control store. The design allowed for easy
bench modification in the event that the micro-
code required changing. It was originally in-

r------l CENTRAL PROCESSOR

I
I

I CoREMEMoRV

I
I

_ _ S U B COMMANO
SEOUENCES

! r------- '
Ll I

I
I
I
I
1
I
I
I
I
I

DATA I
,,o ADOR CnA"EL I

I
I

SWITCHES 1
I

KEYBOARD 1
PTREAOER

iOPTl0N

ADDRESS I

nlXER SWITCHES I
CONSOLE I
OISPLAY I

FROMMB I

Figure 26.
diagram.

PDP-9 central processor register transfei

tended that the control words be arranged for
unary encoding, or what is now called horizon-
tal microprogramming. In such an arrange-
ment, each bit in the microinstruction denotes
an action and can be specified independently of
other microinstructions. This behavior is sim-
ilar to the operate class of instructions in the 12-
bit and 18-bit computers. However, the in-
tention of using horizontal microprogramming

THE PDP-1 AND OTHER 18-BIT COMPUTERS 155

was soon lost in the complexities of design, and
the bits were encoded to reduce the width of the
control words. This eliminated the possibility of
providing special purpose machines by a simple
read-only memory change, a feature that the de-
signers had originally hoped to include.

The necessity of staying within the size con-
straints of the read-only memory also con-
strained the extendability and use of the
microprogram control, in that floating-point
arithmetic could not be included due to space
limitations. There were not enough words, a
problem all too familiar when programming ei-
ther macro or micromachines. The Extended
Arithmetic Element was included in the micro-
program-controlled portion of the machine.
The Extended Arithmetic Element demon-
strated the power of the control store technique
because this option, a 36-bit multiply/divide
option, was implemented in only six single
height (5 X 2.5 inch) Flip Chip modules. The
processor occupied about 320 module slots, for
a total printed circuit board area of 3,100 in2.
This was not only less than the 3,348 in2 for a
PDP-7, but it also included both the optional
arithmetic element and much of the 1 / 0 con-
trol. Thus, when functionality is considered, the
PDP-9 was about half the size of earlier ma-
chines.

Interesting sidelights of the processor design
effort included the discovery of an error in the
PDP-I signed integer divide algorithm and
Richard Sogge’s design of a discrete carry adder
which would develop the carry over 18 bits in
under 30 nanoseconds. This was an especially
impressive circuit since ECL technology is re-
quired even today to obtain this speed.

Figure 26 shows a register transfer level dia-
gram of the processor together with 1 / 0 and
memory interface lines. The 1 / 0 control ex-
tended the features of earlier machines by im-
plementing an eight level nested automatic
priority interrupt facility and a data channel
transfer facility. The Automatic Priority Inter-

rupt had four levels of hardware interrupt capa-
bility at the 1/0 Bus and four levels of software
priority. The Data Channel Transfer Facility
was the same as a Direct Memory Access chan-
nel, but used the Three Cycle Data Break Sys-
tem pioneered i n the magnetic tape control for
the PDP-4 (page 144).

The Direct Memory Access channel was the
most disappointing part of the 1 / 0 bus concept
because the speed requirement dictated the use
of an extra set of data and address lines which
were carried between the DMA device and the
memory bus multiplexer via an extra set of ca-
bles. In addition, a second port to memory was
required. A clean bus cabling scheme for high
speed transfer devices could not be imple-
mented because of the extra lines required, and
the only alternative, slowing down the machine
to handle the transfers, was not acceptable.

Logic for the PDP-9 was mounted in three
sections, each capable of holding eight rows of
forty modules (Figure 27). Each of the three
sections had self-contained cooling and final
power regulation.

A system block diagram of the PDP-9 (Fig-
ure 28) shows the evolution of the 1/0 and
memory bus structured computer. This scheme,
derived from the PDP-5 and PDP-6, was in con-
trast to the radial structure of the earlier 18-bit
computers and provided greater modularity
and a major cost improvement. The new bus
was daisy-chained from device to device using
twisted pair cables. This technique provided
uniformity in 1/0 backplane wiring compared
with the PDP-7, which was customized for each
option. The daisy-chain method allowed inde-
pendent development, manufacturing, and test
of 1 / 0 options and simplified the field installa-
tion of options. Also, it allowed costs to be as-
sociated with each option rather than being
initially higher as in the radial scheme where all
options had to be planned for in the central pro-
cessor. The new bus structure was a mixed
blessing in that it created the illusion that sys-
tems of unlimited size could be built.

156 BEGINNING OF THE MINICOMPUTER

ME098 MEMORY

PAPER TAPE

PUNCH

Figure 27. PDP-9 front and
back logic layout.

1

CENTRAL
PROCESSOR

!
OPERATOR'S CONSOLE

I - I I - h-p MEMORY

I k
CONVERTER

O l S I
TO OTHER DEVICES

Figure 28. PDP-9 system block diagram.

Except for the 300 wire field change on the
first ten processor backplanes, the PDP-9 en-
joyed a good reputation for performance and
up time. It was followed by a less costly version,
the PDP-9/L. The cost reduction was accom-
plished by using a new (and somewhat cumber-
some) power supply design and by offering a 4-
Kword minimal system with lower cost paper
tape equipment. The 4-Kword memory planes
were borrowed from the PDP-8 line and
adapted to provide half the memory in half the
space. To provide lower cost paper tape capa-
bility, the PDP-9/L used a teleprinter equipped
with paper tape reader and punch instead of a
separate, heavy-duty paper tape reader and
punch. The product life of the PDP-9/L was
relatively short; it was soon made obsolete by
the PDP-15.

THE PDP-15

Unlike its predecessors, the PDP-15 was de-
signed to provide a range of systems with both
hardware and software. While early 18-bit ma-
chines had evolved to include several con-
figurations, the notion of a planned range for
PDP-15 systems was explicit from the start. As
it turned out, the PDP-15 evolved too, and over
a considerably larger range than was antici-
pated. Table 2 shows the range of systems that
eventually developed; of these, only the models
up through 15/40 were in the original plan.

As in the past, the goal for the new machine
was to provide better performance/cost than
the predecessor. The PDP-7 to PDP-9 transi-
tion had provided a performance improvement,
but not a big cost improvement. The new semi-
conductor technology, transistor-transistor
logic (TTL) available in dual inline packages,
could provide the cost improvement required.
The 7400 and 74H00 series of TTL integrated
circuits permitted clock speeds of 10 to 20 MHz
and lower costs and higher packing densities
than did the discrete circuits used in the PDP-9.
Not only did the higher packing densities lower
the packaging costs, but they also permitted the

THE PDP-1 AND OTHER 18-BIT COMPUTERS 157

Table 2. The PDP-15 Family of 18-Bit Computer Systems

Model Hardware Software

PDP-15/10
(basic paper tape system)

Central processor
4-Kword memory
Teleprinter

PDP-15/20
(keyboard monitor using
DECtape file system)

PDP-15/30
(background/foreground)

PDP- 15/35

PDP- 15/40
(Disk based background/
foreground)

PDP-15/50

PDP- 15/76

Central processor
8- Kword memory
Extended arithmetic
Paper tape
DECtape
Teleprinter

Central processor
16-Kword memory
Extended arithmetic
Automatic Priority

Memory protection
Clock
Paper tape
DE Cta pe
2 teleprinters

(PDP-l5/30 with disks)

Central processor
24-Kword memory
Extended arithmetic
Auto ma tic Prior it y

Memory protection
Clock
Paper tape
DECtape
524-Kword fixed head disk
2 teleprinters

16-Kword memory

Interrupt

Interrupt

Assembler
Editor
Debugger
Utilities

Keyboard monitor
FORTRAN IV
FOCAL
PIP*
Utilities

B/F monitor
FORTRAN IV
FOCAL
PIP*
Utilities

Disk B/F monitor
FORTRAN IV
FOCAL
PIP*
Utilities

15/40 PIUS PDP- 1 1 1 1 -based file
and I/O device
ma nagement

*PIP = Peripheral (Data) Interchange Program

basic PDP 15/10 (Figure 29) to be the smallest
of the 18-bit series, while providing a number of
options and additional features including an ad-
ditional instruction set with an index and limit
register for multiprogramming. The new TTL

technology had one substantial drawback, how-
ever. Where the old discrete transistor tech-
nology had used -3 volt and ground signals,
the new technology used + 5 and ground. Thus,
to permit the use of both existing peripherals

158 BEGINNING OF THE MINICOMPUTER

Figure 29. PDP-15/10.

and new peripherals, level converters on the
1 / 0 Bus were required.

In addition to the cost improvements antici-
pated from the use of integrated circuits, it was
also hoped that new memory systems available
would offer both cost and performance im-
provements. The PDP-15 memory is contrasted
with the PDP-1 memory in Table 3.

With the new memories and changes in ad-
dressing capabilities through the Index Register
and relocation options, memory size could be
expanded to 131 Kwords. A separate control
unit, called the 1/0 Processor, handled the
bookkeeping for the 1/0 channels and 1 / 0 Bus.
Figure 30 shows a typical PDP-15 system. The
two processors (main processor and 1 /0 Pro-
cessor) occupied only a third of the cabinet
space of a comparable PDP-9 system, yet were
faster and had more capability. While on the
subject of cabinets, note that the packaging for
the PDP-15 reverted to the simplicity of the ear-
lier PDP-l, PDP-4, and PDP-7 cabinets by us-
ing a fixed mounting structure rather than
having the module connector blocks mounted
on a door.

MEMORY

CPllO

CPllO

CONSOLE

FANS FAN
\ \

LOGO l-~ - - -

10-112 INCH ENCLOSEC
BEZELS /LOGIC

REAR /
DOOR -

--i
FANS

DEC 19 INCH CABINET OEMENSIONS
30 INCHES DEEP 21 11116 INCHES WIDE A N 0
71 1/16 INCHES HIGH

Figure 30. PDP-15 sidelfront logic layout.

The goals for the PDP-15 were to obtain an
850 nanosecond cycle time, to be compatible
with the PDP-9, to have a low manufacturing
cost, to improve priority interrupt latency, to fit
the basic system in one cabinet, to extend the
length of the 1 / 0 Bus, and to improve main-
tainability. The success in meeting these goals
varied.

The goal of achieving an 850-nanosecond
cycle time was exceeded, as the PDP-15 was
shipped with an 800-nanosecond cycle time. It
was particularly gratifying that this goal was
met and exceeded because there had been a
number of obstacles to overcome. The central
processor, memory, and 1/0 had been made
asynchronous to reduce 1 / 0 latency, but this re-
quired synchronizing logic that resulted in sig-
nificant circuit delays. A dc (round-trip)
interlocked memory bus had been designed so
that speed independent memories could be
used, but this caused communications delays.
Finally, to minimize cabling, a single set of lines
had been used for communicating address and
data information to the memory. This caused
further communications delays.

I

168 BEGlNMlNG OF W € MiNlCOMPUTER

I

and new peripherals, Iwd converters on the
I/O BUS were required.

In addition to the cost improvements antid-
pated from the use of integrated circuits, it was
also hoped that new memory systems available
would offer both cost and performance im-
provements. The PDP-15 memory is contrasted
with the PDP-1 memory in Table 3.

With the new memories and changes in ad-
dressing capabilities through the Index Register
and relocation options, memory size could be
expanded to 131 Kwords. A separate control
unit, called the I/O Processor, handled the
bookkeeping for the 1 / 0 channels and 110 Bus.
Figure 30 shows a typical PDP-15 system. The
two processors (main processor and I/O Pro-
cessor) mupied only a third of the cabinet
space of a comparable PDP-9 system, yet wero
faster and had more capability. While on the
subject of cabinets, note that the packaging for
the PDP-15 reverted to the simplicity of the ear-
lier PDP-l, PDP4, and PDP-7 cabinas by u&
ing a fued mounting structure rather than
having the module connector blocks mounted
on a door.

Tbe goals for the PDF-I5 were to obtain an
8H) nanosecond cycle time, to be compatible
with the PDP-9, to have a low manufacturing
cost, to improve priority interrupt latency, to fit
the basic system in one cabinet, to extend the
length of the 1/0 Bus, and to improve main-
tainability. The s u m s in meeting these goals
varid.
The goal of achieving an 8S@nanorsocoad

cycle time was excaedad, as the PDP-1s was
shipped with an "hnanoseoond cych time. It
was particularly gratifying that this goal was
met and exceeded kcam t h m had baen a
number of obstacles to ovcmm. The antral
procesisor, memory, and I/O had bcen made
asynchronous to reduce I/O latency, but this r e
q u i d synchronizing logic that resulted in sig-

interlocked memory bus had been designed so
that speed independent memoria could be

nificant circuit delays. A dc (round-trip) -

used, but this caused communications delays.
Finally, to m h h h e cabling, a single set of lines
had been used for communicating address and
data information to tbe memory. This c a d
further communicationcs delays.

'

THE PDP-1 AND OTHER 18-BIT COMPUTERS 159

Table 3. Comparison of PDP-1 and PDP-15 Memories

PDP-1 PDP-15 P D P - I 5 (Late)

Year 1960 1968 1972
Stack size 4 Kwords 4 Kwords 24 Kwords
Cycle time 5 PS 800 ns 960 ns
Worddcabinet 12 Kwords 48 Kwords 96 Kwords
Electronics 113 cabinet 1 /12 cabinet 1/24 cabinet
Configuration 3D stack 5 planes

4 bits/plane 20 bits/plane
Planar stack Planar stack

Core size 30 mil 18 mil 18 mil
Wiredcore 4 3 3

The PDP-9 instruction compatibility was
achieved with three minor exceptions about
which no complaints were received. Com-
patibility for 1 / 0 devices was achieved by
changing the receiver/driver modules to pro-
vide the required conversions back and forth
between the older peripherals and the new

To meet the manufacturing cost goals, a
number of things were considered. The PDP-15
was one of the first DEC computers to use in-
tegrated circuits extensively. Because each logic
type used in the machine would have to be spec-
ified, purchased, delivered, and tested, it was
important to minimize the number of logic
types. (Note the similarity of this concern to
that expressed in Chapter 4 with regard to min-
imizing the number of flip-flop types in the TX-
0.) The PDP-15 was designed with 21 semi-
conductor types, including integrated circuits,
transistors, and diodes. All of them were avail-
able from multiple suppliers. To simplify manu-
facturing and field installation of options, the
PDP- 15 had fixed configuration rules. This was
a mixed blessing because the fixed con-
figuration rules resulted in higher costs from the
greater number of partially filled cabinets. Mar-
gin testing for the PDP-15 was planned using a
combination of varying logic timing and tem-
perature. Special test equipment was con-
structed for the PDP-15 production line to

PDP-15 1 / 0 BUS.

permit rapid heat cycling of central processors
and memories. In addition, a fast program
loader system was designed using a PDP-8 with
multiple DECtape units. This system permitted
programs to be loaded into the memory of a
unit being tested by merely pressing a button.
This saved considerable checkout time com-
pared to the previous methods of loading diag-
nostics via paper tape.

It was originally planned that manufacturing
costs would also be reduced by using sub-
assembly replacement. The concept was that if a
processor, memory, power supply, or other
logic assembly failed to work when it was in-
tegrated into a system, the entire subassembly
would be replaced and sent back to its appro-
priate test line, rather than repairing it in the
final assembly area. This process, planned for
both the PDP-9 and PDP-15, did not work be-
cause the production line was never filled with
enough material to allow the subassembly sub-
stitution to take place.

The manufacturing cost goals were not met
during the production of the first 50 units, so an
examination was made to determine which
items were most costly. It was determined that
most of the cost difficulty was in the mechanical
packaging, and that the cabling, in particular,
was costing more than anticipated. Sights were
set on reducing the cabling complexity by using
a single power harness that could be built and

160 BEGINNING OF THE MINICOMPUTER

tested on a jig. The cabling was reduced to one
console cable, one teleprinter cable, one 1 /0
bus cable assembly, and two memory bus ca-
bles. In trying to limit console cabling, a time
division multiplex communication scheme was
designed to get the signals to the lights and from
the switches. In this scheme, a number of sig-
nals were transmitted on the same wires on a
timeshared basis, and the console lamp fila-
ments were used as storage elements. While this
scheme was clever enough to gain the PDP-15’s
only patent, it was generally unsatisfactory. It
made the console logic so complex that when it
failed, it was harder to fix than the processor.

The goal of reducing interrupt latency to two
microseconds was not achieved. With the par-
ity, memory protect, and memory relocation
options implemented, and with adder and syn-
chronizing delays added in, the latency could
only be reduced to four microseconds; but that
was acceptable.

The goal of packaging the basic system (cen-
tral processor, 1 / 0 processor, console, and 32
Kwords) in one cabinet was met; it was a close
fit, and there were virtually no spare module
slots. Since few small systems were sold, it is not
clear that this emphasis was warranted.

The goal of extended 1 / 0 bus length was
achieved by switching from an unterminated,
diode-clamped 1 / 0 bus such as the PDP-9 used,
to a new, terminated 1/0 bus. A new set of bus
transceiver modules was designed to provide
greater speed and less bus loading. The new bus
design, with cleaner signals and no reflections,
combined with the new bus transceiver mod-
ules, permitted the 1 / 0 bus to be extended to 75
feet. The penalty paid was higher power con-
sumption and greater power supply cost than in
the PDP-9.

The goal of better maintainability was par-
tially achieved by equipping the logic with a
means of monitoring 400 signal points. This
feature was combined with a single step feature
which permitted troubleshooting from the con-
sole without the use of an oscilloscope. As it

turned out, the single step feature was used in-
frequently because of the training required to
use it properly.

Figure 31 shows the register transfer struc-
ture of the PDP-15 processor. It was based on
elements and features used in earlier designs
and had a basic data path which permitted the
results from any of the 1 1 registers to be read
into the arithmetic unit and then back into the
registers. In order to achieve high speed oper-
ation, a number of separate registers (such as
the Step Counter, the Program Counter, and
the Multiplier-Quotient registers), operated in

INSTRUCTION
REGISTER l l R l

FROM MEMORY

REGISTER REGISTER

I - I -
REGISTER ADDRESS

FROM
110 BUS

A R I T H M E T I C I E L E M E N T

COUNTER

I

1

1 I / I
t

Figure 3 1.
diagram.

PDP-15 processor register transfer

parallel with the basic data path. In this way,
significant overlap occurred, permitting the
800-nanosecond cycle time. The contrast be-
tween this design and the PDP-4 design is
noteworthy. The PDP-4 had only four registers
in the basic machine, but the use of integrated
circuits in the PDP-15 permitted more registers
to be used without so much concern for cost.

The first major extension of the PDP-I5 was
the addition of the Floating-Point Processor
(Figure 32) to enable it to perform well in the
scientific/computation marketplace using
FORTRAN and other algorithmic languages.
With the addition of the Floating-point Proces-
sor, the time for a programmed floating-point
operation was reduced from 100-200 micro-
seconds to 10-15 microseconds, giving nearly a
factor of I O increase in FORTRAN perform-
ance - depending on the mix of floating-point

JUMP EXIT
ADDRESS IJEAI

I CONTROL I
FP15

1
CONTROL CONTROL

ADDER BUS

Figure 32. PDP-15 Floating-point Processor register
transfer diagram.

THE PDP-1 AND OTHER 18-BIT COMPUTERS 161

operations. For most machines, the difference
between built-in and programmed data-types is
higher; but, because the machine was originally
designed to operate effectively without hard-
wiring, the difference is quite low. Table 4 gives
a summary of the performance improvements
offered by the floating-point option.

The addition of the floating-point unit re-
quired that a number of instructions be added
to the machine. The irony of this extension is
that the PDP-I1 and nearly all minicomputer
instruction set extensions exactly follow this ev-
olution.

A low cost multi-user protection system was
added in the form of a relocation register and a
boundary register. Because this was marketed
as an add-on option, it degraded the machine
performance more than necessary. However,
the minimum machine cost maintained the per-
formance/cost target.

The first PDP-15 was shipped in February
1970, 18 months after the project had started. A
number of difficulties had been encountered, in-
cluding personnel turnover, that caused a two-
month slip. However, the project at first cus-
tomer ship was within the budget and, by 1977,

Table 4. Floating-point Computation Times

Without With
Floating- Floating-

Program Point Point
Type Option Option Improvement

Matrix 12.0 sec 5.0 sec 2.4
Inversion

Fourier 16.9 sec 2.9 sec 5.8
Transform

Least 5.1 sec 0.7 sec 7.3
Squares Fit

Test of all 1 1.4 sec 1 .4 sec 8.1
FP Functions

A Physics 37.0 sec 3.0 sec 12.3
Application

162 BEGINNING OF THE MINICOMPUTER

790 machines had been shipped - more than the
total of all other DEC 18-bit machines.

Two of the PDP-15 models are of special in-
terest. A dual central processor version and the
PDP- 15/76. These are treated separately below.

DUAL CENTRAL PROCESSOR PDP-15

In 1973 the PDP-15 product line proposed
and sold a system that was a dual processor.
From the dual processor project came a dual
port memory, which eventually was transferred
to the PDP-15 standard product line. The dual
port memory also expanded memory to the full
128 Kwords built into the PDP-15 addressing
structure. The unit occupied a single rack and
used the M-Series logic modules. Because there
was space to add a third port within the rack
unit, the dual port memory was actually built to
be a three port device. At the time, the labora-
tory breadboard was an impressive array of
three cabinets containing 128 Kwords of mem-
ory and two processors.

The logic included what went unrecognized
as a “synchronizer” problem for two months,
despite reviews by some senior engineers. The
synchronizer problem, first described by
Chaney and Molnar [19731 of Washington Uni-
versity, is a classical logic design problem that is
theoretically unsolvable. When synchronizing
(detecting) the presence of an event occurring at
a random time relative to a fixed clock event, a
small amount of energy is available to set the
flip-flop. When the flip-flop is triggered with
such a small signal, it can go into an undecided
(metastable) state for a relatively long (even in-
determinant) period of time. The problem oc-
curred in the dual port memory design because
the three inputs (2 ports and the memory clock)
needed to be synchronized. Despite the theo-
retical lack of a solution, the practical solution
is usually to wait longer (e.g., two clock times)
or to improve the circuit by unbalancing it.
Once the problem was recognized, the design
went to a quick completion.

PDP-15/76

Of the systems listed in Table 2, the PDP-
15/76 was one of the most interesting. A sim-
plified block diagram of the final evolved state
of the PDP-15/76 is shown in Figure 33. The
diagram is referred to as an evolved design be-
cause the PDP-I l connection and the floating-
point arithmetic features were not part of the
original PDP- 15 design.

The design of the PDP-I 5/76, also referred to
as the Unichannel 15/76, began as a problem:
find the most cost-effective way to attach a new
moving head, removable platter disk to the
PDP-15. After a review of the problem, it be-
came clear that the correct way to solve the
problem was to use a PDP-11 processor and the
controller that had been designed for the PDP-
1 I . The key reason for this was not the cost of
designing a controller for the PDP-15, but
rather the cost of writing a new set of disk diag-
nostics in PDP-15 code. (By that time, it was
clear to all designers that hardware costs were
swamped by software costs.)

As the system design progressed, it became
clear that the PDP-I 1 could be used to run the
other PDP-I 1 family peripherals that were the
object of most of DEC’s development and pro-
duction efforts. The list of new peripherals
quickly grew to include communications lines,
plotters, printers, and card equipment. Figure
34 shows the options available for the PDP-
15/76.

U N I B U S

I 33

CORE
M E M O R Y

UNIBUS

I I

F p PROCESSOR p&l p-zp PERIPHERALS

PDP-15/76 simple system block diagram

THE PDP-1 AND OTHER 18-BIT COMPUTERS 163

M E M O R Y pJD@pJ
I4TH 24x1 13RD 2411 12NO 24Kl I l S T 2461

I p;;;ER I I &l& I I kc: 1
I I

PLOTTER PRINTER

TO

OTHER UNIBUS
DEVICES

KM11 KT15
MEMORY M l M O R l
PROTECT RELOCATE

PORT SWITCH

I f L

POlNT PROCESSOR

CENTRAL
PROCESSOR

K A I S A U T O m o n i r i INTRT -
I10 PROCESSOR

KE15 EXTENDED
ARITHMETIC ELEMENT DATA CHANNELS AN0 110

A

PC16 LT15A LPl5 VT06 CR15

TAPE 1 CNTL 1 I Pi/::ERl I D'sPLAY I 1 RF::FR
PAPER T T I

TO

0 E V I C E S
OTHER I10 BU5

t t t

TO
+ 0 7 H E R

DEVICES

Figure 34. PDP-15/76 (XVM) system block diagram.

164 BEGINNING OF THE MINICOMPUTER

The project had a very small but excellent
staff, and the hardware part of the program
went very smoothly. AI Helenius did much of
the logic design for the memory multiplexer de-
vice, using existing M-Series logic modules, and
the prototype was operational in early Novem-
ber 1972. The complexity and size of the soft-
ware task was clearly underestimated.
However, the successful system operation de-
pended on having more software. Rick Hully
proposed an operating system structure that,
for the era and application, was elegant, ad-
vanced, and yet straightforward. The reality
was that the PDP-15/76 was a “multi-
processor’’ system, and today’s terms “back-
end processor” and “file processor” apply to
what was accomplished on this machine in the
early 1970s. Also, this structure was used by
IBM in the coupled 7090/7044 system and the
360 Attached Support Processor.

From an application point of view, the PDP-
15/76 dual processor system was extremely ef-
fective, especially in the following applications:

1 . Computer-aided design. With the PDP-I 5
processor handling figures and com-
putation while the PDP- 11 processor
handled an input digitizer, high speed
plotter, and printer; with the PDP-I1
and PDP-15 sharing memory and the
new disk.
Batch processing. With the PDP-15 and
the floating-point option handling com-
putation while the PDP-I 1 handled
spooling to printers, input from card
readers, and terminals.

2.

THE SERIES AND ITS EVOLUTION

It is useful to compare the five 18-bit com-
puters that were designed over the course of
roughly 10 years. The series began in the early
second (transistor) generation and extended to
the early part of the third (integrated circuit)
generation. Had the series been extended to the

fourth (large-scale integrated circuit) gener-
ation, a version of the PDP-15 could have been
easily implemented on a single silicon chip. The
paragraphs which follow each summarize the
important characteristics of one or two mem-
bers of the series, and Table 5 gives the techni-
cal information.

Contributions of Individual Machines to
Series Development

The PDP-I had a number of innovations over
its laboratory predecessors, the Whirlwind and
TX-0. It contributed extremely straightforward
1/0 interfacing capability together with a multi-
channel interrupt structure and Direct Memory
Access capability which enabled a high 1 / 0
data rate. These characteristics made it ideal for
high performance laboratory applications. The
PDP-I also represented a major stepping stone
in the early days of timesharing computers. The
message switching application contributed sig-
nificantly to its market success and motivated
the design of good communication interfaces in
subsequent computers. Because the PDP-1
served as a thorough test vehicle for the circui-
try of the 1000-series system modules, these
modules were more suitable for their general
application in building digital systems.

The PDP-4 contributed in small ways: there
were minor improvements in the instruction set
processor; and, because the PDP-4 was oriented
to a much lower cost, some of the modules were
refined. The simplified logic design of the PDP-
4 was a major influence on the implementation
style of subsequent computers. It also contrib-
uted the fundamental minicomputer notion that
successor machines should be lower cost. More-
over, the PDP-4 extended the marketplace to
industrial control, which had not been possible
at PDP-1’s price levels, and further improved
the ease of 1 / 0 interfacing.

The PDP-7 and PDP-9 Families exploited a
significant refinement in the wire-wrap packag-
ing technology. Although the circuits were

THE PDP-1 AND OTHER 18-BIT COMPUTERS 165

Table 5. Characteristics of DEC's 18-Bit Computers

PDP-4 PDP-7 PDP-9; 9/L PDP-15 PDP-1

4/64; 12/64 8/66 - 12/68 5/68: 2/70 Project start;
first ship

8/59; 11/60 11/61; 7/62

Goals Cost; short word
length: speed

cost Speed; cost Speed; cost;
producibility

Cost; range of
machines. hard-
wa re/softwa re
systems

Applications Lab control;
message
switching; time-
sharing

Circuit use;
package; ISP;
interrupts; Di-
rect Memory
Access: I10 in-
terfacing

Process control:
industrial testing

Improved time-
sharing

Graphics Numerical com-
putation: graphics
processing

Innovations/
improvements

Functional (bit-
slice) modules;
ISP trend to
mini; 3 Cycle
DMA; I/O inter-
facing

65.5 (56.5)

Package: mod-
ules: perform-
ance

Micro-
programming;
I/O Bus

Integrated cir-
cuits; floating-
point; multi-
processor

Price (K$) with
paper tape
reader/punch.
Typewriter,
4-Kwords

120 45 25+: 24.4
(1 9.9)

19.8 (1 6.2)

Pricelword ($1 7.32

2800

5

3.66 3.99 2.19; 1.95

-

1; 1.5

1.71; 1.32

5400

0.8

MTBF (hours) -

1.75 Memory cycle
time (MUS)

Memory ac-
cessedsec
(millions)

0.2 0.125 0.57 1; 0.67 1.25

Multiply/
divide time (ps)

25/40 4.419 2.5/12.5 4.514.5

4..... 131

4.5-

8.4.. Memory size
(Kwords)

1.4 ,... 165 1.4.8 ,.... 32

34.5 (0.029)

1.1

4.....32

227 (0.0044)

32

714 (0.0014) Bits accessed
per sec per $

Perf./price
improve *

30 (0.033) 1 135 (0.00088)

6.6 3.1 1.7

*Uses previous model as base for improvement.

166 BEGINNING OF THE MINICOMPUTER

Table 5. Characteristics of DEC's 18-Bi t Computers (Cont)

PDP-1 PDP-4 PDP-7 PDP-9; 9/L PDP-15

Price improve*

Perf. improve*

Product life
(years)

Number
produced

Power (W)

Weight (Ib)

Size (69 X 21
X 28 inch bays)

Volume (h 3)

Power density
(W/ft3)

Weight density
(1wft3)

Watts/$

Lb/$

Kbits accessed
per W

Kbits accessed
per Ib

Kbits accessed
per Kft3

Logic
technology

Module series

Logic speed
(MHz)

-

-

4

50

2160

1350

4

94

22.9

14.4

0.01 8

0.01 1

1.6

2.6

38.3

Saturating
MADT transis-
tors

1,000

5. 0.5

1.8

0.62

3

45

1125

1030

2

47

23.9

21.9

0.01 7

0.01 6

1.1

2.2

47.9

Capacitor-diode
gates; diode
transistors

4.000

1. 0.5, 5

1.45

4.57

4

120

2100

1150

3

70.5

29.8

16.3

0.046

0.026

4.9

8.9

146.0

Saturating
transistors

0

10. 1. 0.5

1.8

1.75

4

445

2000

790

1.5 (special)

36

55.5

21.9

0.08

0.032

9.0

22.8

500.0

-

-

10. 1

1.3 (1.5)

1.25*

7

790

2875

7 50

1

23.5

122.3

31.9

0.15

0.038

7.8

30.0

957.0

7400, 74H00
series integrated
circuits

M

1 0 . 2 0

~

*Uses previous model as base for improvement.

THE PDP-1 AND OTHER 18-BIT COMPUTERS 167

Table 5. Characteristics of DEC's 18-Bit Computers (Cont)

PDP-1 PDP-4 PDP-7 PDP-9; 9/L PDP-15

Module size 5.25 X 4 5.25 X 4 2.25, 5
(X 3.875)

Same 2.25, 5, 10
(X 3.875)

Modules1types 544134

3.5 K. 4.3 K

236141

-

614139 644/44 300154

350. 200, 3.4 K Transistors,
diodes. ICs

Power supply/
types

814 412 914 1 /1 1 11

18 X 25

3 X 25

3 X 25

6 X 25

3 X 25

3 X 25

Modules space
processor

12 X 32 a x 44 4 X 32

Modules space,
I10 interface

4 X 32

Modules space,
reader, punch,
typewriter

a x 32 8 x 44 7

Modules space,
4-Kword
memory

4 X 25 4 X 25 (8 K) 3 X 32 3 x 44 4 X 32

Pc, Mp. I10 logic
area (in2 X K)

11.9

8.9

18

5.2

3.3

16

5.3

3.3

5.6

3.1

3.4

2.1

75/2

Processor logic
area (inz X K)

Logic prints 27 44/2 = 22

*Uses previous model as base for improvement.

based on the early PDP-6 IO-MHz circuits, the
more cost-effective and producible Flip Chip
package was used. Both machines had signifi-
cant performance gains over all predecessors.
Using the number of words or bits accessed by
the processor per unit time as the performance
measure, the PDP-7:PDP-4 ratio was 4.57 and
the PDP-9:PDP-7 ratio was 1.75. Both gains
were due to the use of faster core memories. The
PDP-9 used microprogrammed control, even
though the simple instruction set processor

probably did not necessitate the high entry cost.
A large microprogram store could have
changed the performance (and history) of suc-
cessor minis. The change to an 1/0 bus struc-
ture, pioneered in the PDP-5, entered the 18-bit
series with the PDP-9. It distributed the 1 / 0 in-
terface to each option and so further reduced
the basic cost.

The PDP-15's use of integrated circuits pro-
vided an 18-bit series improvement. At last
there was a significant reduction in size, al-

168 BEGINNING OF THE MINICOMPUTER

though the power consumption increased. The
board area in the processor decreased by a fac-
tor of three over previous implementations,
where it had been relatively constant at about
3,000 in2. The two major contributions of the
PDP- 15 were the notion that systems include
both hardware and software and that the ma-
chine would span a range of sizes. Finally, to
extend the life of the machine, a number of im-
provements (e.g., in memory, PDP-11 I/O)
were later made to reduce price and to increase
performance (floating-point, multiple proces-
sors).

Project Development Times and Product
Lifetimes

The duration of the projects generally in-
creased with time, reflecting the longer tooling
time for increased production volumes. The
PDP-4 is an exception; it had the shortest de-
sign time because the circuits and mechanical
packaging were based on the PDP-1. In addi-
tion to increased development times with pass-
ing years, later members of the series had longer
product lifetimes; hence, longer times elapsed
before re-implementations occurred. The time
between the first few implementations was only
about two years. The final implementation, the
PDP-15, was produced for seven years. The
early (too frequent) implementations were per
haps indicative of the attention paid to low
hardware cost and performance, rather than to
application and software enhancements to in-
crease the market life.

Price

Figure 35 shows that the price for a basic
“bare-bones’’ system declined by more than 19
percent per year. The price of the typical mid-
size system has never been properly analyzed,
but roughly speaking, the average price de-
clined from an initial cost of $250K for a PDP- l
to $65K for a PDP-9. For a given processor,
however, the size of typical systems purchased

. _.

PDP-1
0

100 -
90 -
80

70

60 - MINIMUM

-

PDP-4 0

PDP-4 0

-
PRICE = f20.000 X 0811-19603

50 -

Y

0 -
30 -

PDP 9 I1KIO

PDP 9 I L
ITELETVPE

TELETYP’

VERSION

PDP-5

20

10
80 61 62 63 64 6 5 66 67 88 69 70 71

YEAR

Figure 35.
paper tape I/O. typewriter, and 4-Kword memory.

Price versus time for 18-bit computers with

grew with time. For example, early PDP- 15 sys-
tems were sold at an average price of $75K,
while the final average price was about $125K.

Not all price reductions were the result of
cheaper logic technology or better manufac-
turing techniques on the part of DEC. Some
prices, particularly system prices, were in-
fluenced strongly by the prices of peripherals.
For example, the Teletype Corporation Model
33 ASR teleprinter with built-in paper tape
reader and punch helped reduce the price of the
minimum configurations of later 18-bit com-
puters by as much as any other component
price reduction.

The primary memory price decline (Figure
36) of only 16 percent per year can be attributed
to the fact that each subsequent machine
needed higher performance memories. Memo-
ries were always implemented at relatively con-
stant price with increasing performance. Again,
the PDP-4 is an exception; it shows the effect of
building a low performance memory versus the
fastest memory. While the first PDP-4s were

THE PDP-1 AND OTHER 18-BIT COMPUTERS 169

4 0

30

2 0

-
0 -

0
P .
0

Y I -
0 -

< -
v) -

5 1 0 -

g :
E -
y 0 5 -

9 - ; 0 4 -

",

03

0 2

- * . - . PRICEIWORD PDP 10 MEMORY

c = 2 x 0 7%' 1969

0

0 3 0 -

1 0 -

0 5 L G I I a I I 1 I I I I I I

60 61 62 63 64 66 66 67 68 69 70 11 72 73 74

-

-

-

-

-

-

YEAR

Figure 36. Price/word of 18-bit memory versus time.

50r------

PDP.15

. POP 4

60 61 62 63 64 55 66 61 68 69 70 71

0 1 L t 8 l C I l Y E A R

Figure 37. Performance of 18-bit computers versus
time.

shipped with PDP-1 memory, the next ma-
chines had 8-Kword memory systems that cost
about half that of the PDP-1. The price of the
18-bit memory systems decreased at a rate
slightly less than that of the 12-bit or 36-bit
computers. One possible explanation would be
an economy of scale in quantity shipped in the
12-bit case and an economy of scale in word
length in the 36-bit case.

Performance

Performance (in millions of words accessed
per second by the processor) is shown in Figure
37 and exhibits a 29 percent yearly increase.
Neither the PDP-15 nor PDP-4 fall on the line
because both were oriented to lower price
rather than to increased performance. In real-
ity, the PDP-15 later evolved to have much
greater effective performance when built-in
floating-point arithmetic was added. Then its
real performance (a factor of 2 to 10 better for
FORTRAN programs involving floating-point)
exceeded the line position. Midlife extensions of
this sort were generally missing on the other 18-
bit computers, as design resources went into de-
veloping new processors.

Price/Performance

The performance/price ratio, a reasonable
index for simple systems, is shown in Figure 38.
This ratio has improved by 52 to 69 percent per
year over the IO-year period. A variant of this
plot is shown in Figure 39, where price is
plotted against the performance (in millions of
accesses per second by the processor).

The lines of constant performance/price are
separated by a factor of 2. In this representa-
tion, any measure which changes by 41 percent
per year takes two years to move from one line
to another. A yearly improvement of 26 percent
takes three years to double, and a yearly im-
provement of 19 percent takes four years to
double.

170 BEGINNING OF THE MINICOMPUTER

I

YEAR

PDP 15 /.

Figure 38.
18-bit machines.

Processor performance per $ versus time of

PERFORMANCE IM ACCES:iES/SECONOI

Figure 39.
machines

Prlce versus performance of 18-bit

Since the gain in price/performance is at least
52 percent per year, the 9.1 year evolution
crosses five factor of 2 lines. Only the PDP-4
stands out as being on a line of constant per-
formance/price. It was either overpriced by a
factor of 2 or should have performed better by a
factor of 2 for the same price.

Market Demand

In order to speculate on a theory of demand
for small computers, two demand curves are
given. Figure 40 is the classic demand curve:
price of the unit versus quantity. If one ignores
the PDP-I anomaly, it appears that there is
complete price elasticity of demand. There are
two possible reasons for the PDP-I anomaly.
Twenty of the PDP-Is are accounted for by a
single, perhaps fortuitous, order for the ADX
7300 systems. By subtracting this amount from
the PDP-1 quantity, one obtains the second
conjecture: sales were higher than the model
projection because the PDP-I was first into the
market.

An alternative to the demand model is given
in Figure 41 where price per unit of perform-
ance is plotted against quantity. This model is
based on the thesis that computers are like
power generators (or tractors): demand is based
on the amount of work they can do per unit of
cost. (This would explain why roughly the same
number of PDP-1s and PDP-4s were sold.)
Note that more PDP-9s and PDP-15s were sold
than the curve would have predicted. Because
both machines had longer lives before succes-
sors were introduced, a better ordinate might be
the maximum number shipped in any one year,
which would take into account other market-
place limits.

Other Characteristics

Table 5 has other data that has not been
plotted. The input power (with the exception of
PDP-4) is constant over all implementations.
The weight is correlated with size, reflecting a
relatively constant weight per bay. The volume
has declined, which reflects consistent improve-

THE PDP-1 AND OTHER 18-BIT COMPUTERS 171

L : !! 40 -1 \
20 30 40 50 100 200 300 400 500 8W

I
200 300 400 500 8W

NUMBER OF MACHINES SOLD

Figure 40.
sold.

Price versus number of 18-bits machines

I . P O P 1

N U M B E R OF M A C H I N E S SOLO

Figure 41.
machines sold.

Price/performance versus number of 18-bit

ments in packing density. In this respect, the
PDP-4 was a better implementation than the
PDP- 1 . The PDP-7 was even better in packing
density and provided a great performance im-
provement. The PDP-9 improvements were in

memory performance and packaging for manu-
facturing, rather than in logic-related perform-
ance or packaging, as it used the same logic (10
MHz) as the PDP-7. The PDP-15 achieved its
size reduction using integrated circuit tech-
nology. The weight/price appears to have risen
and almost seems to be correlated with in-
flation. Power and weight density measure-
ments are given in the table together, as are
several ratios involving cost, weight, power, and
performance. Note that performance changes
most as a direct result of core memory speed
improvements. The calculated mean time be-
tween failures has declined by over a factor of 2
between the PDP-I and PDP-15.

The reader should compare the implementa-
tions. With the exception of PDP-I and PDP-
15, all computers required about 5,000 in2 of
printed circuit board area for the processor,
memory, and basic I/O. The bit-slice approach
of the PDP-4 made possible a major reduction
in backpanel interconnections by using two spe-
cialized modules. All subsequent implementa-
tions used the bit-slice approach with a few
special purpose modules. Of special interest is
the number of logic module types and power
supply types. All but the PDP-15 had about 40
different logic types. The PDP-15 had 54 types
because the advent of integrated circuits en-
abled higher packing density per module which
resulted in lower generality per module given
the limitation of the pins on each module. This
small number of module types and relatively
low cost per module meant that the cost of a
complete package of spare modules for a com-
puter represented a small fraction of the com-
puter’s price. This is in contrast to the fourth
and fifth generations, where a single module
contains the whole computer and the cost of
spare modules is therefore a large fraction of
the computer’s price.

Options

Table 6 shows the options available for the
various machines. Note that PDP-1 had quite a
complete set of options, including both high

172 BEGINNING OF THE MINICOMPUTER

Table 6. Options for DEC's 18-Bit Computers*
~ ~~~ .

PDP-1 PDP-4 PDP-7 PDP-9 PDP-15

- Multiply/Divide Std (181 EAE 11 771 EAE opt , floating-
point opt

Priority interrupt 1 ch. std.; (1 201 1 ch. std. 1 ch. std. (172) 1 ch. std; 8 opt. 1 ch. std; 8 opt
- 16 ch.; also
256 ch.

16 ch.

Direct Memory (191 3 ch. 1 std.; 3 opt. (17313ch. +1 to mem. Up t o 64
Access (std.)

Clock Yes 1 std.: (1321 Opt. opt. opt .
l 6 c h .

- - Power failure N/A Std. Opt

Memory protect 4-Kword core None (KA70Al base (KA70Al I KA7 OAl
images and bounds

Secondary Memory

Magtape (prog. 151] - 1501 200 (541 - (501 200 - -

control) b/i b/ i

Magtape (DMA) (521- (501 [57AI - I50 or (57Al - (50 or (TC591- (TU201 [TC59(- [TU20 or
(5101 - [IBM 5701 556 b/i 5701 TU30 I
7291

Drums 123 I (241 16 Kw ... 65 (241 32 32 Kw ... 524 Kw -

Kw Kw ... 131 Kw

Fixed disks N/A - - IRS091 1 MW (RS091 - 262
Kw ... 2 M w

Disk Pack - - - [R PO21 - 10 M w -

D ECta pe N/A (5501 - 1555) (550AI - I5551 [TC021 - [TU551 (TC02) - (TU551

Links

Inter-Computer - - (1951 OB97 DB98.99 DB98.99

To 7090 11501 10 KW/S - - - -

Commu- 8 ch. UP to 256 -

nications
16301 6 4 ch. 1630) 64 ch. lLT l9)
16341 8 ch. lLTO91 5 ch.

To other -

computer buses
- - TO PDP-7 [DWl51 to PDP-

15

*The DEC-assigned option number is given in square brackets, e.g.. (1771

THE PDP-1 AND OTHER 18-BIT COMPUTERS 173

Table 6. Options for DEC's 18-Bi t Computers (Cant)*
~~

PDP-1 PDP-4 PDP-7 PDP-9 PDP-15

Transducers

Paper tape
reader

Paper tape
punch

Typewriter

CRTs

Point plotting

Storage

DMA

Precision

Alp ha nu m eric

Card reader

Card punch

Line printer

Plotter

Relays

A/D converter

D/A converter

Std. 400 CIS

Std. 63 c/s

Std. 10 c/s

[30] 16 in.
l K X 1 K
points
21 in. color

1341 'Tektronix
storage

-

131 I 5 in. 4 K X
4 K points

-

(42 1 I 200 c/m

1401 1 0 0 c/m

1641 300 I/m

-

[140) 18 ch.

[138/139)
64 ch.

-

Std. 300 c/s

175) 63 c/s

1651 28 KSR.
10 c/s

(30DI (3401
vector plot

1341

-

-

-

(41 1200 c/m

1401 100 c/m

1641 300 I/m

-

11401 18ch.

[13811 391

-

Std. 300 c/s

1751 63 c/s

16431 33 KSR

[30DI (34OCI

1341

-

-

-

(421 1 200 or
800 c/m

14101 l 0 0 c / m

1641 300 I/m

13501 to
Calcomp

11401 18ch.

[1 3811 391

-

Std. 300 CIS

[PCO9 I 50 CIS

33 KSR, ASR

POD1

l34Hl

13393 P. display
with 340

-

-

(CROIEI 100 or
200 c/m

-

1647 I 300 or
600 I/m

13501

[DROSA]

64 ch.
1000 ch.

-

Std. 300 d s

[PC151 50 c/s

33.35. ASR. KSR

(VP151

[VTl5)

[VT05]

(CR033~200 c/m

-

16471 3 0 0 or
1000 I/m

13501. 1x4151

DRO9A

[AF02] 64 ch.
[AFO41 1000 ch.

AFC 15-analog
UDC 15-digital

*The DEC-assigned option number is given in square brackets, e.g.. 11 771.

174 BEGINNING OF THE MINICOMPUTER

precision and color cathode ray tubes. The
PDP-I, 4, and 7 were relatively compatible in
terms of 1 / 0 interconnection and evolved to
have about the same set of options. PDP-9
changed to an 1 / 0 bus structure, requiring new
option interfaces. Although PDP-I5 used that
same 1 / 0 bus structure and signals, the voltages
were different; again, new option interfaces
were required.

Displays have been major options through-
out the series. Moving head disks were first
available on the PDP-15. Although a number of
card handling options were available, few were
sold, reflecting the real-time, laboratory, and
multiprogrammed (timesharing) use.

Evolution

This chapter concludes by relating the 18-bit
series evolution to the model of minicomputer
evolution presented in Chapter 1. Three design
styles are distinguished in the model, as can be
seen in Figure 42. Chapter 7 shows the 12-bit
family (PDP-8) evolving mostly along the con-
stant performance/decreasing price curve. The
16-bit PDP-I 1 family, presented in the chapters
of Part IV, evolved based on all three design
styles.

INCREASING PRICE,
INCREASING PERFORMANCE
(N E W PERFORMANCE-ORIENTED

PRICE

/ M A R K E T OPPORTUNITIES)

CONSTANT PRICE,
INCREASING PERFORMANCE x DECREASING CONSTANT PERFORMANCE PRICE.

(N E W MARKET
OPPORTUNITIES)

c
T I M E

For a family to evolve in more than one de-
sign style, design resources must be available
for parallel development efforts. While the
PDP-I 1 family had the multiplicity of designers
and architects to do this, the 18-bit series did
not. Each new implementation was designed by
a member of a previous implementation team.
For such a single-thread approach to be suc-
cessful, it appears that one of the three design
styles of the evolution model must be chosen
and consistently followed. With the exception
of PDP-4, the 18-bit series has followed the-
middle style: constant price/increased perform-
ance.

It appears that a clear identity is needed to
guide design decisions. Consider the physical
packaging of the last of the 18-bit machines, the
PDP-I 5. Although a comparable speed/
performance PDP- 1 1 required more integrated
circuits to implement (the PDP-II has more
modes of addressing, more instructions, and
more data-types), the PDP- 15 implementation
cost more. The PDP-15 remained packaged in a
large cabinet, used smaller modules, and the
component density per module was lower than
that of the PDP-I 1 . Had the evolution been
guided by a consistently lower cost goal, metal
box packaging rather than cabinet packaging
would have been used. As it was, the PDP-15
had to compete against the PDP-I 1 with the
handicap of an extra level-of-integration in its
physical packaging.

ACKNOWLEDGEMENTS

Several people helped gather the data for this
chapter and critiqued its design: Dick Best, Earl
Cain, Wes Clark, Dick Devlin, Craig Mudge,
Carl Noelcke (reliability calculations), Ed Raw-
son, Jack Shields, Dan Siewiorek, Don White,
and Don Zereski. Mary Jane Forbes and Louise
Principe deserve thanks for typing the numer-

Figure 42. Three design styles. ous drafts.

a

THE LINC

Since the Laboratory Instrument Computer
(LINC) was one of the machines that had a
great influence on the design of the PDP-4 and
the PDP-5, a discussion of the DEC 12-bit ma-
chines must start with the LINC.

The LINC was designed by Clark and Mol-
nar [Clark and Molnar, 1964; 19651, who were
in turn influenced by Control Data Corpo-
ration’s (CDC) 160, designed by Seymour Cray.
The relationship of these early computers is
shown in Figure 1. The first version of the
LINC was built at the M.I.T. Lincoln Labora-
tory where it was demonstrated in March 1962
(Figure 2) . In 1963 the LINC was redesigned for
production at a special M.I.T. laboratory, the
Center Development Office.

While the LINC contributed to DEC history
primarily as a forerunner of the PDP-4 and
PDP-5, it also generated a number of other de-
velopments. The LINC tape unit and the system
ideas that permitted a user to have personal files
were later incorporated directly into the DEC-
tape design and programs. The tape system and
a powerful CRT-based console made possible
the first complete personal computer available

The PDP-8 and Other
12-Bit Computers

C. GORDON BELL and JOHN E. McNAMARA

to a user, in this case the researcher, at a reason-
able price. The LINC machines had been con-
structed mainly from DEC Systems Modules, a
convenience when DEC subsequently manufac-
tured LINC machines directly from the 1963
design. Later, Wes Clark with Dick Clayton de-
signed the LINC-8, a two-processor machine
(LINC + PDP-8) which executed both instruc-
tion sets in parallel. Clayton also designed the
PDP-12, a single physical processor that exe-
cuted either PDP-8 or LINC instructions se-
quentially by switching modes.

Some of the characteristics of the LINC
Family machines are given in Table 1, and pho-
tographs appear in Figures 3, 4, and 5. Note
that the size remained essentially constant at
one cabinet throughout the life of this computer
family.

On machines prior to the LINC, DEC had
been stressing design flexibility and modularity,
providing many ways to interconnect computer
components in order to create a variety of struc-
tures. This detracted from having a base system
configuration complete with software. In con-
trast, the LINC was quite constrained, with

175

176 BEGINNING OF THE MINICOMPUTER

Table 1. L l N C Family Characteristics

76

16

74

12

70

68

66

64

62

60

56

LlNC LINC-8 PDP-12

IEXTl IDECl IEXT

* 4096, t
BlTS OF

RIW MEMORY -
- 1024(1

- ECL 10011 I

- 25611

-
- 641,

TTL/S(I
PASCAl -

1 6 B l T S - OFRIWMEM"

-
APLIJSI TTUH - E C L I O I "

FLIP CHIPS FORTRAN
AND WIRE

-
' 'WRAP -

MITTECq
SI T R l N S 4 1 BASIC

TTLI b

-
I C ,

-

COBOL6
1 0 9 0 (, ALGOL6 - WlRE WRAP

BT - I)SYS& LAB MLCR
MODULES

GeTRINS- CFORTRA

Project start 1961
First shipment 3/62
Withdrawn 12/69
Number produced
Price (minimum) $43.600

50 (21 by DEC)

Summer 1965 6/67
8/66 6/69
12/69 617 5
143 1,000
$38.500 $28.1 00

Goals and features Complete system for labora- Low cost. speed. PDP-8 Larger scope, bus com
tory user (including file sys- software/hardware. com- pattble with PDP-8/1
tern and scope) patibility

Size
(in inches)

69 X 32 X 30 plus separate
tape, keyboard. console. and
interconnection boxes

69 X 32 X 33 76 X 35 X 33

Memory-processor 125 K
accesses (per second)

667 K 667 K
(PDP-8 memory) (PDP-811 memory)

Power (watts) 1,000 2.000 <2.000

Cathode ray tube Originally 2 oscilloscopes. 1 1
later only 1

v
PROCESSOR ON
ACHIPFAMILY

LANGUAGES oPERAT"G
SYSTEMS

TECHNOLOGY

Figure 1 . Family tree of 12-bit machines with associated timelines for technology, languages, and operating systems

THE PDP-8 AND OTHER 12-BIT COMPUTERS 177

Figure 2. The LlNC (Laboratory Instrument Computer) is a small stored program digital computer designed to accept
analog as well as digital inputs directly from experiments, to process data immediately, and to provide signals for the
control of experimental equipment. The LlNC system comprises five physically distinct subassemblies which include
four console modules connected by separate cables to a remote cabinet containing the electronics and power supplies.
The control module contains indicator lights, push buttons, and switches used in operating the LINC. A second module
provides for display oscilloscopes, while a third module holds two magnetic tape transports of special design. The last
module is provided with sockets, jacks, and terminals for interconnecting the LlNC and other laboratory equipment. This
photograph shows the prototype version demonstrated on March 27. 1962. at the M.I.T. Lincoln Laboratory (courtesy
of M.I.T. Lincoln Laboratory, from Clark and Molnar [1964]).

Figure 3 The production version of the LINC.

THE PDP-8 AND OTHER l Z - B i l COMPUTEf

c
'77

Figure 3. The pduction version of the LINC.

178 BEGINNING OF THE MINICOMPUTER

Figure 4. The LINC-8.

Figure 5. The LINC-12

only 1 Kword or 2 Kwords of primary memory
available, two LINC tapes, and one CRT. By
bounding the system to a single configuration,
it was possible to provide a complete computing
environment including software and to provide
for convenient interchange of user software.

THE PDP-5

As indicated in Chapter 6, discussions with
Foxboro Corporation in the fall of 1961 led to
the design, using many LINC ideas, of a 12-bit
digital controller called the DC-12. Instead of
building the DC-12, DEC built the 18-bit PDP-
4 and sold one to Atomic Energy of Canada
Limited. AECL used the PDP-4 for a reactor
control computer system at Chalk River, an ap-
plication requiring an elaborate analog mon-
itoring system as a front-end. To reduce the
complexity of the analog system, a special
front-end computer was needed. The Wes Clark

10-bit L-1 design was considered but rejected
because the encoded analog values required
words longer than I O bits, and because the size
and complexity of the program seemed too
great for such a small computer. After visiting
Chalk River in the winter of 1962, DEC engi-
neers decided that a 12-bit design based on the
DC-12 would be excellent for such a front end
in PDP-4 process control applications. The in-
struction set for the new machine, the PDP-5,
was specified in detail by Alan Kotok and Gor-
don Bell, and the logic design was carried out
by Edson DeCastro, the applications engineer
responsible for building the analog front end at
Chalk River.

The intent of the design was to simplify the
system so that it would take no longer t o design
the PDP-5 than it had taken to design the
analog front end that it would be replacing. The
machine used the standard modules developed
for the PDP-4, including the concept of bit-slice

178 SEGllrllYING OF THE MINICOMPUTER c

1. _.
F .:

ava'ilable, two LINC tapes, and one-CRT. By
bounding the system to a single configuration,
it was possible to provide a complete computing
environment including software and to provide
for convenient interchange of ustf softwam.

THE P D P I

As indicated in Chapter 6, disawions with
Foxboro Corporation in the fall of 1%1 Id to
the design, using many LINC ideas, of a f2-bit
digital controlIer called the DC-12. Inmud of
building the DC- 12, DEC built the IS-bit PDP-
4 and sold one to Atomic Eaergy of C a d a
Limited. AECL used the PDP-4 for 8 reactor
control computer system at Chdk River, 8n ap-
plication requiring an ehbrate andog mom
itoring system 8s a f r o n t a d . To rdua the
complexity of the analog system, a special
f r o n t e d computer was needed. The Wa Clark

,1

because the encoded analog v a l w required
words longer than IO bits, and because the s k
and complexity of the program seemed too
graat for such a small computer. After visiting
Chalk River in the winter of 1962, DEC en&
n m decided that a 12-bit dmign based on the
DC-12 would bo cxceIlcnt for such a front end
in PDP-4 pmcm control applidons. The in-
s t d o n set for the new machine, the PDP-5,
was s H f i d in detail by Alan Kotuk and Qor-
don Bell, and the logic design was canid out
by Edron DcCastro, the applications engineer
responsible for building the analog front end at
chalk Rim.
The intent of the design was to simplify the

system 80 that it would take no longer to design
the PDF4 than it had taken to design the
analog front end that it would IM replacing. The
machine used the standard modules developad
for the PDM, including the concept of bit-dice

THE PDP-8 AND OTHER 12-BIT COMPUTERS 179

Figure 6. The PDP-5

construction for the Accumulator, Memory
Address, and Memory Buffer registers. The
analog nature of the initial application was ad-
dressed by building an analog-to-digital con-
verter into the Accumulator, thus providing this
capability at extremely low cost. The other part
of the design that addressed cost was the use of
an 1/0 Bus instead of the radial structure that
had been used in the 18-bit designs. The 1/0
Bus permitted equipment options to be added
incrementally from a zero base instead of hav-
ing the pre-allocated space, wiring, and cable
drivers that characterized the radial structure.
This lowered the entry cost of the system and
simplified the later reconfiguring of machines in
the field.

Although the design was optimized around
the 4-Kword memory, the PDP-5 ultimately
evolved to 32-Kword configurations using a
memory extension unit. Similarly, although the
base machine design did not include built-in
multiply and divide functions, these were added
later in the form of an Extended Arithmetic Ele-

ment. While the PDP-5 was designed for real
time and control, the aspirations for it to be
used generally in a system can be clearly seen in
an early photograph (Figure 6) .

THE PDP-8
While the PDP-5 had been a reasonably suc-

cessful computer, it soon became evident that a
new machine capable of far greater perform-
ance was required. A new series of modules, the
Flip Chip series, was being developed for the
PDP-7 and for the new version of the PDP-5.
The new logic promised a substantial speed im-
provement, and new core memory technology
was becoming available that would permit the
memory cycle time to be shortened from 6 mi-
croseconds in the PDP-5 to l .6 microseconds in
the new machine. In addition, the cost of logic
was now low enough so that the program
counter could be moved from the memory to a
separate register, substantially reducing instruc-
tion execution times. The new machine was
called the PDP-8 (Figure 7).

I'

8. T h PDF-6.

construction for the Accumulator, Memory
Addrwi, and Memory Buffer registam. The
analog =turn of the initial applicntion was ad-
d- by building an rnaiog-todigital con-
mer into tbt Accumulator, thus providing this
capability at c x ~ e l y tow cost. Tho othee part
of the W g n that add& coat was the we of
an 1/0 Bus i m d of the radial structure that
had t e n used in the lbbi t dcsigm. The I/O
Bus permitted equipment options to be added
i n c m t d l y from a zero barn instead of hav-
ing the pmdlucatd space, WirinE, and able
drivers that chluactwtwd * the radial ~tructum.
This lowered the entry cost of the systmn and
dmplificd the later mnfiguring of machineca in
the field.

Although the b i g n was optimized around
the 4Kword memory, the PDP-5 ultimately
evolved to 32-Kword configuratim using a
memory txtcnsiion unit. Similarly, although the
bme machine d&gn did not include built-in
multipIy and divide functions, th- were added
later in the form of an Extended Arithmstic El*

mcnt. While the PDP-5 was designed for real
time and control, the =pirations for it to be
used generally in a system can be clearly seen in
an early photograph (Figure 6).

THE POP4
While the PDP-5 had b m a rsarsonably suo-

wsfut computer, it soon k a m e evident that a
new machine capable of far mttr perform-
ance was q u i d . A new w r h of rnodulm, the
Flip Chip series, was being M o p e d for tha
PDP-'I and for the new veraion of the PDP-S.
The new logic promiaed a substantial ~pssd im-
provement, and new core memory ~hnology
was becaning available !hat would permit the
memory cycle time to be &orten& from 6 mi-
croseconds in the PDP-5 to l .6 microrwconds in
the new machine. In addition, the cost of logic
was now low enough so that the program
counter could be moved from the memory to a
scparato register, substantially redudng instrw-
tion execution times. The new machine was
called tbt PDP-8 (Fin= 71.

180 BEGINNING OF THE MINICOMPUTER

Figure 7. The PDP-8

In a fashion similar to the technical devel-
opments that marked the 18-bit family, the new
12-bit machine was physically smaller than its
predecessor. This time, however, the change
was more than simply a change from three cabi-
nets to two or from two cabinets to one. It was a
change from one cabinet to a half cabinet. The
new small size meant that the PDP-8 was the
first true minicomputer. It could be placed on
top of a lab bench or built into equipment. It
was this latter property that was the most im-
portant, as it laid the groundwork for the origi-
nal equipment manufacturer (OEM) purchase
of computers to be integrated into total systems
sold by the OEM.

The improvements in logic density permitted
by the new Flip Chip modules also influenced
packaging and manufacturing methods. The
PDP-8 logic modules were mounted in con-
nector blocks, which were in turn mounted in
frames. The two frames were each the max-
imum size that could be accommodated in the
new Gardner-Denver automatic Wire-wrap ma-
chine. Automatic wire-wrapping was very im-
portant to the mass production success of the
PDP-8 because it was both fast and accurate.
The two wire-wrapped frames hung vertically
and were hinged about a vertical axis at the rear
of the computer cabinet. In some ways they re-
sembled the pages of a book, with the wire-
wrap pins on the surfaces that faced each other.
The swinging gate backplane permitted access
by maintenance personnel to both the con-
nection pins and the modules.

Like its predecessor the PDP-5, the PDP-8
was a single-address 12-bit computer designed
for task environments with minimum arith-
metic computing and small primary memory re-
quirements. Typical of these environments were
process control applications and laboratory ap-
plications such as controlling pulse height
analyzers and spectrum analyzers.

In addition to the originally envisioned appli-
cations, the PDP-8 was used for innumerable
other applications. One of the most interesting
was message switching. The PDP-8 message
switching hardware assembled characters by bit
sampling, checking the status of teleprinter lines
at 5 times the anticipated bit rate to accurately
recover data. Another interesting application
was the TSS/8 small-scale general purpose
timesharing system developed by Carnegie-
Mellon University and DEC [van de Goor et
al., 19691. While only a hundred or so systems
were sold, TSS/8* was significant because it es-

*TSS/8 was designed at Carnegie-Mellon University with graduate student Adrian van de Goor, in reaction to the cost,
performance, reliability, and complexity of IBM’s TSS/360 (for their Model 67). Although the TSS/360 was not marketed,
it eventually worked and contributed some ideas and trained thousands for IBM. At Carnegie-Mellon (C M U) , a TSS/8
operated until 1974 when the special swapping disk expired. T h e cost per user or per j o b tended to be about 1/20 of the
TSS/360 system C M U ran.

1 Bo BEGINNING OF THE MINICOMPUTER

THE PDP-8 AND OTHER 12-BIT COMPUTERS 181

tablished the notion that multiprogramming
applied even to minicomputers. Until recently,
TSS/8 was the lowest cost (per system and per
user) and highest performance/cost timesharing
system. A major side benefit of TSS/8 was the
training of the implementors, who went on to
implement the RSTS timesharing system for the
PDP-I 1 based on the BASIC language.

The PDP-8 was the first of the “8 Family.” A
subset, called “Omnibus 8” machines, is in-
troduced later when the PDP-8/E, PDP-8/M,
and PDP-8/A machines are discussed. Finally,
computers which implement the PDP-8 instruc-
tion set in a single complementary metal oxide
semiconductor (CMOS) chip will be referred to
as “CMOS-8” based systems.

The PDP-8, which was first shipped in April
1965, and the other %Family machines that fol-
lowed it achieved a production status formerly
reserved for IBM computers, with about 50,000
machines produced, excluding the CMOS-8
based computers. During the 15 years that these
machines have been produced, logic cost per
function has decreased by orders of magnitude,
permitting the cost of entire systems to be re-
duced by a factor of 10. Thus, the 8 Family of-
fers a rare opportunity to study the effect of
technology on implementations of the same in-
struction set processor.

The PDP-8 was followed in late 1966 by the
PDP-8/S, a cost-reduced version (Figure 8).
The PDP-8/S was quite small in size, scarcely
larger than a file cabinet drawer. It achieved its
low cost by implementing the PDP-8 instruc-
tion set in serial fashion. This did reduce the
cost, but it so radically reduced the perform-
ance that the machine was not a good seller.

In 1968, the PDP-8/1 (Figure 9) was pro-
duced, using medium-scale integration (MSI)
integrated circuits to implement the PDP-8 in-
struction set with better performance than the
PDP-8, and at two-thirds the price. For those
customers wishing a package with less option
mounting space but the same performance, the
PDP-8/L (Figure 10) was introduced later the
same year. Figure 9 The PDP-8/1.

F,gure 8 The PDP-8/S,

tablished the notion that multiprogramming
applied even t o minicomputers. Until recently,
TSS/8 was the lowest cost (per system and per
user} and highest performance/cost timesharing
system. A major side bencfit of TSS/8 was the
training of the irnplementors, who went on to
implement the RSTS timesharing system for the
PDP- 1 1 based on the BASIC language.

The PDP-8 was the first of the “8 Family.” A
subset, called “Omnibus 8” machines, is in-
troduced later when the PDP-8/E, PDP-8/M,
and PDP-8/A machines are discussed. Finally,
computers which implement the PDF-% instruc-
tion set in a single complementary metal oxide
semiconductor (CMOS) chip will be referred to
as “CMOS-8” based systems.

The PDP-8, which was first shipped in April
1965, and the other 8-Family machines that fol-
lowed it achieved a production status formerly
reserved for IBM computers, with about 50,000
machines produced, excluding the CMOS-I
based computers. During the 15 years that these
machines have been produaed, logic cost per
function has decreased by orders of magnitude,
permitting the cost of entire systems to be re-
duced by a factor of 10. Thus, the 8 Family of-
fers a rare opportunity to study the effect of
technology on implementations of the same in-
struction set proccssor.

The PDP-8 was followed in late 1966 by the
PDP-8/S, a cost-reduced version (Figure 8).
The PDP-8/S was quite small in size, scarcely
larger than a file cabinet drawer. It achieved its
low cost by implementing the PDP-8 instrue
tion set in mrial fashion. This did reduce the
cost, but it so radically reduced the perform-
ance that the machine was not a good seller.
In 1968, the PDP-8/1 (Figure 9) was pro-

duced, using medium-scale integration (MU)
integrated circuits to implement the PDP-8 in-
struction set with better performance than the
PDP-8, and at two-thirds the prim. For those
customers wishing a package with less option
mounting space but the same performance, the
PDP-S/L (Figure 10) was introduced later the

THE PDP-8 AND OTHER 12-BIT COMPUTERS 181

Figure 8. The POP-8/S.

182 BEGINNING OF THE MINICOMPUTER

The PDP-8/S, PDP-8/1, and PDP-8/L are
mentioned only briefly here because their char-
acteristics were basically dictated by the cost
and performance improvements made possible
by the emerging integrated circuit technology.
The cost and performance figures for these ma-
chines are examined in greater detail in the
charts at the end of this chapter.

THE PDP-8/E, PDP-8/M, AND PDP-8/A

Shortly after the introduction of the PDP-
8/L, it became evident that customers wanted a
faster and more expandable machine. The con-
tinuing technological trend toward higher den-
sity logic and some new concepts in packaging
made it possible to satisfy both of these require-
ments but to still produce a new machine that
would be cheaper than its predecessor. The new
machine was the PDP-8/E (Figure 11).

A block diagram of a complete PDP-8/E
computer system is shown in Figure 12. Note
that the lower half of the drawing shows an
adapter for interconnecting the positive bus
family (PDP-8/1 and PDP-8/L) 1 / 0 devices. In
addition, signal converters were available to
convert a step further to the older negative bus
family (PDP-5, PDP-8, and PDP-8/S) 1/0 de-
vices. I n this way, the new machine could capi-
talize on the existing hardware option base. It

Figure 10. The PDP-8/L Figure 1 1 . The PDP-8/E.

mentioned oniy briefly h&e because their char-
acteristics were basically dictated by the cost
and performance improvements made possible
by the emerging integrated circuit technology.
The cost and performance figures for these ma-
chines are examined in greater detail in the
charts at the end of this chapter.

THE PDP-8/E, PDP-8/M, AN0 PDP-S/A

Shortly after the introduction of the PDP-
8/L, it became evident that customers wanted a
faster and more expandable machine. The con-
tinuing technological trend toward higher den-
sity logic and some new concepts in packaging
made it possible to satisfy both of these rcqquire-
ments but to still produce a new machine that
would be cheaper than its predecessor. The new
machine was the PDP-8/E (Figure 1 1) .

A block diagram of a complete PDP-8/E
computer system is shown in Figure 12. Note
that the lower half of the drawing shows an
adapter for interconnecting the positive bus
family (PDP-811 and PDP-S/L) 1/0 devim. In
addition, signal converters were available to
convert a step further to the older negative bus
family (PDP-5, PDP-8, and PDP-8/S) 1/0 de-
vices. In this way, the new machine could capi-
talize on the existing hardware option base. It

REOUIRLD IF MORE UPTO

T
II

PROGRAMMER'S TURNKEY
CONSOLE

OECWriter
CONTROL

TELEPRINTER
CONTROL

DECWrifer 3 P O R 3 6
TELETYPE

ANALOG
, I O

8-CHANNEL 8 CHANNEL
ANALOG I I P ANALOG I / P

MAGTAPE
CONTROL

PAPER TAPE
READER REAOfR

READERPUNCH

PP8-E
PAPERTAPE

PUNCH

OPTICALMARK
CARD R E a D E R MAGTAPE

I I
11111-1

AMs-EA AM8-LB
8 CHANNEL 8-CHANNEL

MULTIPLEXER EXPANSION

U P T 0 7 U N l i S
MAXIMUM

BUFFERED PLOTTER
DIGITAL I/O CONTROL BUFFER

OISPLAY
CONTROLLER DETECT

UPTO3UNITS
MAXIMUM

.
OUTPUT INPUT
LINES LINES

UP TO 8 UNITS MAXIMUM

I cAL~."M' I I PRINTER 1
HIGH PLOTTER

"R14 VROO-A CUSTOMER'S
SCOPE SCOPE SCOPE

D U A L D R I V E
OECtaPB

U P T O I U N I T S

SINGLE DRIVE

UPT04UNITS

-I
I
rn
71
0
?
m
B z
0

Figure 12. PDP-8/E system block diagram (part 1 of 2). -4
rn n
v)

184 BEGINNING OF THE MINICOMPUTER

L

DIGITAL

EXTERNAL

I-
DIACONVERTER
AND CONTROL

UPTOOUNITSMAXIMUM
on -

TU66 I SINGLE DRIVE I
DECtaps

WRlTlNG
TA0LfT

Figure 12. PDP-8/E system block diagram (part 2 of 2).

would not be necessary to design a complete
new set of options at the time the machine was
introduced, and existing customers could up-
grade to the new computer without having to
buy new peripherals.

The reason for using an adapter to connect to
existing 1 / 0 devices was that the PDP-8/E fea-
tured a new unified-bus 1 / 0 Bus implementa-
tion related to the Unibus that was being
designed for the PDP- 11. The electrical design
of the 1/0 Bus for both the previous negative

logic and positive bus machines had been
straightforward, but the mechanical packaging
and cabling had not. A new implementation
was needed which would simplify the packaging
and cabling and solve the problems created by
the Direct Memory Access channel, which had
not been bused in previous designs. Don White,
who was leading the design team, conducted a
contest to name the new bus. After discarding
such entries as “Blunderbus,” the name “Om-
nibus” was chosen.

THE PDP-8 AND OTHER 12-BIT COMPUTERS 185

The Omnibus, which is still in use in the
PDP-8/A, has 144 pins, of which 96 are defined
as Omnibus signals. The remainder are power
and ground. The large number of signals permit
a great number of intraprocessor commu-
nications links as well as 1/0 signals to be ac-
commodated. The Omnibus ‘signals can be
grouped as follows:

1.
2.

3.

4.

5 .

6.

Master timing to all components.
Processor state information to the con-
sole.
Processor request to memory for instruc-
tions and data.
Processor to 1 / 0 device commands and
data transfer.
1 / 0 device to processor, signaling com-
pletion (interrupts).
1 / 0 Direct Memory Access control for
both direct and Three Cycle Data Break
transfers.

The approximately 30 signals in groups 4 and
5 provide programmed 1 / 0 capability. There
are about 50 signals in group 6 to provide the
Direct Memory Access capability. These 80 sig-
nals are nearly equivalent in quantity and func-
tion to the preceding PDP-8 1 / 0 Bus design,
making the conversion from Omnibus structure
to PDP-8/1 and PDP-8/L 1 / 0 equipment very
simple.

The complement of signals is quite different
from that in the PDP-I 1 Unibus, which is more
strictly an 1 / 0 bus, and the PDP-8/E processor
handled many more of the Direct Memory Ac-
cess and interrupt control functions than does
the PDP- 1 1 processor. One specific signaling
structure that differs between the two machines
is the interrupt system, which in a PDP-I1
Unibus passes a Bus Grant signal through the
1/0 options to be propagated further or ab-
sorbed by the option. There are no such pass-
through signals on the Omnibus; hence, any op-
tion can occupy any slot, and intervening slots
between installed options can be left vacant. A

by-product (or perhaps goal) of the Omnibus
structure is that there are a fixed number of
slots. The lack of cabling between options
means that the electrical transmission charac-
teristics are well defined.

The processor for the PDP-8/E occupied
three 8 X 10-inch boards; 4 Kwords of core
memory took up three more boards; a memory
shield board, a terminator board, a teleprinter
control board, and the console board com-
pleted the minimum system configuration.
Thus, a total of ten 8 X 10-inch boards formed
a complete system. The three-board PDP-8/E
processor, occupying 240 in2, was in striking
contrast to the 100-board PDP-5 processor,
which occupied 2,100 in2.

The PDP-8/E implementation was deter-
mined by the availability of integrated circuits.
Multiplexers, register files, and basic arithmetic
logic units performed the basic operations in a
straightforward fashion using a simple sequen-
tial controller. Microprogrammed control was
not feasible because suitable read-only memo-
ries were not available. The read-only rope
magnetic memory of the PDP-9 was too expen-
sive and was unsuitable for PDP-8/E packag-
ing. Integrated circuit read-only memories
available at that time were too small, holding
only about 64 bits.

There was some problem partitioning the
processor logic among the three modules. Fig-
ure 13 shows the final arrangement, which was
to place timing and interrupt on one module,
the data path on a second, and the control on
the third. Even with this partitioning, more pins
were required between the data and control
modules than were available through the Om-
nibus. To provide the necessary connections,
additional connectors were installed on each
module on the edge opposite the Omnibus con-
nection.

The PDP-8/E was mounted in a chassis
which had space and power to accommodate
two blocks of Omnibus slots. Thirty-eight mod-
ules could be mounted in the slots, allowing

186 BEGINNING OF THE MINICOMPUTER

space for the processor and almost 30 periph-
era1 option controllers. Many customers
wanted to build the PDP-8/E into small cabi-
nets and have it control only a few things. They
found the large chassis and its associated price
to be more than they wanted. To reach this
market, the PDP-8/M was designed.

The PDP-8/M was essentially a PDP-8/E cut
in half. The cabinet had half the depth of a
PDP-8/E, and the power supply was half as big.
There were 18 slots available, enough for the
basic processor-memory system and about eight
options. The processor was the same as that for
a PDP-8/E.

PDP~B/E ORGANIZATION

1 ----------- ---__-__--- I CENTRAL PROCESSOR U N I T

I

T

r---i I I I '

I I ,

I i i j REGISTER
I CONTROL I ,
I ' I 1
I I l l
I I l l
I I l l
I
I
I
I
I
I
I
I
I
I
I
I
I

I I
h I . I

GATE

T I M I N G

CRYSTAL
CLOCK

I I

STATE * GENERATOR

I
I
I
I

O M N I B U S
LOADS i I

I

----- -- I

5 OMNIBUS I

-1
I
I

--

t MEMORY
STACK SENSEIINHIBIT

CONTROL CONTROL r-3 4096 WORDS I

CONSOLE
TELETYPE

I
t ' 1 1 I SENSE I

L X A N O Y 1 3 , INHIBIT

I
I

SWITCHES LEGEND

INDICATOR
LIGHTS

r-I- 1
DATA LlNES -

CONTROL LINES - - + I TELETYPE I
L----l

O M N I B U S 3 CONSOLE FRONT PANEL

Figure 13. PDP-8/E basic system block diagram

THE PDP-8 AND OTHER 12-BIT COMPUTERS 187

By 1975, DEC had been building “hex” size
printed circuit boards for the PDP-I1/05 and
PDP-11/40 for at least two years. The hex
boards were 8 X 15 inches, half again as big as
the “quad” boards used in the PDP-8/E and
PDP-8/M, which were 8 X I O inches. The di-
mensional difference was along the contact side
of the board. A hex board had six sets of 36
contacts while the quad board had only four
sets. Semiconductor memory chips had also be-
come available, so a new machine was designed
to utilize the larger boards and new memories
to extend the PDP-8/E, PDP-8/M to a new,
lower price range. The new machine was the
PDP-8/A. The PDP-8/A processor and register
transfer diagram is shown in Figure 14 and the
8/A processor in Figure 15.

The hex modules permitted some of the pe-
ripheral controller options that had occupied
several boards in the PDP-8/E to fit on a single
board in the PDP-8/A (Figure 16). The avail-
ability of hex boards and of larger semi-
conductor read-only memories permitted the
PDP-8/A processor to use microprogrammed
control and fit onto a single board. It should be
noted here that when a logic system occupies
more than one board, a lot of space on each
board is used by etch runs going to the con-
nectors. This was particularly true of the PDP-
8/E and PDP-8/M processor boards, due to the
contacts on two edges of the boards. When an
option is condensed to a single board, more
space becomes available than square inch com-
parisons would at first indicate because many of
the etch lines to the contacts are no longer re-
quired.

The first PDP-8/A semiconductor memory
took only 48 chips (1 Kbit each) to implement 4
Kwords of memory. Memories of 8 Kwords
and 16 Kwords were also offered. In 1977, only
96 16-Kbit chips were needed to form a 128-
Kword memory. With greater use of semi-
conductor memory, especially read-only mem-
ory, a scheme was devised and added to the

PDP-8/A to permit programs written for read-
write memory to be run in read-only memory.
The scheme adds a 13th bit to the read-only
memory to signify that a particular location is
actually a location that is both read and written.
When the processor detects the assertion of the
13th bit, the processor uses the other 12 bits to
address a location in some read-write memory
which holds the variable information. This ef-
fectively provides an indirect memory reference.

In 1976, an option to improve the speed of
floating-point computation was added to the
PDP-8/A. This option is a single accumulator
floating-point processor occupying two hex
boards and compatible with the floating-point
processor in the PDP-12. It supports 3- or 6-
word floating-point arithmetic (12-bit exponent
and 24- or 60-bit fraction) and 2-word double
precision 24-bit arithmetic. As a completely in-
dependent processor with its own instruction
set processor, it has its own program counter
and eight index registers. The performance, ap-
proximately equal to that of an IBM 360 Model
40, provides what is probably the highest per-
formance/cost ratio of any computer.

More Omnibus 8 computers (PDP-8/E,
PDP-8/M, PDP-8/A) have been constructed
than any of the previous models. The high de-
mand for this model appears to be due to the
basic simplicity of the design, together with the
ability of the user to easily build rather arbi-
trary system configurations.

In the fall of 1972, DEC began the design of a
single chip P-channel metal oxide semi-
conductor (MOS) processor to execute the
PDP-8 instruction set. This processor was to be
called the PDP-8/B, and it was hoped that pro-
duction chips could be obtained by the spring of
1974 for systems to be shipped in the fall of
1974. The designers had progressed through the
design tradeoffs in partitioning a PDP-8 for a
single 40-pin chip when the project was stopped
in the summer of 1973. The key reasons for
stopping the project included the industry trend

t 1
COHTROL
SIGNALS

TIME STLTE
SIG"1LS

[-I
I I

OMNIBUS

Figure 14. PDP-8/A processor and register transfer diagram

THE PDP-8 AND OTHER 12-BIT COMPUTERS 189

4

Figura 15. POP-WA processor,

I_-

Figure- 18. PDP-B/A processor (interior).

190 BEGINNING OF THE MINICOMPUTER

from P-channel to N-channel and the fact that
the Omnibus did not lend itself to cost reduc-
tions with large-scale integrated circuit tech-
nology. While the Omnibus was ideal for
medium-scale integration and ease of inter-
facing, it was not as cost-effective as the buses
that microcomputers used, which multiplexed
address and data on the same leads at different
times. The percentage of system cost and com-
plexity represented by the processor in an Om-
nibus-8 system was too low to make the move
to large-scale integrated (LSI) processor attrac-
tive at that time. For these reasons, it was de-
cided to apply the newer N-channel process to a
system in which the processor was a more com-
plex and costly part of the system -the PDP-11
Family. Thus, in the summer of 1973, a project
started in cooperation with Western Digital
Corporation to build a PDP-I 1 on one or more
N-channel LSI chips.

I n 1976, Intersil offered the first PDP-8 pro-
cessor to occupy a single chip, using CMOS
technology. DEC verified that it was a PDP-8
and began to apply it to a product in the fall of
1976. In the meantime, in addition to Intersil,
Harris Semiconductor became a second source
of chip supply for DEC. The two manufacturers
each have their own designation for these chips,
but in the discussion below they will be called
“CMOS-8’’ chips. A microphotograph of the
chip is shown in Figure 17.

The CMOS-8 processor block diagram is
given in Figure 18. Not surprisingly, it looks
very much like a conventional PDP-8/E proces-
sor design using medium-scale integrated cir-
cuits. It has a common da ta pa th for
manipulating the Program Counter (PC), Mem-
ory Address (MA), Multiplier-Quotient (MQ),
Accumulator (AC), and Temporary (Temp)
registers. The Instruction Register (IR), how-
ever, does not share the common arithmetic
logic unit (ALU). Register transfers, including
those to the “outside world,” are controlled by
a programmable logic array (PLA), as indicated

by the dotted lines in the figure. CMOS-8 is an
example of the use of programmable logic ar-
rays for instruction decoding and for control
purposes, as discussed in Chapter 2.

While the CMOS-8 is the first DEC processor
to be built on a single chip, the most interesting
thing about it is the systems configurations that
i t makes possible. It is not only small in size (a
single 40-pin chip), but it also has miniscule
power requirements due to its CMOS construc-
tion. Thus, some very compact systems can be
built using it. The block diagram in Figure 19
shows a system built with a CMOS-8 and com-
patible components. In contrast to those of past
systems, some of the other components in this
system now represent more dollar cost and
more physical space than the processor itself.
Among these are the random-access read-write
memory, the read-only memory, and the Paral-
lel Interface Elements associated with the 1 / 0
devices. The Parallel Interface Elements enable
interrupt signals to be sent back to the proces
sor and decode the In-Out Transfer (IOT) com-
mands that control data transfers. Also shown
in Figure 19 are some specific 1 / 0 devices such
as the Universal Asynchronous Receiver/
Transmitter (UART) chips tha t d o se-
rial/parallel conversions and formatting for
communication lines.

An excellent example of the use of a CMOS-8
as part of a packaged system is the VT78 video
terminal shown in Figure 20. The goals for this
terminal were to drastically reduce costs by in-
cluding the keyboard, cathode ray tube, and
processor in a single package the size of an or-
dinary terminal. The CMOS-8 chip and high
density RAM chips made this possible. To form
a complete, stand-alone computer system that
supports five terminals, mass storage was
added. Because the mass storage was floppy
disks, it was not in the terminal but in a small
cabinet. Even without the mass storage, how-
ever, the VT78 forms an “intelligent terminal.”
An intelligent terminal is usually defined to in-

THE PDP-8 AND OTHER 12-BIT COMPUTERS 191

MAJOR STATE T I M I N G A N D PROGRAMMED LOGIC
GENERATOR STATE CONTROL P I A OUTPUT LATCH

\ \

\ ARITHMETIC A N 0
LOGIC UNIT

TEMPORARY
REGISTER

\ PROGRAM
COUNTER

ACCUMULATOR
I M E M ~ R Y

ADDRESS
REGISTER

MULTIPLIER-
QUOTIENT

/ MEMORY/
DEVICE
CONTROL

INSTRUCTION
REGISTER

Figure 17 Microphotograph of the CMOS-8 chip (courtesy of lntersil Corporation)

THE PDP-I AND OTHER 12-BIT COMPUTERS 191

Figure 17. Microphotograph of the CMOS-8 chip (courtesy of IntmLI Covat ionl .

192 BEGINNING OF THE MINICOMPUTER

4 M H I

i O h
I

" I R R t L
CMOS
CP"

LEGEND --- INTERNAL CONTROL LINES - EXTERNAL INPUTS OUTPUTS - DATA LlNES

CRYSTAL

XTA. XTB. XTC

TIMING AND

CONTROL

IFETCH.
DATAF. RUN STATE

WAIT . :t

---I
I

CONTROL TRANSFER
LOGIC

SWSEL MEMSEL
la PINS, CPSEL

I I
- 5 " GNO

Figure 19. CMOS-8 based system

RESET. RUN HLT
OMARE0 CPRlO
INTREO

GENERATOR
-1

I I-, 1
!

Figure 18. Block diagram of CMOS-8

DEVICE
ADDRESS

SELECT

CNTRL

H A R R I S STATUS

3BOMH2 0 1-l

DEVICE
ADDRESS

SELECT

PRlORlT"

CMOS
PARALLEL STATUS

INTERFACE
ELEMENT

CONTROL/
FLAGS

THE PDP-8 AND OTHER 12-BIT COMPUTERS 193

ure 21 is a block diagram of a VT78 system ter-
minal.

An intelligent terminal can be used either as
part of a network or as a stand-alone computer
system. In the former case, the application is de-
termined by the network to which the terminal
is attached, but in the latter case, the terminal
functions as a desk-top computer running vari-
ous PDP-8 software.

TECHNOLOGY, PRICE, AND

FAMILY
PERFORMANCE OF THE 12-BIT

The PDP-8 has been re-implemented 10 times
with new technology over a period of 15 years.
The performance characteristics of these imple-
mentations are given in Figure 22. As discussed
in Chapter 1, new technology can be utilized in
the computer industry in three ways: lower cost
implementations at constant performance and
functionality, higher performance implementa-
tions at constant cost, implementation of new
basic structures. Of these three ways, the PDP-8
Family has primarily used lower cost imple-
mentations of constant performance and func-
tionality.

The points in Figures 23 and 24 are arranged
to show the cost trends of three configurations.
The first configuration is merely a central pro-
cessor with 4 Kwords of primary memory. The
second configuration adds a console terminal,
and the third configuration adds DECtapes or
floppy disks for file storage. Note that the basic
system represented in the first configuration has
declined in price most rapidly: 22 percent per
year in the early days and 15 percent per year in
recent years. The price of primary memory, on
the other hand, has declined at the rate of 19
percent per year, as seen in Figure 25.

The price and performance trajectories for
the PDP-8 family of machines are plotted in

Figure 2 0 The VT78 video terminal

clude a computer whose program can be loaded
(usually via a communication line) to take on a
variety of characteristics - i.e., it can learn. Fig-

THE POP-8 AND OTHER 12-BIT COMPUTERS 183

Figure 20. The VT78 video terminal.

clude a computer whose program can be loaded
(usually via a communication line) to take on a
variety of characteristics - Le., it can learn. Fig-

ure 2 1 is a block diagram 01 a JT78 system ter-
minal.

An intelligent terminal can be used either as
part of a network or as a stand-alone computer
system. In the former case, the application is de-
termined by the network to which the terminal
is attached, but in the latter case, the terminal
functions as a desk-top computer running vari-
ous PDP-8 software,

TECHNOLOGY, PRICE, AND
PERFORMANCE OF THE 12-BIT
FAnnlLY

The PDP-8 has been re-implemented 10 times
with new technology over a period of 15 years.
The performance characteristics of these imple-
mentations are given in Figure 22. As discussed
in Chapter 1, new technology can be utilized in
the computer industry in three ways: lower cost
implementations at constant performance and
functionality, higher performance implcmenta-
tions at constant cost, implementation of new
basic structures. Of these three ways, the PDP-I
Family has primarily used lower cost imple-
mentations of constant performance and func-
tionali ty .

The points in Figures 23 and 24 are arranged
to show the cost trends of three configurations.
The first configuration is merely a central pro-
cessor with 4 Kwords of primary memory, The
second configuration adds a console terminal,
and the third configuration adds DECtapes or
floppy disks for file storage. Note that the basic
system represented in the first configuration has
declined in price most rapidly: 22 percent per
year in the early days and i 5 percent per year in
recent years. The price of primary memory, on
the other hand, has declined at the rate of 19
percent per year, as seen in Figure 25.

The price and performance trajectories for
the PDP-8 family of machines are plotted in

194 BEGINNING OF THE MINICOMPUTER

J I
I

EXTERNAL MR18
IFOR PROGRIMLOAOINGI

FLOPPY DISKSYSTEM

P R I N T E R llND

MlSCfLLANfOVSOEVICLS

Figure 21
system terminal

Block diagram of the VT78 microprocessor

Figure 26, with lines of constant price/
performance separated at factors of 2. Note
that the early implementations had significantly
lower performance than the original PDP-8.
Memory performance and instruction execu-
tion performance were directly related in all of
these machines except the PDP-5 (which kept
the Program Counter in primary memory) and
the PDP-8/S (which was a serial machine).
Thus, with the design emphasis on lowering the
cost with each new machine, performance con-
tinued to lag behind that of the PDP-8 until
higher speed primary memory was available
without a cost penalty. Other performance im-
provements, such as the addition of floating-
point hardware or the addition of a cache, are
not treated in this comparative analysis.

0 O o 3 I 02

0 01
64 55 66 67 68 59 70 71 72 73 74 75 76 77 1

Y E A R

Figure 22. Performance of DEC's 12-bit computers
versus time.

Figure 27 gives the performance/price ratio
for the PDP-8 Family machines, and it can be
directly compared with that of other machines
described in this book. The 18-bit machines im-
proved at a rate of 52 percent to 69 percent per
year over a short time, as indicated on the
graph. Setting aside the PDP-5 design point, the
improvement for the 12-bit machines was sim-
ilar during the same period but has since slowed
to only 22 percent per year.

Rather than try to fit a single exponential to
the performance/price data points in Figure 27,
it might be better to try two independent expo-
nentials. The reason for this is that the data
points really mark the transition between two
generations. The PDP-5 was a mid-second
(transistor) generation machine, and the PDP-8

THE PDP-8 AND OTHER 12-BIT COMPUTERS 195

1W
9 0 -
80

70

60

NOTE
LINC. LINC 8. and P D P - 1 2
include 2 L lNCtapes
lor DECtapesI and scopes ani

-
-
- A I D conv~rsion

CLASSIC

PDP 8/L
_ = 50003 X 086'-1963 75

POP 8/A
LEGEND

4 K w A N D C P U

PROGRAM-LOADNG DEVICE

I -USER SYSTEM WITH

IOR EQUIVALENTI AND HARD COPY
A 8 KW. 2 DECPpeS

1 I I 1 I I I l I 1 1 1 1 1
6 4 65 6 6 67 6 8 6 9 7 0 7 1 7 2 73 7 4 7 5 76 77

YEAR

Figure 23. Price of DEC's 12-bit computers versus
time (log)

represents a late second generation machine.
The PDP-8/1 and PDP-8/L were beginning
third (integrated circuit) generation designs.
These four machines represent a relatively rapid
evolution from 1963 to 1968. After the PDP-
8/L, the evolution slows somewhat between
1968 and 1977, as medium-scale integrated cir-
cuits continued to be the implementation tech-
nology, and the cost of packaging and
connecting components continued to be con-
trolled by the relatively wide bus structure.

During their evolution, the DEC 12-bit com-
puters have significantly changed in physical
structure, as can be seen from the block dia-
grams in Figure 28. The machines up through
the PDP-8/L had a relatively centralized struc-
ture with three buses to interface to memory,
program-controlled 1 / 0 devices, and Direct
Memory Access devices. The Omnibus-8 ma-

4 0

30

! POP 6

. P D P - I I S

\ t P D P 811

\
1 USER SYSTEM

L 25

"

4 K w WITH CPU
15

VT78 CAT
A N 0
FLOPPIES

10

5 -

PDP 8/M\.
POP 8 / i

0 I l l / l 1 1 / 1 1 1 / / 1 1
63 6 4 6 5 6 6 67 68 69 7 0 71 7 2 73 7 4 75 76 77 78

YEAR

Figure 24. Price of DEC's 12-bit computers versus
time (linear).

chines bundled these connections together in a
simpler physical structure. The CMOS-8 avoids
the wide bus problem by moving the bus to lines
on a printed circuit board. The number of inter-
connection signals on the bus is then reduced by
roughly a factor of 4 to about 25 signals which
can be brought into and out of the chip within
the number of pins available.

Figures 23 and 24 and Table 2 illustrate the
price/performance oscillating history of the de-
sign evolution summarized below:

While the PDP-5 was designed to keep
price at a minimum, the PDP-8 had ad-
ditions to improve the performance

1 .

196 BEGINNING OF THE MINICOMPUTER

0 1 1 1 1 1 1 1 1 1 ' 1 ' I I
6 4 65 6 6 6 7 6 8 6 9 7 0 7 1 7 2 73 7 4 7 5 7 6 7 7 7 8

YEAR

Figure 25
time

Prlce per word of 12-bit memory versus

I P " P . . ' U

loo P PDP-5

RANGE DF 18 811 DESIGNS
11963-19701

10 I I 1 I I I I I 1 1 1 1 I I I I I
6 3 64 6 5 66 6 7 6 6 6 9 7 0 7 1 72 7 3 7 4 7 5 76 77 78 79 80

YEAR

Figure 27. Bits accessed by the central proces-
sor/sec/$ versus time
terns)

CPU PERFORMANCE lMlLLlDN6 OF ADDITIONS/SECONDI

(for 4 Kword + processor sys-

> 01

Figure 26.
comwters.

Price versus performance for DEC's 1 2-bit

THE PDP-8 AND OTHER 12-BIT COMPUTERS 197

2.

3.

4.

5.

6.

while not increasing price significantly
over that of a slower speed design. The
cost per word was modestly higher with
the PDP-8 than with the PDP-5, but the
PDP-8 had 6 times the perfomance of a
PDP-5. Thus, the PDP-8 crosses three
lines of constant price/performance in
Figure 26.
The PDP-8/S was an attempt to achieve
a minimum price by using serial logic
and a minimum price memory design.
However, the performance of the PDP-
8/S was slow.
The market pressures created by PDP-
8/S performance probably caused the re-
turn to the PDP-8 design, but in an in-
tegrated circuit implementation, the

The PDP-8/1 was relatively expensive,
so the PDP-8/L was quickly introduced
to reduce cost and bring the design into
line with market needs and expectations.

The PDP-8/E was introduced as a high
performance machine that would permit
the building of systems larger than those
possible with the PDP-8/L.
The PDP-8/M was a lower cost, smaller
cabinet version of the PDP-8/E and was
intended to meet the needs of the OEM
market.

PDP-8/1.

The design goal of machines subsequent to
the PDP-8/M has been primarily one of price
reduction. The PDP-8/A was introduced to fur-
ther reduce cost from the level of the PDP-8/E
and PDP-8/M, although some large system
configurations are still built with PDP-8/E ma-
chines. The CMOS-8 chips represent a sub-
stantial cost reduction but also a substantial
performance reduction. The CMOS-8 perform-
ance is one-third that of a PDP-8/A, so a stand-
alone system using a CMOS-8 is less cost-effec-
tive than an PDP-8/A when the central proces-
sor is used as the only performance criterion.

x,1/0 OR
SECONOARY

MEMORY1

(a) Negative (PDP-5.8,8/9 and
positive (8/1, 8/L) logic families.

ONMlBUS 196 SIGNALS1

(b) Omnibus family (PDP-8/E. 8/F, 8/M, 8/A).

CMOS B BUS I 2 5 SIGNALS

(c) CMOS-8 (61 00) processor-on-a-chip family

15 KVIORD
COMPUTER

ON A
BOARD
, U S E S

(d) VT78 computer-in-a-terminal

Figure 28. Evolution of PDP-8 Family PMS structures

The main reason for using large-scale in-
tegration is the reduced cost and smaller pack-
age rather than performance. Obviously, the
next step is increased performance or more
memory, or both more performance and more
memory on the same chip.

Table 2. Characteristics of PDP-8 Family Computers

m
rn

z
n
~

5 z
0 PDP-5 PDP-8 PDP-81s PDP-8/1 PDP-8/L PDP-8IE PDP-SIM P D P W A VT78

Project start, first ship 9/63 4/65 9/66

Goals

Applications

Lowest cost Cost. much Cost:
computer, greater tabletop
interface- performance
abil ity

Process +message Standalone
control w i t c h control calculator
monitoring; Lab.procesing
laboratory

lnnovationslimprovements I10 bus:
ISP

Processor + 4 Kword 25.8
memory (K$l

Same t terminal (K$l 27.0

Pricelmemory word ($) 1.83

Processor t 8 Kword + 51.1
terminal + mass storage

Memory cycle time 6.0

Processor Mwords 0.1
accessedls

Processor bits accessed/s I$ 93

for
instruments

Wire-wrap:
producible;
low cost b i t -
sample com-
munications
controller

16.2

18.0

1.83

38.8

1.6

0.63

466

Serial
implementation

8.79

9.99

0.73

30.4

8.0

0.04

55

4/68

Better cost,
more funct ion
than 8

Remote lob
entry station,
TSS/8

Integrated
circubts

11.6

12.8

1.46

28.9

1.5

0.67

65 1

11 /68

Lower cost

Less package

7.0

8.5

0.98

24.1

1.6

0.63

1080

6/77 :

better performance terminal 5

3/71 6/72 1/75

-I
Easy t o configure; Lower cost, Lower cost Cost; complete I
more functions l imi ted system higher density Iys tem in a rn

+Business data
processing,
testing;

Omnibus

4.99

6.49

0.73

15.3

1.3

0.76

1828

f
Computer-in-a- Word processing: 0 z

puter, terminal C

0

W
desk desk-top com-

Semiconductor Processor-on-a-
memory: chip; low
f loating-point power
processor

3.69 2.6 N A

5.19 4.1 N A '

0.61 33.0 N A

11.6

1.3 1.5 3.6

0.76 0.67 0.28

2472 3092

Table 2. Characteristics of PDP-8 Family Computers (C o d
~~

PDP-5 PDP-8 PDP-BIS PDP-811 P D P W L P D P W E PDP-8IM P D P W A VT78

Performancelprice improve
ment (over predecessor)

Price Improvement

Performance I mprovement

Product life (years)

Power (watts)

Weight (Ibs)

Volume f f t ')

Price density (Ib/$)

Density (Iblft ')

Printed circuit board
average price ($1

Board size

Programmed I10 Bur

DMA I10 8"s

5.0 0.12 11.8 1.65 1.69 1.35 1.25

1.6

6.3

5

780

250

8

0.01 5

31.3

1 84

0.06

3

350

75

3 2

0.009

23.4

1600

0.76

16 75

3

780

190

8

0.016

23.75

1.66

0.94

3

250

70

2

0.01

35.0

1.4

1.23

71

500

90

2.2

0.018

40.9

240

135

1.0

5+

450

40

1.8

0.01 1

22.2

240

1.42

0.87

2+

400

55

1.2

0.021

45.8

120

0.42

25

2

0

3

780

540

24

0.02

22 5

21 00

--I
I
rn
'0
0

Q)
P

20

5.25X4

49

49

2.25 X 3.875

49

49

5x38

43 t BUS

49

2.25 X 3 875

40

50

8x10

96

8x10

8E

8x15

8E

12x15

5 connectors 30

50

200 BEGINNING OF THE MINICOMPUTER

1w
90
80

IO

60

50

10

30 .
PDP 5 t

Figure 29 and Table 2 present the power re-
quirements, weight, and volume of the 12-bit
machines. In general, the power requirements
have remained relatively constant. This is both
because each package must house a fixed num-
ber of devices and because each device has a rel-
atively high overhead power cost associated
with driving the Omnibus. However, the limited
configuration, lack of an Omnibus, and low
power requirements of CMOS make the VT78
an exception to this rule. The weight and vol-
ume have declined significantly with time as the
design has moved from two cabinets to a half
cabinet, and then from a half cabinet to being
embedded in a terminal.

-
-
-
-
~

-
-

-

SPECIAL DEVICES BASED ON THE
PDP-8

The PDP-8/A and the products which in-
corporate the CMOS-8 chip are the current 12-
bit product offerings, so the discussion of the

200

-

i
100

E :I
10

BO

50

40

30

20

-

-

-
-
-

-
-

~

\ vr78

(a) Power versus time.

'E 700 c

30

20

P O P 6/M

10 I l l l l l l l l l l l l
64 66 66 67 68 69 70 73 72 7 1 74 75 75 I 1

YEAR

(b) Weight versus time

64 15 66 6 , I 6 69 10 , I I t 73 14 7 5 76 77 16
" E l R

(c) Volume versus time.

Figure 29.
12-bit computers versus time.

Power, weight, and volume for DEC's

THE PDP-8 AND OTHER 12-BIT COMPUTERS 201

development of DEC’s 12-bit computers in
chronological order must stop here. However,
during the development of the main line of 12-
bit computers, some interesting systems based
on DEC 12-bit processors have been developed,
both by DEC and by others. Among these are
the DEC 338 Display Computer, the cache-
based PDP-8, and the PDP-14 Programmable
Controller (a I-bit machine similar in its in-
struction set to the FDP-8 and using Omnibus
packaging concepts).

DEC 338 Display Computer

The 338 display, a variant of the PDP-8, is
interesting for its historical importance [Bell
and Newell, 1971: Chapter 251. It was one of the
earliest display processor-based computers - if
not possibly the first. The problem of displaying
data on a cathode ray tube clearly shows how
the application need drives a complete change
in hardware in order to interpret the necessary
data-type (in this case, a graphic picture).

The 338 display idea was extended and ap-
plied to the displays used with the PDP-9, PDP-
15, and the PDP-I 1 series. Although the 338
had the right general capabilities, it did not
have the refinements of later display processors
for the PDP- 15 and PDP- 1 1 (GT40 and GT60).

An observation that display and other spe-
cialized processors evolve in a fashion called the
“wheel of reincarnation” [Myer and Suther-
land, 19681 is diagrammed in Figure 30. As the
figure shows, the process starts with a very
simple basic design - here, to have graphics pic-
ture output for a computer. The trajectory
around the wheel follows:

Position 1 : Point-plotting. The computer
includes a single instruction display controller
which can plot a picture on a point-by-point
basis under command of the central processor.
For most displays, except storage scopes, the
processor can barely calculate the next point
fast enough to keep the display refreshed.
Hence, the system is processor bound, and the
display may be idle. The original PDP- 1 display

is typical of this position, and a display of this
type is offered on most DEC minicomputers.

Position 2: Vector-plotting. By adding the
ability to plot lines (i.e., vectors), a single in-
struction to the display processor will free some
of the processor and begin to keep all but the
fastest display busy.

Position 3: Character-plotting and al-
phanumeric plotting. With the realization that
characters are a major part of what is displayed,
commands to display a character are added,
further freeing the processor. Many of the
point-plotting displays were extended to have
character generation capability.

Position 4: General figure and character
display. In reality, a picture does not consist of
just characters and vectors; each element of the
picture is actually a string of characters and a
set of closed or open polygons to be displayed
starting at a particular point. By providing the
control display with a Direct Memory Access
channel, the display can fetch each string of text
and generate polygons without involving the
central processor.

Position 5: Display processors. With the
ability to put up sub-pictures with no processor
intervention, it is easy for the whole picture to
be displayed by linking the elements together in
some fashion. This merely requires “jump” and
“subroutine” call instructions so that common
picture elements do not have to be re-defined.
The 338 and other display processors have
roughly this capability.

Position 6: integrated display and central
processor. Now, all the data paths and states
are present for a fully general purpose processor
so that the central processor need never be
called on again. This requires a slightly more
general purpose interpreter. By minor per-
turbations, the processor design can be refined
in such a way as to execute the same instruction
set as the original host computer because the
cost of incompatibility is too great. Two proces-
sors require two compilers, diagnostics, man-
uals, and support for use. This state provides
the same capability as that shown in Position 1.

202 BEGINNING OF THE MINICOMPUTER

block transfer)I vsedl

WITH DIRECT

Figure 30. The wheel of reincarnation

The original processor is completely free, and
there is a display processor with the capability
of executing both the original instruction set
and the display instruction set.

Position 7: Two computer structures. Al-
ternatively, the processor can be isolated as a
separate computer and reconnected in some
fashion to the central processor-primary mem-
ory pair in Position 1. Such a structure is just a
basic computer with the addition of a general
figure and character display (Position 4).

Position 8: A separate computer. A sepa-
rate computer is formed solely for display, and
the options available for picture processing can
be decided again from the “wheel of reincarna-
tion.”

The Cache-Based PDP-8

This structure uses a small, fast memory to
hold the results of recent references to primary
memory. The structure has been subsequently

THE PDP-8 AND OTHER 12-BIT COMPUTERS 203

Table 3. Per formancdCost Comparison of 8/E and 8/E with Cache

Configuration Cost Performance Performance/Cost Ratio
Model Minimum Average Large Factor Minimum Average Large

PDP-WE $ 5K $10K $35K 1 .o 1 .o 1 .o 1 .o
PDP-8/E with $10K $1 5K $40K 5.0 2.5 3.3 4.3
cache

used in the latest PDP-IO processor (KLIO), in
the PDP-I 1/60, and in the PDP-I 1/70.

A PDP-8 with cache was designed and con-
structed by Professor David Casasent at Car-
negie-Mellon University [Bell and Casasent,
1971; Bell et ul., 19741. Initially, the project was
proposed to explore the desirability and feasi-
bility of using emitter-coupled logic for design-
ing fast computers (including PDP-10s). As the
investigation proceeded, the need for a large,
fast memory emerged. Such a memory turned
out to be so costly that a computer so equipped
could not be feasibly marketed. It turned out
that the easiest way to build a cost-effective, fast
minicomputer was to use a cache structure in
order to reduce the cost of primary memory.
Also, instead of designing a very fast PDP-8,
which ECL logic would have provided, the goal
was modified to be less fast, much less costly,
and potentially marketable. This caused TTL
Schottky to be used in the design even though
the logic family was just beginning to evolve.

In order to make the prototype more market-
able without completely redesigning it, the proj-
ect was constrained to use the PDP-8/E
Omnibus backplane and parts. The prototype
did not become operational as quickly and
cleanly as possible and was therefore not used
to stimulate a market. Thus, instead of further
pursuing marketing goals, the design was car-
ried forward with the goals of testing the cache
applicability, circuitry, and associated tech-
niques for building faster computers. The diffi-
culty in stimulating market interest was typical
of products that are substantially different from
those already in existence.

A number of discoveries emerged from the
research on the cache-based PDP-8. A 100-na-
nosecond PDP-8 processor with 5 12-word
cache and standard PDP-8/E core memory had
the characteristics shown in Table 3. Note that
the performance/cost ratio approaches 5 as the
system price increases. This argues for always
incorporating incremental performance im-
provements in the most expensive machines.

The work on the cache-based PDP-8 illus-
trates the use of the 8 Family as an experimental
vehicle for understanding a design in terms of
program behavior. It also allows one to observe
the flow of ideas from research through ad-
vanced development to the production of ma-
chines. Finally, it shows how, by rather minor
perturbations, a design can be kept compatible
with its predecessors while providing rather
dramatic performance and performance/cost
ratio improvements, as shown in Table 2.

The PDP-14

The PDP-14 was designed expressly as a con-
troller for complex electromechanical machin-
ery such as transfer machines, conveyors, and
simple milling machines. The need for such a
controller was first recognized when General
Motors expressed its need to control a large ma-
chine which handled engine blocks by a se-
quence of operations (transfers). The design of
a controller evolved from the use of standard
DEC K-Series industrial modules (see Chapter
5) for sequential circuits. These modules pro-
vided increased reliability and replaced electro-
mechanical control components such as relays

204 BEGINNING OF THE MINICOMPUTER

by using solid state sensing and switching. The
new controller, designated the PDP- 14, repre-
sented a cost reduction over controllers com-
posed strictly of industrial modules. It did this
by using time-multiplexing so that one control
structure in memory - the processor - could
serve as the interconnection (and processing)
structure, as opposed to physically inter-
connecting the modules together to behave as a
controller. This tradeoff is a good example of
how computers are used instead of hardwired
logic to carry out a task. In terms of the Levels-
of-Interpreters View explained in Chapter I , an
algorithm (machine) can be made entirely at the
lowest level (Figure 31), or alternatively, a
higher level interpreter can carry out the same
algorithm.

The design requirements that the PDP-14 had
to meet were as follows:

I .

2.

3 .

4.

5.

Be lower priced (with lower life-cycle
costs) and easier to operate than existing
control alternatives.
Solve the control problem and be pro-
grammable by users who have solved
problems using a different representa-
tion (e.g., relay ladder diagrams).
Operate in a high electrical noise envi-
ronment.
Operate in the physical environment
characteristic of the machine it con-
trolled.
Have the appropriate 1 / 0 interfaces to
sense contacts and to control power re-
lays.

Although a PDP-S/I might have been pro-
grammed to carry out the task, it was either not
considered or rejected because the cost was per-
ceived to be too great, and there was some per-
ception that a conventional stored program
computer could not solve the problem. In addi-
tion, the PDP-S/I circuits did not appear to
have adequate noise margins to operate in the
anticipated environment, and there was in-
adequate 1 / 0 capability.

115vac 440 vac

PowEn
WIRES

Figure 31 Hardwired machine for industrial control

As a result, the PDP-14 was proposed and de-
signed expressly to solve the problem and cost
less than the PDP-S/I which was just going into
production. The PDP-14 had no data oper-
ations except on a single Boolean value using a
I-bit accumulator called TEST. Even with so
little arithmetic capability, the machine’s struc-
ture and processor state were roughly equiva-
lent to those in a PDP-8 design. Ultimately, the
processor state was extended beyond that of a
PDP-8 as the problem changed (e g , when com-
munication was required with host processors),
but these extensions will not be discussed here.

In order to solve the Boolean equations that a
conventional relay controller solves in parallel,
the PDP-14 had to solve equations sequentially
at a rate of approximately 30 Hz - fast enough
to give the illusion that the equations were
being solved in parallel.

To operate in an environment with high elec-
trical noise, the circuit logic was slowed down
to improve noise margins. It was felt that core
memory did not have adequate noise immunity,
so a braided wire, read-only rope memory was
used. To battle the effects of the poor physical
environment, the unit was housed in a dust-
proof enclosure. To sense contacts and control

THE PDP-8 AND OTHER 12-BIT COMPUTERS 205

PDP14 =
Begin

If Memory Slate **

M p > Prim3ry.Memory[0.4095]<0 I I >.

’* Procrssor.State **
PC\,Program C o u n t r r < O l I >.
SR‘ Suhrouiinr.Return.Register<0 I I >.
Te\t\Onr.Bit.Accumulal~r< >.
I R \ l n ~ t r u c t i o n Regictcr<O:l I >.

I original pdp-14. not 14/30

Op\,Operation Code<0.3> = I R < O 3 > .
L‘t, f lectivt. .Addres\<4~I I> = IR<4. I I>.

** Input Output State **
I Input Contact\[0.255]< >.
O\Output Relay*[O 2 5 5] < >.

** In*truction Cycle * *
I € -xK In\truct ion.txecution =

Begin
DWOdK o p 3

HKgln
! Test input for ON

1 Test input for OFk
= I F N O I T K ~ ~ And Not I [Z] 3 Test = I

’ Test output for O N

! Test output lor O t F

‘ Jump i f Teat ON

1 Jump i f Test OFF

1 Set Output ON

t Clear Output

‘Jump

t Jump to Subroutine

’ Return from Subroutine. Skip

‘010I~TXN = l f N o t T e s t A n d I [L] 3 T e \ l = I,

‘0100 T X t

‘001 I TYN ’ = I f Not Test And O[Z] 3 Test = I,

’0010‘TYF = I f N o t T c \ t A n d N o t O [Z] 3 Test = I,

’101 I ,JFN := (I f Test + PC<4 I I > = Z: Test = 0).

‘ IOIO‘JFt = (I f N o t T e ~ t 3 PC<4: l l> = Z . T e s t = O J .

‘011I ‘SYN = O [Z] = I .

’0110 = (I f L N e q # 3 7 7 3 O l Z] = O . I f Z t q l # 3 7 7 = > 0 1 0 2 5 S] = 0 J ,

‘IOOWJMP = l f Z t q l g224 3 PC = Mp[PCl .

‘ I W l \ J M S = I f Z Eql g245 3 (S R = PC next PC = Z).

‘ooon = (I ~ L ~ ~ ~ ~ I ~ ~ ~ P C = S R . I ~ L ~ ~ ~ # I ~ ~ ~ P C = P C + I) .
Otherwise = No.Op()

tnd.
t h d

ICycle\,lnterpretation.Cycle =
Begin
Repcat l lR = M p [P C] n e x t P C = P C + I nexlIExec())
t.nd

t.nd

Figure 32.
Mario Barbacci) .

ISP description of the PDP-14 (courtesy of

power relays, appropriate 1 / 0 interfaces were
designed.

The instruction set of the PDP-14, shown in
Figure 32, was among the smallest, most trivial
instruction sets that could be found. Techni-
cally, the PDP-14 was called a computer be-
cause it could perform computation in the same
way a Turing machine can - without an arith-
metic unit. However, it encoded the Boolean

data operators for which it was designed more
efficiently than nearly any other computer, pro-
vided the equations were simple enough.

There were four instructions to take values
from input switches or relay outputs and to
compute new output values (the right side of a
Boolean equation). Therefore, the PDP-14 also
could simulate a sequential machine (state dia-
gram or flowchart). Two additional instructions
sensed the value of intermediate results (stored
in TEST) and were used to eliminate the need to
completely evaluate an equation each time. To
direct program flow, there were four more in-
structions: “jump,” “skip,” “jump to sub-
routine” (a single level) and “return from
subroutine.” To handle the “accessories box,”
there was special 1 / 0 rather than having this
carried out internally to a program. This 1 / 0
included up to 16 Boolean variables for timers
consisting of external one-shot multivibrators,
and control memory bits.

A good way to understand the PDP-14’s op-
eration is to start with the application. Figure
33 shows a combinational relay logic network
that evaluates a Boolean expression (in paral-
lel). When this network is implemented with the
PDP-14, the inputs and outputs are simply con-
nected, and the program forms the inter-
connection which constitutes the solution of the
equation (Figure 33b). Figure 33c gives the
Boolean expression for the network in Figure
33a. To evaluate this equation using a PDP-14
requires a sequential program (Figure 3 3 4 .
This program requires between 120 micro-
seconds and 200 microseconds to compute the
output value, y8, since each instruction requires
20 microseconds. The speed of a computerized
controller compared to that of relay operations
is phenomenal. Heavy duty industrial control
relays typically operate at a 30 Hz rate (33 mil-
liseconds). If the PDP-14 can solve each equa-
tion with 4 terms i n approximately 150
microseconds, the PDP-14 can solve 222 such
equations in the time necessary to operate the
relay. The memory requirements to solve the
222 equations are not large either. This equa-

206 BEGINNING OF THE MINICOMPUTER

tion required 12 locations; hence, 222 such
equations require about 2.5 Kwords.

A number of PDP-14s were built and in-

6 PB (n.o.1 4 LS 1n.o I

SOLENOID 8 k--<
7 PB (n .4 6 Ls I n s I 4

(a) Ladder diagram representation of a solenoid
activated by two push buttons and two limit switches.

y 8 = 1x6 A X41 V 1-1 X 7 A -I X51

stalled for the intended applications over the
period 1970 to 1972. Programming was carried
out in languages supported by compilers that
operated on PDP-8. The languages allowed
users to:

1.

2.

Write ordinary assembly programs (re-
sembling PDP-8 programs).
Express a problem directly as a set of
Boolean equations.

are a set of Boolean equations).

(b)
diagram. 3. Express ladder diagrams (in effect, these Boolean equation expressing behavior of ladder

6 P B l n o . l

4 LS In.0.l

5 LS 1n.o.l

SOLENOID B -
Y8

(c)
solenoid output connections to PDP- 14.

Contact input (using normally open contacts) and

ADORESS

40

41

42

43

44

45

46
47
50

INSTRUCTlON ISLE NOTE1

+ T X F 6
TXF 4

J F F 50

J T F 60

SYF B

S I P
SYN 8

NOTE
Assume TEST = OFF mitially

COMMENT

TURN TEST ON IF EITHER Y 6 OR X4 IS OFF
TEST = 1 7 x 6 V 7 x 4 1

1x6 A X51

TEST = x 7 v x5

1 7 x 7 v 7x51

TURN SOLENOID OFF I F
17x6 V 7 x 4) A 1x7 V XSI

TURN SOLENOID OFF IF
1x6 A X41 V I T X I A ~ 7 x 5 1

RETURN TO SCAN CONTACTS AGAIN

(d) PDP-14 program to simulate solenoid network by
sequentially (and repeatedly) solving Boolean equation
(33b).

Figure 33.
solving Boolean equations.

Combinational network representations for

4. Write a program as a flowchart, i.e., as a
sequential machine that goes state by
state and tests and branches on various
input values to create output state, per-
mitting both combinational (Boolean
equations) and sequential circuits to be
implemented.
Simulate the behavior of the program
and system.

5 .

As the PDP-14 and contemporary machines
were used, the demand arose for a second gen-
eration controller. By 1972, the additional re-
quirements included lower cost, higher speed,
an easily changed read-only memory, and the
ability to load programs via a communications
line or connected console. In addition, the con-
trollers were required to connect in a network
fashion and report back status and results to a
supervisory computer at the next level of a hier-
archy. The second generation controller should
be capable of recording events such as counting
the number of parts processed. It also needed
timers which could be used as part of the con-
trol equations. The new unit should operate
over an even wider environmental range than
existing PDP-14 and have a more complete set
of 1/0 interfaces.

From these requirements, the PDP- 14/30
evolved (Figures 34 and 35). The initial read-
only memory was replaced by an 8-Kword core

AC
SW

: O U T P U T
<ITCHING

THE PDP-8 AND OTHER 12-BIT COMPUTERS 207

V T 1 4

Figure 3 4 . The PDP-14/30,

. I N P U T

CONTROI

POWER
SUPPLY

INPUTS
INPUTS
LNPll lS ..
INPUTS
OUTPUTS
OUTPUTS

LLER

-
Figure 35. Block diagram of PDP-14/30,

THE PDP-8 AND OTHER 12-B1T COMPUTERS 207

! O W L
I N C n l M

WNTROtLER

I w 14

Figure 34. The PDP-14/30.

Figura 36. Block dtr~am of PDP-14/30.

208 BEGINNING OF THE MINICOMPUTER

memory. In this way, the programs could be
easily changed rather than having to be re-
turned to DEC for manufacturing. Because the
original PDP-14 was so slow compared to the
capability of the logic from which it was made,
the instruction time was reduced from 20 micro-
seconds to 2.5 microseconds to achieve better
frequency response and to handle a larger num-
ber of equations. Additionally, because a large
number of special registers had been added to
hold numeric values (the shift registers, timers
and counters), an arithmetic unit was added to
the PDP-14/30 in an ad hoc fashion. All these
additions forced the instruction set processor to
change. The PDP-14/30 extensions could not
be made in such a way as to have binary com-
patibility; thus, software changes were also re-
quired.

An interesting offshoot of PDP-14 devel-
opment was the creation of a special terminal
for a programming, program load and observa-
tion console. This terminal consisted of a CRT
and PDP-8 mounted in a portable housing.
Since the PDP-14/30 could report the status of
its input and output variables, the terminal also
had the ability to display the status of ladder
diagrams (i.e., relay and contact position). A
typical screen display is shown in Figure 36.

Figure 36 Typical screen display

At the time when the PDP-14/30 was pro-
posed, there were some who felt that it should
not be built because a standard 8 Family com-
puter was cheaper to build, and more produc-
tion volume and lower costs could be obtained
by not constructing a special unit. In addition,
the 8 Family machine could be extended to have
the original PDP-14 instruction set; and the
PDP-8 instruction set would be available for
evolving tasks, such as self-diagnosis, more ex-
tensive counting and timing functions, and
dealing with non-Boolean data such as time, or
non-discrete events including angular position.
The more powerful PDP-8 instruction set
would also be useful for handling general con-
trol in both the analog and the digital domains
communicating with computer networks re-
quiring protocol control for intelligent and er-
ror-free communication, and using algorithms
to encode the control function instead of rela-
tively large program state methods with no abil-
ity to perform computation.

Many of the previous arguments against us-
ing PDP-8s had now lost their merit. Since the
PDP-14/30 was proposed to be built using the
same circuit family as that of the PDP-8s, the
electrical noise margins arguments no longer
held. Furthermore, the PDP-8 could be pack-
aged in a proper cabinet for the physical envi-
ronment, and there could be adequate
interfaces built. Besides, the proposed PDP-
14/30 would incorporate a PDP-8 anyway, and
two computers were obviously more expensive
than one. In addition, adding the necessary cab-
inet and interface enhancements to the PDP-8
would have greatly improved the marketability
of PDP-8 for all industrial applications. Al-
though the design group did not buy the argu-
ments that the PDP-14/30 should become a
PDP-8 with appropriate extensions and packag-
ing, some PDP-8 parts were used in the PDP-
14/30 design.

ACKNOWLEDGEMENTS

The authors were pleased to have Wes Clark
and Dick Clayton read and critique this chapter.

208 BEGINNING OF THE MINICOMPUTER

memory. In this way, the programs could be
easily changed rather than having to be re
turned to DEC for manufacturing. -us the
original PDP-14 was so slow compared to tbe
capability of the logic from which it was mads,
the instruction time w& reduced from 20 micro-
seconds to 2.5 microseconds to achieve better
frequency response and to handle a larger num-
ber of equations. Additionally, b u s e a large
number of special registers had been added to
hold numeric values (the shift rcgkters, timers
and counters), an arithmetic unit was added to
the PDP-14/30 in an ad hoc fashion. All t h e
additions f o r d the instruction set p ~ m r to
change. The PDP-14/30 extensions could not
be made in such a way as to have binsry wm-
patibility; thus, software changes were a h re-
quired.

An interesting offshoot of PDP-I4 &vel-
opment was the creation of a special tcnnind
for a programming, program load and o b m a -
tion console. This terminal consisted of a CRT
and PDP-I mounted in a portable housing.
Since the PDP- 14/30 could report the status of
i ts input and output variables, the terminal also
had the ability to display the status of ladder
diagrams (Le., d a y and contact position). A
typical screen display io shown in Figure 36,

Figure 36, Typicrt screen display.

At the time when the PDP-14/30 was pro-
@, them were some who felt that it should
not be built because a standard 8 Family com-
puter was cheaper to build, and more produe
tion volume and lower cods could be obtained
by not constructing a special unit. In addition,
the $ Family machine could be extended to have
the original PDP-14 instruction set; and the
PDF-8 instruction set would bc available for
evolving tasks, such as df-diagnosis, more cx-
tenrive counting and timing functions, and
dealing with non-EooIean data such as time, or
nondiscffte events including angular position.
The mort powarful PDP-8 instruction set
would a h be useful for handling general con-
trol in both the analog and the digital domains
commurricating with computer networks r e
quiring pt.6toCoI control for intelligent and cr-
For-free cornmuftication, and using algorithms
to e n d e the control function instead of d a -
tively large program state methods with no abil-
ity to perform computation.
Many of the previous arguments against us-

ing PDP-& bad plow lost their merit, Since the
PDP-I4/30 was proplogad to be built usiing the
same circuit family as that of the PDP-~s, the
electrical noise margins arguments no longer
hdd. Furthermore, the PDP-8 could be pack-
aged in a proper cabinet for the physical envi-
ronment, and there could be adequate
interfaces built. Baides, the proposed PDP-
14/30 would incorporate a PDP-8 anyway, and
two computers were obviously more expensive
than one. In addition, adding the necessary a b -
inet and interface enhancements to the PDP-%
would have greatly improved the marketability
of PDP-8 for all industrial applications. Al-
though the daign group did not buy the argu- e
ments that the PDP-14/30 shouid become a

j&*, PDP-8 with appropriate extensions and packag- .
ins, mme PDP-8 parts were used in the PDP-
14/30 design.

ACKNOWLEDGEMENTS
The authors were pleased to have Wes Clark

and Dick Clayton rend and critique thischapter,

8

Structural Levels of the PDP-8
C. GORDON BELL, ALLEN NEWELL,

and DANIEL P. SlEWlOREK

The history of the DEC 18-bit and 12-bit
computers, summarized briefly in the previous
two chapters, was basically that of a recursive
process in which new technology was applied
and re-applied to the same basic designs to ob-
tain improved price/performance ratios. In the
late 1960s, the availability of relatively in-
expensive integrated circuits made logic cost a
less pressing concern. Computer engineering,
and architectural issues of elegance, flexibility,
and expandability, grew more important as the
importance of architecture to total system
price/performance became more evident. The
PDP-11 papers in Part I11 elaborate on these
issues, but first the hierarchical nature of com-
puter systems design will be explored by exam-
ining the PDP-8 from the top down to lay the
basic groundwork for future architectural dis-
cussions. The description of the PDP-8 will use
some of the processor-memory-switch (PMS)
and instruction set processor (ISP) notations in-
troduced in Computer Structures [Bell and
Newell, 19713. These compact and straight-
forward notations are useful in comparing and
analyzing computer architectures, and their use
in the PDP-8 context should be helpful to the

reader when encountering these notations in
other papers.

A map of the PDP-8 design hierarchy, based
on the Structural Levels View of Chapter 1, is
given in Figure 1, starting from the PMS struc-
ture, to the ISP, and down through logic design
to circuit electronics. These description levels
are subdivided to provide more organizational
details such as registers, data operators, and
functional units a t the register transfer level.

The relationship of the various description
levels constitutes a tree structure, where the or-
ganizationally complex computer is the top
node and each descending description level rep-
resents increasing detail (or smaller component
size) until the final circuit element level is
reached. For simplicity, only a few of the many
possible paths through the structural descrip-
tion tree are illustrated. For example, the path
showing mechanical parts is missing. The de-
scriptive path shown proceeds from the PDP-8
computer to the processor and from there to the
arithmetic unit or, more specifically, to the Ac-
cumulator (AC) register of the arithmetic unit.
Next, the logic implementing the register trans-
fer operations and functions for thej th bit of

209

210 BEGINNING OF THE MINICOMPUTER

PMS

PROGRAMMING : ISP [APPENDIX I1 *.
INTERPRETER i

..- : :
OPERATORS cONTRoL . . . * ’ : STATE **.INSTRUCTION : .

A
REGISTER

TRANSFER

181 SEQUENTIAL
CIRCUITS

LOGIC

CIRCUITS SE FLIP-FLOP 1101 STATE
SYSTEM
LEVEL
19. 131

OPERATION) :

r t
MULTIVIBRATOR 1101

R IPASSIVE COMPONENT)

ELECTRICAL
CIRCUITS

Figure 1. PDP-8 hierarchy of descriptions.

the Accumulator is given, followed by the flip-
flops and gates needed for this particular imple-
mentation. Finally, on the last segment of the
path, there are the electronic circuits and com-
ponents from which flip-flops and gates are
constructed.

ABSTRACT REPRESENTATIONS

Figure 1 also lists some of the methods used
to represent the physical computer abstractly at
the different description levels. As mentioned
previously, only a small part of the PDP-8 de-
scription tree is represented here. The many
documents which constitute the complete repre-
sentation of even this small computer include
logic diagrams, wiring lists, circuit schematics,
printed circuit board photo etching masks, pro-

duction description diagrams, production parts
lists, testing specifications, programs for testing
and diagnosing faults, and manuals for modifi-
cation, production, maintenance, and use. As
the discussion continues down the abstract de-
scription tree, the reader will observe that the
tree conveniently represents the constituent ob-
jects of each level and their interconnection at
the next highest level.

THE PMS LEVEL

The PDP-8 computer in PMS notation is:

descendants:‘PDP-8/S, ‘PDP-8/1, ‘PDP-8/L,

antecedents: ‘PD P-5;
Mp(core; #0:7; 4096 words: tc:l.5 ps/word);

C(‘PDP-8; techno1ogy:transistors; 12 b/w;

‘8/E, ‘8/F, %/M, ‘8/A, ‘CMOS-8;

STRUCTURAL LEVELS OF THE PDP-8 21 1

Pc(Mps(2 to 4 words);
instruction length: 1 12 words;
address/instruction: 1 ;
operations on data:(=, +, Not, And, Minus
(negate), Srr l(/2), Slr 1 (X2), + I)
optional operations:(X ,/,normalize);
data-types:word,integer,Boolean vector;
operations for data access:4);

P(disp1ay; '338);
P(c; 'LINC);
S('I/O Bus; 1 Pc; 64 K);
Ms(disk, 'DECtape, magnetic tape);
T(paper tape, card, analog, cathode-ray tube)

As an example of PMS structure, the LINC-
8-338 is shown in Figure 2; it consists of three
processors (designated P): Pc('LINC),
Pc('PDP-8), and P.display('338). The LINC
processor described in Chapter 7 is a very ca-
pable processor with more instructions than the
PDP-8 and is available in the structure to inter-
pret programs written for the LINC. Because of
the rather limited instruction set being inter-
preted, one would hardly expect to find all the
components present in Figure 2 in an actual
configuration.

The switches (S) between the memory and the
processor allow eight primary memories (Mp)
to be connected. This switch, in PMS called
S('memory Bus; 8 Mp; 1 Pc; time-multiplexed;
1.5 ps/word), is actually a bus with a transfer
rate of 1.5 microseconds per word. The switch
makes the eight memory modules logically
equivalent to a single 32,768-word memory
module. There are two other connections (a
switch and a link) to the processor excluding the
console. They are the S('I/O Bus) and L('Data
Break; Direct Memory Access) for inter-
connection with peripheral devices. Associated
with each device is a switch, and the 1 / 0 Bus
links all the devices. A simplified PMS diagram
(Figure 3) shows the structure and the logical-
physical transformation for the 1/0 Bus, Mem-
ory Bus, and Direct Memory Access link. Thus,
the 1 / 0 Bus is:

The 1/0 Bus is nearly the same for the PDP-
5 , 8, 8/S, 8/I, and 8/L. Hence, any controller
can be used on any of the above computers pro-
vided there is an appropriate logic level con-
verter (PDP-5, 8, and 8/S use negative polarity
logic; the 8/I and 8/L, positive logic). The 1 / 0
Bus is the link to the controllers for processor-
controlled data transfers. Each word trans-
ferred is designated by a processor in-out trans-
fer (IOT) instruction. Due to the high cost of
hardware in 1965, the PDP-8 1 / 0 Bus protocol
was designed to minimize the amount of hard-
ware to interface a peripheral device. As a re-
sult, only a minimal number of control signals
were defined with the largest portion of 1/0
control performed by software.

A detailed structure of the processor and
memory (Figure 4) shows the 1/0 Bus and Data
Break connections to the registers and control
in the notation used in the initial PDP-8 refer-
ence manual. This diagram is essentially a func-
tional block diagram. The corresponding logic
for a controller is given in Figure 3 in terms of
logic design elements (ANDs and ORs). The
operation of the 1 / 0 Bus starts when the pro-
cessor sends a control signal and sets the six 1 / 0
selection lines (IO.SELECT<O5>) to specify a
particular controller. Each controller is hard-
wired to respond to its unique 6-bit code, The
local control, K[k], select signal is then used to
form three local commands when ANDed with
the three IOT command lines from the proces-
s o r . T h e s e c o m m a n d l ines a r e ca l l ed
IO.PULSE.l, I0.PULSE.2, and I0.PULSE.4.
Twelve data bits are transmitted either to or
from the processor, indirectly under the con-
troller's control. This is accomplished by using
the AND/OR gates in the controller for data
input to the processor, and the AND gate for
data input to the controller. A single skip input
is used so that the processor can test a status bit
in the controller. A controller communicates
back to the processor via the interrupt request

S('I/O Bus duplex; time-multiplexed; 1 Pc; 64 K;
Pc controlled, K requests; tA.5 ps/w)

line. Any controller wanting attention simply
ORs its request signal into the interrupt request

212 BEGINNING OF THE MINICOMPUTER

2 SI 'Memory Bus1

3 Pc(1 5 2 w/inrtruction data w, I. by. 12 b/w.
M processor state 12-1/2 . 3 1/21 W .

technology trmL1510rs.

antecedents. PDP-5. descendant*.

S I D M O l Data
Mult iplexer. I radial. 1
f rom 7 P. K.

TICRT. display. 5 X 5 mZI I '
I- Tldigital. input. output)

10 M p l Y

Tlpaper tape lreadsr 3 0 0 c h a r l r 1 lpunch
100 charlsl 8 b lehar l F

Tlincramental point p lot . 300 p o m t l r . 0 0 1

K Tlcard ouneh. 1 W ca rd lmml I-.
I U I I

T (line. pr8nter. 300 Ime/mm. 1 2 0 colllms.
6 4 c h a r l c o l l

TlDataphone 1 2 ~ 4 8 k b l r l

Llanalog OUtPYt 0 ~ - 10 "Oltf

Ll#O 63 analog input 0 . -10 volts)

KI#O 6 3 Teletype 1 1 0 1 8 0 b l r l I
MI I#O 7 DECtape addrbsSable magnetic tape

133 ~ r / w l eng th 260 It 350 c h a r l i n 3 b lchar l

MsI f fO 7 magnetic tape 361 451 751 1 1 2 5 I d s
200 556 800 b / m 6 1 8 b /char l

MslXO 3, f i r e d head disk. tde lay 0 1 7 mr.
66 urlw. 32768 w l l 116 o r l w . 2 6 2 1 4 4 w) .
112. 1 p a r t t y l b l w l

Figure 2. LINC-8-338 PMS diagram

-
T O "elf K

- IO SELLCTIO 5, J

STRUCTURAL LEVELS OF THE PDP-8 213

111 PC

'0 5 ,

10 PULSE P2 And K select
(used lor AC I l N P U T O A T 1 Ikll

10 PULSE P4 And K sslecf

INTERRUPT REOUEBT 1k1

10 S K I P FLAG 1k1

r d o t "Or" connection to bur

DMA Data Break link

Ks for %low-dafa-rata. program Controlled data translsrs

It1 lor hlgh-data rate, dlrecf memory access tranrlsrs

Figure 3. PDP-8 S('I/O Bus) logic and PMS diagrams.

214 BEGINNING OF THE MINICOMPUTER

-

SKIP
PERIPHERAL
EOUIPMENT

I10 BUS

ADDRESS

1

-L
T1 ANOT2CLOCKPULSESI21

PROGRAM INTERRUPT REQUEST

.r
SKIP INTERROGATION RESPONSE -

I10 BUS
PERIPHERAL DATA 112)
EQUIPMENT

USINO
PROGRAMMED

- 4

TRANSFERS 4

OUTPUT LINK

DRIVERS

SELECT
CODE
l M B l BUS * 1

TELETYPE 161
MODEL33

- 8
ASR -+

-
TELETYPE ACCUMULATOR
CONTROL DATA I81 * 12

TIMING SIGNAL
GENERATOR

PROGRAM INTERRUPT
SYNCHRONIZATION

I10 SKIP

PERIPHERAL
EOUIPMENT

110

PERIPHERAL
EQUIPMENT
USING THE
DATA BREAK
FACILITIES

PERIPHERAL
EOUIPMENT
I10 BUS

Figure 4.

J o A T A 1 ' Z L

- 1
OUTPUT

DRIVERS

DATA 1121

MEMORY
BUFFER

REGISTER
12

7

INCREMENT M B

-I>
INHIBIT CURRENT ADDRESS COUNT

0 M B
TRANSFER DIRECTION INOTE 11 CONTROL

1

BREAK REOUESl

-1

P R 0 G R A M
COUNTER
CONTROL

PROGRAM
COUNTER
* 12

4
1

f
CYCLESELECTINOTEZI MAJOR

FTnTF

BREAK STATE
& . -

ADDRESS1121
C

ADDRESS ACCEPTED

IOP PULSE
GENERATOR

RUN AND PAUSE
CONTROL

sn...Lo r .C ID . I , I "CE I
POWER CLEAR PULSE I I SPECIALPULSE

GENERATOR GENERATOR

MEMORY
ADDRESS
REGISTER

12

M A
CONTROL

STRUCTURAL LEVELS OF THE PDP-8 215

signal. Normally, the controller signal causing
an interrupt is also connected to the skip input,
and skip instructions are used in the software
polling that determines the specific interrupting
device.

The Data Break input for Direct Memory
Access provides a direct access path for a pro-
cessor or a controller to memory via the proces-
sor. The number of access ports to memory can
be expanded to eight by using the DMOl Data
Multiplexer, a switch. The DMOl port is r e
quested from a processor (e.g., LINC or Model
338 Display Processor) or a controller (e.g.,
magnetic tape). A processor or controller sup-
plies a memory address, a read or write access
request, and then accepts or supplies data for
the accessed word. In the configuration (Figure
I) , Pc('L1NC) and P('338) are connected to the
multiplexer and make requests to memory for
both their instructions and data in the same way
as the PDP-8 processor. The global control of
these processor programs is via the processor
over the 1 /0 Bus. The processor issues start and
stop commands, initializes their state, and ex-
amines their final state when a program in the
other processor halts or requires assistance.

When a controller is connected to the Data
Break or to the DMOl Data Multiplexer, i t only
accesses memory for data. The most complex
function these controllers carry out is the trans-
fer of a complete block of data between the
memory and a high speed transducer or a sec-
ondary memory (e.g., DECtape or disk). A spe-
cial mode, the Three Cycle Data Break
(described in Chapter 6), allows a controller to
request the next word from a block in memory.

The DECtape was derived from M.I.T.'s Lin-
coln Laboratory LINCtape unit, as indicated in
Chapter 7. Data was explicitly addressed by
blocks (variable but by convention 128 words).
Thus, information in a block could be replaced
or rewritten at random. This operation was un-
like the early standard IBIM format magnetic
tape in which data could be appended only to
the end of a file.

PROGRAMMING LEVEL (ISP)

The ISP of the PDP-8 processor is probably
the simplest for a general purpose stored pro-
gram computer. It operates on 12-bit words, 12-
bit integers, and 12-bit Boolean vectors. I t has
only a few data operators, namely, =, +, minus
(negative of), Not, And, Slr I(rotate bits left),
Srr 1 (2 rotate bits right), (optional) X, /, and
normalize. However, there are microcoded in-
structions, which allow compound instructions
to be formed in a single instruction.

The ISP of the basic PDP-8 is presented in
Appendix 1 of this book. The 2I2-word memory
(declared M[0:4095]<0;11>) is divided into 32
fixed-length pages of 128 words each (not
shown in the ISPS description). Address calcu-
lation is based on references to the first page,
Page.Zero, or to the current page of the Pro-
gram Counter (PC\Program.Counter). The ef-
fective address calculation procedure, called
eadd in Appendix 1, provides for both direct
and indirect reference to either the current page
or the first page. This scheme allows a 7-bit ad-
dress to specify a local page address.

A 2I5-word memory is available on the PDP-
8, but addressing more than 212 words is com-
paratively inefficient. In the extended range,
two 3-bit registers, the Program Field and Data
Field registers, select which of the eight 2'2-
word blocks are being actively addressed as
program and data. These are not given in the
ISPS description.

There is an array of eight 12-bit registers,
called the A u t o h d e x registers, which resides in
Page.Zero. This array (Auto.Index[O:7]<0
:l l>:=M[#lO: #17]<O:ll>) possesses a useful
property: whenever an indirect reference is
made to it, a 1 is first added to its contents.
(That is, there is a side effect to referencing.)
Thus, address integers in the register can select
the next member of a vector or string for access-
ing.

The processor state is minimal, consisting of
a 12-bit accumulator (AC\Accumulator

216 BEGINNING OF THE MINICOMPUTER

<0: 1 1 >), an accumulator extension bit called
the Link (L\Link), the 12-bit Program Counter,
t h e R U N f l ip - f lop , a n d t h e I N T E R -
RUPT.ENABLE bit. The external processor
state is composed of console switches and an
interrupt request.

The instruction format can also be presented
as a decoding diagram or tree (Figure 5) . Here,
each block represents an encoding of bits in the
instruction word. A decoding diagram allows
one more descriptive dimension than the con-

PRINCIPAL
ADDRESSABLE
INSTRUCTIONS

ventional, linear ISPS description, revealing the
assignment of bits to the instruction. Figure 5
still requires ISPS descriptions for the memory,
the processor state, the effective address calcu-
lation, the instruction interpreter, and the exe-
cution for each instruction. Diagrams such as
Figure 5 are useful in the ISP design to deter-
mine which instruction operation codes are t o
be assigned to names and operations, and which
instructions are free to be assigned (or en-
coded).

OPERATE GROUPS M I C R O C O D E D INSTRUCTIONS
, < I > = group 1 And I < 15 And lime 1 1 2.3 I I

group 2 And ! < I > And llms 11.2 3.1

\ 4 9 10 5 6 7 8

TIME

- 1

NEXT

2

NEXT

3

eae And I<)> And time I1 231

TIME

- 1

N EX7

2

NEXT

3

4 5 6 7 8 9 10

ilNTERACTlVE STEP
INSTRUCTIONI

i\~nstructmn 1<0 1 1 > = op pb page address

INSTRUCTION WORD F O R M A T

EXTENDED
A R I T H M E T I C

ELEMENT, EAE.
INSTRUCTIONS c" A n d time 131

, < B 10>

Eqv

STRUCTURAL LEVELS OF THE PDP-8 217

There are eight basic instructions encoded by
3 opcode bits of the instruction, that is:
op<O:2> := i<0:2>. Each of the first memory
reference six instructions, where the opcode is
less than or equal to 5, has four addressing
modes (direct Page.Zero, direct Current.Page,
indirect Page.Zero, and indirect Current.Page).
The first six instructions in the following four
categories are:

1. Data transmission.
“deposit and clear Accumulator” (dca).
(Note that the add instruction, tad, is
used for both data transmission and
arithmetic.)

2. Binary arithmetic.
“two’s complement add to the Accu-
mulator” (tad).

3. Binary Boolean.
“and to the Accumulator” (and).

4. Program control.
“jump/set Program Counter” (imp);
“jump to subroutine” (ims); “index
memory and skip if results are zero”
(isz).

The subroutine calling instruction, jms, pro-
vides a method for transferring a link to the be-
ginning (or head) of the subroutine. In this way
arguments can be accessed indirectly, and a re-
turn is executed by a “jump indirect” instruc-
tion to the location storing the returned
address. This straightforward subroutine call
mechanism, although inexpensive to irnple-
ment. requires reentrant and recursive sub-
routine calls to be interpreted by software
rather than by hardware. A stack for subroutine
linkage, as in the PDP-11, would allow the use
of read-only memory program segments con-
sisting of pure code. This scheme was adopted
in the CMOS-8.

The “in-out transfer” instruction, opcode 6,
IOT (op Eqv #6), uses the remaining nine bits of
the instruction to specify instructions to in-

put/output devices. The six 1O.SELECT bits
select 1 of 64 devices. Three conditional pulse
commands to the selected device, IO.PULSE.1,
I0.PULSE.2, and I0.PULSE.4, are controlled
by the IOT, io.control<0:2> operation code
bits. The instructions to a typical 1/0 device
are:

1 .

2.

3.

Testing a Boolean Condition of an IO De-
vice.
I f IO.PULSE.1 3
(I f IO.SKIP.FLAG[IO.SELECT] 3
PC = PC -E I)

Output data to a device from Accumulator.
I f I0.PULSE.4 3
(OUTPUT.REGlSTER[IO.SELECT] =
AC)

Input data from a device to Accumulator.
If I0.PULSE.2 3
(AC = INPUT.REGISTER[IO.SELECT])

There are three microcoded instruction
groups selected by (op<O:2> Eqv #7), called
the operate instructions. The instruction decod-
ing diagram (Figure 5) and the ISP description
show the microinstructions which can be com-
bined in a single instruction. These instructions
are: operate group I ((op<O:2> Eqv #7) And
Not ib) for operating on the processor state; op-
erate group 2 ((op<O:2> Eqv #7) And ib<3>
And i < 1 1 >) for testing the processor state; and
the Extended Arithmetic Element group
(op<0:2> Eqv #7 And i<3> And i < l l >) for
multiply, divide, etc. Within each instruction
the remaining bits, <4:10> or <4:1 I > , are ex-
tended instruction (or opcode) bits; that is, the
bits are microcoded to select additional instruc-
tions. I n this way, an instruction is actually pro-
grammed (or microcoded, as it was originally
named before “microprogramming” was used
extensively). For example, the instruction, “set
link to I , ” is formed by coding the two micro-
instructions, “clear l ink” followed by “corn-
plement link.”

218 BEGINNING OF THE MINICOMPUTER

If ((op <0:2> Eqv #7) And (group Eqv 0)) 3 (
If i < 5 > 3 L = 0; Next
If i<7> 3 L = Not L)

Thus, in operate group 1, the instructions
“clear link, complement link, and set link” are
formed by coding i<5,7> = 10,01, and 11 , re-
spectively. The operate group 2 instructions are
used for testing the condition of the processor
state. These instructions use bits 5, 6, and 8 to
code tests for the Accumulator. The AC skip
conditions are coded as never, always, AC Eql
0, AC Neg 0, AC Lss 0, AC Leq 0, AC Geq 0
and AC Gtr 0. The optional Extended Arith-
metic Element (EAE) includes additional Mul-
tiplier Quotient (MQ) and Shift Counter (SC)
registers and provides the hardwired operations
“multiply,” “divide,” “logical shift left,”
“arithmetic shift,” and “normalize.” If all the
nonredundant and useful variations in the two
operate groups were available as separate in-
structions in the manner of the first seven (dca,
tad, etc.), there would be approximately 7 + 12
(group 1) + 10 (group 2) + 6 (eae) = 35 instruc-
tions in the PDP-8.

THE INTERRUPT SCHEME

External conditions in the input/output de-
vices can request that the processor be inter-
rupted. Interrupts are allowed if the processor’s
interrupt enable flip-flop is set (If INTER-
RUPT.ENABLE Eqv I). A request to interrupt
(i.e., INTERRUPT.REQUEST= 1) clears the
interrupt enable bit (1NTERRUPT.ENABLE
= 0), and the processor behaves as though a
“jump to subroutine” 0 instruction (jms 0) had
been executed. A special IOT instruction
(i<O:ll> Eql #6001) followed by a “jump to
subroutine indirect” to 0, and instruction
(i<O:ll> Eql #5220) returns the processor to
t h e i n t e r r u p t a b l e s t a t e w i th I N T E R -
RUPT.ENABLE a 1. The program time to save
the processor state is six memory accesses (9 mi-

croseconds), and the time to restore the state is
nine memory accesses (13.5 microseconds).

Only one interrupt level is provided in the
hardware. I f multiple priority levels are desired,
programmed polling is required. Most 1 / 0 de-
vices have to interrupt because they do not have
a program-controlled device interrupt-enable
switch. For multiple devices, approximately
three cycles (4.5 microseconds) are required to
poll each interrupter.

REGISTER TRANSFER LEVEL

More detail is required than is provided by
either the PMS or ISP levels to describe the in-
ternal structure and behavior of the processor
and memory. Figure 4 shows the registers and
controllers at a block diagram level, and Figure
6 gives a more detailed version using PMS nota-
tion. Table l gives the permissible register
transfer operations that the processor’s sequen-
tial control circuit can give to the PDP-8 regis-
ters.

Although electrical pulse voltages and pola-
rities are not shown in Table 1, the operations
are presented in considerably more detail than
shown in Figure 4. As Figure 6 shows, the regis-
ters in the processor cannot be uniquely as-
signed to a single function. In a minimal
machine such as the PDP-8, functional separa-
tion is not economical. Thus, there are not com-
pletely distinct registers and transfer paths for
memory, arithmetic, program, and instruction
flow. (This sharing complicates understanding
of the machine.) However, Figure 6 clarifies the
structure considerably by defining all the regis-
ters in the processor (including temporaries and
controls). For example, the Memory Buffer
(MB\Memory.Buffer<O: 11>) is used to hold
the word being read from or written to memory.
The Memory Buffer also holds one of the oper-
ands for binary operations (for example, AC =
AC And MB). The Memory Buffer is also used
as an extension of the 1nstruction.Register dur-
ing the instruction interpretation. The addi-

STRUCTURAL LEVELS OF THE PDP-8 219

I O BUS slgnalr
ll"P"15 OY1p"t.l
A C I N < O 1 1 > A C < O I I >

I----------- -

I
4

I I
I I I / I el j-kj INTERRUPT REOUEST

10 PULSE P I P2 Pa
POWER CLEAR [SEE NOTE1 I

I
I FROM MEMORY --i-l CLOCK

MEMORY BUS 8nterlace D B DATA BREAK
(10 1 7 Mp rnodulerl lnlerlacs

CONSOLE U TO REGISTERS
A N 0 CONTROL

KIMPSI ConlalnS STATE REGISTER3 RUN INTERRUPT ENABLE

- DATA TRANSMISSION FULL DUPLEX t DIRECTED DATA TRANSMISSIONS

--- CONTROL SIGNALS

Figure 6. PDP-8 register transfer level PMS diagram.

tional physical registers, not part of the ISP,
are:

MB\Memory.Buffer<O: 1 1 >

MA\Memory.Address<O: 1 1 >

IR\Instruction.Register<0:2>

Holds memory data, instruction, and operands.

Holds address of word in memory being accessed.

Holds the value of current instruction being per-
formed.

A ternary state register holding the major state of
memory cycle being performed - declared as 2
bits.

Memory cycle to fetch instruction.

Memory cycle to get address of operand.

Memory cycle to fetch (store) operand and exe-
cute the instruction.

State.Register<O: 1 >

F\Fetch: = (I f State.Register Eqv 0)

D\Deferred: =(I f State.Register Eqv 1)

E\Execute:=(If State.Register Eqv 2)

The emphasis in Figure 6 is on the static defi-
nition (or declaration) of the information paths,
the operations, and state. The ISP inter-
pretation (Appendix I) is the specification for
the machine's behavior as seen by a program.

As the temporary hardware registers are
added, a more detailed ISPS definition must be
given in terms of time and in terms of tempo-
rary and control registers. Instead, a state dia-
gram (Figure 7) is given to define the actual
processor which is constrained by both the ISP
registers, the temporary registers implied by the
implementation, and time. The relationship
among the state diagram, the ISP description,
and the logic is shown in the hierarchy of Figure
1. In the relationships shown in the figures, one
can observe that the ISPS definition does not
have all the necessary detail for fully defining a

220 BEGINNING OF THE MINICOMPUTER

Table 1.
Data Break Interface

PDP-8 Register Transfer Control Signals and

AC\Accumulator, L\Link and combined L, AC LAC
AC = 0; AC = #7777; AC = Not AC; LAC = LAC -I- 1
L = 0; L = 1; L = Not L;
LAC = LAC Srr 1; LAC = LAC Srr 2; !rotates right
LAC = LAC Slr 1; LAC = LAC Slr 2; !rotates left
AC = AC Or SWITCHES; AC = AC And MB; AC = I0.BUS
AC = AC Xor MB; LAC = Carry (AC.MB);
(note that previous two commands form: LAC = AC + ME).

MB\Memory. Buffer
MB = 0; MB = MB 4- 1;
MB = PC; MB = AC; MB = MIMA]; MB = DB.DATA.

MA\Memory.Address
MA<O:4> = 0; MA = PC; M A = MB; MA<5:11> = MA<5:11>;
MA = DB.ADDRESS.

PC\Program.Counter
p c = 0; PC = PC + 1; PC<0:4> = 0;
PC = MB; P C < 5 : l l > = MB<5:11>.

I R\lnstruction. Register
IR = 0; IR = M[MAl<O:2>

M\Memory[O:4095]<0:11>
MIMA] = MB !write
MB = MIMA] !read

DB\DATA.BREA K interface
DB.DATA<O:l 1 >
DB.ADDRESS<O:l 1 >
MB<O: 1 1 >
DB. REQU EST
DB.DIRECTION
DB.CYCLE.SELECT<O: 11 >
ADDRESS.ACCEPTED
WORD.COUNT.OK
B REAK.STATE

! input to MB
! Input to MA

! Control inputs t o Pc

! Control outputs from Pc

physical processor. The physical processor is
constrained by actual hardware logic and lower
level detals even at the circuit level. For ex-
ample, a core memory is read by a destructive
process and requires a temporary register (MB)
to hold the value being rewritten. This is not
represented within a single ISPS language state-
ment because ISPS defines only the non-
destructive transfer; however, i t can be

considered as the two parallel operations MB =
M[MA]; M[MA] = 0. The explanation of the
physical machine, including the rewriting of
core using ISPS, is somewhat more tedious than
the highest level description shown in Appendix
1. For this reason, the state diagram is used
(Figure 7), and the description of the physical
machine (in ISPS) is left as an exercise for the
reader.

STRUCTURAL LEVELS OF THE PDP-8 221

I

"FETCH" INSTRUCTION MEMORY CYCLE

7 f

If 101 3 If N o t lopr Or 1011 3

PC = PC t 1 N e x l
I f M B < l l > 3

I f M B < 1 0 > 3

I f M B < S >

End Nex t

P c = PC t 1 Nex t BB9l"

10 PULSE 1 = 1 Nex t

10 PULSE 2 = 1 Nex t

10 PULSE 4 = 1

If opr 3 1
If N o t M 0 < 3 > 3
Beg!"
PC = PC +l
If M B < 4 > 3 AC = 0
I f M B < 5 > L = O N e x t

If M B < 3 > A n d N o t MB<11> 3

If r k w c o n d i t i o m Xor MB 3
Beg,"

PC = PC +2.

PC = P c + 1 Nex t
I f skip condl t lons Eqv MB +

If M B < 6 > 3 AC = N O 1 AC. I f M B < 4 > 3 AC = 0
If M B < l > 3 L = N o t L U End Next End Nex t

M IMAI = M B Nex t
MF = PC N e x t 6 WaitltZl N e x t

A
I f N o t M B < 3 > 3
BBW"
I f M B < 1 1 > 3

L@AC = L@AC + 1 N e i l
If MB A n d N o t MB<10> 3

LiaAC = L6AC Srr 1
I f MB'?B> And-MB<lO> 3

L@AC = L@AC Srr 2
I f M B < 9 > A n d N o t MB<10> 3

L@AC = L@AC Slr 1
I f MB<S> A n d MB<tO> 3

LEAC = LiaAC Slr 2
End N k t .

I R = 0
MB = 0
State = 0 Next

If M e a > A n d N o t MB<11> 3
I f M B < 9 > 3

AC = AC Or SWITCHES,
If MB<10> RUN = 0 Next

Figure 7. PDP-8 Pc state diagram (part 1 of 2)

0
I
\

The state diagram (Figure 7) is fundamen-
tally driven by minor clock cycles as seen from
both the state diagram and the times when the
four clock signals are generated. Thus, there are
3 (State.Register Eqv #0,#1,#2) X 4 (clock) or
12 major states in the implementation. The In-
struction Register is used to obtain two more
states, F2b and F3b, for the description. The
State.Register values 0, 1, and 2 correspond to

) WBltltZI Next

b
I

If I N o t M B < 3 > l A n d

PC = MA,
imp 3

IR = 0
M B = 0
Sla te = 0 Nex t

I

I f M B < 3 > 3

we = 0
state = 1 N e x l

= o Nex t

If [No t M B < 3 > I A n d
INor imp l 3

MB = 0
State = 2 Nex t

I

fetching, deferred or indirect addressing (i.e.,
fetching an operand address), and executing.
The state diagram does not describe the Ex-
tended Arithmetic Element operation, the inter-
rupt state, or the data break states (which add
12 more states). The initialization procedure,
including the console state diagram, is also not
given. One should observe that, at the begin-
ning of the memory cycle, a new State.Register

222 BEGINNING OF THE MINICOMPUTER

If Imp 3 I f Not imp 3
PC = M e N e r t

IR = 0
MB = 0 M B = 0
State = 0 Ne11 State = 2 Next

"DEFER" (INDIRECT)
ADDRESS M E M O R Y CYCLE "EXECUTION" M E M O R Y CYCLE

Waitltrndl Next
M I M A I = M B Next
If Not p r 3 M A = PC
If]mr => M A = M A + 1 Next

If and 3 I f tad 3 If 151 3 If dca * l f j r n s 3
AC = AC And MB Next PC = M A . AC = csrryIAC,MBI Next AC = 0.

* I
I R = 0
MB = 0
State = 0 N N m t

(FO 1
\ J

Figure 7. PDP-8 Pc state diagram (part 2 of 2)

value is selected. The State.Register value is al-
ways held for the remainder of the cycle; Le.,
only the sequences FO, F1, F2, F3, or DO, D1,
D2, D3, or EO, E l , E2, E3 are permitted.

LOGIC DESIGN LEVEL (REGISTERS AND
DATA 0 PER AT IONS)

Proceeding from the register transfer and ISP
descriptions, the next level of detail is the logic
module. Typical of the level is the 1-bit logic
module for an accumulator bit, AC<j>, illus-
trated in Figure 8. The horizontal data inputs in
the figure are to the logic module from AC<j>,
MB<j>, AC<j> input from the IO.Bus.In,
and SWITCHES<j>. The control signal inputs

whose names are identified using the vertical
bar (e.g., I AC = 0 I) command the register op-
erations (i.e., the transfers). They are labeled by
their respective ISP operations (for example,
AC = AC And MB, AC = AC Slr 1, for rotate
once left). The sequential state machine, for the
processor Pc(K), generates these control signal
inputs using a combinational circuit such as the
one shown in Figure 9.

LOGIC DESIGN LEVEL (PC CONTROL,
PC(K) SEQUENTIAL STATE MACHINE
N ETW OR K)

The output signals from the processor se-
quential machine (Figure 9) can be generated in

STRUCTURAL LEVELS OF THE PDP-8 223

c

c

BUS TO EACH BIT OF AC

A

-
And

d

NOTE

AC = AC +

Figure 8

1 A c t

IAC = A

I

13 farmed by AC<11> carry input

PDP-8 AC<j> bit logic diagram,

c

in<o>

I R < l >

I R < 2 >

IState register Eqv 01

M 0 < 4 >

Not M 0 < 6 >

Logic diagram tor1 A C

J

= 01

IAC = 01 = 111 And I
IIR Eqv '1111 And IStateregister Eqv 01 And I

(Not M 0 < 3 > And M B < 4 > And Not MBI 01
IMB<3> And M B < 4 > And M B < l l > l O r

I M 0 < 3 > And M B < 4 And M B > l l <) I Or
IlR Eqv '0111 And IStatersgistsr Eqv 2111

Figure 9. PDP-8 Pc(K) AC = 0 signal logic equation and diagram.

224 BEGINNING OF THE MINICOMPUTER

a straightforward fashion by formulating the
Boolean expressions directly from the state dia-
gram in Figure 7. For example, the AC = 0 con-
trol signal is expressed algebraically and with a
combinational network in Figure 9. Obviously,
these Boolean output control signals are func-
t i o n s w h i c h i n c l u d e t h e c l o c k , t h e
State.Register, and the states of the arithmetic
registers (for example, AC = 0, L = 0, etc.). The
expressions should be factored and minimized
so as to reduce the hardware cost of the control
for the interpreter. Although the sequential

controller for the processor is mentioned here
only briefly, it constitutes about half the logic
within the processor.

CIRCUIT LEVEL

The final level of description is the circuits
that form the logic functions of storage (flip-
flops) and gating (NAND gates). Figures 10
and 11 illustrate some of these logic devices in
detail. In Figure 10 a direct set/direct clear flip-
flop (a sequential logic element) is described in

SET
DIRECT
CLEAR

DIRECT
SET CLEAR
FLIP FLOP

OUTPUT 'IRECT
DIRECT SET OUTPUT

SET

(a) Flip-flop circuit (b) Combinational logic (c) Direct set-clear
equivalent of flip-flop
flip-flop. sequential logic

element.

Table of Circuit Input-Output Table of Flip-Flop Input-Output

Inputs
Inputs Outputs (At t+) Outputs (at t+)

Outputs (At t) Direct Direct (See Note) Outputs (At t) Direct Direct (See Note)
1 0 Set Clear 1 0 1 0 Set Clear 1 0

0 -3 -3 -3 0 -3 1 0 0 0 1 0
-3 0 -3 -3 -3 0 0 1 0 0 0 1
-3 0 -3 0 -3 0 0 1 0 1 0 1
0 -3 -3 0 -3 0 1 0 0 1 0 1

-3 0 0 -3 0 -3 0 1 1 0 1 0
0 -3 0 -3 0 -3 1 0 1 0 1 0

Note this IS not an "ideal" sequential circuit element because there IS no delay in the output

Figure 10. PDP-8 direct-coupled flip-flop and logic diagram

STRUCTURAL LEVELS OF THE PDP-8 225

-16 volts
-3 "Olt. , I

OUTPUl
-15 "OltS

[-a NODE

INPUT INPUT

(a) Multiple input inverter circuit. (b) NAND logic element. (c) NOR logic element.

Table of Circuit
Behavior

Table of NAND
Behavior

Input

1 2 3 Output

Input

1 2 3 output
~

0 0 0
0 0 -3
0 -3 0
0 -3 -3

-3 0 0
-3 0 -3
-3 -3 0
-3 -3 -3

-3
-3
-3
-3
-3
-3
-3
0

0 0
0 0
0 1
0 1
1 0
1 0
1 1
1 1

Table of NOR
Behavior

Input

1 2 3 output

1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1
0 0 0

Figure 1 1 . PDP-8 combinational circuit and logic diagram

226 BEGINNING OF THE MINICOMPUTER

terms of circuit implementation, combinational
logic equivalent, a state table, and its algebraic
behavior. Note that this is not a conventional
textbook circuit because it has no output delay
and responds directly and immediately to an in-
put. Some conventional sequential logic ele-
ments are used in the PDP-8, including RS
(Reset-Set), T(Trigger), D(Delay), and J K . A
delay in the flip-flops makes them behave in the
same way as the “textbook” primitives in se-
quential circuit theory. The outputs require a
series delay, At, such that, i f the inputs change
at time, t, the outputs will not change until t +
At. In actuality, the PDP-8 uses capacitor-diode
gates at the flip-flop inputs so that input
changes will not be noticed until after the clock
passes. This achieves the same effect.

Figure 1 1 illustrates the combinational logic
elements used in the PDP-8. The circuit selec-
tion is limited to the inverter circuit with single
or multiple inputs. These are more familiarly
called NAND gates or NOR gates, depending
on whether one uses positive and/or negative
logic level definitions (described in Chapter 4).

The core memory structure is given in Figure
6. A more detailed block diagram showing the
core stack with its twelve 64 X 64 I-bit core
planes is needed. Such a diagram, though still a
functional block diagram, takes on some of the
aspects of a circuit diagram because a core
memory is largely circuit level details. The
memory (Figure 12) consists of the component
units: the two address decoders (which select 1
each of 64 outputs in the X and Y axis direc-
tions of the coincident current memory); selec-
tion switches (which transform a coincident
logic address into a high current path to switch
the magnetic cores); the 12 inhibit drivers
(which switch a high current or no current into
a plane when either a 1 or 0 is rewritten): 12
sense amplifiers (which take the induced low
sense voltage from a selected core from a plane
being switched or not switched and transform it
into a 1 or 0); and the core stack, an array
M [#0:#7777] <0: 1 1 >. Figure 12 also includes

the associated circuit level hardware needed in
the core memory operation (e.g., power sup-
plies, timing, and logic signal level conversion
amplifiers).

The timing signals are generated within the
control portion of the processor and are shown
together with processor clock in Figure 13. The
process of reading a word from memory is:

1 .

2.

3 .

4.

5 .

6.

A 12-bit selection address is established
on the MA<O: 1 1 > address lines, which
is 1 of #IO000 (or 4096) unique numbers.
The upper 6 bits <0:5> select 1 of 64
groups of Y addresses, and the lower 6
bits <6: 1 1 > select 1 of 64 groups of X
addresses.
The read logic signal is made a 1 a t time
t2.
A high current path flows via the X and
Y selection switches. In each of the X
and Y directions, 64 X 12 cores have se-
lection current (Ix and Iy). Only one core
in each plane is selected since Ix = Iy =
Iswitching/2, and the current at the se-
lected intersection = Ix + Iy = Iswitch-
ing.
I f a core is switched to 0 (by having
Iswitching amperes through it), then a 1
is present and is read at the output of the
plane bit sense amplifiers. A sense ampli-
fier receives an input from a winding
that threads every core of every bit
within a core plane [#0:#7777]. All 12
cores of the selected word are reset to 0.
The time at which the sense amplifier is
observed is tms (the memory strobe),
which also causes the transfer MB =
M[MA].
The read current is turned off by timing
in the memory module.
The inhibit and write (slightly delayed)
logic signals are turned on at time t l .
The bit inhibit signal is present or not,
depending on whether a 0 or I , respec-
tively, is written into a bit.

STRUCTURAL LEVELS OF THE PDP-8 227

I121 I t l J It21

CONTROL
SIGNALS

TIME

I I - - - _ _ - _

- - -LOGIC SIGNALS

HIGH CURRENT -
IO, + I d 2 -1s/21

LOW LEVEL WINDING
ISENSE SIGNALS1 FOUR W I R E S T H R O U G H A CORE I C U R R E N T D I R E C T I O N CONTROLS

Y = SELECT WIRE REA0 WRITE

Figure 12. PDP-8 four-wire coincident current (three dimensions) core memory logic diagram

b-Memorv cycle

N O T E S
1 lms memory strobe
2 tmd memory dons ldetermined by msmoryl

TO

INPUTS<O 1 1)
> MB DATA

Figure 13. PDP-8 clock and memory timing diagram.

228 BEGINNING OF THE MINICOMPUTER

7. A high current path flows via the X and
Y selection switches, but in an opposite
direction to the read case (see item 2) . If
a 1 is written, no inhibit current is pre-
sent and the net current in the selected
core is -1switching. If a 0 is written, the
current is -1switching +(Iswitching/2)
and the core remains reset.
The inhibit and write logic signals are
turned off at time tmd specified by tim-
ing in the memory module, and the
memory cycle is completed.

8 .

Device Level

For a discussion of the behavior of the tran-
sistor as it is used in these switching circuit
primitives, the reader should consult semi-
conductor electronics and physics textbooks. It
is hoped that the reader has gained a sense of
how to think about the hierarchical decomposi-
tion of computers into particular levels of anal-
ysis (and synthesis) and that the hierarchical
approach will be of aid in the reading of Part
111.

Opposite:

Top, left to right:

VAx-11/780.
PDT-1 1 programmable data terminal

Bottom, left to right:
Model 20 central processor,
PDP-1 1 packaging showing cabinet level integration.

L

I

The PDP-11 Family

The PDP-11 has evolved quite differently from the other computers discussed
in this book and, as a result, provides an independent and interesting story. Like
the other computers, the factors that have created the various PDP-11 machines
have been market and technology based, but they have generated a large number
of implementations (ten) over a relatively short (eight-year) lifetime. Because
there are multiple implementations spanning a performance range at the same
time, the PDP-11 provides problems and insight which did not occur in the evolu-
tions of the traditional mini (PDP-8 Family), the optimal price/performance ma-
chines (18-bit), and the high performance timesharing machines (the DECsystem
IO). The PDP-11 designs cover a range of 500: 1 in system price ($500 to $250,000)
and 500:l in memory size (4 Kwords to 2 Mwords).

Rather than attempt to summarize the goals of designers, sentiments of users,
or the thoughts of researchers, the discussion of the PDP-11 is divided into chap-
ters which, in most cases, consist of papers written contemporaneously with vari-
ous important PDP-11 developments. The chapters are arranged in five
categories: introduction to the PDP-11, conceptual basis for PDP-11 models, im-
plementations of the PDP-I 1, evaluation of the PDP-I 1, and the virtual address
extension of the PDP-I 1.

INTRODUCTION TO THE PDP-11

Chapter 9, first published when the PDP-11 was announced, introduces the
PDP-11 architecture, gives its goals, and predicts how it might evolve. The con-
cept of a family of machines is quite strong, but the actual development of that
family has differed a good deal from the projections in this chapter. The major
reasons (discussed in Chapter 16) for the disparity between the predicted and
actual evolution are:

1. The notion of designing with improved technology, especially for a family
of machines, was not understood in 1970. This understanding came later
and was presented in a paper in 1972 [Bell et af., 1972bl.
The Unibus proved unacceptable for intercommunications at the very high
and low-end designs. Although Chapter 9 suggests a multiprocessor and
multiple Unibuses for high-end designs, such a structure did not evolve as
a standard.
The address space for both physical and virtual memory was too small.

2.

3 .

231

232 THE PDP-11 FAMILY

4. Several data-type extensions were not predicted. Although floating-point
arithmetic was envisioned, the character string and decimal operations
were not envisioned, or at least were not described. These data-types
evolved in response to market needs that did not exist in 1970.

CONCEPTUAL BASIS FOR THE PDP-11 MODELS

Chapters 10 and 11 consist of two papers that form some of the conceptual
basis for the various PDP-11 models. Chapter I O by Strecker is an exposition of
cache memory structure and its design parameters. The cache memory concept is
the basis of three PDP-I1 models, the PDP-l1/34A, the PDP-I1/60, and the
PDP-l1/70, in addition to the cache-8 (Chapter 7) and the KLlO processor for the
PDP-IO (Chapter 21).

Strecker gives the performance evaluation in terms of cache miss ratios,
whereas the reader is probably interested in performance or speedup. These two
measures, shown in Figure I , are related [Lee, 19691 in the following way (assum-
ing an infinitely fast processor):

p = Total number of memory accesses by the processor Pc
m = Number of memory accesses that are missed by the cache and

have to be referred to the primary memory Mp
t.c = Cycle time of cache memory Mc
t .p = Cycle time of primary memory Mp
R = t . p / t . c (ratio of memory speeds), where R is typically 3 to 10

The relative execution speeds are:

t (no cache) = pR
t (to cache) = p + mR

speedup = p R / (p + m R) = R / (l + (m / p) R)
a = miss ratio = m / p

Therefore:

speedup = R / (l + aR) = l/(a + 1/R)

Note that:

If a = 0 (100% hit), the speedup is R
If a = 1 (100% miss), the speedup is R / (l + R) , Le., the speedup is

less than 1 (i.e., time to reference both memories)

Chapter 1 1 contains a unique discussion of buses - the communications link
between two or more computer system components. Although buses are a stand-
ard of interconnection, they are the least understood element of computer design

THE PDP-11 FAMILY 233

p = T O T A L N U M B E R O F M E M O R Y A C C E S S E S
BY T H E PROCESSOR. Pc

N U M B E R OF M E M O R Y ACCESSES T H A T ARE
M I S S E D BY CACHE A N D HAVE TO BE
R E F E R R E D T O M p n

Figure 1 .
and M p of cached computer.

The structure of Pc, Mcache.

because their implementation is distributed in various components. Their behav-
ior is difficult to express in a state diagram or other conventional representation
(except a timing diagram) because the operation of buses is inherently pipelined;
hence, design principles and understanding are minimal.

In Chapter 11, Levy first characterizes the intercommunication problem into
the constituent dialogues that must take place between pairs of components. After
giving a general model of interconnection, Levy provides examples of PDP-11
buses that characterize the general design space. Finally, he discusses the various
intercommunications (model) aspects: arbitration (deciding which components
can intercommunicate), data transmission, and error control.

IMPLEMENTATIONS OF THE PDP-11

Chapter 12 is a descriptive narrative about the design of the LSI-11 at the chip,
board, and backplane levels. Since it was written from the viewpoint of a knowl-
edgeable user, i t lacks some of the detail that the designers at Western Digital
(Roberts, Soha, Pohlman) or at DEC (Dickhut, Dickman, Olsen, Titelbaum)
might have provided. A detailed account of the chip-level design is available,
however [Soha and Pohlman, 19741.

Two design levels are described: the three chip set microprogrammed computer
used to interpret the PDP-11 instruction set, and the particular PMS-level com-
ponents that are integrated into a backplane to form a hardware system. Chapter
12 also provides a discussion of the microprogramming tradeoff that took place
between the chip and module levels. This tradeoff was necessary to carry out the
clock, console, refresh, and power-fail functions which are normally in hardware.

Since the time that the Sebern paper (Chapter 12) was written, packaging for
LSI-11 systems has moved in two directions: toward the single board micro-
computer and toward modularity. The single board microcomputer concept is

234 THE PDP-11 FAMILY

exemplified by the bounded system shown in Figure 2. This integrated system
contains an LSI-11 chip set, 32 Kwords of memory, connectors for six commu-
nication line interfaces, and a controller for two floppy disk drives. It uses 175
circuits (to implement the same functionality using standard LSI-I 1 modules
would require 375 integrated circuits). The modularity direction is exemplified by
the LSI-l1/2, for which typical option modules are shown in Figure 3.

Unlike the reports from an architect’s or reporter’s viewpoint, Chapter 13 is a
direct account of the design process from the project viewpoint. A mid-range
machine is an inherently difficult design because it is neither the lowest cost nor

c 1 I EIA C O N N E C T O R M O D U L E

M O S R A M PERIPHERAL (CONSL)(PRNTR)(COMM)

I 1
I

1

4 8 1 6 3 2 K X 1 6 M D D U L E
1 K X 16 R O M 13-6 USARTSI

E IA CONNECTOR M O D U L E

S T A C K I N G S T A C K I N G
C O N N C O N N -

T E R M I N A L INTELLIGENCE M O D U L E

LSI 11
CHIP SET

M I C R O - P R O C
110 E M U L A T O R

+ 5 v

Figure 2 . A bounded LSI-1 1 based system.

THE PDP-11 FAMILY 235

the highest performance machine of the family, and thus has to have the right
balance of features, price, and performance against criteria that are usually vague.

Four interesting aspects of computer engineering are shown in the PDP-11/60:
the cache to reduce Unibus traffic; trace-driven design of floating-point arith-
metic processors; writable control store; and special features for reliability, avail-
ability, and maintainability.

The Unibus was found to be inadequate for handling all the data traffic in high
performance systems, but by using a cache, most processor references do not use
the Unibus and so leave it free for 1 / 0 traffic. In the PDP-l1/60 work described
in this chapter, Mudge uses Strecker’s (Chapter IO) program traces and method-
ology. The cache design process is implicit in the way in which the work is carried
out to determine the structure parameters. Sensitivity plots are used to determine
the effects of varying each parameter of the design. The time between changes of
context is an important parameter because all real-time and multiprogrammed
systems have many context switches. The study leading to the determination of
block size is also given.

Microprogramming is used to provide both increased user-level capability and
increased reliability, availability, and maintainability. The writable control store
option is described together with its novel use for data storage. This option has
been recently used for emulating the PDP-8 at the OS/8 operating system level.

Chapter 14 presents a comprehensive comparison of the eight processor imple-
mentations used in the ten PDP-11 models. The work was carried out to invest-
igate various design styles for a given problem, namely, the interpretation of the
PDP-11 instruction set. The tables provide valuable insight into processor imple-
mentations, and the data is particularly useful because it comes from Snow and
Siewiorek, non-DEC observers examining the PDP-11 machines.

The tables include:

1. A set of instruction frequencies, by Strecker, for a set of ten different appli-
cations. (The frequencies do not reflect all uses, e.g., there are no floating-
point instructions, nor has operating system code been analyzed.)
Implementation cost (modules, integrated circuits, control store widths)
and performance (micro- and macroinstruction times) for each model.
A canonical data path for all PDP-11 implementations against which each
processor is compared.

2.

3.

With this background data, a top-down model is built which explains the per-
formance (macroinstruction time) of the various implementations in terms of the
microinstruction execution and primary memory cycle time. Because these two
parameters do not fully explain (model) performance, a bottom-up approach is
also used, including various design techniques and the degree of processor over-
lap. This analysis of a constrained problem should provide useful insight to both
computer and general digital systems designers.

236 THE PDP-11 FAMILY

KD11 -HA
LSI- 1 1 /2 microcomputer
processor

M S V l l - D
Dynamic MOS RAM memory

DLVl 1 -J
Four-line serial interface

lBV l 1 -A
IEEE instrument bus interface

M R V l l - B A
4K UV PROM board with
256-word RAM

MRVl1-AA
4K PROM board

Figure 3 . The double-height modules forming the LSI-1 1/2 (part 1 of 2)

c1 U

I *.. :

lBV l1 -A
E E E ir#trumemt bw intadace

MRVl1-BA MRVl f-M
4K LIV PROM h r d wkh *K m b o c l d

THE PDP-11 FAMILY 237

DRVl 1
16-bit Darallel interface

DCK1 1 -AC
Interface foundation kit

RXVl 1
Interface module for RXOl
floppy disk

REV1 1 -A
Refresh/ bootstrap/
diagnostic/ terminator
module

KPVl 1 -A
Power sequencer/ line clock
module

D L V l l
Single-line serial interface

Figure 3 The double-height modules forming the LSI-1 1/2 (part 2 of 2)

THE POP-1 1 FAMILY 237

DRV11
1 &bit prallel interface

DCKlf -AC
Imrface foundation kit

K W l T -A
Power saquemer/ line clock
module

.- :, ,
i r d

RXv11
Interlace moduh for RXOi
floppy disk

re 3. The double-height modules forming the LSI-1112 (pen 2 of 21.

238 THE PDP-11 FAMILY

EVALUATION OF THE PDP-11

Chapter 15 evaluates the PDP-I 1 as a machine for executing FORTRAN. Be-
cause FORTRAN is the most often executed language for the PDP-I l , it is im-
portant to observe the PDP- 11 architecture as seen by the language processor - its
user. The first FORTRAN compiler and object (run) time system are described,
together with the evolutionary extensions to improve performance. The FOR-
TRAN IV-PLUS (optimizing) compiler is only briefly discussed because its im-
provements, largely due to compiler optimization technology, are less relevant to
the PDP-I 1 architecture.

The chapter title, “Turning Cousins into Sisters,” overstates the compatibility
problem since the five variations of the PDP-I 1 instruction set for floating-point
arithmetic are made compatible by essentially providing five separate object (run)
time systems and a single compiler. This transparency is provided quite easily by
“threaded code,” a concept discussed in the chapter.

The first version of the FORTRAN machine was a simple stack machine. As
such, the execution times turned out to be quite long. In the second version, the
recognition of the special high-frequency-of-use cases (e.g., A t 0, A t A + 1) and
the improved conventions for three-address operations (to and from the stack)
allowed speedup factors of 1.3 and 2.0 for floating-point and integers.

It is interesting to compare Brender’s idealized FORTRAN IV-PLUS machine
with the Floating-point Processors (on the PDP-Il/34, 11/45, 11/55, 11 /60, and
1 1 /70). If the FORTRAN machine described in the paper is implemented in mi-
crocode and made to operate at Floating-point Processor speeds, the resulting
machines operate at roughly the same speed and programs occupy roughly the
same program space.

The basis for Chapter 16, “What Have We Learned From the PDP-1 l?” [Bell
and Strecker, 19761 was written to critique the original expository paper on the
PDP-I 1 (Chapter 9) and to compare the actual with the predicted evolution. Four
critical technological evolutions - bus bandwidth, PMS structure, address space,
and data-type - are examined, along with various human organizational aspects
of the design.

The first section of Chapter 16 compares the original goals of the PDP-11
(Chapter 9) with the goals of possible future models from the original design
documents. Next, the ISP and PMS evolutions, including the VAX extension, are
described. The Unibus characteristics are especially interesting as the bus turns
out to be more cost-effective over a wider range than would be expected.

The section of the chapter which deals with multiprocessors and multi-
computers gives the rationale behind the slow evolution of these structures. Be-
cause a number of these computer structures have been built (especially at
Carnegie-Mellon University), they are described in detail.

The final section of the chapter interrelates technology with the various imple-
mentations (including VAX-I 1/780) that have occurred. Table 6 gives the per-
formance characteristics for the various models with the relevant technology,
contributions, and implementation techniques required to span the range.

THE PDP-11 FAMILY 239

VIRTUAL ADDRESS EXTENSION OF THE PDP-11

The latest member of the PDP-11 family, the Virtual Address Extension 1 1 or
VAX-11, is described in Chapter 17. This paper, by the architect of VAX-I I ,
discusses the new architecture and its first implementation, the VAX-I 1 /780.

VAX-11 extends the PDP-11 to provide a large, 32-bit virtual address for each
user process. The architecture includes a compatibility mode that allows PDP-I 1
programs written for the RSX-I 1 M program environment to run unchanged. In
this way, PDP-I 1 programs can be moved among VAX and PDP-I 1 computers,
depending on the user’s address size and computational and generality needs.

Chapter 17 provides a clean, somewhat terse, yet comprehensive description of
the VAX-11 architecture. Because the VAX part of the architecture is so complete
in terms of data-types, operators, addressing and memory management, it can
also serve as a textbook model and case study for architecture in general. Goals,
constraints, and various design choices are given, although explanations of what
was traded away in the design choices are not detailed.

A New Architecture
for Minicomputers
-The DEC PDP-11

C. GORDON BELL, ROGER CADY, HAROLD McFARLAND,
BRUCE A. DELAGI, JAMES F. O’LOUGHLIN,
RONALD NOONAN, and WILLIAM A. WULF

INTRODUCTION

The minicomputer* has a wide variety of
uses: communications controller, instrument
controller, large-system preprocessor, real-time
data acquisition systems, . . . desk calculator.
Historically, Digital Equipment Corporation’s
(DEC) PDP-8 family, with 6000 installations
has been the archetype of these minicomputers.

In some applications current minicomputers
have limitations. These limitations show up
when the scope of their initial task is increased
(e.g., using a higher level language, or process-
ing more variables). Increasing the scope of the

task generally requires the use of more com-
prehensive executives and system control pro-
grams, hence larger memories and more
processing. This larger system tends to be at the
limit of current minicomputer capability, thus
the user receives diminishing returns with re-
spect to memory, speed efficiency, and program
development time. This limitation is not sur-
prising since the basic architectural concepts for
current minicomputers were formed in the early
1960s. First, the design was constrained by cost,
resulting in rather simple processor logic and

* T h e PDP-I I design is predicated on being a member of one (or more) o f the micro, midi. mini, . . , maxi (computer name)
mnrkctr . We will define these names as belonging t o computers of the third generation (integrated circuit to medium-scale
integrated circuit technology). having a core memory with cycle time of 0.5-2 ps. a clock rate of 5 - IO M H z . , . a single
processor with interrupts and usually applied to doing a particular task (e.g.. controlling a memory o r communications
lines. preprocessing for a larger system, process control). T h e specialized names are defined as follows.

Maximum
Addressable Processor and Word Processor
Primary Memory Memory Cost Length State
(Words) (1970 Kilodollars) (Bits) (Words) Data-Types

Micro X K - 5
Mini 32 K 5 - I O
Midi 65 K - I 2 8 K 10-20

8-12 2 Integers, words, Boolean vectors
12-16 2-4 Vectors (i.e., indexing)
16-24 4-16 Double length floating point

(occasionally)

241

242 THE PDP-11 FAMILY

register configurations. Second, application ex-
perience was not available. For example, the
early constraints often created computing de-
signs with what we now consider weaknesses:

1 . Limited addressing capability, particu-
larly of larger core sizes.

2. Few registers, general registers, accu-
mulators, index registers, base registers.

3. No hardware stack facilities.
4. Limited priority interrupt structures,

and thus slow context switching among
multiple programs (tasks).

5. No byte string handling.
6. No read-only memory (ROM) facilities.
7. Very elementary 1 / 0 processing.
8. No larger model computer, once a user

outgrows a particular model.
9. High programming costs because users

program in machine language.

In developing a new computer, the archi-
tecture should at least solve the above prob-
lems. Fortunately, in the late 1960s, integrated
circuit semiconductor technology became avail-
able so that newer computers could be designed
that solve these problems at low cost. Also, by
1970, application experience was available to
influence the design. The new architecture
should thus lower programming cost while
maintaining the low hardware cost of mini-
computers.

The DEC PDP-11 Model 20 is the first com-
puter of a computer family designed to span a
range of functions and performance. The
Model 20 is specifically discussed, although de-
sign guidelines are presented for other members
of the family. The Model 20 would nominally
be classified as a third generation (integrated
circuits), 16-bit word, one central processor
with eight 16-bit general registers, using two’s
complement arithmetic and addressing up to 216
8-bit bytes of primary memory (core). Though
classified as a general register processor, the op-

erand accessing mechanism allows it to perform
equally well as a 0- (stack), 1- (general register),
and 2- (memory-to-memory) address computer.
The computer’s components (processor, memo-
ries, controls, terminals) are connected via a
single switch, called the Unibus.

The machine is described using the processor-
memory-switch (PMS) notation of Bell and
Newell [I97 11 at different levels. The following
descriptive sections correspond to the levels: ex-
ternal design constraints level; the PMS level -
the way components are interconnected and al-
low information to flow; the program level - the
abstract machine that interprets programs; and
finally, the logical design level. (We omit a dis-
cussion of the circuit level, the PDP-11 being
constructed from TTL integrated circuits.)

DES I G N CONSTRAINTS

The principal design objective is yet to be
tested; namely, do users like the machine? This
will be tested both in the marketplace and by
the features that are emulated in newer ma-
chines; it will be tested indirectly by the life span
of the PDP- 11 and any offspring.

Word Length

The most critical constraint, word length (de-
fined by IBM), was chosen to be a multiple of 8
bits. The memory word length for the Model 20
is 16 bits, although there are 32- and 48-bit in-
structions and 8- and 16-bit data. Other mem-
bers of the family might have up to 80-bit
instructions with 8-, 16-, 32- and 48-bit data.
The internal, and preferred external character
set, was chosen to be 8-bit ASCII.

Range and Performance

Performance and function range (exten-
dability) were the main design constraints; in
fact, they were the main reasons to build a new
computer. DEC already has four computer

A NEW ARCHITECTURE FOR MINICOMPUTERS 243

families tha t span a range* but a re in-
compatible. In addition to the range, the initial
machine was constrained to fall within the
small-computer product line, which means to
have about the same performance as a PDP-8.
The initial machine outperforms the PDP-5,
LINC, and PDP-4 based families. Performance,
of course, is both a function of the instruction
set and the technology. Here, we are fundamen-
tally only concerned with the instruction set
performance because faster hardware will al-
ways increase performance for any family. Un-
like the earlier DEC families, the PDP-11 had
to be designed so that new models with signifi-
cantly more performance can be added to the
family .

A rather obvious goal is maximum perfor-
mance for a given model. Designs were pro-
grammed using benchmarks, and the results
were compared with both DEC and potentially
competitive machines. Although the selling
price was constrained to lie in the $5,000 to
$10,000 range, it was realized that the decreas-
ing cost of logic would allow a more complex
organization than that of earlier DEC com-
puters. A design that could take advantage of
medium- and eventually large-scale integration
was an important consideration. First, it could
make the computer perform well; second, it
would extend the computer family’s life. For
these reasons, a general register organization
was chosen.

interrupt Response. Since the PDP-11 will
be used for real-time control applications, it is
important that devices can communicate with
one another quickly (i.e., the response time of a
request should be short). A multiple priority
level, nested interrupt mechanism was selected;
additional priority levels are provided by the
physical position of a device on the Unibus.

Software polling is unnecessary because each
device interrupt corresponds to a unique ad-
dress.

Software

The total system including software is, of
course, the main objective of the design. Two
techniques were used to aid programmability.
First, benchmarks gave a continuous indication
as to how well the machine interpreted pro-
grams; second, systems programmers contin-
ually evaluated the design. Their evaluation
considered: what code the compiler would pro-
duce; how would the loader work; ease of pro-
gram relocatability; the use of a debugging
program; how the compiler, assembler, and edi-
tor would be coded - in effect, other bench-
marks; how real-time monitors would be
written to use the various facilities and present a
clean interface to the users; finally, the ease of
coding a program.

Modularity

Structural flexibility (sometimes called mod-
ularity) for a particular model was desired. A
flexible and straightforward method for inter-
connecting components had to be used because
of varying user needs (among user classes and
over time). Users should have the ability to
configure an optimum system based on cost,
performance, and reliability, both by inter-
connection and, when necessary, constructing
new components. Since users build special
hardware, a computer should be interfaced eas-
ily. As a by-product of modularity, computer
components can be produced and stocked,
rather than tailor-made on order. The physical
structure is almost identical to the PMS struc-
ture discussed in the following section; thus,

* PDP-4, 7. 9, 15 family: PDP-5, 8, 8/S, 8/1, 8 / L family: LINC, PDP-8ILINC. PDP-I2 family: and PDP-6, I O family. The
initial PDP-I did not achieve family status.

244 THE PDP-11 FAMILY

reasonably large building blocks are available
to the user.

Microprogramming

A note on microprogramming is in order be-
cause of current interest in the “firmware” con-
cept. We believe microprogramming, as we
understand it [Wilkes and Stringer, 19531, can
be a worthwhile technique as it applies to pro-
cessor design. For example, microprogramming
can probably be used in larger computers when
floating-point data operators are needed. The
IBM System 360 has made use of the technique
for defining processors that interpret both the
System 360 instruction set and earlier family in-
struction sets (e.g., 1401, 1620, 7090). In the
PDP-I I , the basic instruction set is quite
straightforward and does not necessitate micro-
programmed interpretation. The processor-
memory connection is asynchronous; therefore,
memory of any speed can be connected. The in-
struction set encourages the user to write reen-
trant programs. Thus, read-only memory can
be used as part of primary memory to gain the
permanency and performance normally attri-
buted to microprogramming. In fact, the Model
10 computer, which will not be further dis-
cussed, has a 1024-word read-only memory,
and a 128-word read-write memory.

Understandability

Understandability was perhaps the most fun-
damental constraint (or goal) although it is now
somewhat less important to have a machine
that can be understood quickly by a novice
computer user than it was a few years ago.
DEC’s early success has been predicated on sell-
ing to an intelligent but inexperienced user. Un-
derstandability, though hard to measure, is an

important goal because all (potential) users
must understand the computer. A straight-
forward design should simplify the systems pro-
gramming task; in the case of a compiler, it
should make translation (particularly code gen-
eration) easier.

PDP-11 STRUCTURE AT THE PMS
LEVEL‘

Introduction

PDP- 1 1 has the same organizational struc-
ture as nearly all present-day computers (Figure
I) . The primitive PMS components are: the
primary memory M p which holds the programs
while the central processor Pc interprets them;
1 / 0 controls Kio which manage data transfers
between terminals T or secondary memories Ms
to primary memory Mp; the components out-
side the computer at periphery X either humans
H or some external process (e.g., another com-
puter); the processor console (T.console) by
which humans communicate with the computer
and observe its behavior and affect changes in
its state; and a switch S with its control K which
allows all the other components t o commu-
nicate with one another. In the case of PDP-11,
the central logical switch structure is imple-
mented using a bus or chained switch S called
the Unibus, as shown in Figure 2. Each physical
component has a switch for placing messages
on the bus or taking messages off the bus. The
central control decides the next component t o
use the bus for a message (call). The S (Unibus)
differs from most switches because any com-
ponent can communicate with any other com-
ponent.

The types of messages in the PDP-11 are
along the lines of the hierarchical structure
common to present-day computers. The single

* A descriptive (hlock-diagram) level [Bell a n d Newell. 19701 t o describe the relationship of the computer components:
processors. memories, switches. controls, links. terminals, a n d data operators. P M S is described in Appendix 2.

A NEW ARCHITECTURE FOR MINICOMPUTERS 245

HUMAN

USER

\

. -\

\
UNIBUS

IINTERCONNECTS
OTHER

COMPONENTS)

MEMORV

CONTROL e . .

SECONOARV
MEMORY 0 IE G . O I S K ~

TERMINALS

HUMAN USER
OR

OTHER PROCESS

(a) Conventional block diagram

I
I

{ERIPHERV

I

(b)

Figure 1
diagram of PDP-1 1

PMS diagram (see Appendix 2)

Conventional block diagram and PMS

STRUCTURE

1 Unibus control packages with Pe

Figure 2 PDP-1 1 physlcal structure PMS diagram.

bus makes conventional and other structures
possible. The message processes in the structure
that utilize S (Unibus) are:

1. The central processor Pc requests that
data be read or written from or to
primary memory Mp for instructions
and data. The processor calls a particu-
lar memory module by concurrently
specifying the module’s address, and the
address within the modules. Depending
on whether the processor requests read-
ing or writing, data is transmitted either
from the memory to the processor or
vice versa.
The central processor Pc controls the in-
itialization of secondary memory Ms
and terminal T activity. The processor
sets status bits in the control associated
with a particular Ms or T, and the device
proceeds with the specified action (e.g.,
reading a card or punching a character
into paper tape). Since some devices
transfer data vectors directly to primary
memory, the vector control information
(;.e., the memory location and length) is
given as initialization information.
Controls request the processor’s atten-
tion in the form of interrupts. An inter-
rupt request to the processor has the
effect of changing the state of the proces-
sor: thus, the processor begins executing
a program associated with the inter-
rupting process. Note that the interrupt
process is only a signaling method, and
when the processor interrupt occurs, the
interrupter specifies a unique address
value to the processor. The address is a
starting address for a program.
The central processor can control the
transmission of data between a control
(for T or Ms) and either the processor or
a primary memory for program con-
trolled data transfers. The device signals
for attention using the interrupt dialogue

2.

3.

4.

THE PDP-11 FAMILY 246

5 .

6.

and the central processor responds by
managing the data transmission in a
fashion similar t o transmitt ing in-
itialization information.
Some device controls (for T or Ms)
transfer data directly to/from primary
memory without central processor inter-
vention. In this mode the device behaves
similarly to a processor; a memory ad-
dress is specified, and the data is trans-
mitted between the device and primary
memory.
The transfer of data between two con-
trols, e.g., a secondary memory (disk)
and say a terminal/T. display is not pre-
cluded, provided the two use compatible
message formats.

As we show more detail in the structure there
are, of course, more messages (and more simul-
taneous activity). The above does not describe
the shared control and its associated switching
which is typical of a magnetic tape and mag-
netic disk secondary memory systems. A con-
trol for a DECtape memory (Figure 3) has an S
('DECtape bus) for transmitting data between a
single tape unit and the DECtape transport.
The existence of this kind of structure is based
on the relatively high cost of the control relative
to the cost of the tape and the value of being
able to run concurrently with other tapes. There
is also a dialogue at the periphery between X-T

COnCUrrene" 1

UNIBUS

Figure 3. DECtape control switching PMS diagram.

and X-Ms that does not use the Unibus. (For
example, the removal of a magnetic tape reel
from a tape unit or a human user H striking a
typewriter key are typical dialogues.)

All of these dialogues lead to the hierarchy of
present computers (Figure 4). In this hierarchy
we can see the paths by which the above mes-
sages are passed: Pc-Mp; Pc-K; K-Pc; Kio-T
and Kio-Ms; and Kio-Mp; and, at the per-
iphery, T-X and T-Ms; and T. console-H.

Model 20 Implementation

Figure 5 shows the detailed structure of a
uniprocessor Model 20 PDP-I 1 with its various
components (options). In Figure 5, the Unibus
characteristics are suppressed. (The detailed
properties of the switch are described in the log-
ical design section.)

Extensions to Increase Performance

The reader should note (Figure 5) that the
important limitations of the bus are: a con-
currency of one, namely, only one dialogue can
occur at a given time, and a maximum transfer
rate of one 16-bit word per 0.75 microsecond,
giving a transfer rate of 21.3 megabits/second.
While the bus is not a limit for a uniprocessor
structure, it is a limit for multiprocessor struc-
tures. The bus also imposes an artificial limit on
the system performance when high-speed de-
vices (e.g., TV cameras, disks) are transferring

Figure 4. Conventional hierarchy computer structure

A NEW ARCHITECTURE FOR MINICOMPUTERS 247

100 char/resond. 8 billchar

L

M Secondary s, lixod head dish.
1 6 b i t d w a r d . 32768 words. - I rats. 6 6 ~ r l w o r d .

t.acce*s 0 . 34 rns

data to multiple primary memories. On a larger
system with multiple independent memories,
the supply of memory cycles is 17 mega-
bits/second times the number of modules. Since
there is such a large supply of memory cycles
per second and since the central processor can
a b s o r b o n l y a p p r o x i m a t e l y 16 mega-
bits/second, the simple one-Unibus structure
must be modified to make the memory cycles
available. Two changes are necessary. First,
each of the memory modules has to be changed
so that multiple units can access each module
on an independent basis. Second, there must be
independent control accessing mechanisms.
Figure 6 shows how a single memory is modi-

MP I#Ol

Tslefyw. Model 33, 35 ASR.
full duplex. 10 chadoecand.
char set ASCII, 8 bit/char

M P 1#71

NOTES
1 M p llechnologv core. 4096 words. f cycle 1 2 F S .

t access 0 6 ps . 16 bildwordl

2 PIcmtraI C . Model 30. antegrated circuit, general registers.
2 addresre~/inrtruction. addresser are regmer. rraeh, Mp.
data-types. bits. bytes. words. word integers. byte mfegers.
Boolean vectors. 8 bitr lbyte. 16 bi tdword. operal~ons

I V . 3 1 .

integrated CIICUII~J

I+. -. I loptlonal). x Iopllonal). /2. X Z . 1 . - ln.gat.31.

MIP~LWSSO~ S ~ O . 'general rsglstsrs. e + i word.

3 S I'Unibus. non hierarchy: bur. concurrmcy 1.
1 wordlo 7 5 PSI

Figure 5.
PMS diagram.

PDP-1 1 structure and characteristics

fied to have more access ports (Le., connect to
four Unibuses).

Figure 7 shows a system with three independ-
ent memory modules that are accessed by two
independent Unibuses. Note that two of the
secondary memories and one of the transducers
are connected to both Unibuses. It should be
noted that devices that can potentially interfere
with Pc-Mp accesses are constructed with two
ports; for simple systems, both ports are con-
nected to the same bus, but for systems with
more buses, the second connection is to an inde-
pendent bus.

Figure 8 shows a multiprocessor system with
two central processors and three Unibuses. Two
of the Unibus controls are included within the
two processors, and the third bus is controlled
by an independent control unit. The structure
also has a second switch to allow either of two
processors (Unibuses) to access common shared
devices. The interrupt mechanism allows either

x
(a) 1-port

a1 I

Lel
(b) 4-pOrt.

Figure 6.
diagram.

1- and 4-port memory modules PMS

248 THE PDP-11 FAMILY

INITIALIZATION
A N 0 INTERRUPT
MESSAGES

K1 Unibus1 ww MS MpMESSAGES on T TO

Figure 7.
PMS diagram.

Three Mp, two S ('Unibus) structure

DATA TRANSFERS

1 KI 'Unibusl
2. Kl'Unibus mult iple bus to single bus coupler.

from. 2 Unibus. to 1 Unibus)
3 KI'Processor-to-procersor coupler)
4 Mslduplex l

Figure 8. Dual Pc multiprocessor system PMS diagram

processor to respond to an interrupt, and sim-
ilarly either processor may issue initialization
information on an anonymous basis. A control
unit is needed so that two processors can com-
municate with one another; shared primary
memory is normally used to carry the body of
the message. A control connected to two Pc's
(Figure 8) can be used for reliability; either pro-
cessor or Unibus could fail, and the shared Ms
would still be accessible.

Higher Performance Processors
Increasing the bus width has the greatest

effect on performance. A single bus limits data
transmission to 2 1.4 megabits/second, and
though Model 20 memories are 16 mega-
bits/second, faster (or wider) data path width
modules will be limited by the bus. The Model
20 is not restricted, but for higher performance
processors operating on double-word (fixed-
point) or triple-word (floating-point) data, two

A NEW ARCHITECTURE FOR MINICOMPUTERS 249

or three accesses are required for a single data-
type. The direct method to improve the per-
formance is to double or triple the primary
memory and central processor data path
widths. Thus, the bus data rate is automatically
doubled or tripled.

For 32- or 48-bit memories, a coupling con-
trol unit is needed so that devices of either
width appear isomorphic to one another. The
coupler maps a data request of a given width
into a higher- or lower-width request for the bus
being coupled to, as shown in Figure 9. (The
bus is limited to a fixed number of devices for

from 4 8 bltr

4 8 BITUNIBUS 16 BITUNIBUS

Figure 9.
Ms. T.PMS diagram.

Computer with 48 -b i t Pc. Mp with 16-b i t

electrical reasons; thus, to extend the bus, a bus-
repeating unit is needed. The bus-repeating con-
trol uni t is almost identical to the bus coupler.)
A computer with a 48-bit primary memory and
processor and 16-bit secondary memory and
terminals (transducers) is shown in Figure 9.

In summary, the design goal was to have a
modular structure providing the final user with

freedom and flexibility to match his needs. A
secondary goal of the Unibus is open-endedness
by providing multiple buses and defining wider
path buses. Finally, and most important, the
Unibus is straightforward.

THE INSTRUCTION SET PROCESSOR
(ISP) LEVEL-ARCHITECTURE

Introduction, Background, and Design
Constraints

The Instruction Set Processor (ISP) is the
machne defined by the hardware and/or soft-
ware that interprets programs. As such, an ISP
is independent of technology and specific imple-
mentations.

The instruction set is one of the least under-
stood aspects of computer design; currently, it
is an art. There is currently no theory of instruc-
tion sets, although there have been attempts to
construct them [Maurer, 19661, and there has
also been an attempt to have a computer pro-
gram design an instruction set [Haney, 19681.
We have used the conventional approach in this
design. First, a basic ISP was adopted and then
incremental design modifications were made
(based on the results of the benchmarks).?

Although the approach to the design was
conventional, the resulting machine is not. A
common classification of processors is as 0-, 1-,
2-, 3-, or 3-plus-1-address machines. This
scheme has the form:

op 11, 12, 13, 14

* T h e word “architecture” has been operationally defined [Amdahl et a / . . 19641 as “the attr ibutes of a system as seen by a
programmer. i t . , the conceptual structure and functional behavior, as distinct from the organization of the data flow and
controls, the logical design, and the physical implementation.”
t A predecessor multiregister computer was proposed that used a similar design process. Benchmark programs were coded on

each of ten “competitive” machines, and the object of the design was to get a machine that gave the best score on the
benchmarks. This approach had several fallacies: The machine had no basic character of its own: the machine was difficult
10 program since the multiple registers were assigned to specific functions and had inherent idiosyncrasies to score well on
the benchmarks; the machine did not perform well for programs other than those used in the benchmark test: a n d finally,
compilers that took advantage of the machine appeared to be difficult t o write. Since all “competitive machines” had been
hand-coded from a common flowchart rather than separate flowcharts for each machine, the apparent high performance
may have been due to the flowchart organization.

250 THE PDP-11 FAMILY

where 11 specifies the location (address) in
which to store the result of the binary operation
(op) of the contents of operand locations 12 and
13, and 14 specifies the location of the next in-
struction.

The action of the instruction is of the form:

11 12 OP 13; goto 14

The other addressing schemes assume specific
values for one or more of these locations. Thus,
the oneaddress von Neumann [Burks et al.,
19621 machines assume 11 = t2 = the accu-
mulator and 14 is the location following that of
the current instruction. The two-address ma-
chine assumes l l = 12; 14 is the next address.

Historically, the trend in machine design has
been to move from a 1- or 2-word accumulator
structure as in the von Neumann machine to-
ward a machine with accumulator and index
register(s).* As the number of registers is in-
creased, the assignment of the registers to spe-
cific functions becomes more undesirable and
inflexible; thus, the general register concept has
developed. The use of an array of general regis-
ters in the processor was apparently first used in
the first generation, vacuum-tube machine,
PEGASUS [Elliott et al., 19561 and appears to
be an outgrowth of both 1- and 2-address struc-
tures. (Two alternative structures - the early 2-
and 3-address-per-instruction computers may
be disregarded, since they tend to always access
primary memory for results as well as tempo-
rary storage and thus are wasteful of time and
memory cycles and require a long instruction.)
The stack concept (0-address) provides the most
efficient access method for specifying al-
gorithms, since very little space, only the access
addresses and the operators, needs to be given.
In this scheme the operands of an operator are
always assumed to be on the “top of the stack.”
The stack has the additional advantage that

arithmetic expression evaluation and compiler
statement parsing have been developed to use a
stack effectively. The disadvantage of the stack
is due, in part, to the nature of current memory
technology. That is, stack memories have to be
simulated with random-access memories; mul-
tiple stacks are usually required; and even
though small stack memories exist, as the stack
overflows, the primary memory (core) has to be
used.

Even though the trend has been toward the
general register concept (which, of. course, is
similar to a 2-address scheme in which one of
the addresses is limited to small values), it is im-
portant to recognize that any design is a com-
promise. There are situations for which any of
these schemes can be shown to be “best.” The
IBM System 360 series uses a general register
structure, and their designers [Amdahl et al.,
19641 claim the following advantages for the
scheme.

1. Registers can be assigned to various
functions: base addressing, address cal-
culation, fixed-point arithmetic, and in-
dexing.

2. Availability of technology makes the
general register structure attractive.

The System 360 designers also claim that a
stack organized machine such as the English
Electric KDF 9 [Allmark and Lucking, 19621 or
the Burroughs B5000 [Lonergan and King,
19611 has the following disadvantages.

1.

2.

3.

Performance is derived from fast regis-
ters, not the way they are used.
Stack organization is too limiting and re-
quires many copy and swap operations.
The overall storage of general registers
and stack machines are the same, consid-
ering point 2.

*Due, in part, to needs, but mainly to technology that dictates how large the structure can be.

A NEW ARCHITECTURE FOR MINICOMPUTERS 251

4. The stack has a bottom, and when
placed in slower memory, there is a per-
formance loss.
Subroutine transparency is not easily re-
alized with one stack.
Variable length data is awkward with a
stack.

5.

6.

We generally concur with points I , 2, and 4.
Point 5 is an erroneous conclusion, and point 6
is irrelevant (that is, general register machines
have the same problem). The general register
scheme also allows processor implementations
with a high degree of parallelism since all in-
structions of a local block can operate on sev-
eral registers concurrently. A set of truly
general purpose registers should also have addi-
tional uses. For example, in the DEC PDP-IO,
general registers are used for address integers,
indexing, floating point, Boolean vectors (bits),
or program flags and stack pointers. The gen-
eral registers are also addressable as primary
memory, and thus, short program loops can re-
side within them and be interpreted faster. It
was observed in operation that PDP-10 stack
operations were very powerful and often used
(accounting for as many as 20 percent of the
executed instructions in some programs, e.g.,
the compilers).

The basic design decision that sets the PDP-
1 1 apart was based on the observation that by
using truly general registers and by suitable ad-
dressing mechanisms, it was possible to con-
sider the machine as a 0-address (stack), 1-
address (general register), or 2-address (mem-
ory-to-memory) computer. Thus, it is possible
to use whichever addressing scheme, or mixture
of schemes, is most appropriate.

Another important design decision for the in-
struction set was to have only a few data-types
in the basic machine, and to have a rather com-
plete set of operations for each data-type. (AI-
ternative designs might have more data-types
with few operations, or few data-types with few
operations.) In part, this was dictated by the

machine size. The conversion between data-
types must be accomplished easily either auto-
matically or with one or two instructions. The
data-types should also be sufficiently primitive
to allow other data-types to be defined by soft-
ware (and by hardware in more powerful ver-
sions of the machine). The basic data-type of
the machine is the 16-bit integer which uses the
two's complement convention for sign. This
data-type is also identical to an address.

PDP-11 Model 20 Instruction Set (Basic
Instruction Set)

A formal description of the basic instruction
set is given in the original paper [Bell e? al.,
19701 using the ISPL notation [Bell and Newell,
19701. The remainder of this section will discuss
the machine in a conventional manner.

Primary Memory. The primary memory
(core) is addressed as either 2i6 bytes or 215
words using a 16-bit number. The linear address
space is also used to access the input/output de-
vices. The device state, data and control regis-
ters are read or written like normal memory
locations.

General Register. The general registers are
named: R[O:7]<15:0>; that is, there are eight
registers each with 16 bits. The naming is done
starting at the left with bit 15 (the sign bit) to
the least significant bit 0. There are synonyms
for R[6] and R[7]:

Stack Pointer\SP< 15:0>
:= R[6]<@15:0>
Used to access a special stack that is
used to store the state of interrupts,
traps, and subroutine calls.
Program Counter\PC< 15:0>
:= R[7]<@15:0>
Points to the current instruction being
interpreted. It will be seen that the fact
that PC is one of the general registers is
crucial to the design.

252 THE PDP-11 FAMILY

A n y general register, R[O:7], can be used as a
stack pointer. The special Stack Pointer SP has
additional properties that force it to be used for
changing processor state interrupts, traps, and
subroutine calls. (It also can be used to control
dynamic temporary storage subroutines.)

In addition to the above registers there are 8
bits used (from a possible 16) for processor sta-
tus, called PS< 15:0> register. Four bits are the
Condition Codes\CC associated with arith-
metic results; the T-bit controls tracing; and 3
bits control the priority of running programs
Priority <2:0>. Individual bits are mapped in
PS as shown in the appendix.

Data-Types and Primitive Operations.
There are two data lengths in the basic machine:
bytes and words, which are 8 and 16 bits, re-
spectively. The nontrivial data-types are word-
length integers (w.i.); byte-length integers (by.i);
word-length Boolean vectors (w.bv); i.e., 16 in-
dependent bits (Booleans) in a I-dimensional
array; and byte-length Boolean vectors (by.bv).
The operations on byte and word Boolean vec-
tors are identical. Since a common use of a byte
is to hold several flag bits (Booleans), the oper-
ations can be combined to form the complete
set of 16 operations. The logical operations are:
“clear,” “complement,” “inclusive or,” and
“implication” (x 3 y or l x V y).

There is a complete set of arithmetic oper-
ations for the word integers in the basic instruc-
tion set. The arithmetic operations are: “add,”
“subtract,” “multiply” (optional), “divide”
(optional), “compare,” “add one,” “subtract
one,” “clear,” “negate,” and “multiply and di-
vide” by powers of two (shift). Since the address
integer size is 16 bits, these data-types are most
important. Byte-length integers are operated on
as words by moving them to the general regis-
ters where they take on the value of word in-
tegers. Word-length-integer operations are

carried out and the results are returned to mem-
ory (truncated).

The floating-point instructions defined by
software (not part of the basic instruction set)
require the definition of two additional data-
types (of length two and three), i.e., double
words (d.w.) and triple words (t.w.). Two addi-
tional data-types, double integer (d.i.) and triple
floating-point (t.f. or f) are provided for arith-
metic. These data-types imply certain addi-
tional operations and the conversion to the
more primitive data-types.

Address (Operand) Calculation. The gen-
eral methods provided for accessing operands
are the most interesting (perhaps unique) part
of the machine’s structure. By defining several
access methods to a set of general registers, to
memory, or to a stack (controlled by a general
register), the computer is able to be a 0-, 1-, and
2-address machine. The encoding of the instruc-
tion source (S) fields and destination (D) fields
are given in Figure 10 together with a list of the
various access modes that are possible. (The ap-
pendix gives a formal description of the effec-
tive address calculation process.)

I t should be noted from Figure 10 that all the
common access modes are included (direct,
indirect, immediate, relative, indexed, and in-
dexed indirect) plus several relatively uncom-
mon ones. Relative (to PC) access is used to
simplify program loading, while immediate
mode speeds up execution. The relatively un-
common access modes, auto-increment and
auto-decrement, are used for two purposes: ac-
cess to a stack under control of the registers*
and access to bytes or words organized as
strings or vectors. The indirect access mode al-
lows a stack to hold addresses of data (instead
of data). This mode is desirable when manipu-
lating longer and variable-length data-types
(e.g., strings, double fixed, and triple floating

* N o t e t h a t . by convention, a stack builds toward register 0. and when the stack crosses 4OOx. a stack overflow occurs.

A NEW ARCHITECTURE FOR MINICOMPUTERS 253

m d I
7 6 B I T

sr
1 0 B I T ’{ ‘ d m 4 ,”, dr

r = R E G I S T E R S P E C I F I C A T I O N Rlr l
d = D E F E R I l N D l R E C T l A D D R E S S B I T
m = MODE loo = R I ~ J . 01 = ~ l r l . NEXT R I ~ I t SI

10 = Rlrl. Rlr l -an. N E X T R121
11 = I N D E X E D WITH N E X T WORD1

The following access modes can be specified

0

1

2

3

4

5

2

3

6

7

6

7

Direct to a register Rlr l

Indtrect to a register. R l r l lor address of data

Auto increment YIB register lpopl - use register as address.
then increment register

Auto increment w a register Ipopl - defer

Auto decrement via register (push1 - decrement regtster. then
use register as address

Auto decrement indirect - decrement register. then use register
as the address of the address of data

I m m e d i a t e data - next full w o r d 1s the data lr = P C I

Direct data - nest full w o r d 45 the address of data l r = P C I

Direct indexed - use next full word indexed w l t h Rlr l as ad-
dress of data

Dnrect indexed - indirect - use next full word indexed w i t h Rlr l
as the address of the address of data

Relative access ~ next full w o r d plus P C is the address IR =
P C I

Relat ive indirect access - n e x t full word plus PC IS the address
of the address of data lr = PCI.

1 Address mcrement /a i value 1s 1 or 2

Figure 10 Address calculation formats.

point). The register auto-increment mode may
be used to access a byte string; thus, for ex-
ample, after each access, the register can be
made to point to the next data item. This is used
for moving data blocks, searching for particular
elements of a vector, and byte-string operations
(e.g., movement, comparisons, editing).

This addressing structure provides flexibility
while retaining the same, or better, coding effi-
ciency than classical machines. As an example
of the flexibility possible, consider the varia-
tions possible with the most trivial word in-
struction MOVE (Table I). The MOVE instruc-
tion is coded in conventional 2-address, I-ad-
dress (general register) and 0-address (stack)
computers. The 2-address format is particularly
nice for MOVE, because it provides an efficient

encoding for the common operation: A t B
(note that the stack and general registers are not
involved). The vector moves A[I] t B(1) is also
efficiently encoded. For the general register
(and I-address format), there are about 13
MOVE operations that are commonly used. Six
moves can be encoded for the stack (about the
same number found in stack machines).

Instruction Formats. There are several in-
struction decoding formats depending on
whether zero, one, or two operands have to be
explicitly referenced. When two operands are
required, they are identified as source S and
destination D and the result is placed at destina-
tion D. For single operand instructions (unary
operators), the instruction action is D +- u D;
and for two operand instructions (binary oper-
ators), the action is D t D b S (where u and b
are unary and binary operators, e.g., 1, - and
+, -, X, /, respectively. Instructions are speci-
fied by a 16-bit word. The most common binary
operator format (that for operations requiring
two addresses) uses bits 1512 to specify the op-
eration code, bits 11:6 to specify the destination
D, and bits 5:O to specify the source S. The
other instruction formats are given in Figure 1 I .

Instruction Interpretation Process. The
instruction interpretation process is given in
Figure 12, and follows the common fetch-
execute cycle. There are three major states: (I)
interrupting - the PC and PS are placed on the
stack accessed by the Stack Pointer/SP, and the
new state is taken from an address specified by
the source requesting the trap or interrupt; (2)
trace (controlled by T-bit) - essentially one in-
struction at a time is executed as a trace trap
occurs after each instruction, and (3) normal in-
struction interpretation. The five (lower) states
in the diagram are concerned with instruction
fetching, operand fetching, executing the oper-
ation specified by the instruction and storing
the result. The nontrivial details for fetching
and storing the operands are not shown in the
diagram but can be constructed from the effec-
tive address calculation process (appendix). The

254 THE PDP-11 FAMILY

J U M P 0 000 000 0 0 1

BINARY A R I T H M E T I C A N 0 LOGICAL OPERATIONS

~ J I S E E NOTE)

F O R M 0 . S b D

EXAMPLE A D D I =bop=OOlOl + I C C 0 . D+SI

UNARY A R I T H M E T I C A N 0 LOGICAL OPERATION

luoplDj
F O R M O c v D

EXAMPLES N E G l = u 0 p = 0 0 0 0 1 0 1 1 0 0 ~ ~ ICC D - - D l - N E G A T E

A S L I =uop=OOOOO11OO11~- ICC D .D X 21 SHIFT LEFT

B R A N C H IRELATlVEl OPERATORS

1-1
F O R M IF brap condition then IPC t PC f olfretl

EXAMPLE B E 0 I = brop = 0316112 . IPC - P C f offset1

0

F O R M P C c 0 + Pc

J U M P T O SUBROUTINE

D 000 1 0 0

SAVE Rlrr l O N STACK ENTER S U B R O U T I N E AT 0 + PC

MISCELLANEOUS OPERATIONS

code I
F O R M S T - f

EXAMPLE HALT I = insfruct i~n = 0) - I R U N I 01.

NOTE
There tnstructions are all one word D and/or S may each
require one additional immediate data or address word
Thus. mifructions can be one. two. or three words long

Figure 11 PDP-I 1 instruction formats (simplified)

state diagram, though simplified, is similar to 2-
and 3-address computers, but is distinctly dif-
ferent than a 1 -address (1-accumulator) com-
puter.

The ISP description (appendix) gives the op-
eration of each of the instructions, and the more
conventional diagram (Figure 11) shows the de-
coding of instruction classes. The ISP descrip-
tion is somewhat incomplete; for example, the
add instruction is defined as:

EXECUTE
STATES

Figure 12
state diagram

PDP-1 1 instruction interpretation process

the ADD instruction is executed with the above
effect). I n general, the CC are based on the re-
sult, that is, Z is set if the result is zero, N if
negative, C if a carry occurs, and V if an over-
flow was detected as a result of the operation.
Conditional branch instructions may thus fol-
low the arithmetic instruction to test the results
of the CC bits.

Examples of Addressing Schemes

Use as a Stack (Zero-Address) Machine.
Table 2 lists typical 0-address machine instruc-
tions together with the PDP- 11 instructions that
perform the same function. It should be noted
that translation (compilation) from normal in-
fix expressions to reverse Polish is a com-
paratively trivial task. Thus, one of the primary
reasons for using stacks is for the evaluation of

ADD (:= bop = 0010~) + (CC,D D + S)

Addition does not exactly describe the changes
to the Condition Codes CC (which means
whenever a binary opcode [bop] of 00102 occurs

expressions in reverse Polish form.

form:
Consider an assignment statement of the

D + A + B/C

A NEW ARCHITECTURE FOR MINICOMPUTERS 255

Table 1. Coding for the M O V E Instruction To Compare wi th Conventional Machines

Assembler Format Effect Description

2-Address Machine
Format
MOVE B. A*
MOVE #N, A
MOVE B(RZ), A(RZ)
MOVE (R3)+, (R4)+

General-Register
Machine Format
MOVE A, R 1
MOVE R1, A
MOVE @A. R1
MOVE R1, R3
MOVE R1, A(R1)
MOVE @A(RO), R1
MOVE (Rl) , R 3
MOVE (R1)+. R 3

Stack Machine Format
MOVE #N, -(RO)
MOVE A, -(RO)
MOVE @(RO)+. -(RO)
MOVE (RO)+. A
MOVE (RO)+. @(RO)+
MOVE (RO). -(RO)

R1 + A
A t R 1
R1 + M I A]
R 1 t R 3
Al l] t R1
R1 t M[A[l l]
R1 t MIR2)
R 3 t M [l]

Replace A with contents of B
Replace A with number B
Replace element of a connector
Replace element of a vector. move to next element

Load register
Store register
Load or store indirect via element A
Register-to-register transfer
Store indexed (load indexed) (or store)
Load (or store) indexed indirect
Load indirect via register
Load (or store) element indirect via register, move to next element

Load stack with literal
Load stack with contents of A
Load stack with memory specified by top of stack
Store stack in A
Store stack top in memory addressed by stack top -1
Duplicate top of stack

*Assembler Format
() Denotes contents of memory addressed by
~ Decrement register first
+ Increment register after
(u Indirect
Literal

which has the reverse Polish form:

DABC/ + t
and would normally be encoded on a stack ma-
chine as follows:

Load stack address of D
Load stack A
Load stack B
Load stack C
I

f +
Store.

However, with the PDP-11, there is an ad-
dress method for improving the program en-

coding and r u n time, while not losing the stack
concept. An encoding improvement is made by
doing an operation to the top of the stack from
a direct-memory location (while loading). Thus,
the previous example could be coded as:

Load stack B
Divide stack by C
Add A to stack
Store stack D

U s e as a I - A d d r e s s (G e n e r a l Reg is ter)
M a c h i n e . The PDP-11 is a general register
computer and should be judged on that basis.
Benchmarks have been coded to compare the

256 THE PDP-11 FAMILY

Table 2. Stack Computer Instructions and
Equivalent PDP-11 Instructions

Common Equivalent
Stack Instruction PDP-11 Instruction

Place address value A on
stack

Load stack from memory
address specified by stack

Load stack from memory lo-
cation A

Store stack at memory ad-
dress specified by stack

Store stack at memory loca-
tion A

Duplicate top of stack

+, add two top data of stack
to stack

-, X . 1, subtract, multiply.
divide

-. negate top data of stack

Clear top data of stack

v. "inclusive or" two top
data of stack "and" two top
data of stack

1, complement of stack

Test top of stack (set branch
indicators)

Branch on indicator

Jump unconditional

Add addressed location A to
top of stack (not common
for stack machine) equiva-
lent to load stack, add swap
top two stack data

Reset stack location to N

A. "and" two top stack data

MOVE M, - (RO)"

MOVE A, - (RO)

MOVE (RO)+. A

MOVE (RO). -(RO)

ADD (R0j-k. @RO

See add

NEG @ R O

CLR @ R O

BSET (RO)+, @RO

COM @RO

TST @ R O

BR (-, f . <. >/, >. <)

JUMP

ADD A. @RO

MOVE (RO)+, R1
MOVE (RO)+. R 2
MOVE R 1 , -(RO)
MOVE R2, -(RO)

MOVE N, RO
COM @RO

BCLR (RO)+, @ R O c

. Stack pointer has been arbitrarily used as register RO for this
example

PDP-I 1 with the larger DEC PDP-IO. A 16-bit
processor performs better than the DEC PDP-
10 in terms of bit efficiency, but not with time
or memory cycles. A PDP-11 with a 32-bit-wide
memory would, however, decrease time by
nearly a factor of 2, making the times essentially
comparable.

Use as a 2-Address Machine. Table 3 lists
typical 2-address machine instructions together
with the equivalent PDP-I 1 instructions for
performing the same operations. The most use-
ful instruction is probably the MOVE instruc-
tion because it does not use the stack or general
registers. Unary instructions that operate on
and test primary memory are also useful and
efficient instructions.

Table 3. Two-Address Computer Instructions
and Equivalent PDP-11 instructions

Two-Address Computer PDP-11

A +- B; transfer B to A

A +A -I- B; add

-, x . / See add

A + - A; negate

A + A V B; inclusive or

A t i A ; not COM

Jump unconditional JUMP

Test A, and transfer to B TST A
BR (-, f . >. <, <. >/) B

MOVE B, A

ADD B. A

NEG A

BSETB. A

Extensions of the Instruction Set for Real
(Floating-point) Arithmetic

The most significant factor that affects per-
formance is whether a machine has operators
for manipulating data in a particular format.
The inherent generality of a stored program
computer allows any computer by subroutine to
simulate another -given enough time and mem-
ory. The biggest and perhaps only factor that

A NEW ARCHITECTURE FOR MINICOMPUTERS 257

separates a small computer from a large com-
puter is whether floating-point data is under-
stood by the computer. For example, a small
computer with a cycle time of 1.0 microsecond
and 16-bit memory width might have the fol-
lowing characteristics for a floating-point add,
excluding data accesses:

Programmed: 250 ps

Since the instruction set operation code is al-
most completely encoded already for byte and
word-length data, a new encoding scheme is
necessary to specify the proposed additional in-
structions. This scheme adds two instructions:
enter floating-point mode and execute one
floating-point instruction. The instructions for
floating-point and double-word data are shown
in Table 4.

Programmed (but special 75ps
normalize and differencing LOGICAL DESIGN OF S(UNIBUS) AND Pc

of exponent instructions): The logical design level is concerned with the
Microprogrammed 25 ps physical implementation and the constituent

hardware: combinational and sequential logic elements
that form the various computer components
(e.g., processors, memories, controls). Phys- Hardwired: 2 PS

ically, these components are separate and con-
nected to the Unibus following the lines of the
PMS structure.

It should be noted that the ratios between
programmed and hardwired interpretation var-
ies by roughly two orders of magnitude. The
basic hardwiring scheme and the programmed
scheme should allow binary program com-
patibility, assuming there is an interpretive pro-
gram for the various operators in the Model 20.
For example, consider one scheme that would
add eight 48-bit registers that are addressable in
the extended instruction set. The eight floating
registers F would be mapped into eight double-
length (32-bit) registers D. In order to access the
various parts of F or D registers, registers FO
and F1 are mapped onto registers RO to R2 and
R3 to R5.

Unibus Organization

Figures 4 and 5 of Chapter 14 diagram the Pc
and the entering signals from the Unibus. The
control unit for the Unibus, housed in Pc for
the Model 20, is not shown in the figure.

The PDP-I 1 Unibus has 56 bidirectional sig-
nals conventionally used for program-
controlled data transfers (processor to control),
direct memory data transfers (processor or con-
trol-to-memory) and control-to-processor inter-
rupt . The Unibus is interlocked; thus,

Table 4. Floating-point and Double-Word Data Instructions

Binary Ops OP Floating Point/f Double Word/d

bop’ S D t

+
X
/
compare

-

unary ops
uop’ D -

FMOVE DMOVE
FADD DADD
FSU B DSUB
FMUL DMUL
FDlV DDlV
FCM P DCMP

FNEG DNEG

258 THE PDP-11 FAMILY

transactions operate independently of the bus
length and response time of the master and
slave. Since the bus is bidirectional and is used
by all devices, any device can communicate with
any other device. The controlling device is the
master, and the device to which the master is
communicating is the slave. For example, a
data transfer from processor (master) to mem-
ory (always a slave) uses the Data Out dialogue
facility for writing and a transfer from memory
to processor uses the Data In dialogue facility
for reading.

Bus Control. Most of the time the processor
is bus master fetching instructions and oper-
ands from memory and storing results in mem-
ory. Bus mastership is determined by the
current processor priority and the priority line
upon which a bus request is made and the phys-
ical placement of a requesting device on the
linked bus. The assignment of bus mastership is
done concurrent with normal communication
(dialogues).

Unibus Dialogues

Three types of dialogues use the Unibus. All
the dialogues have a common protocol that first
consists of obtaining the bus mastership (which
is done concurrent with a previous transaction)
followed by a data exchange with the requested
device. The dialogues are: Interrupt; Data In
and Data In Pause; and Data Out and Data Out
Byte.

Interrupt. Interrupt can be initiated by a
master immediately after receiving bus master-
ship. An address is transmitted from the master
to the slave on Interrupt. Normally, subordi-
nate control devices use this method to transmit
an interrupt signal to the processor.

Data In and Data In Pause. These two bus
operations transmit slave’s data (whose address
is specified by the master) to the master. For the
Data In Pause operation, data is read into the
master and the master responds with data
which is to be rewritten in the slave.

Data Out and Data Out Byte. These two
operations transfer data from the master to the
slave at the address specified by the master. For
Data Out, a word at the address specified by the
address lines is transferred from master to slave.
Data Out Byte allows a single data byte to be
transmitted.

Processor Logical Design

The Pc is designed using TTL logical design
components and occupies approximately eight
8 inch X 12 inch printed circuit boards. The Pc
is physically connected to two other com-
ponents, the console and the Unibus. The con-
trol for the Unibus is housed in the Pc and
occupies one of the printed circuit boards. The
most regular part of the Pc is the arithmetic and
state section. The 16-word scratchpad memory
and combinational logic data operators, D
(shift) and D (adder, logical ops), form the most
regular part of the processor’s structure. The
16-word memory holds most of the 8-word pro-
cessor state found in the ISP, and the 8 bits that
form the Status word are stored in an 8-bit reg-
ister. The input t o the adder-shift network has
two latches which are either memories or gates.
The output of the adder-shift network can be
read to either the data o r address parts of the
Unibus, or back to the scratchpad array.

The instruction decoding and arithmetic con-
trol are less regular than the above data and
state and these are shown in the lower part of
the figure. There are two major sections: the in-
struction fetching and decoding control and the
instruction set interpreter (which, in effect, de-
fines the ISP). The later control section operates
on, hence controls, the arithmetic and state
parts of the Pc. A final control is concerned
with the interface to the Unibus (distinct from
the Unibus control that is housed in the Pc).

CONCLUSIONS

In this paper we have endeavored to give a
compl,.(,. description of the PDP-I 1 Model 20

A NEW ARCHITECTURE FOR MINICOMPUTERS 259

computer at four descriptive levels. These pre-
sent an unambiguous specification at two levels
(the PMS structure and the ISP), and, in addi-
tion, specify the constraints for the design at the
top level, and give the reader some idea of the
implementation at the bottom level logical de-
sign. We have also presented guidelines for
forming additional models that would belong to
the same family.

ACKNOWLEDGEMENTS

The authors are grateful to Mr. Nigberg of
the technical publication department at DEC
and to the reviewers for their helpful criticism.
We are especially grateful to Mrs. Dorothy
Josephson at Carnegie-Mellon University for
typing the notation-laden manuscript.

APPENDIX. DEC PDP-11 INSTRUCTION SET PROCESSOR DESCRIPTION (IN ISPL)

The following description gives a cursory description of the instructions in the ISPL, the initial
notation of Bell and Newell [1971]. Only the processor state and a brief description of the instruc-
tions are given.

Primary Memory State

M\Mb\Memory [0:216 - 1]<7:0>
Mw[O:2'5 - 1]<15:0> := M[0:2'6 - 1]<7:0>

Processor State (9 words)

R\Registers [0:7]< 15:0>
SP<15:0> := R[6]<15:0>
PC<15:0> := R[7]<15:0>

PS< 15:0>

Priority\P<2:0> := PS<7:5>

CC\Condition-Codes<3:0> := PS<3:0>

Carry\C := CC<O>

Negative\N := CC<3>

Zero\Z := CC<2>

Byte memory
Word memory mapping

Word general registers
Stack pointer
Program counter

Processor state register

Under program control; priority level of
the process currently being interpreted; a
higher level process may interrupt or trap
this process.

A result condition code indicating an arith-
metic carry from bit 15 of the last oper-
ation.

A result condition code indicating last re-
sult was negative.

A result condition code indicating last re-
sult was zero.

260 THE PDP-11 FAMILY

Overflow\V := C C < l >

Trace\T := ST<4>

Undefined<7:0> := PS<15:8>

Run
Wait

A result condition code indicating an arith-
metic overflow of the last operation.

Denotes whether instruction trace trap is to
occur after each instruction is executed.

Unused

Denotes normal execution.
Denotes waiting for an interrupt.

Instruction Set

The following instruction set will be defined briefly and is incomplete. It is intended to give the
reader a simple understanding of the machine operation.

MOV (:= bop = 0001) -+ (CC,D t S);
MOVB (:= bop = 1001) -+ (CC,Db t Sb);

Binary Arithmetic: D t D b S;
A D D (:= bop = 01 10) -+ (CC,D e D + S);
SUB (:= bop = 11 10) -+ (CC,D t D - S);
CMP (:= bop = 0010) -+ (CC t D - S);
CMPB (:= bop = 1010) -+ (CC t Db - Sb);
MU L (: = bop = 01 1 1) -+ (CC, D c D X S)

DIV (:= bop = 11 11) -+ (CC, D t D/S);

Unary Arithmetic: D t US;

CLR (:= UOP = 0508) + (CC,D t 0);
CLRB (:= UOP = 10508) -+ (CC,Db t 0);
COM (:= UOP = 0518) -+ (CC,D t - I D) ;
COMB (:= UOP = 10518) -+ (CC,Db t 1 D b) ;
INC(:= UOP = 0528) + (CC,D t D + 1);
INCB (:= UOP = 10528) -+ (CC,Db t Db + 1);
DEC (:= UOP = 0538) -+ (CC,D t D - 1);
DECB (:= UOP = 10538) -+ (CC,Db t D b - 1);
NEG (:= UOP = 0548) -+ (CC,D t - D);
NEGB (:= UOP = 10548) -+ (CC,Db t - Db)
ADC (:= UOP = 0558) -+ (CC,D t D + C);
ADCB (:= UOP = 10558) -+ (CC,Db t Db + C);
SBC (:= UOP = 0568) -+ (CC,D t D - C);

Move word
Move byte

Add
Subtract
Word compare
Byte compare
Multiply, if D is a register then
a double length operator
Divide, if D is a register, then a
remainder is saved

Clear word
Clear byte
Complement word
Complement byte
Increment word
Increment byte
Decrement word
Decrement byte
Negate
Negate byte
Add the carry
Add to byte the carry
Subtract the carry

A NEW ARCHITECTURE FOR MINICOMPUTERS 261

SBCB (:= UOP = 10568) -+ (CC,Db t Db - C);
TST (:= UOP = 057s) -+ (CC + D);
TST (:= UOP = 10578) -+ (CC + Db);

Shift Operations: D t D X 2”;

ROR (:= sop = 0608) -+ (C 0 D t C 0 D/2(rotate));
RORB (:= sop = 10608) -+ (C 0 Db t C 0 Db/2(rotate));
ROL (:= sop = 0618) -+ (C 0 D t C 0 D X 2 (rotate));
ROLB (:= sop = 10618) -+ (C 0 Db t C 0 Db X 2 (rotate]);
ASR (:= SOP = 0628) -+ (CC,D +- D X 2);
ASRB (:= SOP = 10628) -+ (CC,Db + Db/2);
ASL (:= SOP = 0638) -+ (CC,D t D X 2);
ASLB (:= SOP = 10638) -+ (CC,Db + Db X 2);
ROT (:= SOP = 0648) -+ (C 0 D + D X 2’);
ROTB (:= SOP = 10648) -+ (C 0 Db + D X 2’);
LSH (:= sop = 0658) -+ (CC,D t D X 2S(logical));
LSHB (:= sop = 10658) -+ (CC,Db t Db X 2S(logical]);
ASH (:= SOP = 0668) -+ (CC,D t D X 2’);
ASHB (:= SOP = 10668) -+ (CC,Db e Db X 2 ’);
NOR (:= sop = 0678+(CC,D t normalize (D));

NORD (:= sop = 10678 + (Db tnormalize (Dd));

SWAB (:= SOP = 3) -+ (CC,D + D<7:0, 15:8>)

(R [r’] -+ normalize-exponent (D));

(R[r’] t normalize,exponent (D));

Logical Operations

BIC (:= bop = 0100) -+ (CC,D t D + D A 1s) ;
BICB (:= bop = 1100) -+ (CC,Db e Db V TSb);
BIS (:= bop = 0101) -+ (CC,D t D V S);
BISB (:E bop = 1101 -+ (CC,Db t Db V Sb);
BIT (:= bop = 0011) -+ (CC + D A S);
BITB (:= bop = 101 1) -+ (CC e Db A Sb);

Branches and Subroutines Calling: PC t f;

JMP (:= SOP = 00018) -+ (PC +- D’);
BR (:= brop = 0116) -+ (PC e PC + offset);
BEQ (:= brop = 0316) -+ (Z -+ (PC t P c + offset));
BNE (:= brop = 02,6) -+ (i Z -+ (PC t P c + offset));
BLT (:= brop = 0516) -+ (N 0 V -+ (PC e PC + offset));
BGE (:= brop = 0416) -+ (N = V -+ (PC t PC + offset));
BLE (:= brop = 0716)-+ (Z V (N 0 V) -+ (PC PC + offset));

Subtract from byte the carry
Test
Test byte

Rotate right
Byte rotate right
Rotate left
Byte rotate left
Arithmetic shift right
Byte arithmetic shift right
Arithmetic shift left
Byte arithmetic shift left
Rotate
Byte rotate
Logical shift
Byte logical shift
Arithmetic shift
Byte arithmetic shift
Normalize

Normalize double

Swap bytes

Bit clear
Byte bit clear
Bit set
Byte bit set
Bit test under mask
Byte bit test under mask

Jump unconditional
Branch unconditional
Equal to zero
Not equal to zero
Less than (zero)
Greater than or equal (zero)
Less than or equal (zero)

262 THE PDP-11 FAMILY

BGT (:= brop = 0616) -+ (1 (Z V (N 0 V)) -+ (PC t PC +
BCS/BHIS (:= brop = 8716) -+ (C -+ (PC t PC + offset));

offset));

BCC/BLO (:= brop = 8616) -+ (IC -+ (PC t PC + offset));
BLOS (:= brop = 8316) -+ (C A Z + (PC t PC + offset));
BHI (: = brop = 8216) -+ ((1 C V Z) -+ (PC t PC + offset));
BVS (:= brop = U I 6) -+ (V + (PC t PC + offset));
BVC (:= brop = 8416) + (IV -+ (PC t PC + offset));
BMT (:= brop = 8116) -+ (N -+ (PC t PC + offset));
BPL (:= brop = 8016) + (i N + (PC t PC + offset));
JSR (:= SOP = 00408) -+

(SP t SP - 2; next
M[SP] t R[sr];
R[sr] t PC; PC t D);

R[dr] t M[SP];
RTS(: = i = 000200~) -+ (PC t R[dr];

SP t SP + 2);

Miscellaneous Processor State Modification:

RTI (: = i = 2 8) -+ (PC t M[SP];

PS t M[SP];
SP t SP + 2; next

SP t SP + 2);
HALT (: = i = 0) + (Run t 0);
WAIT (: = i = 1) -+ (Wait t 1);
TRAP (: = i = 3) -+ (SP c SP + 2; next

M[SP] t PS;
SP t SP + 2; next
M[SP] t PC;
PC + M [348];
PS t M[12]);

EMT (: = brop - 8216) -+ (SP t SP + 2; next
M[SP] e PS;
SP t SP + 2; next
M[SP] t PC;
P c t M[308];
PS t M[328]);

IOT (: = i = 4) + (see TRAP)
RESET (: = -i = 5) -+ (not described)
OPERATE(: = i<5:15> = 5) - +

(i<4> + (CC t CC V i<3:0>);
i i<4> -+ (CC + CC A 1 i<3:0>));

end Instruction- execution

Less greater than (zero)
Carry set; higher or same (un-
signed)
Carry clear; lower (unsigned)
Lower or same (unsigned)
Higher than (unsigned)
Overflow
No overflow
Minus
Plus
Jump to subroutine by putting
R[sr], PC on stack and loading
R[sr] with PC, and going to
subroutine at D)
Return from subroutine

Return from interrupt

Trap to M[348] store status
and PC

Enter new process
Emulator trap

1 / 0 trap to M[208]
Reset to external devices
Condition code operate
Set codes
Clear codes

Cache Memories for PDP-11
Family Computers

WILLIAM D. STRECKER

INTRODUCTION

One of the most important concepts in com-
puter systems is that of a memory hierarchy. A
memory hierarchy is simply a memory system
built of two (or more*) memory technologies.
The first technology is selected for fast access
time and necessarily has a high per-bit cost.
Relatively little of the memory system consists
of this technology. The second technology is se-
lected for low per-bit cost and necessarily has a
slow access time. The bulk of the memory sys-
tem consists of this technology. The use of the
hierarchy is coordinated by user software, sys-
tem software, or hardware so that the overall
characteristics of the memory system approx-
imate the fast access of the fast technology, and
the low per-bit cost of the low cost technology.
An example of a user software managed hier-
archy is core/disk overlaying; an example of a
system software managed hierarchy is core/disk
demand paging. The prime example of a hard-
ware managed hierarchy is a bipolar cache/core
memory system.

Until recently, the concept of cache memory
appeared only in very large scale, performance-
oriented computer systems such as the IBM
360/85 [Conti, 1969; Conti et ai., 19681 and 370
models 155 and larger. Recently a small cache
was announced as an option for the DG Eclipse
[Data General, 19741 computer system. A
larger, internal cache memory is part of a re-
cently announced Digital PDP-I 1 family com-
puter system: the PDP-11/70 [DEC, 19751. The
content of this paper is a summary of the re-
search done on the feasibility of using a bipolar
cache/core hierarchy in PDP-11 family com-
puter systems.

CACHE MEMORY

A cache memory is a small, fast, associative
memory located between the central processor
Pc and the primary memory Mp. Typically the
cache is implemented in bipolar technology
while Mp is implemented in MOS or magnetic

*Memory hierarchies can, of course, consist of three o r more technologies. Discussion and analysis of these multilevel

263

hierarchies is a fairly obvious generalization of the discussion and analysis given here.

264 THE PDP-11 FAMILY

core technology. Stored in the cache are address
data AD pairs consisting of an Mp address and
a copy of the contents of the Mp location corre-
sponding to that address.

The operation of the cache is as follows.
When the Pc addresses Mp, the address is first
compared against the addresses stored in the
cache. If there is a match, the access is per-
formed on the data portion of the matched AD
pair. This is called a hit and is performed at the
fast access time of the cache. If there is no
match - called a miss - Mp is accessed as usual.
Generally, however, an AD pair corresponding
to the latest access is stored in the cache, usually
displacing some other A D pair. It is the latter
procedure which tends to keep the contents of
the cache corresponding to the Mp locations
most commonly accessed by the Pc. Because
programs typically have the property of locality
(i.e., over short periods of time most accesses
are to a small group of Mp locations), even rela-
tively small caches have a majority of Pc ac-
cesses resulting in hits. The performance of a
cache is described by its miss ratio - the fraction
of all Pc references which result in misses.

CACHE ORGANIZATION

There are a number of possible cache organi-
zational parameters. These include:

1 .

2.

3.

4.
5 .

The size of the cache in terms of data
storage.
The amount of data corresponding to
each address in the A D pair.
The amount of data moved between Mp
and the cache on a miss.
The form of address comparison used.
The replacement algorithm which de-
cides which AD pair to replace after a
miss.

6. The time at which Mp is updated on
write accesses.

The most obvious form of cache organization
is fully associative with the data portion of the
AD pair corresponding to basic addressable
unit of memory (typically a byte or word), as
indicated by the system architecture. On a miss,
this basic unit is brought into the cache from
Mp. However, for several reasons, this is not
always the most attractive organization. First,
because procedures and data structures tend to
be sequential, it is often desirable, on a miss, to
bring a block of adjacent Mp words into the
cache. This effectively gives instruction and
data pre-fetching. Second, when associating a
larger amount of data with an address, the rela-
tive amount of the cache storage which is used
to store data is increased. The number of words
moved between Mp and the cache is termed the
block size. The block size is also typically the
size of the data in the AD pair* and is assumed
to be that for this discussion.

In a fully associative cache, any AD pair can
be stored in any cache location. This implies
that, for a single hardware address comparator,
the Mp address must be compared serially
against the address portions of the A D pairs -
which is too slow. Alternatively there must be a
hardware comparator for each cache location -
which is too expensive. An alternative form of
cache organization which allows for an inter-
mediate number of comparators is termed set
associative.

A set associative cache consists of a number
of sets which are accessed by indexing rather
than by association. Each of the sets contains
one or more AD pairs (of which the data por-
tion is a block). There are as many hardware
comparators as there are AD pairs in a set. The

* In a few complex cache organizations such as that used in the IBM 360/85, the size of the D portion of the A D pair (called a
sector in the 360/85) is larger than the block size. That potential will be ignored in this discussion.

CACHE MEMORIES FOR PDP-11 FAMILY COMPUTERS 265

understanding of the operation of a set associ-
ative cache is aided by Figure 1. The n bit Mp
address is divided into three fields of 1, i, and b
bits. Assume that there are 2i sets. The i-bit in-
dex field selects one of these sets. The A portion
of each AD pair is compared against the I-bit
label field* of the Mp address. If there is a
match, the b-bit byte field selects the byte (or
other sub-unit) in the D portion of the matched
AD pair.

7-"-
1 - I I i - b -

I LABEL I INDEX I BYTE 1

This strategy is termed write-through. Alterna-
tively, only the cache can be updated on a write
hit, and only when the updated AD pair is re-
placed on some future miss is Mp updated. This
strategy is termed write-back. The choice be-
tween these two strategies involves systems con-
siderations which are beyond the scope of this

There are other possible asymmetries in the
handling of reads and writes. One possibility is
that after a write miss an AD pair correspond-
ing to that access is not stored in the cache. This
is termed no-write-allocate. The alternative is,
of course, termed write-allocate.

paper.t

Figure 1 . Address fields for a s e t associative c a c h e

I f there is no match, Mp is accessed and (gen-
erally) a new AD pair is moved into the cache.
Which of the AD pairs to be replaced in the set
is selected by the replacement algorithm. Typi-
cal replacement algorithms are: first in, first out
(FIFO); least recently used (LRU), or random
(RAND).

There are two limiting cases of the set associ-
ative organization. When the number of sets is
the cache size in blocks, only a single hardware
comparator is needed. The resulting organiza-
tion is called direct mapped. It is the simplest
form of cache organization. When there is only
one set, clearly a fully associative cache results.

So far in the discussion there has been no dis-
tinction made between read and write accesses.
When the Pc makes a write access, ultimately
Mp must be updated. There are two obvious
times when this can be done. First is at the time
the write access is made. Both Mp and the cache
(if there is a hit) are updated simultaneously.

CACH E M EM 0 RY SIM U LATl ON

The understanding of memory hierarchies
(and programs) has not reached the point where
cache performance can be predicted analytically
as a function of cache organizational parame-
ters. As a consequence, the studying of cache
memory behavior is done through simulation.
(Some cache simulation results for other com-
puter architectures are reported in [Conti et al.,
1968; Meade, 1970; Bell et al., 1974; Gibson,
19671.) For the purposes of this study, a two
part simulator was constructed.

The first part was a PDP-11 simulator. This is
a PDP-11 program which runs other PDP-I1
programs interpretively. A variety of properties
of the interpreted programs can be collected, in-
cluding the sequence of generated Mp ad-
dresses. The latter is termed an address trace.
The address trace is processed by the second
part, the cache simulator. This is parameterized
by cache organization and determines the miss
ratio for a given address trace.

* N o t e that, in a set associative cache, only the label field must be stored in the cache A D pair - not the entire Mp address.

t For the PDP-1 I /70 system, write-through was chosen. The main impact of this is that each write access, as well as each read
miss, results in an M p access. Data suggests that , in PDP-I Is, about 10 percent of Pc accesses are writes,

266 THE PDP-11 FAMILY

CACHE SIMULATION RESULTS

Since the performance of cache memory is a
function not only of cache organization param-
eters but also of the program run, it is desirable
to run cache simulations with a wide variety of
programs. Multiplying these by a wide variety
of a cache’s organizational parameters to be
simulated resulted in a considerable amount of
simulation data of which only the highlights are
reported here.

The first experiment was to determine the ap-
proximate overall size of the cache memory.
Plots of the miss ratio against cache size for sev-
eral programs* are given in Figure 2 . (All sizes
in both the figures and the discussion are 16-bit
PDP-I 1 words.) A block size of two and a set
size of one were held constant. In general, the
miss ratio falls rapidly for caches up to 1024
words and falls less rapidly thereafter.

Figure 3 depicts the effect of set size (associ-
ativity) on cache performance. In order to clar-
ify the results, Figures 3 through 6 only contain
simulation data for a single program (the
Macro assembler) which had the highest miss

0 4

z? 0 3
a
LL
,A : 0 2

01

0

BLOCK SIZE = 2
SET SIZE = 1

M A C R O
ASSEMBLER

IFFTI

0 2 5 6 512 1024 2048
C A C H E SIZE

Figure 2.
miss ratio.

Effect of c a c h e size on

ratio in Figure 2 . As expected, a larger set size
reduces the miss ratio. The largest improvement
occurs in going from set size one to set size two.
Although not shown, even going to fully associ-
ative cache has little further effect on the miss
ratio.

BLOCK S IZE = 2
0 2

0 1 2 4 5
SET SIZE

Figure 3.
miss ratio.

Effect of s e t size o n

0 3

0.2

z?
4

,A 0.1
E

C

SET S IZE = 1

0 1 2 4 5
BLOCK SIZE

Figure 4.
miss ratio.

Effect of block size on

*These programs a re system and user programs running under the PDP-I I DOS operating system. They include a Macro
assembler, F O R T R A N compiler, PIP (a file utility program), and F O R T R A N executions of numerical applications. T h e
range of miss ratios is typical for the much wider group of programs actually simulated. Indeed, t he miss ratio for the Macro
assembler for a given cache size was the worst of any program simulated.

CACHE MEMORIES FOR PDP-11 FAMILY COMPUTERS 267

? NO ALLOCATE

CACHE SIZE = 1024

SET SIZE = 2

BLOCK SIZE = 2

FIFO R A N D LRU

Figure 5. Effect of replacement
algorithm and write allocation on
miss ratio.

I n Figure 4, the impact of block size is shown.
Especially in smaller caches, going to a larger
block significantly reduces the miss ratio. This
is a result of a smaller cache depending more on
the pre-fetching effect for its performance.

The effect of write allocation and replace-
ment algorithm is given in Figure 5 . For the
program considered, there is a negligible per-
formance difference across the different strate-
gies.

In Figure 6 , the effect of periodically clearing
the cache is depicted. This approximates the ef-
fect on the cache of rapid context switching in
that, when a new program is brought in, the
cache appears “clear” to it. Even completely
clearing the cache every 300 Pc accesses only
degrades the miss ratio to 0.3. This represents a
worst case condition that would be unrealized
in practice. For example, the “new program”
brought in every 300 Pc references might be an

0 4

C A C H E S I Z E = 1024

0 300 3000 30000

CLEAR INTERVAL IACCESSESI

Figure 6.
miss ratio.

Effect of clear interval on

interrupt handler. Any program running that
often would typically find that the cache always
contained information relevant to it. Indeed,
for the cache organization given, it is impossible
in 300 accesses to significantly clear a 1024-
word cache.

CONCLUSIONS

The performance goals of the PDP-I 1/70
computer system required the typical miss ratio
to be 0.1 or less. Analysis of the preceding data,
with emphasis on the breaks in the curves, sug-
gested that the optimal organization was a
cache size of 1024 words, block size of two
words, and a set size of two. Because the data
suggests that the replacement algorithm and
write allocation strategies have negligible effect,
a no-write-allocate strategy and a random re-
placement algorithm were selected.

an

Buses, The Skeleton of
Corn pu ter Structures

JOHN V. LEVY

INTRODUCTION

A bus is a communication pathway con-
necting two or more electrical devices. In the
context of minicomputer design, buses are the
physical and electrical structures that determine
how the building blocks are interconnected.

I n every computer system, there are many
buses: internal pathways connect the registers
and arithmetic logic of a central processor; in-
put/output pathways connect processors, mem-
ories, and peripheral devices; and external
communication buses attach computer systems
to the telephone and other data communication
pathways. In this chapter, the discussion is re-
stricted to buses that interconnect computer
system components that are designed by differ-
ent engineering groups.

This particular approach may sound out of
place, but one of the most important functions
of a bus is to provide a well specified interface
between complex subsystems. We exclude from
discussion internal processor register transfer

buses, as well as external buses whose specifica-
tions are determined by engineers not involved
in the minicomputer design process. Although
none of the examples in this chapter is drawn
from multiprocessor systems, most of the de-
sign experience presented is relevant to such
systems.

What Does a Bus Do?

A bus is a communication medium. Each one
exists in order to transfer information from
place to place within a computer system. In this
chapter, we attempt to illustrate the com-
plexities of bus design by drawing on the real
history of some PDP-11 Family designs.* In
computer systems being manufactured and
sold, the success of bus designs is measured by
the following criteria:

1. Does the bus successfully establish the
communication pathway required?

* A l l of the real buses presented as exan~-,!es are proprietary products of Digital Equipment Corporation, protected by

269

United States and foreign patents.

270 THE PDP-11 FAMILY

2. Is the bus well specified (and well docu-
mented), so that a series of interfaces de-
signed either concurrently or over a
period of time by different engineers will
in fact be compatible?
Does the bus avoid imposing unneces-
sarily strict performance constraints on
the system?
Is the cost of the bus and its connections
commensurate with the computer system
and the bus’ role in it?
Does the bus design anticipate expan-
sion of the system in the future (without
excessive cost)?
Can the bus be manufactured and tested
in high volume production without ex-
cessive hand-crafting or tuning?

3 .

4.

5 .

6.

Beyond the scope of this chapter are some ad-
ditional functions of buses, such as providing a
means to diagnose and repair the system com-
ponents connected to it and to allow measure-
ment of system loads and performance.

Why Buses Are Important

As the above list of criteria suggests, there are
many ways in which poor bus design can spoil
the performance or cost/performance ratio of
an otherwise well designed computer system.
Failure to anticipate future expansion of a com-
puter system is a common problem in bus de-
signs. The PDP-I l Unibus, a very successful
bus, first became inadequate as the main inter-
connection pathway when processor and mem-
ory speeds surpassed the bandwidth capability
of the Unibus. Later, the Unibus 18-bit memory
address width became a limitation.

Computer design is driven by advances in
semiconductor technology. Every time the cost
of the components of a computer subsystem de-
creases by, say, 50 percent, the subsystem is
redesigned to take advantage of the lower cost.
At present, the performance/cost (or storage
capacity/cost) ratio for logic and memory is in-
creasing a t a rate of up to 100 percent per year.

But the bandwidth/cost and other performance
ratios of interconnections are steady or decreas-
ing slightly. As a result, bus designs tend to per-
sist in time across several redesigns of the other
computer system components. This justifies the
extensive engineering effort required in the in-
itial design of a bus.

How Buses Are Designed
To design a bus, the engineer must first find

out what system components are to be inter-
connected. Then, studying the requirements of
communications between these components,
the engineer chooses a structure. Finally, the
cost constraints and available technologies lead
to a choice of implementation.

The five-function model given below is not a
set of bus designs but a functional model that
results from taking the commonly used mini-
computer building blocks and asking: What
communications need to occur between this
component and each other component? The
model shows the five types of communications
which were the answers to that question. The
five functional pathways are the maximum
number of interconnections that would be use-
ful in a conventional single-processor mini-
computer. Real bus designs combine these
functions in cost-effective implementations.

After choosing the structure and functions of
buses, the engineer must write a specification.
This is crucial to the success of bus design if it is
to be interfaced by a number of different engi-
neers. As an example of the detail that can go
into a bus specification, Figures 1, 2, and 3
show how the Massbus Data Read operation
has been specified in a DEC internal engineer-
ing document.

After writing a specification, the engineer
builds a prototype and tests it. If other engi-
neers concurrently build interfaces to the bus,
discrepancies, errors, and misunderstandings
will be uncovered sooner. Finally, it is impor-
tant that the specification be maintained, up-
dating it to conform to the latest known design
constraints. A very useful appendix to a bus

BUSES. THE SKELETON OF COMPUTER STRUCTURES 271

DATA BUS R E A D S E Q U E N C E
1 A read command is loaded into the Control registar 01 the drive. I f the

command 1s valid. the drive enables its data bus receivers and drivers
and asserts OCC
Not mote than 100 microseconds after step 1. the controller asserts
RUN
After a cable delay. the drive receives the RUN assertion. Disk drives
now begin searching for the desired sector. Tape drives begin tape mo-
n on
When the drive has read the fwst data word, It generates parity lor the
word. the data and DPA are gated onto the data lines and SCLK is
asserted
After a cable delay, the controller receives the SCLK assertton
The drive negates SCLK no less than T nanoseconds alter asserting it,
where T 1s either 225 nanoseconds or 30 percent of the nominal b u n t
data period of the drive. whichever is greater. The Data lines should be
maintained valid lor no less than one hall of the SCLK interval after
SCLK Is negated.

7 After a cable delay. the controller receives the SCLK negation. The
controller strobes the D lines and DPA and checks parity

8 I1 there 1s more data t o be read in this block, then not lass than T
nanoseconds after step 6. the drive gates out the next data word onto
the D lines. generates DPA. and asserts SCLK Steps 5. 6. and 7 then
follow
Alter the negation of SCLK (step 6) on the last word 01 data in the
block. the drive asserts EEL
After a cable delay. the controller receives the EEL assertion. A t this
time. the controller must decide whether or not to have the drive read
the next black of data without disconnecting from the data bus Ithe
controller may already have negated the RUN line).
I1 the controller decides not to read the next block. it negates the RUN
line not later than 500 nanoseconda after step 10.
After a cable delay. the drive receives the RUN negation Ithe RUN line
may already have been negatedl
Not less than 1500 nanoseconds after step 9. the drive negates EEL. At
this time the drive strobes the RUN line I1 RUN has been negated. the
drive disconnects from the data bus lthe D R Y bit shwld be set and
OCC negated at this time)

1 4 After a cable delay. the controller receives the EEL negation (the con-
troller may now generate an end~ol-transfer interrupt and start another
data translerl

2

3

4

5
6

9

10

11

12

13

CONTROLLER

DATA TRANSFER

I h STROBE DATA

Figure 1
described in the Massbus specification

The Massbus Data Read operation as

specification is a list of the design problems that
came up during the engineering of connections
to it and the details of how they were resolved.
This was done for the Massbus, in a section of
the specification called “Design Notes.”

NOTE

p,
ENOOF TRANSFER

DRIVE

RESETGO

SET ATA
ASSERT A T l N

ENABLE DATA BUS
ASSERT OCC
RESETDRY

NO

ASSERTDATA
ASSERTSCLI

NEGATE S C L I

VES

ASSERT EBL

NEGATE EBL

1 = 22s “3 OR 3P
WHlCHEYER I S G R E I T E R

D A T A PERIOD OF
RESETGO DRlYE
S E T D R Y

FUNCTIONS OF BUSES IN COMPUTER
SYSTEMS: A FIVE-FUNCTION MODEL

The functional building blocks of computers
are central processing units, primary memory,
input/output controllers, and peripheral units.
Peripherals tend to be classed as either second-
ary memory or transducers (usually terminals).

Figure 4 shows these components in a tradi-
tional single-processor minicomputer system.
Five different paths are shown interconnecting
these components. These paths do not represent

Minimum time from one assertion at SCLK to the next is either
500 ns or P. whtchever IS greater: maximum unspecified

Figure 2.
Massbus specification.

The Data Read flowchart in the

actual buses. Instead, we have considered each
pair of components in the system and asked
whether they need to communicate with each
other. I f so, a pathway between the pair has
been inserted. This leads to a model which has
more interconnection pathways than a typical
computer has.

272 THE PDP-11 FAMILY

I I I
I I
I I I
I I I I I
I I I I

I I I I

RUN IDIIRI

EEL IDIITI I I I L

t t t f !t It, !t It, !t 11 !I t ! t f t t t
1 2 3 4 6 7 6 7 6 7 6 1 10 11 1 2 1 3 14

U = UNSPECIFIED MAXIMUM
1 = 226 OR 30% OF P WHICHEVER IS GREATER
P = NOMINAL BURST DATA PERIOD OF DRIVE

IC1 = ATTHE CONTROLLER NOTES
IO1 = A T THE DRIVE 1. 100ZS. max
IT1 = TRANSMITTING 2. zwrs. m a i
in1 = RECEIVING

Figure 3 The timing diagram of a Data Read in the Massbus specification

CONTROLLER

LEGEND
A = ADDRESS PER WORD
B = BLOCKTRANSFER
C =CONTROL
0 = DEVICE
E = EXTERNAL

I
TERMINAL
CONTROLLER

TERMINAL

Figure 4. A five-function model of computer buses.

BUSES, THE SKELETON OF COMPUTER STRUCTURES 273

Table 1. Requirements for the Five Pathway Types

Pathway Types

A 0 C D E

Requirement CPU- Controller- CPU- Controller- Controller-
Controller Peripheral External Memory Memory

Memory
Address

Maximum
Number of
Connections

Latency
Tolerance

Bandwidth

Length

Large: 222
(one
address
per word)

Small: Z4

Low
(0.5 /.IS)

High
(5 Mbytesls)

Short
(3 meters)

Large: 222
(one
address
per block)

Small: 24

High
(50 /.IS)

Medium
(1.2 Mbyteds)

Medium
(30 meters)

None None None

Medium: 26

Medium
(5 /.Is)

Low
(0.1 M byteds)

Long
(30 meters)

Small-
large: 2 8

Medium-
high

Low-high

Medium-long
(to 300 meters)

Small-
large: 28

Medium-
high

Low-high

M ed i u m - long

In real computer systems, the functions of these
pathways are combined into multifunction
buses in order to get economical designs.

There are five types of interconnection shown
in Figure 4, labeled A , B, C , D, and E. These
labels have the mnemonic value given in the fig-
ure legend.

Pathway A , connecting the central processor
(CPU) with the memory, is used to transfer in-
structions and data. This pathway is distin-
guished by requiring one address per word.

Pathway B connects one or more mass stor-
age and communication controllers to the
primary memory. It is distinguished by being a
block transfer medium. Only one memory ad-
dress per block transfer is needed because the
data is stored in consecutive memory locations.

Pathway C is the control pathway. 1 / 0 com-
mands are sent over this path from the CPU to
the 1 / 0 controllers, and status information is
returned from the controllers. 1 / 0 controllers
can also cause an interruption to the CPU over

this path. Small amounts of data are sometimes
transferred over this path, for example, charac-
ters moved to and from a console terminal.

Pathways labeled D connect 1 / 0 controllers
with their peripheral devices. In Figure 4, Path-
way D I represents a disk connection and D 2 a
multiple terminal connection path. The termi-
nal interconnection does not normally transfer
blocks of data. Both DI and D2 carry control
information as well as data.

Finally, pathway E represents a connection
to external communication lines. Usually, the
computer designer does not have control over
the specification of such external pathways.

Five key parameters or requirements for
these pathways affect cost and performance and
are often traded against each other. Table 1
summarizes these requirements for the five
types of pathways.

Memory addressing means selecting a word or
block of words within the address space of the

274 THE PDP-11 FAMILY

memory subsystem. Memory address bits are
no different from data bits, from the standpoint
of the bus designer. Both must be transmitted
from one bus connection to another. However,
type A pathways must transmit one address per
word accessed, while type B pathways need only
send one address per block of words. This dif-
ference can be exploited to gain lower cost
buses in systems which implement separate
buses for the A and B path functions.

The maximum number of connections to a bus
tells us how many signals must be used to select
a destination for a data transfer on the bus.
Typically, a bus will carry some number, n, of
“select” signals, and therefore be able to deliver
data to as many as 2” connections. On a type A
pathway, a CPU accesses connections which
contain memory. We do not typically need
more than four “select” signals, allowing up to
16 memory connections. In the case of multi-
processor shared-memory systems, it may be
necessary for some additional select codes to be
available to identify the processor that is the
destination for data from memory.

Latency tolerance refers to how long a delay
(latency) a connection can tolerate, after it de-
cides to make a data (word) transfer, until the
transfer is complete. Bandwidth refers to how
many data (word) transfers per second can be
made.

Latency is different from bandwidth: latency
refers to the interval, for any one data word
transfer, from the time it is initiated until it is
completed. Bandwidth is the repetition rate at
which the initiation and completion of word
transfers can be sustained over a given period of
time. In particular, peak bandwidth - the max-
imum possible repetition rate - is a parameter
which strongly affects the cost of a bus, and is
the bandwidth we refer to here.

Type A pathways require both low latency
and high bandwidth. The performance of a
CPU-memory system depends heavily on the
rate (bandwidth) at which words can be deliv-
ered to the central processor. Furthermore, the

Comments o n Unibus Addressing

Transfers on the Unibus are not di-
rected by the selection mechanism just
described. Instead, there is the single
concept of memory addresses. Each
data transfer (type A or type E) on the
Unibus is directed to or from a 1- or 2-
byte section of memory. The memory
address is broadcast to all connections.
I f one of the connections recognizes the
address as being one of its own, then it
participates in the data transfer. This
anonymity allows a very large number
of connections to be made to the
Unibus, with each connection imple-
menting a locally determined number
of memory bytes.

For control transfers (type C), the
Unibus has a concept called the “I/O
page.” A block of memory addresses
(the 1/0 page) is reserved for use in ac-
cessing control and status registers in
peripheral controllers and in the cen-
tral processor. The uppermost 8,192
bytes of memory are never imple-
mented in real memory. Instead, small
segments are assigned (by adminis-
trative procedures) t o each 1/0 con-
troller type. Each controller responds
to data transfers to and from addresses
within its assigned segment.

N o fixed amount of address space
need be allocated to a given controller.
I f two controllers of the same type are
connected to a Unibus, one of them is
assigned to a “floating” address seg-
ment, an area reserved for such conflict
resolution.

Unibus 1 / 0 controllers that perform
Direct Memory Access (DMA) d o so
by making data transfers to memory at
addresses below the 1 / 0 page. Block
transfers are performed a word at a
time to or from successive memory ad-
dresses, with the incrementing address
being maintained by the 1 / 0 controller.

An 1 / 0 controller on the Unibus
causes an interruption by doing a spe-
cial control transfer whose destination
is always the CPU. The interrupting
controller transmits an “interrupt vec-
tor” as the data. The address lines of
the Unibus are not used in this transfer.

BUSES, THE SKELETON OF COMPUTER STRUCTURES 275

CPU instruction execution and memory access
times are typically closely matched. Therefore,
the performance of the system is also very de-
pendent on low latency in the CPU-memory
pathway. In this type of pathway, effective
bandwidth and latency are directly (inversely)
related to each other.

On a type B pathway, high bandwidth is also
typically required. Usually, this is the path by
which disk and other mass storage data is
moved to and from memory. In most cases, the
rate at which data is transferred is determined
by the disk subsystem. In minicomputer sys-
tems developed through 1977, the bandwidth
required has not exceeded 1.2 megabytes per
second for an individual disk controller-to-
memory pathway.

Type B pathways, on the other hand, tolerate
relatively long latencies. If there is sufficient
buffering of data at the controller, system per-
formance is relatively insensitive to delays of as
much as 100 to 1000 microseconds in starting up
a block transfer. The insensitivity is due to the
dominance of relatively long delays already pre-
sent in disk data accessing. (Mechanical posi-
tioning, both rotational and radial, may take
tens of milliseconds in a typical disk access.)

Type C pathways - the control and inter-
ruption links - do not require high bandwidth
compared with CPU instruction and DMA
data activity. 1 / 0 control commands are issued
relatively infrequently compared with the in-
struction execution rate in the CPU. Inter-
ruptions typically occur even less frequently.
However, latency tolerance is not very high on
the control pathway: it is important for inter-
ruptions to be delivered promptly, and CPU in-
structions that access 1/0 control and status
registers usually are prevented from completing
until the access has been completed. Therefore,
Table 1 shows latency tolerance as “medium”
(1 to 10 microseconds) for type C pathways: it is
permissible to take a little longer to complete an
1 / 0 control instruction than other instructions,
but not so long as initiating a block transfer
from a disk.

Type D and E pathways handle interactions
which are a mixture of type B and type C.
Therefore, their requirements for latency and
bandwidth vary over the range shown for types
B and C .

Length refers to the maximum possible dis-
tance along the pathway from one connection
to another. Maximum length is important be-
cause i t affects both performance and cost of a
bus. The CPU to memory pathway (type A) has
been shrinking in length in recent computer de-
signs because of the relationship between la-
tency and length. The speed of light (or, more
properly, of signals in a wire) sets the minimum
delay between request and response. As a result,
we see memories and central processors more
frequently packaged together or in very close
proximity. Fortunately, the continual size re-
duction of a given amount of CPU logic or
memory has encouraged this trend. The current
length range of a type A pathway for mini-
computers is approximately 0.1 to 3 meters.

High speed block transfer 1 /0 controllers
also tend to be packaged closer to the memory
in recent system designs. But since there may be
many controllers, the length of the type B path-
way may have to be two to ten times longer
than the CPU-memory pathway (0.2 to 30 me-
ters).

Design Tradeoffs

Control pathways connecting the central pro-
cessor to all 1 / 0 controllers often have to be
extended out of the CPU-memory package to
reach peripheral subsystem packages. These
tend t o be the longest pathways in a system.
Frequently, the design choice in connecting a
peripheral to a minicomputer system is be-
tween: (I) extending the main types B and C
buses out to reach the farthest peripherals and
(2) designing type D buses that extend from a
centrally packaged controller to a remote pe-
ripheral. Alternative (2) gives maximum flex-
ibility and performance. But it costs more than

276 THE PDP-11 FAMILY

(1) and may lead to a proliferation of buses in
the computer system. Figure 5 shows the two
alternatives.

All parameters shown in Table 1 contribute
to cost. The cost of a computer system could be
allocated in a simple way to power, logic, mem-
ory, electromechanical parts, and package. As
applied to the cost of buses, these become
power, logic complexity, and cable/connector
costs.

Increasing memory addressing requirements
leads to more signals in the pathway. Each sig-
nal adds to power and cable costs. Lower band-
width can be traded for wider memory
addresses by time-multiplexing the addresses
with data. Increasing the maximum number of
connections adds to the electrical load and leads
to increased power in the bus drivers or to lower
bandwidth, as it takes longer for signals to
settle. Also, more signals are required (logarith-
mically increasing with the number of con-
nections) to select the destination of a transfer.
Increasing maximum length also requires more
bus drive power for a given signal level and in-
creases the bus cost. Since longer buses have
greater propagation delays, we can trade lower
bandwidth and higher latency for increased
length. Both length and load (connections) con-
tribute to signal decay, and therefore these two
are often traded against each other. For ex-
ample, each section of a Unibus is rated for a
maximum length of 50 feet or a maximum of 20
bus ‘‘loads.’’ Exceeding either limit requires in-
sertion of a “bus repeater” circuit. A Unibus
with fewer loads could be operated at longer
lengths than the maximum 50 feet, but con-
figuration rules with fixed limits are easier to

(a) Types B and C pathways contained within the understand.
“mainframe” package, longer type D paths By accepting increased cost, some perform-

ance parameters can be enhanced as follows.
Decreased latency and increased bandwidth can

1 be achieved by using higher power driver and
I receiver circuits (such as ECL) which have
I lower propagation delays in their logic gates.
I Bandwidth can be increased by providing more
I buffering logic (complexity) at each connection.

For a given level of reliability, the data clocking
rate can be increased with either faster logic
(higher power) or more logic parallelism (com-

r - - - i A, r -- - i r-------

plexity). More data transmission parallelism
would mean higher cable and connector costs.
Lower latency can sometimes be achieved by

(b)
the “mainframe” package; short type D paths.

Single types B and C pathways. extending out of

distributing the task of arbitration among thk
connections. More logic is then required at each Figure 5.

pathways. connection.
A design tradeoff for types 8 and C

BUSES, THE SKELETON OF COMPUTER STRUCTURES 277

There are also considerations of physical and
electrical environment that affect costs. To
compensate for noisy environments, error de-
tection and correction circuits may be added at
each connection, adding to the complexity. Or
shielded or twisted-pair cables may be included,
adding to the cost of the interfaces. For phys-
ically stressful environments, cable costs may
become dominant as the cables are armored,
strengthened, or given noncorrosive wrapping.
In general, we can trade reduced bandwidth for
increased immunity to electrical noise, since
most noise-induced errors can be overcome by
repetition and redundant signaling. (At this
tradeoff, bus design merges with applied com-
munication theory.)

EVOLUTION OF THE HIGH
PERFORMANCE PDP-11 SYSTEMS

The Unibus, introduced with the PDP-I1 in
1970, is a novel bus structure because it is a
single bus to which all system components are
attached. It can be extended indefinitely; more-
over, memory modules need not operate syn-
chronously with the rest of the system.

In this section the evolution of the high per-
formance descendants of the PDP-l1/20 is
traced, with emphasis on the development of
buses in response to design goals for each
model.

PDP-11/20

The Unibus design is integral to the PDP-I 1
architecture in the handling of interrupts (the
priority level of the central processor affects ar-
bitration) and in the 1/0 page concept (control
registers appear as memory locations). But the
important aspect of Unibus design, as a bus, is
its support of modularity.

When the PDP-I 1/20 (Figure 6) was de-
signed, it was natural to offer a bus that could
be interfaced to many types of equipment, in-
cluding users’ laboratory devices. Digital of-
fered Unibus interfacing modules (such as the

DRl1 series) which users of the PDP-11 could
easily adapt to their own equipment.

The standardization of interfacing was also a
deliberate attempt to prolong the service lives of
Digital’s peripheral equipment. As new mem-
bers of the PDP-11 family were introduced,
older peripherals could still be attached to the
Unibus without electrical modifications.

The asynchronous data transfer of the Un-
ibus has allowed DEC to introduce a series of
memory subsystems with progressively increas-
ing speeds without changing the Unibus timing
or data transfer protocol. In a single system,
various memory technologies can be inter-
mixed.

PDP-11/45

The goal of the PDP-I 1/45 project (Figure 7)
was to design a very fast central processor to
match the speed of the 300-nanosecond semi-
conductor memory which was becoming avail-
able.

The PDP-l1/45 design places the semi-
conductor memory in close proximity to the
CPU and provides a private type A path, the
Fastbus. This eliminates many of the access de-
lays present when a Unibus was between the
CPU and memory. For compatibility, however,
it was necessary for the semiconductor memory
to be accessible to DMA transfers from outside
the CPU. Therefore, another Unibus was
brought out of the CPU cabinet.

With higher CPU speed came the need for
larger memory sizes. While the PDP- 1 1 /20 can
have up to 64 Kbytes of memory (less 8 Kbytes
reserved for the 1/0 page), the PDP- 1 1 /45 in-
troduced a memory management unit (the

UNIBUS +, ,A, ,&,
Figure 6. The PDP-1 1/20 Unibus configuration

278 THE PDP-11 FAMILY

UNIBUS C I
CONTROL PORT

FASTBUS

UNIBUS B

(a) Proposed configuration

PASTBUS

SEMICONDUCTOR

CNTRLR I

MASSBUS

-0

(b) Actual configuration.

Figure 7. PDP-1 1/45 configurations.

K T l l) that allows addressing of up to 256
Kbytes. The Unibus design, with foresight, had
been implemented with two spare address lines,
allowing immediate use of the 18 bits of phys-
ical memory address from the PDP-ll/45.

By 1973, the IBM 3330 disk technology (100
megabytes per spindle) had become available at
a cost attractive to minicomputer system users.
The Massbus was developed specifically to in-
terface this and other high data rate devices
which were being planned. The R H l l con-
troller connects the Massbus to the two Uni-
buses of PDP-I 1/45 systems as shown in Figure

7a. The upper Unibus, Unibus C, was to carry
the control and interruption (type C) transac-
tions; the lower Unibus, Unibus B, was reserved
exclusively for DMA (type B) data transfers.
For this purpose, a special stand-alone Unibus
Arbitrator module was developed because Uni-
bus B has no processor present to perform Uni-
bus arbitration. (Note, however, that the BR
signals are not used on Unibus B, because there
is no CPU to be interrupted).

Unfortunately, the configuration shown in
Figure 7a could not be used for two reasons:

1 . DMA transfers from the R H l l con-
troller cannot reach memory modules at-
tached to Unibus C if all block transfers
are made on Unibus B. (The proposed
solution of having the R H 1 1 DMA port
selected by program control was rejected
because of the complexity of determin-
ing in software which memory is con-
nected to which bus.)
DMA transfers from controllers on Uni-
bus C cannot reach the semiconductor
memory unit.

2.

The second problem was fatal. The central
processor is capable of dealing with only one
1/0 page, and that is on Unibus C. Therefore,
old DMA controllers had to be attached to
Unibus C. In fact, all controllers had to attach
to Unibus C, because that is the only inter-
ruption path. Since compatible use of old pe-
ripherals was essential to success of the family,
the PDP-I 1/45 was configured only as shown in
Figure 7b. Unibus B, when connected to Uni-
bus C (with the separate arbitrator module re-
moved) becomes part of the single Unibus
system.

PDP-11/70

By 1974, semiconductor memory costs had
become much lower. Therefore, a cache mem-
ory became a feasible cost/performance en-
hancement to the PDP-11/45 (Chapter 10).

BUSES, THE SKELETON OF COMPUTER STRUCTURES 279

CACHE
8, BITS

CPU

.

Without great modification to the CPU logic, a
cache memory was added with a width of 32
bits - twice the word size of the PDP-11 (Figure
8). The cache effectively interfaced to the PDP-
11/70 CPU over the same Fastbus that was pre-
sent in the PDP-11/45.

I n order to gain memory bandwidth for in-
creases in both CPU and DMA performance, a
new memory bus was added, with a 32-bit wide
data path. Closely related to the memory bus
was a backplane interconnection, which can
carry 32 bits at a time to the RH70 controllers
(up to four of them). In Figure 8 the RH70-to-
memory path is shown going through the cache
because of a look-aside feature of the cache
memory.

The Massbus had been designed to provide
very high block transfer bandwidth, while keep-
ing the control registers accessible to the central
processor at all times. The successful splitting of
the type C path (the Unibus) from the type B
path (the backplane data path) in the PDP-
11/70 matched well with the Massbus design
goals, and this match accounts in part for the
relatively long life of the PDP-I 1/70 system in
its marketplace.

The PDP-I 1/70 also required more memory
addressing capacity to balance its increased
speed. The K T l l memory management unit
was easily expanded to address 4 megabytes of
memory, and the RH70 controllers were de-
signed to generate the required 22 bits of mem-
ory address directly.

Slower speed peripherals are still interfaced
to the Unibus. In doing DMA transfers from
them, it is necessary to transform the 18-bit ad-
dress on the Unibus into a 22-bit main memory
address. T o do this, a Unibus Map module is
inserted between the Unibus and the cache
memory. This path carries 16 data bits at a
time, and the bandwidth demands are relatively
low.

MEMORY U B I M B A MBA

, , 32

M E M O R Y

iMEM;r?V BUS

1
I I

- --

"NlBUS

Figure 8 The PDP-1 1/70 configuration.

MASSBUS MASSBUS

VAX-11/780

The VAX-I 1 /780 (Figure 9) emerging in late
1977 returns to a single central bus organiza-
tion, based on the Synchronous Backplane In-
tercon nect (SBI).

The SBI was originally conceived in I974 for
use on a PDP-I 1 processor and was later
planned for use on a PDP-IO processor. Those
processors were not released, but the SBI was
carried into the VAX-l1/780 design and tai-
lored for the 32-bit environment.*

*The VAX-I 1/780 SBI is the subject of a patent application filed by Digital Equipment Corporation

280 THE PDP-11 FAMILY

High DMA bandwidth is obtained by the SBI
short time-slot and by memory read operation
splitting which releases the bus during the mem-
ory read-access delay. To help overcome the de-
lay associated with having to do a full bus
transaction to start a memory read cycle, the
memory control logic is capable of receiving
and storing a queue of up to 4 memory read and
write requests while it is working on one of the
requests.

Compatibility with existing PDP-I 1 peripher-
als is provided by controllers that adapt the SBI
to a Unibus (the Unibus Adaptor (UBA) in Fig-
ure 9) and to several Massbuses (MBA).

On the SBI, the 1-gigabyte address space is
divided in half with the Unibus 1 / 0 page con-
cept extended to cover the upper half. Within
this rather large address space are contained
control registers for all peripherals, an 18-bit
memory address space mapped onto the Un-
ibus, and a number of internal status and con-
trol registers, such as those that contain error-
reporting information.

Figure 10 shows an historical summary of the
buses used in the PDP- 1 1 computers.

ARB ITRATION METHODS

Since data transfer requests on a bus can
originate from more than one source, there
must be a means of deciding which source is to
use the bus next. This process is called arbi-
tration.

A connection follows a two-step procedure to
transfer data on a bus:

1.
2.

Arbitration. Obtain the use of the bus.
Data Transfer. Transfer data on the bus.

To assist our examination of arbitration
methods, we define twelve categories, using
three discriminating criteria. The criteria are:

1. Where? Location of the arbitration logic
(Centralized or Distributed).

RH21

RH1l

M I

M*SSBUS

DP-11

DP-10

4x 11

5 LS1

/
SI-11 BUS
PDP-11/08

US UNI

POP-1 7/20

*

\ 'DP 11140

'DP-11105

' D P - l l l 3 4

BOP-1 1/04

'DP 11160

JS UNI ..
WITH WIT

MEMORY ME8

)P- l1 /45 (SOME MEMORY
3 T ON UNIBUS1

D P 11170
I N D MEMORY
O N UNIBUS1

I

T
Y

I "DRAGON"
I (NOT I RELEASED1

I
I
I
I
I '

SBI

VAX- I l I7BQ

-

SBI

Figure 10. Genealogy of PDP-11 Family buses

2. How? Allocation rules (Priority, Demo-
cratic, or Sequential).

3. When? Timing relationship of arbi-
tration to data transfer (Fixed or Vari-
able).

Centralized arbitration means that a signal
must pass from a requesting connection to a
common arbitration point, and a response sig-
nal must return to the requesting connection be-
fore it may transfer da t a . In distributed
arbitration there is no single common arbi-
tration point. The Unibus, for example, has
centralized arbitration (with the exception
noted below). A contention-arbitrated serial

BUSES, THE SKELETON OF COMPUTER STRUCTURES 281

bus, like the Ethernet [Metcalfe and Boggs,
19751, has distributed arbitration. The resolu-
tion of conflicting requests is accomplished in
all arbitration methods by allocation rules. Pri-
ority arbitration means that in case of an appar-
ent tie in the race to request use of the data
transfer facilities, the rules always let one con-
nection (or group) go ahead of another con-
nection (or group). Democratic allocation
means that there are no priority rules. An ap-
parent tie is resolved arbitrarily or by some
“fairness” rule which attempts to keep any one
connection from monopolizing use of the data
transfer facilities. Sequential allocation insures
that there are never any apparent ties by giving
request opportunities to only one connection at
a time. (The sequence is not necessarily round-
robin.)

The Unibus has priority allocation, by
groups. Most contention-arbitrated serial buses
have democratic allocation. Centralized, se-
quential (polled) buses are frequently used as
type D pathways to connect character terminals
to a concentrator (see Example 4, to follow).

Finally, there is the question of the timing
relationship between the arbitration of a
request and the data transfer that occurs as a
result of the request. Arbitration fixed with re-
spect to data transfer means that a connection
must request the data transfer facilities at a
fixed time relative to the data transfer. This cat-
egory includes buses in which the same signal
lines are used for data transfer and for arbi-
tration.

Arbitration variable with respect to data
transfer means that a connection may request
use of the data transfer facilities at any time,
independent of the current state of the data
transfer facilities.

The Unibus has variable arbitration. Polled
buses have fixed arbitration because data trans-
fer always occurs in the time slot immediately
after the arbitration logic has polled a request-
ing coti11~:~:t~on. Contention-arbitrated serial

buses have fixed arbitration, too, in that the
data transfer is the request for use of the bus.

Table 2 summarizes the categories of arbi-
tration methods; description of five example
buses follows.

Example 1: Unibus

Figure 11 shows a simplified diagram of the
Unibus arbitration section with two controllers
sharing a Bus Request (BR) line. When Con-
troller 1 wants to use the bus for an interruption
transaction, i t asserts the shared BR signal line.
When the processor is in a state capable of re-
ceiving an interruption, the arbitrator asserts
the Bus Grant (BG) signal.

The arbitration logic of Controller I is shown
in Figure 12. The timing of an arbitration se-
quence is shown in Figure 13. Controller 1 re-
ceives the assertion of BG and may make a data
transfer as soon as the ongoing data transfer is
complete. Controller 1 acknowledges its selec-
tion by asserting the Selection Acknowledge
(SACK) signal. Controller 1 can use any BG as-
sertion that arrives after the controller has as-
serted BR t o perform an interruption
transaction. The serial wiring of BG could be
called a kind of priority arbitration, but it is
preferable to think of i t as a sequential type of
allocation, in which the sequence begins on de-
mand and always starts at the controller closest
to the processor and arbitrator.

The Unibus actually has four groups of con-
trollers, each group connected to a Bus Request
line (called BR4, BR5, BR6, or BR7) and wired
as shown in Figure 1 1 . In addition, every con-
troller capable of doing DMA data transactions
is connected into a fifth group called Non-Pro-
cessor Request (NPR) for data. All five groups
share a common SACK line.

Memory modules do not participate in arbi-
tration on the Unibus since they never initiate
data trans fc rs ,

282 THE PDP-11 FAMILY

Table 2. The Twelve Categories of Arbitration Methods

SACK

4 b

t
- BR

BG BG BG

~~ ~

Fixed with Respect
Arbitration Category to Data Transfer

TERMINATOR

Variable with
Respect to Data Transfer

v

Central,

I t

Priority

- -
CONTROLLER

1
ARBITRATOR CPU -

Central, Priority, Fixed
SBI

Central, Priority, Variable (plus some as-
pects of distributed. sequential below)
Unibus, LSI-11 Bus

CONTROLLER
2

Central, Democratic Central, Democratic. Fixed Central, Democratic. Variable

-

Central, Sequential Central, Sequential, Fixed
Polled Character-Input

Central, Sequential. Variable

Distributed, Priority Distributed, Priority, Fixed Distributed, Priority. Variable

Distributed. Democratic Distributed, Democratic. Fixed Distributed, Democratic, Variable

Distributed, Sequential Distributed, Sequential, Fixed Distributed, Sequential. Variable

NOTE
The Massbus has no arbitration at all, because all control
transfers originate from one point.

Figure 11
arbitration section

A simplified diagram of the Unibus

SELECTED

K

Figure 12
attached to the Unibus.

The arbitration logic of a controller

BEGIN

TRANSFER

BG O U T -4

Figure 13 The timing of a Unibus arbitration sequence

BUSES. THE SKELETON OF COMPUTER STRUCTURES 283

I n the most general case, a single controller
on a Unibus can participate in three types of
transactions:

As the target of a control data transfer
(type C) , the controller behaves as if it
were a memory. It receives commands
(as data writes) into control registers and
transmits status (as data reads) from sta-
tus registers this way. The controller
does not request the bus for these trans-
actions: it is the “slave” of the processor
which obtained the bus for this purpose.
As the originator of a DMA, type B data
transfer, the controller moves data to or
from memory. To obtain the bus for this
purpose, it asserts the shared NPR line,
and waits for a Non-Processor Grant
(NPG) signal to be passed to it from the
left.
As an interruption source (type C), the
controller sends an interrupt vector to
the processor. To obtain the bus for this
purpose, the controller asserts one of the
four BR lines (BR4, BR5, BR6, or BR7),
and waits for the corresponding BG sig-
nal (BG4, BG5, BG6, or BG7) to be
passed to it from the Arbitrator. Each
controller is assigned a single BR level at
the time of its installation in the system.
Thereafter, it never blocks any of the
other three BG signals.

Some controllers, such as simple terminal in-
terfaces, do no DMA transfers, but perform an
interruption transaction for each character of
input or output.

The priority arbitration of the Unibus is af-
fected directly by the priority state of the CPU.
The CPU program execution priority (PRI)
varies from 0 to 7. The Unibus Arbitrator
grants use of the bus to non-CPU connections
by the following rules:

At any time, when assertion of NPR is
received, assert NPG. (Interpretation: a
controller may do DMA data transfers
at any time.)

1 .

2.

3.

1 .

2. Whenever the CPU is between instruc-
tions (i.e., is interruptable), then:
a. If PRI <7 and BR7 is asserted, then

assert BG7, else
b. If PRI <6 and BR6 is asserted, then

assert BG6, else
c. I f PRI <5 and BR5 is asserted, then

assert BG5, else
d. I f PRI <4 and BR4 is asserted, then

assert BR4.
(Interpretation: when the CPU is inter-
ruptable, i t will accept interruptions
from a controller in a group whose pri-
ority is greater than the current program
execution priority of the CPU.)

The priority arbitration rules of the Unibus
involve both the processor priority and the rela-
tive priorities of the BR signals, among them-
selves. Assertion of a BR7, for example, blocks
the grant signals BG6, BG5, and BG4 until all
controllers asserting BR7 have accomplished
their interruption transactions. Therefore, we
classify the Unibus arbitration method as cen-
tralized and variable, with a mixture of priority
and sequential allocation rules.

Example 2: The LSI-11 Bus

The LSI- 1 1 Bus serves the same functions for
the LSI-II system that the Unibus serves for
most of the other PDP-I 1 processors. The LSI-
I 1 bus is constrained to use fewer conductors
and, therefore, less power and logic than the
Unibus. It achieves the reduction from 56 sig-
nals to 36 signals primarily by time-multi-
plexing memory addresses and data on the same
conductors (accepting lower bandwidth in or-
der to achieve lower cost).

Arbitration for DMA transfers is essentially
identical to that of the Unibus (Figures 1 1 and
12). The corresponding signal names on the
LSI-I 1 Bus are SACK (for Unibus SACK),
DMR (for NPR), and DMG (for NPG).

Arbitration for the interruption transaction
has only one priority-group for all interrupting

284 THE PDP-11 FAMILY

controllers. When a controller wants to inter-
rupt the processor, it asserts the Interrupt
Request (IRQ) signal. This is similar to the BR
signals on the Unibus. However, the LSI-11 Bus
interruption transaction more closely resembles
a data transfer, so it will be described in the sec-
tion on data transfer synchronization. Arbi-
tration on the LSI-11 Bus, like the Unibus, is
classed as centralized and variable with a mix-
ture of priority and sequential allocation rules.
However, only one level of priority is used for
interruption transactions.

Example 3: Synchronous Backplane
Interconnect (SBI), the VAX-11/780
Memory Bus

This memory bus is distinguished by its lim-
ited length and its master clock which synchro-
nizes all transactions on the bus. (The bus does
not extend beyond the etched backplane of the
computer cabinet.) The functions of the SBI are
the same as those of the Unibus. However, the
SBI differs in physical configuration because
every controller must be directly connected to
the backplane. Another difference between
Unibus and SBI is that all transactions on the
SBI are of fixed duration, which gives much
higher bandwidth for data transfer. (The SBI is
rated at 13.3 megabytes per second, while the
Unibus is capable of approximately 1.7 me-
gabytes p e r second when operating with equiva-
Ient speed memory.) To achieve this bandwidth,
it was necessary to split the memory read oper-
ation into two bus transactions - one to trans-
mit an address to the memory, another to
transmit data back to, the requesting con-
nection. In this way the SBI can accommodate
memories of various cycle times, as can the Un-
ibus, but the requesting connection does not oc-
cupy the bus facilities for the duration of the
cycle.

Arbitration on the SBI is distributed, prior-
ity, and fixed. Figure 14 shows a simplified dia-
gram of the signals involved in SBI arbitration.

A master clock, represented here by a single
signal, defines a sequence of time-slots on the
bus. Each slot (200 nanoseconds in the VAX-
1 1 /780) is of long enough duration to complete
a transfer of data from one connection to any
other connection, but not for a reply signal to
be sent back.

There are four Transfer Request (TR) signals
in this simplified example: TRO, TRI , TR2, and
TR3. Each T R signal “belongs” to one con-
nection; that is, only one connection is permit-
ted to assert the signal.

Each TR signal has a priority associated with
it: TRO has highest priority. A connection
requests the use of the SBI data transfer facil-
ities by the following procedure:

1. At the beginning of the next time-slot
(after deciding to transfer data), assert
the T R signal that belongs to this con-
nection.
At the end of the time-slot, sense the
state of all of the higher priority TR
lines.
If none of the higher priority T R lines is
asserted, then at the beginning of the
next slot negate “my own” T R signal
and begin transmitting data.
If any of the higher priority T R lines is
asserted, then do not negate “my own”
TR signal, and go back to step 2.

2.

3.

Figure 14.
signals.

A simplified diagram of SEI arbitration

BUSES, THE SKELETON OF COMPUTER STRUCTURES 285

Figure 15 shows a timing diagram for a
sample set of data transfers on the simplified
SBI of Figure 14. In this example, connection
number 3 (corresponding to TR3) requests the
bus during slot 1, and connection numbers 1
and 2 (corresponding to TRI and TR2) request
the bus during slot 2.

At the end of slot I , connection 3 detects no
higher priority TR signals, so it negates TR3
and transmits data during slot 2.

At the end of slot 2, connection 2 senses that
T R l is asserted, and therefore waits, leaving
TR2 asserted. At the same time, connection 1
senses no higher priority TR signals, so it ne-
gates TRI and transmits data during slot 3.

Some transactions on the SBI require that a
connection transmit on two or more con-
secutive slots. A connection that requires a slot
beyond its first one asserts TRO at the beginning
of its first data transfer slot. TRO, the highest
priority T R signal, is not assigned to any one
connection.

The example in Figure 15 shows connection 2
doing a two-slot data transfer. After waiting for
connection 1 to transfer, connection 2 “holds”
the bus for slot 5 by asserting TRO (hold signal)
at the beginning of slot 4. In the SBI of the
VAX- 11/780, connections are limited to trans-
mitting in no more than three consecutive slots.

We have shown four connections in this ex-
ample, although only three TR signals are as-
signed. The lowest priority connection, number

Figure 15. Timing diagram of arbitration for an
example set of data transfers on a simplified SBI

4, does not have a TR signal assigned to it be-
cause there is no need to sense a TR signal from
this lowest priority connection. Connection 4
transmits only when no other connection is re-
questing the next slot. Connection 4 gains an
advantage by being lowest priority: it may
transmit in any slot not used by the other SBI
connections without asserting a TR signal of its
own in the preceding slot. This gives it a shorter
memory-access latency. For this reason, the
CPU is usually given lowest priority on the SBI.

The master clock is crucial to the operation
of the SBI. I n the VAX-11/780, the slots are
defined by combining three clocks into four
equal-interval phase markers. All transmitted
TR signals are asserted at the beginning of
phase I , and all received TR signals are sensed
at the beginning of phase 4, three-fourths of the
way through the nominal slot period. This guar-
antees that signals from nearby connections are
not sensed too early and that distant T R signals
are sensed early enough.

Example 4: A Polled Character-Input Bus
(Type D)

Figure 16 shows a diagram of a hypothetical
simple character-input bus. The controller at
the left end accepts all input from the key-
boards. It “asks” each keyboard in turn
whether it has a character to send, and if so, the
controller accepts the character during the next

-

CONTROL1

POLLED ICENTRAL. FIXED. SEOUENTIALI

UNIT 0

Figure 16. A hypothetical polled character-input bus.

286 THE PDP-11 FAMILY

time slot. This arbitration scheme is centralized,
sequential, and fixed with respect to data trans-
fer.

Three signals are broadcast from the con-
troller to all terminals. One is the Clock, which
defines the time-slots. The other two signals,
called Unit 0 and Unit 1, send out a two-bit
code which selects one of the four keyboards
during each slot. The coding is binary.

The controller changes the Unit Select signals
at the beginning of each slot. The keyboard se-
lected, if it contains a character to be trans-
mitted, asserts the Send signal, and transmits
the character at the beginning of the next slot.

In the timing diagram shown in Figure 17,
keyboard 1 transmits two characters and key-
board 2 transmits one character. In this type of

KEYBOARD
SELECTED + 0 1 2 3 0 1 2 3

“NIT 0

“NIT 1

CLOCK

FROM 1 FROM 2 FROM 1

DATA 181

Figure 17.
bus.

Timing diagram of a polled character-input

arbitration scheme, the polling (sequential sam-
pling) of possible sources of data (the key-
boards) eliminates the need for contention or
priority rules. The logic of each connection is
simple, but the scheme in this example limits
each connection (keyboard) to using a max-
imum of 25 percent of the data transfer band-
width.

Example 5: Massbus

The Massbus is a peripheral-to-controller
(type D) bus that has no arbitration at all. As in

the previous example, a single controller at one
end of the bus receives or sends on each data
transfer. Control information is transferred as
on the Unibus, but the “master” of the transfer
is always the controller. Data blocks are trans-
ferred using a peripheral-generated clock, and
the transfers are always initiated by writing a
control word into a register in the peripheral.

Interruptions to the CPU are generated by
the controller on demand from any peripheral.
For this purpose an Attention signal exists in
the control section of the Massbus. Each pe-
ripheral is capable of asserting this signal.

SYNCHRONIZATION OF DATA
TRANSFERS

Synchronization of a data transfer is coordi-
nating the timing between two bus connections
which are involved in a data transfer. The
method by which data transfer is coordinated
can be very different from the arbitration
method.

To classify the methods of data transfer syn-
chronization, we use two criteria:

1. Source. The location of the source of the
synchronizing signals (centralized, one of
the sending or receiving connections, or
both connections).
Periodicity. The type of synchronizing
signals (periodic or aperiodic).

2 .

Table 3 shows the six resulting categories and
how the examples fit into them.

The location of the synchronizing signal or
signals may be at one of the connections send-
ing or receiving data (one), at both of the con-
nect ion s (both), or at neither (cen tralized) . T he
Unibus data transfer is synchronized by signals
from both the sending and receiving con-
nections.

The synchronizing signal may be a clock (pe-
riodic), or it may be something else (aperiodic).
The Unibus uses an aperiodic “handshake.”

BUSES. THE SKELETON OF COMPUTER STRUCTURES 287

Table 3. Data Transfer Synchronization
Methods

Location Periodicity
of Signal
Source Periodic Aperiodic

Centralized SBI No examples
polled
character-input

One Massbus Data No examples
connection

Both No examples Unibus,
connections LSI-11 Bus.

Massbus Control

Example 1: Unibus

DMA (type B) and CPU-memory (type A)
data transfers on the Unibus are accomplished
with the same data timing. The interrupt-vector
transaction timing is similar and thus is omitted
from this discussion.

Figure 18 shows the data transfer section of a
Unibus with two connections: a controller or
CPU (the “master” in a data transfer), and a
memory (the “slave”). (For control and status
register transfers (type C), a controller plays the
role of memory or slave.) The timing of trans-
fers on a Unibus is shown in Figure 19. Bus
Busy (BBSY) indicates that the data transfer fa-
cilities are in use. Control and Address signals
are a group that specify the kind of transfer and
the memory address. Master Sync (MSYN) is
asserted by the master (the CPU or controller)
to indicate that Control and Address signals are
present .

Slave Sync (SSYN) is asserted by the slave
connection (memory) to indicate that data is
present on the Data lines.

Unibus Data-Out moves data from the re-
questing connection into memory.

OR CPU

Figure 18. Unibus data transfer section

SDYN
P R O M

MP

ADDRESS
IN0

CONTROL

DATA OUT DATA IN

Figure 19 Timing diagram of transfers on Unibus

Having received permission from the arbi-
trator and acknowledged it by asserting Select
Acknowledge (SACK), the connection waits for
Bus Busy (BBSY) to be negated. It then asserts
BBSY and negates SACK. This connection now
“owns” the data transfer section of the Unibus.

Next, it must wait for SSYN to be negated to
prevent its own logic from mistakenly sensing
SSYN in the asserted state too early.

Next, the master connection transmits the
Address and Control signals and the Data. I t
then waits for an interval, the deskew time, be-
fore asserting MSYN, to compensate for the

288 THE PDP-11 FAMILY

variable delay in transmission of different sig-
nals from one connection to another. An addi-
tional set-up time is inserted to allow all slave
connections time to sense and compare against
the Address and Control signals.

The slave connection senses the Address and
Control signals at all times. In this example, the
address being transmitted by the controller
matches one of the memory addresses “owned”
by this memory connection. Therefore, this
slave responds to the assertion of MSYN by
sensing and storing the signals on the Data
lines.

Having captured the data, the slave asserts
the SSYN signal. When the master receives the
assertion of SSYN it knows that the data trans-
fer has been completed.

The master then stops transmitting the Ad-
dress and Control, Data signals, MSYN, and
BBSY.

Unibus Data-In is a read from memory. The
timing is siniilar to Unibus Data-Out, except
that data is transmitted on the data lines by
memory. The second part of Figure 19 shows
the Data-In timing.

Data transfer on the Unibus is aperiodic -
there is no clock. Synchronization occurs by a
“handshake” interaction between the MSYN
and SSYN signals. In fact, two round-trips of
signaling occur. We could look at this signaling
in tabular form (Table 4).

The sequence of four events insures a fully
“interlocked” data transfer. The timing of a
transfer is variable, depending on the speed of
the slave’s memory (for Data-In) and on the
speed of the logic at both connections. On the
Unibus, 75 nanoseconds are allowed for deskew
time and an additional 75 nanoseconds for set-
up, where noted.

Example 2: LSI-11 Bus

Data transfers on the LSI-11 Bus also serve
the functions of pathway types A and B . Syn-
chronization is from both sender and receiver

Table 4.
Transfer

Synchronization of Unibus Data

Data-Out Data-In

MSYN Address and Address and
assertion Control and Data Control present

present

SSYN Data captured (by Data present
assertion slave)

MSYN Stop transmitting Data captured (by
negation Data and BBSY master): stop

transmitting
BBSY

SSY N -
negation

Stop transmitting
Data

and is aperiodic. Below the CPU-memory (type
A) transfers are described.

The signals involved in data transfers be-
tween the central processor and memory are
DAL, SYNC, DIN, DOUT, and RPLY, These
are similar to the Unibus signals shown in Fig-
ure 18. The processor initiates all data transfers
of this type. Type C (control and status) trans-
fers are also made using the synchronization de-
scribed next, with a controller playing the part
of memory in the transfer.

Figures 20 and 21 show the timing of data
transfers. The 16 DAL signals are used to trans-
mit address and then data, one after the other.
SYNC is the signal which tells all memory de-
vices on the bus to examine the DAL lines and
to test for a matching address. DIN and DOUT
initiate the memory read and memory write cy-
cles, for Data-In and Data-Out transfers, re-
spectively. RPLY, which is similar to the
Unibus SSYN signal, indicates the presence of a
response from the memory.

Before proceeding with a transfer, the CPU
must wait until both SYNC and RPLY have
been negated, to be sure that no other transfer is
in progress on the bus.

BUSES, THE SKELETON OF COMPUTER STRUCTURES 289

FROM Pc FROM M p FRVM Pc FROM M p

OAL

SYNC
FROM Pc

DIN
FRVM Pc

RPLY 9 Ip-t
D A T A -1 N D A T A - O U T

Figure 20.
synchronization.

LSI-1 1 Bus Data-In and Data-Out

FRVM P c FROM ML FROM P c
V*T*

Figure 21 LSI-1 1 Bus Data-In-Out synchronization

The CPU transmits the memory address on
the DAL lines. After waiting for a fixed inter-
val, to allow for deskew and set-up time at the
memory, the processor asserts SYNC.

The memory senses the DAL lines when it re-
ceives the assertion of SYNC. The memory
matches the address received and decides that
the data word being addressed is in this memory
module.

After another fixed delay, to guarantee that
the SYNC assertion always arrives at the mem-
ory first, the processor asserts DIN and stops
transmitting the address on the DAL lines.

As soon as the memory receives the DIN as-
sertion, i t knows that a read cycle is desired. It
retrieves the data word and transmits it on the
DAL lines. Meanwhile, it may assert the RPLY
signal as much as 125 nanoseconds before
transmitting the data.

When the processor receives the RPLY asser-
tion, it waits at least 200 nanoseconds to be sure
that the data has arrived, and then senses and
stores the data. Then the processor negates
DIN.

As soon as the memory receives the DIN ne-
gation, it stops asserting RPLY. Not more than
100 nanoseconds later, the memory stops trans-
mitting the data on the DAL lines.

When the processor receives the negation of
RPLY, it negates SYNC. The bus is now avail-
able for the next data transfer.

The second part of Figure 20 shows the tim-
ing of a Data-Out (write to memory) transfer.

Figure 21 shows the timing of another type of
LSI-11 Bus data transfer, the Data-In-Out op-
eration. In this transfer, a data word is read
from memory, sent to the CPU, and then a
word is sent back to the same memory location.
This operation is useful for certain PDP-11 in-
structions such as “increment memory” (INC),
which modifies a single word in memory, and
ADD, which stores a result at the address of the
second operand. Bus transmission time is saved
by not requiring the address to be sent a second
time for the Data-Out portion of the cycle. On
the other hand, the CPU may delay the oper-
ation by an arbitrary amount of time, while the
word to be written is generated.

Figure 22 shows the timing of the inter-
ruption transaction on the LSI-11 Bus. This
transaction includes both arbitration and the
transfer of a data word (an interrupt vector)
from a controller to the CPU.

All controllers share the single Interruption
Request (IRQ) line. It is similar to the Unibus
BR signals, causing an interruption when as-
serted.

290 THE PDP-11 FAMILY

I R a
FROM K K

DAL

I A K
F R O M PE

DIN
FROM PC

R P L Y
FROM K10

c c

Figure 22.
synchronization.

LSI- 1 1 Bus interruption transaction

The Interruption Acknowledge (IAK) signal
is similar to the Unibus BG signals. IAK is
wired from the processor (arbitrator) serially
through all controllers, just like a Unibus prior-
ity group.

A controller may assert 1RQ at any time.
When the processor is ready to receive an inter-
rupt vector, it begins a sequence which resem-
bles a Data-In transfer. However, the SYNC
signal is not used and no address is sent out on
the DAL lines.

Example 3: Synchronous Backplane
Interconnect (SB I)

The SBI synchronization method is central-
ized and periodic. There is only one sequence of
events which causes information transfers on
the SBI, and that sequence is quite simple.
However, the information transferred from one
connection to another has two possible inter-
pretations: Command and Address, or Data. A
memory read or write operation always consists
of two sequences: one to transfer a command to
the memory connection, the other to transfer
data. The read operation is split, allowing other
transactions to take place while a memory is ac-
cessing data.

There are four groups of signals used to effect
da t a transfer: I D , DATA, FLAG, a n d

CLOCK. The I D signals are used to identify the
destination of the transfer when the informa-
tion transferred is data. The other use of the I D
signals is explained below.

The Data lines carry 32 bits of information.
This information is either: (1) 32 bits of data, or
(2) 28 bits of address and 4 bits of command
code. The Flag signal is asserted to indicate case
(2). In this case, the destination of the transfer is
determined by the 28 address bits, in a way sim-
ilar to Unibus addressing. For these transfers,
the ID lines carry the identity of the source of
the transfer. The connection receiving a Read
command saves this source ID value, so it can
use it as a destination I D on a later data trans-
fer.

Figure 23 shows the timing of the two SBI
transfers which make up a read operation from
memory. Remember that there is a master clock
which defines a series of time-slots. The Trans-
fer Request (TR) signals are shown again to il-
lustrate the fixed time relationship of arbi-
tration before a transfer.

In Figure 23, the controller (connection 1)
decides at the beginning of slot 1 to initiate a

_... n ‘“‘A I

SOURCE OESTINI\TION
IO = 1 1 0 = 1

ID

A D D R E S S D A T I
FROM 1 F R O M 2

D A T A

FLAG

CLOCK

Figure 23
up a read operation

The timing of two SBI transfers which make

BUSES. THE SKELETON OF COMPUTER STRUCTURES 291

memory read operation. In slot 2 it transmits
the following bits:

ID =

DATA =

FLAG =

I , the identity of the source
Connection.
Read command code, plus 28
bits of memory address.
a s se r t e d , ind ica t ing t h a t
DATA contains command
and address.

At the end of slot 2, the memory connection
senses all of these bits and captures them in a
buffer register. In fact, every connection on the
SBI captures all of these bits on every slot. Sub-
sequently, each connection matches the I D bits
to determine if it should respond.

In this case, the memory connection detects
that the address refers to memory contained in
itself, and it therefore begins a read cycle.

The memory connection asserts its TR signal
(TR2) one slot before it is ready to transmit
data. The memory transmits its data to the re-
questing controller in the next slot. (slot 7):

ID = 1, the identity of the destina-
tion connection.

DATA = 32 bits of data from memory.
FLAG = n e g a t e d , i n d i c a t i n g t h a t

DATA carries data.

At the end of slot 7, all connections to the
SBI capture this information, and controller 1
recognizes the match between the I D bits and
its own identity. A memory read has now been
finished.

On the SBI, a memory may wait a variable
number of slots before replying to a Read com-
mand. Clearly there is a performance penalty
for memories that require slightly more than an
integral number of slot-times to access a word.
Therefore, the SBI clock is "tuned" to be an
integral submultiple of the access time of the
memory subsystem we intend to use. However,

we could attach a variety of memory sub-
systems with different access times to one SBI,
without serious performance degradation, as
long as the memory access times are sufficiently
large multiples of the slot-time.

The VAX-I 1/780 system uses a slot-time of
200 nanoseconds and has a memory subsystem
access time of just under 800 nanoseconds (in-
cluding error detection). The four-slot access
time shown in Figure 23 is typical of this sys-
tem.

Figure 24 shows the timing of a memory
write operation on the SBI. The controller, con-
nection 1 , transmits in the two consecutive slots
following arbitration. In the first slot (slot lo),
FLAG is asserted to indicate that the Write
command and address information is present.
In slot 1 I , the data is transmitted. The memory
connection must be prepared to accept and cap-
ture the sequence of two transmissions.

During slots I O and 1 I , the ID lines contain
the identification of the controller, allowing the
memory to verify that both transmissions came
from the same source.

TR1 I

ID I D = 1 I D = 1

WRITE
AND ADDRESS DATA

F R O M ? F R O M ?

FLAG F R O M t

CLOCK

Figure 24
the SEI.

The timing of a memory write operation on

292 THE PDP-I1 FAMILY

The two-slot write operation is kept con-
tiguous by using the highest priority TRO
“hold” signal to obtain use of the second slot.
The SBI minimizes the slot interval and max-
imizes bandwidth by eliminating all round-trip
delays.

Example 4: Polled Character-Input Bus

Data transfer on this bus was described in the
section on arbitration methods. The synchro-
nization method is centralized and periodic.

Data transfer occurs in time-slots just as on
the SBI. The time-slots are defined by a master
clock, and the receiver (always the controller)
must accept the data at the end of the time-slot.
In contrast to the SBI, this bus preallocates one
of every four slots to each keyboard connection.
The controller must keep internally an in-
dication of which character is received from
which keyboard.

Example 5 (a): Massbus Control Section

The Massbus actually consists of two sec-
tions: a Control Section for reading and writing
the contents of registers in the peripherals, and
a Data Section for moving blocks of data. All
transfers are between the controller and one of
the (up to eight) peripherals. The two sections
operate independently, except that a Control
Section write into a control register of a periph-
eral is required to initiate a block transfer on
the Data Section.

The Control Section of the Massbus is a min-
iature Unibus. However, the controller is al-
ways the master, and one of the peripherals is
always the slave in the transfer. Figure 25 shows
the Control Section signals involved in data
(i.e., control and status register) transfers. The
Demand (DEM) signal takes the place of
MSYN, and Transfer (TRA) takes the place of
SSYN. Instead of Address and Control lines,
there is an eight-bit address on the Massbus
Control Section: three bits of Drive Select (DS),

I DEM
I I

Figure 25. The Control Section signals of the Massbus.

and five bits of Register Select (RS). Thus, each
of eight peripherals (drives) may contain up to
32 two-byte registers. The Controller to Drive
(CTOD) signal, when asserted, indicates that
the transfer is a write into a peripheral register.

Control information is transferred 16 bits at a
time on the C lines. Timing of these transfers is
equivalent to that shown for the Unibus in Fig-
ure 19.

There is also a shared Attention (ATTN) sig-
nal in the Control Section that may be asserted
at any time by a peripheral which requires CPU
intervention. The controller normally creates an
interruption to the CPU soon after ATTN is as-
serted.

Timing of normal Read transfers is shown in
Figure 26. I t is equivalent to a Unibus Data-In
transfer (compare with Figure 19, second part).

There is one special case which uses different
timing on the Massbus Control Section. In or-
der to determine which of the peripherals has
caused an Attention interruption, the CPU
reads the Attention Summary pseudo-register
via the controller. This is a special “register”
which is composed of one bit stored in each pe-
ripheral. Figure 27 shows the timing for reading
this register. When the RS lines carry a code of
04, and the direction of transfer is drive to con-
troller (CTOD negated), each peripheral (drive)

BUSES. THE SKELETON OF COMPUTER STRUCTURES 293

CI

CTOO

T R A

STROBE

Figure 26
section of the Massbus

Timing of a control read in the control

c15 I
O E M I
TAP. I

i CTOD

A T 1 FOR P E R I P H E R A L 0

A,A FOR P f R I P H E R h L 1 2 A T 1 FOR PERIPHERAL 2

1
CI AT* FOR PERIPHERAL I

C8 I I

C l b I I

Figure 27 Timing of a control read from Attention
Summary pseudo-register

transmits its Attention Active (ATA) bit onto
one of the Control (C) lines. Peripheral number
0 transmits its ATA on CO, peripheral 1 on C1,
and so on.

The timing of this transfer is different be-
cause the TRA signal is driven by more than
one peripheral. There is no way of knowing
when all peripherals have asserted their ATA
bits, so the controller must wait the maximum
possible access time. This maximum delay
“time-out” is present in the controller logic for
normal reads and writes, to guard against pos-
sible nonresponse from an addressed peripheral
or register. The Attention Summary read oper-
ation makes use of this time-out interval to ter-
minate its wait for the ATA bits.

Example 5 (b): Massbus Data Section

The Massbus Data Section is shown in Fig-
ure 28. It contains 18 Data (D) lines, which
carry data in both directions. Two clock signal
lines, Synchronizing Clock (SCLK) and Write
Clock (WCLK), carry a clock from and back to
the peripheral, respectively. The R U N and
End-of-Block (EBL) signals control the termi-
nation of a block data transfer. The Exception
(EXC) signal is used to indicate error condi-
tions.

Data in the Massbus Data Section is always
transferred in multiple-word blocks. The data
read from or written to a mass storage device,
such as a disk drive, must be synchronized with
the mechanical motion of the recording me-
dium. Therefore, the clock (SCLK) originates
in the peripheral.

A Massbus Data Read begins when a control
register in the selected peripheral is written with
a Read command code. Figure 29 shows the
timing of a Massbus Data Read. The controller
asserts the RUN signal as soon as it is ready to
receive data.

When the peripheral has received the RUN
assertion, it begins reading data from its storage
medium. The peripheral asserts SCLK when a

294 THE PDP-11 FAMILY

CONTROLLER

SCLK I I WCLK t
I I

0 1181

EBL 4
RUN

EXC

&

CONTROLLER
0 1181

EBL 4
RUN

EXC

&

PERIPHERAL U
Figure 28. Massbus Data Section.

RUN EBL 141
EXC I 1

I \

WCLX

D \\\\\\\\\Y W O R D 1 I WORD 1 3 I w o m I WORD 4 h\\

Figure 29. Timing of a Massbus Data Read

WCLK

0 \u WORD WORD WORD WORD
1

Figure 30. Timing of a Massbus Data Write

new data word is present on the D lines. The
peripheral continues to assert and negate the
SCLK signal at the characteristic data rate.

Each time the controller receives the negation
of SCLK, the controller captures and stores the
data word from the D lines.

Note that the peripheral does not receive any
positive indication that the data word was re-
ceived by the controller: the data transfer is
“open loop.”

At the end of the block of data words, the
peripheral asserts EBL to indicate that it has
reached the end of a data block.

When the controller receives the EBL asser-
tion, it decides whether to continue (usually by
inspecting a word count register). Within
slightly over one microsecond, the controller
must negate RUN or else accept another block
of data.

As the peripheral negates EBL, it senses the
RUN signal. If it is negated (as shown in Figure
29), the peripheral disconnects itself from the
Massbus Data Section. Otherwise, the periph-
eral would transmit the next block of data.

If the number of words desired by the con-
troller is less than an integral number of data
blocks, the controller may negate RUN before
EBL is asserted. The controller then simply ig-
nores the remaining data words being trans-
mitted.

Figure 30 shows the timing of a Massbus
Data Write. As for a data read, the peripheral
controls the rate at which data is transmitted.
However, this time the data is coming from the
controller, which asserts the WCLK signal
whenever it puts data onto the D lines.

The controller must have a data word ready
each time it receives the negation of SCLK.
Otherwise a “data overrun” condition occurs,
which causes abnormal termination of the
transfer.

ERROR CONTROL STRATEGIES

Unfortunately, buses do not always succeed
in delivering to the receiving connection what
was transmitted from the sending connection.
Some of the causes of errors are logic failures,
electromagnetic interference, broken con-
ductors, shorted conductors, and power fail-
ures. In this section, we examine the following

BUSES, THE SKELETON OF COMPUTER STRUCTURES 295

Table 5. Error Control Methods Used By Example Buses

Check
Bits

Bus (Parity) ACK Time-out Retry Log

1 Unibus No Yes ISSYN) Yes a b
2 LSI-1 1 BUS No Yes (RPLY) Yes b b
3 SBI Yes Yes (CNF) Yes Yes b
4 Polled Character-Input - - - - -

5a Massbus Control Yes Yes (TRA) Yes a b
5b Massbus Data Yes Yes (EXC) Yes a b

a
b

Retry IS implemented by software in some PDP-11 operating systems
Logging is implemented at various levels by operating system software

five categories of countermeasures to these er-
rors:

1 .

2.

3.

4.

5.

Check bits. Extra information is sent
which allows the receiver to detect and
sometimes to correct errors in the data.
Acknowledgement. A reply from the re-
ceiver to the sender tells whether the
data appeared “good.”
Time-out. Failure of an expected ac-
knowledgement to be received by the
sender within a time limit indicates un-
successful data transmission.
Retry. A transfer which was unsuccessful
is attempted one or more additional
times.
Error reporting and logging. Failures of
all categories are recorded and reported
to higher level (usually software) logic.
Logging means recording the errors in a
file which can be read later by a service
engineer.

Depending on the cost and service objectives,
a real bus should have a data transfer procedure
with all of the following steps:

1 .
2.

Arbitration. Obtain the use of the bus.
Data transfer. Transfer data (and check
bits) on the bus.

3.

4.

5 .

Check. Check for error-free transfer, and
transfer an acknowledgement.
Retry. I f the check or acknowledgement
fails, repeat steps 1 through 3.
Log. If all retries fail, enter a failure re-
port in the log file, and send a message to
higher level logic (software routinesj.

Table 5 summarizes the error-control meth-
ods used in the five example buses.

Example 1: Unibus

Data transfer on the Unibus is not checked.
However, two lines are used by memory con-
nections to signal whether a parity error has
been detected while reading a word from mem-
ory.

A controller or CPU on the Unibus times out
20 microseconds after MSYN has been as-
serted, if assertion of SSYN has not been re-
ceived. Time-out occurs whenever an invalid or
nonexistent memory address is given as the tar-
get of a Unibus transfer.

Example 2: LSI-11 Bus

This bus does not have check bits for data
transfers. However, it has two lines (DAL 17
and 16) that can be used for transmitting the
results of memory parity error checking.

296 THE PDP-11 FAMILY

The LSI-I 1 Bus also has time-outs specified
for responses to the assertion of DIN and
DOUT. If a memory does not respond within
I O microseconds, the CPU or controller as-
sumes that the address is invalid.

Example 3: SBI

Data transfers on the SBI carry several parity
check bits. Parity is generated at the sending
connection and is checked at the receiving con-
nection.

The SBI also does acknowledgement on every
data transfer. A code is returned to the sending
connection two time-slots after the data was
sent. Separate Confirm (CNF) lines are used to
carry this code. The code indicates one of four
possible events:

1.

2.

No Response. There is no connection re-
sponding to this address or ID value.
Parity Error. The parity check shows an
error in transmission; transfer is rejected
by the receiving connection.
Busy. (For commands only.) The receiv-
ing connection (memory) addressed can-
not accept another command now.
Accepted. Parity checks “good” and the
command or data is accepted.

3.

4.

The Confirm code itself is error-protected.
The No Response code is with all C N F signals
negated. The other codes differ from each other
and from the No Response code in at least two
bit positions. Therefore, an error in one C N F
bit results in an invalid code.

Figure 31 shows t.he timing of SBI data
transfer acknowledgements. The example in
this figure is a data word transfer from memory
(the second half of a read operation). The C N F
lines are always reserved for a reply from a re-
ceiving connection exactly two slots after a data
transfer.

The error-control philosophy on the SBI says
that if any connection detects bad parity on a

DATA
PARITY

CHECK I N 0

DATA RECEIVED CONFIRMATION
BY 2 RECEIVED

BY 1

Figure 31.
acknowledgements, including parity check.

Timing of SBI data transfer

data transfer, then the validity of the data trans-
fer is suspect. Therefore, any connection may
assert a Parity Error Confirm code at the begin-
ning of slot 4 in Figure 31.

As implemented in the VAX-l1/780, the SBI
also uses time-outs, in case the memory does
not respond within a fixed number of slots. The
CPU or controller causes an interruption, pos-
sibly leading to software-driven retry or logging
of the event. The VAX-I 1/780 CPU also does
microprogram-controlled retry of transfer
requests that receive the Busy confirmation
code.

Example 4: Polled Character-Input Bus

Since this example is hypothetical, we cannot
claim to explain its actual error-control meth-
ods. It is reasonable, however, to add one data
signal to carry a parity check bit for each char-
acter. A time-out is not relevant here, but an
acknowledgement could be implemented by
having the controller send a Confirm signal
back to the keyboard during the slot following

BUSES, THE SKELETON OF COMPUTER STRUCTURES 297

0 , 2 3 0 1 2 3 0

“NIT0

UNIT1 I - j - T L

CLOCK

S L O T 1 2 3 4 6 6 7 8
NUMBER

. . . - ...

PARITY
CHE;:;

CONTROLLER CONFlRM .
CONFIRM NO CONFIRM J L

Figure 32
with acknowledgement and retry for polled character-
input bus

Timing of a plausible error-checking scheme

the data transfer (Figure 32). If the Confirm sig-
nal does not indicate “good transfer,” the key-
board can send the character again 4 slots later
(when its turn comes around again).

Example 5a: Massbus Control Section

The Massbus Control Section closely resem-
bles the Unibus in timing, but it does carry one
data parity check signal. If an error occurs on
reading a control register, the controller passes
the “bad parity” indication on to the CPU, with
consequences the same as a memory parity er-
ror.

If an error occurs on writing a control regis-
ter, the peripheral ignores the data word and
asserts the Attention signal. “Control Bus Par-
ity Error” is displayed in the Peripheral Error
Status Register.

The Massbus Control Section also has the
same acknowledgement and time-out properties
as the Unibus, with the exception of reading the
Attention Summary pseudo-register, which al-
ways uses the time-out to terminate the read
cycle.

P I \ R I T Y EAROR
D E T E C T E D ON

WORD 2

Figure 33
Write operation

Timing of Exception signal in Massbus Data

Example 5b: Massbus Data Section

The Massbus Data Section carries a parity
check bit with each 18-bit word of data. A sig-
nal called Exception (EXC) can be asserted
from either end to indicate a bad data transfer
or other exceptional conditions. Figure 33
shows an example of a Massbus Data Write op-
eration that suffers a parity error during the
transmission of the second word. The periph-
eral asserts the EXC signal as soon as the error
is detected. Although this is too late to stop the
next word from being transmitted, the periph-
eral stops accepting data words, and it termi-
nates the block transfer early. The entire block
has to be retransmitted. In this example, the
controller displays a “Transfer Error” when it
interrupts the CPU for “end-of-transfer” ser-
vice.

Two time-outs are used on the Massbus Data
Section, both in the controller. One starts tim-
ing at the assertion of R U N and waits up to
seven seconds for the SCLK signal to make a
transition. This long time is required for ANSI
standard magnetic tapes which may have up to
of 25 feet of inter-record gap.

298 THE PDP-11 FAMILY

A shorter time-out, approximately 100 mi-
croseconds, is used to detect a failure in a pe-
ripheral after a t least one SCLK signal
transition has been received. If this limit is
reached, the controller asserts EXC to tell the
peripheral to disconnect.

ACKNOWLEDGEMENTS

The chapter author wishes to acknowledge
the patience of J . Craig Mudge, the editor who
provided the impetus to produce this chapter,
and of Heidi Baldus, who spent a great many
hours overseeing the production of this work,
many of them on the telephone at a distance of
3000 miles from the author.

Robert Chen and Alice Parker contributed
greatly by their detailed reviews of the first
draft. Others who helped were Sas Durvasula,
Robert E. Stewart, Harold Stone, Mike Riggle
and Don Vonada. George Herbster, patent at-
torney and friend to many engineers, provided
reference materials on short notice.

APPENDIX: A GLOSSARY OF TERMS

The definitions below are offered as an aid to
understanding the technical meaning of some
words used in this chapter.

Assert (transitive verb) - to cause a signal to take
the “true” or asserted state.
Asserted (nominal) - to be in the “true” state.
Assertion (noun) - the transition from negated
to asserted.
Bandwidth (noun) - data transfer rate measured
in information units (e.g., bits, bytes, or words)
per unit time.
Connection (noun) - an attachment to a bus and
the logic and functions of the attached sub-
system. Synonyms: node, interface.
Interval (noun) - an extent in time. Synonym:
period.
Negate (transitive verb) - to cause a signal to
take the “false” or negated state.

Negated (nominal) - to be in the “false” state.
Negation (noun) - the transition from asserted
to negated.
Read (transitive verb) - to move data from a reg-
ister, memory, or secondary storage.
Sense (transitive verb) - to capture data from
bus signal lines. Synonyms: receive, gate in,
strobe.
Slot (noun) - a particular interval.
Time-out (intransitive verb) - to wait for the end
of an interval and to take an action associated
with the failure of some event to occur within
the interval.
Transfer (transitive verb) - to move data (a data
word).
Transmit (transitive verb) - to place data on bus
signal lines. Synonyms: drive, gate out.
When (adverb) - at the instant that.
Whenever (adverb) - every time that.
While (adverb) - throughout the interval that.
Write (transitive verb) - to move data into a reg-
ister, memory, or secondary storage.

ANNOTATED BIBLIOGRAPHY

For further reading on bus design in general,
the following references will provide an entry
into some of the published literature.

Blaauw, Gerrit A., Digital System Implementation,
Chapter 9, “Communication,” pp 286-3 16; Pren-
tice-Hall (1976). [I / O channel architecture, data
synchronization]

Chen, Robert C.H., “Bus Communications Sys-
tems,” Ph.D. thesis, Department of Computer
Science, Carnegie-Mellon University (January
1974). [synchronization, arbitration, and deadlock]

Enslow, Philip H., Jr. (ed.), Multiprocessors and Par-
allel Processing, Chapter 2, “Systems Hardware,”
pp. 26-80; Wiley (1974). [Multiprocessor bus or-
ganization: Unibus: tradeoffs in bus design; I 1 0 to-

Ornstein, S.M., W.R. Crowther, M.F. Kraley, R.D.
Bressler, A. Michel, and F.E. Heart, “Pluribus - a
reliable multiprocessor,” AFIPS Conference Pro-
ceedings, Vol. 44 (1 975), National Computer Con-
ference, pp. 55 1-559. [Multiprocessor IMP for
ARPANEfl

PologY 1

BUSES, THE SKELETON OF COMPUTER STRUCTURES 299

Thurber, Kenneth J., E. Douglas Jensen, Larry A.
Jack, Larry L. Kinney, Peter C. Patton, and Lynn
C. Anderson, “A systematic approach to the de-
sign of digital bussing structures,” A FIPS Confer-
ence Proceedings (1972), Vol. 41, Part 11, Fall
Joint Computer Conference. [polling, arbitration
methods, data synchronization; annotated bibliog-
raphy with 93 entries]

The following four references cover the Un-
ibus and some bus related aspects of the PDP-
I 1 architecture.

Bartee, T., Digital Computer Fundamentals (Fourth
Edition), Chapter I O , section 10.6, “ In te r -
connecting System Components,” and section
10.7, “Interfacing - Buses,’’ pp. 455-470,
McGraw-Hill (1977). [bus structures, including
Unibus]

Cohen, J. , Janson, P., McFarland, H., and Young, J .
J r . , Data Processing System, U.S. patent
3,710,324 (9 Jan 1973). [PDP-I1 system and
Unibus]

Sutherland, Ivan E., and Carver A. Mead, “Micro-
electronics and Computer Science,” Scientific
American, Vol. 237, no. 3 (September 1977), pp.
2 10-228. [interconnections, Unibus]

Tanenbaum, Andrew S . , Structured Computer Or-
ganization, Chapter 4, section 4.12, “The PDP-
1 1/40 Microprogramming Level,” pp. 196-204,
Prentice-Hall (1976). [PDP-I1/40 internal organi-
zation and Unibus operation]

Cohen, J., Janson, P., McFarland, H., and Young, J .
J r . , Data Processing System, U.S. patent
3,815,099 (4 Jun 1974). [PDP-I1 memory andper-
iph erals]

The following references are the patents cov-
ering the Massbus design.

Jenkins S., Secondary Storage Facility for Data Pro-
cessing System, US. patent 4,047,157 (6 Sept
1977). [Dual- Unibus R H l I Massbus controller].

Levy, J., Jenkins, S . , Ku, V., McLean, P., and Hast-
ings, T., Drive Condition Detecting Circuit for
Secondary Storage Facilities in Data Processing
Systems, U.S. patent 3,911,400 (7 Oct 1975).
[Massbus Attention Summary register]

Levy, J., Jenkins, S., and McLean, P., Secondary
Storage Facility for Data Processing Systems,
U.S. patent 3,999,163 (21 Dec 1976). [Massbus]

McLean, P., Jenkins, S., and Ku, V., Diagnostic Cir-
cuit for Data Processing System, U.S. patent
3,9 I 1,402 (7 Oct 1975). [Massbus peripheral main-
tenance register]

Sergeant, O., Levy, J., Lignos, D., and Griggs, K.,
Drive for Connection to Multiple Controllers in a
Digital Data Secondary Storage Facility, U.S.
patent 4,007,448 (8 Feb 1977). [Dual-Massbus disk
drive]

The Honeywell Megabus, described in the
first reference below, was an independent devel-
opment that has some ideas similar to the SBI
and the Unibus. The second reference has a
short description of the SBI. The third reference
contains an intellectual precursor to the SBI,
the “z-bus”, which was implemented only in a
simulation.

Conway, J.W., “Approach to Unified Bus Archi-
tecture Sidestepping Inherent Drawbacks,” Com-
puter Design (Jan 1977). [Honeywell Megabus]

Digital Equipment Corporation, VAX-11/780 Archi-
lecture Handbook, (l977), Chapter 2, section 2.2,
“The Synchronous Backplane Interconnect,” p.
23. [SBI]

Levy, John V., “Computing with Multiple Micro-
procto.jors,” Report SLAC- 161, Stanford Linear
Accelerator Center, (Apr 1973); (Ph.D. thesis,
Computer Science Department, Stanford Univer-
sity). [Z-machine and z-bus]

The next three references relate to a relatively
new development, the contention-arbitrated se-
rial bus. These are distributed-arbitration buses
which have a single signal used for both arbi-
tration and for data transfer. Further references
can be found in these publications.

MacLaren, Don, Contention-arbitrated serial buses,
Digital Equipment Corporation R&D Group in-
ternal memo (13 Sep 1977). [with 8 references]

Metcalfe, Robert M., Packet Communication, Re-
port MAC TR-I 14, Massachusetts Institute of
Technology Project MAC, (December 1973).

Metcalfe, Robert M. and David R. Boggs, “Ether-
net: Distributed packet switching for local com-
puter networks,” report CSL 75-7, Xerox Palo
Alto Research Center (November 1975).

A Minicomputer-Compatible
M i croco m put e r S yst e m :

The DEC LSI-11
MARK J. SEBERN

I NTRO D U CTI ON

In recent years, minicomputers have found
application in a wide range of areas. In so
doing, they have displaced larger computer sys-
tems in many traditional maxicomputer mar-
kets. At the same time, they have opened up
many new markets, primarily because of their
low cost, small size, and general ease of use.
Still, in spite of this remarkable success, mini-
computers are not without competition. In cost-
sensitive areas, the minicomputer is being eased
out of its dominant position by a new gener-
ation of LSI microcomputers; the new “proces-
sors on a chip” have found a warm reception
from designers seeking inexpensive computing
power. That warm reception sometimes cools,
however, when the user finds himself with a col-
lection of components, instead of a complete
computing system. The discovery that he is
largely on his own when it comes to software
and debugging support has a similarly chilling
effect. The entry into the world of programming
PROMS, using FORTRAN cross-assemblers
and simulators, and writing even simple soft-
ware routines from scratch can be a traumatic
experience indeed. Still, the advantages of LSI
microcomputers are very real, and many users

have found the difficulties well worthwhile.
Even so, some cannot help but wonder why
they cannot simply have the best of both
worlds: the cost and size of the microcomputer,
and the ease of use and performance of the
minicomputer systems with which they are fa-
miliar.

Therefore, the appearance of a new LSI mi-
crocomputer system that is fully compatible
with a line of 16-bit minicomputers is an event
of some significance. This new microcomputer,
the DEC LSI-II (see Figure I) , is a complete
4 K PDP-I 1 on a 21.6 cm X 26.7 cm (8.5 inch X
10.5 inch) board; priced to compete with other
LSI microcomputers, it offers true mini-
computer performance and maxicomputer sup-
port. The LSI-11, while not meant to be yet
another low-end minicomputer, does bring
many minicomputer strengths to the new
microcomputer applications for which it is in-
tended.

To provide minicomputer performance at a
microcomputer price, the LSI-11 was designed
to optimize system costs, rather than com-
ponent costs. A one-chip central processor,
then, was not necessarily superior to a four-chip

30 1

302 THE PDP-11 FAMILY

Figure 1 On one 21 6 cm X 26 7 cm board, the LSI-
11 provides a complete PDP-1 1 processor, 4 Kwords of
16-bit memory. an ASCII console, a real-time clock, an
automatic dynamic memory refresh, and interface bus
control

one; the choice was made on the basis of total
system cost and performance. On this basis, a
microprogrammed processor was selected, per-
mitting the inclusion of features like a “zero
cost” real-time clock and automatic dynamic
memory refresh. The built-in ASCII program-
mer’s console was also made feasible by the
LSI-1 1’s microprogrammed nature.

Awareness of system costs and performance,
then, was a primary motivation in the LSI-11
design. System issues include cost and ease of
interconnection, the customer’s investment in
training and software, and the availability of
design support for both hardware and software.
The impact of these system concerns should be-
come apparent in the following sections which
detail the LSI-11 design. Two viewpoints are
taken in this description: the first section treats
the internals of the LSI-11 from the computer
designer’s point of view, while the second con-
siders the system from the user’s perspective.

The former examines the architecture, organi-
zation, and implementation of the LSI- 1 1, while
the latter discusses interfacing, special features,
and PDP-11 compatibility. Together, these two
viewpoints will provide the reader with an in-
troduction to the DEC LSI-11, the first micro-
programmed minicomputer-compatible LSI
microcomputer, which provides minicomputer
performance

THE COMP

For the pu
of the LSI-I
three levels:

it a microcomputer price.

ITER DESIGNER‘S VIEW

pose of this discussion, the design
will be studied at the following

1) architecture - the machine as
seen by the programmer, (2) organization - the
block diagram view of subsystems and their in-
terconnection, and (3) implementation - the ac-
tual fabrication and physical arrangement of
the various pieces a t the component level.

Architecture

Instruction Set. The architectural level of a
computer system includes its instruction set, ad-
dress space, and interrupt structure. The basic
LSI-I 1 instruction set is that of the PDP-11/40,
without memory mapping. These instructions
include several operations not found in other
small PDP-11 processors, such as Exclusive-Or
(XOR), Sign-Extend (SXT), Subtract One and
Branch (SOB), etc. Full integer multiply/divide
(Extended Instruction Set or EIS) and floating-
point arithmetic (Floating Instruction Set or
FIS) may be provided by the addition of a
single control read-only memory chip (to be dis-
cussed later). Unlike other PDP-lls, there are
two special operation codes which facilitate ac-
cess to the processor’s program status word
(PSW). The instruction set is, then, more com-
prehensive than that of the PDP-11/05, while
the execution times (see Table 1) are a little
slower.

To take advantage of the microprogrammed
nature of the LSI-11, it may at times be desir-
able to invoke a user-written microroutine. This

302 THk POP-11 FAMILY

Figure 1. On m 21.6 cm X 21.7 cm bard. the LSI-
11 providas a complete PDP-11 p m r , 4 Kwords of
16-bit memory, sn ASCII conwle, a rwl-time clock. an
automatic dynarnk memory refresh, and interfeea bus
control

one; the choice was ma& on the basis of total
system cost and performance. On this basis, a
microprogrammed processor was sckkd, per-
mitting thc inclusion of features like a ‘ k o
cost” real-time clock and automatic dynamic
memory refresh. The built-in ASCII program-
mer’s console was also made fasibk by the
LSI-1 1’s microprogrammed nature.

Awiarcncs of system costs and pcTfomancc,
then, was a primary motivation in the LSI-11
design. System issuwi include cost and - of
interconnection, the customer’s investment in
training and software, and the availability of
design support for both hardware and software.
The impact of these system conccrni should lx-
come apparent in the following sections which
detail the LSI-11 h * n . Two v h p o h t s are
taken in this description: the fmt mtion treats
the internds of the LSI-1 t from the computer
designor’s point of view, while the second con-
siders the system from the user’s perspective.

The former examines the architecture, organi-
zation, and implementation of the LSI-l 1 , while
the latter discusses interfacing, special featurn,
and PDP-11 compatibility. Together, these two
viewpoints wiIl provide the reader with an in-
troduction to the DEC LSI-11, the first micro-
programmed minicomputer-compatible LSI
microcomputer, which provides minicomputer
performance at a microcomputer price.

THE COMPUTER DESIGNER% VIEW
For the purpose of this discussion, the design

of the LSI-11 will be studied at the following
three lcvek (1) architecture - the machine 88
scen by the programmer, (2) organization - the
block diagram view of subsystems and their io-
tcrconnection, and (3) implementation - the au
tual fabrication and physical arrangunmt of
the various piem at the component b e l .

Architecture
Instmdon Sat. The architectural level af a

compukr system includw its instruction set, ad-
dram space, and interrupt structure. The basic
LSI-I 1 instruction wt is that of the PDP-I 1/40,
without memory mapping. These instructions
include several operations not found in 0 t h
mall PDP- 11 processom, such 85 ExcluivpOr
(XOR), Sign-Extend (SXT‘), Subtract One and
Branch (SOB), etc, Full integer rnultiply/divide
(Extended Instruction Set or EIS) and batin&
point arithmetic (Floating Instruction sd or
HS) may be provided by the addition of a
single control read-only memory chip (to be die
cussed later). Unlike other PDP- 1 Is, there are
two special operation codes which lacilit~te ac-
cess to the processor’s program status word
(PSW). The instruction set is, then, more com-
prehensive than that of the FDP-I f /05, white
the a d o n tima (see Table 1) are a little
slower.
To take advantage of the micropragrammed

nature of the LSI-11, it may at t ima be &r-
able to invoke a user-written mhoroutiw. This

A MINICOMPUTER-COMPATIBLE MICROCOMPUTER SYSTEM: THE DEC LSI-11 303

Table 1. LSI-11 Instruction Timing

Execution
Instruction Time (gs) Comments

~

ADD R1, R2
MOV R1, R2
MOV A (PC), B (R2)
TSTB (R 1) +
JMP(R1)
JSR PC.A(R1)
Bxx L
RT1
MUL*
FADD*
EMUL*
FDIV* 1

3.5 Register-register
3.5

5.25 Auto-indexed
4.2 Indirect
8.05 Subroutine call
3.5 Conditional branch
8.75-9.45 Rtn from interrupt

11.55 PC-relative. indexed

24-64
42.1
52.2-93.7

151-232

NOTES
R 1. R2 = Registers

A, B = Index constants
Bxx = Any conditional branch

L = 8-bit offset

*Third MICROM installed for EIS/FIS

is made possible by a set of reserved instruc-
tions which cause branching to a fixed micro-
address. These reserved instructions cause an
illegal instruction trap to occur if user micro-
code is not present.

Address Space. Like other microcomputers
without memory mapping facilities, the LSI-I 1
virtual and physical address spaces are the
same, both being 16 bits, or 64 Kbytes. (Since
two 8-bit bytes make one 16-bit word, this is
equivalent to 32 Kwords.) As in other members
of the PDP-I 1 family, the top 4 Kwords of the
address space are normally reserved for periph-
eral device control and data registers. Thus the
nominal maximum main memory size is 28 K
16-bit words.

Interrupt Structure. The LSI-11 interrupt
structure is a subset of the full PDP- 1 1 interrupt
system. Like other PDP-I 1 processors, the LSI-
1 1 features arbitration between multiple periph-
eral devices and automatic-service routine “vec-
toring.” It differs, however, in having only a

single interrupt level. Interrupts on the LSI-I 1
are either enabled or masked, these states being
equivalent to PDP-11 processor levels 0 and 4.
With this exception, however, interrupt oper-
ation follows the same familiar sequence. Upon
acknowledging an interrupt request, the proces-
sor stores the current processor status word
(PSW) and program counter (PC) on the stack
and picks up a new PSW and PC from a mem-
ory location (vector) specified by the inter-
rupting device.

Organization

PMS Level Description. The “organiza-
tion” of a computer system denotes the collec-
tion of building blocks that comprise it, and the
logical and physical links that connect them. A
block diagram of the LSI-I1 organization is
shown in Figure 2. The LSI-11 CPU, being a
microprogrammed processor, is partitioned
logically and physically into three main sections
- data path, control logic, and micromemory.
Each of these units is, in fact, a separate LSI
chip. Interconnection of these chips is through
the microinstruction bus (MIB).

The Data Chip. The data chip contains an
8-bit register file and arithmetic logic unit
(ALU). The chip also provides a 16-bit interface
to the data/address lines (DAL) upon which the
external LSI-I 1 bus is built.

The register file consists of 26 8-bit registers;
of these registers, 10 may be addressed directly
by the microinstruction, 4 may be addressed ei-
ther directly or indirectly, and the remaining 12
may be addressed only indirectly. Indirect ad-
dressing is accomplished by means of a special
3-bit register known as the G register, which
may be easily loaded from the register address
field of the PDP-I 1 instruction. Addressing of
the register file is illustrated in Table 2.

The 12 indirectly addressed 8-bit registers are
used to realize the 6 PDP-I1 general purpose
registers, RO through R5. The 4 registers which
may be addressed either directly or indirectly

304 THE PDP-11 FAMILY

Table 2. Micromachine Register File Addressing

File Directly Indirectly PDP-11
Registers Addressed Addressed Equivalent

0- 1
2-3
4-5
6-7

10-1 1
12-13
14-15
16-1 7
20-2 1
22-23
24-25
26-27
30-31

RO
R 1
R2
R3
R 4
R 5
R6(SP)
R7(PC)
IR
BA
SRC
D ST
PSW

NOTES
SP = Stack Pointer
PC = Program Counter
I R = Instruction Register

BA = Bus Address
SRC = Source Operand
DST = Destination Operand

PSW = Processor Status Word

MICROM 1
POP 11 EMULATOR

ASCII CONSOLE
612 I 22

I DATAIAODRESS

I CONTROI

I
PROGRAMMABLE

TRANSLATION
ARRAY

Figure 2 Organization of the LSI-1 1 CPU

A MINICOMPUTER-COMPATIBLE MICROCOMPUTER SYSTEM: THE DEC LSI-11 305

contain the PDP-I 1 program counter (PC) and
stack pointer (SP), since they provide special
processor functions and are accessed very fre-
quently. The 5 remaining pairs of directly ad-
dressed registers are used for microprogram
workspace, and normally contain the following:
(I) the PDP-11 macroinstruction, (2) the bus
address, (3) the source operand, (4) the destina-
tion operand, and (5) the macro PSW and other
status information.

The 8-bit ALU operates on two operands ad-
dressed by the microinstruction. When a full-
word operation is specified, the data path is
cycled twice, with the low order bit of each reg-
ister address complemented during the second
cycle. Thus a 16-bit macrolevel register is real-
ized by two consecutive 8-bit registers in the
register file. An 8-bit operand may also be sign-
extended and used in a 16-bit operation, or an
8-bit literal value from the microinstruction
may be used as one of the operands.

I n addition to the register file and ALU, the
data chip contains storage for several condition
codes. These include flags for zero or negative
results, as well as for carry or overflow; 4- or 8-
bit carry flags are also provided for use in deci-
mal arithmetic. Special flag-testing circuitry is
also provided for efficiency in executing PDP-
I 1 conditional branch instructions.

The Control Chip. The control chip gener-
ates MICROM addresses and control signals
for external 1/0 operations. It contains an 1 1 -
bit location counter (LC), which is normally in-
cremented after each MICROM access. The LC
may also be loaded by “jump” instructions, or
by the output of the programmable translation
array. A one level subroutine capability is also
provided by an 11-bit return register (RR),
which may be used to save or restore the LC
contents.

The programmable translation array (PTA),
the heart of the control chip, consists of two
programmable logic arrays (PLAs); the PTA
generates new LC addresses which are a func-
tion of the microprocessor state and of external

signals. Included in the microprocessor state is
the 16-bit macroinstruction currently being
interpreted; in this way, much of the macro-
machine emulation may be done with the high
efficiency provided by the PTA. The com-
binational logic of the two PLAs allows the
PTA to arbitrate interrupt priorities, translate
macroinstructions, and, in general, to replace
the conventional “branch-on-microtest” micro-
primitive. Since the microlocation counter is
one of the PTA inputs, it is normally unneces-
sary to specify explicitly the desired translation
or multiway branch; this information is implicit
in the address of the microinstruction which in-
vokes the PTA. External condition handling is
made possible by four microlevel interrupt lines
which are input to the PTA. Also feeding the
PTA are three internal status flags which are set
and reset under microprogram control.

The MICROM Chip. The micro read-only
memory, or MICROM, serves as the control
store for the microprocessor. The micro-
instruction width is 22 bits. Sixteen of these bits
comprise the traditional microinstruction; one
is used to latch a subroutine return address, and
one to invoke programmed translations; the re-
maining four bits (which drive TTL-compatible
outputs) perform special system-defined func-
tions.

Each MICROM chip contains 512 words, or
one-fourth of the 2 K microaddress space.
Proper “chip-select’’ decode is accomplished by
masking a 2-bit select code (along with the
microcode) into each MICROM at the time of
manufacture; n o external selection logic is re-
quired.

The Microinstruction Bus. As seen in
Figure 2, microinstructions and microaddresses
share the microinstruction bus lines (MIB
00:2 I) . Instructions thus fetched are executed
by the data chip while the next microaddress is
computed by the control chip. The bus design,
then, allows fully pipelined microinstruction ex-
ecution, with data and control operations over-
lapped.

306 THE PDP-11 FAMILY

~

OP

Microinstruction Repertoire. Using the ac-
cepted distinction between horizontal (unen-
coded) and vertical (highly encoded) micro-
order codes, the LSI-11 may be classified as an
extremely vertical machine. In fact, the micro-
instruction set strongly resembles the PDP-I 1
code it emulates; the two differ largely in ad-
dressing modes, not in primitive operations.
(Microinstruction formats are depicted in Fig-
ure 3, while a number of operation codes are
tabulated in Table 3.) This similarity of instruc-
tion sets is not accidental; while general-pur-
pose emulation machines have a place, a
micromachine designed with the macro order
code in mind usually offers better performance.
Thus while many operations are general pur-
pose, like Add, Subtract, Compare, Decrement,
And, Test, Or, Exclusive-Or, etc., others serve
primarily in the emulation of the macrolevel
PDP-11 instruction set, such as Read and In-
crement Word By 2 and so on. 1 / 0 primitives

LITERAL A

OP cc

~~

15 11 10

(a) Jump format

A D D R E S S

0

(b) Literal format.

I OP I 8 1 . 1
I I I
15 8 7 4 3 0

(d) Register format.

Figure 3. Microinstruction formats.

allow for Read, Write, and Read-Modify-Write
operations, as well as special polling transac-
tions.

Implementation

LSI Technology. The “implementation” of
the LSI-I I , or how it is actually put together, is
a combination of both custom large-scale in-
tegration (LSI) and medium- and small-scale
transistor-transistor logic (TTL) integration.
The control, data, and MICROM chips are fab-
ricated in n-channel silicon-gate four-phase
MOS. This technology was chosen as a reason-
able compromise between performance expec-
tations and development risks. Existing n-
channel components exhibited the desired per-
formance range, while other technologies (such
as CMOS silicon-on-sapphire) were perceived
as too risky for production during 1975 and
1976.

The micromachine operates with a nominal
cycle time of 350 nanoseconds. A simple primi-
tive operation such as a register-to-register 8-bit
addition requires only one cycle, a marked
speed advantage over other available MOS
“processors on a chip.” A comparable 16-bit
operation takes only two cycles. This intrinsic
performance of the LSI-I 1 “inner machine”
means extra flexibility when an application sug-
gests the use of a user-written microcode.

The CPU Module. The LSI-11 CPU, a
quad-height (21.6 cm X 26.7 cm) module, con-
sists of the microprogrammed processor and a 4
Kword memory, together with bus transceivers
and control logic. The processor itself consists
of four 40-pin LSI parts - one control chip, one
data chip, and two MICROM chips. These two
MICROMs handle emulation of the basic PDP-
1 1 instruction set. In addition, one extra 40-pin
socket is provided to allow the installation of a
third MICROM, implementing the extended-
arithmetic and floating-point instructions. Op-
tionally, a custom MICROM containing user
microcode may be installed in its place.

A MINICOMPUTER-COMPATIBLE MICROCOMPUTER SYSTEM: THE DEC LSI-11 307

The 4 Kword memory on board the CPU
module consists of sixteen 4 K dynamic n-chan-
ne1 random-access memories (RAMS). This
memory is implemented so as to logically ap-
pear on the external LSI-11 bus, while being

Table 3. Some LSI-11 Microinstructions

Arithmetic Operations
Add Word (byte, literal)
Test word (byte literal)
Increment word (byte) by 1
Increment word (byte) by 2
Negate word (byte)
Conditionally Increment (decrement) byte
Contitionally add word (byte)
Add word (byte) with carry
Conditionally add digits
Subtract word (byte)
Compare word (byte. literal)
Subtract word (byte) with carry
Decrement word (byte) by 1

Logical Operations
And word (byte. literal)
Test word (byte)
Or word (byte)
Exclusive-Or word (byte)
Bit clear word (byte)
Shift word (byte) right (left) with (without) carry
Complement word (byte)

General Operations
MOV word (byte)
Jump
Return
Conditional jump
Set (reset) flags
Copy (load) condition flags
Load G low
Conditionally MOV word (byte)

Input/Output Operations
Input word (byte)
Input status word (byte)
Read
Write
Read (write) and increment word (byte) by 1
Read (write) and increment word (byte) by 2
Read (write) acknowledge
Output word (byte, status)

physically resident on the CPU module. Acces-
sibility to the bus allows external Direct Mem-
ory Access (DMA) transfers to take place to
and from the basic 4-Kword memory. Further-
more, an optional jumper allows the CPU mod-
ule memory to occupy either the first or second
4 K block of the bus address space. That is, it
may respond to address 000000-017776 or
020000-037776 as desired.

Available Memory Options. The LSI-11
macromemory is available in several forms;
these include semiconductor random-access
memories (RAM), ROM (or PROM), and mag-
netic core.

Both static and dynamic semiconductor
memories are available. The MSVll-A is a
1024-word static RAM, packaged on a double-
height (21.6 cm X 12.7 cm) module. It may be
used when dynamic memory is not desired. The
MSVll-B is a 4-Kword dynamic memory,
again packaged on one double-height module.
The availability of automatic memory refresh
(discussed in a later section) will in many cases
make the dynamic memory a more attractive al-
ternative than core or static semiconductor
RAM.

The use of a ROM for program storage is of-
ten desirable; not only is the program safe from
unintentional modification, but no external de-
vice is needed to load the system each time it is
started. The LSI-11 instruction set is well suited
to ROM program storage, since program and
data are easily separable. To take advantage of
this, the LSI-11 series includes a ROM module
(designated the MRVll-AA); either a masked
ROM or a programmable ROM (PROM) may
be used. This memory uses standard 256 X 4 or
512 X 4 ROM or PROM chips, to a maximum
of 2 Kwords or 4 Kwords depending on the
chips employed. Programmable ROMs may be
used for program development, and less expen-
sive masked ROMs substituted for production
use.

308 THE PDP-11 FAMILY

For applications that require nonvolatile
READ/WRITE memory, a 4-Kword core
memory (the M M V l I-A) is available. This
memory occupies two quad-height modules,
and must overhang the last slot in a backplane
unit.

THE USER’S OUTLOOK

Interfacing to the LSI-11

The LSI-11 Bus. The LSI-I 1 bus (Table 4)
serves as the link between the processor, mem-
ory, and peripheral devices. Narrower (in terms
of the number of signal lines) than some other
minicomputer buses, it was designed to allow
low cost peripheral interfaces for micro-
computer applications, rather than to support
the wide range of peripheral configurations
common in large minicomputer systems. The
wider PDP-I 1 Unibus, for example, is better
suited to larger systems in which CPU and
interconnection comprise a smaller part of the
total system cost.

To reduce the number of bus signals, sixteen
bidirectional lines (BDAL 00:15) are time-
multiplexed between data and address. Trans-
fers on these lines are sequenced by several con-
trol lines. BSYNC signals that a bus transaction
is in progress and clocks address decoding logic;
BDIN and BDOUT request input and output
transfers, respectively; BWTBT is used to dis-
tinguish word and byte output transfers;
BRPLY is returned by the bus slave when data
is ready or has been accepted. A special address
line, BBS7, indicates that the bus address is in
the range of 28 K-32 K; this simplifies periph-
eral device design by indicating that the “I/O
page” is being addressed.

Two bus signals, BIRQ and BIAK, are used
to control processor interrupts. An interrupting
device asserts BIRQ and waits for an interrupt
transaction from the CPU. When the proper

Table 4. The LSI-11 Bus

Bus Signal Signal Function

BDAL 00-15 L

BDIN L

BDOUT L

BSYNC L

BRPLY L

BWT8T L

BBS7 L

BREF L

BIRQ L

BlAK I L

BlAK 0 L

BDMR L

BDMG I L

BDMG 0 L

BSACK L

BHALT L

BEVNT L

BlNlT L

BPOK H

BDCOK H

Buffered dataladdress lines (time-
multiplexed)

Data input transfer control line

Data output transfer control line

Synchronizing control signal; as-
serted by bus master (normally CPU)

Reply control signal; returned by bus
slave (memory or peripheral device)

WritelByte control:

A t address time, specifies a write
A t data time, a byte output

Marks an address in the range 28 K
- 32 K. the “ I lO page”

Signals a refresh transaction: over-
rides normal memory addressing for
dynamic memories

Interrupt request from device

Interrupt grant in

Interrupt grant out; used with BlAK I
to arbitrate interrupt priority

Direct Memory Access (DMA’,
request line

DMA grant in

DMA grant out; like BlAK

Bus DMA acknowledge

Forces entry to ASCII console micro-
code

External event line; used with real-
time clock

Bus initialize signal

Power OK line from supply

DC power OK, from supply

A MINICOMPUTER-COMPATIBLE MICROCOMPUTER SYSTEM: THE DEC LSI-11 309

conditions have been met, the CPU, which re-
mains bus master, strobes the interrupting de-
vices by asserting BIAK. During this bus cycle,
BIAK is “daisy-chained’’ through all peripher-
als, allowing priority arbitration to take place.
The selected device then places an interrupt vec-
tor address on the bus and returns BRPLY, ter-
minating the transaction. In a similar manner,
BDMR, BDMG, and BSACK are used to con-
trol requests for direct memory access transac-
tions by other peripherals desiring to become
bus master. The lines BINIT, BPOK, and
BDCOK are used for system reset and power-
fail/restart.

Three other bus lines perform additional sys-
tem functions; these are BREF, BHALT, and
BEVNT. BHALT is used to stop PDP-I 1 emu-
lation and enter console mode; BREF and
BEVNT are used for microcode refresh of dy-
namic memories and real-time clock operation,
to be discussed in a later section.

Standard Modules. To assist the system
designer, the LSI-11 series includes several
standard interface modules. Currently available
are both serial and parallel 1 / 0 interfaces. The
DLV- I I handles a single asynchronous serial
line at speeds of 50-9600 baud, while the DRV-
1 1 provides a full 16-bit parallel interface com-
plete with two interrupt control units. The
DRV-I 1 is completely compatible with the DR-
I IC interface used with other PDP-I 1s. In or-
der to facilitate program loading when volatile
memory is used, a flexible disk drive and inter-
face is also available. This unit, the RXV-11,
employs industry-standard media and format-
ting.

An Interfacing Example. The design of a
simple interface to the LSI-I 1 system is pictured
in Figure 4. Here, the problem is to interface an
analog-to-digital (A/D) converter and a four-
digit light-emitting-diode (LED) display. The
A/D converter is presumed to have a resolution
of 8-16 bits, and the LED display is driven as
four binary-coded-decimal (BCD) digits of four

CSRO START C O N V E R S I O N fi fiqkw
DRIVER

V I - I N 1 REQ 0 - P U S H B U T T O N

Figure 4 An interfacing example

bits each. To simplify the design further, the
standard DRV-I 1 parallel interface module is
employed.

On the input side, the data lines from the
A/D converter are connected to the input lines
(INOO: 15) of the DRV-I I , and the End-of-Con-
version signal (EOC) from the A/D is fed to
one of the interface’s interrupt request lines
(INT REQ A). If the processor enables the in-
terrupt control in the interface, the EOC signal
will now cause an interrupt, and the CPU may
read in the data. To initiate sampling of the
analog input signal, a control line (Start Con-
version) is needed; this is controlled by an out-
put line (CSRO) from the DRV- 1 1 .

On the output side, the data lines (OUT
00: 15) from the DRV-I 1 are fed directly to the
seven-segment decoder drivers which control
the LED displays. The processor may then
write out a single 16-bit word containing four
BCD digits, and the data will appear in the dis-
play. Since a second interrupt input (INT REQ
B) is available, an operator pushbutton is con-
nected to this line; by interrupting the proces-
sor, the user may request a new sample from the
A/D converter or perform some other function.

To aid the designer in applying the LSI-I I ,
detailed interfacing information is available
[DEC, 1975a; DEC, 1975bl; these manuals
cover both the standard interface modules and

310 THE PDP-11 FAMILY

the methods used to interface directly to the
LSI-11 Bus (Figure 5). In most cases, peripheral
interface design is a little simpler than in the
case of the traditional PDP-11 Unibus.

Special Features

Several special features of value in low cost
systems have been implemented in the LSI-11
microcode. These include an ASCII console, a
real-time clock, an automatic dynamic memory
refresh, flexible power-up options, and internal
maintenance features.

ASCII Console. The LSI-11 ASCII console
serves to replace the conventional “lights and
switches” front panel often associated with
minicomputer operation. The ASCII console
functions with a standard terminal device which
communicates over a serial or parallel link at

any desired rate. The available functions are
very similar to those of PDP-11 octal debugging
technique (ODT), which is familiar to users of
other PDP-11 systems. These include exam-
ination and alteration of the contents of mem-
ory and processor registers, calculation of
effective addresses for PC-relative and indirect
addressing, and the control functions of Halt,
Single-Step, Continue, and Restart. Internal
processor registers are also accessible, making
possible a determination of the type of entry to
the console routines (Halt instruction, etc.).

The advantages of the ASCII console include
low cost, remote diagnostic capability, and
high-level operator interface. The user retains
all the direct hardware control of a conven-
tional front panel, while being freed from
tedious switch register operation. This use of
the terminal device in no way conflicts with its

Figure 5. The LSI-1 1 series contains the LSI-1 1 CPU (center). together with parallel and
serial interfaces, and RAM and ROM memory modules. These modules may be housed in a
backplane assembly. connected by the LSI-11 bus.

the methods umd to interface directly to the
m i 1 B;S (~igure 5). I n most psriphd
interfaaoll design la a little simpler than in the
cas0 of the traditional PDP-11 Unibus.

A MINICOMPUTER-COMPATIBLE MICROCOMPUTER SYSTEM: THE DEC LSI-11 31 1

normal use by the program being debugged.
The ASCII console routines also allow the user
to boot load from a specified device in a byte
transfer mode. All together, the ASCII console
routines occupy about 340 words of microcode;
since this space is available in the second
MICROM, the console functions are made pos-
sible at no extra cost.

Real-Time Clock. Many low-end con-
figurations require a real-time clock, driven by
the power-line frequency or other timing signal,
which is normally implemented with external
control logic. To save this expense, such a de-
vice has been programmed into the LSI-l l pro-
cessor microcode. To use this clock, the user
need only connect the timing signal to the pro-
cessor through the bus line BEVNT. Once con-
nected, this clock is identical to the KW-11L
line clock when used in an interrupt mode, ex-
cept that it may not be turned on and off. An
optional jumper disables the real-time clock if
its operation is not desired.

Automatic Dynamic Memory Refresh.
One disadvantage of using dynamic MOS mem-
ories is the necessity of refreshing their contents
at appropriate intervals. This refresh operation
is needed to replace the stored charge in each
memory cell which has been lost through leak-
age current. In typical dynamic MOS memo-
ries, each cell must be refreshed every 2
milliseconds. Most dynamic memories are im-
plemented in such a way that any normal mem-
ory access refreshes a group of cells (or “row”)
on all selected memory chips. One access must
then be made to each row of every memory
chip; the 4 K memories used in the LSI-I 1 sys-
tem require that 64 accesses be made. Nor-
mally, the logic to control the refresh operation
would include a 6-bit counter, a clock, and
memory access arbitration circuitry.

In order to minimize this control circuitry,
the LSI-I 1 CPU microcode features automatic
refresh control. When enabled by an optional
jumper, the CPU takes a refresh trap approx-
imately every 1.6 ms. At this time, it performs

64 memory references while asserting a special
bus signal, BREF. This signals all dynamic
memories to cycle at the same time. Direct
Memory Access (DMA) requests are arbitrated
between bus refresh cycles to reduce DMA
latency. External interrupts, however, are
locked out during the burst refresh time, tempo-
rarily increasing interrupt latency. (When this
latency can not be tolerated, external refresh
circuitry can drive the bus and assert BREF, al-
lowing use of either refresh method with the
same memory modules.) The automatic refresh
feature is not needed, of course, in systems
without dynamic memories.

Power-FaiVRestart Options. The flex-
ibility of the LSI-11 system is further enhanced
by the availability of several power-fail/restart
options. The power-fail sequence, which is nor-
mally of use only with nonvolatile main mem-
ory, is compatible with other members of the
PDP-I 1 family. Upon sensing a warning signal
from the power supply, the power-fail trap is
taken. The current PSW and PC are pushed on
the processor stack, and a new PC and PSW are
taken from a vector at octal location 24. Nor-
mally, the routine thus invoked would save pro-
cessor registers, set up a restart routine, and
HALT. When volatile memory is used, the reg-
ister may not be saved; in this case, the power-
fail trap allows an orderly system shut-down to
occur.

Four power-up options are selected by two
jumpers on the LSI-11 CPU module. The first
of these is to load a previously set-up PSW and
PC from the vector at location 24. Normally
used with nonvolatile memory to continue
execution from the power-fail point, this option
is compatible with the normal PDP-11 power-
up sequence. If ROM program storage is
employed, this option allows the program to be
started at an arbitrary address. If the BHALT
line on the bus (the HALT switch) is asserted
during this power-up sequence, the console
microcode will be entered immediately after
loading the PSW and PC.

312 T H E PDP-11 FAMILY

The second power-up option causes an un-
conditional entry to the ASCII console rou-
tines. This allows remote system startup
without the necessity of controlling the bus Halt
line. The processor may then be started, as
usual, by an ASCII console command.

The last two options allow program execu-
tion to begin at a specified address in either
macrocode or microcode. Option three sets the
macro PC to 173 000 octal and starts normal
execution. Option four causes a jump to micro-
code location 3002 octal, i n the fourth
MICROM page. Here, the CPU expects to find
a user-written microcode routine to perform a
special power-up sequence. The state of the
BHALT line is not checked in this last case until
the execution of the first macrocode instruction
is completed.

The Maintenance Instruction. For ease in
hardware checkout, a special maintenance in-
struction is included in the LSI-11 repertoire.
This instruction stores the contents of five inter-
nal registers in a specified block in the main
memory. The information may then be used by
a diagnostic program to probe the internal op-
eration of the microlevel processor.

The LSI-11 as a Member of the PDP-11
Family

Upward Compatibility. Because the basic
instruction set of the LSI-I 1 processor is that of
the entire PDP-11 family, the user has an ex-
tremely large range of compatible processing
systems at his disposal. This range extends from
the LSI- 1 1 on the low end to the PDP-I 1 /70 on
the high end. The consistency of the instruction
set provides economies in training and docu-
mentation costs, as well as the ability to carry
specific application programs, or even complete
operating systems, from one family member to
another. Thus, a user currently employing a
small PDP-11, like the PDP-11/05, can easily
convert to the low cost LSI-11 without losing a
past investment in software development. This

compatibility also eases the program devel-
opment problems often associated with micro-
computer systems; assembly, compilation, and
initial debugging may be done on any PDP-11
system, with the generated code loaded into an
LSI-11 system for testing and final debug.
Through the use of the LSI-11 ASCII console, a
central PDP-11 system may initialize, load, and
start up a remote LSI-11 system over an asyn-
chronous serial line or other link.

Software Support. Other members of the
PDP-11 family, beginning with the Model 20
(Chapter 9), have been in service for some time.
Thus the system designer has at immediate
hand a large number of language processors,
utility routines, and application programs.
Many of these programs will run with little or
no modification on an LSI-11 system. This ex-
isting library of software provides the user with
a head start in the application of micro-
computers, at little or no development cost.

Network Capability. Since the LSI-1 I
shares a common set of data-types and file
structures with other PDP-I 1 systems, many
communication problems disappear. When
linked through line protocols such as DDCMP
(digital data communications message protocol
[DEC, 1974; DEC, 1974a]), LSI-11s may ex-
change programs and files with other PDP-1 1s
without adjustments for differing word sizes,
operating systems, file structures, etc. This fact
makes the LSI-11 the ideal choice for a network
node processor. Used with distributed pro-
gramming systems such as RSX-11, RSTS, or
RT-11, the individual LSI-11 processors may
not even require their own mass storage devices,
but rather share those of other network nodes.
A monitoring network might then consist of a
large central PDP-11 with disks, magnetic tape
units, and other peripherals, together with sev-
eral remote LSI-I 1s which would directly con-
trol transducers and communication lines. Yet,
even in such a functionally differentiated sys-
tem, all processors would be homogeneous in

A MINICOMPUTER-COMPATIBLE MICROCOMPUTER SYSTEM: THE DEC LSI-11 313

instruction set; the distributed nature of the net-
work need not even be visible to the user.

SUMMARY

The LSI-I I , then, is the first of a new class of
microcomputers and offers the user most of the
advantages of a full-blown minicomputer at a
significantly lower cost. It is, in fact, the first
member of the PDP-I 1 family ever offered as a
single-board component to original equipment
manufacturers and others. Gaining power and
flexibility from its microprogrammed design,
the LSI-I I provides a number of important sys-
tem features not yet found in other LSI micro-
computers. With its minicomputer-compatible
instruction set, the LSI-11 offers a new level of
microcomputer accessibility and ease of use.
Whether seen as low-end minicomputers or
high-end microcomputers, machines like the
LSI-I 1 serve to bridge the gap which has sepa-
rated minicomputer performance and conven-

ience from microcomputer economy and
flexibility.

And so, the computer revolution continues;
from the maxi to the mini to the micro, the
number and breadth of computer applications
continue to grow. The DEC LSI-11, a micro-
programmed minicomputer-compatible micro-
computer system, contributes to this growth.
The LSI-1 I is an important step in this contin-
uing evolution; it will certainly not be the last.
For both designers and users of this new gener-
ation of computer systems, there remain many
interesting days ahead.

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to
the many people who helped in the peparation
and review of this paper, especially S. Teicher,
M. Titelbaum. D. Dickhut, R. Olsen, and R.
Eck house.

Design Decisions for the
PDP-11/60 M id -Range Minicomputer

J. CRAIG MUDGE

I N T R 0 D U CT I 0 N

Design evolution of a minicomputer family
usually proceeds along three basic dimensions:
cost, functionality, and size. That is, the mini-
computer becomes cheaper, more powerful,
and smaller with time. The underlying hard-
ware technology is the dominant factor in deter-
mining the evolution. In contrast t o the
evolution of large computers, market factors
have less influence on the growth pattern of
minicomputers. However, minicomputer soft-
ware characteristics are affected by the market.
These requirements rapidly feed down to mod-
ify the hardware, given that the technology will
support user needs.

The DEC PDP-I 1/60 serves to demonstrate
minicomputer designing with improved tech-
nologies. Being a mid-range machine, Le., nei-
ther the lowest in cost nor the highest in
performance, its design is a rich source of
tradeoff examples. Its cache design illustrates a
price/performance trade; the decreasing cost of
read-only memories (ROMs) show how
hardware-microcode tradeoffs change over
time, and its integral floating-point arithmetic
unit exemplifies a software-hardware tradeoff.

DESIGN STYLES

Equipment history reveals that a member is
added to a minicomputer family whenever tech-
nology advances by a factor of 2; for example,
doubling of bit density on a memory chip. Over
the past 15 years, such an improvement has oc-
curred about every two years.

These advances in technology can be trans-
lated into either of two fundamentally different
design styles. One provides essentially constant
functionality at a minimal price (which de-
creases over time); the second keeps cost con-
stant and increases functionality. (Here, and in
the discussion to follow, the definition of func-
tionality has been broadened from its conven-
tional single component, speed, to include
components such as extended instructions and
self-checking.) Both design approaches coordi-
nate with the basic marketing philosophy of the
minicomputer industry: more computation for
more users at less cost. There have been ten
models, or implementations, of the PDP-11 ar-
chitecture since the unit was introduced in 1970
(Chapter 9). Figure 1 illustrates how the two de-
sign styles affected successive implementations
within this minicomputer family.

315

316 THE PDP-11 FAMILY

t
Y) 0

C O N S T A N T COST,
I N C R E A S I N G FUNCTIONALITY,

P D P - l 1 / 4 0 POP 1 1 / 6 0

LS I -11

C O N S T A N T FUNCTIONALITY,
D E C R E A S I N G COST

T I M E +

Figure 1 Minicomputer family evolution Advances in
technology translate into two design styles constant
cost/increasing functionality and constant function-
ality/decreasing cost The PDP- 1 1 /60 represents former
design style Functionality added to PDP-1 1/40 is de-
picted by shaded area Tradeoffs discussed occur within
this area

I

D
TO OTHER
U N I B U S
DEVICES C A C H E

1-1

I PROCESSOR OPTIONS I

Figure 2 Internal structure. Cache placement between
Unibus and CPU permits faster execution and allows use
of standard memories. However, DMA monitoring mech-
anism is needed for traffic on path CBA. Module count is
six for CPU and cache, one for writable control store, one
for microdiagnostics unit, and four for floating-point pro-
cessor. This processor operates in parallel with CPU exe-
cution of nonfloating-point instructions; instruction times
are 1.02 f i s for double-precision add and 1.53 ps for
single-precision multiply. Writable control store uses
1024 control words that are reloadable and that control
170 ns inner machine. Machine is design optimized for
user environment characterized by real-time operating
system and FORTRAN.

Lower cost members trace the decreasing
cost/constant functionality curve. (This is the
1 1/20, 1 1/05, and LSI-11 or 11/03 line.) The
horizontal line in Figure 1 connects the con-
stant cost/increasing functionality designs.
(Not shown are "growth-path'' members that
provide greater performance at slightly in-
creased costs; 11/45, 11/55, and 11/70
machines trace an upward growth-path curve.)
Shaded area in the figure represents the added
functionality possible through technology ad-
vances. Mid-range minicomputers attempt to
optimize price/functionality and, hence, offer
an excellent vantage point for discussing design
tradeoffs made under the constant-cost design
style.

In addition to the capabilities provided by
technological advances, a mature family archi-
tecture and user base allows the minicomputer
designer to include those capabilities that were
not considered feasible in the original archi-
tecture. These features may not have been in-
cluded because they were too costly t o
implement, not sufficiently general purpose to
justify their inclusion, or not perceived as being
essential to users. Reliability, maintainability,
the integral floating-point unit, and the writable
control store (WCS) option represent such
capabilities.

Internal structure of the 1 1 /60 (Figure 2) in-
corporates a 2048-byte cache, memory manage-
ment unit (for virtual-to-physical address
translation), and an integral floating-point uni t
as standard components. The unit can perform
a register-to-register add instruction in an aver-
age time of 530 ns; internal cycle time is 170 ns.
Available as options are a floating-point pro-
cessor, which implements at higher speed the
same 46 instructions as the integral unit, a writ-
able control store, and a microdiagnostic unit.

ADVANCES IN MEMORY TECHNOLOGY

Improvements in memory technology have
been the principal forces in minicomputer de-

DESIGN DECISIONS FOR THE PDP-11/60 MID-RANGE MINICOMPUTERS 317

velopments. Memory is the most basic com-
ponent of a computer, and it is utilized
throughout the design. In addition to obvious
uses as main program and data memory, and as
file storage devices (disks and tapes), memory is
also located within the central processor in the
form of registers, state indicators, control, and
buffer storage between the central processor
and main (primary) memory. In input/output
(I/O) devices, there are buffers and staging
areas. Memory can be substituted for nearly all
logic by substituting table lookup for com-
putation.

The constantly increasing bit density men-
tioned previously has been the most dramatic
development in memories. For example, bi-
polar read-write or random-access memory
(RAM) chips have advanced as follows.

Year When First Number
Widely Available of Bits

1969-70 16
I97 1-72 64
1973 256
1975 1024
1977 4096

Cost reductions have paralleled bit density
increases. A consequence of high density RAM
technology is that cache memories are now ex-
tensively used in mid- and upper-range mini-
computers. Bipolar ROM densities have led
RAM densities by about a year. Thus, the 2048-
bit ROM, organized as 512x4, was available in
1975.

These factors have made microprogrammed
control increasingly attractive to the mini-
computer designer. While large-scale computers
utilized extensive microprogramming during
the 196Os, it was not a cost-effective choice for
the minicomputer designer because of the pro-
hibitive cost of the read-only storage tech-
nology then available.

Both hardwired control devices and micro-
programmed control devices have curves that
trace increases in cost as they implement in-
creasing functionality (Figure 3). However, the
rate o f cost increase is less for micro-
programmed controls than for hardwired con-
trols. Davidow [19721 demonstrates that a
factor of 4 difference exists between the two
slopes.

At some point, the two related hardwired and
microprogrammed curves cross. Beyond that
intersection, microprogrammed controls are

HARDWIRED

I3 x2 PDP-11 X 1

FUNCTIONALITY

Figure 3. Semiconductor technology trends in control
implementations. Cost comparisons, at three different
points in time, of conventional hardwired control and ad-
vanced microprogrammed control show two important
trends. First, at fixed point in time in 1970s (e.g., time
(3). microprogrammed control is less expensive above
certain level of complexity (x 3) . For simplest type of ma-
chine, random logic gives most economical design. Mi-
croprogrammed design has base cost associated with
address sequencing and memory selection circuitry. Mi-
croprogrammed control cost increases slowly with num-
ber of sequencing cycles. which are added as complexity
increases. because each additional cycle requires one ad-
ditional word of control store. Second. because rate of
cost-decrease for memories is greater than the rate for
random logic. crossover points move with time, gradually
shifting in favor of microprogrammed control. When
11/20 was designed (time t l) hardwired controls were
cheaper. Its successor, the 11/40. was designed at time
t2 and used microprogramming. The 11/60, at time t3.
used increased microprogramming.

318 THE PDP-11 FAMILY

more economical to use in a design. Both of
these curves are moving downward in cost with
time, but the curve for microprogrammed con-
trols is moving downward at a faster rate. Thus,
the intersection point of the two curves is grad-
ually shifting in favor of microprogrammed
controls because the two technologies are mov-
ing at different rates. The PDP-I 1 family offers
an example of this trend. At the time the 11/20
was designed, the crossover point was to the
right of the PDP-II instruction set on the ab-
scissa. Hence, the 11/20 used hardwired con-
trols. However, all subsequent implementations
h a v e used a R O M - c o n t r o l l e d m i c r o -
programmed processor. O’Loughlin [19751 con-
trasts the control implementations of four
members of the family.

Instruction decode on the 11/60 provides an
example of a different use of ROMs. For the
secondary decode (the primary is done by com-
binational logic), part of the instruction register
addresses a ROM in which control-store-
address offsets are stored. This data-table ap-
proach offers both a component saving and a
more systematic design. Another example is a
ROM-stored table that inspects memory ad-
dresses to detect those that refer to locations in-
ternal to the processor.

Other advances in semiconductor technology
that have affected the minicomputer designer’s
task include the development of 3-state logic de-
vices and greater levels of gate integration in
logic chips. Widely available in 1975, 3-state
logic encourages bus-oriented designs. Six 3-
state buses are implemented in the 11/60.
Examples are the 48-bit-wide control signal bus
in the CPU and the 60-bit-wide fraction data
and IO-bit-wide exponent data buses in the
floating-point processor.

Increased gate integration in logic chips had
its major impact on constant-cost mini-
computers when the design evolution moved
from the 11/20 to the 11/40. The latter machine
made heavy use of medium-scale integration
(MSI). The MSI available to 11/60 designers

had negligible density gains over that available
to the 1 1 /40 designers. However, after the basic
technology decision for the 11/60 was made, a
significant step in gate integration occurred.
The bit-slice technology, as typified by the 4-
bit-wide bipolar AM2901 microprocessor slice,
became widely available. A 1977 technology de-
cision for a mid-range minicomputer would
clearly choose bit-slice components. For the
1 I /60, however, improvements came from the
introduction of 3-state logic and from avail-
ability of a wider range of Schottky logic com-
ponents.

Three semiconductor technology advances
contributed to the 11/60 price/performance de-
sign in differing degrees. Most important was
the cost reduction in ROMs, next was the den-
sity improvement in RAMS, and third was the
(minor) increase in random logic density.

P R IC E/PE R FORM A N C E BALANCE

Two components, the cache memory and the
medium-bandwidth 1/0 structure, demonstrate
the price/performance balance characteristic of
the I 1 /60 mid-range minicomputer.

Cache is now a well-proven technique in
computer memory implementation. Its purpose
is to achieve the effect of an all-high-speed
memory by using two memories - one slow
(primary) and one fast (cache) - and by taking
advantage of the fact that, most of the time,
data being used is in the fast or cache memory.
Programs typically have the property of local-
ity; that is, over short periods of time, most ac-
cesses are to a small number of memory
locations. The hardware algorithm managing
the cache attempts to keep copies of these loca-
tions in the cache. The term “hit ratio” is used
to describe the proportion of requests for data
or instructions that are satisfied by reference
only to the cache. Alternatively, “miss ratio” is
the complement of hit ratio. Performance is de-
termined by the hit ratio, which is a function of
several cache organizational parameters, in-
cluding: (I) cache size, (2) block size (amount of

DESIGN DECISIONS FOR THE PDP-11/60 MID-RANGE MINICOMPUTERS 319

data moved between the slow or primary mem-
ory and the cache), and (3) form of address
comparison used.

Strecker (Chapter IO) describes the research
that led to the use of a cache memory in the
I 1 /70. His simulation models were also used in
the 11/60 design. By comparing the designs of
these machines, several tradeoffs made to ob-
tain a lower cost memory system appropriate to
the mid-range 11/60 can be noted.

The first parameter to be determined was the
amount of data to be moved between primary
memory and cache. This decision was closely
related to the width of the internal memory bus
connecting 1/0 devices to primary memory.
Since the 11/70 was planned to support several
high speed Direct Memory Access (DMA) de-
vices, (e.g., swapping disks operating con-
currently), its designers provided a 32-bit bus to
memory to supplement the 16-bit-wide Unibus.
Because the target 11/60 users do not require
such a large 1 / 0 bandwidth, the Unibus is used
for DMA traffic. The 11/70 cache has a block
size of two 16-bit words and transfers 32 bits
from memory to cache across its dedicated
memory bus. Since the 11/60 uses the 16-bit
Unibus as its memory bus, the simplest block
size - one 16-bit word - was chosen. Note that a
2-word block size can be achieved with a 16-bit
bus; the bus is cycled twice to effect a 2-word
transfer. Cache simulations showed that this
bus cycling would raise the hit ratio of the
1 1 /60 from 87 to 92 percent. However, the asso-
ciated performance gain was judged not to be
worth the significant added cost of the extra
control logic needed to cycle the bus twice.

The next decision concerned the size of the
cache. Simulation results showed that the miss
ratio decreases rapidly for cache sizes up to
1024 words and less rapidly for larger sizes. But
how should the 1024 words be partitioned? Be-
cause a full-associative cache requires an expen-
s ive c o n t e n t - a d d r e s s e d m e m o r y , t h e
partitioning choice for minicomputers is for a
set-associative cache. Since a complete dis-

cussion of associativity and replacement is be-
yond the scope of this article, the reader is
referred to the papers by Meade [I9711 and
Strecker (Chapter IO).

Degree of associativity and total cache size
was dominated by the form factors of two can-
didate RAM chips (256 X 1 and 1024 X 1).
These factors are illustrated in Figure 4. The
fo l lowing l is t s h o w s t h e c l e a r p r i c e /
performance advantage of the chosen 1024-
word, set-size-of-one cache.

RAM RAM
Chip Set Cache Chip Hit
Capacity Size Size Count Ratio
256X 1 1 256 n 0.70
256X 1 1 512 2n 0.75
256X 1 2 512 2n 0.82

1024X 1 1 1024 n 0.87

256 X 1 2 1024 4n 0.93
1024X 1 2 2048 2n 0.93

The resulting structure is shown in Figure 5.
This simple, direct-mapped organization should
dominate minicomputer cache designs in the
near-term future. By using the design evolution
model shown in Figure I , it is projected that the
two candidate RAM chips for the successor to
the 11/60 cache will be the 1024 X 1 and 4096 X
1 chips. Obviously, the design choice for that
new class of machine will be a 4096-word direct-
mapped cache.

Since simulation data show negligible per-
formance difference between various write-
allocation strategies, the lowest cost strategy,
that of allocate-on-write, was implemented. Be-
cause the l l /60 utilized a set-size-of-one cache,
there was no need to decide upon a replacement
algorithm. The 11/70 uses a random-replace-
ment algorithm.

The next decision to be made concerned
placement of cache. Two choices were eval-
uated. The cache could be placed between the
Unibus and the primary memory or between

320 THE PDP-11 FAMILY

1'1 WORD

SET 0 SET 1

,TAG,l DATA , D A r ,
WORD WORD WORD WORD

PDP 11 l60CACHE
CONSTRUCTED 4" 256 X 1 RAM CHIPS
FROM n 1024 X 1
RAM CHIPS

PDP 11/70 CACHE CONSTRUCTED FROM

Figure 4 Cache comparison Simple direct mapped
cache of the 11/60 contrasted with the 11/70 cache
illustrates a price-performance tradeoff The 1 1 /70
cache has a block size of two (two words are transferred
from primary memory) and a set size of two (a word may
be placed in either set) Component savings of the sim-
pler organization are clear only one address comparator
is needed no multiplexer is required to select the output
of the data store and only one set of parity checkers is
needed Hit ratio of the simpler 11/60 cache is 0 87 as
compared with 0 93 for the 1 1/70 cache, which required
five times the component count

,-
.' P Y TAG P nvrf P BYTE

l ? , , 8 1 B

Figure 5 Direct-mapped cache Mapping occurs from
128 Kwords of primary memory to 1024-word cache
High-order seven bits of an 18-bit address are stored in
tag store to ensure uniqueness in mapping Tag store
also holds a valid bit and parity bits Cache word format
(27 bits in total) is as shown in the bit map

the Unibus and the central processor. The latter
was chosen because of the following advan-
t ages.

Machine execution is faster since the
high speed cache is local to the central
processor. Time delays associated with
synchronization and transmission on the
Unibus are avoided.
Instead of designing specific 11/60 mem-
ory modules, existing memory sub-
systems that interface to the Unibus
could be used. Moreover, as faster
Unibus-interfaced memories become
available, they can be installed on the
machine without change.
DMA traffic interferes with processor
activity to a lesser extent. DMA activity
takes place over the path labeled ABC in
Figure 2. Processor speed is degraded by
interference with 1 / 0 operations only
when the cache needs to reference the
primary memory, using path ABD in
Figure 2. This happens only in the event
of a read miss, typically less than 13 per-
cent of the time, and on write operations
(10 percent of memory references).

The disadvantage of this placement is that a
mechanism to monitor DMA traffic must be
added to the cache to avoid the "stale data"
problem. (When the processor reads a location
that has been written by DMA, it must receive
the information from primary memory.) The al-
ternative placement avoids this extra mecha-
nism by handling both DMA and processor
requests with the same mechanism. However,
there is more interference between the processor
and 1 / 0 activity.

Increased memory chip density and the cache
performance tradeoff resulted in a significant
component reduction. The 11/70 cache oc-
cupies four printed circuit boards (approx-
imately 440 chips); the 11/60 occupies less than
one board (approximately 85 chips). This factor
of 5 component reduction is due to: (1) absence

DESIGN DECISIONS FOR THE PDP-11/60 MID-RANGE MINICOMPUTERS 321

of the 32-bit bus, (2) simpler cache organiza-
tion, and (3) semiconductor technology ad-
vances. These three factors contributed in
approximately equal proportions.

FREQUENCY -D R IVE N DESIGN

Because the 11/60 implemented a stable, ma-
ture instruction set, several years of program-
ming experience were incorporated into the
system design. A simulator program was used
to gather execution statistics on a range of pro-
grams. Frequency distributions of operation
codes and addressing modes drove the design of
the base 11/60 and the floating-point processor
option.

Functions implemented in hardware, as
opposed to microcode, require less time to
execute. However, microprogrammed imple-
mentations are less expensive, as shown in
Figure 3. Frequency distributions of operation
codes guided the tradeoff. A balanced mixture
of hardwired and microprogrammed implemen-
tation of functions produced a central processor
that approached the speed of a computer with
completely hardwired control functions, but at
a lower cost.

Frequency distributions of floating-point
operands were also used. Sweeney [I9651
analyzed the execution of more than one mil-
lion floating-point additions and tabulated the
behavior of preshift alignment and postshift
normalization. Both distributions are highly
skewed toward low numbers of shifts. By ex-
ploiting these data, the floating-point processor
performs a double-precision add in 1.02 micro-
seconds as compared with 1.68 microseconds
on a comparable unit that uses a conventional
algorithm.

To measure the price/performance advan-
tage claimed for the frequency-driven design
approach in the base 11/60, a similar machine
was needed for comparison. Obviously, such a
machine, realized in the same semiconductor
technology and designed so that the hardware

resources were divided equally among all in-
structions, was not available. However, data
was available on floating-point implementa-
tions. The floating-point processor design was a
four printed circuit board unit that exploited
the frequency distributions of operation codes,
addressing modes, and shift amounts. A theo-
retical comparison was made with another four
board design that did not use a frequency-
driven approach. The 1 1 /60 floating-point pro-
cessor was estimated to exhibit a performance
gain of 30 to 40 percent on the standard set of
benchmark programs used throughout the de-
sign process.

INTEGRAL FLOAT1 NG-POI NT
ARITHMETIC UNIT

Addition of an integral floating-point arith-
metic unit to the 11/60 was a direct con-
sequence of market feedback. In particular, it
was determined that the majority of the
machine’s users would use FORTRAN IV as a
source language. In addition, among those
using that language, many were not interested
in heavy floating-point computation because in-
teger arithmetic dominated their applications.

The FORTRAN IV-PLUS compiler has been
optimized for execution speed (as opposed to
compile speed) - typically a factor of three over
other available FORTRAN IV compilers. This
compiler, however, employs the instruction set
and auxiliary registers of the PDP-I 1 floating-
point processors. Thus, to take advantage of the
compiler’s efficiency without burdening the
user with the cost of a fast floating-point pro-
cessor, the central processor must provide those
floating-point instructions. This is done by
emulating the 46 instructions, including the 64-
bit data operations, of the full floating-point in-
struction set using the 16-bit-wide data path of
the base 11/60. Fo r users who require
FORTRAN IV but have low floating-point
content in their programs, the integral floating-
point uni t is all that is necessary.

322 THE PDP-11 FAMILY

Additional microcode and register space
added a few percent to the CPU cost. However,
for that small cost increase, FORTRAN IV per-
formance on integer programs was increased by
300 percent - a dramatic increase.

CABINET-LEVEL INTEGRATION

Physical packaging of minicomputer systems
involves another set of tradeoffs. Several levels
of size integration are available, ranging from
the chip level (LSI-1 1), through the board level
(1 1 /04) and the box level (1 1 /34), to the cabinet
level (1 1 /60).

At the cabinet level, packaging techniques are
generally traditional. System fabrication is fre-
quently the result of determining methods to in-
stall subassemblies into standard racks. At this
configuration level, generalized subassemblies
are usually chosen for certain functions.

This generally evokes a cost. For instance,
there may be a great deal of unused space in
conventional industrial racks; in most cases this
excess space is simply covered with blank panel-
ing. The cooling system, however, must be de-
signed as if all the racks within the cabinet were
occupied with subassemblies.

It was projected that the majority of the con-
figurations sold would be system oriented; thus,
design optimization at the cabinet level would
be worthwhile. Therefore, the standard 11/60 is
cabinet packaged. Figure 6 shows how the
CPU, memory, disk units, power supplies, and
expansion backplane are packaged to gain the
advantages that stem from cabinet level in-
tegration. This integration also yielded added
volume, allowing a more powerful blower sys-
tem to be installed. Acoustic sound power emit-
tance is very low, considering that the rated
operating environment is DEC Standard 102
Class C (122" F) for the processor. Improved
power efficiency, appearance for the office envi-
ronment, and subassembly accessibility are also
provided.

USER MICROPROGRAMMING OPTION

User microprogramming was incorporated in
the system to meet growing market demands.
The option allows the user to create instructions
that tailor the central processor, particularly the
data flow, to his particular application.

Many potential applications of micro-
programming were considered during the de-
sign of the data path and control sections of the
11/60. They ranged from instruction set exten-
sions, e.g., translation, string, and decimal
arithmetic operations, to application kernels,
such as node manipulation in list processing
and fast Fourier transform in signal processing.
Merely substituting RAM for ROM control

0

A

C

E

F

I
F

LEGEND
A - DISK DRIVES
B - M A I N T E N A N C E CONSOLE
C - C A R 0 CAGE S W U N G INTO M A I N T E N A N C E - A C C E S S P O S I T I O N
D - C A R D CAGE I N CLOSED P O S I T I O N
E - REAR ACCESS M O D U L A R POWER SUPPLIES
F - BLOWER SYSTEM

Figure 6 Cabinet packaging Primary design goals
were reliability and maintainability System logic is
mounted on swing-out card cages C and D for easy ac-
cess Rear access power supplies E are modular Cable
routing reduces electrical noise and crosstalk Blower
system F keeps all devices cool Keypad B with numer-
ical display facilitates machine control and maintenance
Disks A are top- or front-loading units

DESIGN DECISIONS FOR THE PDP-11/60 MID-RANGE MINICOMPUTERS 323

does not result in a microprogrammable com-
puter. A microprogrammable computer system
should have the following:

I . Extra address space in the control store.
2. Generality in the data path’s processing

elements.
3. A means to load the writable control

store (WCS).
4. User-oriented hardware documentation.
5 . Software to support writing and debug-

ging microprograms.
6. Integration of hardware and software

protocols.

All these capabilities were designed into the
1 1 /60 WCS option.

A previously reserved operation code,
0767XX in the PDP-I 1 instruction set, has been
allocated for users. Its designation is XFC, ex-
tended function code. When this code is recog-
nized, the CPU transfers control to the upper
1024-word block of the 4096-word micro-
program address space. User-written microcode
may take over from there.

A second (asynchronous) type of entry to
user’s microcode is also provided. This occurs
when a WCS-serviced interrupt is recognized by
the base machine. Thus, a user can write inter-
rupt service routines in microcode and invoke
them without the usual inerrupt overhead. Such
routines may even be complete 1/0 channel
emulations.

Implementation of the basic 11/60 demon-
strated flexibility of microprogramming. The
techniques were used in such diverse functions
as console service, error logging, floating-point
arithmetic, and cache initialization.

Microprogramming does not always result in
significant performance gains. Well-suited ap-
plications can gain by a factor of 5 ; poorly
suited ones may give only minimal improve-
ment. This is supported by measurements on
digital signal processing software reported by
Morris and Mudge [1977]. Prospective users

must carefully analyze the execution behavior
of the application to determine which parts are
“hot spots,” i.e., most frequently executed. For
the average application, an overall factor of 2
improvement should be expected. This average,
found to be a useful rule of thumb, is derived by
assuming that all hot spots are micro-
programmed and the remainder of the program
is left unchanged.

Two user-microprogramming options are
available. The first is composed of the writable
control store module, software tools, and asso-
ciated manuals. The second is a board contain-
ing control logic and sockets ready for the
insertion of custom-programmable ROMs
(PROMS) containing microprograms developed
with the writable control store. This extended
control store (ECS) option is designed for situa-
tions where microcode integrity and/or mul-
tiple installations are required.

A novel structuring of the writable control
store allows it to be used to store data. Avail-
ability of data storage local to a processor, i.e.,
not accessed through a main, general purpose
memory bus, can increase system speed. Such
local store is usually implemented in some spe-
cial technology that has low capacity but high
performance. Writable control store has been
structured so that the 48-bit microinstruction
storage words can be read and written as 16-bit
data words. In addition to conventional writ-
able control store hardware, logic is available to
realize a local store address register (LSAR)
and a local store data register (LSDR).

Thus, the microprogrammer has fast local
store available. This storage is block-oriented.
A three-cycle overhead is needed to start a
block read (or block write); then, words are
read (or written) at the rate of one per micro-
cycle. The microprogram can be logically parti-
tioned into two sections: control store - 48-bit
control words; and local store - 16-bit data
words (three per microword). A common parti-
tioning would be 512 words of control store and
1536 words of local store.

324 THE PDP-11 FAMILY

RE LI A B I LlTY A N D M A I NTA I NAB I LlTY

Design decisions to allocate a portion of the
cost of the 11/60 to reliability and maintainabil-
ity, rather than to further improving perfor-
mance, were motivated by user and market
needs. Prime considerations were the increasing
labor cost associated with maintenance and the
growing use of minicomputers in applications
demanding more reliability.

The first goal was to increase the mean time
between failures (MTBF) by: (1) reducing the
occurrence and impact of normally fatal hard-
ware malfunctions, (2) providing error statis-
tics, and (3) providing operating alternatives to
keep the system running after failures occur, al-
beit at a lower performance.

The second goal was to reduce the mean time
to repair (MTTR) when hardware malfunctions
occur by: (1) hardware design and packaging
that facilitate error diagnosis and repair during
scheduled and nonscheduled maintenance, (2)
continuous logging of hardware errors during
system operation, and (3) provision of software
and microdiagnostic tools for problem isola-
tion.

MTBF

Reducing the incidence of fatal hardware
malfunctions was a joint effort by engineering
and manufacturing. The Schottky transistor-
transistor logic (TTL) used in the machine, hav-
ing been in widespread use for over five years, is
a well proven family of devices. Moreover, con-
servative electrical design practices were fol-
lowed.

Plotted against time, chip failure rate tends to
follow a bathtub-shaped curve, high at either
end of the life cycle. The 11/60 production pro
cess includes extensive thermal cycling to ensure
that “infant mortality” cases are discovered
early during manufacturing.

The cabinet is designed to minimize buildup
of hot air over the processor boards. Power sup-
plies are mounted at the rear of the cabinet,
away from the logic, so that radiant heating ef-

fects are minimized. A blower system cools the
logic card cage by drawing fresh, filtered air
down over the printed circuit boards such that
no board receives exhaust air from another.

Other physical packaging to reduce hardware
problems include cable troughs, impact-
absorbing casters, and special cabinet ground-
ing. A filter is attached to the maintenance con-
sole to reduce electrostatic noise interference.

Console microcode double checks every entry
to verify data received from the keypad. A sig-
nificant proportion of the 11/60 microcode
(Table 1) is devoted to logging microlevel state
upon the occurrence of a detected error. This
logged state can be accessed via a maintenance
examine and deposit (MED) instruction. Log-
ged information is used by an operating system
to compile error records, which aid in tracking
down intermittent errors.

To reduce the impact of hardware malfunc-
tions on the user environment, a number of fail-
soft capabilities have been implemented.

If the cache fails, it is turned off and the
still-functioning primary memory is used
to keep the system running.
If a parity error occurs in WCS, the pro-
cessor disables that control store. Then
the operating system is notified, and pro-
gram execution can continue using the
basic PDP-11 instructions.
Systems can be programmed to fall back
onto the integral floating-point unit if an
error is detected in the floating-point
processor.
The bootstrap loader permits system
loading from an alternative device if the
primary bootstrapping device is dis-
abled.

MTTR
Error diagnosis is the most time-consuming

problem facing the field service engineer. Spe-
cial diagnostic tools, both hardware and soft-
ware, have been designed to reduce the time
spent in error isolation.

DESIGN DECISIONS FOR THE PDP-11/60 MID-RANGE MINICOMPUTERS 325

Table 1. Control Store Usage by Category

Category
Number of Percentage
Microwords of Total

A PDP-1 1 Instruction Set
Initialization
Operand fetch. execution, and operand
store
Infrequent intraprocessor transfers

9 5

51 5
230 840

B

C

D

E

Integral Floating-point Instruction Set

Reliability and Maintainability
Error logging, MED, and cache fail-soft
Console, boot, and initial diagnostic

Support of Options

Writable control store

Floating-point processor

Reserved for Future Changes and

Additions

1010

190
230

60

80

150

4

2 0

9

40

7
9

2
3

6

2560 100

Total address space for microprograms is 4096 words of which the 2560 categorized in the table are
implemented in ROM

Note the increased utilization of microprogramming in the 11/60 as compared to the 11/40 Category A
totaling 840 words was implemented in 256 words for the 11/40 The two machines have comparable
microword widths

The third subcategory in Category A illustrates the use of microprogramming in the frequency-driven
design approach Examples of infrequent tntraprocessor transfers are error handling and data transfer to and
from internal addresses e g , memory management relocation registers

One of the benefits of a microprogrammed implementation of control is the ease with which engineering
change orders (ECO) can be implemented Space in Category E is reserved for such use and for the further
correction of undetected errors in the microcode itself

Focal point of the hardware maintainability
effort is the microdiagnostic unit. This single
board tests the logic on five of the six processor
boards. When faults are detected, an error code
is displayed on light-emitting diodes (LEDs). A In addition, a number of on-board diagnostic
fault directory can then be used to determine aids are included in the CPU design. These in-
which boards are to be replaced. The unit clude LEDs to display the contents of the next

requires only a small portion of the internal
machine (the microword sequencing) to be op-
erational.

326 THE PDP-11 FAMILY

microaddress register, a single-step mode, and a
microbreak function.

Software diagnostic programs are used to
diagnose errors in system peripherals as well as
in all CPU subsystems, such as memory man-
agement unit and cache. User mode diagnostic
programs allow peripheral diagnosis to occur
while the system is available for other users.
Conventional standalone diagnostic programs
can also be used.

Physical packaging facilitates quick repair.
Hinged card cages and modular power supplies
allow easy access and module change.

SUMMARY

The design of a mid-range minicomputer has
been used as a concrete illustration of tradeoffs
made to effect a price/performance balance.

Designers use technology advances, e.g., dou-
bling of density on a memory chip, to produce
new designs in one of two design styles: con-
stant cost/increasing functionality or constant
functionality/decreasing cost. Increased use of
microprogramming, a factor of 3 in this case
study, is a trend that was observed.

By choosing a less powerful cache organiza-
tion, the 11/60 design obtained a factor of 5
component reduction. Cache design also illus-
trates how some design parameters are highly
interdependent. The frequency-driven design
approach used on the floating-point processor
can lead to a 40 percent performance gain.

Examples of added functionality in the con-
stant-cost style of design include greater relia-
bility and maintainability, and user micro-
programming .

Impact of Implementation
Design Tradeoffs on Performance:

The PDP-11, A Case Study
EDWARD A SNOW and DANIEL P SlEWlOREK

I NTROD U CTl ON

As semiconductor technology has evolved,
the digital systems designer has been presented
with an ever increasing set of primitive com-
ponents from which to construct systems:
standard SSI, MSI, and LSI as well as custom
LSI components. This expanding choice makes
it more difficult to arrive at a near-optimal
cost/performance ratio in a design. In the case
of highly complex systems, the situation is even
worse since different primitives may be cost-ef-
fective in different subareas of such systems.

Historically, digital system design has been
more an art than a science. Good designs
evolved from a mixture of experience, intuition,
and trial and error. Only rarely have design
methodologies been developed (e.g., two level
combinational logic minimization, wire-wrap
routing schemes, etc.). Effective design method-
ologies are essential for the cost-effective design
of more complex systems. In addition, if the
methodologies are sufficiently detailed, they
can be applied in high level design automation
systems [Siewiorek and Barbacci, 19761.

Design methodologies may be developed by
studying the results of the human design pro-
cess. There are at least two ways to study this

process. The first involves a controlled design
experiment where several designers perform the
same task. By contrasting the results, the range
of design variation and technique can be estab-
lished [Thomas and Siewiorek, 19771. However,
this approach is limited to a fairly small number
of design situations due to the redundant use of
the human designers.

The second approach examines a series of ex-
isting designs that meet the same functional
specification while spanning a wide range of de-
sign constraints in terms of cost, performance,
etc. This paper considers the second approach
and uses the DEC PDP- 1 1 minicomputer line as
a basis of study. The PDP-11 was selected due
to the large number of implementations (eight
are considered here) with designs spanning a
wide range in performance (roughly 7:l) and
component technology (bipolar SSI, MSI,
MOS custom LSI). The designs are relatively
complex and seem to embody good design
tradeoffs as ultimately reflected by their
price/performance and commercial success.

The design tradeoffs considered fall into
three categories: circuit technology, control unit
implementation, and data path topology. All

327

328 THE PDP-11 FAMILY

three have had considerable impact on perform-
ance. Attention here is focused mainly upon the
CPU. Memory performance enhancements
such as caching are considered only in so far as
they affect CPU performance.

This paper is divided into two major parts.
The first part presents an archetypal implemen-
tation followed by the model-specific variations
from the archetype. These variations represent
the design tradeoffs. The second part presents
methodologies for determining the impact of
various design parameters on system perform-
ance. The magnitude of the impact is quantified
for several parameters and the use of the results
in design situations is discussed.

The PDP-I 1 Family is a set of small- to me-
dium-scale stored program central processors
with compatible instruction sets. The I1 Family
evolution in terms of increased performance,
constant cost, and constant performance suc-
cessors is traced in Figure 1. Since the 11/45,
1 1/55 and 11/70 use the same processor, the
KB 1 1, only the 1 1 /45 is treated in this study.

IMPLEMENTATION OF M E D I U M
PERFORMANCE PDP-1 IS

The broad middle range of PDP-lls have
comparable implementations yet their perform-
ances vary by a factor of 2. The processors mak-
ing up this group are the PDP-l1/04, 11/10,*
11/20, 11/34, 11/40, and 11/60. This section
discusses the features common to these imple-
mentations and the variations found between
machines which provide the dimensions along
which they may be characterized.

Common Implementation Features

All PDP-11 implementations, be they low,
medium, or high performance, can be decom-
posed into a set of data paths and a control
unit. The data paths store and operate upon
byte and word data and interface to the Unibus,
permitting them to read from and write to

PDP-1

TIME

Figure 1 . PDP-1 1 Family tree

memory and peripheral devices. The control
unit provides all the signals necessary to evoke
the appropriate operations in the data paths
and Unibus interface. Mid-range PDP- 11s have
comparable data path and control unit imple-
mentations allowing them to be contrasted in a
uniform way. In this section, a basis for com-
paring these machines is established and used to
characterize them.

Data Paths. An archetype may be con-
structed from which the data paths of all mid-
range PDP-1 Is differ but minimally. This arch-
etype is diagrammed in Figure 2. All major reg-
isters and processing elements as well as the
links and switches which interconnect them are
indicated. The data path illustrations for indi-
vidual implementations are grouped with Fig-
ure 2 at the end of the chapter. These figures are
laid out in a common format to encourage com-
parison. Note that with very few exceptions, all
data paths are 16 bits wide (PDP-11 word size).

The heart of the data paths is the arithmetic
logic unit or ALU through which all data circu-
lates and where most of the processing actually
takes place. Among the operations performed
by the ALU are addition, subtraction, one’s

*The 11/05 and the 11/10 a re identical machines sold to different markets. This chapter refers t o the machine as the 11/10

IMPACTOF IMPLEMENTATION DESIGN TRADEOFFS ON PERFORMANCE: THE PDP-11, A CASE STUDY 329

CONOlTlON
CODES
t 0-

NOTE
All data paths are 16 bits wide unless otherwise indicated

Figure 2. Archetypal medium-range PDP-1 1 data
paths

and two’s complementation, and logical AND-
ing and ORing.

The inputs to the ALU are the A leg and the
B leg. The A leg is normally fed from a multi-
plexer (A leg MUX) which may select from an
operand supplied to it from the Scratchpad
Memory (SPM) and possibly from a small set of
constants and/or the Processor Status register
(PS). The B leg also is typically fed from its own
MUX (B leg MUX), its selections being from
the B Register and certain constants. In addi-
tion, the B leg MUX may be configured so that
byte selection, sign extension, and other func-
tions may be performed on the operand which it
supplies to the ALU.

Following the ALU is a multiplexer (the A
MUX) typically used to select between the out-
put of the ALU, the data lines of the Unibus,
and certain constants. The output of the A
MUX provides the only feedback path in all
mid-range PDP- 1 1 implementations except the
11/60 and acts as an input to all major proces-
sor registers.

The internal registers lie at the beginning of
the data paths. The Instruction Register (IR)
contains the current instruction. The Bus Ad-
dress register (BA) holds the address placed on
the Unibus by the processor. The Program Sta-
tus register (PS) contains the processor priority,
memory management unit modes, condition

code flags, and instruction trace trap enable bit.
The Scratchpad Memory (SPM) is an array of
16 individually addressable registers which in-
clude the general registers (RO-R7) plus a num-
ber of internal registers not accessible to the
programmer. The B Register (B Reg) is used to
hold the B leg operand supplied to the ALU.

The variations from this archetype are minor
as discussed in the section entitled “Character-
ization of Individual Implementations.” Varia-
tions encountered include routings for Bus
Address and Processor Status register, the point
of generation for certain constants, the posi-
tioning of the byte swapper, sign extender, and
rotate/shift logic, and the use of certain aux-
iliary registers present in some designs and not
others. I n general, these variations are all pe-
ripheral to the major elements and inter-
connections of the data paths.

Control Unit. The control unit for all PDP-
11 processors (with the exception of the PDP-
11/20) is microprogrammed [Wilkes and
Stringer, 19531. The considerations leading to
the use of this style of control implementation
in the PDP-I 1 are discussed in [O’Loughlin,
19751. The major advantage of micro-
programming is flexibility in the derivation of
control signals to gate register transfers, syn-
chronization with Unibus logic, control of mi-
crocycle timing, and evocation of changes in
control flow. The way in which a micro-
programmed control unit accomplishes all of
these actions impacts performance.

Figure 3 represents the archetypal PDP-I 1
microprogrammed control unit. The contents
of the Microaddress Register determine the cur-
rent control unit state and are used to access the
next microinstruction word from the control
store. Pulses from the clock generator strobe
the Microword and Microaddress Registers
loading them with the next microword and next
microaddress respectively. Repeated clock pul-
ses thus cause the control unit to sequence
through a series of states. The period spent by
the control unit in one state is called a micro-
cycle (or simply cycle when this does not lead to

330 THE PDP-11 FAMILY

I MICROWORD I

STATE

FROM
OnTA P A W S

INFORMATION

NEXT I I MICROWORDl

Figure 3
control unit

Archetypal microprogrammed PDP-1 1

confusion with memory or instruction cycles),
and the duration of the state as determined by
the clock is known as the cycle time. The Micro-
word Register shortens cycle time by allowing
the next microword to be fetched from the con-
trol store while the current microword is being
used.

Most of the fields of the microword supply
signals for conditioning and clocking the data
paths. Many of the fields act directly or with a
small amount of decoding, supplying their sig-
nals to multiplexers and registers to select rout-
ings for data and to enable registers to shift,
increment, or load on the master clock. Other
fields are decoded based upon the state of the
data paths. An instance of this is the use of aux-
iliary ALU control logic to generate function
select signals for the ALU as a function of the
instruction contained in the IR. Performance as
determined by microcycle count is in large mea-
sure established by the connectivity of the data
paths and the degree to which their function-
ality can be evoked by the data path control
fields of the microprogram word.

The complexity of the clock logic varies with
each implementation. Typically, the clock is
fixed at a single period and duty cycle; however,

processors such as the 11/34 and 11/40 can se-
lect from two or three different clock periods
for a given cycle depending upon a field in the
Microword Register. This can significantly im-
prove performance in machines where the
longer cycles are necessary only infrequently.
The clock logic must provide some means for
synchronizing processor and Unibus operation
since the two operate asynchronously with re-
spect to one another. Two alternate approaches
are employed in mid-range implementations.
Interlocked operation, the simpler approach,
shuts off the processor clock when a Unibus op-
eration is initiated and turns it back on when
the operation is complete. This effectively keeps
microprogram flow and Unibus operation in
lockstep with no overlap. Overlapped operation
is a somewhat more involved approach which
continues processor clocking after a DATI or
DATIP is initiated. The microinstruction re-
quiring the result of the operation has a func-
tion bit set which turns off the processor clock
until the result is available. This approach
makes it possible for the processor to continue
running for several microcycles while a data
transfer is being performed, improving per-
formance.

The sequence of states through which the
control unit passes would be fixed if not for the
branch on microtest (BUT) logic. This logic
generates a modifier based upon the current
state of the data paths and Unibus interface
(contents of the Instruction Register, current
bus requests, etc.) and a BUT field in the micro-
word currently being accessed from the control
store which selects the condition on which the
branch is to be based. The modifier (which will
be zero in the case that no branch is selected or
that the condition is false) is ORed in with the
next microinstruction address so that the next
control unit state is not only a function of the
current state but also a function of the state of
the data paths as well. Instruction decoding and
addressing mode decoding are two prime exam-

IMPACTOF IMPLEMENTATION DESIGN TRADEOFFS ON PERFORMANCE: THE PDP-11, A CASE STUDY 331

ples of the application of BUTs. Certain code
points in the BUT field do not select branch
conditions, but rather provide control signals to
the data paths, Unibus interface, or the control
unit itself. These are known as active or work-
ing BUTs.

The JAM logic is a part of the microprogram
flow-altering mechanism. This logic forces the
Microaddress Register to a known state in the
event of an exceptional condition such as a
memory access error (bus timeout, stack over-
flow, parity error, etc.) or power up by ORing
all one’s into the next microaddress through the
BUT logic. A microroutine beginning at the all-
one’s address handles these trapped conditions.
The old microaddress is not saved (an exception
to this occurs in the case of the PDP-11/60);
consequently, the interrupted microprogram se-
quence is lost and the microtrap ends by restart-
ing the instruction interpretation cycle with the
fetch phase.

The structure of the microprogram is deter-
mined largely by the BUTS available to imple-
ment it and by the degree to which special cases
in the instruction set are exploited by these
BUTs. This may have a measurable influence
on performance as in the case of instruction de-
coding. The fetch phase of the instruction cycle
is concluded by a BUT that branches to the ap-
propriate point in the microcode based upon
the contents of the Instruction Register. This
branch can be quite complex since it is based
upon source mode for double operand instruc-
tions, destination mode for single operand in-
structions, and operation code for all other
types of instructions. Some processors can per-
form the execute phase of certain instructions
like set/clear condition code during the last
cycle of the fetch phase meaning that the fetch
or service phases for the next instruction might
also be entered from BUT IRDECODE. Com-
plicating the situation is the large number of
possibilities for each phase. For instance, there
are not only eight different destination address-

ing modes, but also subcases for each that vary
for byte and word and for memory modifying,
memory nonmodifying, MOV, and JMP/JSR
instructions.

Some PDP-11 implementations such as the
11/10 make as much use of common microcode
as possible to reduce the number of control
states. This allows much of the IR decoding to
be deferred until some time into a microroutine
which might handle a number of different cases.
For instance, byte and word operand address-
ing is done by the same microroutine in a num-
ber of PDP-1 1s. With the cost of control states
dropping with the cost of control store ROM,
there has been a trend toward providing sepa-
rate microroutines optimized for each special
case as in the 11/60. Thus, more special cases
must be broken out at the BUT IRDECODE,
making the logic to implement this BUT in-
creasingly involved. There is a payoff, though,
because there is a smaller number of control
states for IR decoding and fewer BUTs. Per-
formance is boosted as well since frequently oc-
curring special cases such as MOV register to
destination can be optimized.

Typical Instruction Interpretation Cycle.
To get a feel for the PDP-11 data paths and
control unit in operation, consider the inter-
pretation of a representative instruction by the
archetypal PDP-11. The instruction to be fol-
lowed is a word bit set (BIS), an instruction
which takes its source operand, logically ORs it
with the destination operand, and returns the
result to the destination. Register addressing
with register 2 is used for the source; indexed
addressing with register 7 is used for the desti-
nation.

What follows is the sequence of micro-
instructions evoked during the execution of the
macroinstruction described in Table 1. Each
microinstruction is numbered and consists of
the register transfers and any Unibus operation
or branch on microtest initiated by the micro-
word.

332 THE PDP-11 FAMILY

Table 1. Microinstructions Evoked During Execution of Macroinstruction

Phase Cycle Operation Explanation

FETCH 1 BA t PC;
DATI: CLKOFF

I
2 I R ' t BUSDATA

3

SOURCE 4

DESTINA- 5
TlON

8

PC t PC + 2;
BUT IRDECODE

A read operation is initiated to fetch the instruction
addressed by the Program Counter

The instruction is placed in the Instruction Register.

1 BUT IRDECODE

source mode zero

The Program Counter is incremented to address the
next location in the instruction stream (in this case
the location containing the index for the destina-
tion) The instruction (held in the IR) is decoded by
the BUT and found to be a double operand instruc-
tion causing a branch to the microcode for source
mode 0

SRCOPR t RS:
BUT DESTINATION

BUT DESTINATION

modifying word:
destination mode b

The contents of the register addressed by the source
field of the instruction (register 2) are copied into
the Scratchpad Register reserved for source oper-
ands The next state is determined by the destina-
tion addressing mode and the fact that BIS is a
word instruction which modifies its destination

BA t PC:
DATl

PC'+ PC + 2:
CLKOFF

4
B t BUSDATA

1
BA t RD + B;
DATIP: CLKOFF

9 B t BUSDATA

t
A read operation is initiated to get the index word
(pointed to currently by the Program Counter) for
the effective address of the destination operand.

The Program Counter is incremented to point to the
next instruction. Note that this cycle is overlapped
with the DATl started in cycle 5.

The index is stored for use in the next cycle.

The index is added to the contents of the destina-
tion register to form the effective address of the
destination operand A DATIP is performed to read
the operand since the operand is to be modified and
then restored to its original location in memory

The destination operand is stored so it IS available to
the B leg of the ALU I

IMPACTOF IMPLEMENTATION DESIGN TRADEOFFS ON PERFORMANCE: THE PDP-11, A CASE STUDY 333

Table 1. Microinstructions Evoked During Execution of Macroinstruction (Cont)

Phase Cycle Operation Explanation

The source and destination operands are logically
ORed together and put out on the Unibus t o be writ-
ten into the memory location from which the desti-
nation operand was read. (Note that the destination
address is still in BA.) Upon completion of the
DATO, the control unit branches into the service
phase if a serviceable condition is pending; other-
wise, it branches back to repeat the fetch phase for
the next instruction. Although it performs an exe-
cute phase function, this microinstruction is part of

+
EXECUTE 10 BUSDATA c SRCOPR OP B;

DATO; CLKOFF;
BUT SERVICE

I
the same destination mode microroutine that gener-
ated cycles 5 through 9.

I BUTSERVICE
service
request

request
next fetch service phase

Notation used in microinstructions for Table 1:

B = B Register
BA = Bus Address register

CLKOFF = Stop the processor clock
until a Unibus transaction
is completed; used for pro-
cessor/Unibus overlap

IR = Instruction Register
PC = Program Counter (Scratch-

pad Register 7)
R D = Scratchpad Register ad-

dressed by macroinstruc-
t i o n d e s t i n a t i o n f ie ld
(IR<2:0>)

RS = Scratchpad Register ad-
dressed by macroinstruc-
tion source field (IR<8:6>)

BUSDATA = Unibus data lines

SRCOPR = Scratchpad Register 10 (not
accessible to programmer);
used as a temporary for
source operands

a OP b = Operand a (on the A leg of
the ALU) and operand b
(on the B leg of the ALU)
are combined according to
the operation specified by
the macroinstruction. The
ALU function is selected by
the auxiliary ALU logic as
described in the subsection
“Control Unit.”

a e b = Register a is loaded with
operand b

At a detailed level, the instruction inter-
pretation process of each PDP-11 implementa-
tion varies significantly from that outlined in

334 THE PDP-11 FAMILY

Table I ; however, the scenario is still highly rep-
resentative of the operation of the control unit
and data paths in the designs to be considered.

Characterization of Individual
Implementations

A set of common implementation features
may be used to characterize each mid-range
PDP-II to provide the raw data upon which
comparisons may be based. A summary of these
characteristics is given in Tables 2 and 3.

PDP-11/20. The 11/20 was the first of the
PDP-I 1 family. The 11/20 is atypical in a num-
ber of important aspects. Because the semi-
conductor read-only memory technology which
makes microprogramming economically attrac-
tive was unavailable when the PDP- 1 1 /20 was
designed, control was implemented in random
logic in contrast to the microprogrammed con-
trol used in all the succeeding members of the
PDP- 1 1 family. This causes control to be forced
into a very stylized form so as to minimize the
number of control unit states. Finally, the Un-
ibus control generates a number of signals con-
trolling the operation of the data paths. This
makes it necessary for the Unibus and proces-
sor control unit to operate in tight lockstep with
each other with no possibility of asynchronous
data transfer.

The absence of MSI also has significant im-
pact on the implementation of the data paths
(Figures 4 and 5). The extensive use of SSI logic
has several ramifications beyond increased cost
and complexity. The A leg and B leg MUXs are
set up to act as latches in addition to acting as
data selectors (Figure 5). One may think of a B
leg being placed between the B leg MUX and
the ALU. The ALU is a simple adder in con-
trast to the multifunctioned TTL MSI 74181
ALUs used in every other medium performance
PDP-11. Logical operations are carried out in
the A leg MUX/latch. The MUX can select ei-
ther the true or complemented form of oper-
ands to support logical NOT. Logical OR is

accomplished by gating the two operands into
the MUX simultaneously (one operand may
have been latched beforehand). Logical AND is
performed by making use of DeMorgan’s Rule
(A-B = -[-AV-B]). Since there is no logic
for complementing the output of the A leg
MUX/latch, two cycles are necessary: the first
to form -AV-B, the second to run it through
the A leg MUX again to form the complement.
The rotate/shift/byte swap logic is built into
the MUX following the adder. A final peculiar-
ity of the 11/20 is the separate paths provided
from the Unibus for the IR and PS. Inter-
estingly enough, even with all of these rather
striking differences in implementation, the
PDP-I 1/20 still shows a strong kinship to its
successors.

PDP-11/40. The PDP-I 1/40 was designed
to improve upon the performance of the PDP-
11/20 without an increase in price by taking ad-
vantage of the TTL MSI technology arising af-
ter the introduction of the 11/20. With the
exception of the PDP-11/60 (and the 11/20
which exceeds the 11/40 in cost), the 11 /40 is
both the fastest and most expensive mid-range
PDP-I 1 processor.

The data paths of the 1 1 /40 (Figure 6) corre-
spond closely to those of the archetype except in
the immediate vicinity of the ALU. What has
been indicated as the A leg MUX is really the
negative-logic wired OR of a number of signals.
Options such as the Floating-Point Processor
are added by simply tying them into the D
MUX output and A leg. Two paths exist out of
the PS: one running to the A leg MUX as in the
archetype and a second running directly to the
Unibus as in the 11/20. A path from the A leg
MUX directly to the D MUX (equivalent to the
A MUX of other models) exists allowing the
ALU (and thus the propagation delay incurred
by passing through it) to be bypassed in those
cases where the contents of the SPM or PS are
to be routed directly back to the B Register of
SPM. Single-bit shifts and rotates right are han-
dled in the D MUX in a fashion similar to the

Table 2. PDP-11 Circuit Technology and Data Paths

Circuit Technology

Performance Level of
Relative Logic Integra- Suatchpad

Model to LSI-11 Family tion Memory ALU

Data Paths

Sign Rotate1 Byte
Extension Shift Swap Other Features

LSI-11

11 IO4

11/10

1 1 120

1 1 I34

1.000

1.455

1.436

1.667

1.942

N-channel
MOS

TT L

TT L

TT L

TT L
TTLIS

LS I

MSI

MS I

ss I

MSI

0 Organized 26 8-bit nMOS ALU
registers X 8
bits

0 1 write12 read
ports

16X 16 74181s with 74182
with SP Reg for
write after read

carry lookahead

16X 16 74181s with 74182
read and write carry lookahead
may not take
place within same
cycle

16X 16 7482 adders,
with input latches
for write after combinational
read logic

ripple carry plus

16X 16 74S181s with
write while read 748182 carry

loo ka head

Not
needed;
done in
microcode

In B leg
MUX

In B leg
MUX

In B leg
MUXI
latch

Following
AMUX

In ALU

B Reg is
bidirectional
shift register

B Reg is
bid irect io na I
shift register

Following
adder

B Reg is bi-
directional
shift register

8-bit-wide data paths, Not
needed; 16-bit operands re-
done in
microcode Non-Unibus, datal

quire two cycles

address lines MUXed

Before 0 Complementor at
SPM ALU A leg for sub-

tract instruction

None
performed
as 8 shifts

-

Following Bus data has own
adder path to IR and PS

0 PS has own path out
to bus data, no other
outgoing paths

Following 0 B extension register
AMUX, (BX Reg) for EIS
speeds
odd-byte
accesses

instructions

- z
9

s1

5

0
--I

- z
rn

Z
-I
D
i
0 z
0
rn
v,
c)
Z
-I
x
D
0
rn

n
v)

0
Z
P
rn
x
n

z
D
Z
0
m
-I
I
rn
P
0

P
r

%

2

P
2

2

D
0
D
v)
rn
v)
--I
C
0 <

W
W
u1

W
W
Cn

4
I
rn
-0
0
P
A
A

Table 2. PDP-11 Circuit Technology and Data Paths (Cont)

2 s
r;

Circuit Technology Data Paths

Performance Level of
Relative Logic Integra- Scratchpad Sign Rota te l Byte

Model t o LSI-11 Family t ion Memory A L U Extension Shi f t Swap Other Features

11 I40

11 I45

11/60

2.819

6.820
(with
bipolar
memory)

3.727

cache hit
ratio)

(87%

TT L MSI 1 6 X 1 6
D Reg and mult i -
phase cycle allow
write after read

TTL/S MSI Two banksof
1 6 x 1 6 f o r 1
write/2 read
parts

write may not
occupy same
cycle

Read and

T T L / S MSI 0 Two banksof
32 registers
X 1 6 b i t s

0 Only RO-R7
and user R 6
duplicated
Write after
read

74181s w i th 74182
carry lookahead MUX

In B leg

74S181s with In A L U
74182 carry
lookahead

74S181s with In shift
74182 carry tree
lookahead

To left i n
A L U to right
in D M U X

T o left in
A LU
To right i n
SHFMUX

In shift tree

In B leg
MUX

In
SHFMUX

In shift
tree

Bypass f r o m A leg
MUX around A L U
and D Reg
Two paths in to BA

0 PC broken ou t
separately f r o m
scratchpads

0 Multiple paths in to
A L U
Fastbus supports
semiconductor
memory

0 Shift tree allows
mul t ib i t shifts

0 Scratchpad C
for constants, bus
input, and status
logging

0 3-state logic used
extensively

Table 3. PDP-11 Control Unit and Physical Assembly

Controller Physical Assembly

Control

Words Circuit Circuit Circuit
Cycle Processor/ Control Store Integrated Integrated

Control Time(s) Unibus Store Size
Other Features Boards Packages Types Model Derivation (ns) Synchronization (bits X words) Used

LSI-11

11 IO4

11/10

1 1/20

11 /34

1 1 I40

11 I45

11/60

Vertical 400 Interlocked
microcode

Horizontal 260 Interlocked
microcode

Horizontal 300 Overlapped
microcode (1 50

for fast
shift)

Random 280 Interlocked
logic

Horizontal 180 Interlocked
microcode 240

Horizontal 140 Overlapped
microcode 200

300

Horizontal 150 Overlapped
microcode

Horizontal 170 Interlocked
microcode

22X 1024
(expandable
t o 2048)

40 X 256

4 0 X 256

-

48X 512

56X 256

6 4 X 256

48 X 2560
(excluding
user control
store space)

994 0

249

249 e

- e

488

251 e

256 0

2410 0

(including e
integral 0

f loating
point) 0

No next microaddress in
microword; microwords
are selected sequentially
unti l a branch, jump, or
translate i s encountered
-

Microword i s no t buffered

Control states are encoded
in major and minor state
shift registers

BUT field is buffered, BUT
must be placed one micro-
instruction ahead of where
it is t o take place

Forks and microbranches
may be enabled together,
microbranches taking
precedence

Multilevel microsubroutines
Page-addressed microstore
Extensive use of residual
control
Control store available to
user through WCS

1 quad
(4 positions)

1 hex
(6 positions)

2 hex
(12 positions)

6 quad,
6 double,
2 single
(38 positions)

2 hex
(12 positions)

4 hex,
1 quad
(28 positions)

7 hex,
1 quad
(46 positions)

6 hex
(36 positions)

48 24

138

203

523

231

41 7

648

40

60

27

54

53

78

74

338 THE PDP-11 FAMILY

BUS
ADDRESS

b
1 0

A LEG MUX
AND LATCH

ADDER ROTATEISHIFTI
BYTE SWAP

MUX n

CONSTANTS :;.D" AND B LEG LATCH MUX

BUS DATA

4

CONDITION
CODES

NOTE:
All data paths are 16 bits wide unless otherwise indicated.

Figure 4. PDP-1 1/20 data paths

A LEG MUX/LATCH

1 / 4 7 4 H 0 0

LATCH A < 1 5 00> H
G A T E A - R < 1 5 0 1 > H

GATE A . - R <15 01> ti
GATE A -BD < i 5 0 0 > ti

R <03> H
(F R O M SPMl

74H53

B D <03> H
I B U S DATA1

STPM <03> H
ICONSTANTS1 4 B LEG M U W L A T C H

LATCH B < 1 5 0 0 > H

GATE B - BD 1 1 5 00> H
GATE - R <oi oo> ti

GATE B c STPM <15 W> H

KEY
"S IGNAL NAME" H-S IGNAL IS ASSERTED 111 WHEN H I G H
"S IGNAL N A M E " L -S IGNAL I S ASSERTED I11 WHEN L O W

BUS
DATA

- A D D <03> L

ROTATEISHIFT M U X

D <03> H

DATA PATHS1

A D D <11> L

A D O <W> L

A D D <02> L

GATE A D D <07 00> H

GATE BYTE <07 oO> H
GATE RIGHT < I 5 W> H

GATE LEFT < 1 5 OD> H

Figure 5.
KC1 1 Processor Manuall.

Detail of central part of PDP- 11/20 data paths. One-bit (03) slice (adapted from

IMPACTOF IMPLEMENTATION DESIGN TRADEOFFS ON PERFORMANCE: THE PDP-11. A CASE STUDY 339

BA MUX

DATA I

NOTE.
All data oaths are 16 bits wide unlmss otherwise indicated

Figure 6 PDP-1 1/40 data paths.

11/20. Rotate/shifts to the left, however, are
performed in the ALU. Sign extension and byte
swapping are performed in the B leg MUX.
Since the Scratchpad Register may not be both
simultaneously read and written, the D Register
(D Reg) is used to hold results generated while
the SPM is being read in one processor clock
phase so that during a later phase they may be
written back into the Scratchpad. In this way
the D Register permits read-write access of the
SPM within a single cycle. A final feature is the
presence of two paths into the Bus Address reg-
ister, one from the A leg MUX and one from
the ALU. This is of benefit in such operations
as autoincrement and autodecrement address-
ing modes in which the contents of a register
can be modifed and either the premodification
(autoincrement) or postmodification (auto-
decrement) value of the register can be put into
the Bus Address register in a single cycle.

The 1 1 /40 microprogrammed control unit is
quite elaborate to gain full benefit of the poten-
tial of the data paths. Among its features are
overlapped processor/Unibus operation and
three selectable microcycle clock periods. The
latter feature increases performance immensely
since the maximum cycle time of 300 nanose-

conds is needed only when a full circle from
Scratchpad through ALU and back to Scratch-
pad is made. In cycles which do not write into
the Scratchpad, a 200-nanosecond cycle may be
selected. When the data paths are unused and
only microbranching is involved, an even
shorter cycle time of 140 nanoseconds is pos-
sible. A final unique feature of the 11/40 is a
variation in the branch on microtest logic from
that of the archetypal control unit. To increase
microbranch speed, the microword BUT select
field is buffered in the Microword Register
rather than being routed directly from the con-
trol store to the BUT logic. This causes a one-
cycle delay in processing the branch and forces
all BUTS to be placed one microinstruction
ahead of where they are to take effect. In some
cases, dummy steps are required to provide suf-
ficient lead time for BUT action to occur, some-
w h a t o f f s e t t i n g t h e s p e e d u p o f t h i s
arrangement.

One way in which the 11/40 uses its proces-
sor/Unibus overlap feature to advantage is by
prefetching words from memory whenever pos-
sible. At the end of the fetch phase, a check is
made to see if the next memory reference fet-
ches an instruction or operand index. If it does,
the read access is begun immediately using the
contents of the PC as the address. Exceptions to
this are when the PC is used as a destination or
when a service request is pending, both of which
mean that the current value of the PC will not
be the address of the next instruction. Starting
the access early allows it to proceed in parallel
with the execution of the current instruction.
This reduces the time the processor idles wait-
ing for the accessed word. Updating of the PC is
deferred until the proper point in the instruc-
tion interpretation process is reached. This
guarantees that references to the PC will result
in the proper value being used.

PDP-11/10. The PDP-ll/IO was designed
as a minimal cost processor. The implementa-
tion is again TTL MSI but stripped to the bare
essentials without the elaboration of the 11/40.

340 THE PDP-11 FAMILY

The data paths of the 11/10 (Figure 7) follow
the conventions of the archetype closely. A con-
stant zero may be selected onto the A MUX in
addition to A L U or Unibus data. The A L U A
leg multiplexer allows selection of the PS, some
constants, and some internal addresses as well
as the Scratchpad memory. The B Register is
implemented as a universal bidirectional shift
register so that single-bit shifts and rotates may
be performed without additional logic. The

BUS
ADDRESS

18

0

CONSTANT B U S D A T A BUS

0

1

 SIGN^
8 LEG M U X

EXTEND

I I

NOTE
All data paths are 16 bits wide unless otherwise indicated

Figure 7 PDP-1 1/10 data paths

ALU B leg multiplexer includes the constants
one and zero and permits sign extension of the
low order byte of the B Register. The Scratch-
pad Memory may not be both read and written
in the same cycle; thus, operations such as in-
crementing the PC, which takes only a single
microcycle on other processors, takes two mi-
crocycles to complete on the 11/10, A byte
swapping path is absent in the 11/10. As a con-
sequence, odd-byte addressing and swapping
must be accomplished by a series of eight shifts
or rotates.

The 11/10 control unit has a relatively aus-
tere implementation. There is no Microword

Register in the control unit although there is
necessarily a Microaddress Register. As a con-
sequence, the output of the control store is used
directly to condition the data paths. This pre-
cludes the overlap of current microinstruction
execution with next microinstruction fetch.
Hence, the propagation delay of the control
store must be added to that of the data paths in
setting the microcycle time, causing it to be a
relatively long 300 nanoseconds. The simplicity
of the data paths allows the use of a microword
only 40 bits wide. The microcode contains very
few frills and gains very little in performance
from special cases. A notable example of this is
the jump address calculation for JMP and JSR
instructions. The 1 1 / I O uses the same section of
microcode for JMP and JSR destination modes
as it uses to fetch conventional destination op-
erands. This costs an extra memory reference
over the separate microroutines used in other
PDP-I 1 processors because, in addition to the
effective address of the jump being calculated,
its contents are also fetched (the microprogram
logic precludes using this operand as a pre-
fetched instruction even though this is effec-
tively what it is). Overlapped processor/Unibus
operation allows some of the extra microcycles
necessitated by the data paths to be effectively
hidden by putting them in parallel with Unibus
accesses. The other concession to performance
is clock speed doubling during shift operations
to partially compensate for the performance
lost in the absence of a byte swapper.

PDP-11/04. The PDP-11/04 is the simplest
PDP-I I except for the LSI-11. Although
simple, the 11/04 embodies a very good set of
design tradeoffs. Figure 8 diagrams the 11/04
data paths. The Scratchpad Memory has a reg-
ister (SP Reg, part of the SPM shown in Figure
8) sitting between it and the A MUX. This reg-
ister allows the Scratchpad to support read-
modify-write accesses, saving a microcycle in
each such access over the 11/10. A multiplexer
sitting before the SPM implements the swap
byte operation, allowing the halves of a word to

IMPACTOF IMPLEMENTATION DESIGN TRADEOFFS ON PERFORMANCE: THE PDP-11. A CASE STUDY 341

be interchanged. This improves byte operation
performance considerably over the 1 1 / I O and
obviates the need for the 1 1 / 10’s fast shift logic.
Also e l imina ted is over lapped proces-
sor/Unibus operation because the savings from
it are reduced with the overall reduction in
number of microcycles.

The A MUX (the major data bus and the
multiplexer which drives it) can select the PS
and a number of constants in addition to ALU

BUS
ADDRESS

L

I 8
8”s D A T A

B I T E

SIGN 4
E X T E N D 1 M U X I B LEG MUI:

I 8
8”s D A T A

B I T E
BUS r
I

CONOlTlON
C O D E S

NOTE.
All data paths are 16 bits wide unless otherwise indicated

Figure 8. PDP-1 1/04 data paths

output and Unibus data. Between the SPM and
ALU is a one’s complementor so that the 74181
ALU may be used to perform the B leg minus A
leg operation used in the “subtract” instruction,
in addition to the A leg minus B leg operation
used in the “compare” instruction. The A leg
MUX also directly drives the Unibus address
lines without a Bus Address register (if proces-
sor/Unibus overlap had been used, a BA regis-
ter would have been necessary). Between the B
Register and ALU is a multiplexer which allows
the B Register, sign-extended low order byte of
the B Register, or the constants zero or one to

be selected into the B leg of the ALU in a man-
ner identical to that of the B leg MUX of the
1 1 / I O . The B Register is also identical to that of
the 11/10 in that it is a bidirectional shift regis-
ter implementing rotate/shifts.

The final contributor to increased perform-
ance of the 11/04 is the decrease in cycle time
from 300 nanoseconds in the 11/10 to 260 na-
noseconds, made possible in part by pipelining
the microword fetch. On the whole, the 11/04 is

B U S
ADDRESS

18

B U S BUS D A T I I CONSTANT: I I

U B l T L

SWAP,
SIGN
EXTENO

M U X

CONDITION
CODES

NOTE:
All data paths are 16 bits wide unless otherwise indicated.

Figure 9 PDP-1 1/34 data paths

superior in performance to the 11/10 in all cases
except the fetch phase and certain addressing
modes where the use of its processor/Unibus
overlap capability is sufficient to put the 11/10
ahead.

PDP-11/34. The PDP-I 1/34 is an elabora-
tion of the 11/04. The 11/34 data paths (Figure
9) bear close resemblance to those of the 1 1 /04.
The 11/04 complementor has been replaced in
the 11/34 by additional microcode which re-
verses the placement of source and destination
operands on the A and B legs of the ALU dur-
ing the subtract instruction from that of the

342 THE PDP-11 FAMILY

other double operand instructions. This frees
the 11/34 from performing the adjustments that
must be made in the data paths of the PDP-I 1
processors to make the subtract instruction op-
erate correctly under the restrictions of the
74181 ALU. Added is a B Extension register
(BX register) which, when concatenated with
the B Register, forms a 32-bit register for
double-width operand and results manipulated
by extended instruction set operations such as
multiply and divide. Also notable is the reloca-
tion of the byte swapper to the tail of the A
MUX allowing odd-byte accessing to occur as
data is entered from or placed upon the Unibus
without the customary extra microcycle needed
in other implementations to right adjust the
byte. Included with the byte swapper is the sign
extension logic. Schottky TTL is used in critical
places in the data paths, notably the ALU, to
speed up microcycle time from the 260 nanose-
conds of the 11/04 to 180 nanoseconds. Addi-
tional hardware for memory management (not
shown in Figure 9) and extended instruction set
microcode are standard features.

The 11/34 microprogrammed control unit
makes some concessions to the improved per-
formance of the data paths. In addition to the
normal 180-nanosecond cycle, there is a 240-na-
nosecond cycle used primarily for Unibus oper-
ations. Again, there is no processor/Unibus
overlap feature because considerations of sim-
plicity (i.e., cost) outweighed the incremental
improvement in performance that would be net-
ted. Because of its additional logic, the PDP-
11/34 has a wider microword than the 11/04
(48 bits versus 40 bits). Also, since many more
cases are broken out by the BUT IRDECODE
in the 11/34 than in the machines preceding it,
the size of the control store has been increased
to 5 12 words, double that of earlier horizontally
microprogrammed implementations.

SHIFT T R E E

LEG MUX

I
AL"

BUS
ADDRESS

_1L,
3s

BUS
D A T I

+

NOTES
1
2.

All data paths are 16 bits wide unless otherwise indicated
PS is implemented separately from data paths.

Figure 1 0 PDP-1 1 /60 data paths.

PDP-11/60. The PDP-11/60 is the latest
implementation covered in this paper and in
many ways the most unique. Its design exploits
advances in circuit technology occurring since
the introduction of the earlier models giving it a
number of features which set it apart from other
PDP- 1 1 family members. Two major enhance-
ments are a larger microcode addressing space,
making an integral floating-point instruction
set and a writable control store option feasible,
and a cache memory.* Both are possible due to
increases in the density and decreases in the cost
of bipolar ROM and RAM (see Chapter 13).

As illustrated in Figure IO, the 11/60 data
paths show significant differences from those of
other midrange implementations. A major dif-
ference is the presence of three Scratchpad
Memories feeding the ALU. Scratchpads A and
B are 32-word X 16-bit register arrays, each
having twice the number of registers of the

*The PDP-I I /70 also uses a cache.

IMPACT OF IMPLEMENTATION DESIGN TRADEOFFS ON PERFORMANCE: THE PDP-11, A CASE STUDY 343

single Scratchpad found in other mid-range de-
signs. As with the 11/45 (see the section entitled
“Implementation of a High-Performance PDP-
l l”), the contents of the general registers are
kept in both Scratchpads allowing different reg-
isters to be read onto the A and B legs of the
ALU simultaneously within the same cycle.
This speeds register-to-register operations. The
additional registers in the A and B Scratchpads
are used as floating-point registers by the in-
tegral floating-point microcode, working stor-
age by user microprograms, and console,
maintenance, and status registers by the proces-
sor. Scratchpad C is a 16-word X 16-bit array
which holds bus data and constants used by the
processor and takes the place of the constants
ROM on the B leg of other midrange imple-
mentations. During exceptional situations these
constants may be overwritten with other infor-
mation but must be restored before execution of
the base machine microcode may be resumed.

The 1 1 /60 is the first PDP-11 implementation
to make use of three-state devices to eliminate
many of the multiplexers used in other designs
(the 1 1 /40 uses open-collector logic on the A leg
bus to the same effect). For instance, instead of
actual A leg and B leg MUXs, the 11/60 uses
registers and combinational elements with
three-state outputs that can be independently
enabled onto a common bus for each ALU leg.
The ALU itself is the conventional 181 type
used in all of the other MSI implementations.
As in the 11/40, the D Register (D Reg) latches
the ALU output so that results may be rewrit-
ten to the Scratchpads during a later clock
phase of the microcycle in which they are gener-
ated. The output of the D Register is the major,
but not sole, feedback route in the data paths.

The Bus Address register (BA) is loaded from
the A leg bus as in the 11/04 and 11/34. The
Address Out bus is driven by the BA and sup-
plies addresses to the memory subsystem
(cache, relocation hardware, and Unibus inter-
face). The Data In (DIN) bus routes data into

the processor from the memory subsystem, in-
ternal registers accessed via Unibus addresses
such as the PS, and constants emitted by the
microinstruction word. Scratchpad C and the
Instruction Register are loaded directly from
DIN in a manner reminiscent of the 11/20. A
register in SPM C is set aside specifically for
transfers from memory to the data paths. Re-
sults are routed from the data paths back to the
memory subsystem and internal registers via a
separate bus data out (DOUT) bus.

As compared to the other mid-range ma-
chines, several data path elements are unique to
the 11/60. The counter (CNTR) is an iteration
counter used by the Extended Instruction Set
and floating-point microcode. The Shift Regis-
ter and Shift Register guard (shown together as
the SR in Figure 10) can be loaded in parallel
with D Reg and shifted one position right or
left. Either all or the low order seven bits of the
SR may be gated onto the A leg bus through the
X MUX (not shown). The shift tree is a net-
work of multiplexers used for byte swapping,
sign extension, and field isolation and position-
ing. It is unusual in that it allows right shifts of
from 1 to 14 bit positions combinationally in a
single microcycle.

The PDP-11/60 control unit is horizontally
microprogrammed in much the same manner as
the other midrange implementations. Extensive
use of Schottky logic throughout the processor
allows a fixed 170-nanosecond microcycle time.
Processor/Unibus communication is inter-
locked unlike either the 11/40 or 11/45. There
are several significant differences from the more
conventional implementations. Many of these
differences are generalizations of the micro-
program flow control mechanism to allow more
functions of the base machine to be performed
by microcode rather than hardwired logic and
to create a user microprogramming environ-
ment which can be put to uses beyond executing
the PDP-11 instruction set. The 11/60 has a
larger and more generalized set of BUTS than

344 THE PDP-11 FAMILY

earlier machines. Also included for the first
time in a horizontally microprogrammed ma-
ch ine is a multi level mic rosubrou t ine
call/return capability.

Increased reliance on microcode has ex-
panded the control store to 4,096 words by 48
bits. Of this, 2,560 words are used to implement
the basic machine. The remaining 1,536 words
are available to the user through a ROM con-
trol store option; 1,024 are available through a
writable control store option. Since addressing
the microstore requires 12 bits, a page-address-
ing scheme has been adopted to avoid widening
the microword. Page size is 512 words reducing
microaddresses to 9 bits within a page. Micro-
branches across a page boundary require that
an additional 3-bit page field be specified.

Another concept used extensively in the
1 1 /60 to reduce microword size is residual con-
trol. In this technique relatively static control
information is kept in set-up registers separate
from the microword. The microprogram must
load these registers to affect the data path ele-
ments which they control. Set-up registers are
used in the 11/60 to gate registers onto DIN
bus, enable data into registers from the DOUT
bus, select SR functions, and control certain ac-
tions of the shift tree.

The overlapping of a number of different
control fields by bit steering is a final means of
keeping the microword relatively narrow. Cer-
tain bits in the microword control the inter-
pretation of corresponding microword fields.
This allows a single field to control several dif-
ferent functions. The one drawback of this tech-
nique is that these functions become mutually
exclusive within a single microword since their
simultaneous use would involve two different
interpretations of the same microfield.

Hardwired logic in the memory subsystem
detects internal addresses in a manner similar to
other PDP-11 processors. However, the actual
access to these registers is accomplished
through microcode instead of additional con-
trol logic. Internal address access has been

added to the exceptional conditions detected by
the JAM logic of the 11/60. If the JAM micro-
routine finds that a microtrap has been caused
by an internal address access, an intraprocessor
transfer to or from the addressed register is per-
formed. Unlike other JAM sequences, such
transfers are terminated by resuming the inter-
rupted microprogram. Microcoded register ac-
cess requires much more t ime than the
corresponding hardwired access. Reading the
PS, for instance, takes 33 microcycles or 5.610
microseconds using microcode where a single
microcycle suffices for the hardwired approach.
This is justified, however, by the decreased cost
of microcode versus hardwired logic and by the
infrequent access made to these registers.

Like the 11/40, the 11/60 prefetches instruc-
tions and operand indices whenever possible.
Unlike the 11/40, the PC is incremented at the
time the prefetch is performed. Because of this,
prefetching cannot be done when the current in-
struction uses the PC as either a source or desti-
nation register. A second difference is that
service requests are not polled until the end of
the current instruction, when the next instruc-
tion may already be prefetched and the PC up-
dated. When this occurs, two microcycles must
be spent to decrement the PC to restore its old
value before proceeding with the service phase.

IMPLEMENTATION OF A M I N I M A L COST
PDP-11

The LSI-11 (Chapter 12) is designed for the
low-end market where there is more concern for
low cost than high performance. Integrated cir-
cuit package count and printed circuit board
area, the main determinants of manufacturing
cost, are kept low through an n-channel MOS
LSI technology implementation of the CPU.
The result is a PDP-11 processor with four kilo-
words of semiconductor memory on a single 8.5
X 10.5-inch (standard DEC quad height)
printed circuit board which can execute the en-
tire PDP-I 1/40 instruction set.

IMPACTOF IMPLEMENTATION DESIGN TRADEOFFS ON PERFORMANCE: THE PDP-11, A CASE STUDY 345

The constraints imposed by current semi-
conductor technology dictate much of the im-
plementation of the LSI-I 1. The entire CPU
consists of four LSI packages plus a number of
standard TTL SSI and MSI packages for clock
generation and bus interfacing. A system con-
trol chip provides microinstruction addressing
logic plus an interface to external signals used in
bus control. A data paths chip contains the reg-
isters and arithmetic logic unit of the machine.
Two chips are microcode ROMs (MICROMs).
Each contains 5 12 microinstruction words with
a width of 22 bits. An optional third MICROM
adds the Extended Instruction Set/floating-
point instruction set option of the PDP-11/40.
To decrease the complexity of the machine, the
traditional Unibus was abandoned in favor of a
scheme requiring fewer bus lines. Most notable
is the multiplexing of both data and addresses
onto a single set of 18 data/address lines,
DAL< 17:00>. A significant savings over the 34
lines dedicated to data and address in the
Unibus results at the expense of bus cycle speed.

The 22-bit microinstruction word of the LSI-
1 1 is quite narrow compared to the microwords
of the horizontally microprogrammed PDP-1 Is
which range from 40 to 64 bits wide. Four bits
are not decoded and provide direct TTL-com-
patible signals which are used by logic external
to the CPU chips. Another two bits are used
within the CPU chips to control next micro-
instruction addressing. The remaining 16 bits
are decoded as a microinstruction by the CPU
chips. LSI-I I microinstructions differ little in
form from conventional minicomputer instruc-
tions with their operation code and operand
(which may be register, microcode address, or
literal) fields. These require a great deal more
decoding than the horizontal microinstructions
of other designs.

The LSI-11 microstore is larger than the con-
trol store of any other PDP-11 except the 1 1/60.

Since LSI-I 1 microinstructions lack the possi-
bilities for parallelism inherent in the horizontal
microinstructions, more LSI-I 1 micro-
instructions are needed to code a given oper-
ation. In addition, certain functions which are
handled with combinational logic in other
PDP-11 control units and data paths are micro-
coded in the LSI-11. Finally, the LSI-II has
more elaborate console microcode than the
other implementations. As a result, the LSI-I 1
has 22,528 bits of microstore versus 14,336 bits
for the PDP-1 1/40, 16,384 bits for the PDP-
11/45, and 122,880 bits for the PDP-I 1/60. The
narrow microword is used in spite of its attend-
ant problems due to the limitation imposed by
the packaging of the MOS CPU chips. Only 40
pins are available to carry power and signals to
and from each chip, limiting the number of lines
available for transmitting the microword from
the MICROMs to the control and data path
chips.

Technology also imposes a serious constraint
on instruction decoding. The equivalent of a
branch on microtest allows only eight bits to be
decoded at a time. This is sufficient for decod-
ing the majority of instructions; however, the
remainder require additional decoding which
may consume as many as eight microcycles.
This is in marked contrast with all other PDP-
11s which require only a single microcycle to do
the initial instruction decode at the end of the
fetch phase (BUT IRDECODE).* The effect
that this has on the average duration of the LSI-
1 1 fetch phase is evident from Table 4.

Figure 1 1 details the data paths around which
the operands of the macroinstruction level ma-
chine circulate. As with the medium-perform-
ance implementations, the ALU is the hub of
activity, operating upon quantities supplied
from the Scratchpad memory. The A MUX se-
lects from the output of the ALU, the high or

*The 11/60 requires two microcycles to decode certain instructions

346 THE PDP-11 FAMILY

Table 4. Average PDP-11 Instruction Execution Times in Microseconds

Speed
Relative

Fetch Source Dest. Execute Total to LSI-11

LSI-11 2.514 0.689 1.360 1.320 5.883 1.000

PDP-11/04 1.940 0.610 0.81 1 0.682 4.043 1.455

PDP-11/10 1.500 0.573 0.929 1.094 4.096 1.436

PDP-11/20 1.490 0.468 0.802 0.768 3.529 1.667

PDP-11/34 1.630 0.397 0.538 0.464 3.029 1.942

PDP-11/40 0.958 0.260 0.294 0.575 2.087 2.819

PDP- 1 1 /45 0.363 0.101 0.213 0.185 0.863 6.820
(bipolar
memory)

PDP- 1 1 /60 0.54 1 0.185 0.218 0.635 1.578 3.727
(87 percent
cache hit
ratio)

low byte of the data/address lines, and the pro-
cessor flags. The selected quantity is fed back to
be rewritten into the Scratchpad. Constants
supplied as literals from the microinstruction

I CoNsTANTs-v B LEG N

COllDlTlON
CODES

Figure 11. LSI-1 1 data paths.

word may be gated into the data paths through
the B leg MUX to the ALU. Additional paths
exist for transmitting information in and out on
the data/address lines.

Significant differences exist between the data
paths of the LSI-11 and the mid-range ma-
chines. One major difference is in the width of
the data paths. The LSI-11 is the only member
of the PDP- 11 family with data paths 8 bits
rather than 16 bits wide. This is necessitated by
limitations in current semiconductor chip den-
sity. Bus paths in particular occupy large
amounts of chip real estate dictating their re
duction in width. Since only 8 bits of data can
be processed at a time, 2 microcycles are re-
quired to accomplish any 16-bit operation. A
second effect is the elimination of logic that
would otherwise be necessary to configure the
data paths for both byte and word operations.
A last unique characteristic is the absence of a B
Register for feeding the B leg of the ALU. In-
stead, the B leg is fed from a second read port

IMPACTOF IMPLEMENTATION DESIGN TRADEOFFS ON PERFORMANCE: THE PDP-11, A CASE STUDY 347

into the Scratchpad Memory. In this, the LSI-
1 1 bears a curious resemblance to the PDP-
11/45 and 11/60. The difference is that while
the LSI-11 uses this feature to eliminate cycles
that would be needed to load a B Register, there
is not sufficient logic to allow source and desti-
nation registers to be accessed simultaneously.
Consequently, multiple cycles are still required
to set up register/register operations on the
LSI- 1 1.

The final important performance factor is
again a direct result of the circuit technology
employed. NMOS logic is not as fast as the
bipolar logic found in every other PDP-11 im-
plementation so that the microcycle time of the
LSI-11 is 400 nanoseconds or one-third slower
than the next slowest PDP- 1 1 . Coupled with the
larger number of microcycles necessary to exe
cute a given macroinstruction, this causes the
LSI-11 to lag in performance.

IMPLEMENTATION OF A HIGH
PERFORMANCE PDP-11

The PDP-11/45 was designed for maximum
performance and followed the 11/20 to become
the second member of the PDP-11 family. Max-
imum performance is achieved with a complex
set of data paths allowing highly parallel oper-
ation and an opt ional high-speed semi-
conductor memory (bipolar or MOS) with its
own path into the processor called the Fastbus.
The extensive use of Schottky TTL in the pro-
cessor makes possible a 150-nanosecond cycle
time, half as long as that in some mid-range de-
signs.

The complexity of the PDP-l1/45 data paths
is evident from Figure 12 even with several of
the special purpose registers and buses omitted
for clarity. The overall organization still bears
some resemblance to the mid-range PDP-11
data paths, however. The ALU remains the hub
of data path activity with its output the primary
feedback path to the processor registers, al-

though not the only one as in other implemen-
tations. The ALU is based upon the Schottky
equivalent of the 74181 chip used in most other
PDP-11 designs. The difference begins with the
multiplexers driving the A and B legs of the
ALU. These MUXs allow operands to be
routed directly to the proper leg without using
additional cycles to move operands from regis-
ter to register. KO MUX and K1 MUX (com-
bined in Figure 12) are multiplexers used in
conjunction with the B MUX to gate constants,
trap vector addresses, and branch offsets into
the B leg of the ALU.

Among the registers supplying the A MUX
and B MUX are the source and destination op-
erand registers (S Reg and D Reg, respectively).
These, in turn, are supplied by the SR MUX
and DR MUX which select data from individ-
ual Scratchpad Registers or the Program
Counter. Besides holding operands from the
general registers, the S Reg and D Reg act as
working registers. In particular, D Reg is a shift

NOTE
All data paths are 16 bits wide unless otherwise indicated

Figure 12 PDP-1 1/45 data paths

348 THE PDP-11 FAMILY

register used to accumulate the less significant
half of results during multiply and divide.

Separate Scratchpads are maintained so that
source and destination general registers may be
read simultaneously and independently. This
necessitates both Scratchpads being written to-
gether to keep their contents identical. Each
Scratchpad is organized as 16 words of 16 bits
each. Fifteen words in each Scratchpad are ac-
tually used: two sets of general registers (RO
through R5) and three sets of stack pointers
(R6). Register set selection is controlled by sta-
tus bits in the PS.

The Program Counter is not maintained in
the Scratchpad Registers as in other PDP-I Is.
Rather, it is held separately so that it may be
routed directly to the BA MUX while the S Reg
and D Reg are occupied with other operations.
Moreover, two Program Counters are imple-
mented. PCB holds the current value of the Pro-
gram Counter and is used as a general register
or bus address. PCA holds the new value of the
Program Counter allowing the PC to be up-
dated while the old PC value is still in use, after
which PCB is clocked to load it with the new
value contained i n PCA.

The SHF MUX can right shift or byte swap
data from the ALU before it is clocked into the
Scratchpads. It also provides a route from PCB
to the S Reg and/or D Reg when the PC is used
as a general register. This arrangement pre-
cludes the shifting or byte swapping of data
being loaded into the PC that is possible with
data destined for one of the other general regis-
ters residing in the Scratchpads. As a con-
sequence, arithmetic shift left and byte swap
operations on the PC do not cause the PC to be
modified, although the condition codes are up-
dated as though it were.

Processor access to the Unibus, Fastbus, and
internal registers is via the Bus Register MUX
(BR MUX), the bus register (BR and BRA),
and the Data Out MUX (D MUX). The BR
and BRA (the duplication is due to electrical
loading considerations) are logically a single

register as shown in Figure 12. They receive all
incoming data and transmit almost all outgoing
data in addition to accumulating the more sig-
nificant half of results during multiply and di-
vide. The BR MUX selects the input to the BR
(and BRA) from among the two external buses
and internal input bus for input to the processor
and from the SHF MUX for output from the
processor via the BR and D MUX to the exter-
nal buses and internal output bus. The internal
buses connect a number of special registers and
an optional Floating-point Processor to the
data paths. Of these, only the PS is indicated in
Figure 12. The Instruction Register (duplicated
as IR and AF IR, again for electrical loading
reasons) are also loaded from the BR MUX but
are clocked only when an instruction is fetched.

Bus addresses are applied directly to the
Unibus or to an optional memory mapping unit
by the Bus Address multiplexer (BA MUX). No
Bus Address register is needed since memory
access and processor clocking are fully inter-
locked except during an overlapped fetch in
which case the PCB is held selected while oper-
ations continue in other parts of the data paths.

The PDP- 1 1 /45 control unit is horizontally
microprogrammed and is for the most part
quite similar to the archetype described for mid-
range PDP- 1 1 implementations. The control
store is 256 words X 64 bits. The relatively wide
microword is necessary for generating the large
number of control signals used in conditioning
and clocking the complicated data paths. An
additional source of complexity is the timing
logic needed to produce and use the five proces-
sor clock phases.

There are two classes of microsequence-alter-
ing functions corresponding to the BUTS of
other PDP-1 1s. The first class consists of simple
branches having four or fewer possible branch
addresses. These operate in the same fashion as
BUTS. The second class of branches consists of
three complex instruction decoding functions
called forks. The first, fork A, does the initial
instruction decode and corresponds to the BUT

IMPACTOF IMPLEMENTATION DESIGN TRADEOFFS ON PERFORMANCE: THE PDP-11, A CASE STUDY 349

IRDECODE of other implementations. Fork B
dispatches to an execute phase microroutine
following a destination operand fetch. Fork C
dispatches to a destination phase microroutine
following a source operand fetch. A fork enable
field in the microword is used to enable one
fork at most during a cycle. When a fork and
branch are combined in the same cycle, the fork
is disabled if the branch is taken. This permits
the implementation of certain functions without
the use of additional cycles.

The 11/45 microcode is structured to take
full advantage of the data paths and proces-
sor/Unibus overlap. Besides intensively exploit-
ing special cases in the addressing modes and
instruction set, the microprogram implements
operand and instruction fetch overlap in much
the same way as the 11/40. The one difference
between the two prefetch mechanisms is that
the 11/45 updates the PC value in PCB and
stores it in PCA at the time the prefetch is
started. References to the PC work correctly be-
cause PCB holds the old PC value until i t is up-
dated at the appropriate time.

All the design decisions described above are
directed toward implementing the fastest sys-
tem possible. Tradeoffs involving circuit tech-
nology and control unit and data path
organization have all been made with this end
in mind.

MEASURING THE EFFECT OF DESIGN
TRADEOFFS ON PERFORMANCE

There are two alternative approaches to the
problem of determining just how the particular
binding of different design decisions affects the
performance of each machine:

1. Top-down approach. Attempt to isolate
the effect of a particular design tradeoff
over the entire space of implementations
by fitting the individual performance fig-
ures for the whole family of machines to
a mathematical model which treats the

2 .

design parameters as independent varia-
bles and performance as the dependent
variable.
Bottom-up approach. Make a detailed
sensitivity analysis of a particular
tradeoff within a particular machine by
comparing the performance of the ma-
chine both with and without the design
feature while leaving all other design fea-
tures the same.

Each approach has its assets and liabilities
for assessing design tradeoffs. The first method
requires no information about the implementa-
tion of a machine, but does require a suf-
f i c i en t ly l a r g e co l l ec t ion of d i f f e r e n t
implementations, a sufficiently small number of
independent variables, and an adequate mathe-
matical model in order to explain the variance
in the dependent variable to some reasonable
level of statistical confidence. The second
method, on the other hand, requires a great deal
of knowledge about the implementation of the
given system and a correspondingly great
amount of analysis to isolate the effect of the
single design decision on the performance of the
complete system. The information that is
yielded is quite exact, but applies only to the
single point chosen in the design space and may
not be generalized to other points in the space
unless the assumptions concerning the ma-
chine’s implementation are similarly general-
izable. In the following subsections the first
method is used to determine the dominant
tradeoffs, and the second method is used to esti-
mate the impact of individual implementation
tradeo ffs.

Quantifying Performance

Measuring the change in performance of a
particular PDP-11 processor model due to de-
sign changes presupposes the existence of some
performance metric. Average instruction execu-
tion time was chosen because of its obvious
relationship to instruction stream throughput.

350 THE PDP-11 FAMILY

Neglected are such overhead factors as Direct
Memory Access, interrupt servicing, and, on
the LSI-I 1, dynamic memory refresh. Average
instruction execution times may be obtained by
benchmarking or by calculation from instruc-
tion frequency and timing data. The latter
method was chosen due to its freedom from the
extraneous factors noted above and from the
normal clock rate variations found from ma-
chine to machine of a given model. This method
also allows the designer to calculate the change
in average instruction execution time that
would result from some change in the imple-
mentation. Such frequency-driven design has
already been applied in practice to the PDP-
11/60 (Chapter 13).

The instruction frequencies are tabulated in
Appendix A and include the frequencies of the
various addressing modes. These figures were
calculated from measurements made by Stre-
cker [1976a] on 7.6 million instruction execu-
tions traced in ten different PDP-I 1 instruction
streams encountered in various applications.
While there is a reasonable amount of variation
of frequencies from one stream to the next, the
figures in Appendix A should be representative.

Instruction times are tabulated in Appendix
B. These times were calculated from the engi-
neering documents for each machine. The times
vary from those published in the PDP-11 pro-
cessor handbooks for two reasons. First, in the
handbooks, times have been redistributed
among phases to ease the process of calculating
instruction times. In the appendix an attempt
has been to accurately characterize each phase.
Second, there are inaccuracies in the handbooks
arising from conservative timing estimates and
engineering revisions. The figures included here
may be considered more accurate.

A performance figure is derived for each ma-
chine by weighting its instruction times by fre-
quency. The results, given in Table 4, form the
basis of the analyses to follow.

Analysis of Variance of PDP-11
Performance Top-Down Approach

The first method of analysis described is em-
ployed in an attempt to explain most of the var-
iance in PDP-I1 performance in terms of two
parameters:

1. Microcycle time. The microcycle time is
used as a measure of processor perform-
ance which excludes the effect of the
memory subsystem.
Memory read pause time. The memory
read pause time is defined as the period
of time during which the processor clock
is suspended during a memory read. For
machines with processor/Unibus over-
lap, the clock is assumed to be turned off
by the same microinstruction that in-
itiates the memory access. Memory read
pause time is used as a measure of the
memory subsystem’s impact on proces-
sor performance. Note that this time is
less than the memory access time since
all PDP-11 processor clocks will con-
tinue to run at least partially con-
currently with a memory access.

2 .

The choice of these two factors is motivated
by their dominant contribution to, and (ap-
proximately) linear relationship with, perform-
ance. Keeping the number of independent
variables low is also important due to the small
number of data points being fit to the model.

The model itself is of the form:

where ti is the average instruction execution
time of machine i from Table 3. The microcycle
time of machine i is c l i (for machine with select-
able microcycle times, the predominant time is
used). c2i is the memory read pause time of ma-
chine i.

IMPACTOF IMPLEMENTATION DESIGN TRADEOFFS ON PERFORMANCE: THE PDP-11, A CASE STUDY 351

This model is only an approximation since it
assumes kl and k2 will be constant over all ma-
chines. In general this will not be the case. kl is
the number of microcycles expected in a canoni-
cal instruction. This number will be a function
mainly of data path connectivity, and strictly
speaking, another factor should be included to
take that variability into account; however,
since the data path organization of all PDP-11
implementations considered here (excepting the
11/03, 11/45, and 11/60) are comparable, the
simplifying assumption of calling them all iden-
tical at the price of explaining somewhat less of
the variance is made. The number of memory
accesses expected in a canonical instruction is
k2; it also exhibits some variability from ma-
chine to machine. A small part of this is due to
the fact that some PDP-1 Is actually take more
memory cycles to perform a given instruction
than do others (this is really only a factor in
certain 11/10 instructions, notably JMP and
JSR, and the 11/20 MOV instruction). A more
impor t an t source of variabil i ty is t he
Uni bus/processor overlap logic incorporated
into some PDP-11 implementations which ef-
fectively reduces the actual contribution of the
k 2 ~ 2 i term by overlapping more memory access-
time with processor operation than is excluded
from the memory read pause time.

Given the model and the dependent and inde-
pendent data for each machine (Table 5) , a
linear regression is applied to determine the
coefficients kl and k2 and to find out how much
of the variance is explained by the model.

Applying the regression over all eight proces-
sors: kl = 11.580, k2 = 1.162, R2 = 0.904. R2is
the amount of variance accounted for by the
model or 90.4 percent. If the regression is ap-
plied to just the six mid-range processors, kl =
10.896, k2 = 1.194, R2 = 0.962. R2 increases to
96.2 percent partly because the LSI-11 and
11/45 can be expected to have a different k
coefficients than the mid-range machines and

do not fit the model as well. Note that if two
mid-range machines, the 11/04 and the 11/40,
are eliminated instead of the LSI-11 and 11/45,
R2 decreases to 89.3 percent rather than in-
creasing. The k coefficients are close to what
should be expected for average microcycle and
memory cycle counts. Since kl is much larger
than k2, average instruction time is more sensi-
tive to microcycle time than to memory read
pause time by a factor of k l / k 2 or approx-
imately 10. The implication for the designer is
that much more performance can be gained or
lost by perturbing the microcycle time than
memory read pause time.

Although this method lacks statistical rigor,
it is reasonably safe to say that memory and mi-
crocycle speed do have by far the largest impact
on performance and that the dependency is
quantifiable to some degree.

Table 5.
Microseconds

Top-Down Model Parameters in

Dependent
Independent Variables Variable

Memory Average
Micro- Read Instruction
Cycle Pause Execution
Time Time Time

LSI-11 0.400 0.400 5.883

PDP-11/04 0.260 0.940 4.043

PDP-11/10 0.300 0.600 4.096

PDP- 1 1/20 0.280 0.370 3.529

PDP-i1/34 0.180 0.940 3.029

PDP-1 1/40 0.140 0.500 2.087

PDP-1 1/45 0.1 50 0.000 0.863
(bipolar
memory)

PDP-1 1/60 0.170 0.140 1.578
(87 percent
cache hit
ratio)

352 THE PDP-11 FAMILY

Measuring Second Order Effects: Bottom-
Up Approach

It is much harder to measure the effect of
other design tradeoffs on performance. The ap-
proximate methods employed in the previous
section cannot be used because the effects being
measured tend to be swamped out by first order
effects and often either cancel or reinforce one
another making linear models useless. For these
reasons, such tradeoffs must be evaluated on a
design-by-design basis as explained above. This
subsection evaluates several design tradeoffs in
this way.

Effect of Adding a Byte Swapper to the
11/10. It is evident that the lack of a byte
swapper on the PDP- 11/ 10 has a negative effect
on performance. In this subsection, the per-
formance gained by the addition of a byte swap-
per either before the B Register or as part of the
B leg multiplexer is calculated. Adding a byte
swapper would change five different parts of the
instruction interpretation process: the source
and destination phases where an odd-byte oper-
and is read from memory, the execute phase
where a swap byte instruction is executed in
destination mode 0 and in destination modes 1
through 7, and the execute phase where an odd-
byte address is modified. In each of these cases,
seven fast shift cycles would be eliminated and
the remaining normal speed shift cycle could be
replaced by a byte swap cycle resulting in a sav-
ings of seven fast shift cycles or 1.050 micro-
seconds. None of this time is overlapped with
Unibus operations; hence, all would be saved.
This savings is effected, however, only when a
byte swap or odd-byte access is actually per-
formed. The frequency with which this occurs is
just the sum of the frequencies of the individual
cases noted above or 0.0640. Multiplied by the
time saved per occurrence gives a savings of
0.0672 microsecond or 1.64 percent of the aver-
age instruction execution time. The in-
significance of this savings could well be used to
support the decision for leaving the byte swap-
per out of the PDP-1 1/10.

Effect of Adding Processor/Unibus Over-
lap to the 11/04. Processor/Unibus overlap is
not a feature of the 11/04 control unit. Adding
this feature involves altering the control
unit/Unibus synchronization logic so that the
processor clock continues to run until a micro-
cycle requiring the Unibus data from a DATI
or DATIP is detected. A Bus Address register
must also be added to drive the Unibus lines
after the microcycle initiating the DATIP is
completed. This alteration allows time to be
saved in two ways. First, processor cycles may
be overlapped with memory read cycles as ex-
plained in the subsection on control units. Sec-
ond, since Unibus data is not read into the data
paths during the cycle in which the DATIP oc-
curs, the path from the ALU through the A
MUX and back to the registers is freed. This
permits certain operations to be performed in
the same cycle as the DATIP. For example, the
microword BA t PC; DATI; PC e PC + 2
could be used to start fetching the word pointed
to by the PC while simultaneously incrementing
the PC to address the next word. The cycle fol-
lowing could then load the Unibus data directly
into a Scratchpad register rather than loading
the data into the B Register and then into the
Scratchpad on the following cycle as is neces-
sary without overlap logic. A savings of two mi-
crocycle times would result.

DATI and DATIP operations are scattered
liberally throughout the 11/04 microcode; how-
ever, only those cycles in which an overlap
would produce a time savings need be consid-
ered. An average of 0.730 cycles can be saved or
overlapped during each instruction. If all of the
overlapped time is actually saved, 0.190 micro-
second or 4.70 percent will be pared from the
average instruction execution time. This
amounts to a 4.93 percent increase in perform-
ance.

Effect of Caching on the 11/60. The PDP-
11/60 uses a cache to decrease its effective
memory read pause time. The degree to which
this time is reduced depends upon three factors:

IMPACTOF IMPLEMENTATION DESIGN TRADEOFFS ON PERFORMANCE: THE PDP-11, A CASE STUDY 353

the cache read hit pause time, the cache read
miss pause time, and the ratio of cache read hits
to total memory read accesses. A write-through
cache is assumed; therefore, the timing of mem-
ory write accesses is not affected by caching and
only read accesses need be considered. The per-
formance of the 11/60 as measured by average
instruction execution time is modeled exactly as
a function of the above three parameters by the
equation:

t = kl + kz(k3a + k4[l - a])

where t is the average instruction execution
time, a is the cache hit ratio, kl is the average
execution time of a PDP- 1 1 /60 instruction ex-
cluding memory read pause time but including
memory write pause time (1.339 microseconds);
k2 is the number of memory reads per average
instruction (1.713); k3 is the memory read pause
time for a cache hit (0.000 microseconds); and
k4 is the memory read pause time for a cache
miss (1.075 microseconds).

The above equation can be rearranged to
yield:

t = (k l + k2k4) - k2(k4 - k3)a

The first term and the coefficient of the sec-
ond term in the equation above evaluate to
3.18 1 microseconds and 1.842 microseconds, re-
spectively, with the given k parameter values.
This reduces the average instruction time to a
function of the cache hit ratio making it pos-
sible to compare the effect of various caching
schemes on 11/60 performance in terms of this
one parameter.

The effect of various cache organizations on
the hit ratio is described for the PDP-11 Family
in general (Chapter 10) and for the PDP-11/60
in particular in Mudge (Chapter 13). If no cache
is provided, the hit ratio is effectively zero and
the average instruction execution time reduces
to the first term in the model or 3.181 micro-

seconds. A set associative cache with a set size
of 1 word and a cache size of 1,024 words has
been found through simulation to give a 0.87 hit
ratio. An average instruction time of 1.578 mi-
croseconds results in a 101.52 percent improve-
ment in performance over that without the
cache.

The cache organization described above is
that actually employed in the 11/60. It has the
virtue of being relatively simple to implement
and therefore reasonably inexpensive. Set size
or cache size can be increased to attain a higher
hit ratio at a correspondingly higher cost. One
alternative cache organization is a set size of 2
words and a cache size of 2,048 words. This or-
ganization boosts the hit ratio to 0.93 resulting
in an instruction time of 1.468 microseconds, an
increase in performance of 7.53 percent. This
increased performance must be paid for, how-
ever, since twice as many memory chips are
needed. Because the performance increment de-
rived from the second cache organization is
much smaller than that of the first while the
cost increment is approximately the same, the
first organization is more cost-effective.

Design Tradeoffs Affecting the Fetch
Phase. The fetch phase holds much potential
for performance improvement since it consists
of a single short sequence of micro-operations
that, as Table 4 clearly shows, involves a sizable
fraction of the average instruction time due to
the inevitable memory access and possible ser-
vice operations. In this subsection, two ap-
proaches to cutting this time are evaluated for
four different processors.

The Unibus interface logic of the PDP-11/04
and 11/34 are very similar. Both insert a delay
into the initial microcycle of the fetch phase to
allow time for Bus Grant arbitration circuitry
to settle so that a microbranch can be taken if a
serviceable condition exists. If the arbitration
logic were redesigned to eliminate this delay,
the average instruction execution time would
drop by 0.220 microsecond for the 11/04 and

354 THE PDP-11 FAMILY

0.150 microsecond for the 11/34.* The resulting
increases in performance would be 5.75 percent
and 5.21 percent, respectively.

Another example of a design feature affecting
the fetch phase is the operand/instruction fetch
overlap mechanism of the 11 /40, 11/45, and
11/60. From the normal fetch times in Appen-
dix B and the actual average fetch times given in
Table 4, the savings in fetch phase time alone
can be calculated to be 0.162 microsecond for
the 11/40,0.087 microsecond for the 11/45, and
0.118 microsecond for the 11/60 or an increase
of 7.77 percent, 10.07 percent, and 8.11 percent
over what their respective performances would
be i f fetch phase time were not overlapped.

These examples demonstrate the practicality
of optimizing sequences of control states that
have a high frequency of occurrence rather than
just those which have long durations. The 1 1 / 10
byte swap logic is quite slow, but is utilized in-
frequently causing its impact upon performance
to be small while the bus arbitration logic of the
1 1 /34 exacts only a small time penalty, but does
so each time an instruction is executed and re-
sults in a larger performance impact. The use-
fulness of frequency data should thus be
apparent since the bottlenecks in a design are
often not where intuition says they should be.

SUMMARY AND USE OF THE
M ETH 0 D 0 LOG I ES

The PDP-11 offers an interesting opportunity
to examine an architecture with numerous im-
plementations spanning a wide range of price
and performance. The implementations appear
to fall into three distinct categories: the mid-
range machines (PDP-11/04, 11/10, 11/20,
1 1 /34, 1 1 /40, 1 1 /60); an inexpensive, relatively
low performance machine (LSI-1 I); and a com-
paratively expensive, but high performance ma-
chine (PDP-11/45). The mid-range machines
are all minor variations on a common theme

with each implementation introducing much
less variability than might be expected. Their
differences reside in the presence or absence of
certain embellishments rather than in any major
structural differences. This common design
scheme is still quite recognizable in the LSI-I 1
and even in the PDP-l1/45. The deviations of
the LSI-II arise from limitations imposed by
sem ico nd uctor techno logy rat her than directly
from cost or performance considerations al-
though the technology decision derives from
cost. I n the PDP-I 1/45, on the other hand, the
quantum jump in complexity is motivated
purely by the desire to squeeze the maximum
performance out of the architecture.

From the overall performance model pre-
sented in the section on top-down performance
analysis, it is evident that instruction stream
processing can be sped up either by improving
the performance of the memory subsystem or
the performance of the processor. Memory sub-
system performance depends upon number of
memory accesses in a canonical instruction and
the effective memory read pause time. There is
not much that can be done about the first num-
ber since it is a function of the architecture and
thus largely fixed. The second number may be
improved, however, by the use of faster mem-
ory components or techniques such as caching.

Performance of the PDP- 11 processor itself
can be enhanced in two ways: by cutting the
number of processor cycles to perform a given
function or by cutting the time used per micro-
cycle. Several approaches to decreasing the ef-
fect ive m i c r o c y c l e c o u n t h a v e been
demonstrated:

1. Structure the data paths for maximum
parallelism. The PDP-I 1 /45 can perform
much more in a given microcycle than
any of the mid-range PDP-11s and, thus,
needs fewer microcycles to complete an
instruction. To obtain this increased

*These figures a re typical. Since the delay 3 set by an RC circuit :tnd Sch’nitt tripper. t he delay may vary considerably from
machine to machine of a given model.

IMPACTOF IMPLEMENTATION DESIGN TRADEOFFS ON PERFORMANCE: THE PDP-11, A CASE STUDY 355

2 .

3 .

functionality, however, a much more
elaborate set of data paths is required in
addition to a highly developed control
unit to exercise them to maximum po-
tential. Such a change is not an in-
cremental one and involves rethinking
the entire implementation.
Structure the microcode to take best ad-
vantage of instruction features. All pro-
cessors except t h e 11/10 hand le
JMP/JSR addressing modes as a special
case in the microcode. Most do the same
for the destination modes of the MOV
instruction because of its high frequency.
Varying degrees of sophistication in in-
struction dispatching from the BUT IR-
DECODE at the end of every fetch is
evident in different machines resulting in
various performance improvements.
Cut effective microcycle count by over-
lapping processor and Unibus operation.
The PDP-I 1/10 demonstrates that a
large microcycle count can be effectively
reduced by placing cycles in parallel with
memory access operations whenever
possible.

Increasing microcycle speed is perhaps more
generally useful since it can often be applied
without making substantial changes to an entire
implementation. Several of the mid-range PDP-
1 Is achieve most of their performance improve-
ment by increasing microcycle speed in the fol-
lowing ways:

1. Make the data paths faster. The PDP-
11/34 demonstrates the improvement in
microcycle time that can result from the
judicious use of Schottky TTL in such
heavily travelled points as the ALU. Re-
placing the ALU and carry-lookahead
logic alone with Schottky equivalents
saves approximately 35 nanoseconds in
propagation delay. With cycle times run-
ning 300 nanoseconds and less, this
amounts to better than a 10 percent in-
crease in speed.

2 . Make each microcycle take only as long
as necessary. The 1 1 /34 and 1 1 /40 both
use selectable microcycle times to speed
up cycles which do not entail long data
path propagation delays.

Circuit technology is perhaps the single most
important factor in performance. It is only stat-
ing the obvious to say that doubling circuit
speed doubles total performance. Aside from
raw speed, circuit technology dictates what it is
economically feasible to build as witnessed by
the SSI PDP-I 1/20, the MSI PDP-I 1/40, and
the LSI-I 1 . Just the limitation of a particular
circuit technology at a given point in time may
dictate much about the design tradeoffs that
can be made - as in the case of the LSI-I 1.

Turning to the methodologies, the two pre-
sented in the previous section can be used at
various times during the design cycle. The top-
down approach can be used to estimate the per-
formance of a proposed implementation or to
plan a family of implementations, given only
the characteristics of the selected technology
and a general estimate of data path and mem-
ory cycle utilization. The bottom-up ap-
proach can be used to perturb an existing or
planned design to determine the performance
payoff of a particular design tradeoff. The rela-
tive frequencies of each function (e.g., address-
ing modes, instructions, etc.), while required for
an accurate prediction, may not be available.
There are, however, alternative ways to esti-
mate relative frequencies. Consider the three
following situations:

1 . At least one implementation exists. An
analysis of the implementation in typical
usage (Le., benchmark programs for a
stored program computer) can provide
the relative frequencies.
No implementation exists, but similar sys-
tems exist. The frequency data may be
extrapolated from measurements made
on a machine with a similar architecture.
For example, the Gibson Mix [Bell and

2 .

356 THE PDP-11 FAMILY

Newell, 19711 provided the relative fre-
quencies of IBM 7090 functions from
which the relative frequencies of IBM
360 functions were estimated.
No implementation exists, and there are
no prior similar systems. From knowl-
edge of the specifications, a set of most-
used functions can be estimated (e.g., in-
struction fetch, register and relative ad-
dressing, move and add instructions for
a stored program computer). The design
is then optimized for these functions.

3.

Of course, the relative frequency data should
always be updated to take into account new
data.

Our purpose in writing this paper has been
twofold: to provide data about design tradeoffs
and to suggest design methodologies based on
this data. It is hoped that the design data will
stimulate the study of other methodologies
while the results of the design methodologies
presented here have demonstrated their useful-
ness to designers.

APPENDIX A: INSTRUCTION TIME COMPONENT FREQUENCIES

Frequency
Fetch 1 .oooo
Source Mode 0.4069

0.1377
0.0338
0.1587
0.01 22
0.0352
0.0000
0.027 1
0.0022
0.593 1

Frequency of odd-byte addressing

Destination 0.6872
Data Manipulation Mode 0.6355
OR 0.3146
1 @R or (R) 0.0599
2 (R)+ 0.0854
3 @(R)+ 0.0307
4 -(R) 0.0823

6 X(R) 0.0547

NOTE:
Frequency of odd-byte addressing

(SM 1-7) = 0.0252.

5 @-(R) 0.0000

7 @XW) 0.0080

(DM1-7) = 0.0213.

Frequency
JumD (JMP/JSR) Mode 0.05 17

OR 0.0000
(I LL EG A L)
0.0000
0.0000
0.0079
0.0000
0.0000
0.0438
0.0000

~~

Execute Instruct ion 1 .om0

Double Operand 0.4069

ADD
SUB
BIC
BICB
BI S
BISB
CMP
CMPB
BIT
BITB
MOV
MOVB
XOR

0.0524
0.0274
0.0309
0.
0.001 2
0.001 3
0.0626
0.021 2
0.004 1
0.001 4
0.1517
0.0524
0.

IMPACT OF IMPLEMENTATION DESIGN TRADEOFFS ON PERFORMANCE: THE PDP-11, A CASE STUDY 357

Frequency Frequency

Single Operand
CLR
CLRB
CO M
COMB
INC
INCB
DEC
DECB
N EG
NEGB
A DC
ADCB
SBC
SBCB
ROR
RORB
ROL
ROLB
AS R
ASRB
AS L
ASL B
TST
TST B
SWAB
SXT

0.2286
0.0186
0.00 1 8
0.
0.
0.0224
0.
0.0809
0.
0.0038
0.
0.0070
0.
0.
0.
0.0036
0.
0.0059
0.
0.0069
0.
0.0298
0.
0.0329
0.0079
0.0038
0.

No Destination 0.3 128
~

Branch 0.2853

All Branches (false) 0.1 109
All Branches (true) 0.1744

SOB (true) 0.
SOB (false) 0.

Jump
JMP
JSR

0.05 17
0.0272
0.0245

Control, Trap, and
Miscellaneous
Set/Clear Condition Codes
MARK
RTS
RTI
RTT
IOT
EMT
TRAP
BPT

0.0270
0.001 7
0.
0.0236
0.
0.
0.
0.001 7
0.
0.

NOTES:
Frequency of destination odd-byte addressing (DM 1-7) =
0.02 I3
Execution frequencies indicated as 0. have an aggregate fre-
quency <0.0050.

W
VI
03

Appendix B: Instruction Execution Times for PDP-11 Models

--I
Microcycle LSI-11 PDP-l l /W PDP-11/10 PDP-11/20 PDP-11/34 PDP-11/40 PDP-11/45 PDP-11/60
(/.IS) 0.40 0.26 0.30 0.28 . 1 8/ . 34 0.15 0.17 1

rn
. 1 4/.20/.30

n
1/5 240

011 0 40
113 160 1
1/4 200 3
2/7 3 6 0 1
1/5 240 2
2/8 400 1
2/9 440 1
3/12 6 00 1

011 0 4 0
1/4 2 00
1/5 240 1
2/8 400
1/6 280 1
219 4 4 0
2/10480
3/13 6 40

Jump (JMP/JSR)
101 R o r (R 1 0/3 120
2 (R) + 015 200
3Cr (R) + 1/5 240
4 (R l 015 200
5 6 1 ~ (R) 1/6 2 80
6 X (R l 1/7 3 2 0
7(0 X (R I 2/10 4 80
MOV 1/3 160 2
MOVE 112
ADD 113
SUB 1 /3
BIC 113
BlC8 1 /2
BIS 113
8lSB 1 /2

20 1
60 3
60 3
60 3
20 3
60 3
20 3

BIT 0/2 0 8 0
BIT6 011 0 4 0
CMP 012 0 8 0

1/3 1 94

0/2 052
1/2 146
1/3 172
2/5 3 18
1/3 172
2/5 318
2/6 344
3/8 4 9

0/1 026
1/1 120
1/2 146
2/4 292
1/2 1 46
2/4 292
2/5 318
3/7 464

0/2 0 5 2
0/3 078
1/3 172
0/3 078
1/3 172
1/4 198
2/6 344

115 1 5 0

0/2 0 6 0
113 1 5 0
115 1 5 0
2/7 2 7 0
114 1 5 0
2/6 2 70
2/7 2 70
3/9 3 9 0

012 0 6 0 1
1/3 1 50
1/5 1 50
217 2 70
1/4 1 50
216 2 7 0
217 2 70
319 3 9 0

111 0 9 0
113 0 9 0
215 2 10
112 0 9 0
214 2 10
215 2 10
3/7 3 30

1/2 106 1.2 1/4 1 8 0 1
1/2 106 1 2 114 1 8 0
112 106 1 1/4 1 8 0
1/2 106 1 114 1 8 0
1/2 106 1 1/4 1 8 0
1/2 106 1 1/4 1 8 0
1/2 106 1 114 1 8 0
1/2 106 1 1/4 1 8 0
0/1 026 012 0 6 0
0/1 026 012 0 6 0
011 026 012 0 6 0

114 1 49

010 0 0
1/4 1 49
1/4 1 4 9
2/7 2 70
1/4 1 49
2/7 2 70
217 2 70
3/10 3 91

0/1 0 2 8
1/4 139
114 139
217 2 60
1/4 139
217 2 60
2/7 2 60
3/10 3 81

0/4 1 12
0/4 1 12
117 233
0/4 1 12
117 233
1/7 2 3 3
2/10 3 54
113 0 8 0 1
113 0 8 0
1/3 0 8 0
1/3 0 8 0
1/5 1 40
1/5 1 40
113 0 8 0
113 1 8 0
0/4 1 12
0/4 1 12
0/2 0 5 6 1

113 1 63

011 0 18 1
1/1 112
112 1 30
213 242
112 1 30
2/3 242
214 2 60
315 3 7 2

114 112

010 0 0
1/3 0 7 8
1/3 0 8 4
2/5 172
1/3 0 8 4
215 172
215 1 3 4
3/7 2 12

0/1 0 18 1.2 /O 0 0
1/1 112
1/2 1 3 0 1
2/3 2 4 2
112 1 30
2/3 2 42
2/4 2 60
315 3 7 2

010 0 0 1
0/2 0 3 6
112 1 3 0
0/1 0 1 8
1/2 1 30
1/2 1 3 0 1
214 2 6 0
1/1 0 7 8 1
1/1 0 7 8 1
1/1 0 7 8 1
1/1 0 7 8 1
1/1 0 7 8 1
1/1 0 7 8 1
111 0 7 8 1
1/1 0 7 8 1
0/1 0 18
011 0 1 8
0/1 0 18

113 0 7 8
113 0 8 4
215 1 7 0
113 0 8 4
215 1 7 0
2/5 1 7 8 1
3/7 2 56 1

012 0 3 4
0/3 0 6 4
1/2 0 9 4
0/2 0 4 4
1/2 0 9 4
1/4 0 8 4
2/4 1 34
1/3 0 6 4 4
1/3 0 6 4 4
113 0 5 4 1.2
114 0 6 8 1
113 0 5 4 1.2
1/3 0 5 4 1 2
113 0 5 4 1.2
113 0 5 4 1.2
0/3 0 4 8 3
013 0 4 8 3
013 0 4 8 3

113 0 4 5

010 0 0
112 0 3 0
112 0 3 0
215 0 7 5
1/3 0 4 5
2/6 0 9 0
214 0 6 0
317 1 0 5

010 0 0
112 0 3
1/2 0 3
215 0 15
1/3 0 4 5
2/6 0 9
215 0 7 5 1
3/8 1 2 1

0/2 0 3
012 0 3
114 0 6
0/2 0 3
1/5 0 7 5
1/3 0 4 5
2/6 0 9 0

113 0 5 1

o/o 0 0
1/2 0 3 4
112 0 3 4
215 0 8 5
113 0 5 1
216 102
214 0 6 8
317 1 19

010 0 0
112 0 3 4
112 0 3 4
215 0 8 5
113 0 5 1
216 102
2 / 5 0 8 5
318 136

011 0 17
012 0 3 4
1/2 0 3 4
011 017
113 051
1/2 0 3 4
215 0 8 5

1/0 0 0 1.3 1/2 117
1/2 0 3
1/2 0 3
112 0 3
1/2 0 3
1/2 0 3
1/2 0 3
1/2 0 3

1 /2
1 /2
113
1 /2
112
1 /2
112

17
17
34
17
17
17
17

0/1 0 15 1 2 011 0 1 7
0/1 0 15 1 2 0/1 017
011 0 15 1 2 0/1 0 1 7

-
0
?

1
1

1.6
4
1.6
1.7
1.6.C
1.6.C
1.6.C
1.6.C
1
1
1 .B

*Format r/m t tt n (r = number of memory reads or writes. m = number of microcycles t t t = time in ps, n = footnotes number)

Microcycle LSI-11 PDP-11/04 PDP-11/10 PDP-11/20 PDP-11/34 PDP-11/40 PDP-11/45 PDP-l1/60
(F S) 0.40 0.26 0.30 0.28 .1 W.34 .14/.20/.30 0.1 5 0.17

CMPB
XO R
CLR (6) . COMB
CO M
INC. DEC
INCB, DECB
ADC
ADCB
SBC
S8CB
ROL. ASL
ROLB. ASLB
RO R
RORB
AS R
ASRB
TST
TSTB
N EG
NEGB
SWAB
SXT
BRANCH

0/1 0 4 0
1/3 1 6 0 3
113 1 6 0 2
1/4 2 0 0 2
1/5 2 4 0 3
1/4 200 3
115 2 4 0 3
1/4 2 0 0 3
1/5 2 4 0 3
114 2 0 0 3
1/4 2 0 0 3
113 1 6 0 3
118 3 6 0 3
1/5 2 4 0 3
119 4 0 0 3
1/8 3 6 0 4
0/4 1 6 0
0/3 1 2 0
114 2 0 0 2
1/3 1 6 0 2
113 1 6 0 2
116 2 8 0 3

0/1 0 2 6

1/2 1 0 6 1
112 1 0 6
112 1 0 6
1/2 1 0 6
1/2 1 0 6
112 1 0 6
112 1 0 6
112 1 0 6
113 1 3 2
1/3 1 3 2
1/3 1 3 2
113 1 3 2
1/3 1 32
113 1 3 2
011 0 2 6
011 0 2 6
1/2 1 0 6 1
112 1 0 6 1
113 1 3 2 1

BRANCH (TRUE) 014 1 6 6
BRANCH (FALSE) 014 1 60
SOB ITRUE) 0/8 3 2 0
SOBIFALSE) 016 2 4 0
JUMP
JM P 0 / 2 0 8 0
JSR 1016 2 80 9
SETKLEAR CC 0/3 1 2 0
MARK 1 /16680
RTS 116 2 8 0
RTI 2115680 5 6
R TT 2115680 5 7
IOT EMT TRAP 2/33 1480
E
B PT

013 0 7 8
0 0

0 0
117 2 3 6
012 0 5 2

1/5 2 24
216 3 4 4

012 0 6 0

115 2 10 1
115 2 10
115 2 10
115 2 10
115 2 10
115 2 1 0
1/5 2 10
115 2 10
1/5 2 10
115 2 10
1/5 2 10
115 2 1 0
115 2 10
115 2 1 0
013 0 9 0
013 0 9 0
1/5 2 10
115 2 10 1

012 0 56

113 0 8 4 1
113 0 8 4 1
113 0 8 4 1
113 0 8 4 1
113 0 8 4 1
113 0 8 4 1
1/3 0 8 4 1
1/3 0 8 4 1
1/3 0 8 4 1.2
113 0 8 4 1.2
113 0 8 4 1.2
1/3 0 8 4 1.2
113 0 8 4 1.2
113 0 8 4 1.2
012 0 56
012 0 5 6

1 / 1 2 3 1 5 1.2 113 0 8 4 1

013 0 9 0 014 1 12
013 0 3 0 010 0 0

012 0 6 0 010 0 0
1/9 3 3 0 1 / 1 0 2 8 0
0/3 0 9 0 010 0 0

1/7 2 10 116 2 0 5
219 2 70 2/9 3 26

5.8 2/12 6.08 2/13 6.3 2/21 6.62

011 0 18
111 0 7 8 1
111 0 7 8 1
1/1 0 7 8 1
111 0 7 8 1
1/1 0 7 8 1
1/1 0 7 8 1
1/1 0 7 8 1
1/1 0 7 8 1
1/1 0 7 8 1
112 0 9 6 2
112 0 9 6 2
1/2 0 9 6 2
112 0 9 6 2
112 0 9 6 2
112 0 9 6 2
011 0 1 8
011 0 1 8
1/2 0 9 6 1
1/2 0 9 6 1
1/1 0 7 8 2
111 0 7 8 1

0/3 0 5 4
010 0 0
0/4 0 7 8
0/2 0 4 2

0/1 0 1 8
1/5 1 50
0/2 0 3 6
118 2 3 8
1/4 1 6 6
2/6 2 9 6
216 2 9 6
2113542

013 0.48 3

1/4 0.62 1.2
1/4 0 6 2
114 0 6 2
1/4 0 6 2
114 0 6 2
114 0 6 2
114 0 6 2
114 0 6 2
114 0 6 2

.2

.2

.2

.2

.2

.2

.2

.2
1/4 0 6 2 1 2
1/4 0 8 4 5
114 0 8 4 5
114 0 8 4 5
114 0 8 4 5
0/4 0 6 2 1 2
014 0 62 1 2
1/3 0 5 4 1 2
113 0 5 4 1 2
1/3 0 5 4 1
1/4 0 6 2 1 2

013 0 6 4
012 0 2 8
0/5 1 2 4
015 92

0/2 0 3 4
116 1 48
012 0 6
1/6 1 54
114 1 2 8
216 2 3 2
216 2 3 2
2/14 4 1 8

0/1 0 15 1 2 0/1 0 1 7
1/2 0 3 1 113 1 3 4
1/2 0 3 1 113 1 3 4
112 0 3 1/3 1 34
112 0 3 1/3 1 34
1/2 0 3 1/3 1 34
112 0 3 113 1 34
1/2 0 3 113 1 3 4
1/2 0 3 1/4 1 5 1
112 0 3 114 1 5 1
1/2 0 3 113 1 34
1/2 0 3 1 1/3 1 3 4
1/2 0 3 1 5 114 1 5 1
1/2 0 3 1 5 114 1 5 1
1/2 0 3 1 5 115 1 6 8
1/2 0 3 1 5 1/5 1 6 8
011 0 15 1 2 012 0 3 4
0/1 0 15 1 2 0/2 0 3 4
114 0 6 4
1/4 0 6 4
112 0 3 1
112 0 3 1

011 0 15
010 0 0 6
0/3 0 4 5 6
012 0 3 6

011 0 15
115 0 7 5
012 0 15
114 0 6 6
114 0 6
2/7 1 0 5
2/7 1 0 5
2/11 1 6 5 7

114 1 5 1
1/4 1 5 1
1/5 1 68
116 1 8 5

0/4 0 6 8
0/2 0 3 4
0110 1 70
017 1 19

011 0 1 7
1/6 1 8 5
018 1 19
119 1 5 3
114 68
2/10 1 70
2/19 3 23
2/22 5 4 0

1 B
7
2 7
2 7
2 7 8
2 7 8
2 7 8
2 7 8
6 8
6 8
2 7 8
2 7 8
6
6
7 9
7 9
2 5
2 5
7 8
7 8
7
7

3

3

3 A

*Format r/m t tt n (r = number of memory reads or writes. m = number of microcycles. t t t = time in ps. n = footnotes number)

360 THE PDP-11 FAMILY

LSI-11 NOTES

Fetch:

All single-operand instructions except
SWAB, SXT, MFPS, and MTPS add 1
pcycle (+0.400 p s) .
XOR, JMP, RTS, RTI, RTT, set/clear
condition codes add 1 pcycle (+0.400 p s) .
SWAB adds 2 pcycles (+0.800 p s) .
SXT adds 5 pscycles (+2.000 p s) .
BPT, IOT add 6 pcycles (+2.400 p s) .
MARK adds 8 pcycles (+3.200 ps).

Source:

(I) Byte addressing subtracts 1 pcycle (-0.400
PUS).

(2) Byte addressing adds 1 pcycle (+0.400 p s) .
(3) I f register f R6 or R7, byte addressing

adds 1 pcycle (+0.400 p s) .

(7) If new PS has bit 4 set, add I O pcycles
(+4.000 p s) .

(8) I f new PS has bit 4 set, add 1 pcycle
(+0.400 p s) .

(9) If register not 7, then 1/15 (6.40 p s) .

Times Assumed for All Calculations:

(1) Microcycle time is 0.400 p s .
(2) Microcycle time is extended by 0.400 p s

during DATI/DATIP/DATO/DATOB.
(Note: 1 extra wait pcycle is actually gener-
ated for each memory access; however,
these pcycles have not been tallied in the
microcycle counts above.)

PDP-11/04 NOTES

Source:

Odd-byte addressing (SMI-7) adds 2 pcy-
cles (+OS20 p s) .

Destination:
Destination:

For MOV: DMO subtracts 1 pcycle (-0.400
p s) . DMI-7 subtracts 2 pcycles and mem-
ory read (-1.200 p s) .
Byte addressing (DM 1-7) subtracts 1 pcycle
(-0.400 p s) .

(I) I f register = R6 or R7, byte addressing
adds 2 pcycles (+0.800 p s) additive to the
time noted directly above.

Execute:

(I) DMO adds 1 pcycle and subtracts memory
write (+O.OOO ps).

(2) DMO subtracts memory write (-0.400 ps).
(3) DMO subtracts 1 pcycle and memory write

(-0.800 p s) .
(4) DMO subtracts 3 pcycles and memory

write (-1.600 p s) .
(5) I f new PS has bit 7 clear, add 1 pcycle

(+0.400 ps).
(6) I f new PS has bit 4 set, add 9 pcycles

(+3.600 p s) .

Odd-byte addressing (DMI-7) adds 2 pcy-
cles (+OS20 p s) .

Execute:

(I) Destination odd-byte addressing (DMI-7)
adds 2 pcycles (+0.520 p s) . DMO subtracts
memory write (-0.540 p s) .

(2) DMO subtracts 1 additional pcycle (-0.260
F).

Times Assumed for Al l Calculations:

(1) Microcycle time is 0.260 ps.
(2) Microcycle time is extended by 0.220 p s by

bus priority arbitration delay during BUT
SERVICE.

(3) Microcycle time is extended by 0.940 p s
during DATI/DATIP (MOS memory).

(4) Microcycle time is extended by 0.540 ps
during DATO/DATOB (MOS memory).

IMPACTOF IMPLEMENTATION DESIGN TRADEOFFS ON PERFORMANCE: THE PDP-11. A CASE STUDY 361

PDP-11/10 NOTES

Source:

Odd-byte addressing (SMI-7) adds 7 fast
shift (0.150 ps/pcycle) and 1 regular pcycle
for a total of + 1.350 ps.

Destination:

Odd-byte addressing (DMI-7) adds 7 fast
shift (0.150 ps/pcycle) and 1 regular pcycle
for a total of + 1.350 ps.

(I) MOV subtracts 1 pcycle (-0.300 ps).

Execute:

Destination odd-byte addressing (DM 1-7)
adds 7 fast shift pcycles (0.150 ps/pcycle)
for a total of +1.050 ps. DMO subtracts 2
pcycles and memory write (-1.200 ps).
Byte swap consists of 7 fast shift (0.150
ps/pcycle) and 1 regular pcycle for a total
of + 1.350 ps.

Times Assumed for All Calculations:

(I) Microcycle time is 0.300 ps.
(2) A C K O F F f o l l o w i n g a D A T I /

DATIP/DATO/DATOB extends pcycle
time by 0.600 ps minus 0.300 ps for each
pcycle that the CKOFF is removed from
the cycle initiating the bus transaction.

PDP-11/20 NOTES
Source:

Odd-byte addressing (SMI-7) adds 2
lcycles (+0.560 ps).

Destination:

Odd-byte addressing (DMI-7) adds 2 pcy-
cles (+OS60 ps).
Non-modifying instruction (CMP(B),
BIT(B), TST(B)) adds 0 pcycles (+O. 100 ps
for DATI in place of DATIP).

Execute:

(I) DMO subtracts 1 pcycle and memory write
(-0.280 ps). PS as destination adds 1 pcycle
(+0.280 ps).

(2) Odd-byte addressing (DMI-7) adds 2 pcy-
cles (+0.560 ps).

Times Assumed for AI1 Calculations:

(I) Microcycle time is 0.280 ps
(2) Microcycle time is extended by 0.370 ps

during DATI.
(3) Microcycle time is extended by 0.270 ps

during DATIP.
(4) Microcycle time is extended by 0.000 ps

during DATO/DATOB.

PDP-11/34 NOTES
Source:

(I) DMO subtracts 1 pcycle (-0.180 ps).

Destination.

MOV(B) and DMI-7 changes long to short
pcycle and subtracts memory read (-1.000
W) .

(I) MOV(B) subtracts an additional pcycle
(-0.180 ps)

(2) Single-operand instruction except NEG(B)
subtracts 1 pcycle (-0.180 ps).

Execute:

(I) DMO subtracts memory write and changes
long to short pcycle (-0.600 ps).

(2) DMO subtracts memory write, changes
long to short pcycle, and adds 1 pcycle
(-0.420 p ~) .

Times Assumed f o r All Calculations:

(I) Microcycle times are 0.180 and 0.240 ps.
(2) Microcycle time is extended by 0.150 ps by

bus priority arbitration delay during BUT
SERVICE.

362 THE P D P - 1 1 FAMILY

(3) Microcycle time is extended by 0.940 ps
during DATI/DATIP (MOS memory).

(4) Microcycle time is extended by 0.540 ps
during DATO/DATOB (MOS memory).

(5) Memory management unit delay is not
included (+O. 120 ps/memory cycle when
enabled).

PDP-11/40 NOTES

Source:

Odd-byte addressing (SM1-7) adds 2 pcy-
cles (+0.340 ps).

Destination:

Odd-byte addressing (DMI-7) adds 2 pcy-
cles (+0.340 ps).

(I) Single-operand instruction or SMO sub-
tracts 0 pcycles (-0.440 ps).

Execute:

If (single-operand instruction or SMO and
doub le -ope rand instruct ion except
MOVB), DMO, destination f register 7,
and no service request pending, then next
fetch is overlapped (-1 pcycle/-0.640 ps
from next fetch).

(I) I f DMO, phase takes 3 pcycles and memory
write is not done (0.480 11s).

(2) If odd-byte addressing (DM1-7), phase
takes 5 pcycles (1.020 ps).

(3) I f odd-byte addressing (DM1-7), phase
takes 5 pcycles (0.820 ps).

(4) If byte instruction and DM1-7, phase takes
4 pcycles (0.880 ps). For DMO: If word in-
struction, phase takes 2 pcycles (0.340 ps).
I f byte instruction, phase takes 4 pcycles
(0.680 ps).

(5) For DMO: I f word instruction, phase takes
3 pcycles (0.740 ps). I f byte instruction,
phase takes 4 pcycles (0.880 ps). In neither
case is memory write done.

Times Assumed for All Calculations:

(I) Microcycle times are 0.140, 0.200, and
0.300 ps.

(2) A CLKOFF following a DATI/DATIP ex-
tends pcycle time by 0.500 ps minus sum of
cycle times between DATI/DATIP (exclu-
sive) and CLKOFF (inclusive).

(3) A CLKOFF following a DATO/DATOB
extends pcycle time by 0.200 ps minus sum
of cycle times between DATO/DATOB
(exclusive) and CLKOFF (inclusive).

(4) Memory management unit delay is not
included (+ O . 150 ps/memory cycle when
enabled).

PDP-11/45 NOTES

Fetch:

Execute phase of previous instruction may
be overlapped with fetch. Consult execute
phase note for effect on timing.

Destination:

MOV and DM1-7 subtracts memory read
(-0.000 ps). Odd-byte addressing (DM 1-7)
adds 1 pcycle (+O. 150 ps).

(1) Single-operand instruction or SMO sub-
tracts 1 pcycle (+0.150 ps).

Execute:

(I) For DMO:
I f double-operand instruction, destination
f register 7, and SM1-7:

If odd-byte addressing, then phase
takes 2 pcycles (0.300 ps), else phase
takes 1 pcycle (0.150 ps). I f no ser-
vice request is pending, then next
f e t c h i s o v e r l a p p e d (- 1
pcycle/-0.150 ps from next fetch).

IMPACTOF IMPLEMENTATION DESIGN TRADEOFFS ON PERFORMANCE: THE PDP-11, A CASE STUDY 363

I f double-operand instruction, destination
= register 7, and SMI1-7:

Otherwise (single-operand instruction or
S M 0):

Phase takes I pcycle (0.150 p s) . If
destination f register 7 and no ser-
vice request is pending, then next
fe tch is o v e r l a p p e d (-2 pcy -
des/-0.300 p s from next fetch).

Phase takes 2 pcycles (0.300 p s) .

No memory write is done.
(2) For DM1-7, if destination fetch is via Fast-

bus and no service request is pending, then
next instruction fetch is overlapped (-1
pcycle/-0. 150 p s from next fetch).

(3) DM 1-2 adds 1 pcycle (+O. 150 p s) . If no ser-
vice request is pending, then next fetch is
overlapped (-1 pcycle/-O.150 p s from next
fetch).

(4) DMO subtracts 2 pcycles and memory
write (-0.300 p s) .

(5) Odd-byte addressing adds 1 pcycle (+O. 150
P S I .

(6) If no service request is pending, then next
fetch is overlapped (-I pcycle/-0.150 p s
from next fetch).

(7) IOT 1.65 p s , BPT 1.8 p s .

Times Assumed for All Calculations:

(1) Microcycle time is 0.150 p s .
(2) Memory access time does not influence mi-

crocycle times (bipolar memory).
(3) Memory management unit delay is not

included (+0.090 ps/memory cycle when
enabled).

PDP-11/60 NOTES

Fetch:

The following instructions take 1 addi-
tional pcycle (+O. 170ps) to decode: XOR,
SWAB, SXT, JSR, set/clear condition

codes, MARK, SOB, RTS, RTI, RTT,
IOT, EMT, TRAP, BPT, MFPI(D) ,
MTPI(D).

Fetch or execute phase of previoiis instruc-
tion may be overlapped with fetch. Consult
execute phase notes for effect on timing.

Source:

For SM 1-7: Word instruction except MOV
and DM1-7 adds 1 pcycle (+0.170 p s) . Byte
instruction adds 2 pcycles (+0.340 p s) .

Destination:

Byte addressing (DMI-7) adds 2 pcycles
(0.340 p s) .

(1) Single-operand instruction except SWAB
or SXT or SMO and double-operand in-
struction except XOR subtracts 1 pcycle
(-0.170 p~).

Execute:

(I) If SMO, DMO, source # register 7, and
destination # register 7, then fetch overlap
is attempted. I f no service request is pend-
ing at conclusion of instruction, then next
fetch is overlapped (-2 pcycles/-0.340 p s
from next fetch); otherwise, add 2 pcycles
(+0.340 p s) to service phase following in-
struction for PC rollback, add 1 memory
read (+O.OOO p s) to next fetch for instruc-
tion refetch.

(2) If DMO and destination # register 7, then
fetch overlap is attempted. If no service
request is pending at conclusion of instruc-
tion, then next fetch is overlapped (-2 pcy-
cles/-0.340 p s from next fetch); otherwise,
add 2 pcycles (+0.340 p s) to service phase
following instruction for PC rollback, add
1 memory read (+O.OOO p s) to next fetch for
instruction refetch.

364 THE PDP-I 1 FAMILY

(3) I f no service request is pending, then next
fetch is overlapped (-2 pcycles/-0.340 ps
from next fetch); otherwise, subtract 1
pcycle (-0.170 p s) from execute.

(4) For DMO: SMO subtracts memory write
(-0.830 ps). SMI-7 subtracts 1 pcycle and
memory write (-1 .OOO ps).

(5) DMO subtracts 1 pcycle (-0.170 ps).
(6) DMO subtracts 1 pcycle and memory write

(7) D M O subtracts 2 pcycles and memory
write (-1 .I70 ps).

(8) DMI-7 and byte addressing adds 1 pcycle
(+O. 170 ps).

(9) DM1-7 and byte addressing adds 3 pcycles
(+OS10 ps).

(A) DM3, 5-7 adds 1 pcycle (+0.170 ps).
(B) SM1-7, DMO, and word addressing adds 1

(C) SMO, DM1-7, and byte addressing adds 1

(D) SMO adds 1 pcycle (+0.170 ps).
(E) I f new PC odd: Microcontrol transfers to

writable control store if present and in-
struction timing does not apply; otherwise,
trap sequence continues normally with 3
extra pcycles (+OS10 ps).

(-1 .ooo ps).

pcycle (+0.170 ps).

pcycle (+O. 170 ps).

Accessing the following internal addresses in-
vokes microcode which adds additional micro-
cycles in all phases:

772300-16 Kernel Page Descriptor
Registers

772340-56 Kernel Page Address Regis-
ters

777540 Writable Control Store Sta-
tus Register

777542

777544

777570

717572

777574

777576

777600- I6

777640-56

777744

777746
777752
777766
777770

777774
777776

Writable Control Store Ad-
dress Register
Writable Control Store
Data Register
Console Switch and Display
Register
Memory Management Sta-
tus Register 0
Memory Management Sta-
tus Register 1
Memory Management Sta-
tus Register 2
User Page Descriptor Reg-
isters
User Page Address Regis-
ters
Memory System Error Reg-
ister
Cache Control Register
Cache Hit/Miss Register
CPU Error Register
Microprogram Break Reg-
ister
Stack Limit Register
Processor Status Word

Times Assumed for All Calculations:

(I) Microcycle time is 0. I70 p s .
(2) Microcycle time is extended by 0.000 ps

during DATI/DATIP with cache hit (all
tabulated times assume cache hit on read).

(3) Microcycle time is extended by 1.075 ps
during DATI/DATIP with cache miss.

(4) Microcycle time is extended by 0.830 ps
during DATO/DATOB.

(5) Memory Management unit adds no delay
when enabled.

15

Turning Cousins into Sisters:
An Example of Software Smoothing

of Hardware Differences
RONALD F. BRENDER

INTRODU CTlON

I n 1970, the PDP-II was Digital Equipment
Corporation’s newly announced minicomputer
and its first offering in the 16-bit world. Among
the many software components needed to com-
plement the hardware, a FORTRAN system
was high on the list. A FORTRAN project was
begun in 1970 and the first release of the result-
ing product took place in mid-1971. In the suc-
ceeding years, the number of PDP-11 CPUs and
related options increased dramatically to pro-
vide a wide range of price/performance alterna-
tives. What makes the original FORTRAN
interesting, even today, is the extent to which
the basic implementation approach was able to
be extended gracefully to span the entire family
with modest incremental effort.

This paper describes the design concepts,
threaded code and a FORTRAN virtual ma-
chine, used to implement the original PDP-1 l
FORTRAN product. As the PDP-I 1 family of
processors expanded with new models and op-
tions, these original design concepts proved
both stable enough and flexible enough to be
employed successfully across the entire family.

When this FORTRAN was finally super-
seded in early 1975, it had two successors. One,
called FORTRAN IV, continued the threaded
code and virtual machine concepts of the earlier
product with similar execution performance
across the PDP-1 I family, but offered much fas-
ter compilation rates in smaller memory. The
other successor, called FORTRAN IV-PLUS,
produced direct PDP-11 code and obtained sig-
nificantly improved execution performance for
the PDP-I 1/45, PDP-l1/70, and PDP-I 1/60
with FPl1 floating-point hardware relative to
both of the other FORTRANs.

In the Beginning
The PDP-11/20 was a significant advance

over other minicomputers of its time, but was a
bare machine architecture by today’s standards.
There was no floating-point hardware of any
kind (even as an option) and integer multiply
and divide operations were available only by
means of an 1 / 0 bus option, the Extended
Arithmetic Element (EAE). (The EAE also pro-
vided multiple-bit arithmetic shift operations;

365

366 THE PDP-11 FAMILY

the PDP- 1 1 /20 instructions provided only
single-bit shifts.)

The first disk-based operating system, DOS,
was designed for a minimum standard system
that included 8 Kwords (I6 Kbytes) of memory.
After allowing typically 2 Kwords for the resi-
dent parts of the monitor, only 5 K to 6 K re-
mained for other use. Consequently, size
constraints played a major role in the FOR-
TRAN system design and implementation.

There were not many competitors at the time,
but at least one, the IBM 1130, offered a disk-
based operating system and FORTRAN sys-
tem. To meet this competition, an important
goal was to deliver the PDP-11 FORTRAN sys-
tem to the market as quickly as possible, even at
the cost of performance, if necessary.

Neither Compiler nor Interpreter, but
Threaded Code

The fundamental design strategy to be deter-
mined was the structure of the executing code,
the “run-time environment” [DEC, 1974b;
DEC, 1974~1.

We were leery of a compiler that generated
direct machine code primarily because of the
size of compiled code. Much of the compiled
code would necessarily consist of calls to float-
ing-point and other support routines, and on
the PDP-1 I , each subroutine call required two
words of memory, not counting argument
transmission.

An interpreter would easily solve the space
problem, but this had its own disadvantages.
The basic interpreter loop overhead was a con-
cern, but not crucial at that stage in our deliber-

ations. However, a disadvantage of interpreters
is that they must be “always present” even
though not all of the capabilities are being used.
For example, routines for complex arithmetic
are part of the interpreter even though the par-
ticular program in use does not perform com-
plex arithmetic. Further, we wanted to maintain
the traditional FORTRAN features of inde-
pendent compilation and linking of routines,
and easy writing of routines in assembler for in-
clusion in the program.

The solution was threaded code [Bell, J.,
19731. Threaded code is a kind of combination
of an interpreter and compiled code with most
of the best features of each. On the PDP-11 it
works in the following way.

The “compiled code” consists simply of a se-
quence of service routine addresses. A single
register (we used R4) is chosen to contain a
pointer to the next address in the sequence to be
invoked. Each service routine completes by
transferring control to the next routine in the
sequence and simultaneously advancing the
pointer.

To illustrate, consider a service routine whose
purpose is to perform floating-point addition of
two real values found in a stack (we used R6,
the hardware stack pointer, for the value stack)
and leave the result on the top of the stack in
place of the parameters. The service routine
would look like the following.*

$ADR: <<code for floating point add> >
JMP @(R4)+

The JMP instruction with deferred auto-
increment addressing mode provides just the

*The brackets << and >> a re used in examples in place of code to indicate the purpose of code that is t oo bulky and /o r not
relevant for the example.

In the PDP-I 1 M A C R O assembler language [DEC, 19761, identifiers may consist of up to six characters from among the
letters, numerals, “.” and “$’. Identifiers created by the F O R T R A N compiler include either a period or dollar sign to
assure that they a re distinct from F O R T R A N language identifiers.

In the PDP-I 1 M A C R O assembler language, a colon follows a label and separates the label from assembler instructions.

TURNING COUSINS INTO SISTERS 367

combination needed to sequence through the
table of addresses. It is a single one-word in-
struction.

The instruction corresponds to the basic loop
of an interpreter. Consequently, there is no cen-
tralized interpreter: the interpreter is distributed
throughout every one of the service routines.

Arguments to a service routine can also be
placed in-line following the routine address.
The routine picks up the arguments using the
pointer register, each time advancing the
pointer for the next use. For this, both the auto-
increment and deferred auto-increment ad-
dressing modes are ideal.

For example, the following service routine
copies onto the stack the value of an integer
variable whose address follows the call:

$PUSHV: MOV @(R4)+, -(SP)
JMP @(R4)+

Similarly, the following routine pops a value
from the stack and stores it in the variable
whose address follows the call:

$POPV: MOV (SP)+,@(R4)+
JMP @(R4)+

Using the two primitives $PUSHV and
$POPV, the FORTRAN assignment statement:

I = J

can be implemented by “compiling” code as
follows:*

$PUSHV
J
$POPV
I

; Address of $PUSHV routine
: Address of storage for J
; Address of $POPV routine
: Address of storage for I

The principal disadvantage of a normal inter-
preter is avoided by representing the address of
a service routine in symbolic fashion as the
name of a module to be obtained from a library
of routines. Only those routines that are ac-
tually referred to are included in the program
when it is linked for execution.

We complete this introduction by briefly il-
lustrating how flow of control and changing
modes is accomplished.

A simple transfer of control, e.g., the FOR-
TRAN statement:

GOTO 100

can be compiled to:

$GOTO,. 100

using the service routine:

$GOTO: MOV (R4),R4
JMP @(R4)+

The implementation of the FORTRAN-
computed GOTO statement is illustrated in
Figure 1. Notice that the count of the number
of labels is included in the arguments to the ser-
vice routine. The service routine checks that the
index value is in the correct range: if it is not, an
error is reported and control continues in-line
(no transfer takes place). In this example, regis-
ter 1 (Rl) is used as a temporary location within
the service routine.

To enter threaded code mode when executing
normal code, the following call is executed:

JSR R4,$POLSH

*In subsequent examples, the arguments of a service routine will be written on the same line as the routine address. Thus, the
above would appear as:

$PU SHV,J
$POPV, I

This is more compact and suggestive of conventional assembler notations; the effect is identical to the previous example,

368 THE PDP-11 FAMILY

FORTRAN SOURCE

GOTO I1 00 200 3001 I
1 0 0
200
300

THREADED CODE

SCGOTO I 3 100 200 300
loo
200
300

COMPUTED GOTO SERVICE ROUTINE

SCGOTO M O V
BLE
C M P
BGT
ASL
A 0 0
M O V
J M P

@ l R 4 l f . R 1 , Fetch v a l u ~ of index
1 s ; Error i f less or equa l zero
R l . l R 4 1 , C o m p a r e w i t h label count
l $; Error if greater
R1 ; * 2 lor w o r d of fset
R 1 .R4 ; Pointer t o target lebsl
IR4l .R4 . Fetch target label
@ l R 4 l + ; C o n t i n u e . .

1 s ERROR " C o m p u t e d GOTO va lue out of bounds"
M O V IR4 l+ .R1 ; Fetch label count, adjust R 4
ASL R1 ; * 2 for word ol f *e1
ADD R l . R 4 . Pointer t o next i n l ine
J M P @IR41+ , C o n t i n u e . . .

Figure 1 Threaded code for FORTRAN-computed
GOTO statement.

Threaded mode begins immediately follow-
ing this call. The service routine is:

$POLSH: MOV (SP)+,R4
J M P @(R4)+

Leaving threaded mode requires no service
routine at all; the operator is simply the address
of the immediately following word of memory.

A Virtual Machine

By now it should be apparent that we have
the beginning of a FORTRAN virtual machine.
Instructions in this machine language are en-
coded as the addresses of the service routines.
The PDP-11 instruction set provides the
pseudo-microinstruction set used to emulate the
FORTRAN machine. Register 4 (R4) is the vir-
tual program counter.

For a complete characterization of a virtual
machine, it is necessary to identify the complete
state of the machine, that is, all of the values
that must be preserved in order to interrupt the

execution of the machine, apply the machine to
another purpose, and later resume the original
execution as though the interruption had not
occurred. In this sense, the state clearly includes
the stack pointer (SP) register and the program
counter (R4) register as well as the memory re-
gions occupied by the program, variables, and
values on the stack. In the actual implementa-
tion, some virtual machine instructions also left
values in general register 0 (RO) or in the pro-
cessor condition codes for use by the sub-
sequent virtual machine instruction. Thus, these
values must also be considered part of the vir-
tual machine state. However, the remaining
general registers of the PDP-11 are not part of
the state even though they are used freely by
individual instructions to hold temporary val-
ues during the execution of a single virtual in-
struction, as illustrated in Figure 1.

This FORTRAN machine went through two
phases of development. In the first phase, the
virtual machine specification did not change;
rather, the implementation was broadened to
take advantage of newer models of the PDP-I 1
family. Increased performance was achieved
through improved performance of the new
CPU and the floating-point hardware options.
In the second phase, the virtual machine specifi-
cation itself was extended to achieve greater
performance across all of the PDP-11 family
processors.

FORTRAN MACHINE - PHASE 1

The introduction described the basic tech-
nique, threaded code, by which it was possible
to produce a FORTRAN processor for the first
PDP-11 processor, the PDP-I 1/20. This section
focuses on the design of the FORTRAN virtual
machine proper and how it was implemented
across the range of PDP-1 1 CPUs.

The major part of the FORTRAN virtual
machine was relatively ad hoc in form, more or
less closely following the form of the FOR-
TRAN language. The previous example of the

TURNING COUSINS INTO SISTERS 369

computed G O T 0 statement is representative of
the approaches taken. This correspondence be-
tween the language and the virtual machine
greatly simplified the compiler. Variations in
the order of arguments and/or the introductioa
of extra arguments (such as the label list count)
were made to aid the speed and/or the error
checking capability of the supporting service
routines.

One part of the machine had a more regular
structure - assignment statements and expres-
sion evaluation. We will focus our attention on
this part of the machine because this is where
the majority of FORTRAN execution time is
spent.

Many details of the machine are easily
sketched. It was a stack-oriented machine - val-
ues were pushed onto the stack, and operators
took their operands from the stack and replaced
them with the result. The hardware stack
pointer (SP) was used to control the value stack.
Consideration was given to using the PDP-11
general registers as fast top-of-stack locations.
However, this was rejected because it violated
the inherent simplicity of the pure stack model
and because analysis showed that the extra
overhead of managing these locations sub-
stantially eliminated any benefits.

Naming conventions were adopted for the
operators as a mnemonic convenience. The
arithmetic operators were named as illustrated
in Figure 2. For example, $ADR designated the
routine to add two single-precision (real) oper-
ands, while $ADC designated the routine to
add two complex operands, and so on.

Throughout this design process the size of the
generated code continued to be the most impor-
tant factor. This led to the most unusual aspect
of the machine design.

To push a value onto the stack required two
words: one for the push instruction and one for

F O R M $501

WHERE o = AD For addit ion
= 58 For subtract ion
= M L For mUltipliCatiOn
= DV For division
= PW For exponent ia t ion (raising to a p o w e r)

t = B For byte d a t a
= L Far logical data
= I For integer data
= R For real data
= D For double-precis ion d a t a
= c For complex data

NOTE
"SPW" has a 2 - le t te r suffix T h e first indicates t h e base d a t a - t y p e .

t h e second t h e exponent d a t a - t y p e

Figure 2. FORTRAN Phase 1 arithmetic instructions.

the address of the variable. To reduce this to a
single word, the compiler produced a service
routine for each variable that would push the
value of the variable onto the stack. Such a rou-
tine was called a push routine. In this way, the
compiler reduced the size of the compiled code
by producing specialized service routines that
complemented the general service routines ob-
tained from the FORTRAN library.

For example, the push routine for an integer
variable, I , would be:

$P.I: MOV I,-(SP)
JMP @(R4)+

The push routine for a complex variable, C ,
would be:*

$P.C: MOV #C+8,RO
MOV -(RO),-(SP)
MOV -(RO),-(SP)
MOV -(RO),-(SP)
MOV -(RO),-(SP)
JMP @(R$)+

Of course, each push routine itself took
space: three words for an integer variable and
five words for a real variable. Consequently, the

*Note that since the stack of the PDP-11 grows downward in memory, values must be copied from high address toward low
address to obtain a correct copy on the stack.

370 THE PDP-11 FAMILY

breakeven point was three uses for an integer
variable and five uses for a real variable.

Three uses of an integer variable were
deemed likely to be achieved in most programs,
especially in larger and more complex programs
where space would be most critical. The five
uses for a real variable were reduced by some
complex merging of code for multiple push rou-
tines for real, complex, and double-precision
variables. The compiler also maintained a bit in
the symbol table entry for each variable in-
dicating that a push routine was actually
needed. (It is fairly common for a particular
subroutine to reference only a few variables out
of a large COMMON block.)

Pop routines for each variable were also con-
sidered, but rejected. There are typically more
uses of a variable’s value than assignments of
new values. Consequently, the breakeven point
is less likely to be consistently achieved. In-
stead, general pop routines for each data-type
(actually, each size of data value - 1, 2,4, or 8
bytes) were used.

Figure 3 presents a complete example of the
compiled code produced by the compiler for
two sample assignment statements. The figure
includes push routines automatically generated
by the compiler, as well as the allocation of
storage for the variables of the program. All
service routines not shown are obtained from
the FORTRAN library when the program is
linked for execution.

It should be apparent from this figure that
the compiled code corresponds to the well-
known Polish postfix notation, which is a re-
arrangement of expression information suitable
for stack evaluation disciplines.

The Virtual Machine Across the PDP-11
Family

Even as the FORTRAN system was in its
early development phase, new models of the
PDP-I 1 family were under development by the

hardware groups. The next in line was the PDP-
11/45 with a floating-point hardware option.
How could the software development group
that had just produced a FORTRAN tailored
for an 8 K PDP-11/20 without even integer
rnultiply/divide instructions respond with an-
other FORTRAN for the high-performance

FORTRAN SOURCE

K = K t l
X2= IA- IB . .2 -4 .A .C I I / IZ .AI

END

THREADEOCOOE

$START J S R R~.SPOLSH
I P K
SP 1
SA01
I P O P l K

SP A
SP B
SP 2
SPWRl
SP 4
S P A
SMLR
SP c
SMLR
SSBR
SSBR
SP 2
SP A
SMLR
SOVR
SPOP2 >

, P U S H ROUTINES

SP K

SP 1

S P A

SP B

SP 2

SP 4

SP c

SP 2
SF

MOV
J M P
M O V
J M P
M O V
BR
M O V
BR
M O V
J M P
M O V
BR
M O V
BR
M O V
M O V
M O V
J M P

(2

K.-lSPI
@lR41+
#l.-lSPl
@lR41t
X A + ~ . R O
I F
#B+4.RO
SF
#2.-ISPl
@lR41+
#sn 4 .RO
I F
#C+4,RO
SF
HSR 2+4 ,RO

-lROl.-ISPl
@lR41+

-inoi.-isw

STORAGE ALLOCATION

K BLKW 1
A BLKW 2
B BLKW 2
SR 4 FLT2 4
C BLKW 2
SR 2 FLT2 2

END SSTART

, Push K
, Push 1
, Add integer giving K + 1
, Pop to K

, Push A
, Push B
: Push 2
: B. .2
, Push 4
; Push A
; 4 .A
, Push C
, 4 .A.C
.B . .2 -4 .A .C
, IA-IB.-2-4 .A.CII
; Push 2
: Push A
, 2 .A
, I 1/12 - A I
: Pop IO x2

, Shared code for pushing
; the values of A. B. C and
: the conslants 2. and 4.

Figure 3. Example of code generation

TURNING COUSINS INTO SISTERS 371

PDP- 1 1 /45 with optional hardware floating
point? Fortunately, the virtual FORTRAN ma-
chine approach made it relatively easy. All that
was needed was to re-implement the virtual ma-
chine using the new and more extensive "micro-
code." The compiler did not even have to be
changed at all! How this was accomplished is
discussed below.

The PDP-I 1/20, with its EAE option, re-
quired two implementations of the virtual ma-
chine. The PDP-I 1/45 added two more: one for
the floating-point option and another because it
added instructions for integer multiply/divide
and multiple bit shifting as part of the standard
instruction set.*

Later the PDP-I 1/40 added a fifth variation
for its Floating Instruction Set (FIS) option.?

By the time we were done, there were five ver-
sions of the FORTRAN machine which corre-
sponded to the family processors as follows:

1 . Basic

2. EAE

3. EIS

4. FIS

PDP-11/20, PDP-I1/40

PDP-11/20 with EAE, PDP-
11/40 with EAE

Integer multiply/divide

PDP-11/40 with EIS, PDP-
11/45

Integer multiply/divide

PDP-11/40 with EIS and FIS

Integer multiply/divide and
single-precision floating point

5. FP l l PDP-11/45 with FPll

Integer multiply/divide and
single/double precision floating
point

Later processors (PDP- I 1 /70, 1 1 /60, 1 1 /34,
1 1 /05, 1 1 /04, and LSI-I 1) have all matched one
of these five categories.

Figure 4 illustrates the general logical struc-
ture of a typical floating-point service routine.
As presented in this logically extreme form, it
consisted of five completely independent imple-
mentations. They were combined in a single
source file to help manage and minimize the
proliferation of files. (This also significantly

IADR IF NDF EAE'EIS!FIS!FPP
<<no option baric implsmsntafmn> >
ENDC

IF DF EAE
<<EAE version>>
ENDC

IF DF ElS
<<EIS version>>
ENDC

IF DF FIS
<<FIS version>>
ENDC

IF DF FPP
<<FPP version>>
ENDC

END

NOTE:
In the P D P - 1 1 MACRO assembler language. ."IF" in.
traduces a sequence of statements ~ i n s t r ~ ~ f i ~ n s l that
are included in a given assembly only if a specified
condition 15 slltiilied. The statament. " E N D C " fermi-
nates the sequence. Also. conditmnal sequences can
be tasted within Other conditional sequences, as illus-
trated en other figures. I n this tigum. the condition.
" D F EAE" is satisfied if the name EAE has a defined
value "DF EIS" is satisfied if E IS 9s defined. and Y)

on The condition. " N D F EAE!E IS! ..." IS satisfied if
none of the given mamar has a defined value.

~ ~

Figure 4
conditionallzed FORTRAN operator routine

General logical s t ructure of

*These Extended Instruction Set (EIS) operations were similar in function to the capability of the EAE, but were an integral
part of the instruction set instead of an 1 / 0 bus add-on. This was more efficient since the initialization necessary to begin
execution of these functions was less.

t o n the PDP-I I /40, the EIS instructions were an option also

372 THE PDP-11 FAMILY

I S A D R I F N D F F I S ' F P P
<<haw mplernentation>>

IF DF EAE
<<EAE variation>,
ENDC

IF DF EIS
<<EIS variation>>
ENDC

IF NDF EIS1EAE

ENDC
<<no DPtlD" YBr,at,o">,

<<baric mplernentman>>
ENDC NDF FISIFPP

IF DF FIS
F A D 0 SP
JMP(a IR4 l f
ENDC DF FIS

IF DF FPP
SETF
LDF ISPI+ FO
ADDF ISPI+ FO
STF FO lSPl
J M P @lR41+
ENDC DFFPP

END

aided maintenance.) This one file would be as-
sembled five times, each time with a different
conditional assembly parameter, to produce the
five different object files that implemented the
same operation on the different systems.

In practice, the separation of implementa-
tions was not as complete as shown. Some in-
structions, such as the computed GOTO,
remained independent of the hardware con-
figuration. Generally, the EIS and EAE ver-
sions were localized variations of the basic (no
option) implementation, while the F P l l and
FIS versions tended to be totally distinct.

A more representative illustration of the kind
of conditionalization used is shown in Figure 5.
Notice that the conditional use of EIS or EAE
operations is nested within an outer condi-
tionalization for neither FIS nor FPl1. The FIS
and FPI 1 versions are distinct.

The FORTRAN Machine and the
PDP-11/40 EIS

Because of the incompatibility in operand ad-
dressing capability between the FPI 1 and FIS,
the FIS option of the PDP-11/40 seems at best
an architectural curiosity and at worst an un-
fathomable aberration. In a broader per-
spective, however, it was an excellent
compromise between goals and constraints for
the combined hardware and software system at
the time it was introduced.

The marketing requirement was simple.
There must be at least a single-precision float-
ing-point option for the PDP- 11/40 to maintain
competitive FORTRAN performance and it
must sell for no more than a given (relatively
low) price. The cost constraint, combined with
other engineering factors, precluded the imple-
mentation of even a simple subset of the FPI 1
instruction set.

Consultation between the hardware and soft-
ware engineers led to the resulting Floating In-
struction Set. The FIS provided four single-
precision floating-point instructions (add, sub-

Figure 5 Partial detail of implementation of $ADR.

tract, multiply, and divide) which corresponded
exactly with the FORTRAN virtual machine
requirements. As seen in Figure 5, the FIS ver-
sion of the FORTRAN $ADR service routine
consists of just two single-word instructions
(compared to the F P l l variant that occupies
five words).

The FIS option for the PDP-l1/40 accom-
plished everything that it was supposed to ac-
complish.

FORTRAN MACHINE - PHASE 2
While the FORTRAN product successfully

"supported" the full range of the PDP-11 fam-
ily, the design tradeoffs made for the original
and low end of the family were not valid at the
high end. Benchmark competition of FOR-
TRAN on the PDP-I 1/45 with FPl I became
significant even though the underlying hard-
ware was the fastest available by clear margins.
The reason is easy to understand. The FOR-
TRAN virtual machine and its implementation
did not fully exploit the hardware capability.

TURNING COUSINS INTO SISTERS 373

To illustrate, consider the execution of the
statement, I = I + I , as shown in Figure 3. This
statement compiled to five words of threaded
code (not counting the overhead of service or
push routines), and required 18 memory cycles
to execute. I n conrast, the single PDP-I I in-
struction, INC I, would obtain the same effect
with only two words of code and three memory
cycles to execute. Similar overheads existed for
floating-point operations. As shown in Figure
5, the basic arithmetic operators had to copy
their operands from the stack into the FPI 1 reg-
isters to do the operation, and then immediately
return the result to the stack.

On the PDP-I 1/20, integer execution times of
20 microseconds instead of 4 microseconds did
not matter much when floating-point times
where typically 300 to 1000 microseconds.
However, with F P l l times under I O micro-
seconds for these operations, the tradeoffs are
much different.

Since the existing compiler was based totally
on the threaded code implementation, a com-
plete new compiler that generated direct PDP-
1 I code would be needed to fully exploit the
hardware potential. I n the meantime, some-
thing was needed to immediately improve per-
formance and relieve the competitive pressure.

That something was provided, not by dis-
carding threaded code, but by extending the
FORTRAN virtual machine architecture. The
extension devised was based on a combination
of systematic and ad hoc pragmatic consid-
erations.

The primary considerations were to:

Focus attention on operations for in-
teger, real, and double-precision data-
types. Logical and complex data-types
do not occur frequently enough to merit
much concern [Knuth, 19711.

pression handling and assignment state-
ments were well modularized in the
implementation.

Addressing Modes

The principal concept that formed the basis
of the extended machine was the recognition
that operands could be in any of a number of
locations and that arithmetic operators should
be able to take operands from any of them and
deliver the result to any of them, instead of just
the stack. The principal locations identified
were:

The stack.
In memory at an address given as a pa-
rameter.
In memory at an address given in RO as a
result of an array subscripting operation.

Other “locations” were formalized for particu-
lar groups of operators as will be seen later.

Conceptually, these locations became ad-
dressing modes associated with each operator.
However, any kind of decoding of addressing
modes during execution would destroy the per-
formance objective. Consequently, each com-
bination of operator and addressing modes was
implemented by a unique threaded service rou-
tine.

At this point, a new consideration came into
play. Not only would each routine take some
memory, but the number of global symbols that
must be handled by the linking loader would
rise dramatically. (The system linking loader
maintained its global symbol table in free main
memory; hence, the number of symbols that
could be handled was limited by main memory
size. Fortunately, the minimum system main
memory requirement had independently in-
creased from 8 Kwords to 12 Kwords; other-

2 . Limit the impact on the compiler to as wise, the approach would not have been
small a portion as possible to limit the acceptable.) The above three modes for each of
programming effort. Fortunately, ex- three operand locations for each of the four

374 THE PDP-11 FAMILY

BlJl SCCX4.J.0-4

0111 SPCX4.4.0-4

0151 s c c x o . s + 2 o

A151 SKAXO.2O.SA A

0 lMlZ l l SCCXO.M+2
SRCX4.0-4

basic operations for each of the three important
data-types required 3 * 3 * 3 * 4 * 3 or 324 new
service routines. Care would be needed to keep
this explosive cross-product in bounds.

The memory size increase was offset by the
fact that in many cases the push routines of a
variable were no longer needed. This can be ap-
preciated better by looking at some examples.

The Extended Machine

Figures 6 through 11 detail most of the ex-
tended machine and give numerous sample
code sequences.

There were three principal groups of ex-
tended operations dealing with one-dimen-
sional array subscript calculation, arithmetic
operations, and general data movement. Once
again, naming conventions were used for mne-
monic aids. Generally, the first two or three let-
ters (after the "$") designated an addressing
mode, the next letter designated the kind of op-
eration and the final letter designated the data-
type. For example, the $ADR routine used in
previous figures acquired the name $SSSAR in
this new scheme.

As an example, consider the FORTRAN
statement:

I = J + K + L

This would be compiled to:

$CCSAI,J,K ; Add J,K and

$SCCAI,L,I ; Add stack,L and
; put result on stack

; put result in I

The PDP-I 1 code for these service routines is:

$CCSAI: MOV @(R4)+,-(SP)
ADD @(R4)+,@SP
JMP @(R4)+

$SCCAI: ADD @(R4)+,@SP
MOV (SP)+,@(R4)+
JMP @(R4)+

FORM SsbXz. sarg. barg

WHERE s = C I f rubscropt is i n mem-
ory Icorel and directly
addressable 1i.e. not a
parsmeter or array ele-
m s n t l

= R If subscript i s pomted a t
by R O at executmn t m e

= s If subscript on erecu-
t m n stack

= P If wbscr Ip t IS a parame-
fer

= G I f subscript IS contents
of R O 11.e.. results of
func t ion call)

b = C If array 8s n o t a parame-
ter

If array is a parameter = A

I = 1.2.4.8 The array elemant size
in bytes

rarg = Argument address 11 5 = C
=
= N o t present o therw ise

Argument list offset it 5 = P

barg = Array address minus element stze
~ f h = C .~

= Address of array descriptor block
I A D B I 01 b = A

SPECIAL CASES

SCCXO. address

1s generated w h e n the subscript i o a con-
stant and the array IS not a FORTRAN
d u m m y argument. The l inal address is
computed a t compi le t fme and IS the argu-
ment .

SKAXO. sca led~constan t . adb-address

IS generated w h e n the subscript 85 a con-
stant and the array IS a FORTRAN d u m m y
argument. the Constant subscript IS con-
verted t o a byte offset a t compi le t ime

Figure 6. One-dimensional array
subscripting instructions.

Figure 7. Example of subscripting
operations.

FORM S l r d o t . larg. rarg. darg

Where 1 = C

r = c

= R

= s

= K

d = C

= R

= s

o = A

= s

= M

= o

t = 1

= R

= D

larg. rag. darg

If argument is in memory Icorel
and direct ly addressable 18 e.. not
a parameter or array element)

If argument is pointad 10 by RO 81

B X B C U ~ ~ O ~ t i m e It.. .. as the result
of a rubscr ip t ing operation1

If argument IS contained on the
execution stack ISPI

If 0 Ider t inat ian l IS C and IS the
same argument

I A s above)

(A s above1

(A s above)

If argument IS m core. directly ad-
dressable. and an integer constant
(I e., OpeElal ca*e of CI

If m g Y m m t is integar cOnrts"1 1
1, e , special case of K I

I A r above1

[A s above)

I f result 1s to be placed on execu-
t ion stack

For add i t ion

For subtraction

For mul t ip l icat ion

For division

For integer data

For real data

For double-orecision data

= Argument address i f addressing mode = C

=

= Not present otherwise

Constant value 11 addressing mode = K

Figure 8 Arithmetic instructions.

ASSUME

DIMENSION Ll lOl

FORTRAN SOURCE

A = B + C

A = B + C.D

l = J + 5

1 = 1 - 5

J = J + 1

LIJ + 11 = J + 2

I = Lll l + 2

COMPILED CODE

3CCCAR.B.C.A

SCCSMR.C.0
3CSCAR.B.A

SCKCAI.J.5.I

SDKCSI.5.1

SD1CAI.J

SC1SAI.J
SSCX2.L-2
SCKRAI.J.2

SCCX2.I.L-2
SRKCAI.2.I

Figure 9. Example of arithmetic
operations.

TURNING COUSINS INTO SISTERS 375

Move i n s t r u c t i o n s are t w o address i n s t r u c t i o n s D a t a o f
any t y p e m a y b e m o v e d

FORM SsdVt, Sarg. d a r g

Where I = C

= s

= G

= K

= 1

d = C

= R

t = B

= L

= I

= R

= D

= c

If a r g u m e n t i s in m e m o r y Icarel
a n d d i r e c t l y add ressab le

I f a r g u m e n t add ress m RO a t exe-
cution t i m e

I f a r g u m e n t on s t a c k

I f a r g u m e n t c o n t a i n e d in RO-R3
las result o f f u n c t i o n ca l l)

I f a r g u m e n t i s in teger c o n s t a n t

If a r g u m e n t i s in teger c o n s t a n t 1

(As a b o v e)

(As a b o v e)

For b y t e d a t a

For l o g i c a l da ta

For i n t e g e r da ta

For r e a l d a t a

For d o u b l e - p r e c i s i o n d a t a

For c o m p l e x da ta

sarg. d a r g = A r g u m e n t add ress 11 address m o d e = C

= C o n s t a n t value 11 address m o d e = K

= Not present o t h e r w i s e

Figure 10 Move instructions.

ASSUME

D I M E N S I O N ARRAY 1101

FORTRAN SOURCE COMPILED CODE I A = B SCCVR.S.A

S1CVI.I

SCCX4.J.ARRAY-4
IRCVR.B

ARRAY111 = A R R A Y I I + l) SClSAI.1
SSCX4,ARRAY-4
I G E T 3
SCCXO.ARRAV+O
I S R V R

Figure 1 1 .
Instructions.

Example of move

376 THE PDP-11 FAMILY

Notice that no push routines are needed for any
of the variables.

All subscripting operations resulted in the ad-
dress of the array element being left in RO at
execution time. Only one-dimensional arrays
were handled. Two- and three-dimensional ar-
rays continued to be handled as in the more
general Phase 1 implementation.

These forms can occur on both left- and
right-handed sides of assignment statements.

The arithmetic instructions are three address
instructions, taking two arguments and putting
the result in a designated place. These instruc-
tions are limited to +, -, *, / on integer, real,
and double-precision data.

Ad Hoc Special Cases

Within this general framework, a number of
additional ad hoc addressing modes were in-
corporated.

For each of the arithmetic operators and each
of the three data-types, the first operand ad-
dressing mode could be given as D to designate
that it was the same as the destination core ad-
dress and the destination parameter was elimi-
nated. This was not done for the second oper-
and based on the simple observation that pro-
grammers will almost always write assignments
as:

A = A + . . .

instead of:

A = . . . + A

This added 12 more service routines.
For the integer operators only, the second

operand could be given as K to designate that it
was a constant given as the parameter instead of
the address of the value. This was not done for
the first operand for reasons similar to the case
above.

For integer add and subtract operators only,
the second operand could be given as 1 to desig-
nate that it is the constant value 1 and no pa-
rameter is present. This is simply a frequent
special case of the previous use of K.

By combining the above, the FORTRAN
statement:

K = K + I

is compiled to:

$D 1 CA1,K

where the service routine is simply:

$DICAI: INC @(R4)+
JMP @(R4)+

This code occupies two words and requires
five memory cycles to execute. This is not quite
as good as the two words and three cycles
needed for direct PDP-11 code, but far better
than the five words and 18 cycles required by
the earlier implementation.

General Results

Execution improvement varied, of course,
with the particular programs used. Over a large
set of programs, the following guidelines were
obtained.

Programs that were floating-point in-
tensive increased in speed by factors of 1.1
to 1.6, with 1.3 being representative.
Programs that were integer intensive in-
creased in speed by factors of 1.4 to 2.4,
with 2.0 being representative. (One partic-
ularly simple benchmark increased in
speed by a factor of 4!)

Moreover, because of the reduced need for push
routines, most programs increased in size by
less than I O percent.

TURNING COUSINS INTO SISTERS 377

The improvement for integer operations was
better than for floating-point operations for
several reasons. Integer operations were more
easily “optimized” because they took place in
the basic CPU general registers. The FPI 1 has a
separate set of floating-point registers, and
floating-point computations must be performed
only in those registers. Also, the FPI 1 operates
in either single-precision or double-precision
mode depending on a status bit; the compiler
implementation was not suitable for tracking
the state of this bit and, hence, each floating-
point operation continued to bear the overhead
of reestablishing the state as needed by that op-
eration. (This is the purpose of the SETF in-
struction shown in Figure 5.)

The performance improvements of the Phase
2 system with its extended virtual machine were
obtained with a design, development, and test-
ing effort of about three man-months. For that
effort, PDP-I 1 FORTRAN regained a strong
competitive position that held reasonably well
until FORTRAN IV-PLUS, an optimizing
PDP-I 1 code-generating system, replaced it 18
months later (in early 1975).

REAL MICROCODE AND THE FORTRAN
MACH IN E

Clearly, the FORTRAN virtual machine de-
scribed above could be implemented in “real”
microcode instead of the PDP-I 1 instruction
set. This was considered during the design plan-
ning for the PDP-I 1/60 which features a writ-

able control store microprogramming option
[DEC, 1977al. But, while the analysis showed
that a significant improvement could be ob-
tained, the result, at best, would be comparable
to t h e performance already achieved by the
FORTRAN IV-PLUS product. Consequently,
it was not done.

The analysis proceeded along the following
lines. Execution time was considered in three
categories: instruction fetch and decode, oper-
and fetch and/or store, and execution time
proper. Since the analysis is a comparison of
different FORTRAN implementations for a
given machine, the basic execution times are as-
sumed to be the same and neglected. The result-
ing comparison, thus, shows the number of
words of memory and the number of memory
cycles for each implementation.

For this presentation we shall consider the
following two FORTRAN statements as rea-
sonably representative of FORTRAN as a
whole.

I = J * K + L
A(1) = B(J) + 4

For these statements, the size and memory
cycles are easily determined by examination of
the code generated by FORTRAN and FOR-
TRAN IV-PLUS, respectively. These values are
shown in Table 1 .

For the hypothesized micro-thread imple-
mentation, the code size is unchanged from
FORTRAN, while the memory cycle count is

Table 1.
Different Implementation Techniques

Comparison of Size and T ime Requirements of Sample Statements w i th

I = J * K + L A(I) = B(J) + 4

Technique
~~

Size Time Size Time

PDP-1 1 threads 6 words 2 0 cycles 9 words 38 cycles
FORTRAN IV-PLUS 8 words 12 cycles 14 words 2 0 cycles
M icro-threads 6 words 12 cycles 9 words 22 cycles
Model 7 words 11 cycles 9 words 17 cycles

378 THE PDP-11 FAMILY

reduced by eliminating the instruction fetches
that occur in the service routines. These results
are also shown in the table. Comparison of the
results shows that the micro-thread implemen-
tation is faster (as expected), but also that its
speed is no better than that of FORTRAN IV-
PLUS. Could this be coincidence or is there rea-
son to believe these results should be obtained?

To answer this, we formulated a simple in-
tuitive model for the expected size and speed of
code on an idealized FORTRAN machine. To
estimate the code size:

Count one unit for each variable that is
referenced (e.g., A(I) counts as two).
Count one unit for each operation per-
formed (e.g., assignment or subscripting
are unit operations).

To estimate the memory cycles for execution:

Count one unit for each variable that is
referenced.
Count one unit for each operation per-
formed.
Count one, two, or four units for each
value fetch or store operation depending
on the size of the data.

This very simple model is appropriate only
for compilers that produce code based only on
isolated source information, which is true of the
original FORTRAN. Optimizing compilers,
such as FORTRAN IV-PLUS, do better than
suggested by this model by eliminating or sim-
plifying operations (for example, by constant
expression elimination or moving invariant
computations out of loops, and/or by keeping
values in registers instead of main memory, es-
pecially across loops). Consequently, the model
serves primarily as a relatively implementation-
independent frame of reference for comparing
alternative implementations.

The sizes and cycle counts from this model
for the sample statements are also shown in
Table I . These values are quite similar to values
for both the micro-thread and FORTRAN IV-
PLUS implementations.

We interpreted these results as a clear demon-
stration that a micro-threaded implementation
could not significantly outperform the existing
FORTRAN IV-PLUS implementation. Fur-
ther, effort expended for greater performance
would be better directed toward improved opti-
mization in FORTRAN IV-PLUS (which
would benefit existing hardware products) or
toward faster hardware per se. *

There is also a broader interpretation of the
results that is worth reflection. The threaded
implementation was designed to be a good
FORTRAN architecture. Yet, when imple-
mented in microcode in a manner comparable
with the host PDP-11 architecture, the perform-
ance is close to that achieved by the FOR-
TRAN IV-PLUS compiler and also close to
that of an “ideal” model. One is led to speculate
that the PDP-I 1 with FPl 1 is also a good FOR-
TRAN architecture.

ACKNOWLEDGEMENTS
Many individuals contributed to the design,

implementation, and evolution of the PDP-I 1
FORTRAN product. The following were par-
ticularly involved in those aspects described in
this paper. Jim Bell, Dave Knight, and the au-
thor participated in the initial design evaluation
that led to the basic virtual machine. Dave was
project leader for the first versions of the prod-
uct. Rich Grove participated in the support of
the FPI 1 and FIS options. The extended virtual
machine design and implementation, and the
microcode feasibility analysis were done by the
author. Finally, Craig Mudge assisted in the
preparation of this paper with valuable dis-
cussion and criticism, and by not accepting
“no” for an answer.

* N o t e that Digital did both. FORTRAN IV-PLUS V2 and the FPI I-C were both released in early 1976 with each offering
significant performance improvements.

A computer is not solely determined by its
architecture; it reflects the technological, eco-
nomic, and organizational aspects of the envi-
ronment in which it was designed and built. In
the introductory chapters the nonarchitectural
design factors were discussed: the availability
and price of the basic electronic technology, the
various government and industry rules and
standards, the current and future market condi-
tions, and the manufacturing process.

In this chapter one can see the result of the
interaction of these various forces in the evolu-
tion of the PDP-11. Twelve distinct models

11/34C, 11/40, 11/45, 11/55,l1/60,11/70,and
VAX-I 1/780) exist in 1978.

The PDP-11 has been successful in the mar-
ketplace: over 50,000 were sold in the first eight
years that it was on the market (1970-1977). It
is not clear how rigorous a test (aside from the
marketplace) the design has been given, since a
large and aggressive marketing organization,
armed with software to correct architectural in-
consistencies and omissions, can save almost
any design.

(LSI-11, PDP-11/04, 11/05, 11/20, 11/34,

The Evolution of the PDP-11
C. GORDON BELL and J. CRAIG MUDGE

Many ideas from the PDP-11 have migrated
to other computers with newer designs. Al-
though some of the features of the PDP-I l are
patented, machines have been made with sim-
ilar bus and instruction set processor structures.
Many computer designers have adopted a uni-
fied data and address bus similar to the Unibus
as their fundamental architectural component.
Many microprocessor designs incorporate the
PDP-I1 Unibus notion of mapping 1 / 0 and
control registers into the memory address
space, eliminating the need for 1 / 0 instructions
without complicating the 1/0 control logic.

I t is the nature of computer engineering to be
goal-oriented, with pressure to produce deliv-
erable products. It is therefore difficult to plan
for an extensive lifetime. Nevertheless, the
PDP-II evolved rapidly over a much wider
range than expected. An outline of a family
plan was set forth in a memo on April 3, 1969,
by Roger Cady, head of the PDP-11 engineer-
ing group at the time (Table 1). The actual evo-
lution is shown in tree form in Figure 1 and is
mapped onto a cost/performance representa-
tion in Figure 2.

379

W
a,
0

Table 1. PDP-11 Family Projection as of April 3, 1969

Software Logic Arithmetic Speed Price
Model Processor Power Power ($K) Configuration Paper Tape Disk --I

I
rn

2-3

2.2

2.2

11/10 - 0.7

K A l l 1

K A l l 1

0.7 4

5.2

9.3

Technologically
cost reduced
11/20 w i th Mos

Pc, 1-Kbyte ROM,
128 byte R/W
turnkey console

Pc, 8-Kbyte core,
console, T T Y

W
0
P

11/20

11/30 Assembler, editor,
math ut i l i ty
FOCAL, BASIC,
ASA BASIC
FORTRAN)*

Possible 16-Kbyte
FORTRAN IV
improved
assembler

8-like monitor
(system builder
w/ODT, DDT, PIP)+

11/40 KB11 2. 10-20 1.2 13 Adds , 1 , normal-
ize, etc. possible
microprogrammed
proceswr, no EAE
saves $1,000

11/45 w i th memory
protect/relocate
maximum core 262
Kbyte, maximum
physical memory
(using disk)222
bytes

Adds hardware
f loating point
32-bit processor.
16-bit memory
(16 Kbyte)

With memory
protecthelocate

FORTRAN I V

11/45 K811 2' 10-20 1.2 15

disk
+

Super mon i to r * *
65-Kbyte virtual
memoryluser fo r
either small or
large disk

11/50 KC1 1 2' 50-1 00 1.2 25

11/55

11/65

KC1 1 2'

KD11 4

50- 1 00

100-200

1.2 27
+
disk

45
t
disk

1.2
32-bil

32-bit separate
memory bus, 32-bit
orocessor

NOTES
;If microprogrammed, then logical power could be tailored t o user and go t o 20-50, 40-100 for 11/65.

'Possible by-product of FOCAL.
' *Supermonitor for 11/45, 11/55. 11/65 i s pr ior i ty multi-user real-time system.

Business language system under consideration.

THE EVOLUTION OF THE PDP-11 381

1982

1980

1978

1916

1974

1972

1970

1968

IMBC BUS1

45

-t
I
0 u -m

SECOND
BUS

IFASTBUSI O Z 0 I

Figure 1 . The PDP-1 1 Family t r ee

70 12 15-

Figure 2. PDP-1 1 models price versus t ime with lines
of cons tan t performance.

EVALUATION AGAINST THE ORIGINAL
GOALS

In the original 1970 PDP-11 paper (Chapter
9), a set of design goals and constraints were
given, beginning with a discussion of the weak-
nesses frequently found in minicomputers. The
designers of the PDP-11 faced each of these
known minicomputer weaknesses, and their
goals included a solution to each one. This sec-
tion reviews the original goals, commenting on
the success or failure of the PDP-11 in meeting
each of them.

The weaknesses of prior designs that were
noted were limited addressability, a small num-
ber of registers, absence of hardware stack facil-
ities, limited interrupt structures, absence of
byte string handling and read-only memory fa-
cilities, elementary 1 / 0 processing, absence of
growth-path family members, and high pro-
gramming costs.

The first weakness of minicomputers was
their limited addressing capability. The biggest
(and most common) mistake that can be made
in a computer design is that of not providing
enough address bits for memory addressing and
management. The PDP-I 1 followed this hal-
lowed tradition of skimping on address bits, but
it was saved by the principle that a good design
can evolve through at least one major change.

For the PDP-11, the limited address problem
was solved for the short run, but not with
enough finesse to support a large family of
minicomputers. That was indeed a costly over-
sight, resulting in both redundant development
and lost sales. It is extremely embarassing that
the PDP-I 1 had to be redesigned with memory
management* only two years after writing the
paper that outlined the goal of providing in-
creased address space. All earlier DEC designs
suffered from the same problem, and only the

* T h e memory management served two other functions besides expanding the 16-bit processor-generated addresses into 18-
bit Unibus addresses: program relocation and protection.

382 THE PDP-11 FAMILY

PDP-IO evolved over a long period (15 years)
before a change occurred to increase its address
space. In retrospect, it is clear that another ad-
dress bit is required every two or three years,
since memory prices decline about 30 percent
yearly, and users tend to buy constant price suc-
cessor systems.

A second weakness of minicomputers was
their tendency to skimp on registers. This was
corrected for the PDP-11 by providing eight 16-
bit registers. Later, six 64-bit registers were
added as the accumulators for floating-point
arithmetic. This number seems to be adequate:
there are enough registers to allocate two or
three registers (beyond those already dedicated
to program counter and stack pointer) for pro-
gram global purposes and still have registers for
local statement computation.* More registers
would increase the context switch time and wor-
sen the register allocation problem for the user.

A third weakness of minicomputers was their
lack of hardware stack capability. In the PDP-
11, this was solved with the autoincre-
ment/autodecrement addressing mechanism.
This solution is unique to the PDP-11, has pro-
ved to be exceptionally useful, and has been
copied by other designers. The stack limit
check, however, has not been widely used by
DEC operating systems.

A fourth weakness, limited interrupt capabil-
ity and slow context switching, was essentially
solved by the Unibus interrupt vector design.
The basic mechanism is very fast, requiring only
four memory cycles from the time an interrupt
request is issued until the first instruction of the
interrupt routine begins execution. Implemen-
tations could go further and save the general
registers, for example, in memory or in special
registers. This was not specified in the archi-
tecture and has not been done in any of the im-
plementations t o date. VAX-11 provides

explicit load and save process context instruc-
tions.

A fifth weakness of earlier minicomputers,
inadequate character handling capability, was
met in the PDP-11 by providing direct byte ad-
dressing capability. String instructions were not
provided in the hardware, but the common
string operations (move, compare, concatenate)
could be programmed with very short loops.
Early benchmarks showed that this mechanism
was adequate. However, as COBOL compilers
have improved and as more understanding of
operating systems string handling has been ob-
tained, a need for a string instruction set was
felt, and in 1977 such a set was added.

A sixth weakness, the inability to use read-
only memories as primary memory, was
avoided in the PDP-I 1. Most code written for
the PDP-I 1 tends to be reentrant without spe-
cial effort by the programmer, allowing a read-
only memory (ROM) to be used directly. Read-
only memories are used extensively for boot-
strap loaders, program debuggers, and for
simple functions. Because large read-only mem-
ories were not available at the time of the origi-
nal design, t he re a r e n o a rch i t ec tu ra l
components designed specifically with large
ROMs in mind.

A seventh weakness, one common to many
minicomputers, was primitive 1 / 0 capabilities.
The PDP-II answers this to a certain extent
with its improved interrupt structure, but the
completely general solution of 1 / 0 computers
has not yet been implemented. The 1 / 0 proces-
sor concept is used extensively in display pro-
cessors, in communication processors, and in
signal processing. Having a single machine in-
struction that transmits a block of data at the
interrupt level would decrease the central pro-
cessor overhead per character by a factor of 3; it

*Since dedicated registers are used for each Commercial Instruction Set (CIS) instruction, this was no longer t rue when C I S
was added.

THE EVOLUTION OF THE PDP-11 383

should have been added to the PDP-I 1 instruc-
tion set for implementation on all machines.
Provision was made in the 11/60 for invocation
of a micro-level interrupt service routine in
writable control store (WCS), but the family ar-
chitecture is yet to be extended in this direction.

Another common minicomputer weakness
was the lack of system range. If a user had a
system running on a minicomputer and wanted
to expand it or produce a cheaper turnkey ver-
sion, he frequently had no recourse, since there
were often no larger and smaller models with
the same architecture. The PDP-11 has been
very successful in meeting this goal.

A ninth weakness of minicomputers was the
high cost of programming caused by program-
ming in lower level languages. Many users pro-
grammed in assembly language, without the
comfortable environment of high-level lan-
guages, editors, file systems, and debuggers
available on bigger systems. The PDP-II does
not seem to have overcome this weakness, al-
though it appears that more complex systems
are being successfully built with the PDP-1 I
than with its predecessors, the PDP-8 and the
PDP-15. Some systems programming is done
using higher level languages; however, the opti-
mizing compiler for BLISS-11 at first ran only
on the PDP-IO. The use of BLISS has been
slowly gaining acceptance. It was first used in
implementing the FORTRAN-IV PLUS (opti-
mizing) compiler. Its use in PDP-IO and VAX-
1 1 systems programming has been more wide-
spread.

One design constraint that turned out to be
expensive, but worth it in the long run, was the
necessity for the word length to be a multiple of
eight bits. Previous DEC designs were oriented
toward 6-bit characters, and DEC had a large
investment in 12-, 18-, and 36-bit systems, as de-
scribed in Parts I1 and V.

Microprogrammability was not an explicit
design goal, partially because fast, large, and in-
expensive read-only memories were not avail-
able at the time of the first implementation. All

subsequent machines have been micro-
programmed, but with some difficulty because
some parts of the instruction set processor, such
as condition code setting and instruction regis-
ter decoding, are not ideally matched to micro-
programmed control.

The design goal of understandability seems to
have received little attention. The PDP-I 1 was
initially a hard machine to understand and was
marketable only to those with extensive com-
puter experience. The first programmers’ hand-
book was not very helpful. It is still unclear
whether a user without programming expe-
rience can learn the machine solely from the
handbook. Fortunately, several computer sci-
ence textbooks [Gear, 1974; Eckhouse, 1975;
Stone and Siewiorek, 19751 and other training
books have been written based on the PDP-I 1 .

Structural flexibility (modularity) for hard-
ware configurations was an important goal.
This succeeded beyond expectations and is dis-
cussed extensively in the Unibus Cost and Per-
formance section.

EVOLUTION OF THE INSTRUCTION SET
PROCESSOR

Designing the instruction set processor level
of a machine - that collection of characteristics
such as the set of data operators, addressing
modes, trap and interrupt sequences, register
organization, and other features visible to a
programmer of the bare machine - is an ex-
tremely difficult problem. One has to consider
the performance (and price) ranges of the ma-
chine family as well as the intended appli-
cations, and difficult tradeoffs must be made.
For example, a wide performance range argues
for different encodings over the range; for small
systems a byte-oriented approach with small
addresses is optimal, whereas larger systems re-
quire more operation codes, more registers, and
larger addresses. Thus, for larger machines, in-
struction coding efficiency can be traded for
performance.

384 THE PDP-11 FAMILY

The PDP-11 was originally conceived as a
small machine, but over time its range was
gradually extended so that there is now a factor
of 500 in price ($500 to $250,000) and memory
size (8 Kbytes to 4 Mbytes*) between the small-
est and largest models. This range compares fa-
vorably with the range of the IBM System 360
family (16 Kbytes to 4 Mbytes). Needless to
say, a number of problems have arisen as the
basic design was extended.

Chronology of the Extensions

A chronology of the extensions is given in
Table 2. Two major extensions, the memory
management and the floating point, occurred
with the 11/45. The most recent extension is the
Commercial Instruction Set, which was defined
to enhance performance for the character string
and decimal arithmetic data-types of the com-
mercial languages (e.g., COBOL). It introduced
the following to the PDP-11 architecture:

1. Data-types representing character sets,
character strings, packed decimal
strings, and zoned decimal strings.

2. Strings of variable length up to 65 Kcha-
racters.

3. Instructions for processing character
strings in each data-type (move, add,
subtract, multiply, divide).

4. Instructions for converting among
binary integers, packed decimal strings,
and zoned decimal strings.
Instructions to move the descriptors for
the variable length strings.

5 .

The initial design did not have enough oper-
ation code space to accommodate instructions
for new data-types. Ideally, the complete set of
operation codes should have been specified at
initial design time so that extensions would fit.

With this approach, the uninterpreted oper-
ation codes could have been used to call the var-
ious operation functions, such as a floating-
point addition. This would have avoided the
proliferation of run-time support systems for
the various hardware/software floating-point
arithmetic methods (Extended Arithmetic Ele-
ment, Extended Instruction Set, Floating In-
struction Set, Floating-point Processor). The
extracode technique was used in the Atlas and
Scientific Data Systems (SDS) designs, but
these techniques are overlooked by most com-
puter designers. Because the complete instruc-
tion set processor (or at least an extension
framework) was unspecified in the initial de-
sign, completeness and orthogonality have been
sacrificed.

At the time the PDP-11/45 was designed, sev-
eral operation code extension schemes were ex-
amined: an escape mode to add the floating-
point operations, bringing the PDP-11 back to
being a more conventional general register ma-
chine by reducing the number of addressing
modes, and finally, typing the data by adding a
global mode that could be switched to select
floating point instead of byte operations for the
same operation codes. The floating-point in-
struction set, introduced with the 11/45, is a
version of the second alternative.

It also became necessary to do something
about the small address space of the processor.
The Unibus limits the physical memory to the
262,144 bytes addressable by 18-bits. In the
PDP- 1 1 /70, the physical address was extended
to 4 Mbytes by providing a Unibus map so that
devices in a 256 Kbyte Unibus space could
transfer into the 4-Mbyte space via mapping
registers. While the physical address limits are
acceptable for both the Unibus and larger sys-
tems, the address for a single program is still
confined to an instantaneous space of 16 bits,
the user virtual address. The main method of

*Although 22 bits are used, only 2 megabytes can be utilized in the 11/70

THE EVOLUTION OF THE PDP-11 385

Table 2. Chronology of P D P - 1 1 Instruction
Set Processor (ISP) Evolution

Model(s) Evolution

11/20

11/20

11/45
(1 1155.1 1/70.
1 1 /60,1 1/34)

11/45
(1 1155.1 1/70)

11/45
(1 1/55,11/70)

1 1 /40
(1 1/03)

1 1/40
(1 1/34,1 1/60)

11/70

11/70
(1 1 /60)

11/03
(1 1 /04.1 1 /34)

11/03

11/60

VAX- 1 1 /780

11/03

1 1 l70mP

Base ISP (16-bit virtual address) and
PMS (1 6-bit processor physical
memory address) Unibus with 18-bit
addressing

Extended Arithmetic Element (hard-
ware multiply/divide)

Floating-point instruction set with 6
additional registers (46 instructions)
in the Floating-point Processor

Memory management (KT1 1 C). 3
modes of protection (Kernel, Super-
visor, User): 18-bit processor phys-
ical addressing: 16-b i t vir tual
addressing in 8 segments for both
instruction and data spaces

Extensions for second set of general
registers and program interrupt
request

Extended Instruction Set for multi-
ply/divide: floating-point instruction
set (4 instructions)

Memory Management (KT1 1 D). 2
modes of protection (Kernel. User);
18-bit processor physical address-
ing: 16-bit virtual addressing in 8
segments

22-bit processor physical address-
ing: Unibus map for peripheral con-
troller 22-bit addressing

Error register accessibility for on-line
diagnosis and retry (e.g.. cache parity
error)

Program access to processor status
register via explicit instruction (ver-
sus Unibus address)

One level program interrupt

Extended Function Code for in-
vocation of user-written microcode

VAX architectural extensions for 32-
bit virtual addressing: VAX ISP

Commercial Instruction Set (CIS)

lnterprocessor Interrupt and System
Timers for multiprocessor

dealing with relatively small addresses is via
process-oriented operating systems that handle
many small tasks. This is a trend in operating
systems, especially for process control and
transaction processing. It does, however, en-
force a structuring discipline in (user) program
organization. The RSX-11 series of operating
systems for the PDP-11 are organized this way,
and the need for large addresses is lessened.

The initial memory management proposal to
extend the virtual memory was predicated on
dynamic, rather than static, assignment of
memory segment registers. In the current mem-
ory management scheme, the address registers
are usually considered to be static for a task (al-
though some operating systems provide func-
tions to get additional segments dynamically).

With dynamic assignment, a user can address
a number of segment names, via a table, and
directly load the appropriate segment registers.
The segment registers act to concatenate addi-
tional address bits in a base address fashion.
There have been other schemes proposed that
extend the addresses by extending the length of
the general registers - of course, extended ad-
dresses propagate throughout the design and in-
clude double length address variables. In effect,
the extended part is loaded with a base address.

With larger machines and process-oriented
operating systems, the context switching time
becomes an important performance factor. By
providing additional registers for more pro-
cesses, the time (overhead) to switch context
from one process (task) to another can be re-
duced. This option has not been used in the op-
erating system implementations of the PDP-I 1s
to date, although the 11/45 extensions included
a second set of general registers. Various alter-
natives have been suggested, and to accomplish
this effectively requires additional operators to
handle the many aspects of process scheduling.
This extension appears to be relatively unim-
portant since the range of computers coupled
with networks tends to alleviate the need by in-
creasing the real parallelism (as opposed to the

386 THE PDP-11 FAMILY

apparent parallelism) by having various inde-
pendent processors work on the separate pro-
cesses in parallel. The extensions of the PDP- 1 1
for better control of 1 / 0 devices is clearly more
important in terms of improved performance.

Architecture Management

In retrospect, many of the problems associ-
ated with PDP-11 evolution were due to the
lack of an ongoing architecture management
function. As can be seen from Table I , the no-
tion of planned evolution was very strong at the
beginning. However, a formal architecture con-
trol function was not set up until early in 1974.
In some sense this was already too late - the
four PDP-11 models designed by that date
(11/20, 11 /05 , 1 1 / 4 0 , 1 1 / 4 5) h a d i n -
compatibilities between them. The architecture
control function since then has ensured that no
further divergence (except in the LSI-I 1) took
place in subsequent models, and in fact resulted
in some convergence. At the time the Com-
mercial Instruction Set was added, an archi-
tecture extension framework was adopted.
Insufficient encodings existed to provide a large
number of additional instructions using the
same encoding style (in the same space) as the
basic PDP-1 I , Le., the operation code and oper-
and specifier addressing mode specifiers within
a single 16-bit word. An instruction extension
framework was adopted which utilized a full
word as the opcode, with operand addressing
mode specifiers in succeeding instruction
stream words along the lines of VAX-11. This
architectural extension permits 5 12 additional
opcodes, and instructions may have an unlim-
ited number of operand addressing mode speci-
fiers. The architecture control function also had
to deal with the Unibus address space problem.

With VAX- 1 I , architecture management has
been in place since the beginning. A definition

of the architecture was placed under formal
change control well before the VAX-I 1/780
was built, and both hardware and software en-
gineering groups worked with the same docu-
ment. Another significant difference is that an
extension framework was defined in the original
architecture.

An Evaluation

The criteria used to decide whether or not to
include a particular capability in an instruction
set are highly variable and border on the artis-
tic.* Critics ask that the machine appear ele-
gant, where elegance is a combined quality of
instruction formats relating to mnemonic sig-
nificance, operator/data-type completeness and
orthogonality, and addressing consistency.
Having completely general facilities (e.g., regis-
ters) which are not context dependent assists i n
minimizing the number of instruction types and
in increasing understandability (and useful-
ness). The authors feel that the PDP-11 has pro-
vided this.

At the time the Unibus was designed, it was
felt that allowing 4 Kbytes of the address space
for 1 / 0 control registers was more than enough.
However, so many different devices have been
interfaced to the bus over the years that it is no
longer possible to assign unique addresses to
every device. The architectural group has thus
been saddled with the chore of device address
bookkeeping. Many solutions have been pro-
posed, but none was soon enough; as a result,
they are all so costly that it is cheaper just to live
with the problem and the attendant inconven-
ience.

Techniques for generating code by the human
and compiler vary widely and thus affect in-
struction set processor design. The PDP-11 pro-
vides more addressing modes than nearly any
other computer. The eight modes for source

*Today one would use the S , M , and R measures and methodology defined in Appendix 3 .

THE EVOLUTION OF THE PDP-11 387

and destination with dyadic operators provide
what amounts to 64 possible ADD instructions.
By associating the Program Counter and Stack
Pointer registers with the modes, even more
data accessing methods are provided. For ex-
ample, 18 varieties of the MOVE instruction
can be distinguished as the machine is used in
two-address, general register, and stack ma-
chine program forms. (There is a price for this
generality - namely, fewer bits could have been
used to encode the address modes that are ac-
tually used most of the time.)

How the PDP-11 Is Used

In general, the PDP-11 has been used mostly
as a general register (i.e., memory to registers)
machine. This can be seen by observing the use
frequency from Strecker’s data (Chapter 14). In
one case, it was observed that a user who pre-
viously used a one-accumulator computer (e.g.,
PDP-8), continued to do so. A general register
machine provides the greatest performance, and
the cost (in terms of bits) is the same as when
used as a stack machine. Some compilers, par-
ticularly the early ones, are stack oriented since
the code production is easier. In principle, and
with much care, a fast stack machine could be
constructed. However, since most stack ma-
chines use primary memory for the stack, there
is a loss of performance even if the top of the
stack is cached. While a stack is the natural
(and necessary) structure to interpret the nested
block structure languages, it does not neces-
sarily follow that the interpretation of all state-
ments should occur in the context of the stack.
In particular, the predominance of register
transfer statements are of the simple 2- and 3-
address forms:

D t S

and

Dl(index 1) tf(S2(index 2), S3(index 3)).

These do not require the stack organization.
In effect, appropriate assignment allows a gen-
eral register machine to be used as a stack ma-
chine for most cases of expression evaluation.
This has the advantage of providing temporary,
random access to common subexpressions, a
capability that is usually hard to exploit in stack
architectures.

THE EVOLUTION OF THE PMS
(MODULAR) STR UCTU R E

The end product of the PDP-11 design is the
computer itself, and in the evolution of the ar-
chitecture one can see images of the evolution
of ideas. In this section, the architectural evolu-
tion is outlined, with a special emphasis on the
Unibus.

The Unibus is the architectural component
that connects together all of the other major
components. It is the vehicle over which data
flow between pairs of components takes place.
Its structure is described in Chapter 11.

In general, the Unibus has met all expecta-
tions. Several hundred types of memories and
peripherals have been interfaced to it; it has be-
come a standard architectural component of
systems in the $3K to $100K price range (1975).
The Unibus does limit the performance of the
fastest machines and penalizes the lower per-
formance machines with a higher cost. Recently
it has become clear that the Unibus is adequate
for large, high performance systems when a
cache structure is used because the cache re-
duces the traffic between primary memory and
the central processor since about one-tenth of
the memory references are outside the cache.
For still larger systems, supplementary buses
were added for central processor to primary
memory and primary memory to secondary
memory traffic. For very small systems like the
LSI-11, a narrower bus was designed.

The Unibus, as a standard, has provided an
architectural component for easily configuring

388 THE PDP-11 FAMILY

systems. Any company, not just DEC, can eas-
ily build components that interface to the bus.
Good buses make good engineering neighbors,
since people can concentrate on structured de-
sign. Indeed, the Unibus has created a second-
ary industry providing alternative sources of
supply for memories and peripherals. With the
exception of the IBM 360 Multiplexer/Selector
Bus, the Unibus is the most widely used com-
puter interconnection standard.

The Unibus has also turned out to be in-
valuable as an “umbilical cord” for factory di-
agnostic and checkout procedures. Although
such a capability was not part of the original
design, the Unibus is almost capable of con-
trolling the system components (e.g., processor
and memory) during factory checkout. Ideally,
the scheme would let all registers be accessed
during full operation. This is possible for all de-
vices except the processor. By having all central
processor registers available for reading and
writing in the same way that they are available
from the console switches, a second system can
fully monitor the computer under test.

I n most recent PDP-1 I models, a serial com-
munications line, called the ASCII Console, is
connected to the console, so that a program
may remotely examine or change any informa-
tion that a human operator could examine or
change from the front panel, even when the sys-
tem is not running. In this way computers can
be diagnosed from a remote site.

Difficulties with the Design

The Unibus design is not without problems.
Although two of the bus bits were set aside in
the original design as parity bits, they have not
been widely used as such. Memory parity was
implemented directly in the memory; this phe-
nomenon is a good example of the sorts of
problems encountered in engineering optimiza-
tion. The trading of bus parity for memory par-
ity exchanged higher hardware cost and
decreased performance for decreased service

cost and better data integrity. Because engineers
are usually judged on how well they achieve
production cost goals, parity transmission is an
obvious choice to pare from a design, since it
increases the cost and decreases the perform-
ance. As logic costs decrease and pressure to in-
clude warranty costs as part of the product
design cost increases, the decision to transmit
parity may be reconsidered.

Early attempts to build tightly coupled multi-
processor or multicomputer structures (by map-
ping the address space of one Unibus onto the
memory of another), called Unibus windows,
were beset with a logic deadlock problem. The
Unibus design does not allow more than one
master at a time. Successful multiprocessors re-
quired much more sophisticated sharing mecha-
nisms such as shared primary memory.

Unibus Cost and Performance

Although performance is always a design
goal, so is low cost; the two goals conflict
directly. The Unibus has turned out to be nearly
optimum over a wide range of products. It
served as an adequate memory-processor inter-
connect for six of the ten models. However, in
the smallest system, DEC introduced the LSI-
11 Bus, which uses about half the number of
conductors. For the largest systems, a separate
32-bit data path is used between processor and
memory, although the Unibus is still used for
communication with the majority of the 1 /0
controllers (the slower ones). Figure 1 summa-
rizes the evolution of memory-processor inter-
connections in the LSI-I1 Family. Levy
(Chapter 11) discusses the evolution in more de-
tail.

The bandwidth of the Unibus is approx-
imately 1.7 megabytes per second or 850 K
transfers/second. Only for the largest con-
figurations, using many 1 / 0 devices with very
high data rates, is this capacity exceeded. For
most configurations, the demand put on an 1 / 0
bus is limited by the rotational delay and head

THE EVOLUTION OF THE PDP-11 389

8 K

8K

8 K

I I K

1 4 1

positioning of disks and the rate at which pro-
grams (user and system) issue 1/0 requests.

An experiment to further the understanding
of Unibus capacity and the demand placed
against it was carried out. The experiment used
a synthetic workload; like all synthetic work-
loads, it can be challenged as not being repre-
sentative. However, it was generally agreed that
it was a heavy 1 /0 load. The load simulated
transaction processing, swapping, and back-
ground computing in the configuration shown
in Figure 3. The load was run on five systems,
each placing a different demand on the Unibus.

Each run produced two numbers: (1) the time
to complete 2,000 transactions, and (2) the
number of iterations of a program called
HANOI that were completed.

HANOILOOP

TRANSACTION
PROCESSING

NO 1

TRANSACTION
PROCESSNG

NO 2

SWAPPING

EXEC

Benchmark Number of
Time HANOI

System (minutes)* Iterations

11 /60 cache on 15 12
1 1 /60 cache off 15 2
1 1 /40 15 3
1 1 /70 MBCBUS 15 23
1 1 /70 Unibus 26 38

* 2,000 transactions plus swapping plus HANOI.

The results were interpreted as follows:

1. 1 / 0 throughput. For this workload the
Unibus bandwidth was adequate. For
systems 1 through 4 the 1/0 activity
took the same amount of time.
11/70 Unibus. The run on this system
(no use was made of the 32-bit wide pro-
cessor/memory bus) took longer b e
cause of the retries caused by data lates
(approximately 19,000) on the moving
head disk (RP04). The extra time taken
for the benchmark allowed more itera-
tions of HANOI to occur. The PDP-

2.

- - - - ---- _- - -
BACKGROUND COMPUTATION IHANOI
BENCHMARK LOOPING1

--- ---- -- - - -
1000 TRANSACTIONS
EACH TRANSACTION INVOLVES B
READS AND 2 WRITES ITOTAL OF 1064
WORDS PER TRANSACTIONIAND 12 mr
PROCESSING

SWAP EVERY 100 "7% (ONE 15K WRITE
ICKII. ONE 1OK READ ICK21. ONE 16K
READ ICK11

4 W W O R D

R S X l l M
MCR TASK SHF IS LOADED PROM
RK05 EVERY 100 "7%

Figure 3.
Unibus capacity.

The synthetic workload used t o measure

11/70 Unibus had a bandwidth of about
1 megabyte. It was less than the usual
Unibus (about 1.7 megabyte) because of
the map delay (100 nanoseconds), the
cache cycle (240 nanoseconds), and the
main memory bus redriving and syn-
chronization.
11/60 Cache. Systems 1 and 2 clearly
show the effectiveness of a cache. Most
memory references for HANOI were to
the cache and did not involve the
Unibus, which was the PDP-l1/6Os 1/0
Bus. Systems 2 and 3 were essentially
equivalent, as expected. There are two
reasons for the 11/40 having slightly
more compute bandwidth than an 11/60
with its cache off. First, the 11/40 mem-
ory is faster than the 11/60 backing
store, and second, the 11/40 processor
relinquishes the Unibus for a direct
memory access cycle; the 11/60 proces-
sor must request the Unibus for a pro-
cessor cycle.

3.

390 THE PDP-11 FAMILY

There are several attributes of a bus that af-
fect its cost and performance. One factor affect-
ing performance is simply the data rate of a
single conductor. There is a direct tradeoff in-
volving cost, performance, and reliability.
Shannon [1948] gives a relationship between the
fundamental signal bandwidth of a link and the
error rate (signal-to-noise ratio) and data rate.
The performance and cost of a bus are also af-
fected by its length. Longer cables cost propor-
tionately more, since they require more
complex circuitry to drive the bus.

Since a single-conductor link has a fixed data
rate, the number of conductors affects the net
speed of a bus. However, the cost of a bus is
directly proportional to the number of con-
ductors. For a given number of wires, time do-
main multiplexing and data encoding can be
used to trade performance and logic com-
plexity. Since logic technology is advancing fas-
ter than wiring technology, it seems likely that
fewer conductors will be used in all future sys-
tems, except where the performance penalty of
time domain multiplexing is unacceptably
great.

If, during the original design of the Unibus,
DEC designers could have foreseen the wide
range of applications to which it would be ap-
plied, its design would have been different. Indi-
vidual controllers might have been reduced in
complexity by more central control. For the
largest and smallest systems, it would have been
useful to have a bus that could be contracted or
expanded by multiplexing or expanding the
number of conductors.

The cost-effectiveness of the Unibus is due in
large part to the high correlation between mem-
ory size, number of address bits, 1 / 0 traffic,
and processor speed. Gene Amdahl’s rule of
thumb for IBM computers is that 1 byte of
memory and 1 byte/sec of 1 /0 are required for
each instruction/sec. For traditional DEC ap-
plications, with emphasis in the scientific and
control applications, there is more computation
required per memory word. Further, the PDP-
1 1 instruction sets do not contain the extensive

commercial instructions (character strings) typ-
ical of IBM computers, so a larger number of
instructions must be executed to accomplish the
same task. Hence, for DEC computers, it is bet-
ter to assume 1 byte of memory for each 2 in-
structions/sec, and that 1 byte/sec of 1 / 0
occurs for each instruction/sec.

In the PDP-11, an average instruction ac-
cesses 3-5 bytes of memory, so assuming 1 byte
of 1 / 0 for each instruction/sec, there are 4-6
bytes of memory accessed on the average for
each instruction/sec. Therefore, a bus that can
support 2 megabytes/sec of traffic permits in-
struction execution rates of 0.33-0.5 mega-in-
structions/sec. This implies memory sizes of
0.16-0.25 megabytes, which matches well with
the maximum allowable memory of 0.064-0.256
megabytes. By using a cache memory on the
processor, the effective memory processor rate
can be increased to balance the system further.
If fast floating-point instructions were added to
the instruction set, the balance might approach
that used by IBM and thereby require more
memory (an effect seen in the PDP-11/70).

The task of 1/0 is to provide for the transfer
of data from peripheral to primary memory
where it can be operated on by a program in a
processor. The peripherals are generally slow,
inherently asynchronous, and more error-prone
than the processors to which they are attached.

Historically, 1 / 0 transfer mechanisms have
evolved through the following four stages:

1. Direct sequential 1/0 under central pro-
cessor control. An instruction in the pro-
cessor causes a data transfer to take
place with a device. The processor does
not resume operation until the transfer is
complete. Typically, the device control
may share the logic of the processor. The
first input/output transfer (IOT) instruc-
tion in the PDP-1 is an example; the IOT
effects transfer between the Accumula-
tor and a selected device. Direct 1 / 0
simplifies programming because every
operation is sequential.

THE EVOLUTION OF THE PDP-11 391

2. Fixed buffer, I-instruction controllers. An
instruction in the central processor
causes a data transfer (of a word or vec-
tor), but in this case, it is to a buffer of
the simple controller and thus at a speed
matching that of the processor. After the
high speed transfer has occurred, the
processor continues while an asynchro-
nous, slower transfer occurs between the
buffer and the device. Communication
back to the processor is via the program
interrupt mechanism. A single instruc-
tion to a simple controller can also cause
a complete block (vector) of data to be
transmitted between memory and the pe-
ripheral. In this case, the transfer takes
place via the direct memory access
(DMA) link.

Separate 1/0 processors - the channel.
An independent 1/0 processor with a
unique ISP controls the flow of data be-
tween primary memory and the periph-
eral . The structure is that of the
multiprocessor, and the 1 / 0 control pro-
gram for the device is held in primary
memory. The central processor informs
the 1 / 0 processor about the 1 / 0 pro-
gram location.

1/0 computer. This mechanism is also
asynchronous with the central processor,
but the 1 / 0 computer has a private
memory which holds the 1 / 0 program.
Recently, DEC communications options
have been built with embedded control
programs. The first example of an 1 /0
computer was in the CDC 6600 (1964).

3.

4.

The authors believe that the single-instruc-
tion controller is superior to the 1 /0 processor
as embodied in the IBM Channel mainly be-
cause the latter concept has not gone far
enough. Channels are costly to implement, suf-

ficiently complex to require their own program-
ming environment, and yet not quite powerful
enough to assume the processing, such as file
management, that one would like to offload
from the processor. Although the 1 / 0 traffic
does require central processor resources, the ad-
dition of a second, general purpose central pro-
cessor is more cost-effective than using a central
processor-1/0 processor or central processor-
multiple 1/0 processor structure. Future 1 / 0
systems will be message-oriented, and the vari-
ous 1/0 control functions (including diagnos-
tics and file management) will migrate to the
subsystem. When the 1 / 0 computer is an exact
duplicate of the central processor, not only is
there an economy from the reduced number of
part types but also the same programming envi-
ronment can be used for 1/0 software devel-
opment and main program development.
Notice that the 1 /0 computer must implement
precisely the same set of functions as the proces-
sor doing direct I/O.*

M U LTI PROCESS0 RS

It is not surprising that multiprocessors are
used only in highly specialized applications
such as those requiring high reliability or high
availability. One way to extend the range of a
family and also provide more performance al-
ternatives with fewer basic components is to
build multiprocessors. In this section some fac-
tors affecting the design and implementation of
multiprocessors, and their effect on the PDP-
1 I , are examined.

It is the nature of engineering to be conserva-
tive. Given that there are already a number of
risks involved in bringing a product to the mar-
ket, it is not clear why one should build a higher
risk structure that may require a new way of
programming. What has resulted is a sort of
deadlock situation: people cannot learn how to
program multiprocessors and employ them in a

* T h e 1 / 0 computer is yet another example of the wheel of reincarnation of display processors (see Chapter 7)

392 THE PDP-11 FAMILY

single task until such machines exist, but manu-
facturers will not build the machine until they
are sure that there will be a demand for it, i.e.,
that the programs will be ready.

There is little or no market for multi-
processors even though there is a need for in-
creased reliability and availability of machines.
IBM has not promoted multiprocessors in the
marketplace, and hence the market has lagged.

One reason that there is so little demand for
multiprocessors is the widespread acceptance of
the philosophy that a better single-processor
system can always be built. This approach
achieves performance at the considerable ex-
pense of spare parts, training, reliability, and
flexibility. Although a multiprocessor archi-
tecture provides a measure of reliability,
backup, and system tunability unreachable on a
conventional system, the biggest and fastest ma-
chines are uniprocessors - except in the case of
the Bell Laboratories Safeguard Computer [Bell
Laboratories, 19751.

Multiprocessor systems have been built out
of PDP-11s. Figure 4 summarizes the design
and performance of some of these machines.
The topmost structure was built using 11/05
processors, but because of inadequate arbi-
tration techniques in the processor, the ex-
pected performance did not materialize. Table 3
shows the expected results for multiple 11 /05
processors sharing a single Unibus and com-
pares them with the PDP-11/40.

From the results of Table 3 one would expect
to use as many as three 11/05 processors to
achieve the performance of a model 11/40.
More than three processors will increase the
performance at the expense of the cost-effec-
tiveness. This basic structure has been applied
on a production basis in the GT40 series of
graphics processors for the PDP-11. In this
scheme, a second display processor is added to
the Unibus for display picture maintenance. A
similar structure is used for connecting special

q q +- ... &i!.- ...

(a) Multi-Pc structure using a single Unibus.

(b) Pc with P.display using a single Unibus

(c) Multiprocessor using multiport Mp.

(d) C.mmp CMU multi-miniprocessor computer
structure.

Figure 4. PDP-11 multiprocessor PMS structures

signal-processing computers to the Unibus al-
though these structures are technically coupled
computers rather than multiprocessors.

As an independent check on the validity of
this approach, a multiprocessor system has

THE EVOLUTION OF THE PDP-11 393

Table 3. Multiple PDP-11/05 Processors Sharing a Single Unibus

Number and Processor
Processor Performance Processor System
Model (Relative) Price Price*/Performance Price Pricet/Performance

1-1 1/05 1 .oo 1 .oo 1 .oo
2-1 1/05 1.85 1.23 0.66
3-1 1/05 2.4 1.47 0.61
1-1 1/40 2.25 1.35 0.60

3.00 1 .oo
3.23 0.58
3.47 0.48
3.35 0.49

*Processor cost only
?Total system cost assuming one-third of system is processor cost

been built, based on the Lockheed SUE [Orns-
tein et al., 19721. This machine, used as a high
speed communications processor, is a hybrid
design: it has seven dual-processor computers
with each pair sharing a common bus as out-
lined above. The seven pairs share two multi-
port memories.

The second type of structure given in Figure 4
is a conventional, tightly coupled multi-
processor using multiple-port memories. A
number of these systems have been installed,
and they operate quite effectively. However,
they have only been used for specialized appli-
cations because there has been no operating sys-
tem support for the structure.

PDP-11 Based Multiprocessor: Carnegie-
Mellon University Research Computers

The PDP-I 1 architecture has been employed
to pioneer new ideas in the area of multi-
processors. The three multiprocessors built at
Carnegie-Mellon University (CMU) are dis-
cussed: C.mmp [Wulf and Bell, 19721, a 16-pro-
cessor multiprocessor; C.vmp [Siewiorek et al.,
19761, a triplicated, voting multiprocessor com-
puter for high reliability; and Cm* (Chapter
20), a set of computer modules based on LSI-
11.

The three CMU multiprocessors are good ex-
amples of multiprocessor development direc-

tions because it is quite likely that technology
will force the evolution of computing structures
to converge into three styles of multiprocessor
computers: (1) C.mmp style, for high perform-
ance, incremental performance, and availability
(maintainability); (2) C.vmp style for very high
availability motivated by increasing mainte-
nance costs, and (3) loosely coupled computers
like Cm* to handle specialized processing, e.g.,
front end, file, and signal processing. This argu-
ment is based on history, present technology,
and resulting price extrapolations:

MOS technology appears to be increas-
ing in both speed and density faster than
the technology (such as ECL) from
which high performance machines are
usually built.
Standards in the semiconductor industry
tend to form more quickly for high vol-
ume products. For example, in the 8-bit
microcomputer market, one type sup-
plies about 50 percent of the market and
three types supply over 90 percent.
The price per chip of the single MOS
chip processors decreases at a sub-
stantially greater rate than for the low
volume, high performance special de-
signs. Chips in both designs have high
design costs, but the single-MOS-chip
processors have a much higher volume.

394 THE PDP-11 FAMILY

4. Several 16-bit processor-on-a-chip pro-
cessors, with an address space matching
and appropriate data-types matching the
performance, exist in 1978. Such a com-
modity can form the basis for nearly all
future computer designs.
The performance (instructions per sec-
ond) per chip, which is already greater
for MOS processor chips than for any
other kind, is improving more rapidly
than for large scale computers. This will
pull usage more rapidly into large arrays
of processors because of the essentially
“free cost” of processors (especially rela-
tive to large, low volume custom-built
machines).

Therefore, most subsequent computers will
be based on standard, high volume parts. For
high performance machines, since processing
power is available at essentially zero cost from
processor-on-a-chip-based processors, large
scale computing will come from arrays of pro-
cessors, just as memory subsystems are built
from arrays of 64 Kbit integrated circuits.

The multiprocessor research projects at
C M U have emphasized synthesis and measure-
ment. Operating systems have been built for
them, and the executions of user programs have
been carefully analyzed. All the multiprocessor
interferences, overheads, and synchronization
problems have been faced for several appli-
cations; the resultant performance helps to put
their actual costs in perspective. Figure 5 shows
the HARPY speech recognition program and
compares the performance of C.mmp and Cm*
with three DEC uniprocessors (PDP-IO with
KAlO processor, PDP-10 with KLlO processor,

C.mmp
C.mmp (Figure 6) a 16 processor (1 1/40s and

1 1 /20s) system has 2.5 million words of shared
primary memory. It was built to investigate the
programming (and resulting performance)
questions associated with having a large num-

5 .

and PDP- 1 1 /40).

150

0 1 l 1 l I I 1 i l
1 2 3 4 5 6 7 8 9 1 0 1 1

NUMBER OF PROCESSORS

Figure 5 A performance comparison of two multi-
processors C mmp and Cm‘. with three uniprocessors at
Carnegie-Mellon University The application used is
HARPY, a speech recognition program This graph is
based on work done by Peter Oleinick 11 9781 and Peter
Feller at CMU

ber of processors. Since the time that the first
paper [Wulf and Bell, 19721 was written,
C.mmp has been the object of some interesting
studies, the results of which are summarized be-
low.

C.mmp was motivated by the need for more
computing power to solve speech recognition
and signal processing problems and to under-
stand the multiprocessor software problem.
Until C.mmp, only one large, tightly coupled
multiprocessor had been built - the Bell Labo-
ratories Safeguard Computer [Bell Labora-
tories, 19751.

The original paper [Wulf and Bell, 19721 de-
scribes the economic and technical factors in-
fluencing multiprocessor feasibility and argues
for the timeliness of the research. Various prob-
lems to be researched and a discussion of par-
ticular design aspects are given. For example,
since C.mmp is predicated on a common oper-
ating systems, there are two sources of degrada-
tion: memory contention and lock contention.

THE EVOLUTION OF THE PDP-11 395

PClOl
POP 11/20 0

M disk P

PCI21
POP 11/40 7

M local /o
L

PCl 1 I
PDP 11/40

-P

PDP 11/20 D
M local P

1
Pc131

PDP 11/40

M local r

PDP 11/40

L

PDP 11/20 PDP 11/40

L
PDP 11/40

Pd121
PDP 11/40

M local 0
L

POP 11/40

Pd141
PDP 11120

i
POP 11/40

PC1151
POP 11/20

M local P

NOTE
Kibi stands for Kbnter bus mrerfacel

Figure 6 A PMS d iagram of C mmp (f rom (Oleinick 19781)

396 THE PDP-11 FAMILY

The machine’s theoretical performance as a
function of memory-processor interference is
based on Strecker’s [1970] work. In practice,
because the memory was not built with low-or-
der address interleaving, memory interference
was greater than expected. This problem was
solved by having several copies of the program
seg men t s .

As the number of memory modules and pro-
cessors becomes very large, the theoretical per-
formance (as measured by the number of
accesses to the memory by the processors) ap-
proaches half the memory bandwidth (i.e., the
number of memory modules memory cycle
time) [Baskett and Smith, 19761. Thus, with in-
finite processors, there is no maximum limit on
performance, provided all processors are not
contending for the same memory.

Although there is a discussion in the original
paper outlining the design direction of the oper-
ating system, HYDRA, later descriptions
should be read [Wulf et al., 197.51. Since the
small address of the PDP-11 necessitated fre-
quent map changes, PDP-I 1/40s with writable
control stores were used to implement the oper-
ating systems calls which change the segment
base registers.

There are three basic approaches to the effec-
tive application of multiprocessors:

1. System level workload decomposition. I f
a workload contains a lot of inherently
independent activities, e.g., compilation,
editing, file processing, and numerical
computation, it will naturally decom-
pose.
Program decomposition by a program-
mer. Intimate knowledge of the appli-
cation is required for this time-
consuming approach.

3. Program decomposition by the com-
piler. This is the ideal approach. How-
ever, results to date have not been
especially noteworthy.

C m m p was predicated on the first two ap-
proaches. ALGOL 68, a language with facilities

2.

for expressing parallelism in programs, has
since been implemented. It has assisted greatly
with program decomposition and looks like a
promising general approach. I t is imperative,
however, to extend the standard languages to
handle vectors and arrays.

The contention for shared resources in a mul-
tiprocessor system occurs at several levels. At
the lowest level, processors contend at the
cross-point switch level for memory. On a
higher level there is contention for shared data
in the operating system kernel; processes con-
tend for 1 / 0 devices and for software processes,
e.g., for memory management. At the user level
shared data implies further contention. Table 4
points to models on experimental data at these
different levels.

Marathe’s data show that the shared data of
HYDRA is organized into enough separate ob-
jects so that a very small degradation (less than
1 percent) results from contention for these ob-
jects. He also built a queueing model which
projected that the contention level would be
about 5 percent in a 48 processor system.

Oleinick [I9781 has used C.mmp to conduct
an experimental, as opposed to theoretical,
study of the implementation of parallel al-
gorithms on a multiprocessor. He studied the
operation of Rootfinder, a program that is an

Table 4.
Content ion at Each of Three Levels in the
C.mmp System

References for Experimental Data on

Contention
Level

User-program

HYDRA kernel
objects

Cross- point
switch

Reference

Oleinick I 19781
Fuller and Oleinick I 19761

Marathe and Fuller 11977)

Baskett and Smith [19761
Fuller 119761
Strecker I 19701
Wulf and Bell 119721

THE EVOLUTION OF THE PDP-11 397

extension of the bisection method for finding
the roots of an equation.

A natural decomposition of the binary search
for a root into n parallel processes is to evaluate
the function simultaneously at n points. Under
ideal conditions, all processes would finish the
function evaluation (required at each step) at
the same time, and then some brief book-
keeping would take place to determine the next
subinterval for the n processes to work on.
However, because the time to evaluate the func-
tion is data dependent, some processes are com-
pleted before others. Moreover, i f the
bookkeeping task is time consuming relative to
the time to evaluate the function, the speedup
ratio will suffer. Oleinick systematically studied
each source of fluctuation in performance and
found the dominant one to be the mechanism
used for process synchronization.

Four different locks for process synchro-
nization, called: (1) spin lock, (2) kernel sema-
phore, (3) PMO, and (4) PM I , are available to
the C.mmp user. The spin lock, the most rudi-
mentary, does not cause an entry to the
HYDRA operating system. It is a short se-
quence of instructions which continually test a
semaphore until it can be set successfully. The
process of testing for the availability of a re-
source, and seizing the resource if available,
could be called TEST-AND-LOCK. When the
resource is no longer needed, it is released by an
UNLOCK process. These two processes are
called the P operation and the I/ operation re-
spectively, as originally named by Edgar Dij-
kstra. The P and V operations in the C.mmp
spin lock are in fact the following PDP-I 1 code
sequences:

P: CMP SEMAPHORE,
I ;SEMAPHORE= I ?
BNE P
DEC SEMAPHORE ;Decrement SEMAPHORE
BNE P

V: MOV # 1 , SEMAPHORE ;Reset SEMAPHORE to 1

;loop until it is 1

;If not equal 0 go to P

Although this repeating polling is extremely
fast, it has two major drawbacks: first, the pro-

cessor is not free to do useful work; second, the
polling process consumes memory cycles of the
memory bank that contains the semaphore.

The kernel semaphore, implemented i n
HYDRA, is the low level synchronization
mechanism intended to be used by system pro-
cesses. When a process blocks or wakes up, a
state change for that process is made inside the
kernel of HYDRA. If a process blocks (fails to
obtain a needed resource) while trying to P (test
and lock) a semaphore, the kernel swaps the
process from the processor, and the pages be-
longing to that process are kept in primary
memory. The other semaphore mechanisms
(PMO and PM1) take proportionately more
time (> 1 millisecond).

C.vmp

C.vmp, is a triplicated, voting multiprocessor
designed to understand the difficulty (or ease)
of using standard, off-the-shelf LSI-I 1s to pro-
vide greatly increased reliability. There is con-
cern for increased reliability because systems
are becoming more complex, are used for more
critical applications, and because maintenance
costs for all systems are increasing. Because the
designers themselves carry out and analyze the
work, this section provides first-hand insight
into high reliability designs and the design pro-
cess - especially its evaluation.

Several design goals were set and the work
has been carried out. The C.vmp system has op-
erated since late 1977, when the first phase of
work was completed.

The goal of software and hardware trans-
parency turned out to be easier to attain than
expected, because of an idiosyncrasy of the
floppy disk controller. Because the controller
effects a word-at-a-time bus transfer from a
one-sector buffer, voting can be carried out at a
very low level. It is unclear how the system
would have been designed without this type of
controller; at a minimum, some part of the soft-
ware transparency goal would not have been

398 THE PDP-11 FAMILY

met, and a significant controller modification
would have been necessary.

A number of models are given by which the
design is evaluated. From the discussion of
component reliabilities the reader should get
some insight into the factors contributing to re-
liability. It should be noted that a custom-de-
signed LSI voter is needed to get a sufficiently
low cost for a marketable C.vmp. While the in-
tent of C.vmp development was not a product,
it does provide much of the insight for such a
product.

Crn *
Cm* is described in Chapter 20; however, be-

cause it is one of the three CMU machines
pointing to future technology-driven trends in
multiprocessor use of LSI-11 architecture, it is
given some mention here. The Cm* work,
sponsored by the National Science Foundation
(NSF) and the Advanced Research Projects
Agency (ARPA), is an extension of earlier
NSF-sponsored research [Bell et al., 19731 on
register transfer level modules. As large-scale
integration and very large-scale integration en-
able construction of the processor-on-a-chip, it
is apparent that low level register transfer mod-
ules are obsolete for the construction of ?ll but
low volume computers. Although the research
is predicated on structures employing a hun-
dred or so processors, Chapter 20 describes the
culmination of the first (10-processor) phase.

In Chapter 20 the authors base their work on
diseconomy-of-scale arguments. To provide ad-
ditional context for their research, computer
modules (Cm *), multiprocessors (C.mmp), and
computer networks are described in terms of
performance and problem suitability. They give
a description of the modules structure, together
with its associated limitations and potential re-
search problems.

The grouping of processor and memory into
modules and the hierarchy of bus structures -
LSI-11 Bus, Map Bus, and Intercluster bus,

radical departures from conventional computer
systems - is given. The final, most important
part of the chapter evaluates the performance of
Cm* for five different problems.

Since the time that Chapter 20 was written,
construction of a 50 computer modules Cm*
has begun and will be operational by the end of
1978 for evaluation in 1979. The extension of
Cm* is known as Cm*/50 and is shown in Fig-
ure 7. It will be used to test parallel processing
methods, fault tolerance, modularity, and the
extensibility of the Cm* structure.

The PDP-l1/70mP Experimental
Multiprocessor Corn puter

The PDP-l1/70mP aims to extend the relia-
bility, availability, maintainability and per-
formance range of the PDP-I 1 Family. It uses
11/70 processor hardware and the RSX-1lM
software as basic building blocks.

The systems can have up to four processors
which have access to common central memories
as shown in Figure 8. Each MOS primary mem-
ory contains 256 Kbyte to 1 Mbyte and a port
(switch) by which up to four processors may ac-
cess it. A failed memory may be isolated for re-
pair. Usually two processors share (have access
to) each of the 1 / 0 devices through a Unibus
switch or dual ported disk memories.

Failure of a high speed mass storage bus con-
troller, a processor, or one port of a device will
not preclude use of that device through the
other port. These devices can also be isolated
from their respective buses so that failure of a
device will not preclude access to other devices.

Each of the processor units has a write
through cache memory. Through normal sys-
tem operation, data within these local caches
may become inconsistent with data elsewhere in
the system. To eliminate this problem, the oper-
ating system and the hardware components
have been modified. The RSX- 11M system ei-
ther clears the cache of inconsistent data or
avoids using the cache for specific situations.

THE EVOLUTION OF THE PDP-11 399

lNTERCLUSTER BUS

M A P B U S -
PDP 11 BUS =

SERIALLINES -
OALINKS

DEV SLU TO tiom t--)

SLU TO PDP l O l D o----P

C M 2 9 r".

6 7 Mbitsl i

PDP 10lA

i G
HOOKS LINES

FRONT END

0 1 2 3 4 5 6 7 8 5 1 0 1 1 1 2 1 3 1 4 1 5

I r l I I I I I H I I I I l I
1200 b11s/s SLU MULTIPLEXER

FRONT END DIRECT HOST
TERMINALS TERMINALS

Figure 7 . Details of the Cm*/50 system

400 THE PDP-11 FAMILY

MULTlPOlNl
MEMORIES -

M E

I

PC
[POP 11/70)

MS = Idilk or tapel
INTER PROCESSOR INTERRUPT
A N 0 SANITY TIMER

Figure 8. Four-processor multiprocessor based on PDP- 1 1 /70 processors.

The software to manipulate the cache is con-
tained in the executive and is transparent to
user programs.

An Interprocessor Interrupt and Sanity
Timer (I1 ST) provides the executive software
with a mechanism to interrupt processors for
rescheduling. The IIST includes a timer for each
processor which is periodically refreshed by
software after execution of diagnostic check
routines. If the refresh commands do not occur
within a prescribed interval, the IIST will issue
an interprocessor interrupt to inform the other
processors of faulty operation. The IIST also
contains a mechanism for initially loading the
multiprocessor system.

The system design results in an extension to
the PDP-11 that is transparent to user programs
and yields increases in performance over a
single processor 11/70 system. This perform-
ance increase is due to the symmetry, such that
nearly any resource can be accessed by any pro-

cess with minimum overhead. Also, unlike mul-
tiple computer systems that communicate via
high speed links, the large primary memory can
be combined and used by a single process.
Moreover, dynamic assignment of processes to
specific computer systems (Figure 9) can be
made.

The system has been designed to increase the
availability by reducing the impact of failures
on system performance through the use of mul-
tiple redundant components. In this way, failed
elements can be isolated for repair. The design
is such that the system may be easily reconfi-
gured so that system operation can be resumed
and the failed component repaired off-line.

Extensions to the diagnostic software and
hardware error detection mechanisms facilitate
quick location of faults. User-mode diagnostics
are run concurrently with the application soft-
ware; this permits maintenance of the disk and
tape units to be done on-line.

THE EVOLUTION OF THE PDP-11 401

Figure 9. Four-processor multicomputer system based on PDP- 1 1/70 processors

Now that the 11/70mP has implemented its
IIST and defined an architectural extension for
multiprocessing, another roadblock to the use
of multiprocessors has been passed; namely, an
extension for interprocessor signaling has been
defined. This might have been defined much
earlier in the life of the PDP-11. In the IBM
computers the SIGP instruction was not avail-
able on 360s until the 370 extensions.

PULSAR: A Performance Range mP
System

PULSAR is a 16 LSI-11 multiprocessor com-
puter for investigating the cost-effectiveness of
multiple microprocessors. It covers a perform-
ance range of approximately a single LSI-11 to
better than a PDP-11/70 for simple instruc-
tions.

The breadboard system (Figure 10) is based
on the PDP-11/70 processor-memory-switch

structure, including multiple interrupt levels
and 22-bit physical addressing. However, it
does not implement instruction (I) and data (D)
space or Supervisor mode, and it lacks the
Floating-point Processors.

The processors (P-Boards) communicate with
each other, the Unibus Interface (UBI), and a
Common Cache and Control via a high-band-
width, synchronous bus.

The Common Cache and Control contains a
large (8 Kword), direct-mapping, shared cache
with a 2-word block size, interfacing to the 2- or
4-way interleaved 1 1 /70 Memory Bus. This pre-
vents the memory subsystem from becoming a
bottleneck, in spite of the large reduction in
bandwidth demand provided by the cache. The
control provides all the mapping functions for
both Unibus and processor accesses to memory.
The Unibus map registers and the process map
registers for each processor are held in a single
bipolar memory.

402 THE PDP-11 FAMILY

0 1 I I 1 4 1 6

~ K map Klo UNIBUS

Figure 10. PMS diagram of the breadboard version of the DEC PULSAR

The Unibus Interface provides the Unibus
control functions of a conventional PDP-I 1. In-
terrupts are fielded by the first enabled proces-
sor with preferential treatment for any
processor in WAIT state.

Each processor board contains two inde-
pendent microprocessor chip sets with modified
microcode. Internal contention for the adapter
is eliminated by running the two processors out
of phase with each other. Such contention as
does exist is resolved by the mechanism for ar-
bitration of the processor bus itself. The PUL-
SAR has a serial line (ASCII) console
interfacing via a microcode driven commu-
nications controller, equipped with modified
microcode. In addition, a debugging panel has
displays for every stage of the processor bus and
controller pipeline.

Console operations are effected by the Un-
ibus Interface interrogating or changing a save
area for each processor, physically held in the
mapping array, in response to ASCII console

messages over the Unibus. Each processor
places all appropriate status in the save area on
every HALT, and restores from the save area
prior to acting upon every CONTINUE or
START.

The PULSAR system is pipeline oriented
with specific time slots for each processor. This
permits a single simple arbitration mechanism,
rather than separate complex ones for each re-
source.

Once the pipeline is assigned to a transaction,
the successive intervals of time are assigned t o
the following resources in order:

1. The mapping array.
2. The address translation logic.
3. The cache.
4. The address validation logic.
5. The data lines of the P-Bus.

The memory subsystem, which is not a part of
this resource pipeline, has an independent arbi-

THE EVOLUTION OF THE PDP-11 403

tration mechanism. Interfacing between these
independent mechanisms is by means of queues.

There are some operations that require more
than one access to the same resource in the
pipeline. These operations are effectively han-
dled as two transactions. Examples of such op-
erations are memory writes and internal 1/0
page (memory-management register) accesses.
A memory write may need a second access to
the cache for update, while the Internal 1/0
Page may need another access to the map array.

There are other operations in which the tim-
ing does not permit the use of a particular re-
source in the specific interval that is allocated to
that transaction. This happens, for instance,
when a read operation results in a cache miss.
The data is not available in time. In this case a
second transaction takes place, initiated when
backing store data becomes available.

Cost projections indicate that a multi-
processor will have an increase in parts count
over each possible equivalent performance
uniprocessor in the range. This will range from
a 20 percent increase for a two-processor, multi-
processor system to 0 percent at the top of the
range. The 20 percent premium can be reduced
if no provision is made for expansibility over
the entire range. Clearly, a separate single pro-
cessor structure can be cost-effective (since this
is the LSI-11). The premium is based on parts
count only and excludes considerations of cost
benefits due to production learning, common
spares and manuals, lower engineering costs,
etc.

A number of computer systems have been
built based on multiple processors in systems
ranging from independent computers (with no
interconnection) through tightly coupled com-
puter networks which communicate by passing
messages, to multiprocessor computers with
shared memory. Table 5 gives a comparison of
the various computers. Although n independent
computers is a highly reliable structure, it is
hard to give an example where there is no inter-
connection among the computers. The standard

computer network interconnected via standard
communications links is not given.

It is interesting to compare the multi-
processor and the tightly coupled multi-
computer configurations (Figure 8 and 9) where
the configurations are drawn in exactly the
same way and with the same peripherals. In this
way, columns 2 and 6 of Table 5 can be more
easily compared. The tradeoff between the two
structures is between lower cost and potentially
higher performance for the multiprocessor (un-
less tasks can be statically assigned to the vari-
ous computers in the network) versus somewhat
higher reliability, availability, and maintaina-
bility for the network computer (because there
is more independence among software and
hardware). Varying the degree of coupling in
the processors through the amount of shared
memory determines which structure will result.
The cost and the resultant reliability differen-
tials for the two systems are determined by the
size and the reliability of the software.

TECHNOLOGY: COMPONENTS OF THE
DESIGN

In Chapter 2, it was noted that computers are
strongly influenced by the basic electronic tech-
nology of their components. The PDP-11 Fam-
ily provides an extensive example of designing
with improved technologies. Because design re-
sources have been available to do concurrent
implementations spanning a cost/performance
range, PDP-1 1s offer a rich source of examples
of the three different design styles: constant cost
with increasing functionality, constant func-
tionality with decreasing cost, and growth path.

Memory technology has had a much greater
impact on PDP-11 evolution than logic tech-
nology. Except for the LSI-11, the one logic
family (7400 series TTL) has dominated PDP-
11 implementations since the beginning. Except
for a small increase after the PDP-l1/20, gate
density has not improved markedly. Speed im-
provement has taken place in the Schottky

P
0
P

-I
I
rn
Tl
0 Table 5. Characteristics of Various PDP-11 Based Multiprocessor and Multicomputers
P
A
d C.mmp l l l70mP Pulsar Cm* C.vmp 11/70mC n Computers
;

Coupling Multiprocessor Multiprocessor Multiprocessor Tightly coupled Triple modular Tightly coupled Independent 5
network redundant computer 7

voting network
computer

401/9 Not shown Page/figure 39516 40018 402/ 10 39917

Processor type 20,40 70 LSI-11 LSI-11 LSI-11 70

Reliability, Medium High Medium Medium Very high High
Availability, Medium High Low Medium Very high High
Maintainability Medium High Low Low Very high High

Performance 1 - 16 1 - 4 2 - 16 1 - 100
range (times
base processor)

Advantages All resources can operate on any taskk); Range
large processes occupying all Mp can be run

Disadvantage Single
switch

1

Very high
R, A, M

1 - 4

Not shown

7 0

High
High
High

1 - 1 2

Backup of tasks Complete
to alt. computer; Independence
fast inter-C
transfers

Single Static 1 Pc Static assignment of tasks to
memory and assignment performance computers
peripherals of tasks

THE EVOLUTION OF THE PDP-11 405

TTL, and a speed/power improvement has oc-
curred in the low power Schottky (LS) series.
Departures from medium-scale integrated tran-
sistor-transistor logic, in terms of gate density,
have been few, but effective. Examples are the
bit-slice in the PDP-I 1/34 Floating-Point Pro-
cessor, the use of programmable logic arrays in
the PDP-I 1/04 and PDP-11/34 control units,
and the use of emitter-coupled logic in some
clock circuitry.

Memory densities and costs have improved
rapidly since 1969 and have thus had the most
impact. Read-write memory chips have gone
from 16 bits to 4,096 bits in density and read-
only memories from 16 bits to the 8 or 16 Kbits
widely available in 1978. Various semi-
conductor memory size availabilities are given
in Chapter 2 using the model of semiconductor
density doubling each year since 1962.

The memory technology of 1969 imposed
several constraints. First, core memory was
cost-effective for the primary (program) mem-
ory, but a clear trend toward semiconductor
primary memory was visible. Second, since the
largest high speed read-write memories avail-
able were just 16 words, the number of proces-
sor registers had to be kept small. Third, there
were no large high speed read-only memories
that would have permitted a microprogrammed
approach to the processor design.

These constraints established four design atti-
tudes toward the PDP-I 1’s architecture. First, it
should be asynchronous, and thereby capable
of accepting different configurations of memory
that operate at different speeds. Second, it
should be expandable to take eventual advan-
tage of a larger number of registers, both user
registers for new data-types and internal regis-
ters for improved context switching, memory
mapping, and protected multiprogramming.
Third, it could be relatively complex, so that a
microcode approach could eventually be used
to advantage: new data-types could be added to
the instruction set to increase performance,
even though they might add complexity.

Fourth, the Unibus width should be relatively
large, to get as much performance as possible,
since the amount of computation possible per
memory cycle was relatively small.

As semiconductor memory of varying price
and performance became available, it was used
to trade cost for performance across a reason-
ably wide range of PDP-I1 models. Different
techniques were used on different models to
provide the range. These techniques include:
microprogramming for all models except the
11/20 to lower cost and enhance performance
with more data-types (for example, faster float-
ing point); use of faster program memories for
brute-force speed improvements (e.g., 1 1 /45
with MOS primary memory, 11/55 with bipolar
primary memory, and the 11/60 with a large
writable control store); use of caches (1 1/70,
11/60, and 1 1/34C); and expanded use of fast
registers inside the processor (the 11/45 and
above). The use of semiconductors versus cores
for primary memory is a purely economic con-
sideration, as discussed in Chapter 2.

Table 6 shows characteristics of each of the
PDP-1 I models along with the techniques used
to span a cost and performance range. Snow
and Siewiorek (Chapter 14) give a detailed com-
parison of the processors.

VAX-11

Enlarging the virtual address space of an ar-
chitecture has far more implications than en-
larging the physical address space. The simple
device of relocating program-generated ad-
dresses can solve the latter problem. The phys-
ical address space, the amount of physical
memory that can be addressed, has been in-
creased in two steps in the PDP-11 Family
(Table 2).

The virtual address space, or name space, is a
much more fundamental part of an archi-
tecture. Such addresses are programmer gener-
ated: to name data objects, their aggregates
(whether they be vectors, matrices, lists, or

406 THE PDP-11 FAMILY

Table 6. Characteristics of PDP-11 Models with Techniques Used to Span Cost and Performance Range

Performanee

Basic Floating-Point
Instructions Arithmetic Rangespanning Techniques
Per Second (whetstone Memory

First (relative t o instructions Range For High Notable
Model Shipment PDP-11/03) per second) (Kbytes) Performance For Low Cost Attributes

11/03 6/75 1
(LSI-11 I

26 8-56

18 8-56

8 b i t wide datapath;
LSI-11 Bus; tailored Floating-Point (FISI,
PLA control CIS, WCS mid-life

LSI-4 chips; ODT;

kickers

Standard package; Backplane compatible
ROM; PLA with 11/34for field

upgrade; built-in
ASCI I console; self-
diagnosis

Microprogrammed; Minimal 11 (2
ROM boards)

ISP; Unibus

9/75 2.8 1 1 104

11/05 6/72 2.5 13 8-56

20 8-56

204 16-256

11/20 6/70 3.1

11/34 3/76 3.5 Shared use of ALU; Cost-performance
PLA; ROM; balance; 11/34C
microprogrammed mid-life kicker;

bit-slice FPP

11 134c

11 140

5/78 7.3

1/73 3.6

262 32-256

57 16-256

Classic use of cache

Variable cycle Microprogrammed FIS extension
length

Fetch overlap; Heavily Integral floating-
dual scratch- microprogrammed point; WCS for local
pads; TT LIS storage; RAMP

6/77 27 592 32-256 11 160

11 145 6/72 Core: 13
MOS: 23
Bipolar: 41

-260 8-256
-335
-362

Instruction
prefetch; dual
scratchpads;
Fastbus;
autonomous
FPP; TTL/S

Pc speed to match
300 ns bipolar; high
speed mi nicornputer
FPP; memory
management

11/55 6/76 41

11/70 3/75 36

725 16--64
(0-192
core)

67 1 64-2048

Al l bipolar
memorv

Cache; mult iple buses,
RAMP, F P l l - C mid-life
kicker; remote diagnosis

32-bit-wide
DMA bus;
large memory

70mP Multiprocessor archi-
tectural extensions; on-
line maintainability;
performance; availability

range: range: range:
41-1 56- 1 256- 1

THE EVOLUTION OF THE PDP-11 407

shared data segments) and instructions (sub-
routine addresses, for example). Names seen by
an individual program are part of a larger name
space - that managed by an operating system
and its associated language translators and ob-
ject-time systems. An operating system provides
program sharing and protection among pro-
grams using the name space of the architecture.

As the PDP-I1/70 design progressed, it was
realized that for some large applications there
would soon be a bad mismatch between the 64-
Kbyte name space and 4-Mbyte memory space.
Two trends could be clearly seen: (1) mini-
computer users would be processing large ar-
rays of data, particularly in FORTRAN
programs (only 8,096 double precision floating-
point numbers are needed to fill a 16-bit name
space), and (2) applications programs were
growing rapidly in size, particularly large CO-
BOL programs. Moreover, anticipated memory
price declines made the problem worse. The
need for a 32-bit integer data-type was felt, but
this was far less important than the need for 32-
bit addressing of a name space.

Thus, in 1974, architectural work began on
extending the virtual address space of the PDP-
1 1 . Several proposals were made. The principal
goal was compatibility with the PDP-I 1. In the
final proposed architecture each of the eight
general registers was extended to 32 bits. The
addressing modes (hence, address arithmetic)
inherent in the PDP-11 allowed this to be a nat-
ural, easy extension.

The design of the structure to be placed on a
32-bit virtual address presented the most diffi-
culty. The most PDP-11 compatible structure
would view a 32-bit address as 216 16-bit PDP-
1 1 segments, each having the substructure of
the memory management architecture presently
being used. This segmented address space, al-
though PDP-1 l compatible, was ill-suited to
FORTRAN and most other languages, which
expect a linear address space.

A severe design constraint was that existing
PDP-11 subroutines must be callable from pro-

grams which ran in the Extended Address
mode. The main problem areas were in estab-
lishing a protocol for communicating addresses
(between programs between the operating sys-
tems and programs on the occurrence of inter-
rupts). Saving state (the program counter and
its extension) on the stack was straightforward.
However, the accessing of linkage addresses on
the stack after a subroutine call instruction or
interrupt event was not straightforward. Com-
plicated sequences were necessary to ensure that
the correct number of bytes (representing a 32-
bit or 16-bit address) were popped from the
stack.

The solution was hampered by the fact that
DEC customers programmed the PDP-I 1 at all
levels - there was no clear user level, below
which DEC had complete control, as is the case
with the IBM System 360 or the PDP-IO using
the TOPS-10 or TOPS-20 monitors.

The proposed architecture was the result of
work by engineers, architects, operating system
designers and compiler designers. Moreover, it
was subjected to close scrutiny by a wider group
of engineers and programmers. Much was
learned about the consequences of strict PDP-
1 1 compatibility, the notions of degree of com-
patibility, and the software costs which would
be incurred by an extended PDP-11 archi-
tecture.

Fortunately, the project was discontinued.
There were many reservations about its via-
bility. It was felt that the PDP-l l compatibility
constraint caused too much compromise. Any
new architecture would require a large software
investment; a quantum jump over the PDP-I I
was needed to justify the effort.

In April 1975, work on a 32-bit architecture
was started on VAX-11, with the goal of build-
ing a machine which was culturally compatible
with PDP-1 1. The initial group, called VAXA,
consisted of Gordon Bell, Peter Conklin, Dave
Cutler, Bill Demmer, Tom Hastings, Richy
Lary, Dave Rodgers, Steve Rothman, and Bill
Strecker as the principal architect. As a result of

408 THE PDP-11 FAMILY

the experience with the extended PDP-11 de-
signs, it was decided to drop the constraint of
the PDP-I 1 instruction format in designing the
extended virtual address space, or Native mode,
of the VAX-I 1 architecture. However, in order
to run existing PDP-I 1 programs, VAX-I 1 in-
cludes PDP-11 compatibility mode. This mode
provides the basic PDP-I 1 instruction set with-
out privileged instructions (as defined by the
RSX-I 1 M operating system) and floating-point
instructions. Nor is the former memory man-
agement architecture (KT-I 1) preserved in this
mode.

Preserving the existing PDP-I 1 instruction
formats with VAX-I 1 would have required too
high a price in dynamic bit efficiency. Whereas
the PDP-I I has a high level of efficiency in this
area, adding the new operation codes for the
anticipated data-types, access modes, and dif-
ferent length addresses would have lowered the
instruction stream bit efficiency. An operation
code extension field would have been required.
It was also felt that data stream bit efficiency
could be improved. For example, measure-
ments showed that 98 percent of all literals were
6 bits or less in length.

Besides the desire to add the data-types for
string, 32- and 64-bit integers, and decimal
arithmetic, there were many other extensions
proposed. These included a common procedure
CALL instruction, demand paging, true in-
dexing, context-sensitive indexing, and more
1 / 0 addressing.

Along the way, some major perturbations to
the PDP-I 1 style were considered and rejected,
often because they violated the notion of com-
patibility with PDP-I 1. Typed data and descrip-

tor addressing were rejected on the grounds of
dynamic bit efficiency. Although system soft-
ware costs may be lower with such archi-
tectures, it was not possible to quantify the gain
convincingly. Also, such an architecture de-
stroyed any compatibility, cultural or other-
wise, with PDP-I I .

The experience with PDP-I 1 (floating point,
in particular) led the VAX designers to reject a
soft-machine architecture, i.e., one with an in-
struction set (and highly microprogrammed im-
plementations) for general purpose emulation.
Their PDP-11 experience showed that embedd-
ing a data-type (once it is understood) in the
architecture gives a higher performance gain
than embedding the higher level language con-
trol constructs. There was also a general objec-
tion t o soft machines: the problem of
controlling a proliferation of instruction sets in-
vented by many small software groups was felt
to be unmanageable. Moreover, higher level in-
struction sets jeopardize the ability to commu-
nicate between programs that are written in
different languages. This compatibility is a ma-
jor goal of VAX.

A capabilities-based architecture was rejected
because it was not fully understood and because
there was no performance or reliability data
available from the few experimental machines
which had been built.

ACKNOWLEDGEMENTS

We gratefully acknowledge the suggestions of
Roger Cady, Dick Clayton, and Bruce Delagi
who were eminently qualified and intimately in-
volved in the PDP-I 1’s evolution.

VAX-111780:
A Virtual Address Extension

to the DEC PDP-11 Family
WILLIAM D. STRECKER

I NTRO D U CTI 0 N

Large Virtual Address Space
Minicomputers

Perhaps the most useful definition of a mini-
computer system is based on price: Depending
on one’s perspective, such systems are typically
found in the $20 K to $200 K range. The twin
forces of market pull - as customers build in-
creasingly complex systems on minicomputers -
and technology push - as the semiconductor in-
dustry provides increasingly lower cost logic
and memory elements - have induced mini-
computer manufacturers to produce systems of
considerable performance and memory capac-
ity. Such systems are typified by the DEC PDP-
1 1 /70. From an architectural point of view, the
characteristic that most distinguishes many of
these systems from larger mainframe computers
is the size of the virtual address space: the im-
mediately available address space seen by an in-
dividual process. For many purposes, the 65-
Kbyte virtual address space typically provided
on minicomputers (such as the PDP-11) has not
been and probably will not continue to be a se-
vere limitation. However, there are some appli-

cations whose programming is impractical in a
65-Kbyte virtual address space and, perhaps
most importantly, others whose programming
is appreciably simplified by having a large vir-
tual address space. Given the relative trends in
hardware and software costs, the latter point
alone will ensure that large virtual address
space minicomputers play an increasingly im-
portant role in minicomputer product offerings.

In principle, there is no great challenge in de-
signing a large virtual address minicomputer
system. For example, many of the large main-
frame computers could serve as architectural
models for such a system. The real challenge lies
in two areas: compatibility - very tangible and
important; and simplicity - intangible but none-
theless important.

The first area is preserving the customer’s
and the computer manufacturer’s investment in
existing systems. This investment exists at many
levels: basic hardware (principally buses and pe-
ripherals); systems and applications software;

409

410 THE PDP-11 FAMILY

files and data bases; and personnel familiar with
the programming, use, and operation of the sys-
tems. For example, to preserve this investment
a major computer manufacturer just recently
abandoned a major effort for new computer ar-
chitectures in favor of evolving its current archi-
tectures [McLean, 19771.

The second, less tangible area is the preserva-
tion of those attributes (other than price) that
make minicomputer systems attractive. These
include approachability, understandability, and
ease of use. Preservation of these attributes sug-
gests that simply modeling an extended virtual
address minicomputer after a large mainframe
computer is not wholly appropriate. I t also sug-
gests that during architectural design, tradeoffs
must be made between more than just perform-
ance, functionality, and cost. Performance or
functionality features which are so complex that
they appreciably compromise understanding or
ease of use must be rejected as inappropriate for
minicomputer systems.

VAX-11 Overview

VAX- 11 is the virtual address extension of
PDP-11 architecture (Chapter 9) [Bell and
Strecker, 19761. The most distinctive feature of
VAX-I 1 is the extension of the virtual address
from 16 bits as provided on the PDP-I1 to 32
bits. With the 8-bit byte as the basic addressable
unit, the extension provides a virtual address
space of about 4.3 gigabytes which, even given
rapid improvement in memory technology,
should be adequate far into the future.

Since maximal PDP-11 compatibility was a
primary goal, early VAX-11 design efforts fo-
cused on literally extending the PDP-11: pre-
serving the existing instruction formats and
instruction set and fitting the virtual address ex-
tension around them. The objective was to per-
mit, to the extent possible, the running of
existing programs in the extended virtual ad-
dress environment. While realizing this objec-
tive was possible (there were three distinct

designs), it was felt that the extended archi-
tecture designs were overly compromised in the
areas of efficiency, functionality, and program-
ming ease.

Consequently, i t was decided to drop the con-
straint of the PDP-1 1 instruction format in de-
signing the extended virtual address space or
native mode of the VAX-11 architecture. How-
ever, in order to run existing PDP- l l programs,
VAX-11 includes a PDP-11 compatibility
mode. Compatibility mode provides the basic
PDP-I 1 instruction set without privileged in-
structions (such as HALT) and floating-point
instructions (which are optional o n most PDP-
1 1 processors and not required by most PDP-I 1
software).

In addition to compatibility mode, a number
of other features to preserve PDP-I 1 investment
have been provided in the VAX-11 architecture,
the VAX-I 1 operating system VAX/VMS, and
the VAX- 11 /780 implementation of the VAX-
1 1 architecture. These features include the fol-
lowing .

1 . The native mode data-types and formats
are identical to those on the PDP-11.
Also, while extended, the VAX-I 1 native
mode instruction set and addressing
modes are very close to those on the
PDP-11. As a consequence, VAX-11 na-
tive mode assembly language program-
ming is quite similar to PDP-11
assembly language programming.
The VAX- 11 /780 uses the same periph-
eral buses (Unibus and Massbus) and
the same peripherals as the PDP-I 1.
The VAX/VMS operating system is an
evolution of the PDP-11 RSX-11M and
IAS operating systems. It offers a similar
although extended set of system services
and uses the same command languages.
Additionally, VAX/VMS supports most
of the RSX-IIM/IAS system service
requests issued by programs executing in
compatibility mode.

2.

3.

VAX-11/780: A VIRTUAL ADDRESS EXTENSION TO THE DEC PDP-11 FAMILY 41 1

4. The VAX/VMS file system is the same
as that used on the RSX-I IM/IAS oper-
ating systems, permitting interchange of
files and volumes. The file access meth-
ods as implemented by the RMS record
manager are also the same.
VAX-11 high level language compilers
accept the same source languages as the
equivalent PDP-11 compilers, and exe-
cution of compiled programs gives the
same results.

5 .

The coverage of all these aspects of VAX-I 1
is well beyond the scope of any single paper.
The remainder of this paper discusses the design
of the VAX-11 native mode architecture and
gives an overview of the VAX-I 1/780 system.

VAX-11 NATIVE ARCHITECTURE

Processor State

Like the PDP-11, VAX-11 is organized
around a general register processor state. This
organization was favored because access to op-
erands stored in general registers is fast (be-
cause the registers are internal to the processor
and register accesses do not need to pass
through a memory management mechanism).
Also, only a small number of bits in an instruc-
tion are needed to designate a register. Perhaps
most importantly, the registers are used (as on
the PDP-11) in conjunction with a large set of
addressing modes which permit unusually flex-
ible operand addressing methods.

Some consideration was given to a pure
stack-based architecture. However, it was re-
jected because real program data suggests the
superiority of two or three operand instruction
formats [Myers, 19771. Actually VAX-I 1 is very
stack-oriented, and although not optimally en-
coded for the purpose, it can easily be used as a
pure stack architecture if desired.

VAX-11 has 16 32-bit general registers (de-
noted RO through R15) which are used for both
fixed and floating-point operands. This is in

contrast to the PDP-I 1 which has eight 16-bit
general registers and six 64-bit floating-point
registers. The merged set of fixed and floating
registers was preferred because programming is
simplified and a more effective allocation of the
registers is permitted.

Four of the registers are assigned special
meaning in the VAX-11 architecture.

R15 is the program counter (PC) which
contains the address of the next byte to
be interpreted in the instruction stream.
R14 is the stack pointer (SP) which con-
tains the address of the top of the proces-
sor defined stack used for procedure and
interrupt linkage.
R13 is the frame pointer (FP). The VAX-
1 1 procedure calling convention builds a
data structure on the stack called a stack
frame. FP contains the address of this
structure.
R12 is the argument pointer (AP). The
VAX-11 procedure calling convention
uses a data structure called an argument
list. AP contains the address of this
structure.

The remaining element of the user-visible
processor state (additional processor state seen
mainly by privileged procedures is discussed
later) is the 16-bit processor status word (PSW).
The PSW contains the N, Z, V, and C condition
codes which indicate, respectively, whether a
previous instruction had a negative result, a
zero result, a result that overflowed, or a result
that produced a carry (or borrow). Also in the
PSW are the IV, DV, and FU bits which enable
processor trapping on integer overflow, decimal
overflow, and floating underflow conditions,
respectively. (The trap on conditions of “float-
ing overflow” and “divide by zero” for any
data-type is always enabled.)

Finally, the PSW contains the T bit which,
when set, forces a trap at the end of each in-
struction. This trap is useful for program de-
bugging and analysis purposes.

412 THE PDP-11 FAMILY

Data-Types and Formats

The VAX- 11 data-types are a superset of the
PDP-11 data-types. Where the PDP-I1 and
VAX-I 1 have equivalent data-types, the for-
mats (representation in memory) are identical.
Data-type and data-format identity is one of the
most compelling forms of compatibility. It per-
mits free interchange of binary data between
PDP-I 1 and VAX-I 1 programs. It facilitates
source level compatibility between equivalent
PDP-11 and VAX-11 languages. It also greatly
facilitates hardware implementation and soft-
ware support of the PDP-11 compatibility
mode in the VAX-11 architecture.

The VAX- 11 data-types divide into five clas-
ses.

1. Integer data-types are the 8-bit byte, the
16-bit word, the 32-bit longword, and the
64-bit quadword. Usually these data-
types are considered signed with nega-
tive values represented in two’s com-
plement form. However, for most
purposes they can be interpreted as un-
signed, and the VAX-11 instruction set
provides support for this interpretation.

2. Floating data-types are the 32-bit float-
ing and the 64-bit double floating. These
data-types are binary normalized, have
an 8-bit signed exponent, and have a 25-
or 57-bit signed fraction with the redun-
dant most significant fraction bit not
represented.

3. The variable bit field data-type is 0 to 32
bits located arbitrarily with respect to
addressable byte boundaries. A bit field
is specified by three operands: the ad-
dress of a byte, the starting bit position
(P) with respect to bit 0 of that byte, and
the size (S) of the field. The VAX-11 in-
struction set provides for interpreting
the field as signed or unsigned.

4. The character string data-type is 0 t o
65535 contiguous bytes. It is specified by
two operands: the length and starting
address of the string. Although the data-
type is named “character string,” no spe-
cial interpretation is placed on the values
of the bytes i n the character string.

5 . The decimal string data-types are 0 to 3 1
digits. They are specified by two oper-
ands: a length (in digits) and a starting
address. The primary data-type is packed
decimal with two digits stored in each
byte (except the byte containing the least
significant digit contains a single digit
and the sign). Two ASCII character dec-
imal types are supported: leading sepa-
rate sign and trailing embedded sign. The
leading separate type is a “+”, “-”, or
“<blank>” (equivalent t o “+”) ASCII
character followed by 0 to 3 1 ASCII dec-
imal digit characters. A trailing em-
bedded sign decimal string is 0 to 31
bytes which are ASCII decimal digit
characters (except for the character con-
taining least significant digit which is an
arbitrary encoding of the digit and sign).

All of the data-types except field may be
stored on arbitrary byte boundaries - there are
no alignment constraints. The field data-type,
of course, can start on an arbitrary bit bound-
ary.

Attributes of and symbolic representations
for most of the data-types are given in Table 1
and Figure 1.

Instruction Format and Address Modes

Most architectures provide a small number of
relatively fixed instruction formats. Two prob-
lems often result. First, not all operands of an
instruction have the same specification general-
ity. For example, one operand must come from
memory and another from a register, or one

VAX-11/780: A VIRTUAL ADDRESS EXTENSION TO THE DEC PDP-11 FAMILY 413

Table 1. Data-Types

Data-Type Size Range (decimal)

Integer

Byte
Word
Longword
Quadword

Floating Point

Floating

Double Floating

Packed Decimal
String

Character String

Variable- Length
Bit Field

Signed Unsigned

8 bits -128t0+127 0 to 255
16 bits -32768 to +32767 0 to 65535
32 bits
64 bits

-231 to +231- 1
-263 to +263 - 1

o to 232 - 1
o to 264 - 1

f2.9 X to 1.7 X

32 bits

6 4 bits

0 to 16 bytes
(31 digits)

0 to 65535 bytes

0 to 32 bits

Approximately seven decimal digits precision

Approximately 16 decimal digits precision

Numeric, two digits per byte
Sign in low half of last byte

One character per byte

Dependent on intrepretation

WORD B l T E

-1:A

LONGWORD -.

OUADWORD

32
FLOATING j:l 7,6 1:. 1 1,6 0,

31 16

DOUBLE FLOATING

EXPONENT FRACTION EXPONENT FRACTION ‘A

FRACTION :A+2 FRACTION :A+2

FRACTION :A+4

I FRACTION k A + 6

63 48

PACKED DECIMAL STRfNG 1+1231 CHARACTER STRING l X V Z l

“ X ’ - A

-y :A+ 1

VARIABLE-LENGTH BIT FIELD E l : A + 2

-231 s P c 231 - 1 D s s s 32

I I I :A

P+S P+S.l P P-l 0

I I I I
A = ADDRESS S 1 0

Figure 1. Data formats

must come from the stack and another from
memory. Second, only a limited number of op-
erands can be accommodated: typically, one or
two. For instructions that inherently require
more operands (such as field or string instruc-
tions), the additional operands are specified in
ad hoc ways: small literal fields in instructions,
specific registers or stack positions, or packed
in fields of a single operand. Both these prob-
lems lead to increased programming com-
plexity: they require superfluous move-type
instructions to get operands to places where
they can be used and increase competition for
potentially scarce resources such as registers.

To avoid these problems, two criteria were
followed in the design of the VAX-11 instruc-
tion format: (1) all instructions should have the
“natural” number of operands, and (2) all oper-
ands should have the same generality in specifi-
cation. These criteria led to a highly variable
instruction format. An instruction consists of a

414 THE PDP-11 FAMILY

one- or two-byte* opcode followed by the speci-
fications for n operands (n > 0) where n is an
implicit property of the opcode. An operand
specification is one to ten bytes in length and
consists of a one- or two-byte operand specifier
followed by (as required) zero to eight bytes of
specifier extension. The operand specifier in-
cludes the address mode and designation of any
registers needed to locate the operand. A speci-
tier extension consists of a displacement, an ad-
dress, or immediate data.

The VAX- 1 1 address modes are, with one ex-
ception, a superset of the PDP-I 1 address
modes. The PDP-I 1 address mode autodecre-
ment deferred was omitted from VAX-11 be-
cause it was rarely used.

Most operand specifiers are one byte long
and contain two 4-bit fields: The high-order
field (bits 7:4) contains the address mode desig-
nator, and the lower field (bits 3:O) contains a
general register designator. The address modes
include:

1.

2.

Register mode, in which the designated
register contains the operand.
Register deferred mode, in which the des-
ignated register contains the address of
the operand.
Autodecrement mode, in which the con-
tents of the designated register are first
decremented by the size (in bytes) of the
operand and are then used as the address
of the operand.
Autoincrement mode, in which the con-
tents of the designated register are first
used as the address of the operand and
are then incremented by the size of the
operand. Note that if the designated reg-
ister is PC, the operand is located in the
instruction stream. This use of autoin-
crement mode is called immediate mode.
In immediate mode, the one to eight
bytes of data are the specifier extention.

3.

4.

Autoincrement mode can be used se-
quentially to process a vector in one di-
rection, and autodecrement mode can be
used to process a vector in the opposite
direction. Autoincrement, register de-
ferred, and autodecrement modes can be
applied to a single register to implement
a stack data structure: autodecrement to
“push,” autoincrement to “pop,” and
register deferred to access the top of the
stack.
Autoincrement deferred mode, in which
the contents of the designated register
are used as the address of a longword in
memory which contains the address of
the operand. After this use, the contents
of the register are incremented by four
(the size in bytes of the longword ad-
dress). Note that if PC is the designated
register, the absolute address of the op-
erand is located in the instruction
stream. This use of autoincrement de-
ferred mode is termed absolute mode. I n
absolute mode, the 4-byte address is the
specifier extension.

6. Displacement mode, in which a dis-
placement is added to the contents of the
designated register to form the operand
address. There are three displacement
modes depending on whether a signed
byte, word, or longword displacement is
the specifier extension. These modes are
termed byte, word, and longword dis-
placement, respectively. Note that if PC
is the designated register, the operand is
located relative to PC. For this use, the
modes are termed byte, word, and long-
word relative mode, respectively.
Displacement deferred mode, in which a
displacement is added to the designated
register to form the address of a long-
word containing the address of the oper-
and. There are three displacement

5 .

7.

* N o currently defined instructions use two-byte opcodes.

VAX-11/780: A VIRTUAL ADDRESS EXTENSION TO THE DEC PDP-11 FAMILY 415

LITERAL

IIMMEOIATEI

8.

9.

{; ;} Y CONSTANT

deferred modes depending on whether a
signed byte, word, or longword dis-
placement is the specifier extension.
These modes are termed byte, word, and
longword displacement, respectively.
Note that if PC is the designated register,
the operand address is located relative to
PC. For this use the modes are termed
byte, word, and longword relative de-
ferred mode, respectively.

Literal mode, in which the operand spec-
ifier itself contains a 6-bit literal which is
the operand. For integer data-types, the
literal encodes the values 0 through 63;
for floating data-types, the literal in-
cludes three exponent and three fraction
bits to give 64 common values.

Index mode, which is not really a mode
but rather a one-byte prefix operator for
any other mode which evaluates a mem-
ory address (i.e., all modes except regis-
ter and literal). The index mode prefix is
cascaded with the operand specifier for
that mode (called the base operand spec-
ifier) to form an aggregate two-byte op-
erand specifier. The base operand speci-
fier is used in the normal way to evaluate
a base address. A copy of the contents of
the register designated in the index prefix
is multiplied by the size (in bytes) of the
operand and added to the base address.
The sum is the final operand address.
There are three advantages to the VAX-
11 form of indexing: (1) the index is
scaled by the data size, and thus the in-
dex register maintains a logical rather
than a byte offset into an indexed data
structure; (2) indexing can be applied to
any of the address modes that generate
memory addresses, and this results in a
comprehensive set of indexed addressing
methods; and (3) the space required to
specify indexing and the index register is
paid only when indexing is used.

REGISTER DEFERRED

AUTODECREMENT

AUTOINCREMENT

The VAX-I 1 assembler syntax for the ad-
dress modes is given in Figure 2. The bracketed
(()) notation is optional, and the programmer
rarely needs to be concerned with displacement
sizes or whether to choose literal or immediate
mode. The programmer writes the simple form;
the assembler chooses the address mode which
produces the shortest instruction length.

In order to give a better feeling for the in-
struction format and assembler notation, sev-
eral examples are given in Figures 3 through 5.
Figure 3 shows an instruction that moves a
word from an address that is 56 plus the con-
tents of R5 to an address that is 270 plus the

lR"l

~ IR")

IRnl +

1 REGISTER I Rn
I

AUTOINCREMENT DEFERRED I IABSOLUTEI I :F:D:RESS

I 1 -
INDEXED
18.1

OOSPLACEMINT I { :! } DISPLACEMENT IRn) I I R E L A T l V l l &DDRESS

n = DTHROUGH 15
x = OTHRDUGH 14

Figure 2. Assembler syntax.

M O V W OPCODE

BYTE DISPLACEMENT M O D E
REGISTER 6

DISPLACEMENT

WORD DISPLACEMENT M O D E
REGISTER 6

DISPLACEMENT

I
Figure 3. MOVW 56(R5), 270(R6).

41 6 THE PDP-11 FAMILY

LITERAL M O D E
0 1 CONSTANT 1

5 0 REGISTER 0
REGISTER M O D E

3
{
{
{

INDEX PREFIX
4 2 REGISTER 2

AUTOINCREMENT MODE
9 REGISTER 15 IABSOLUTEI 16

-

- ADDRESS A

-

5 A !!

contents of R4. Note that the displacement 56
can be represented in a byte while the dis-
placement 270 requires a word. The instruction
occupies six bytes. Figure 4 shows an instruc-
tion that adds 1 to a longword in RO and stores
the result at a memory address which is the sum
of A and four times the contents of R2. This
instruction occupies nine bytes. Finally, a “re-
turn from subroutine” instruction is shown in
Figure 5. It has no explicit operands and oc-
cupies a single byte.

The only significant instance where there is
nongeneral specification of operands is in the
specification of targets for branch instructions.
Since invariably the target of a branch instruc-
tion is a small displacement from the current
PC, most branch instructions simply take a one-
byte PC relative displacement. This is exactly as
if byte displacement mode were used with the
PC used as the register, except that the operand
specifier byte is not needed. Because of the per-
vasiveness of branch instructions in code, this
one-byte saving results in a nontrivial reduction
in code size. An example of the branch instruc-
tion branch on equal is given in Figure 6.

Figure

Instruction Set
A major goal of the VAX-I 1 instruction set de-
sign was to provide for effective compiler-gen-
erated code. Four decisions helped to realize
this goal.

A very regular and consistent treatment
of operators. Thus, for example, because
there is a divide longword instruction,
there are also divide word and divide
byte instructions.
An avoidance of instructions unlikely to
be generated by a compiler.
Inclusion of several forms of common
operators. For example, the integer add
instructions are included in three forms:
(I) one operand where the value one is
added to a operand, (2) two operand
where one operand is added to a second,
and (3) three operand where one oper-
and is added to a second and the result
stored in a third. Because the VAX-I1
instruction format allows general specifi-
cations of the operands, VAX-11 pro-
grams often have the structure (though
not the encoding) of the canonic pro-
gram form proposed in [Flynn, 19771.

R S E OPCODE

Figure 5. RSB.

BEOL OPCODE

DISPLACEMENT

TI[
a - P C

Figure 6. BEQL A.

VAX-11/780: A VIRTUAL ADDRESS EXTENSION TO THE DEC PDP-11 FAMILY 417

4. Replacement of common instruction se-
quences with single instructions. Exam-
ples of this include procedure calling,
multiway branching, loop control, and
array subscript calculation.

The effect of these decisions is reflected
through several observations. First, despite the
larger virtual address and instruction set sup-
port for more data-types, compiler (and hand)
generated code for VAX-I 1 is typically smaller
than the equivalent PDP-I 1 code for algorithms
operating on data-types supported by the PDP-
1 1 . Second, of the 243 instructions in the in-
struction set, about 75 percent are generated by
the VAX-II FORTRAN compiler. Of the in-
structions not generated, most operate on data-
types not part of the FORTRAN language.

A complete list of the VAX-I 1 instructions is
given in the appendix. The following is an over-
view of the instruction set.

1. Integer logic and arithmetic. Byte, word,
and longword are the primary data-
types. A fairly conventional group of
arithmetic and logical instructions is
provided. The result-generating dyadic
arithmetic and logical instructions are
provided in two and three operand
forms. A number of optimizations are
included: “clear,” which is a move of
zero; “test,” which is a compare against
zero; and “increment” and “decre-
ment,” which are optimizations of add
one and subtract one, respectively. A
complete set of converts is provided
which covers both the integer and the
floating data-types. In contrast to other
architectures, only a few shift-type in-
structions are provided; it was felt that
shifts are mostly used for field isolation
which is much more conveniently done
with the field instructions described
later. In order to support greater-than-
longword precision integer operations, a

few special instructions are provided:
“extended multiply,” “divide,” “add
with carry,’’ and “subtract with carry.”
Floating-point instructions. Again a con-
ventional group of instructions are in-
cluded with result-producing dyadic
operators in two and three operand
forms. Several specialized floating-point
instructions are included. The “extended
modulus” instruction multiplies two
floating operands together and stores the
integer and fraction parts of the product
in separate result operands. The “poly-
nomial” instruction computes a poly-
nomial from a table of coefficients in
memory. Both these instructions employ
greater than normal precision and are
useful in high accuracy mathematical
routines. A “convert rounded” instruc-
tion is provided which implements AL-
GOL rather than FORTRAN conven-
tions for converting from floating-point
to integer.

3. Address instructions. The “move ad-
dress” instructions store in the result op-
erand the effective address of the source
operand. The “push address” optimiza-
tions push on the stack (defined by SP)
the effective address of the source oper-
and. The latter are used extensively in
subroutine calling.
Field instructions. The “extract field” in-
structions extract a 0- to 32-bit field,
sign- or zero-extend it if it is less than 32
bits, and store it in a longword operand.
The “compare field” instructions com-
pare a (sign- or zero-extended if neces-
sary) field against a longword operand.
The “find first” instructions find the first
occurrence of a set or clear bit in a field.
Control instructions. There is a complete
set of conditional branches supporting
both a signed and, where appropriate, an
unsigned interpretation of the various

2.

4.

5 .

418 THE PDP-11 FAMILY

data-types. These branches test the con-
dition codes and take a one-byte PC rel-
ative branch displacement. There are
three unconditional branch instructions:
the first taking a one-byte PC relative
displacement, the second taking a word
PC relative displacement, and the third -
called “jump” - taking a general oper-
and specification. Paralleling these three
instructions are three “branch to sub-
routine” instructions. These push the cu-
rent PC on the stack before transferring
control. The single-byte “return from
subroutine” instruction returns from
subroutines called by these instructions.
There is a set of “branch on bit” instruc-
tions which branch on the state of a
single bit and, depending on the instruc-
tion, set, clear, or leave unchanged that
bit.

The “add compare and branch” in-
structions are used for loop control. A
step operand is added to the loop control
operand and the sum is compared to a
limit operand. Optimizations of loop
control include the “add one and
branch” instructions which assume a
step of one, and the “subtract one and
branch” instructions which assume a
step of minus one and a limit of zero.

The “case” instructions implement the
computed goto in FORTRAN and case
statements in other languages. A selector
operand is checked to see that it lies in
range and is then used to select one of a
table of PC relative branch dis-
placements following the instruction.
Queue instructions. The queue represen-
tation is a double-linked circular list. In-
structions are provided to insert an item
into a queue or to remove an item from a
queue.
Character string instructions. The general
move character instruction takes five op-
erands specifying the lengths and start-

6 .

7.

8.

ing addresses of the source and
destination strings and a f i l l character to
be used if the source string is shorter
than the destination string. The instruc-
tion functions correctly regardless of
string overlap. An optimized move char-
acter instruction assumes the string
lengths are equal and takes three oper-
ands. Paralleling the move instructions
are two “compare character” instruc-
tions. The “move translated characters”
instruction is similar to the general move
character instruction except that the
source string bytes are translated by a
translation table specified by the instruc-
tion before being moved to destination
string. The “move translated until es-
cape” instruction stops if the result of a
translation matches the escape character
specified by one of its operands. The “lo-
cate character” and “skip character” in-
structions find, respectively, the first
occurrence or non-occurrence of a char-
acter in a string. The “scan” and “span”
instructions find, respectively, the first
occurrence or non-occurrence of a char-
acter within a specified character set in a
string. The “match characters” instruc-
tion finds the first occurrence of a sub-
string within a string which matches a
specified pattern string.
Packed decimal instructions. A conven-
tional set of arithmetic instructions is
provided. The “arithmetic shift and
round” instruction provides decimal-
point scaling and rounding. Converts are
provided to and from longword integers,
leading separate decimal strings, and
trailing embedded decimal strings. A
comprehensive “edit” instruction is in-
cluded.

VAX-11 Procedure Instructions

A major goal of the VAX-11 design was to
have a single system-wide procedure calling

VAX-11/780: A VIRTUAL ADDRESS EXTENSION TO THE DEC PDP-11 FAMILY 419

-
CONDITION HANDLER

ENTRY MASK PSW

OLD AP

OLD FP

RETURN PC

convention that would apply to all intermodule
calls in the various languages, calls for oper-
ating system services, and calls to the common
run-time system. Three VAX-11 instructions
support this convention: two “call” instructions
(which are indistinguishable as far as the called
procedure is concerned) and a “return” instruc-
tion.

The call instructions assume that the first
word of a procedure is an entry mask which
specifies which registers are to be used by the
procedure and thus need to be saved. (Actually
only RO through R11 are controlled by the en-
try mask and bits 15: 12 of the mask are reserved
for other purposes.) After pushing the registers
to be saved on the stack, the call instruction
pushes AP, FP, PC, a longword containing the
PSW and the entry mask, and a zero-valued
longword which is the initial value of a condi-
tion-handler address. The call instruction then
loads F P with the contents of SP and AP with
the argument list address. The appearance of
the stack frame after the call is shown in the
upper part of Figure 7.

The form of the argument list is shown in the
lower part of Figure 7. It consists of an argu-
ment count and list of longword arguments
which are typically addresses. The CALLG in-
struction takes two operands: one specifying the
procedure address and the other specifying the
address of the argument list assumed arbitrarily
located in memory. The CALLS instruction
also takes two operands: one the procedure ad-
dress and the other an argument count. CALLS
assumes that the arguments have been pushed
on the stack and pushes the argument count im-
mediately prior to saving the registers con-
trolled by the entry mask. It also sets bit 13 of
the saved entry mask to indicate that a CALLS
instruction is used to make the call.

The return instruction uses F P to locate the
stack frame. It loads SP with the contents of F P
and restores PSW through PC by popping the
stack. The saved entry mask controls the pop-

- FP SP

Ti

AP

OLD RO ..e R11

9.

Figure 7. Stack frame.

ping and restoring of R 11 through RO. Finally,
if the bit indicating CALLS is set, the argument
list is removed from the stack.

Memory Management Design Alternatives

Memory management is comprised of the
mechanisms used: (I) to map the virtual ad-
dresses generated by processes to physical mem-
ory addresses; (2) to control access to memory
(i.e., to control whether a process has read,
write, or no access to various areas of memory);
and (3) to allow a process to execute even if all
of its virtual address space is not simultaneously
mapped to physical memory (i.e., to provide so-
called virtual memory facilities). The memory
management was the most difficult part of the
architecture to design. Three alternatives were
pursued, and full designs were completed for

420 THE PDP-11 FAMILY

the first two alternatives and nearly completed
for the third. The three alternatives were:*

A paged form of memory management
with access control at the page level and
a small number (four) of hierarchical ac-
cess modes whose use would be dedica-
t ed t o spec i f i c p u r p o s e s . T h i s
represented an evolution of the PDP-
1 1 /70 memory management.
A paged and segmented form with access
control at the segment level and a larger
number (eight) of hierarchical access
modes which would be used quite gener-
ally. Although it differed in a number of
ways, the design was motivated by the
Multics [Organick, 1972; Schroeder and
Saltzer, 19711 architecture and the Hon-
eywell 6180 implementation.
A capabilities [Needham, 1972; Need-
ham and Walker, 19771 form with access
control provided by the capabilities and
the ability to page larger objects de-
scribed by the capabilities.

The first alternative was finally selected. The
second alternative was rejected because it was
felt that the real increase in functionality in-
adequately offset the increased architectural
complexity. The third alternative appeared to
offer functionality advantages that could be
useful over the long term. However, it was un-
likely that these advantages could be exploited
in the near term. Further, it appeared that the
complexity of the capabilities design was in-
appropriate for a minicomputer system.

1.

2.

3.

Memory Mapping

The 4.3-gigabyte virtual address space is di-
vided into four regions as shown in Figure 8.

PROGRAM

REGION PER-PROCESS SPACE
[ONE FOR EACH
EXECUTABLE PROCESS)

CONTROL
REGION

SYSTEM
REGION

SYSTEM
SPACE

-3GB

- 4 0 0

Figure 8. Virtual address space.
%

The first two regions - the program and control
regions - comprise the per-process virtual ad-
dress space which is uniquely mapped for each
process. The second two regions - the system
region and a region reserved for future use -
comprise the system virtual address space which
is singly mapped for all processes.

Each of the regions serves different purposes.
The program region contains user programs
and data, and the top of the region is a dynamic
memory allocation point. The control region
contains operating system data structures spe-
cific to the process and the user stack. The sys-
tem region contains procedures tha t are
common to all processes (such as those that
comprise the operating system and RMS) and
(as will be seen later) page tables.

A virtual address has the structure shown in
the upper part of Figure 9. Bits 8:0 specify a
byte within a 512-byte page which is the basic
unit of mapping. Bits 29:9 specify a virtual page
number (VPN). Bits 31:30 select the virtual ad-
dress region. The mechanism of mapping con-
sists of using the region select bits to select a
page table which consists of page table entries
(PTEs). After a check to see that it is not too
large, the VPN is used to index into the page

*It should not be construed that memory management is independent of the rest of the architecture. The various memory
management alternatives required different definitions of the addressing modes and different instruction level support for
addressing.

VAX-l1/780: A VIRTUAL ADDRESS EXTENSION TO THE DEC PDP-11 FAMILY 421

VIRTUAL ADDRESS

3 1 30 29 9 8 0

1

0 0 PROGRAMREGION
0 1 CONTROLREGION
1 0 SYSTEM REGION
1 1 RESERVED U

Figure 9. Virtual and physical addresses

table to select a PTE. The PTE contains either:
(1) 21-bit physical page frame number which is
concatenated with the nine low order bytes in
page bits to form a 30-bit physical address as
shown in the lower part of Figure 9, or (2) an
indication that the virtual page accessed is not
in physical memory. The latter case is called a
page fault. Instruction execution in the current
procedure is suspended and control is trans-
ferred to an operating system procedure which
causes the missing virtual page to be brought
into physical memory. At this point, instruction
execution in the suspended procedure can re-
sume transparently.

The page table for the system region is de-
fined by the system base register which contains
the physical address of the start of the system
region page table and the system length register
which contains the length of the table. Thus, the
system region page table is contiguous in phys-
ical memory.

The per-process space page tables are defined
similarly by the program and control region
base registers and length registers. However, the
base registers do not contain physical addresses;
rather, they contain system region virtual ad-
dresses. Thus, the per-process page tables are
contiguous in the system region virtual address

space and are not necessarily contiguous in
physical memory. This placement of the per-
process page tables permits them to be paged
and avoids what would otherwise be a serious
physical memory allocation problem.

Access Control

At a given point in time, a process executes in
one of four access modes. The modes from most
to least privileged are called Kernel, Executive,
Supervisor and User. The use of these modes by
VAX/VMS is as follows.

1 . Kernel. Interrupt and exception han-
dling, scheduling, paging, physical I/O,
etc.

2. Executive. Logical 1 / 0 as provided by
RMS.

3. Supervisor. The command interpreter.
4. User. User procedures and data.

The accessability of each page (read, write, or
no access) from each access mode is specified in
the PTE for that page. Any attempt to improp-
erly access a page is suppressed and control is
transferred to an operating system procedure.
The accessibility is assumed hierarchically or-
dered: If a page is writable from any given
mode, it is also readable; and if a page is acces-
sible from a less-privileged mode, it is accessible
from a more privileged mode. Thus, for ex-
ample, a page can be readable and writable
from Kernel mode, only readable from Execu-
tive mode, and inaccessible from Supervisor
and User modes.

A procedure executing in a less-privileged
mode often needs to call a procedure that exe-
cutes in a more privileged mode; e.g., a user
program needs an operating system service per-
formed. The access mode is changed to a more
privileged mode by executing a “change mode”
instruction that transfers control to a routine
executing at the new access mode. A return is
made to original access mode by executing a

422 THE PDP-11 FAMILY

“return from exception or interrupt” instruc-
tion (REI).

The current access mode is stored in the pro-
cessor status longword (PSL) whose low-order
16 bits comprise the PSW. Also stored in the
PSL is the previous access mode, i.e., the access
mode from which the current access mode was
called. The previous mode information is used
by the special “probe” instructions which vali-
date arguments passed in cross-access mode
calls.

Procedures running at each of the access
modes require separate stacks with appropriate
accessibility. To facilitate this, each process has
four copies of SP which are selected according
to the current access mode field in the PSL. A
procedure always accesses the correct stack by
using R14.

In an earlier section it was stated that the
VAX- 1 1 standard CALL instruction is used for
all calls including those for operating system
services. Indeed, procedures do call the oper-
ating system using the CALL instruction. The
target of the CALL instruction is the minimal
procedure consisting of an entry mask, a change
mode instruction and a return instruction.
Thus, access mode changing is transparent to
the calling procedure.

Interrupts and Exceptions

Interrupts and exceptions are forced changes
in control flow other than those explicitly in-
dicated by the executing program. The dis-
tinction between them is that interrupts are
normally unrelated to the currently executing
program while exceptions are a direct con-
sequence of program execution. Examples of in-
terrupt conditions are status changes in 1 / 0
devices: examples of exception conditions are
arithmetic overflow or a memory management
access control violation.

VAX- 1 1 provides a 3 1 -priority-level interrupt
system. Sixteen levels (16 through 31) are pro-
vided for hardware while 15 levels (1 through

15) are provided for software. (Level 0 is used
for normal program execution.) The current in-
terrupt priority level (IPL) is stored in a field in
the PSL. When an interrupt request is made at a
level higher than IPL, the current PC and PSL
are pushed on the stack and new PC is obtained
from a vector selected by the interrupt requester
(a new PSL is generated by the CPU). Inter-
rupts are serviced by routines executing with
Kernel mode access control. Since interrupts
are appropriately serviced in a system-wide con-
text rather than a specific process context, the
stack used for interrupts is defined by another
stack pointer called the interrupt stack pointer.
(Just as for the multiple stack pointers used in
process context, an interrupt routine accesses
the interrupt stack using R14.) An interrupt ser-
vice is terminated by execution of an REI in-
struction which loads PC and PSL from the top
two longwords on the stack.

Exceptions are handled like interrupts except
for the following: (1) because exceptions arise in
a specific process context, the Kernel mode
stack for that process is used to store PC and
PSL, and (2) additional parameters (such as the
virtual address causing a page fault) may be
pushed on the stack.

Process Context Switching

tecture, the process state or context consists of:
From the standpoint of the VAX-I1 archi-

1 .

2.

The 15 general registers RO through R13
and R15.
Four copies of R14 (SP): one for each of
Kernel, Executive, Supervisor, and User
access modes.

Two base and two limit registers for the
program and control region page tables.

This context is gathered together in a data
structure called a process control block (PCB)
which normally resides in memory. While a

3. The PSL.
4.

VAX-11/780: A VIRTUAL ADDRESS EXTENSION TO THE DEC PDP-11 FAMILY 423

process is executing, the process context can be
considered to reside in processor registers. To
switch from one process to another, it is neces-
sary that the process context from the pre-
viously executing process be saved in its PCB in
memory, and that the process context for the
process about to be executed be loaded from its
PCB in memory. Two VAX-11 instructions
support context switching. The “save process
context” instruction saves the complete process
context in memory while the “load process con-
text” instruction loads the complete process
context from memory.

I/O
Much like the PDP-11, VAX-I 1 has no spe-

cific 1 / 0 instructions. Rather, 1/0 devices and
device controllers are implemented with a set of
registers that have addresses in the physical
memory address space. The CPU controls 1 /0
devices by writing these registers, the devices re-
turn status by writing these registers, and the
CPU subsequently reading them. The normal
memory management mechanism controls ac-
cess to 1 / 0 device registers, and a process hav-
ing a particular device’s registers mapped into
its address space can control that device using
the regular instruction set.

Compatibility Mode

As mentioned in the VAX-11 overview, com-
patibility mode in the VAX-11 architecture pro-
vides the basic PDP-I 1 instruction set less-
privileged and floating-point instructions.
Compatibility mode is intended to support a
user as opposed to an operating system environ-
ment. Normally a Compatibility mode program
is combined with a set of Native mode pro-
cedures whose purpose it is to map service
requests from some particular PDP- 1 1 oper-
ating system environment into VAX/VMS ser-
vices.

In Compatibility mode, the 16-bit PDP-11
addresses are zero-extended to 32 bits where

standard native mode mapping and access con-
trol apply. The eight 16-bit PDP-11 general reg-
isters overmap the Native mode general
registers RO through R6 and R15; thus, the
PDP-11 processor state is contained wholly
within the native mode processor state.

Compatibility mode is entered by setting the
compatibility mode bit in the PSL. Com-
patibility mode is left by executing a PDP-I1
“trap” instruction (such as that used to make
operating system service requests), and on inter-
rupts and exceptions.

VAX-11/780 IMPLEMENTATION

VAX- 1 1 /780
The VAX- 1 1 /780 computer system is the first

implementation of the VAX-11 architecture.
For instructions executed in Compatibility
mode, the VAX-I I /780 has a performance
comparable to that of the PDP-I 1/70. For in-
structions executed in Native mode, the VAX-
11/780 has a performance in excess of that of
the PDP-11/70 and, thus, represents the new
high end of the I 1 family (LSI-11, PDP-11,

A block diagram of the VAX-11/780 system
is given in Figure 10. The system consists of a
central processing unit (CPU), the console sub-
system, the memory subsystem, and the 1/0
subsystem. The CPU and the memory and 1 / 0
subsystems are joined by a high-speed synchro-
nous bus called the synchronous backplane in-
terconnect (SBI).

VAX-I 1).

CPU
The CPU is a microprogrammed processor

that implements the Native and Compatibility
mode instruction sets, the memory manage-
ment, and the interrupt and exception mecha-
nisms. The CPU has 32-bit main data paths and
is built almost entirely of conventional Shottky
TTL components.

To reduce effective memory access time, the
CPU includes an 8-Kbyte write-through cache

424 THE PDP-11 FAMILY

--L _----- 1 MEMORY SUBSYSTEM CONSOLE
SUBSYSTEM CACHE MEMORV --

1-----:1-l

PORTFOR- I F-H=fl I up TO

2 M BYTES
--e- --- MAXIMUM

REMOTE MICRO CONTROLLER ECCMOS
DIAGNOSIS COMPUTER 'ISK

I ;E-RMINAL J I/O SUBSYSTEMS

, I c , I I

U P T O I T O T A L

FPA = FLOATING POINT ACCELERATOR
WOCS = WRITaIBLE DIAGNOSTICCONTROLSTORf

Figure I O . VAX- 1 1 /780 system

or buffer memory. The cache organization is
two-way associative with an eight-byte block
size. To reduce delays due to writes, the CPU
includes a write buffer. The CPU issues the
write to the buffer and the actual memory write
takes place in parallel with other CPU activity.

The CPU contains a 128-entry address trans-
lation buffer which is a cache of recent virtual-
to-physical translations. The buffer is divided
into two 64-entry sections: one for the per-pro-
cess regions and one for the system region. This
division permits the system region translations
to remain unaffected by a process context
switch.

A fourth buffer in the CPU is the eight-byte
instruction buffer. It serves two purposes. First,
it decomposes the highly variable instruction
format into its basic components and, second, it
constantly fetches ahead to reduce delays in ob-
taining the instruction components.

The CPU includes two standard clocks. The
programmable real-time clock is used by the
operating system for local timing purposes. The
time-of-year clock with its own battery backup
is the long-term reference for the operating sys-
tem. It is automatically read on system startup
to eliminate the need for manual entry of date
and time.

The CPU includes 12 Kbytes of writable di-
agnostic control store (WDCS) which is used
for diagnostic purposes, implementation of cer-
tain instructions, and for future microcode
changes. As an option for very sophisticated
users, another 12 Kbytes of writable control
store is available.

A second option is the Floating-Point Accel-
erator (FPA). Although the basic CPU imple-
ments the full floating-point instruction set, the
FPA provides high speed floating-point hard-
ware. It is logically invisible to programs and
affects only their running time.

Console Subsystem

The console subsystem is centered around an
LSI-I 1 computer with 16 Kbytes of RAM and 8
Kbytes of ROM (used to store the LSI-11 boot-
strap, LSI-11 diagnostics, and console rou-
tines). Also included are a floppy disk, an
interface to the console terminal, and a port for
remote diagnostic purposes.

The floppy disk in the console subsystem
serves multiple purposes. It stores the main sys-
tem bootstrap and diagnostics and serves as a
medium for distribution of software updates.

SBI

The SBI is the primary control and data
transfer path in the VAX-11/780 system. Be-
cause the cache and write buffer largely de-
couple the CPU performance from the memory
access time, the SBI design was optimized for
bandwidth and reliability rather than the lowest
possible access time.

The SBI is a synchronous bus with a cycle
time of 200 nanoseconds. The data path width
of the SBI is 32 bits. During each 200-nano-
second cycle, either 32 bits of data or a 30-bit
physical address can be transferred. Because
each 32-bit read or write requires transmission
of both address and data, two SBI cycles are
used for a complete transaction. The SBI pro-
tocol permits 64-bit reads or writes using one

VAX-11/780: A VIRTUAL ADDRESS EXTENSION TO THE DEC PDP-11 FAMILY 425

address cycle and two data transfer cycles; the
CPU and 1/0 subsystem use this mode when-
ever possible. For read transactions the bus is
reacquired by the memory in order to send the
data; thus, the bus is not held during the mem-
ory access time.

Arbitration of the SBI is distributed: each in-
terface to the SBI has a specific priority and its
own bus request line. When an interface wishes
to use the bus, it asserts its bus request line. If,
at the end of a 200-nanosecond cycle, there are
no interfaces of higher priority requesting the
bus, the interface takes control of the bus.

Extensive checking is done on the SBI. Each
transfer is parity-checked and confirmed by the
receiver. The arbitration process and general
observance of the SBI protocol are checked by
each SBI interface during each SBI cycle. The
processor maintains a running 16-cycle history
of the SBI; any SBI error condition causes this
history to be locked and preserved for diagnos-
tic purposes.

Memory Subsystem

The memory subsystem consists of one or
two memory controllers with up to 1 Mbytes of
memory on each. The memory is organized in
64-bit quadwords with an 8-bit ECC which pro-
vides single-bit error correction and double-bit
error detection. The memory is built of 4 Kbit
MOS RAM components.

The memory controllers have buffers that
hold up to four memory requests. These buffers
substantially increase the utilization of the SBI
and memory by permitting the pipelining of
multiple memory requests. If desired, quad-
word physical addresses can be interleaved
across the memory controllers.

As an option, battery backup is available
which preserves the contents of memory across
short-term power failures.

I/O Subsystem

The 1 / 0 subsystem consists of buffered inter-
faces or adapters between the SBI and the two

types of peripheral buses used on PDP-I 1 sys-
tems: the Unibus and the Massbus. One Unibus
adapter and up to four Massbus adapters can
be configured on a VAX-I 1/780 system.

The Unibus is a medium speed multiplexer
bus that is used as a primary memory as well as
peripheral bus in many PDP-11 systems. It has
an 18-bit physical address space and supports
byte and word transfers. In addition to imple-
menting the Unibus protocol and transmitting
interrupts to the CPU, the Unibus adapter pro-
vides two other functions. The first is mapping
18-bit Unibus addresses to 30-bit SBI physical
addresses. This is accomplished in a manner
substantially identical to the virtual-to-physical
mapping implemented by the CPU. The Unibus
address space is divided into 512 512-byte
pages. Each Unibus page has a page table entry
(residing in the Unibus adapter) which maps
addresses in that page to physical memory ad-
dresses. In addition to providing address trans-
la t ion, the mapping permits contiguous
transfers on the Unibus which cross page
boundaries to be mapped to discontiguous
physical memory page frames.

The second function performed by the
Unibus adapter is assembling 16-bit Unibus
transfers (both reads and writes) into 64-bit SBI
transfers. This operation (which is applicable
only to block transfers such as from disks) ap-
preciably reduces SBI traffic due to Unibus op-
erations. There are 15 8-byte buffers in the
Unibus adapter permitting 15 simultaneous
buffered transactions. Additionally, there is an
unbuffered path through the Unibus adapter
permitting an arbitrary number of simultaneous
unbuffered transfers.

The Massbus is a high speed block transfer
bus used primarily for disks and tapes. The
Massbus adapter provides much the same func-
tionality as the Unibus adapter. The physical
addresses into which transfers are made are de-
fined by a page table; again, this permits con-
tiguous device transfers into discontiguous
physical memory.

426 THE PDP-11 FAMILY

Buffering is provided in the Massbus adapter
which minimizes the probability of device over-
runs and assembles data into 64-bit units for
transfer over the SBI.

ware and software engineers, the author would
like to acknowledge the other members of the
initial architectual group: Gordon Bell, Peter
Conklin, Dave Cutler, Bill Demmer, Tom Hast-

ACKNOWLEDGEMENTS
ings, Richy Lary, Dave Rodgers, and Steve
Rothman. Mary Jane Forbes and Louise Prin-

Although the final architecture is the result of
several design iterations involving many hard-

cipe deserve special thanks for typing this man-
uscript.

APPENDIX - VAX-11 INSTRUCTION SET

Integer and Floating-point Logical
Instructions

MOV-
MNEG-
MCOM-
MOVZ-

CLR-
CVT-

CVTR-L

CMP-
TST-
BIS-2
BIS-3
BIC-2
BIC-3
BIT-
XOR-2

XOR-3

ROTL
PUSHL

Move (B, W, L, F, D, Q)*
Move Negated (B, W, L, F, D)
Move Complemented (B, W, L)
Move Zero-Extended (BW, BL,

Clear (B, W, L = F, Q = D)
Convert (B, W, L, F, D) (B, W, L,
F, D)
Convert Rounded (F , D) t o
Longword
Compare (B, W, L, F, D)
Test (B, W, L, F, D)
Bit Set (B, W, L) 2-Operand
Bit Set (B, W, L) 3-Operand
Bit Clear (B, W, L) 2-Operand
Bit Clear (B, W, L) 3-Operand
Bit Test (B, W, L)
Exclusive OR (B, W, L) 2-Oper-
and
Exclusive OR (B, W, L) 3-Oper-
and
Rotate Longword
Push Longword

WL)

Integer and Floating-point Arithmetic
Instructions

INC-
DEC-
ASH-
ADD-2
ADD-3
ADWC
ADAWI
SUB-2

SUB-3

SBWC
MUL-2

MUL-3

EMUL
DIV-2

DIV-3

EDIV
EMOD-
POLY-

Incremeent (B, W, L)
Decrement (B, W, L)
Arithmetic Shift (L, Q)
Add (B, W, L, F, D) 2-Operand
Add (B, W, L, F, D) 3-Operand
Add with Carry
Add Aligned Word Interlocked
Subtract (B, W, L, F, D) 2-Oper-
and
Subtract (B, W, L, F, D) 3-Oper-
and
Subtract with Carry
Multiply (B, W, L, F, D) 2-Oper-
and
Multiply (B, W, L, F, D) 3-Oper-
and
Extended Multiply
Divide (B, W, L, F, D) 2-Oper-
and
Divide (B, W, L, F, D) 3-Oper-
and
Extended Divide
Extended Modulus (F, D)
Polynomial Evaluation (F, D)

* B = byte, W = word, L = longword, F = floating, D = double floating. Q = quadword. S = set, C = clear

VAX-11/780: A VIRTUAL ADDRESS EXTENSION TO THE DEC PDP-1 1 FAMILY 427

Packed Decimal Instructions

MOVP
CMPP3
CMPP4
ASHP

ADDP4
ADDP6
SUBP4
SUBP6
MULP
DIVP
CVTLP
CVTPL
CVTPT
CVTTP
CVTPS
CVTSP
EDITPC

Move Packed
Compare Packed 3-Operand
Compare Packed 4-Operand
Arithmetic Shift and Round
Packed
Add Packed 4-Operand
Add Packed 6-Operand
Subtract Packed 4-Operand
Subtract Packed 6-Operand
Multiply Packed
Divide Packed
Convert Long to Packed
Convert Packed to Long
Convert Packed to Trailing
Convert Trailing to Packed
Convert Packed to Separate
Convert Separate to Packed
Edit Packed to Character String

Character String Instructions

MOVC3
MOVCS
MOVTC
MOVTUC
CMPC3
CMPCS
LOCC
SKPC
SCANC
SPANC
MATCHC

Move Character 3-Operand
Move Character 5-Operand
Move Translated Characters
Move Translated Until Character
Compare Characters 3-Operand
Compare Characters 5-Operand
Locate Character
Skip Character
Scan Characters
Span Characters
Match Characters

Variable-Length Bit Field Instructions

EXTV Extract Field
EXTZV Extract Zero-Extended Field
INSV Insert Field
CMPV Compare Field
CMPZV Compare Zero-Extended Field
FFS Find First Set
FFC Find First Clear

Index Instruction

INDEX Compute Index

Queue Instructions

INSQUE Insert Entry in Queue
REMQUE Remove Entry from Queue

Address Manipulation Instructions

MOVA-

PUSHA-

Move Address (B, W, L = F, Q =
D)
Push Address (B, W, L = F, Q =
D) on Stack

Processor State Instructions

PUSHR Push Registers on Stack
POPR Pop Registers from Stack
MOVPSL Move from Processor Status

Longword
BISPSW Bit Set Processor Status Word
BICPSW Bit Clear Processor Status Word

Unconditional Branch and Jump
Instructions

B R-
JMP Jump

Branch on Bit Instructions

BLB-
BB-
BBS-
BBC-

BBSSI

BBCCI

Branch with (B, W) Displacement

Branch on Low Bit (S, C)
Branch on Bit (S, C)
Branch on Bit Set and (S, C) Bit
Branch on Bit Clear and (S, C)
Bit
Branch on Bit Set and Set Bit In-
terlocked
Branch on Bit Clear and Clear Bit
Interlocked

Loop and Case Branch

ACB-

AOBLEQ

AOBLSS
SOBGEQ

SOBGTR

CASE-

Add, Compare and Branch (B,

Add One and Branch Less Than
or Equal
Add One and Branch Less Than
Subtract One and Branch Greater
Than or Equal
Subtract One and Branch Greater
Than
Case on (B, W, L)

w , L, F, D)

428 THE PDP-11 FAMILY

Subroutine Call and Return Instructions

BSB-

JSB Jump to Subroutine
RSB Return from Subroutine

Procedure Call and Return Instructions

CALLG Call Procedure with General Ar-
gument List

CALLS Call Procedure with Stack Argu-
ment List

RET Return from Procedure

Access Mode Instructions

CHM-

REI

PROBER Probe Read
PROBEW Probe Write

Branch on Condition Code

BLSS Less Than
BLSSU Less Than Unsigned
(BCS) (Carry Set)
BLEQ Less Than or Equal

Branch to Subroutine with (B, W)
Displacement

Change Mode to (Kernel, Execu-
tive, Supervisor, User)
Return from Exception or Inter-
rupt

BLEQU
BEQL

BNEQ

BGTR
BGTRU
BGEQ
BGEQU
(BCC)
BVS
BVC

(B EQ L U)

(BNEQU)

Less Than or Equal Unsigned
Equal
(Equal Unsigned)
Not Equal
(Not Equal Unsigned)
Greater Than
Greater Than Unsigned
Greater Than or Equal
Greater Than or Equal Unsigned
(Carry Clear)
Overflow Set
Overflow Clear

Privileged Processor Register Control
Instructions

SVPCTX Save Process Context
LDPCTX Load Process Context
MTPR Move to Process Register
MFPR Move from Processor Register

Special Function Instructions

CRC Cyclic Redundancy Check
BPT Breakpoint Fault
X FC Extended Function Call
NOP No Operation
HALT Halt

Opposite:

A small Register Transfer Module (RTM) system

I:

Evolution of Computer Building Blocks

As discussed in Chapter 1, a computer system can be viewed as a hierarchy of
structural levels, each level consisting of a set of elements that are aggregates of
those at the next lower level. From that point of view, the PDP-1 was constructed
from elements or building blocks that were DEC Systems Modules, each contain-
ing elements from the switching circuit level of the structural hierarchy (AND
gates, O R gates, etc.). When the integrated circuit was introduced, the number of
components in one indivisible package became an order of magnitude larger than
it had been with discrete components. The functionality contained in a single
DEC module increased accordingly, and it was not long before computers were
constructed using building blocks from the next higher level in the structural hier-
archy. At that level, the register transfer (RT) level, modules each contained regis-
ter files, multiplexers, arithmetic logic units, and so on. The functions available in
a single integrated circuit, and the functionality available in a single module, have
been dictated by the search for universal functions discussed in the section “LSI
dilemma,” in Chapter 2.

While Chapters 4 and 5 are devoted to the history of DEC modules and the
circuit and logic level characteristics that developed in the various module fami-
lies as a result of the advances in semiconductor technology, the chapters in Part
IV emphasize the role of modules as digital systems and computer building
blocks. Thus, the emphasis is on the use of modules at the register transfer and
processor-memory-switch (PMS) levels of the structural hierarchy.

Two types of building block are discussed:

1 . Module sets are building blocks used to construct digital systems, often
specialized computers, where short design time is the primary goal. For
example, they are used in constructing low volume special purpose equip-
ment, or in teaching.
Computer elements are mainstream building blocks used to construct
computers when the primary goal is cost/performance of the design and
design time is secondary.

2.

REGISTER TRANSFER MODULES (RTMs)

The most complete examples of the module set building blocks are the Register
Transfer Modules (RTMs) produced by DEC in the late 1960s and the Macromo-
dules proposed by Wes Clark in 1967 [Clark, 1967; Ornstein et al., 19671. The
Register Transfer Modules are of interest because they were building blocks of a

431

P w
N

m
E

Figure 1 Progresslon of packaging of computer elements showing four levels treated in Part IV.

EVOLUTION OF COMPUTER BUILDING BLOCKS 433

high level of functionality which were produced and marketed commercially.
Moreover, they offer an opportunity to assess design at the register transfer level
and to assess the use of design languages. The Macromodules are of interest be-
cause they preceded the Register Transfer Modules and differed from RTMs in
several important ways. Macromodules were five times as expensive as RTMs but
twice as fast. Macromodule systems were less permanent when constructed than
RTMs but were easier to wire. The two building block types also differed in
design style. The data memory system with general purpose arithmetic capability
available in Register Transfer Modules led to a central accumulator style of de-
sign, whereas Macromodules used a distributed data and memory style.

Table 1. Register Transfer Module Types

2-way Branch
8-way Branch
Bus Sense and Termination

Clock
Delay
Integrating Delay
Diverge (null)
Evoke
No Operation
Parallel Merge
2-way Serial Merge
4-way Serial Merge
Subroutine Call
Program Controlled
Sequencer

Data Operator

2-input AND, OR
4-input AND, OR
4-input Decoder
2-input EXCLUSIVE-OR
NOT
Flags (Boolean)
General Purpose Aritmetic

Transducers

Analog-to- Digital
Digital-to-Analog
General Purpose Interface
Input Interface
Lights and Switches
Output Interface
Serial Interface

Memory

Byte
Word Transfer
4-word Constants
24-word Constants
16-word Scratchpad
256-word Array
1,024-word Array
1,024-word Read-only

The RTM paper (Chapter 18) describes the module set and the design decisions
leading to it. Two design examples are given, the second being a small stored
program computer, a nontrivial test of the completeness of the set. The module
set consisted of 36 modules, of which 10 came from the standard DEC catalog.
Table 1 gives a list of the modules available.

Additional studies on Register Transfer Modules documented user experience
with RTMs. A 1973 workshop on the architecture and application of digital mod-
ules is reported by Fuller and Siewiorek [1973], who compare the cost, perform-
ance, and design time of the modular systems to standard small- and medium-
scale integration systems. They note that modular systems were more expensive
because a substantial portion of their cost was a result of those features that made

434 THE EVOLUTION OF COMPUTER BUILDING BLOCKS

them modular. These included features to establish module protocol, to allow
word extendability, and to ensure electrical compatibility. It was estimated that
this cost was 50-70 percent of the total cost of Macromodules and 30 percent of
the total cost of RTMs. Systems built with modules cost between two and ten
times that of comparable systems built from small- and medium-scale integrated
circuits. Performance comparisons were also reported and included:

1.

2.

A PDP-8 designed with Register Transfer Modules performed at 40 per-
cent of the speed of the DEC-built PDP-8 and cost twice as much.
Matrix multiply programmed on a small machine built with RTMs took
400 microseconds, 5 microseconds on a CDC 7600, and 35 microseconds
in Macromodules.
The Fast Fourier Transform butterfly multiply implemented in Macromo-
dules was comparable in execution time to one programmed on a CDC
6600.
A program for the major path of an electrocardiogram preprocessor exe-
cuted in 7 microseconds on a CDC 6600 and 37 microseconds on a PDP-9.
A Macromodule system took 3 microseconds and a TTL design took a
projected 1.5 microseconds.

Register Transfer Modules clearly met their educational goal. Their use in Car-
negie-Mellon’s Digital Systems Laboratory is reported in [Grason and Siewiorek,
19751. Four student projects are described: a system to simulate the soft landing
of a rocket under computer control, real-time monitoring of an instrument flight
trainer, a computer-controlled transit system, and a computer-guided vehicle with
ultrasonic obstacle detection.

Module sets have been used in research on design automation at the register
transfer level. The work with the Carnegie-Mellon RT-CAD system, reported in
[Siewiorek and Barbacci, 19761, attempted to go beyond the conventional work
(register transfer level simulation and synthesis of designs from register transfer
level descriptions) into the realm of automated design space exploration.

While Register Transfer Modules were used in educational projects and in re-
search projects, the DEC-built computer using Register Transfer Modules, the
PDP-16, was not as commercially successful as had been hoped. Until 1965, the
DEC Modules sector of DEC’s business had been as profitable as any other and
had been growing as fast. However, once integrated circuits became widely used
in 1966, the revenues from DEC Modules ceased to grow. Register Transfer Mod-
ules were an attempt to revive growth in modules by offering building blocks at
the right level, i.e., the one suggested by the underlying circuit technology. There
appear to have been two reasons for their lack of success. The first, as described in
[Grason, et al., 19731, was designer resistance to designing at the higher level; the
second was that Register Transfer Modules were introduced too late. The avail-
ability of complex functions in a single chip, particularly microprocessors such as
the Intel 8008 introduced in the early 1970s, cut short the life of the RTM.

3.

4.

EVOLUTION OF COMPUTER BUILDING BLOCKS 435

History might have been different if the module for microprogrammed control
had been available at the outset, but because low cost semiconductor read-only
memories were not available, it was not. A second reason for not using micro-
programming at the outset was that the parallelism inherent in the data-memory
part of a system could not be fully exploited unless an arbitrarily wide control
store could be built. Indeed, this limitation is experienced in the use of today’s bit-
slice sequencers.

Perhaps the highest payoff from Register Transfer Modules, both an indirect
and intangible benefit, has been their influence on the bit-slice and other building
blocks such as the Fairchild MACROLOGIC and AMD 2900-series devices.
RTMs have provided experience in thinking about the process of design and have
stimulated thinking about the choices of primitives, notations, and levels. They
have influenced the choice of data-memory and processor elements and the use of
microprogrammed controls.

BIT-SLICES (FRACTIONAL REGISTER TRANSFER LEVEL MODULES)
AS BUILDING BLOCKS

Chapter 19 on the CMU-11 is important because it documents the experience
of testing a set of building blocks in a real design. Only by carrying out a complete
design (whether on paper or to the breadboard stage) can the suitability be mea-
sured. The paper is a strong case study; it provides good engineering data, such as
the breakdown of the package count for each of the three major parts of the
design: data, control, and Unibus.

The CMU-I 1 was built using Intel 3000-series bit-slices. Since the time that the
CMU-I 1 project was started, newer series of bit-slice components have become
available, most notably the AMD 2900-series. Today, these components are the
dominant mainstream building blocks and have been used in a variety of appli-
cations. For example, the 4 bit wide AM2901 slice was used in 1976 to implement
the 64 bit wide data path of the Floating-Point Processor for the PDP-11/34, and
bit-slices are now the technology of choice for mid-range PDP-I1 processors
(Chapter 13).

The building blocks available in 1978 are reasonably represented by the follow-
ing:

1. Datapath slice. A 4-bit-wide slice containing an arithmetic and logic unit,
16 registers in a two-port file, data buses, shifter, and multiplexers (the
AM 290 1).
Microprogram control unit. A circuit which generates control store ad-
dresses; it contains the micro-level program counter, incrementer, a stack,
and the circuitry to select the machine state inputs (AM2909: 4 bits wide,
or AM2911: 12 bits wide).
Interrupt processing unit. (AM29 14).
Interface circuits. The AM2917 is a typical circuit and contains bus trans-
ceivers for 4 lines, a data register, latch, and parity tree.

2.

3 .
4.

436 EVOLUTION OF COMPUTER BUILDING BLOCKS

Design aids include a microprogram assembler, an evaluation kit, and a micro-
program debugging and editing facility.

In late 1977, two new circuits with higher functionality were introduced. The
AM2903, a successor to the AM2901, has added multiplication and division
primitives, extended shifting, and an expandable register file [Coleman et al.,
19771; and the AM2904 to control shift register linkages, a micro-level status
register, and carry control. Given this wider range for the designer to choose
from, the proportion of a processor that can cost-effectively use bit-slices should
be higher than the 20 percent in CMU-11. However, it probably would not exceed
40 percent. For example, 29 percent of the CMU-I 1 cost (board area) is due to the
circuits for a Unibus interface which could not be implemented with acceptable
performance by the bit-slice components; even the newly available bit-slices
would not impact this area. Moreover, as more PDP-11 specific functions are
added, the area would decrease.

The bit-slices discussed above use Schottky TTL logic and result in a micro-
instruction cycle time of between 100 and 300 nanoseconds (200 is average). Bit-
slices in other logic families exist, for example, the Motorola 10800, an ECL slice,
which has a microinstruction cycle time of 55 nanoseconds.

COMPUTER MODULES

As the underlying circuit technology moves to higher and higher levels of com-
plexity per chip, competition from modules at the next higher level of design
becomes viable. An example is the substitution of PMS level modules for RT level
modules (RTMs). Register transfer level module sets are then either abandoned
or applied in a different application area - the higher speed area.

The proposal for a set of PMS level system-building modules of about mini-
computer complexity was first made in [Bell et al., 19731, where they were called
“Computer Modules” (CMs). A CM consists of a processor and memory, to-
gether with several carefully designed ports, as shown in Figure 2. Given that the

I

P O R T CONTROLLERS

Figure 2 PMS diagram of Computer Module

EVOLUTION OF COMPUTER BUILDING BLOCKS 437

1/0 and interrupt structure of conventional computers makes it difficult to con-
struct closely coupled networks, the port architecture was proposed. It was de-
signed to handle operations such as handshaking and buffering, executing
concurrently with the processor of the CM. The port was intended to allow con-
struction of CM systems covering a wide range of cost and performance.

The paper argued strongly, based on the increasing complexity and decreasing
cost of large-scale integrated circuits, for the investigation of large digital mod-
ules. The then current microprocessors of Intel, National Semiconductor, and
AMD were seen as precursors of computer modules. The Computer Module was
also viewed as part of the evolution of centralized computer structures into highly
distributed, intelligent networks.

The set of applications investigated included array processing (Fast Fourier
Transform processing, generalized array processing, and radar signal processing),
sorting, language processing (compilation and machine language interpretations),
and process control. In each case, the intermodule communications requirements
were emphasized, as was the range of performance that could be achieved by
varying the CM system structure. The following table gives some of the expected
characteristics of CM systems together with the actual values Cm*, the CMU
multiprocessor that is the subject of Chapter 20.

Attribute 1973 Paper Cm* (1977)

Processors 1 1
Memory Size 1 Kwords and over 28 Kwords
Word Size 8 to 16 bits 16
Ports 2 to 5 2
CMs per system A few to IO

several
thousand

By late 1973, much of the design of CMs had been solidified. Bus structures
were postulated, and the inter-CM communication was to be based on mappings
between address spaces. A system of four CMs is shown in Figure 3.

In 1975, a second design was started. It used an LSI-11 as the basic CM. A 10
processor, 5 12-Kbyte primary memory prototype was completed and made avail-
able for experimentation in the spring of 1977. The detailed design and implemen-
tation of Cm* are discussed in a set of papers [Jones et al., 1977; Swan et al., 1977;
and Swan et al., 1977al. Chapter 20 postdates these papers and is included be-
cause of the real performance data it contains.

The Chapter 20 Cm* work, sponsored by the National Science Foundation and
the Advanced Research Projects Agency (ARPA) of the Department of Defense is
an extension of earlier NSF-sponsored research [Bell et al., 19731 on register
transfer level modules. As large- and very large-scale integration enable construc-
tion of the processor-on-a-chip, it is apparent that low level Register Transfer

438 EVOLUTION OF COMPUTER BUILDING BLOCKS

INTER C M
BUS L

I

INTER C M
BUS M

Figure 3. PMS diagram of four Computer Modules.

Modules are obsolete for the construction of all but low volume computers. Al-
though the research is predicated on structures employing a hundred or so proces-
sors, this chapter describes the culmination of the first (10 processor) phase.

The authors motivate their work by appealing to diseconomy-of-scale argu-
ments. To provide additional context for their research, computer modules
(Cm*), multiprocessors (C.mmp), and computer networks are described in terms
of performance and problem suitability. The chapter gives a description of the
modules structure, together with associated limitations and potential research
problems. The final, most important part of the chapter evaluates the perform-
ance of Cm* for five different problems.

It is interesting to note how the major focus has shifted from computer modules
per se to multiprocessors. Three separate efforts in the Cm* project can be identi-
fied:

1. Multiprocessor architecture research.
2.
3.

Solving the 16-bit addressing limitation of the PDP-11.
Operating systems primitives - capabilities.

EVOLUTION OF COMPUTER BUILDING BLOCKS 439

Table 2. Comparison of Computer Building Blocks

DEC Modules
1000 Series RTMs Bit-Slices CMs

Design level Combinationa I
and sequential
circuit level

Register transfer
level

Algorithm for
interpreting
ISP

PMS level
(algorithm of
application)

Number of
module types

35 35 22 plus
standard
logic

40-pin DIP

40

1 /2 x 2 x 1 /2

2 (CM. port
controller) plus LSI-
11 options

Package

Number of pins

Plug-in

22

1 /2 X4- 1 /2 X7

PI ug- i n

72

1 /2 X8- 1 /2 X5

Plug-in

1 44

Dimensions
(inches)

1 /2 X8- 1 /2X 1 0

Volume (in31 16

10

21

200

5

500

42

Number of
transistors

2,000 + 64 Kbits

Delay cycle
time

200 ns 500 ns 200 ns 2-4 HS

Logical inter-
connect be-
tween modules

Data Anything Data bus Several data buses;
map bus and
intercluster buses

Control Anything Sequence of
K.evoke activate
and timing
interlock (later
K(PCS))

Micro-
program
generated
module
control
signals and
clock ticks

Control messages
via map bus
intercluster bus

Design tools Chartware; book
("how to")

Micro-
program-
ming tools

Languages
and ISP
notation
operating
system

Computer
example

PDP-1

100 Kips

PDP-S/RTM CMU-11 Crn *

Speed 120 Kips 240 Kips 640 Kips (Descal)

440 EVOLUTION OF COMPUTER BUILDING BLOCKS

A companion paper to the chapter on Cm* discusses the programming issues
raised by a computer module structure [Jones et al., 19781. An operating system,
called “Star OS,” manages a single Cm* cluster. It provides capability address-
ing, memory allocation, software module declaration, process management, mes-
sage transmission, processor multiplexing, and trap and interrupt handling. Star
OS is distributed in such a fashion that any kernel function can be executed in any
CM. To decrease average memory reference time, 8 Kbytes of what the designers
believe to be the most frequently executed Star OS software (interrupt handling,
process switching, and message communication) is duplicated in each CM.

Since the time that the article was written, construction of a 50 computer mod-
ules Cm* has begun and is planned to be operational by the end of 1978 for
evaluation in 1979. The extension of Cm* is known as “Cm*/50” and is de-
scribed in Chapter 16. It will be used to test ideas on parallel processing methods,
fault tolerance, modularity, and the extendability of the Cm* structure.

CONCLUSIONS

The four design methods presented in this part are compared in Table 2. As
stated in Chapter 2, the predominant design level in the future will be the PMS
level, using fifth generation components (microcomputers) as building blocks.
The challenge to designers and researchers is therefore to understand what com-
munication structures are needed to interconnect these building blocks.

The Description and Use of
Register Transfer Modules (RTMs)

C. GORDON BELL, JOHN EGGERT,
JOHN GRASON, and PETER WILLIAMS

INTRODUCTION

In the design of digital systems (e.g., com-
puters) the problem formulation and the design
solution are most likely carried out at a register
transfer concept level. Early and recent texts on
logical and computer design discuss the register
transfers as primitive components [Bartee et al.,
1962; Chu, 19701. Logical design simulators
that use a register transfer language have been
written, and there have been several attempts to
carry out detailed sequential and combinational
logic designs from register transfer descriptions
[Friedman and Yang, 19691. Despite the ac-
knowledgment that there are primitives based
on register transfers, there is yet to emerge a
common set of modules that are taken as primi-
tive in the same way we think of various flip-
flop types and NAND and NOR gates. How-
ever, Clark at Washington University, St.
Louis, Mo. [Clark, 19671, has been developing
and evaluating such a basic set of modules,
called Macromodules.

Register Transfer Modules are our first at-
tempt at providing a basic set of modules for
high level digital systems design. These modules
have been implemented by the Digital Equip-
ment Corporation (DEC). The design of RTMs

has been influenced by many of the above ap-
proaches and disciplines, and by programming
methods. This note presents the general prob-
lem RTMs are trying to solve, the factors con-
straining their design, a brief description of the
more important modules from a user’s point of
view, and two examples of their use.

Several aspects of the RTM system are im-
portan t .

Digital system design is carried out en-
tirely in terms of the modules; com-
binational and sequential switching
circuit design are not used. (The process
is akin to programming a sequential
computer.) Design time is significantly
less than with conventional logical de-
sign.
The most abstract representation, and
usually the only representation of a
given design, has enough information
for constructing the system. This repre-
sentation is a standard flowchart to spec-
ify the control flow, coupled to a data
part that holds the data and carries out
data operations.

44 1

442 EVOLUTION OF COMPUTER BUILDING BLOCKS

3. The Register Transfer Modules make ex-
tensive use of MSI circuitry and can use
LSI circuitry to provide even lower cost
modules.

M O DU LE DES I G N CONS1 D E RAT1 0 N S

The three problem classes for which the mod-
ules were designed are: special purpose,
computer-related, and educational digital sys-
tems. Although the initial motivation for the
modules was for education, they were not de-
signed solely for this purpose. The goals for
educational use place too many constraints on
the design. The main influence of the educa-
tional market has been to clarify the peda-
gogical nature; hence, the description of
systems is made easy. The special purpose
digital systems are larger than 20 MSI circuits,
but smaller than a stored program computer (a
typical RTM system would have 4- 100 control
states, 1-4 arithmetic units, and a small mem-
ory of 16- 1000 words). Computer-related ap-
plications range from computer peripherals to
the emulation of computers.

We make no attempt to show that the mod-
ules are an optimum set, according to an objec-
tive function. Because of the elementary nature
of the control and data operations, the set is
sufficient to construct digital systems. Table 1
shows the important design variables for
RTMs, together with many of the constraints.
Their design is described in Bell and Grason,
[1971].

THE RTM SYSTEM

The RTM system consists of about 20 differ-
ent modules and a method of interconnecting
modules via a common bus that carries data
and timing interlock signals for the register
transfers. Some of the modules (DM, T, and M
types) connect to the bus in order to transfer
data, and the remaining modules (K type) “con-
trol” when data are to be transferred. The mod-
ule name types are based on the structure
primitive types of Bell and Newell [1966; 19711.

A register transfer language, ISP (instruction
set processor) [Bell, Newell, 1966; Bell, Newell,
19711, is used to define the register transfer op-
erations of the RTMs. Here we use only the
parts of ISP that are commonly known by the
digital systems engineer and are similar to a
programming language (e.g., FORTRAN). The
four main module types are as follows.

DM-Type (Data Operation Combined with
Memory)

These modules are what we commonly think
of as being a digital system (or at least the arith-
metic unit). They are the register transfer gating
paths and combinational circuits for the simple
arithmetic and logical functions - hence the D
part (for data operations). The D part carries
out the evaluation of the right-hand side of an
arithmetic expression as in a programming lan-
guage in which an integer value is computed
prior to storing, e.g., t A + B , tA-B, t A O B ,
t A + 1 . Thus, an expression “left-hand-
sidetright-hand side” (e.g., H t C + D) is used to
indicate the integer value of the right-hand side
being read and placed in the register on the left-
hand side.

M-Type (Memory)

The memory (M) part is just the registers
(e.g., A, B) that hold data between statements;
these essentially correspond to the variables
that are declared in a program. The operations
on memory are usually reading (t M) and writ-
ing (M t) . Types of DM and M modules are the
general purpose arithmetic unit, a single-trans-
fer register, Boolean flags (I-bit registers), read-
write memories, and read-only memories. The
memories hold two’s complement 8-, 12-, or 16-
bit integers.

K-Type (Control)

The K modules are responsible for con-
trolling the transfer of data among the various
registers by appropriately evoking operations

THE DESCRIPTION AND USE OF REGISTER TRANSFER MODULES 443

Table 1. Basic R T Design Decisions

1. Logic: TTL (acceptable for speed and noise immunity: low cost)

2. Packaging: Printed circuit boards of 5 X 8-112 inches or 2-1/2 X 8-112 inches with 72 or
36 pins (DEC compatible).

3. Intermediate connection: Pre-wired buses; wirewrap and push-on connections over wire-
wrap pins.

4. Logic interconnection rules: One kind of control signal and data bus. Very small number of
rules compared to IC use.

5. Problem size: 4- 100 control steps: 1 -4 arithmetic registers: 16- 100 variables; possibly
read-only memory.

6. Word length: 8-, 12-, and 16-bit (present de facto standard - can be extended).

7. Universality and extendability: The modules are not a panacea. There are provisions for
escape to regular integrated circuits, standard DEC modules, and DEC computers (and their
components).

8. Selection of primitives: Basic register, bus interconnection structure, and data representation
were first determined. The operations that formed a complete set for the data representation
were then specified. With this basic module set, designs were carried out for benchmark
problems and design iteration occurred.

9 . Notations: PMS and ISP of Bell and Newell [1971 1.

10. Automatic (algorithmic) mapping of algorithm into hardware: The basic RT design archetype
representation is a flowchart. The register transfer operations are expressed in the ISP lan-
guage.

1 1. Parallelism and speed: Provision for multiple buses; the modules are asynchronous. (The
application classes put relatively low weight on speed.) For teaching purposes parallelism is
an important principle. (A decision to use a bus, and thereby limit parallelism to the number
of buses, was made for both cost and simplicity reasons.)

by DM and M types. The K modules are analo-
gous to the control structure of a program. The
K modules called K.evoke control the times
when the various operations of the DMs and
Ms are evoked (executed). The K.branch mod-
ules are used to make decisions about which op-
e r a t i o n s a r e t o b e e v o k e d nex t . T h e
Ksubroutine modules are used to connect a se-
quence of operations together as a subroutine.
Kserial-merge allows control flow to merge
into a single control flow when any flow input is
present. K.paralle1-branch and K.parallel-

merge modules synchronize control where there
is more than one operation taking place at a
time. Other control modules include clocks, de-
lays, and manual start keys.

T-Type (Transducers)
These modules provide an interface to the en-

vironment outside RTM. These include the
Teletype interface, analog/digital converters,
lights, switches, and interfaces to computers.
These modules also connect to the common
data bus.

444 EVOLUTION OF COMPUTER BUILDING BLOCKS

The details of the modules will be introduced
by giving the four modules that are necessary
for nontrivial digital systems: K.evoke,
DM.gpa, K.branch, and K.bus.

K (Evoke)

K.evoke (Ke) is the basic module that evokes
a function consisting of a data operation and a
register transfer - in essence an arithmetic ex-
pression. When a Ke is evoked, it in turn evokes
the function, consisting of the data operation
followed by a register transfer, and when the
function is complete, Ke evokes the next K in
the control sequence. The diagram for Ke with
its two inputs and two outputs is shown in Fig-
ure 1. In terms of a finite state machine, Ke is a
state with the ability to evoke an output action
and then make a transition to another state.
K.evoke is as follows.

STATE IMPLIED BY A K.evOke
J

- / O U T P U T ACTION &---$;~

DM (General Purpose Arithmetidgpa)

The DM.gpa allows arithmetic function re-
sults (data operations) that have been per-
formed on its two registers A and B to be
written into other registers (using the bus). Re-
sults can also be transferred (written) into A
and B (A t ; Be). The data operations are: t A ,

t A X 2 , t A A B , t A V B , and t A O B . An input
that evokes the function t(Result)/2 can be
combined with the previous function outputs to
give t A / 2 , t B / 2 , t(A+B)/2, etc. Two Boolean
inputs, shift in <16, - I > , allow data to be
shifted into the left- and right-hand bits on /2
and X2 operations, respectively. Bits of regis-
ters A and B are available as Boolean outputs.

t B , t T A , t l B , +-A+B, +A-B, +A-1, +A+ I ,

EVOKE THE NEXT CONTROL FVNCTION/BYII

N E X T STATE
Figure 1. Diagram for the control module K.evoke

K (Branch)

K.branch (Kb) provides for the routing of
control flow based on the condition of a Boo-
lean input. The diagram for Kb with its two in-
puts and two outputs is shown in Figure 2. Each
time a branch control is evoked, i t in turn
evokes either of the controls following it,
depending on whether the Boolean input is true
(a I) or false (a 0). In terms of a finite state ma-
chine, Kb is a state with the capability of going
to either of two next states, depending on a
Boolean input. K.branch is as follows.

NEXT STATE IF - ,b

STATE I M P L I E D BY K .branch

K (Bus Sense and Control Module/Bus)

Each independent data bus in the system re-
quires a centralized control module. It has a
register, Bus, that always contains the result of
the last register transfer that took place via the
bus. K.bus carries out of several functions:
monitoring register transfer operations; provid-
ing for single-step manual control for algorithm

BOOLEAN INPUT

BOOLEAN TO

evnO/lEVOKE NEXT IF
BOOLEAN IS
FALSE/O/NOI

eVnl/lEVOKE NEXT IF
BOOLEAN IS

TRUE/I/VES)

NEXT STATE IF b Figure 2. Diagram for the control module K.branch

THE DESCRIPTION AND USE OF REGISTER TRANSFER MODULES 445

flow checkout by the user; providing for sense
lights (indicators); providing for a word source
of zero, Le., e0; forming Boolean functions of
the Bus register; power-on initialization; man-
ual startup; and bus termination.

DESIGN WITH RTMs

Digital systems engineers are concerned with
formulating algorithms that, when executed by
hardware, behave according to the solution of
the original design problem. The solutions of
digital systems design problems using program-
ming, conventional logical design, and RTM
design are all similar. The three design and im-
plementation processes have the same goal: to
construct a program for a machine, or a hard-
wired machine to execute the algorithm stated
(or implied) in the problem. Thus, program-
ming and digital systems engineering are con-
cerned with interconnecting basic components
or building blocks for executing algorithms; the
building blocks are machine operations and
logical design components, respectively. RTMs
are a basic set of components for constructing
hardware algorithms. That is, they are the com-
ponents for digital systems design.

The design protocol using RTMs is very
much akin to that of designing a program. The
designer takes a natural language statement of
the problem and carries out the conversion to a
process description that acts on a set of data
variables (and any temporary data variables).
An RTM design has two parts: (1) the explicitly
declared data variables and the implied data op-
erations that are attached to these variables;
and (2) the control part, a finite state machine,
that accepts inputs and evokes the various oper-
ations on the data part. The control part is
shown as a combined flowchart-wiring dia-
gram.

Two examples show how this design is car-
ried out. The schematic for the first example, an
algorithm to sum integers, shows all wires and
modules and the schematic for the second ex-

ample, a small stored program computer, shows
the control flow and the data part but excludes
the connections between the control and data
parts.

Example: Sum of Integers to N

A small system to sum the integers to
N (S 4 + 1 + 2 + . . . +N) can be built that uses
the four aforementioned modules: DM.gpa,
K.bus, K.evoke, and K.branch together with a
switch register to enter N and a manual start
control module to start the system. The data
and control parts together are given in the
RTM wiring diagram (Figure 3); the data part
is shown on the right and the control part on
the left. The final result S and the variable N are
held in a general purpose arithmetic module
DM.gpa. N is held in the switch register T in-
itially. The control sequence is initiated by a
K.manua1-start (a human presses a key). In-
stead of counting to N, we start with N and
count down to zero while tallying the sum S .

END

I(. = KNO~. MODULE
Kb = K branch MODULE

- CONTROL FLOW AND EVOKE WIRES

BUS FOR OATA WIRES

--cC 800LEAN VARIABLE WIRES

I

Figure 3. RTM digital system to take a value from a
switch register input and to sum the integers to the input
value.

446 EVOLUTION OF COMPUTER BUILDING BLOCKS

The first control step reads T to register N
(NtT) . The second step initializes the sum S
(S 4) . The inner loop consists of the three func-
tions: ScS+N; NtN-1; and a test for N=O.

Example: A Small Stored Program
Computer Design Using RTMs

Figure 4 shows an RTM diagram for a small
stored program computer that was initially con-

CONTROL PART

P c P f l

M A - 1 < 1 0 O >

I

w Y

0 1-1
z 0

) F
3 c
t?

K branch 8 way DECODE e-- OP = t < 1 5 1 3 >

IOP = 01

A c A A B I- K s e n d merge

1
P - 0

I

IDD IS2 OCI
OP = 11 lop= 21 IOP = 3

ro BUS = 0

+ NO
P C P + l

c ’

structed as an application experiment to dem-
onstrate the feasibility of the modules and to
investigate systems problems. The process of
specifying the machine took approximately two
hours (with three people). The computer was
wired and, aside from minor system/circuit
problems (for which the experiment was de-
signed), the computer operated essentially when
power was applied because there were no logic

DATA PART

-l

REGISTER

M E M O R Y M A . M B 1 “ , E O L E

IOP = 41

A I coE%krl

15 13 1 0 0

1

2
Control modules wi thout types are assumed 10 be K w o k e
K conditional execute shown in

the form
Kcs BOOLEAN EXPRESION

EXPRESSION

Figure 4. RTM design of a small stored program digital computer.

THE DESCRIPTION AND USE OF REGISTER TRANSFER MODULES 447

errors. The computer was designed for an ac-
tual application that had about 300 constants,
600 control steps, and about 16 variables. (An
alternative approach would have been to hard-
wire the 600 control steps directly, thereby op-
erating faster, but being more expensive and
less flexible.) The computer has only 24 evoke
and 16 branch controls. (By way of comparison,
RTM interpreters to emulate the PDP-8 and the
Data General NOVA computers require about
90 evoke and branch control modules, 2
DM.gpa’s, and core memory.) Since the price
ratio of a single hardwired control to a single
read-only memory control word is approx-
imately 10: 1, and since the overhead price of a
1000-word read-only memory is about 100 con-
trols, it was cheaper in the above application to
use RTMs to first build an interpreter, com-
monly called a stored program digital com-
puter, and then let the computer program
execute the control steps.

The data part of the machine is shown in the
upper right of Figure 4. Three DM-type RTMs
hold the processor state and temporary regis-
ters. The processor state, that part of memory
accessible and controlled by the program, in-
cludes: A, the accumulator; P, the program
counter; and L, a register used to hold sub-
routine return addresses (links). The temporary
registers needed in the interpretation of the in-
structions are: i, instruction holding register;
and B, used for binary operations on A (e.g.,
Add, And). Also connected to the RTM bus are
the read-only and read-write memories and the
Teletype, as well as a special input/output regis-
ter interface to the remainder of the system.

The method of defining the interpreter can be
seen from the RTM diagram (Figure 4). The
control part consists of three subparts: the Start
and Continue keys that are used to initialize the
processor to start at location 0 and to restart the
processor, the instruction fetch, and the instruc-
tion execution. The instruction fetch consists of
picking up the instruction from the memory
word addressed by the program counter P and

incrementing P to point to the next instruction.
The instruction is placed in the i register, which
has been specially wired to allow decoding of
the three most significant bits. Individual bits of
i can be tested for the Operate (OPR) instruc-
tion, and the address field i< 10:0> can be read.

After the instruction is fetched and placed in
i, Ke(MAti< 10:0>) is evoked to address data
referenced by the instruction. Immediately fol-
lowing this evoke operation, an eight-way
K.branch allows control to move to the one
path corresponding to the operation code of the
instruction being interpreted; that is, the in-
struction is decoded, and control is transferred
to execute it. After the execution of the appro-
priate instruction, control returns to fetch the
next instruction. For example, executing the
Add (two’s complement add) instruction con-
sists of loading the data from memory into the
temporary register B (Le., &MB) and then
adding B to the accumulator A (Le., AtA+B) .

For the Operate instruction, which does not
reference memory, each bit of the address part
of the instruction specifies an operation to be
carried out on the accumulator (“test for - or
0,” “clear,” “complement,” “add one,” “shift
right or left,” or “return from the subroutine”).
Each bit is tested in sequence, and if a one, the
corresponding operation is carried out. If the
instruction code with OP=6 is given, the com-
puter halts; pressing Continue restarts it.

The instruction set is shown to be straight-
forward and simple. Subroutine return ad-
dresses are stored in a link register L. Thus to
call subroutines at a depth of more than one
level requires the called subroutine to save the
link register in a temporary location. But there
is no way of storing this register; thus it is diffi-
cult to call a subroutine and pass parameter in-
formation (e.g., the location of tables). Since
the computer requires a few minor changes to
allow nested subroutines and parameter pass-
ing, the reader is invited to make the appropri-
ate incremental changes.

448 EVOLUTION OF COMPUTER BUILDING BLOCKS

CONCLUSIONS

The concept of using high level building
blocks is not new, but we think this particular
implementation of a set of simple blocks is quite
useful to many digital systems engineers. The
design time using this approach is significantly
less than with conventional logical design. The
modules are especially useful for teaching
digital system design. We have solved many
benchmark designs with reasonably consistent
results. The modules can be applied quickly and
economically where there are between 4 and 100
control steps, a small read-write memory (100
words), and perhaps some read-only memory.
Larger system problems are usually solved bet-
ter with a stored program computer, although
such a computer can be designed using RTMs.
The user need only be familiar with the concept

of registers and register operations on data, and
have a fundamental understanding of a flow-
chart.

ACKNOWLEDGEMENT

These modules were formally proposed in
March 1970 in a form essentially described
herein by one of the authors, C . G. Bell. In June
1970 the project was seriously started by con-
structing the computer of the previous example
using them. The authors gratefully acknowl-
edge the organization and management contri-
butions of F. Gould, A. Devault, and S . Olsen
(Digital Equipment Corporation) without
whose goal-oriented commitment the RTMs
could not have been built. The authors are also
indebted to Mrs. D. Josephson of Carnegie-
Mellon University for typing the manuscript.

to

I NTR OD U CTI ON

Several semiconductor manufacturers

Using LSI Processor Bit-Slices
Build a PDP-11 - A Case Study

have
recently developed high speed LSI circuits that
are designed to simplify the construction of
microprogrammed processors and device con-
trollers. These integrated circuits are called
“bit-slices’’ because they implement 2 or 4 bits
of the registers, arithmetic units, and primary
data paths of a processor. This article presents
the design and evaluation of the processor built
at Carnegie-Mellon University [Fuller et al.,
19761 that uses the Intel 3000 bit-slices [Intel,
1975; Signetics, 19751 and that is micro-
programmed to emulate the PDP-I 1 computer
architecture [DEC, 1973].* The purpose of this
project was to investigate the assertions of semi-
conductor manufacturers that their LSI bit-
slices would in fact simplify the design and con-
struction of processors.

Rather than specify a new architecture (i.e.,
instruction set) for this experiment in processor
design, we decided to reimplement an estab-
lished computer architecture: the PDP-I I . We

in Microcomputer Design
THOMAS M. McWILLIAMS, SAMUEL H. FULLER,

and WILLIAM H. SHERWOOD

chose the PDP-I 1 architecture for several rea-
sons. Using an existing and well-known archi-
tecture allowed others to more easily evaluate
the results of our experiment and kept us from
consciously or unconsciously tailoring the pro-
cessor architecture to fit the capabilities and idi-
osyncrasies of the LSI bit-slices. PDP-1 Is are in
extensive use at Carnegie-Mellon University in
a wide variety of applications and, if our experi-
ment was successful, the processor could be put
to work on any one of several practical tasks. It
was this second reason that helped establish a
criterion that proved to be critical: we de-
manded that the processor we constructed sup-
port the standard DEC Unibus [DEC, 19731
that is common to all PDP-I Is except the LSI-
1 1 [DEC, 19751. Finally, the PDP-11 archi-
tecture is an unusually good test of the
capabilities of a bit-slice circuit family because
it is a relatively complete architecture with nu-
merous addressing modes and instruction for-
mats.

*We gratefully acknowledge the donation of 3000 microcomputer sets by both Intel and Signetics Corporations.

449

450 EVOLUTION OF COMPUTER BUILDING BLOCKS

I n the next section we begin with a descrip-
tion of the design of the CMU- 1 1 processor. We
then discuss the performance, cost, and imple-
mentation difficulties uncovered during the de-
sign and testing of the machine. In addition to
the evalution of the LSI bit-slice circuits for
general purpose processors, we are interested in
the problems of computer design in general.
For this reason, a fairly complete set of digital
design automation aids are available at Car-
negie-Mellon University: an interactive drawing
package that generates engineering drawings,

wire-lists, and aids in engineering changes; a
digital simulation system that is interfaced to
the drawing system; and microprogram assem-
blers. Later sections review our experiences
with these design aids and we draw some con-
clusions concerning the process of designing
and debugging prototypes of digital systems
built with LSI circuits.

ORGANIZATION OF THE CMU-11
Figure 1 is a register transfer level diagram of

the CMU-11 microprogrammable processor.

PS CONTROL

BYTE
SWAPPED

PROCESSING I

i
b-
i
I
I

ELEMENTS

RO-R9.T -
MASK

I I INPUT

A < 1 5 OO>

- -- - - q-1 UNl0US T I M I N G M I R C 1 3 P S < 3 0 > 4 - 1 1 > MICROBRANCH

I R < 1 5 0 0 > CONTROL LOGIC

t MICROPROGRAM CONTROL STORE
1512 32-B1TMICROINSTRUCTIONSl

MICROINSTRUCTION
BUFFER REGISTER I

MIR <2400> I

I
I
L J

J kq
3001
UICROPROGRAM

PX<7 4 >

J S X < 3 O >

PR LATCH

NEXT ADDRESS

REGISTER

Figure 1. Register transfer level diagram

USING LSI PROCESSOR BIT-SLICES TO BUILD A PDP-11 451

The processor’s components are arranged in the
diagram into three sections: the data part, con-
trol par t , and Unibus interface. We were able to
build the entire processor on a single board and
Figure 2 is a top view of the CMU-I 1.

The Data Paths and Working Registers

The data part of the processor is designed
around the 3002 (central processing element)
bit-slice. A single 3002 circuit implements a 2-
bit slice of the data paths and, hence, eight
3002s have been used in the CMU-11. Although
not explicitly shown in Figure 1, the 3003 carry-
lookahead circuit is also used. With the 3003,
the 3002 array is capable of cycling through
operations every 150 nanoseconds. However,
other delays in the clock and control part dic-
tate that the CMU-11 has a 200-nanosecond
microcycle time. The eight general purpose
working registers of the PDP-I 1 architecture
can be kept i n the register scratchpad on the
3002s, and the three remaining internal regis-
ters, R8, R9, and T are sufficient for source and
destination operand computations as well as
other intermediate results. It was not possible to
locate the program status (PS) and instruction

register (IR) within the 3002s without a severe
loss in performance.

The relatively generous number of input and
output lines of the 3002s are used to good ad-
vantage. The D<15:0> and A<15:0> buses
feed the Unibus data and address lines respec-
tively. I n addition, the D bus allows access to
the extra data paths necessary to include the PS
register and to facilitate the byte swap oper-
ation needed by many of the PDP-1 1’s instruc-
tions. The M<15:0> bus is used as the
principal data input bus. The function bus,
F<6:0>, specifies both the operation to be per-
formed by the arithmetic/logic unit as well as
the selection of the register in the scratchpad to
be involved in the operation. The K < 15:0> bus
is used to input masks or constants from the
microinstruction. The 3000 circuit set makes
frequent use of the K lines to specify masks
(usually all zeros or all ones) that effectively ex-
tend the operation code on the function bus.

Figure 2. CMU-1 1 processor board. Figure 3. CMU-1 1 system with associated PDP-1 1

u SI1 LO A PDP-tl 461

The processor's components are arranged in
diagram into three sections: the datu p a w con-
trol part, and Unibus inledace. We were able to
build the entire processor on a single board and
Figure 2 is a top view of the CMU-11.

The Data Paths and Working Registers

The data part of the processor is designed
around the 3002 (central processing element)
bit-slice. A single 3002 circuit implements a 2-
bit slice of the data paths and, hence, eight
3002s have been used in the CMU- 1 1 . Although
not explicitly shown in Figure 1, the 3003 carry-
lookahead circuit is also used, With the 3003,
the 3002 array is capable of cycling through
operations every 150 nanoseconds. However,
other delays in the clock and control part dic-
tate that the CMU-11 has a 200-nanosecond
microcycle time. The eight general purpose
working registers of the PDP-11 architecture
can be kept in the register scratchpad on the
3002s, and the three remaining internal regis-
ters, R8, R9, and T are sufficient for source and
destination operand computations as well as
other intermediate results. It was not possible to
locate the program status (PS) and instruction

loss in performance.
The relatively generous number of input and

output lines of the 3002s are used to good ad-
vantage. The D<15:0> and A<15:0> buses
feed the Unibus data and address Iinw respec-
tively. In addition, the D bus allows access to
the extra data paths necessary to include the PS
register and to facilitate the byte swap oper-
ation needed by many of the PDP-1 1's instruc-
tions. The M<15:0> bus is used as the
principal data input bus. The function bus,
F<6:0>, specifies both the operation to be per-
formed by the arithrnetic/logic unit as well as
the selection of the register in the scratchpad to
be involved in the operation. The K < 15:0> bus
is used to input masks or constants from the
microinstruction. The 3000 circuit set makes
frequent use of the K lines to specify masks
(usually a11 zeros or all ones) that effectively ex-
tend the operation code on the function bus.

452 EVOLUTION OF COMPUTER BUILDING BLOCKS

A C < 6 0 >

JUMPCONTROL

Control Part

The control part of the CMU-11 uses the
Microprogram Control Unit and a 512-word
control store* with 32-bit microinstructions.
Figure 4 shows the format of the micro-
instruction and Table 1 briefly describes the
function of each of the fields. A micro-
instruction buffer register was included in the
design to allow the overlap of the fetch of the
next microinstruction with the execution of the
current microinstruction, which is a common
technique to improve the performance of
microprogrammed processors.

The "next-address logic" of the 3001 has
been augmented by additional microbranch
control logic external to the 3001. This external
logic uses the contents of the instruction regis-
ter, the condition codes in the PS, and the PLA
field from the microinstruction register to deter-
mine the AC<6:0> lines to input to the 3001.

F<BO> F C < l O > P L A < 2 0 > K < 8 > K < 7 o> M W S < l O >

CPE CONTROL CARRY CONTROL s P E C I A L B R A N C H ~~~~T~~~ 8 BIT CONSTANT FOR CPES MICRoWoRo
CONTROL SELECTOR

The other major section of control logic that
had to be added to the design was the processor
status logic to control the setting of the 4-bit
condition code in the PS register and control
access to the PS. In fact, the PS register is de-
fined as primary memory location 177776 in the
PDP-11 architecture and requires special logic
to load and store the PS.

R A < l O>

REGISTER
AOORESS

UC<7 O > UNIBUSCONTROL

Interface to the Unibus

A significant fraction of the components of
the CMU-I 1 are devoted to the support of the
Unibus. Given the demanding electrical re-
quirements of the Unibus, the tri-state A, D,
and M lines of the 3002 array could not be
directly attached to the Unibus. Instead, sepa-
rate transceiver packages had to be used to pro-
vide this buffering.

Due to the asynchronous operation of the
Unibus and interrupt and nonprocessor

c < 1 o>
EXTENDED

MICROINSTR GET B U S PAUSE CnECK C:AgOL

O' P S L o G ' C
sss SDS CCTR<1 0) S C C T R < 2 0)

SIGN SIGN CONTROL REG'sTER
S E T S O U R C E SET DESTINATION CONTROL S ~ I F T l E T P S

Figure 4. Microinstruction format.

*In order to expedite the debugging of the microprogram for the CMU-11, we built a fast, simple writable control store for
the CMU. We used 45-nanosecond access time, 1024-bit random-access memory (RAM) packages to ensure a writable
control store as fast as the final read-only memory (ROM) control store. The writable control store is interfaced to a Unibus
(of a PDP-11 other than the CMU-11) for initial loading of microprograms. Figure 3 shows the CMU-1 I interfaced to the
supporting PDP-I 1 and writable control store.

USING LSI PROCESSOR BIT-SLICES TO BUILD A PDP-11 453

requests (i.e., Direct Memory Access request
via the Unibus), it was not practical to drive the
Unibus directly from fields in the micro-instruc-
t iop. Instead, a bus control and timing console Functions
section was added t o the processor. The rest of
the processor interfaces to this control unit via
the UC<7:0> field in the microinstruction. See

Table 1 for a description of the functions of the
subfields within UC<7:0>.

I n place of a standard front panel, the CMU-
11 has front panel functions accessible from a

Table 1. Description of Microinstruction Fields

MWS<l:O> : = M1<1:0>

K<8:0> : = MI< 10:2>

UC<7:0> : = M1<9:2>

uc< 1 :o>
u c < 2 >

u c < 3 >

uc<4>
u c < 5 >

UC<7:6>

PS<7:0> : = M1<9:2>

PS<O>

PS<3: 1 >
PS< 5:4>

PS<6>

PS<7>

PLA<2:0> : = M1<13 : l l >

FC<3:0> : = MI< 17: 14>

F<6:0> : = M1<24:18>

AC<6:0> : = M1<31:25>

Microinstruction Selector. Specifies if M1<9:2> should define a
constant, Unibus control. or PS control.

Literal. K<7:0> is a byte constant used by the least-significant byte
of the K input lines of the 3002 array. K<8> is extended to feed the
most significant byte of the K input lines.

Unibus Control.

C1, CO Control. Specified the C1 and CO lines on the Unibus.

Check Word. Tests whether a word address is specified in Unibus
operation .

Pause. Halt processor clock until completion of Unibus operation.

Get Bus. Request access of Unibus for a data transfer.

Extended Microinstruction Code. If set, defines alternate meaning
for PLA<2:0>.

Register Address. Specifies which input register address multi-
plexer should be used.

Processor Status Control.

Set PS Register. Controls loading of PS.

Shift Control.

Carry Control.

Set Destination Sign. Controls latching of sign of destination oper-
and in flag external to 3002s.

Set Source Sign. Analogous to PS<6>.

Special Branch Control. Used by microbranch logic to tell which
fields of IR and PS to examine for branch conditions.

M C U Flag Control. Controls testing and setting of flags in 3001
(MCU).

CPE Control. Drives function bus of 3002 (CPE) array.

Address Control. Connected directly to the AC<6:0> bus of the
3001 (MCU). This is the one field of the microinstruction not buf-
fered in the microinstruction register. (The microprogram address
register internal t o the MCU performs the buffering function.)

454 EVOLUTION OF COMPUTER BUILDING BLOCKS

standard Teletype attached to the Unibus.
Memory locations can be examined and loaded
by typing the octal address followed by a slash.
The current value is displayed and a new value
may be entered, if desired, followed by a car-
riage return. The processor may also be started
and continued from the Teletype, and there is a
halt switch on the front panel that causes the
machine to return to the console micro-
program.

This use of a Teletype for a console is similar
to the console Teletype used by the LSI-I 1
[DEC, 1975~1. In order to make it easier to
maintain the processor, we have added a micro-
processor console that displays the micro-
program address and allows the microprocessor
to be single-stepped. The microconsole proved
invaluable for debugging the prototype proces-
sor.

EVALUATION OF CMU-11 DESIGN

The critical questions to be asked about this
design concern cost and performance. It has
been fairly easy to evaluate the performance of
the CMU-11 by looking at several representa-
tive instruction times and by running a set of
benchmarks on the machine. Evaluating the
cost of the CMU-11 has been more difficult.
Rather than try to compare the price of existing
PDP-I1 implementations with the cost of the
CMU-11, we chose instead to compare it with
other PDP-11s with respect to circuit com-
plexity. The other significant costs, i.e., devel-
opment costs, are discussed in a later section.

Performance of the CMU-11

The CMU-11 runs at a microinstruction cycle
time of 200 nanoseconds. The specifications for
the Intel 3000 microcomputer family state that
it is possible to build a 16-bit minicomputer

with a 150-nanosecond cycle time. However,
given our objective to design as cost-effective an
implementation as possible, we avoided the sen-
sitive and complex timing circuits that would be
required to approach a 150-nanosecond cycle
time.

If we had used clocks with sufficient buffer-
ing and pulse shaping, a worst-case analysis
shows that with the particular IC packages used
in the CMU- 11, we could approach a 149-nano-
second cycle time with Intel 3000 packages and
a 126-nanoseond cycle time with Signetics’ ver-
sion of the 3000 set. We have, in fact, replaced
the Intel 3000 circuits with the Signetics circuits
and although the CMU-11 continues to run re-
liably at 200 nanoseconds, we cannot reduce the
cycle time below 200 nanoseonds. The critical
path is in the control part and not the 3002 ar-
ray.

Tables 2 and 3 show the execution time for
six of the most frequently executed instructions
and the eight addressing modes of the PDP-11.
The instructions in Table 2 assume a register-to-
register operation (i.e., a source and destination
mode of 0). Table 3 shows the additional time
that is added to the instruction execution time
for the various source addressing modes.* The

Table 2.
Instructions

Execution Times of Common

Basic Execution Time (in ps)

Instruction LSI-11 CMU-11

MOV 3.50 2.06
CMP 3.50 2.1 9
ASL 3.85 2.46
ADD 2.46 3.85
8Rx (branch) 3.50 2.82

(no branch) 3.50 1.48
JSR 6.40 4.39

PDP- 1 1 /40

0.90
0.99
0.99
0.99
1.76
1.40
2.94

*In particular, the times in Table 3 a re the source addressing mode times for the C M U - I 1 as measured on the BIS instruc-
tion. Addressing times o n the other instructions are similar to the BIS times.

USING LSI PROCESSOR BIT-SLICES TO BUILD A PDP-11 455

destination mode times are about the same as
the given source mode times.

In order to measure the performance of the
CMU-11 for various instruction mixes, several
benchmarks were collected and run on the
CMU-11, an LSI-11, and a PDP-11/40. Four
benchmarks were collected that attempt to span
a reasonable range of applications common to
minicomputers.

1. Quicksort. This is a program that uses
Hoare’s quicksort procedure to sort a set
of 16-bit integers. The benchmark also
includes a pseudo-random number gen-
erator to provide the initial data.

Trigonometric functions. This is a set of
trigonometric, floating-point routines.
We do not assume the existence of a
floating-point option on any of the pro-
cessors and hence this benchmark heav-
ily exercises software floating-point
emulation routines.

2.

Table 3.
Addressing Modes

Execution Times for the Source

LSI-11 CMU-11 PDP-11/40
Addressing Mode (I S) (IS) (I S)

0: Register 0.00 0.00 0.00

1 : Register 1.40 1.21 0.78
Deferred

2: Autoincrement 1.40 0 .64 0.84

3: Autoincrement 3.50 1.91 1.74
Deferred

4: Autodecrement 2.10 1.00 0.84

5: Autodecrement 4.20 2.28 1.74
Deferred

6: Indexed 4.20 1.78 1.46

7: Indexed 6.30 2.99 2.36
Deferred

3. Partial differential equations. This pro-
gram uses a straightforward iterative re-
laxation technique to solve a partial
differential equation over a two-dimen-
sional space. Fixed-point values are
used.

4. Text searching. This searches an input
string for names in a symbol table. This
benchmark makes extensive use of the
byte and compare features in the instruc-
tion set.

Table 4 shows the execution times on the
LSI-11, CMU-11, and PDP-I1/40 for each of
the four benchmarks. From these results we see
that the CMU-11 is approximately twice as fast
as the LSI-11 and 63 percent of the speed of the
PDP-I 1/40. As expected, there is a moderate
amount of variation in the relative performance
of the three machines for the different bench-
marks. The two dominant effects that can be
seen in Table 4 are that the PDP-I 1/40 design
has optimized register-to-register operations
more than either the LSI-11 or the CMU-11 (as
demonstrated in the partial differential equa-
tion benchmark). Byte operations are more ef-
ficiently performed in the CMU-11 because of
its byte-swap data path provided by the D and I
buses. The last line in Table 4 is the data pub-
lished by O’Loughlin [1975] in an article com-
paring the different DEC PDP-11 imple-
mentations.

It is mildly disappointing that the CMU-11,
built with Schottky TTL bit-slices, could not
equal the performance of the PDP-11/40, built
with standard TTL circuits. The next two sec-
tions will examine in detail where performance
was lost (and gained) in the CMU-11 design.
Before continuing with this review of the de-
sign, we turn to a brief discussion of the cost of
the CMU-11.

A principal objective of the 3000 micro-
computer bit-slice packages is to simplify the
design of processors like the CMU-11. Table 5

456 EVOLUTION OF COMPUTER BUILDING BLOCKS

Table 4. Performance of CMU-11 Relative t o Other P D P - 1 Is

Execution Times Relative to PDP-11/40"

Benchmarks LSI-11 11/10 1 1 /20 CMU-11 11/40 11/45

Quicksort 2.88 (366)
Partial differential equation 3.48 (268)
Trigonometric functions 3.36 (1 11)
Text searching 2.76 (204)

1.48 (1 88)
1.75 (135) 1.0 (77)
1.57 (52) 1 .o (33)
1.45 (107) 1 .O (74)

1 .O (127)

- - Average 3.1 1.6 1 .o -
~~

O'Loughlin's Data - 2.32 1.85 - 1 .o 0.91

*Numbers in parentheses are the absolute run times in seconds for the benchmarks.

Table 5. Integrated Circuit Statistics

No. 1 6 Pin
Processor No. IC Equivalent
Component Packages Packages

~~

Data Part

PS and Instruction 6 6

Miscellaneous 4 5

Subtotal 18 31 (19%)

3002 (CPE) Array 8 20

Registers

- -

Control Part
Control Store

ROMs
Microinstruction

Register
3001 (MCU)
Microbranch Logic
PS Control
Miscellaneous

Subtotal

8 8

10 10

1 3
26 27
16 16
18 18

79 82 (52%)
- -

Unibus Interface
Bus Transceivers 19 19

and Inverters
Unibus Control 28 28

Subtotal
__ -

47 47 (29%)

Total 144 160

USING LSI PROCESSOR BIT-SLICES TO BUILD A PDP-11 457

is a summary of the complexity (measured in
integrated circuits) of the CMU-I 1 . There are
two columns in Table 5: a simple count of the
number of integrated circuit packages used in
the CMU-II, and a column that converts the
design to “ 1 6-pin equivalent” packages (a mea-
sure of the size of the design in a standard unit).
Table 6 gives a breakdown of the actual cost of
the CMU-I 1 at January 1976 prices.

It is surprising that less than 20 percent of the
design is now in the data part of the processor:
the part of the processor largely implemented
with the LSI bit-slices. A larger part of the de-
sign, 29 percent, is needed just to interface to
the PDP-II Unibus.

In order to put the 144-package complexity
of the CMU-I 1 in perspective, the IC package

counts for other PDP-I Is are: PDP-I 1/10 - 203
packages; PDP-l1/40 - 417 packages; and
PDP-I 1/45 - 696 packages. The LSI-I 1 is able
to implement the basic processor in 42 packages
but does not interface to a Unibus. I t is clear
that the bit-slices do not approach the economy
of the Western Digital NMOS microcomputer
circuits which were specifically designed to
emulate the PDP- 1 1 .

Another measure of the degree to which the
CMU-I I processor can efficiently emulate the
PDP-I 1 architecture is given by the size of the
microprograms. Table 7 gives the size of micro-
programs for several PDP-I1 processors. It is
somewhat surprising that the CMU-I 1 uses
fewer bits in its control store than any of the
other processors except the LSI- 11. This is in

Table 6. Cost Breakdown for CMU-11

Prices*

Components Single Units Quantities of 100+
_____ ~~

LSI Microcomputer Parts

PROMS

SSVMSI Parts

Integrated Circuit Subtotal
Augat Wire-Wrap Board
Wire-Wrapping

(Intel 3001,3002s. 3003)

(3601 ,3602 ,3604 ,7451 68)

Total

$207
(1 84)

204
179

$590
379
107

$1 076

-

$1 25

136
158

$41 9
-

(Use printed circuit)

*Signetics prices.

Table 7. PDP-11 Control Store Sizes

LSI-11 PDP-11/10* CMU-11 PDP- 1 1 /40 * PDP-11/45*

22 bits X 51 2 words
(includes console) words (without console) words words

4 0 bits X 239 32 bits X 287 words

414 words (with console)

56 bits X 251 64 bits X 256

* [O’Loughhn. 19751.

458 EVOLUTION OF COMPUTER BUILDING BLOCKS

large part due to the fact the 11/10, 11/40, and
11/45 use MSI arithmetic/logic packages that
did not have as useful a set of primitive oper-
ations as the 3002 arithmetic logic unit (ALU).

SOME PITFALLS FOUND IN
IMPLEMENTING THE PDP-11 WITH THE
3000 BIT-SLICES

Since the CMU-11 project was started, a
number of different bit-slice chips have become
available whose organizations are significantly
different from the 3000 circuits and which pro-
vide an interesting contrast. Two of the more
interesting bit-slice chips are the Advanced Mi-
cro Devices AM2901 [AMD, 19751 and the
Monolithic Memories Inc. MM16701. These
bit-slice chips have a very similar data path or-
ganization with only minor differences, the
AM2901 being the faster device. Because of the
similarity of these devices, we will limit the dis-
cussion here to the AM2901, but all of the mi-
croinstruction sequences discussed will work on
both bit-slice sets.

The basic data path of the AM2901 is shown
in Figure 5 . The chip contains a register file of
16 4-bit accumulators and an accumulator ex-
tension register, the Q register. In one micro-
instruction, two operands can be read out of the
register file, passed through the ALU, the result
can be written shifted left or right, and written
back into the register file. In parallel with this,
there is an addressing mode which controls the
RAM and Q shifters, allowing the output of the
ALU and the Q register to be right shifted
simultaneously, which is well suited for the
inner loop of multiply or divide instructions.

I/O Buses

The main advantage of the 3000 bit-slice over
the AM2901 is its five fully parallel data buses
for transferring data in and out of the chip. It
has two tri-state output buses (the A and D
buses) and three input buses (M, I, and K). If

DATA
OUTPUT-
< 1 5 0 >

INPUT <15 O>

I). SHIFT
CONTROL

SHIFTER

A ADDR

REGISTERS B ADOR
SCRATCHPAD

I

I l -
A M U X

1 I t"F ARlTHMETlClLOGlC

I
. I .

3
I I MULTIPLEXER

-- - 'i -

Figure 5.
microprocessor slice.

The AM2901 - a 4-bit bipolar

the minicomputer to be emulated has fairly
short 1 / 0 and memory buses, the 3000 buses
can directly drive them, resulting in a sub-
stantial savings in bus driver packages. In the
CMU-I 1, we needed to drive a DEC Unibus, so
we had to use separate bus drivers and re-
ceivers. Once external bus drivers are added, the
advantage of the two output buses for the
address and data is minimal, because an equiva-
lent external address register can be loaded as
fast as the existing internal address register and
combination bus drivers/latches are available
(e.g., AM2905). The savings realized by having
three input buses is the cost of adding eight dual
4-to-1 line multiplexer chips at the input to the
bit-slice chips. The savings achieved with the
five buses in the 3000 bit-slices over the

USING LSI PROCESSOR BIT-SLICES TO BUILD A PDP-11 459

AM2901’s single-input and single-output bus is
twelve 16-pin circuits, plus 3 bits in the control
store (2 for the select lines on the input multi-
plexer, and 1 to control loading of the address
register).

Arithmetic Overflow with the 3000

One of the biggest problems encountered
with the PDP-I 1 implementation using the 3000
bit-slice was detection of arithmetic overflow.
The 3000 bit-slice has no overflow output, and
the signals needed to directly detect overflow
are not available at the external pin con-
nections. This results in considerable overhead
in emulating instructions that must detect over-
flow (e.g., instructions that set the V bit in the
PS register of the PDP-11). The C M U - I 1 over-
flow handling was implemented with two exter-
nal flip-flops that contain the signs of the source
and destination operands. After an instruction
is fetched, its operands are first fetched either
from memory or the register stack and are put
in the source and destination registers within
the 3002. As the operands are fetched, the
source and destination flip-flops are set to the
signs of the operands. When an instruction is
executed, the overflow logic can use the signs of
the operands and result to detect overflow. This
technique works well when the operands are
from memory, but really slows down the regis-
ter-to-register operations because the operands
have to be moved to the AC so their signs can
be latched in the external source and destina-
tion sign flip-flops.

The sequence of instructions needed to emu-
late a register-to-register A D D is shown in Fig-
ure 6 . The first instruction in the sequence loads
the source operand into register AC, in order to
get its sign out of the chip. The next instruction
specifies for the source sign flip-flop to be set to
the sign of the AC, and to store the AC into the
T register. The following two instructions load
the destination operand into the AC and set the
destination sign flip-flop. The last two instruc-

,ACtSource Register

:AC+Destinatian Register
~ SDR T. 1. SETSS .T-AC and SET Source Sign

NOR SETDS S E T Destination Sign
T. SETCC :AC+AC+T

:And Set Condition Codes
SDR DR. 1 ,Destination RegistercAC

Figure 6. Microsequence example:
register-to-register ADD with overflow detect

tions do the add and store the result back in the
destination register. Because of the multiple use
of fields in the microinstruction, it is not pos-
sible to specify that a register address comes
from the instruction register in the same micro-
instruction that sets the source sign, the destina-
tion sign flip-flops, or the condition codes. If
the microprocessor were to be redesigned to al-
low this, the register-to-register add could be
done in three rather than six microinstructions
with the 3000 chips. However, we would pay for
this performance improvement by having to use
a wider microinstruction. The AM2901 pro-
vides external access to the overflow detect out-
put on the chip and the register-to-register add
can be done with only one microinstruction, re-
sulting in a considerable speed increase over the
3000 chips.

Example of a Multiply Instruction

The inner loop of a 16-bit integer multiply in-
struction on the 3000 chips requires either three
or six microinstructions, depending on whether
that cycle is a double register shift and add, or
just a shift. The high order word of the product
is stored in the AC register, and the low order
word is stored in the T register. Initially, AC is
zero, and T holds the multiplicand. For each
iteration of the multiply, the loop count is dec-
remented and if the low order bit of the T regis-
ter is a 1, then the multiplier is added into the
AC, and the AC and T registers are shifted
right. Because the 3000 cannot add a register to
the AC without also putting the result in the
register, it takes three microinstructions to per-
form the inner loop addition.

460 EVOLUTION OF COMPUTER BUILDING BLOCKS

For the AM2901, the inner loop of the multi-
ply can be done in two microinstructions with
no external loop counter, and in one with an
external counter. This is possible because the
AM2901 in one microinstruction can add two
general registers together, shifting the result and
the accumulator extension register right 1 bit. A
similar speedup also occurs for division.

ADDITIONAL COMMENTS ON THE
CMU-11 DESIGN

The 3000 microcomputer circuits are not the
only area in which to look for improvements in
the CMU-11 design. A major source of com-
plexity was the Unibus interface (29 percent of
processor’s packages). The 3002 bit-slices pro-
vide tri-state drivers for their A and D lines and
if Unibus compatibility is not essential, the out-
puts from the 3002 circuits could directly drive
a memory and 1/0 bus of moderate size. If syn-
chronous operation of the memory bus is ade-
quate, further simplification of the bus interface
section of the processor is possible.

A number of integrated circuit packages are
now available that could help simplify the de-
sign of the control part of the processor. Most
significantly, 4 Kbit programmable read-only
memories (PROMS) appropriate for use in the
control store are now available with internal
latches for use as a microinstruction buffer.
This would eliminate the need for the separate
latches used in the CMU-1 1’s microinstruction
register. A related optimization to the CMU-11
would be to move from the partly encoded mi-
croinstruction format of the CMU- l l to a
wider, fully horizontal format. The random
logic needed to decode an encoded micro-
instruction is simply more expensive than the
extra bits in the control store needed for the
horizontal format.

We attempted to use programmable logic
arrays (PLAs) in our initial design, but con-
verted to ROMs when the PLAs we were de-
signing with were discontinued. By now,

however, several useful PLAs are readily avail-
able. For example, the Signetics FPLA, with its
16 inputs, is well suited to the decoding of PDP-
1 1 instructions.

The cumulative reduction in package counts
that might be expected in a second iteration of
the CMU-I 1 design are as follows:

CMU-1 I 160 IC packages
Non-Unibus Design 128
Integrated ROM/MIR 113

and horizontal
microinstruction format

Convert to AM2900 circuits 95

COMPUTER-AIDED DESIGN TOOLS

Aside from freeing the designer of book-
keeping and clerical tasks, the main advantage
of any design automation system is its inherent
ability to maintain correct and consistent docu-
mentation (schematic prints and wire-lists) and
the reduced turnaround time for design itera-
tions. The fact that the total prototype devel-
opment time for the CMU-11 was 39 (40-hour)
man-weeks is an example of the savings possible
with even modest design automation aids.

Description of Facilities Used at C M U

The Stanford University Drawing System
(SUDS) was used to enter the schematic print
set with a graphics display terminal. The draw-
ing package includes a set of satellite programs
to extract information for wire-lists and cross-
reference tables from its da t a base. I n -
corporated in the system are libraries of in-
tegrated circuit definitions which contain not
only the pictorial representation of the gates but
also pin section information and some loading
data. Hard copy prints were conveniently gen-
erated by a digitally controlled Xerox Graphic
Printer (XGP). The wire-list program can
search the data base interactively for specific in-
formation or produce complete tables of run

USING LSI PROCESSOR BIT-SLICES TO BUILD A PDP-1 1 461

lists, stuff lists, error reports (wire-ANDing vio-
lations, etc.), and loading analyses, which all
proved extremely helpful.

The logic simulator used was Simulation of
Asynchronous Gate Elements (SAGE), which is
a 4-state (0, 1, high impedance for tri-state
buses, and undefined for initialization and
uncertainty in delay parameters) gate-level sim-
ulator. It reads the data base directly from the
output of the SUDS for utmost convenience,
since it allowed a turnaround time in the order
of five minutes for print set corrections. SAGE
has models in its libraries for the TTL and
Schottky families, and special routines were
written by us to emulate the 3000 micro-
computer set. This allowed improvements in the
efficiency of the simulation execution. Macro
facilities are also available for quickly defining
MSI circuits from more basic logic gates. The
results of the simulations are in the form of reg-
ister and signal reports and timing/trace dia-
grams.

Debugging with the Simulator

About 95 percent of the original design errors
were eliminated through the use of the simula-
tion program. Naturally, not all combinations
and sequences of instructions can be simulated,
but a standard PDP-11 diagnostic program was
run in addition to a number of other programs.
A total of about 100 milliseconds of CMU-11
compute time was simulated before debugging
on the actual hardware began.

The limitation here was that the SAGE simu-
lation of the CMU-11 required about IO6 sec-
onds of CPU time on a PDP-10 to simulate 1
second of CMU-11 execution. We simply could
not afford to consume more than about 30
hours of CPU time for this project.

Whatever amount of time is spent on simula-
tion, the simulations cannot be exhaustive and
the final set of errors must be tracked down
with more extensive tests on the real machine.

We discovered eight to ten errors in the actual
CMU-I 1. However, when an error was found in
the physical machine, the simulations were
again run to help track down the bug through
the use of timing traces and other results. The
correction was then entered into the machine
print set and the simulator was rerun before im-
plementing the change on the processor wire-
wrap board or in the microprogram.

An example of the worth of the computer-
aided design system came to light when a major
implementation change was made; several
ROMs were incorporated into the design to re-
place a discontinued programmable logic array
(PLA). Our design aids were essential in effec-
ting this change within four man-days. In order
to recover so quickly from such a massive wir-
ing change, an engineering change order (ECO)
wrap/unwrap program was run to compare the
old and new wire-lists produced by the drawing
package. Thus, at all times during development,
the processor reflected the exact connectivity of
the print set.

Several of the errors discovered on the real
machine were timing errors that were not re-
vealed in the simulation debugging. These
errors were not detected because the simulation
models did not consider the effects of loading
on the propagation delays and only maximum
delays in all gates were used as an approx-
imation to worst case conditions. In fact, if time
had permitted, minimum and “typical” (Gaus-
sian-distributed) parameters should also have
been tested. However, we again face a funda-
mental problem with simulation in that the
computation time becomes excessive as differ-
ent sets of delays are simulated to find worst-
case conditions.

CONCLUDING COMMENTS

The CMU-11 project was initiated as an ex-
periment in constructing general purpose (mini)
processors with LSI bit-slice components. Table
8 is a summary of the results. As the table

462 EVOLUTION OF COMPUTER BUILDING BLOCKS

Table 8.
Implementations

Summary of Comparison between C M U - 1 1 and Other P D P - 1 1

Parameter LSI-11 P D P - 1 1 / 1 0 C M U - 1 1 P D P - l 1 / 4 0

Microcycle time (ns) 400 200 140,200,300
Relative Execution Times 3.2 2.32 1.6 1 .o
IC Packages 42 203 144 41 7
Control Store Size (bits) 11.264 9.960 9.184 14.056

INTERACTIVE COMMANDS
TO SIMULATOR

TIMING

INPUT LOGIC
DESIGN

DRAWING -----+

LOGIC PRINTS

LOADING ANALYSES

ENGINEERING
CHANGE
ORDERS - 'fi WRAPIUNWRAP

Figure 7. CAD system at CMU.

shows, the CMU-11 was implemented with sig-
nificantly less components (IC packages) than
either the PDP-11/10 or the PDP-11/40, which
are processors built with MSI components, and
the performance of the CMU-I 1 falls between
these two MSI processors. However, the econ-
omy of implementation is not nearly as signifi-
cant as was realized with the LSI-11 although
the CMU-11 is able to perform at twice the
speed of the LSI-I I . The LSI-11 is a processor
implemented with NMOS LSI microcomputer
packages in which the entire data path (with 8-
bit data paths) was put in a single package and
both the control and data packages for the LSI-

MICRO
ASSEMILER

MICROPROGRAM

AND SIGNAL
TRACES

1 1 have been specialized to efficiently emulate
the PDP- 1 1 architecture.

Earlier we discussed improvements that are
possible in the CMU-11 design and argued that
a second iteration on the design could boost the
performance to that of the PDP-11/40 and
could be implemented in about 95 rather than
144 packages. To achieve a more cost-effective
design than this will require either the devel-
opment of some LSI control circuits specific to
the processor's instruction set or the specifica-
tion of a new computer architecture tailored to
make the most efficient use of the functions
provided in the LSI circuits.

20

M ul t i-M icro processors:
An Overview and Working Example

SAMUEL H. FULLER, JOHN K. OUSTERHOUT, LEVY RASKIN,
PAUL I . RUBINFELD, PRADEEP S. SINDHU,

and RICHARD J. SWAN

INTRODUCTION

An interesting phenomenon over the past
several years has been the spontaneous growth
of interest in multiple-microprocessor computer
systems in many universities and research labo-
ratories. This interest is not hard to understand
given the inexpensive computational power of-
fered by microprocessors today and the cost-
performance improvements promised by those
to be delivered in the near hture . Micro-
processors have had a dramatic impact on ap-
plications that require a small amount of
computing. They have been used in in-
struments, industrial controllers, intelligent ter-
minals, communications systems as special
function processors in large computers, and,
more recently, in consumer goods and games.

The question naturally arises as to whether
the microprocessor, which has proved so suc-
cessful in these diverse applications, can be used
as a building block for large general purpose
computer systems. In other words, can a suit-
ably interconnected set of microprocessors be

used for tasks that currently require large
uniprocessors capable of executing millions of
instructions per second? At present, there is no
definitive answer to this question, but there are
several reasons to believe that multiple-micro-
processor systems might indeed be viable.

A strong argument for a microprocessor-
based system is its potential cost-effectiveness.
This point is graphically demonstrated in Fig-
ure 1 which shows cost/performance as a func-
tion of computer system size.* Each point in
this figure represents a (uniprocessor) system
currently available and introduced between
1975 and 1977 [GML Corp., 19771. For ex-
ample, the computer represented by the point
labelled A has a purchase price of about
$10,000. It is capable of transferring data be-
tween memory and the central processor at
about 200 Mbits/second, yielding a figure of
merit of 2 X 104 bits/second/dollar. The figure
shows that with conventional methods of or-
ganizing computers, the cost/performance of a

* T h e measure of system size used here is i t s purchase price.

463

464 EVOLUTION OF COMPUTER BUILDING BLOCKS

-
VI U

4
0
P 104
8

0

VI

VI
.
c -
I

P

4 103

s
I

4

> U

102

system degrades as its size increases. If systems
were, instead, configured using micro-
processors, and if there was no additional cost
in interconnecting the microprocessors, then
the points would fall along an ideal multi-
processors line such as shown in the figure. In
reality, both costs associated with the physical
interconnect and performance degradation due
to synchronization overhead will cause the
price/performance curve to have a negative
slope (the realistic multiprocessors line in the
figure). In terms of Figure 1, the critical ques-
tion facing multiprocessors is whether the rea-
listic multiprocessors price/performance line
falls above or below the line for conventional
uniprocessor systems.

Another important attribute of a multiple-
processor computer system is its potential for

-

-

-

d A
IDEAL MULTIPROCESSORS

0
0 ,

I I I I 1
103 104 105 106

COST IDOLLARSI

Figure 1 Cost per formance a s a function of s y s t e m
cos t

reliability. Computers are being applied in-
creasingly in situations where a failure might
have serious economic and even life-endan-
gering consequences. Since the basic ingredient
in the design of a reliable system using real com-
ponents is redundancy in one form or another,
a structure consisting of large numbers of iden-
tical processors represents the natural frame-
work in which to design reliable computers.
Prior to the advent of the microprocessor, it
was unrealistic to consider multiprocessor
structures involving more than a few processors
because the cost of building the individual pro-
cessors themselves was high.

Yet another factor that favors the use of mul-
tiple processors is the resulting modularity of
the system. There has always been a motivation
for making computer systems modular for rea-
sons of incremental expandability, ease of
maintenance, and enhanced production. A
computer system that is built using identical
processors, and a small set of interconnection
elements that have clean, well-defined interfaces
would benefit fully from a modularity in pro-
cessing power that is currently seen only in
memory units of computer systems.

In spite of the advantages offered by multi-
processor organizations, there have been few
commercially viable systems constructed to
date.* The reason for this is that a number of
problems and open issues remain to be resolved
before such systems are a practical alternative
to more conventional organizations. The major
problems currently facing such systems are as
follows.

1. Task decomposition. How should tasks
now executed on uniprocessors be de-
composed so that they can be run on a
set of smaller processors? Can compilers

*While the authors know of no commercially available multi-microprocessor systems, Pluribus [Hear t et at.. 19731 a n d
Tandem [I9771 are two multiple-processor systems based on a processor of minicomputer size that are commercially avail-
able.

MULTI-MICROPROCESSORS: AN OVERVIEW AND WORKING EXAMPLE 465

2.

3.

4.

5 .

6 .

7.

or specialized run-time systems be devel-
oped to do this decomposition automat-
ically or must the programmer do the
decomposition explicitly?
Interconnection structures. What are the
m o s t e f f ec t ive types o f p roces -
sor/memory and processor/processor
interconnection structures, and what are
the related communication protocols?
Address mapping mechanisms. What
mechanisms are appropriate for per-
forming the virtual-to-physical address
translation? These mechanisms should
allow processors to share code and data
while ensuring adequate levels of pro-
tection and performance.
Software system structure. What soft-
ware structures are suitable for large sys-
tems containing hundreds of processors?
Among the important problems in this
area are resource management, software
distribution, protection, and reliability.
Interprocessor interference. Even after
tasks have been decomposed to run on
multiple processors, how should inter-
processor interference and contention
for memory and 1/0 resources be min-
imized?
Deadlock avoidance. With multiple pro-
cessors contending for resources, the po-
tential exists for a situation where each
of a group of processors is waiting for
resources assigned to other processors in
the group, and none of the processors in
the group is able to proceed until its de-
mands are satisfied. This situation,
known as deadlock, effectively disables
all the processors involved, and special
care must be taken in the design to avoid
it.
Fault tolerance. What hardware and
software structures will allow a multi-
processor system to realize its potential
for surviving the failure of components
in the system?

8. Input/output. How should input/output
devices in general, and secondary stor-
age devices in particular, be integrated
into a multi-microprocessor system?

The next section in this article surveys the
spectrum of multiple-processor systems that are
under active consideration and that hold some
promise for becoming viable organizations for
future computer systems. Given the relatively
ill-defined nature of many of the unresolved
questions listed above, the real potential and
limitations of a multi-microprocessor archi-
tecture can only be understood by considering a
specific system in depth. The section summariz-
ing the architecture of the Cm* system, which
has recently been developed at Carnegie-Mellon
University (CMU), is presented to highlight
some of the important considerations in imple-
menting and programming a real multi-
processor system. The detailed design and
implementation of Cm* are discussed in a re-
cent set of papers [Jones ef al., 1977; Swan ef
al., 1977; Swan et al., 1977a[. The principal con-
clusions of the performance studies of Cm* are
presented in the fourth section of this paper.
The structure of the virtual addressing mecha-
nism and the kernel operating system now run-
ning on Cm* are the subject of a paper by
[Jones et al., 19781.

OVERVIEW OF MULTIPLE PROCESSOR
STR U CTU RES

There is currently no established method-
ology for interconnecting sets of processors for
the purpose of building large, general purpose
or even special purpose computer systems.
However, there does exist an interesting range
of possibilities and Figures 2 through 4 show
three generic organizations that span this range:
computer networks, multiprocessors, and mul-
tiple arithmetic unit processors. Other tax-
onomies of multiple-processor systems have

466 EVOLUTION OF COMPUTER BUILDING BLOCKS

been proposed [Flynn, 1966; Jensen and Ander-
son, 19771, but this relatively straightforward
grouping into three organizations is most suit-
able for the following discussion.

All of these organizations existed prior to the
advent of the microprocessor. The economics of
the microprocessor, however, open up the pos-
sibilities of using these structures in many new
application areas. In our review of these alter-
native computer organizations, we will refer-
ence some older computer systems built with
conventional components to help make the dis-
cussion more concrete.

Computer Networks

Figure 2 shows a computer network. In this
type of multiple-processor organization, each
processor is embedded in a conventional com-
puter system, and the computers are then inter-
connected via communication links. The inter-
computer communication links are often serial,
but in some cases, such as the channel-to-chan-
ne1 adapter of multicomputer IBM S/370 sys-
tems, high-bandwidth parallel buses are used.

COMPUTER

COMPUTER 2 E-,
j-W Mp I

CONTROLLER

COMPUTER H
PMS KEY

CENTRAL PROCESSOR

Mp PRIMARIMEMORY

Figure 2. A network

IEETI CONTROLLER

COMPUTER 1

of computers.

Perhaps the most widely known computer
network is the ARPA network [Kahn, 19721,
but other computer networks have also been
implemented and are now in use. These include
the Ethernet [Metcalfe and Boggs, 19761, DCS
[Farber, 19751, and the Spider network [Fraser,
19751. Furthermore, most large computer in-
stallations are really computer networks. Com-
puter manufacturers are establishing standard
network protocols, for example, IBM’s system
network architecture (SNA) and Digital Equip-
ment Corporation’s DECnet protocol, to facil-
itate the construction of computer networks
tailored to individual user needs.

An important attribute of a computer net-
work is the data transmission bandwidth be-
tween computers. This bandwidth ranges from
a few thousand bits per second up to about IO
Mbits/second. The other important attribute of
the inter-computer links is the access or latency
time for each unit of information sent between
computers. In describing interprocessor com-
munication capability it is common to refer to
the degree of coupling between processors in
the system. The ARPA network is an example
of a loosely coupled (and geographically dis-
tributed) computer network because of the 50
Kbit/second links between computers in the
network and the 100-250 ms latency times asso-
ciated with cross-network transmissions of
packets of information. A more tightly coupled
(and geographically centralized) network is the
Ethernet with 3 Mbit/second inter-computer
bandwidth and latency times of the order of a
small number of milliseconds. As more and
more closely coupled computer networks are
considered, however, another type of multiple
processor structure, the multiprocessor, be-
comes an increasingly competitive alternative.
Multiprocessors will be discussed shortly.

As microprocessors are incorporated into
computer terminals, point-of-sale terminals,
data acquisition transducers, and other such ap-
plications, the natural form of organization will

MULTI-MICROPROCESSORS: AN OVERVIEW AND WORKING EXAMPLE 467

be a loosely coupled computer network. Closely
coupled microcomputer networks might pro-
vide an attractive organization for reliable sys-
tems,* systems that must manage a large data
base on many disks or other secondary storage,
or even as a computational structure tailored to
the data flow of a specialized application. It is
questionable, however, whether a multiple mi-
croprocessor organized in the form of a net-
work could replace a large conventional
uniprocessor.

Multiprocessor System

Figure 3 shows the basic structure of a multi-
processor. Its distinguishing characteristic is
that, unlike the processors in computer net-
works, the processors in a multiprocessor share
primary memory. Note that in the computer
network of Figure 2, each processor has its
own, private primary memory. Data is shared
in a computer network by passing inter-
processor messages, whereas in a multi-
processor, the central processors can directly
share data in primary memory. The concept of
a multiprocessor is not new; the Burroughs

I.II gg . . .
I I I I

PROCESSORIMEMORV SWITCH

1 I I I

Figure 3. The basic s t ructure of a multiprocessor.

D825 (1962), Bendix G-21 (1963), G E 645
(1969), and IBM 360/65 (1969) provide early
examples. In these multiprocessors, conven-
tional, relatively expensive central processors
were used, making it uneconomical to have
more than a few processors. With small num-
bers of processors, it is not mandatory to de-
compose a single job into a set of concurrent,
cooperating processes to use all the central pro-
cessors at once; enough independent programs
are usually resident in the primary memory of a
conventional multiprogramming system to keep
a few processors busy. More recently, multi-
processors using minicomputers have been im-
plemented, and configurations now exist with
as many as 14 to 16 processors in a single com-
puter system [Wulf and Bell, 1972; Heart et af.,
19731. To effectively utilize the processors in
such a system, a task must be explicitly decom-
posed to run concurrently on different proces-
sors.

One of the most challenging problems in de-
signing and implementing the hardware of mul-
tiprocessor systems, especially for large number
of processors, is the processor/memory switch-
ing structure. Many techniques have been tried
and used successfully in particular systems:
multiple ports per memory unit, electronic
crossbar switches, time-multiplexed common
buses, and combinations and hierarchies of sim-
pler switches.

Multiple Arithmetic Unit Processors

The third form of computer organization that
incorporates multiple processing elements is the
multi-arithmetic logic unit (ALU) processor.
The fundamental difference between this type

* Examples of closely coupled computer networks built with minicomputers and designed for ultra-reliable applications
include the Tandem computer [I9771 and the five processor system for NASA’s space shuttle [Sklaroff, 1976; Cooper,
Chow, 19761.

468 EVOLUTION OF COMPUTER BUILDING BLOCKS

of structure and multiprocessors is that all the
ALUs in the multi-ALU processor support a
single instruction stream, as shown in Figure 4,
while each of the processors in the multi-
processor supports its own instruction stream.

CENTRAL PROCESSOR (PCI

f .yo
..

L
PRIMARY
MEMORY

Figure 4. Multi-ALU processor

I f we define a processor to be a unit capable
of both decoding and executing instructions,
then the multi-ALU processor is not really a
multiple processor system. However, multi-
ALU organizations are often considered as al-
ternatives to multiprocessors and derive the
same benefits from advances in LSI technology
as multiprocessors.

A number of well-known computer systems
fall into the multi-ALU category. Classical ex-
amples include the CDC 6600, with its ten func-
tional units (specialized ALUs), the IBM
360/91 with independent and pipelined float-
ing-point add/subtract and multiply/divide
units. Array or vector processors such as 1L-
LIAC IV and CRAY I also fall into this cate-
gory, but use a specialized vector instruction
stream to direct the execution of an array of

arithmetic units or a highly pipelined arithmetic
unit.

Comparing Alternative Multiple Processor
Structures

Networks, multiprocessors, and multi-ALU
computers have been presented as three generic
methods of organizing processors t o build
highly parallel computer systems. The three
classes can be thought of as varying along a
single dimension - the degree of coupling be-
tween processors in the system. This term is of-
ten used in a general way, but let us define it to
be the worst case processor’s minimum access
time to a global data structure i n the system.
For example, in the computer network of Fig-
ure 3, the minimum data access time for a pro-
cessor is the access time to local memory.
Assuming that the global data structure in this
particular network resides in the primary mem-
ory of computer I , an access to global data by
computer 1 would take a single memory fetch
(on the order of 1 microsecond), while com-
puter 5 will have to send a message to computer
1 requesting the necessary information (on the
order of 50 milliseconds). However, the worst
case access time is seen by computer 4, which
must access the data in computer 1 via a three-
hop sequence involving computers 3 and 2, and
this might take more than 100 milliseconds.

In a multiprocessor, each processor has direct
access to global data stored in primary memory.
Since interprocessor communication occurs by
sharing primary memory, the interaction times
are on the order of 1 to 50 microseconds. In a
multi-ALU computer, the analog of inter-
processor communication is the transfer of con-
trol information that occurs between the
control unit and its associated processing ele-
ments. Typically, this information is transferred
over direct control lines and does not involve
memory fetches, making it considerably faster
than interprocessor communication in a multi-
processor.

MULTI-MICROPROCESSORS: AN OVERVIEW AND WORKING EXAMPLE 469

Figure 5 illustrates the range of the degree of
coupling for the three types of multiple proces-
sor organizations considered here. The position
of an organization in this range has a strong in-
fluence on its suitability to a particular appli-
cation. An application consisting of a set of

NETWORKS

MULTIPROCESSORS

I Cm’ I t -1
WORST CASE ACCESS TO SHARED DATA (SECONDS)

Figure 5.
organizations.

Degree of coupling of multiple-processor

parallel processes that need to interact or share
data only every 10 to 100 seconds can clearly
run on a loosely coupled computer network. At
the other extreme, algorithms that require the
parallel execution of arithmetic operations
within single expressions force the interaction
times between processing elements to occur al-
most every instruction cycle. The large inter-
processor communication times in a computer
network, and probably even in a multi-
processor, make these organizations imprac-
tical for such applications. Hence, the average
time between interprocess interaction becomes
a critical “time constant” of an application and
provides a good indication of the type of mul-
tiple processor organization that will be most
suitable.

The Cm* multiple microprocessor computer
system described in the remainder of this article
supports time constants in the range of 5 to 50
microseconds. A motivating factor in the con-
struction of Cm* was to have an experimental

multiple processor structure that could be used
as a vehicle to investigate a range of multi-
processor and closely coupled network organi-
zations. Microprogrammed interprocessor
communication controllers provide the flex-
ibility needed for this experimentation.

THE ARCHITECTURE OF Cm*

The structure of the Cm* system grew from a
consideration of system organizations like those
mentioned in the previous section, and from
several other notions. First, we wanted a system
that potentially could contain several hundreds
of processing elements since we wished to ex-
plore greater degrees of parallelism than had
previously been available. This required a dra-
matic change in the processor/memory inter-
connec t ion s t ruc tu re . Tight ly coupled
multiprocessors, with uniform access by all pro-
cessing elements to all of main memory, have a
switching structure whose cost grows as the
product of the number of processors and the
number of memory units. Thus, the proces-
sor/memory interconnect becomes prohibi-
tively expensive as the number of processing
elements and memory modules grows beyond
10 or 20.

A requirement, set early in the design, was
that each processor be able to address directly
all of main memory, rather than require a mes-
sage transmission for access to remote units as
in a network. We considered this important in
order to allow for experimentation with a vari-
ety of interprocess communication mecha-
nisms, both message-based and shared-
memory-based.

Uniformly fast access to all of memory by
each processor was not, however, considered
necessary, either for system performance or for
generality of experimentation. The success of
cache memories has shown that a processor’s
memory references tend to cluster in a small

470 EVOLUTION OF COMPUTER BUILDING BLOCKS

portion of its address space [Gibson, 1974; Lip-
tay, 19781. Results presented later in this article
indicate that for the processors used in Cm*,
instructions and temporary data usually ac-
count for between 90 and 99 percent of the
memory references. When a task is subdivided
so that several processors may perform differ-
ent parts of it in parallel, the shared global data
accessed by many or all of the processors often
accounts for most of the total main memory re-
quired by the task. However, our results in-
dicate that these global locations are accessed
so infrequently that it makes little difference if
their access times are substantially longer than
those for code and temporary data.

The structure of Cm* is depicted in Figure 6
and has been described in detail in [Swan et al.,
1977; Swan et af., 1977al. The fundamental unit
of Cm* is a computer module (CM). Each CM
consists of a processing element, local memory,
input/output devices, and a local switch
(S.local) which provides a simple interface be-
tween the CM and the rest of the system. The
primary memory of the system consists exclu-
sively of the local memory of the CMs.

INTERCLUSTER

4
DETAILS OF A COMPUTER MODULE

Figure 6. The basic structure of Crn’

A processor may directly reference any loca-
tion in main memory. The S.local uses simple
mapping tables to decide on a reference-by-ref-
erence basis whether the physical address being
referred to is in the local memory. I f it is, the
S.local performs a simple mapping function and
the reference proceeds very quickly. If it is not,
the S.local passes the reference to a mapping
controller (K.map). The K.maps, which com-
prise a distributed processor/memory switch,
communicate with each other and the S.locals
of the system to perform non-local references
for processors. The fact that a memory refer-
ence is nonlocal is completely transparent to the
processor. While the reference is being per-
formed by the K.maps and S.locals, the proces-
sor waits just as if the reference were local. The
duration of this wait varies strongly with the
“distance” the reference must travel to reach
the addressed memory, but it is fundamental to
Cm* that the addressing mechanism at the pro-
cessor level be exactly the same no matter where
the physical memory being addressed is located.

Two levels of locality are present in Cm*, the
first being the computer module level discussed
previously. A second level of locality, that of a
cluster, is also present. With the expectation
that most references fall into local memory (and
thus do not require use of the global switching
mechanism) came the assumption that a given
processor would not, by itself, make heavy use
of the intermodule communication paths. It
was decided to share a communication path,
consisting of a K.map and a parallel Map Bus,
between several CMs. However, a single Map
Bus would not have sufficient bandwidth to ser-
vice 100 or more CMs; furthermore, the pres-
ence of a single intercommunication channel
would pose a reliability hazard. Thus, the CMs
are grouped in clusters containing I to 14 mod-
ules. References between a processor in a clus-
ter and a nonlocal memory in the same cluster
involve only the K.map and Map Bus of the
cluster; performance of a large system is de-
pendent on most nonlocal references being clus-

MULTI-MICROPROCESSORS: AN OVERVIEW AND WORKING EXAMPLE 471

ter-local in order to avoid saturation of the
intercluster buses.

An Example Program

The structure of Cm* suggests a complexity
in the processor/memory interconnection not
seen in more conventional machines. Although
we believe this type of switching structure is jus-
tified based on economic, performance, reliabil-
ity, and modularity considerations, it is
important that Cm* also be programmable.
Given the cost and difficulty of writing good
software systems for even the simplest of archi-
tectures, a structure that adds to the program-
mer’s problems is highly suspect. Numerous
proposals have been made in recent years for
various multiple processor structures, and there
is no doubt that many of them could be con-
structed. However, a critical question is
whether they could be programmed in any prac-
tical sense. Much of the effort on Cm* has been
directed toward evaluating how effectively it
can be programmed. This issue is dealt with in
depth by Jones et al., [1978], in which the oper-
ating system for Cm* and a large application

PROCEDURE
M A I N

PROCEDURE A

ROW 0

R O W 1

ARRAY 2

R O W 1 6

TEMPORARY
VARIABLES

STACK
AREA

Figure 7. Example organization
of a user program.

program are described. Here, we use an ex-
ample to point out that although the memory is
physically nonhomogeneous, it appears com-
pletely uniform to a programmer.

Figure 7 shows an example of how a pro-
grammer might organize a program and its as-
sociated data structures in his virtual address
space; Figure 8 indicates how these program
segments might be mapped into the physical

---- I- r

S.lOCd =H-&
I +I
I

R O W 0 I i I I

i
I C M 2

r-----

ARRAV 2 .

I
I C M 3

Figure 8.
in memory.

Physical layout of the program

472 EVOLUTION OF COMPUTER BUILDING BLOCKS

memory of a Cm* system. When writing pro-
grams, the programmer thinks of a process’ ad-
dress space as a large uniform piece of memory
exactly as if he were working on a conventional
uniprocessor. When the program is loaded onto
the Cm* machine, its component segments may
be placed anywhere in the physical memory of
the system; the relocation tables associated with
the processor that will execute the program are

r-----

Figure 9
duplication of code

Physical layout of program showing

then initialized to make these segments address-
able.

Figure 8 shows the case where the segments
of the example program have been distributed
in the memory modules of several different
CMs, and the relocation tables in the S.loca1
and K.map set up to make the segments appear
in Pcl’s virtual address space a s in Figure 7.
The S.local will recognize that instruction fet-
ches by Pcl map to procedure MAIN which is
in local memory; these references will proceed
at full speed without involving the K.map or
Map Bus. As the process needs to pop and push
words from its working stack, the S.loca1 again
will direct the reads and writes to local memory.
However, procedure MAIN will eventually call
procedure A which will need to access words in
the array Z. When such an access is made, the
S.local will recognize it as an external reference
and pass the virtual address to the K.map; the
K.map will translate it t o the correct physical
address and initiate a memory request to the
S.local of either CM2 or CM3, depending on
which row of array Z is being accessed. The
programmer, and in fact Pcl, are unaware that
reading a word of array Z has resulted in a non-
local reference. The only difference that Pcl
sees is that it takes about 9 microseconds
(rather than 3 microseconds for local refer-
ences) to access the array. During this time, Pc2
and Pc3 are unaffected and may be executing
other programs.

There is n o reason that Pcl must execute pro-
cedure MAIN. Pc2 or Pc3 could also execute
this procedure out of C M 1’s memory if the ap-
propriate relocation tables were initialized
properly. Pc2 would run this program about
three times as slowly as Pcl since each instruc-
tion fetch would now be handled as an inter-
C M read from Pc2 to C M 1. Because of this per-
formance degradation, current Cm* programs
are almost always executed on the processor for
which the code is local.

Figure 9 shows how several additional pro-
cessors can be used to advantage. Now when

MULTI-MICROPROCESSORS: AN OVERVIEW AND WORKING EXAMPLE 473

MAIN calls procedure A, it sends inter-
processor messages to Pc2 and Pc3 to initiate
concurrent execution of copies of procedure A
on both of these processors. By passing the ap-
propriate parameters to Pc2 and Pc3, they can
each concentrate on a different part of array Z.
In this way, operations being repeated on the
whole array may be completed in substantially
less time than if a single processor were in-
volved. If array Z is sufficiently large, it may
make sense to initiate many more than two
other processors in parallel to operate on array
Z.

Although the identity of the processor that is
dispatched to execute a process and the physical
location of segments of memory can be made
transparent to the programmer, the decomposi-
tion of the program into parallel cooperating
tasks cannot. In fact, the whole problem of how
to decompose application programs into sets of
parallel cooperating processes is an active and
interesting area of research. Programming lan-
guages such as CONCURRENT PASCAL and
MODULA support constructs to express al-
gorithms with explicit parallelism [Hansen,
1975; Wirth, 19771. In addition, there are some
efforts on Cm* [Hibbard, et al., 19781 and else-
where [Kuck et al., 19721 concerning ideas re-
lated to automatically decomposing algorithms
slated in higher level languages such as ALGOL
and FORTRAN.

Cm * Implementation Overview

The implementation of Cm* has been pre-
sented in detail in [Swan et al., 1977al and will
only be summarized here. Figure 10 depicts a
computer module. The processing element is
Digital Equipment Corporation's LSI-11; both
it and the memory and 1 / 0 devices on its local
bus are standard commercial components.
However, the processor has been modified to
allow the logical insertion of an S.loca1, which
was designed and built at CMU, between the
processor and its LSI-11 bus. The S.local uses

information in its relocation tables to direct
memory references from the processor either to
the local bus, providing simple address reloca-
tion while doing so, or out to the K.map for
external references. This address translation
performed by the S.local is illustrated in Figure
1 I . I n addition, the S.local is capable of access-
ing the module's memory on behalf of the
K.map without intervention from the local pro-
cessor. Figure 12 is a photograph of one of the
CMs in the current system.

INTERMODULE SWITCHING
STRUCTURE

EXTERNAL REFERENCES

EXTERNAL
REFERENCES

LOCAL BUS

I II , , II ,
PROCESSING 7 I MEMORY I ~ i / o DEVICES1

ELEMENT
LOCAL

REFERENCES

Figurelo. Structure of a computer module

MAP

REA0 ONLY I ";fZL

EXTERNAL PROCESSOR

PROCESSOR PHYSICAL ADDRESS
G E N E R A T E D
ADDRESS

OF LSI-11 BUS

Figure 1 1.
local memory reference.

Virtual-to-physical address translation for a

474 EVOLUTION OF COMPUTER BUILDING BLOCKS

Figure 12.
mounted on a n extender .

A computer module with its S.local

We feel that this notion of a computer mod-
ule building block is appropriate for LSI imple-
mentation. Considering either the processor
S.loca1 combination as a single chip (possible
using 1977 technology) or the processor, its
S.loca1, and the local memory as a single chip
(likely to be possible in 1980) is reasonable be-
cause of the small number of external con-
nections required. Although more than 100
wires are currently required in the LSI-11 Bus
and Map Bus combined, this number could be
reduced enough to allow integration on a single
chip.

This new kind of building block requires a
minor change in perspective among integrated

circuit manufacturers. Current microprocessors
are being built with some memory on the micro-
processor chip and the capability to access off-
chip memory and 1 / 0 devices. However, apart
from a few notable exceptions [Forbes, 1977;
Intel Corp., 19771, it is either difficult or impos-
sible for off-chip units to access the on-chip
memory without direct processor intervention,
introducing unnecessary complications in the
design of the switching structure. Given com-
plete freedom, there are other characteristics of
the LSI-11 microprocessor that we would like
to change.* However, the purpose of the Cm*
project has been to investigate alternate mul-
tiple microprocessor structures, not to design a
better microprocessor per se. The LSI- 1 1 was
chosen since it had an adequate architecture,?
and had no problems that could not be circum-
vented via logic in the S.loca1. Thus, we avoided
what may have been a two-year delay had we
decided to design and implement our own
microprocessor.

The K.maps of Cm* are microprogrammed
processors built at CMU which together form a
distributed and intelligent processor/memory
switching structure. Each K.map presides over
a single cluster and has complete control over
the processors and memory of that cluster. A
K.map’s primary function is to process the ex-
ternal memory references of the modules in its
cluster, and in so doing to communicate with
the S.locals of the cluster and the K.maps of
other clusters.

Because the K.maps are responsible for the
mapping of external processor addresses to
physical memory, their microprograms define
the address translation mechanism and thus the
virtual memory architecture of the Cm* system.
The use of 2048-word writable control stores

* T h e principal deficiency in the LSI-I 1’s architecture from the standpoint of Cm* is the limited processor address space of 64

t l n 1973, during discussions of initiating a Cm*-like project at CMU, it was decided that none of the existing micro-
Kbytes. However, in 1975 there were no other microprocessors that had a larger address space.

processors, e.g., the Intel 8080, had an architecture that could support a programmable multiple processor system.

Figure 12. A computer module with its S . l w l
mountad on an extender.

We feel that this nation of a computer mod-
ule building block is appropriate for LSI irnpk
mentation. Considering tither the p r m r
S.local combination as a single chip (possible
using 1977 technology) or thc procam, its
S.lucal, and the local memory as a single chip
(likely to bc possible in 1980) is mwnable b
cause of the small n u m k of cxtcmd con-
nections required. Although more than 100
w i r a are currently required in the LSI-11 Bus
and Map Bus combined, this number could be
reduced enough to allow integration on a single
chip.

This new kind of building block requires I
minor change in perspective among intearated

circuit manufacturers. Current microproc~~rs
arc being built with some memory on the micm
p m o r chip and the capability to acw~s off-
chip memory and 1/0 deVice9. Howcvtr, apart
from a few notable exceptions [Forb, 19n;
Intel Corp., 19771, it is either difficult or b n p
sible for offdip units M acccsii the on-chip
memory without direct prwtssor intmwntioa,
introducing ufin-ary corrmpliWions h the
d&gn of the switching simctuft. W e n am-
p k freedum, there 8re other chwacterhtics of
the MI41 micropmwusor that we would iike
to change.* However, the purpose of the Cm*
project h u been to investigate &mate mul-
tiple rnieroprocewor structures, not to de@ a
bd@r rnicmpmuitwr per se. Tlie LSI-I 1 was
cboaen dnrx it had an dcquate architectum,t
and bad no problems that coukl not be circum
vented via logic in the S . l d . Thus, we avoidad
what may have b#n a twwyeat delay bad we
decided to d&n and implement our own
microprocmwr.
The K.msrpu of Cm* are microprogmnmmd

processors built at CMU which together form
dkributad and intelligent procwor/mmory
switching structure. Each K.map presides over
a w e c l W r and h a complete control o m
the procmmrs and memory of that duster. A
Kymp's primary function b to proocsas th a-
tsnal memory rcfcrcna of the m d u k in b
cluster, and in so doing to communicate UW
the S.locah of the cluster and thu Kmqm of
Other clusm.

Because the K.maps am Rsponsible for the
mapping of external proccasor a- to
playaid memary, their microprograms dsfine
the a d h translation mocbenim md thw the
virtual memoryarchitocturtofbbeW wm.
The use of 2M8-word writable control Mom

MULTI-MICROPROCESSORS: AN OVERVIEW AND WORKING EXAMPLE 475

within the K.maps has allowed us to implement
and measure two different architectures. We ex-
pect to experiment with several others in the
near future.

Figure 13 shows the sequence of transactions
that occur on the Map Bus during the process-
ing of an external memory reference. The first
transaction on the Map Bus is initiated by the
S.local of the source C M when it recognizes
that the processor has made an external mem-
ory reference. The K.map accepts the processor
address from the S.loca1, performs the virtual-
to-physical address translation, and sends the
physical address, which includes the number of
the destination CM, out on the Map Bus. As-
suming that the reference is a simple read, the
destination CM accepts the address, reads the
indicated word from its local memory, and
then, in the third and final Map Bus transac-
tion, returns the data directly to the source CM.

In addition to the concurrency afforded in
the mapping mechanism by having multiple
clusters, the K.map is partitioned into three
units that allow pipelining of the commu-
nication mechanism within a cluster. Figure 14
shows the components of the K.map: a map-
ping processor (P.map) is responsible for ad-
dress translation and directs the actions of the
other two components; a Map Bus controller
(K.bus) is master of all transactions on the syn-
chronous Map Bus and schedules activities for
execution in the P.map; the third component
(Linc) is responsible for shipping and receiving
intercluster messages on the two intercluster
buses to which each K.map may connect. The
three components are relatively independent
and communicate via shared memory and a set
of hardware queues. The K.map contains a to-
tal of about 750 MSI integrated circuit pack-
ages on six cards.*

INTERCLUSTER
BUSSES -1 (= x-

READIWRITE

Cm PHYSICAL ADDRESS

18

I
I J I I

SOURCE C m DESTINATION C m

Figure 13. The mechanism for external references

INTERCLUSTER BUS 1 , I

MAP BUS

Figure 14. The components of a K.map.

*Much of the complexity of the K.map is a direct result of our desire to ensure that the K m a p was a flexible micro-
programmable unit that would allow maximum opportunity for experimentation. Over one third of the K m a p is devoted to
the writable control store.

476 EVOLUTION OF COMPUTER BUILDING BLOCKS

Current Configuration

The current operating configuration of Cm*
is depicted in Figure 15. Ten LSI-lls, with 28
Kwords of memory each, are configured into
three clusters of sizes 4, 2, and 4. Figure 16
shows one of the four-CM clusters, with the
four CMs visible in the top rack and the K.map
and Hooks processor visible in the bottom rack.
For several of the benchmark programs, the
system was reconfigured into clusters of differ-
ent sizes. Two more LSI-I Is, called Hooks Pro-
cessors, have special control over the K.maps
and are used for microprogram loading and de-
bugging and hardware diagnosis; they are not
part of the Cm* system, but rather provide sup-
port processing. Each LSI-11 is connected to a
PDP-I 1/10 Host via a serial line; the Host runs
a simple operating system built at CMU
[Scelza, 19771 to allow users at remote terminals
to load programs into LSI-11’s from the Host’s

I

CONTROL LlNES

I w POP-IO8

r HOST FRONT END JLRI&L LINK

I 4 PRoCESSoR FRONT END e FRONT-END TERMINALS
OTHER CMU
COMPUTERS . p0p-”/40

Figure 15 The current configuration of Cm*

DECtape drives, to start and stop processors,
and to communicate directly with the proces-
sors via their serial lines. A front-end terminal
processor permits terminals anywhere within
the CMU computing environment to access the

Figure 16. A four-CM cluster.

i TER BUILDING B L O W

C u m Configurndon

The currmt operating configuration of Cm*
is depicted in Figure 15. Tea LSI-lls, with 28
Kwords of memory each, arc configured into
three dusters of h a 4, 2, and 4. Figute 16

four C M s visible in the top rack and the K.map
and Hook8 prmmr ViSibIe in thtbttma rack.
For wtral of the hchmark program$ the
system was reconfigured into clusters of differ-
ent si=. Two more MI- 1 Is, called Hooks Pro-
euwors, have specid control over the Y.maps
and are used for microprogram loading and de-
bugging and hardware diagnosis; they are not
part of the Cm* system, but rather provide sup
port promaing. Each LSI-I1 is connected to a
PDP-11/10 Host via a miai hac; the Host runs
a simple operating system built at CMU
[Sceh, 19771 to allow u r n at remote twminalr
to load pqrams into LSI-I 1’s from the Host’s

shows OM of the Tout-CM C~US~CCS, with the

DECtapc d i v a to start and stop praawrs,
and to communicate directly with tb
mn via their serial l i ~ . A frontad terminal
processor permits terninah anywhsro within
the CMU computing tnvironrnant to accmsthe

I
Figum 18. A M Eknwr,:

MULTI-MICROPROCESSORS: AN OVERVIEW AND WORKING EXAMPLE 477

Host, and thus Cm*, as well as the other CMU
computers.

Two versions of K.map microcode have been
written and evaluated to date. The first is a
simple version written to provide the bare min-
imum facilities needed for interprocessor com-
munication and memory sharing. Although
primarily written to enable system diagnostics
to be run, this version was also used for the
benchmarks described in the next section as it
was available eight months before the more
powerful second version. The second version of
K.map microcode provides a complete virtual
addressing system including protected execu-
tion environments and capability-based ad-
dressing. The facilities provided by this version
are presented in detail in Jones et al., [1978] and
Swan et al., [1977].

Under the simple microcode, each processor
is permitted to map any of its 16 virtual pages
onto any 2048-word physical page in the multi-
cluster system. A processor may specify
whether pages residing in its local memory are
to be referenced locally or externally (for test
and measurement purposes it was convenient to
be able to force references to local memory to
pass through the K.maps and then come back
to the local memory rather than being made
directly). Since control operations, e.g., inter-
processor interrupts, are invoked by referencing
special physical memory locations, this micro-
code provides completely general inter-
c o m m u n i c a t i o n , a l t h o u g h i t d o e s n o t
implement any protection. The total size of the
simple microcode is 505 80-bit micro-
instructions.

MEASUREMENT A N D EVALUATION
OF Cm*

Multi-microprocessor computer structures
are sufficiently unconventional that standard
metrics of computer system performance are
hard to apply effectively. For example, a com-
mon measure of the performance of a computer

is the number of instructions per second that
the processor can execute. A single LSI-11 pro-
cessor in Cm* is capable of executing about
170K instructions/second; a IO-CM con-
figuration will, therefore, have the potential of
1700K instructions/second and a 100-processor
configuration a potential of 17M instruc-
tions/second. However, such linear scale-up in
performance is difficult to achieve when proces-
sors have to cooperate in performing a given
task. Overheads associated with ensuring coop-
eration usually cause the increase in perform-
ance to be less than linear.

Measurements on other multiprocessors
show that these overheads can become large
enough so that the performance of the system
actually degrades as more processors are added.
Anyone who has suffered through the deliber-
ations of a committee of more than two or three
people trying to make a decision should have an
intuitive appreciation for the fact that coordina-
tion can be expensive.

Initial performance measurements were made
on Cm* to quantify this overhead and to deter-
mine how it varies with the number of active
processors for various configurations. The eval-
uation was done using what is perhaps the only
practical method at the present time: writing a
set of benchmark programs and running them
on the bare machine. The programs used in the
evaluation are outlined below, and are dis-
cussed in greater detail in the appendix.

Partial differential equations - a numer-
ical application. This program solves
Laplace’s partial differential equation
over a rectangular grid. The method of
finite differences is used and is relatively
easily decomposed with each available
processor iterating over a separate re-
gion of the grid.
Sorting. This benchmark program is a
decomposition of the well known Quick-
sort algorithm into a set of asynchro-
nous parallel processes. Each sorting

478 EVOLUTION OF COMPUTER BUILDING BLOCKS

pass consists of dividing the current list
of elements into two and placing the
smaller sublist in a stack. Whenever a
processor is free, it removes a sublist
from the top of the stack and executes a
sorting pass over this sublist.
Integer programming - the set partition-
ing problem. Set partitioning is typically
solved by an enumeration algorithm that
searches a large, relatively sparse binary
matrix for a feasible solution. While it is
easy to initiate parallel searches in paths,
it is critical to retain the effectiveness of
pruning rules to limit the extent of the
search.
The HARPY speech recognition system.
This is a relatively large program that
searches a Markovian network to find
the most probable utterance given the
digitized input of a speech signal. The
HARPY algorithm has been studied ex-
tensively on uniprocessors [Lowerre,
19761 and is discussed in depth in the pa-
per by Jones et d., [1978].

5. ALGOL 68 run-time system. Another
large programming system that now ex-
ists on Cm* is the run-time system for a
useful subset of ALGOL 68 [Hibbard, et
al., 19781. It allows low level activity
such as calls to standard functions, array
manipulations, and copying of large val-
ues to be performed automatically in
parallel without requiring the program-
mer to specify the parallel activity explic-
itly.

3.

4.

Measurement Techniques

Measurements on the stand-alone Cm* sys-
tem were made using both specially designed
hardware and standard measuring equipment.
Each K.map in the system was provided with a
hardware device called a Map Bus Monitor

(Figure 17), which allowed signals on the Map
Bus to be displayed selectively and counted.
Particular data or address values passing to and
from a given CM in the cluster could thus be
monitored. For example, the hit ratio to local
memory for a given processor was determined
by comparing the overall memory reference rate
of the processor to the nonlocal memory refer-
ence rate indicated by the Map Bus Monitor.

A standard logic analyzer was used to deter-
mine what fraction of the K.map’s time was
being spent in each of its different operations.
This was done by connecting the logic analyzer
to the microinstruction address lines in the
K.map, and counting the rates a t which the mi-
croroutines corresponding to the K.map’s oper-
ations were being invoked.

Memory Reference Times and Hit Ratios

To determine the cost of various types of ref-
erences, benchmark programs have been mea-
sured running in three configurations: (1) with
all references local, (2) with all references non-
local but within the same cluster, and (3) with
all references proceeding across cluster bound-
aries. The times between successive memory ref-
erences measured under these conditions were

Figure 17. The Map Bus Monitor

EVOLUT~QN OF COMPUTER BUILDING BLOCKS E
pass consists of dividing the cumnt list
of ekments into two and placing the
smaIler w b b t in a rtack. Whcver a
processor is free, it mnovw a sublist
from the top of the atack and executa P
S d a g O W this 8Ubbt.

3. Imtqgw~amming-tbesetpdt i -
€ng @lGm Set partitioning is typiaauy
solved by an mumeration algorithm that
searches a large, rclativdy qmse binary
matrix for a fottsible solution. While it is
easy to initiate pmlle l scamha in paths,
it is critical to retain the ef€cctivm~ of
pruning tules to limit tho extent of the
search.

4. The HARPY q m c b rec~@btw sy-.
This is a relatively large program that
March- a Markovian network .to find
the most probable utterance giwn the
digitized input of a speech signal. The
HARPY algorithm has bsen studied ea-
tensivety on uniprocasora [lowem,
19761 md ia d i s c 4 in depth in the pa-
per by Jona er ul.. [1978],

5. ALGOL 68 nwtlme Another
large programming eyatem that now ex-
iats on Cm* b the run-time system for a
useful subtie? of ALGOL 68 [Hibbard, et
d., 19781. ft allows low lewl activity
such as calls to standard functions, amy
manipulations, and copying of large val-
ues to be performed automatically in
parallel without requiring the program-
mer to w f y h e patallel activity cxplio
itly.

M ~ u r e m e n t Technlquam

Measurements on the stand-alone Cm* mys-
tern were made using both specially designed
hardware and standard measuring quipment.
Each K.map in the system wan provided with a
hardware device called a Map Bus Monitor

(Figure 17), which allowed signals on the Map
Bus to be displayed selectively and counted.
Particular data or address valua p&ng to and
from a given CM in the cluster could tbw be
monitored. For example, the hit ratio to bcd
memory for II given processor was determined
by comparing the overall memory refersnce rate
of the processor to the n o n W memory der-
ence rate indmtcd by the Map Bus Monitor.

A standard logic analyzer was used to deter-
mine what fraction of the K-map's time was
being spent in ach of its dif'femnt operations.
This was Bone by connecting the io& analyzer
to the microinstruction address i ina in the
Kmap, and counting the rates at which the mi-
croroutims corresponding to the Kmap's oper-
ations wcre being invoked.

Mamaw Rofarmcm T h s o md Hlt Rlth

To determine the cost of variou8 typa of ref-
crena , benchmark programs have h e n mea-
sured running in three mnfigurationr: (1) with
all reference local, (2) with all d m n w a non-
local but within the same cluster, and (3) with
all referenas p r d n g across clurrter bound-
aries. The times between succwivc memory ref-
m n m mmured undur thac conditions were

U U R
F ~ u r e 17. The Mag Bus Monitor.

MULTI-MICROPROCESSORS: AN OVERVIEW AND WORKING EXAMPLE 479

3.5 microseconds for the local case (this was de-
termined by the LSI-1 l used as processing ele-
ment and was in no way affected by the Cm*
switching structure), 9.3 microseconds for the
intracluster case, and 26 microseconds for the
intercluster case.

Table 1 shows the results of our measure-
ments of memory reference patterns for three of

Table 1. Memory Reference Distribution for
Several Programs

Local Global
Program Code Stack Variables Variables

PDE 82% 11.5% 4% 2.5%

Sorting 71% 12.5% 6.5% 9.5%

Partitioning 7 1.5% 23.5% 4% 1%
Set

the five programs measured on Cm*. Code re-
fers to all the primary memory access resulting
from fetching instructions from memory. Stack
refers to all the accesses related to the pushing
and popping of operands from the processor's
primary stack. This stack is commonly used for
temporary variables as well as subroutine call
and return information. Local variables are op-
erands referenced only by a single copy of a
procedure and global variables are the basic,
shared data structures related to the problem or
flags and semaphores used by cooperating pro-
cesses to coordinate their activities.

For the remaining two programs, HARPY
and ALGOL 68, the fraction of references to
global data were 14 and 18 percent, respec-
tively. The somewhat surprising fact that can be
seen is that even if all accesses to the shared,
global variables are nonlocal memory accesses,
we can still achieve between 82 and 99 percent
references to local memory. Ignoring, for the
moment, interference on the Map Bus, and con-

tention for the local memory of the CMs, a hit
ratio of 90 percent to local memory yields an
average access time of 4.1 microseconds. These
hit ratios illustrate the value of developing
memory management and processor scheduling
strategies that attempt to keep code (and the
stack) local to the processor executing the pro-
gram.

Execution Speedup and Bus Contention

Figure 18 shows the average measured execu-
tion speedup as a function of the number of
processors allocated to the task for the five ap-
plication programs just discussed. For these
measurements the code, stack, and local vari-
able segments were local to each processor, and
only the access to global data structures re-
quired external references. The nearly linear
speedup experience by the PDE and Integer
Programming programs is very encouraging.

/
/

I / /
8 -

7 -

D_ = -
0

1
2 3 4 5 6 7 8 1

NUMBER OF PROCESSES

1
2 3 4 5 6 7 8 1

Figure 18. Average speedup of five algorithms of Crn"

480 EVOLUTION OF COMPUTER BUILDING BLOCKS

460

400

360

300

-
Y) 0

260

::
g 2 0 0 -
-
-

150

100

60

The curves for HARPY, ALGOL 68, and
QUICKSORT, however, do not show a linear
speedup. The reason for this, in each case, is
that the problem does not have enough inherent
parallelism to keep more than a few processors
busy all the time, so that adding more proces-
sors does not result in proportionally large
speedups. To understand how many processors
might effectively be used in larger systems, a
number of experiments were conducted. These
experiments, which are summarized in the
graphs of Figures 19 and 20 were done for the
following memory reference patterns.

-

-

-

-

-

-

-

-
I . All processors share code, stack, and all

data from the memory in a single CM. In
other words, the memory bandwidth of
an individual CM is the performance
bottleneck. This curve indicates that per-
formance cannot be improved by using
more than three or four processors. The
saturation reference rate of a single
CM’s memory was measured to be 270K
references/second. Now consider more
practical cases in which most of the code
and local variables are in the local mem-
ory of each CM, and only the global
data structures are shared. Even if 10
percent of all memory references of the
active processors were to global data in
the memory of a single CM, the system
would saturate between 30 and 40 CMs.
To date, we have had no difficulty in dis-
tributing shared data structures over the
memory of several CMs so that the
memory bandwidth of a CM is not a
serious constraint.
All processors make external references
that are mapped back to their own local
memory. This case was used to study sat-
uration of the Map Bus and K.map. The
curve indicates that the K.map (and
Map Bus) saturated when six or seven
processors were simultaneously active in
this mode; the saturation rate of the

2.

OALLMAPPEO AND SHARED
+ALL MAPPED ONLY GLOBALS SHARED
OCODE. STACK LOCAL, GLOBALS SHARED

01
0 1 2 3 4 5 6 7 8

NUMBER OF PROCESSORS

Figure 19. PDE execution time

8

+ ALL MAPPED, ONLY GLOBAL SHARED
0 CODE. STACK LOCAL, GLOBALS SHARED

7

6

5

P 3

9 4

YI

3
-0-0-0

2

1

0
0 1 2 3 4 5 6 7 8

NUMBER OF PROCESSORS

Figure 20. PDE speedup.

MULTI-MICROPROCESSORS: AN OVERVIEW AND WORKING EXAMPLE 481

M a p B u s is a b o u t 550K re fe r -
ences/second. Assuming that the mea-
sured benchmarks represent typical
situations, and that a 90 percent hit ratio
to local memory can be achieved, we see
that a Map Bus and K.map can support
a cluster of about 60 CMs. The band-
width of the Map Bus is an important
limiting factor that constrains the num-
ber of CMs in a cluster, so that there is a
need t o consider multicluster con-
figurations independent of reliability or
availability considerations.
All processors access their local memory
for the code, stack, and local variables,
and use the K.map only for mapping to
shared global data. This is the case al-
ready considered, and for up to eight
processors, negligible contention is expe-
rienced (Figure 18).

3.

''1 0 LOCAL. CASE 1 P I

0 1 2 3 4 5 6 7 B

NUMBER OF PROCESSORS

Figure 2 1. Integer programming speedup.

From additional measurements, we estimate
the intercluster saturation rate to be about
287K references/second, with the source
K.map being the bottleneck component in the
system.

Figure 2 1 shows another interesting measure-
ment on Cm*. Here, a number of different
cases of the Integer Programming program are
shown as a plot of execution speedup versus the
number of available processors. Most of the
time, almost linear speedups were observed.
This is a consequence not of a breakthrough in
algorithmic design, but rather of the fact that
the time to find the optimal solution in a search
tree is dependent on the order in which the tree
is searched. In other words, some search orders
allow quicker, more radical prunes of the tree
than other search orders. Therefore, the chance
will always exist that one of the parallel paths
initiated will fortuitously find a good solution
and allow early pruning of the search tree.

Fundamentally, the multiprocessor cannot
expect speedups greater than linear in the num-
ber of available processors. If, for example, the
speedup of the Integer Programming problem
was observed to increase as the square of the
number of processors, then a new program
could be written for a uniprocessor that, in ef-
fect, emulated the operation of a set of parallel
processors by round-robin sharing of the
uniprocessor among the parallel processes. In
special instances, parallel processes may allow
the elimination of some overhead, but linear
speedup in the number of available processors
is the ideal situation.

Performance of Multiple Cluster
Configurations

The results of Figure 18 imply that many
more than ten CMs could be managed in a
single cluster before the Map Bus becomes a
performance bottleneck. However, since we are
interested in the potential of the Cm* structure
for much larger systems, we also examined the

482 EVOLUTION OF COMPUTER BUILDING BLOCKS

performance of multi-cluster Cm* con-
figurations to predict the performance degrada-
tions associated with intercluster references.
Figure 22 shows the performance of Cm* on
two different versions of the PDE program for
both single-cluster and multi-cluster con-
figurations. Note that nearly negligible degra-
dation was achievable, particularly in method 4,
which is an asynchronous version of the PDE
specifically designed to cope with processors of

400

350

300

250

0 z 0
P 200 -

150

100

50

0

0 MULTIPLE CLUSTERS. PO€ METHOD 0

A SINGLE c t u s i E n . POE METHOD o
0 MULTIPLE CLUSTERS, PDE METHOD 4

0 SINGLE CLUSTER. PDE METHOD 4

1 2 3 4 5 6 7 8

NUMBER OF PROCESSORS

Figure 22. Single- and multiple-cluster execution time.

varying run times. The small degradation in go-
ing from the one cluster configuration to the
multi-cluster configuration gives considerable
hope that hierarchical switching structures like
the one used in Cm* can provide very nearly
the performance of much more expensive
switching structures that give uniformly fast ac-
cess to all of physical memory.

CONCLUDING REMARKS

The major accomplishment of the Cm* proj-
ect has been to bring an experimental multi-mi-
croprocessor system to an operational state,

and to demonstrate that almost-linear speedup
can be achieved with several applications.
Moreover, there have been no serious bot-
tlenecks or deficiencies in the proces-
sor /memory bus structure tha t preclude
configurations with 100 or more processors.

Many aspects of Cm*, and multi-micro-
processors in general, require further invest-
igation. Our own plans call for considering
alternative memory mapping and interprocess
control architectures, developing a large appli-
cation system on Cm* to test larger con-
figurations, and integrating a practical 1 / 0
system into the Cm* structure.

As other multi-microprocessors become op-
erational and competing solutions are found to
some of the problems currently facing multi-
processors, the relative merit of the Cm* organ-
ization will be put into much better perspective.
A comparison of alternate multiprocessor or-
ganizations is especially important in the initial
stages when most investigations are necessarily
empirical, and no one solution may claim opti-
mality.

APPENDIX: DESCRIPTION OF THE
BENCHMARK PROGRAMS

Five programs from different application
areas were used in the initial performance eval-
uation of the Cm* system. Four of these pro-
grams are described here, and the HARPY
speech recognition program is described in
Jones et al., [1978]. More detailed descriptions
of these programs may be found in Fuller et al.,
[19771.

Partial Differential Equations, a Numerical
Application

This is the solution to Dirichlet’s problem of
Laplace’s partial differential equation (PDE) by
the method of finite difference. This program
solves the PDE:

MULTI-MICROPROCESSORS: AN OVERVIEW AND WORKING EXAMPLE 483

on a rectangular grid of size M X N , where only
the values at the outer edges of the grid are
given.

A finite difference method [Baudet, 19761
that transforms the problem into a set of linear
equations A x = b is used. Here, x is an MN
vector of all the points in the grid, A is an M N
X M N sparse matrix, and b is an M N vector
derived from the boundary conditions. This set
of linear equations is derived from the new ap-
proximate values of the points (in each itera-
tion) by averaging the values of the four
adjacent neighbors of each point. The solution
of this PDE is required in many application
areas (e.g., in electromagnetic fields, hydro-
dynamics). Other PDE problems can be sim-
ilarly solved using this method.

The computation is initially decomposed into
P processes, where P is equal to the number of
processors available. Each process (and proces-
sor) iterates on a fixed subset of M N / P com-
ponents out of the total M N components. One
processor, the “master” processor, initializes
and starts the other “slave” processors, and
prints the results when all have finished. Note
that the master participates in the computation
just like the slave processors.

Sorting

This problem concerns the decomposition of
the well-known QUICKSORT algorithm [Sin-
gleton, 19691 into asynchronous parallel pro-
cesses. The median for each sort pass was
chosen as the median of the first, middle, and
last elements in the sublist. During a sorting
pass, a processor partitions its list of elements
into two sublists: elements larger than the me-
dian of the original set and elements smaller
than the median. The processor then pushes the
address and size of the smaller of the two sub-
sets onto a stack shared by all the processors.
Making the smaller subset available to the other
processors tends to put more work onto the
shared stack in order to keep as many proces-
sors as possible busy. The processor proceeds to

further partition the remaining (larger) subset.
When the remaining subset cannot be parti-
tioned further, the processor selects the next
available subset from the shared stack.

Simple assumptions about the algorithm give
a theoretical sorting time of:

cN [(K - M) / P + 2 (1 - (1 / 2) M)]

where N is the number of elements tc sort, K is
Log2 N , cis constant, P i s the number of proces-
sors, and M is Log2 P.

When the number of processors is much
smaller than the number of items to be sorted,
almost linear speedup can be achieved. The per-
formance degrades considerably when the num-
ber of processors is large and asymptotically
approaches a speed of T = c Log N / 2 . See
Stone [1971] for a description of sorting meth-
ods that speed up as NILog N for large num-
bers of processors.

Integer Programming -The Set Partitioning
Problem

The particular integer programming consid-
ered here is one of the most practical and appli-
cable methods. It is used, for example, in airline
crew scheduling [Bales and Padberg, 19761.

The set-partitioning problem is to solve:

min (c.x [A x = 0, xj = 0 or 1 for 0 < j Q N)

where A is an A4 X N binary matrix, c is an N
vector, and c = (1 . . . 1) M vector.

This problem typically is solved by per-
forming an N-ary tree search on a large rela-
tively sparse binary matrix. As an example of
this method, consider the airline crew sched-
uling problem. The rows of the A matrix corre-
spond to a set of flight legs from city A to city B ,
in time T to be covered during a specified pe-
riod, and the columns of A correspond to a pos-
sible sequence of tours of flight legs done by one
crew; c is the vector of the associated cost of
each tour. A possible solution includes a set of

484 EVOLUTION OF COMPUTER BUILDING BLOCKS

tours that satisfies all the flight legs (one and
only one crew makes a flight leg). We are look-
ing for the solution with the lowest cost.

As in the previous applications, the master
processor initializes the computation, creates
the array according to user’s specification, and
puts enough initial possible search-path solu-
tions in a global stack from which all the pro-
cessors pick their work. We arbitrarily choose
to put more than IO X P path solutions into the
stack where P equals the number of processors
so the work is more evenly distributed between
the processors, and all are occupied for a large
percentage of the time.

To enhance pruning in the search, a global
variable contains the cost of the best solution
found so far by any of the processors, and all
compare their current cost value to it and begin
to backtrack in the search when that global cost
is lower.

ALGOL 68 System

A semantically rich subset of the program-
ming language ALGOL 68 was implemented on
Cm* [Hibbard, et af., 19781. In order to take
advantage of the parallel architecture of Cm*,
the language has been extended by including
several methods of specifying concurrent execu-
tion and synchronization of subtasks.

The run-time system measured runs upon a
small, special purpose kernel which provides

basic support for interrupt and 1 / 0 handling,
segment allocation and swapping, bootstrap-
ping, and the collection of performance statis-
tics. To facilitate locality of memory references,
the run-time system is loaded into the local
memory of each processor.

Modifications are being studied to provide
automatic decomposition of tasks into small-
grain subtasks. These modifications comprise a
software implementation of multiple parallel-
instruction pipelines, in which the instructions
are the primitive actions of the ALGOL 68 run-
time system, e.g., floating-point operations, ar-
ray indexing and other vector operations, and
assignments of large values. These actions are
executed by slave processors on behalf of the
master processors which are placing the actions
in the pipelines.

ACKNOWLEDGEMENTS

The Cm* project has greatly benefited from
interaction with other research projects and in-
dividuals at the Computer Science Department
at CMU; experiences gained from the C.mmp
project [Harbison and Wulf, 19771 have been
particularly useful. Among those who have
made direct contributions to the design and im-
plementation of Cm* are Andy Bechtolsheim,
Paolo Coraluppi, Kwok-Woon Lai, Pradeep
Reddy, and Daniel Siewiorek.

Opposite:

Top:
KI1 0-based DECsystem-10

Bottom, left to right:
KL10-based DECSYSTEM- 20.
PDP-6.
KA10.

PART v

I / !

The PDP-10 Family

This final part of Computer Engineering contains only a single chapter, “The
Evolution of the DECsystem 10.” It is a fitting conclusion because it summarizes
many of the aspects of computer engineering discussed in the rest of this book.
The introduction and historical setting with which the chapter begins are con-
densations of the historical information included in Parts I and I1 of this book;
the goals, constraints, and design decisions elaborated on in the remainder of the
chapter are specific examples of the concepts discussed throughout the book. The
paragraph headings, such as “logic,” “fabrication,” “packaging,” and
“price/performance,” have counterparts in earlier chapters.

The authors of this chapter, which first appeared as a paper in the January 1978
issue of Communications of the A C M , have been key figures in the evolution that
they describe. Thus, when they talk about design decisions and tradeoffs, they are
talking from first-hand experience.

The 36-bit Family has been important to DEC for a number of reasons. The
designers of these machines have realized that software development is very
costly, and have put a great deal of emphasis on making their systems easy to
program, even if additional hardware expense is involved. Furthermore, their
hardware has been very conservatively designed, with rigid design rules to assure
that the vast number of circuits required to implement each function operate
correctly under all conditions. Although the chapter conclusion suggests that the
PDP-10 engineers have transferred hardware technology to minicomputer engi-
neering, the technology transfer has been principally in the area of automated
design aids, as it has only been with the ECL logic of the KLlO that PDP-10
designs have used logic families or module technology not previously used in the
minicomputer segment of DEC. The paragraphs on “logic” and “packaging”
within the main body of the chapter elaborate on this.

The role of the PDP-6 in PDP-10 history is described in detail in the chapter,
but it has interesting aspects in addition to those mentioned. Because the PDP-6
was the first computer to offer elegant, powerful capabilities at a low price, a great
many of the PDP-6s built found their way into university and scientific environ-
ments, giving DEC a strong foothold in that market and providing both educated
customer input for future models and a source of bright young future employees
to assist in the hardware and software development for those future models. The
impact of the PDP-6 was particularly noteworthy because fewer PDP-6s were
built than any other DEC machine: only 23. The sales were sufficiently dis-
appointing to management, in fact, that a decision was made (but fcrtunately

487

488 THE PDP-IO FAMILY

reversed) not to build any more 36-bit machines. Since then, however, with the
possible exception of the KI 10 processor, each processor has been more successful
than the last, and the contributions of “large computer thinking” (design rules,
strict program compatibility, etc.) to the company as a whole have been extremely
useful. This final chapter is an excellent summary of computer engineering.

The Evolution of the DECsystem-IO
C. GORDON BELL, ALAN KOTOK,

THOMAS N. HASTINGS, and RICHARD HILL

I NTR 0 D U CTI 0 N

The project from which the PDP-6, DECsys-
tem-10, and DECSYSTEM-20 series of scien-
tific, timeshared computers evolved began in
the spring of 1963 and continued with the deliv-
ery of a PDP-6 in the summer of 1964. Initially,
the PDP-6 was designed to extend DEC’s line of
18-bit computers by providing more perform-
ance at increased price. Although the PDP-6
was not designed to be a member in a family of
compatible computers, the series evolved into
five basic designs (PDP-6, KAlO, KIlO, KLIO,
and KL20) with over 700 systems installed by
January 1978. During the initial design period,
we neither understood the notions and need for
compatibility nor did we have adequate tech-
nology to undertake such a task. Each succes-
sive implementation in the series has generally
offered increased performance for only slightly
increased cost. The KLlO and KL20 systems
span a five to one price range.

TOPS- 10, the major user software interface,
developed from a 6-Kword monitor for the
PDP-6. A second user interface, TOPS-20, in-
troduced in 1976 with upgraded facilities, is
based on multiprocess operating systems ad-
vances.

This paper is divided into seven sections. Sec-
tion 2 provides a brief historical setting fol-
lowed by a discussion of the initial project
goals, constraints, and basic design decisions.
The instruction set and system organization are
given in Sections 4 and 5, respectively. Section 6
discusses the operating system, while Section 7
presents the technological influences on the de-
signs. Sections 4 through 7 begin with a presen-
tation of the goals and constraints, proceed to
the basic PDP-6 design, and conclude with the
evolution (and current state). We try to answer
the often-asked questions, “Why did you do . .
.?”, by giving the contextual environment. Fig-
ure 1 helps summarize this context in the form
of a timeline that depicts the various hard-
ware/software technologies (above line) and
when they were applied (below line) to the
DECsystem- 10.

HISTORICAL SETTl NG
The PDP-6 was designed for both a time-

shared computational environment and real-
time laboratory use with straightforward inter-
facing capability. At the initiation of the proj-
ect , three t imeshared compute r s were

489

490 THE PDP-10 FAMILY

58 60 6 2

O E C s y s t e m 10
F A M I L Y TREE

6 4 66 68 70 7 2 7 4 7 6

B A S I C - M U L T I P R D G .

PAPER M I T C T S S B E N
PAPER PAPER

S E M I C O N D U C T O R S W I ~ ~ ~ ~ A P FIRST I C s TTL TTL/H. ECL 1 0 K T T V S C H O T T K Y ECL lOOK

DEC SYSTEM P D P - 1 P O P - 4 P D P - 6 W I R E - W R A P (OTHER M A C H I N E S OMITTED1
OEC
TECHNOLOGY/
M A C H I N E S M O D U L E S (M I N I S & F L I P - C H I P MODULES1

PAPER - BERKELEY
9 4 0 I B M 3 6 0 / 6 7 TENEX

TENEX PAPER
SYSTEM TSS

M U L T I C S OPER.

FAST. R / W M E M O R I E S I I N BITS1 SIL ICON
G E R M A N I U M T R A N S I S T O R S T R A N S I S T O R S

1 6 6 4 2 6 0 1 K 4K

S E M I C O N O U C T O R S

1 V * l

L A N G U A G E S 6 UTIL IT IES

J

OPERATING SYSTEMS

Figure 1. Timeline of DECsystem-10 evolution

operational: a PDP-1 at Bolt, Beranek, and
Newman (BBN) which used a high-speed drum
that could swap a 4 Kword core image in one 34
ms revolution; an IBM 7090 system at MIT
called CTSS, which provided each of 32 users a
32 Kword environment; and an AN/FSQ-32V
at SDC, which could serve 40 simultaneous
users.

The Bell Laboratory's IBM 7094 Operating
System was a model operating system for batch
users. Burroughs had implemented a multi-
programmed system on the B5000. Dartmouth
was considering the design of a single language,
timesharing system which subsequently became
BASIC. The MIT Multics system, the Berkeley
SDS 940, the Stanford PDP-1 based timeshared

THE EVOLUTION O F THE DECsystem-10 491

system for computer-aided instruction, and the
BBN Tenex system all contributed concepts to
the DECsystem-IO evolution in the 1960s.

In architecture, the Manchester Atlas [Bell,
Newell, 1971:Ch. 231 was exemplary, not be-
cause it was a large machine that we would
build, but because it illustrated a number of
good design principles. Atlas was multi-
programmed with a well defined interface be-
tween the user and operating system, had a very
large address space, and introduced the notion
of extra codes to extend the functionality of its
instruction set. Paging was a concept we just
could not afford to implement without a fast,
small memory. The IBM Channel concept was
in use on their 7094; it was one we wanted to
avoid since our minicomputers (e.g., PDP-I)
were generally smaller than a single channel and
could outperform the 7094 in terms of 1 /0 con-
currency and 1 / 0 programmability by a clean,
simple interrupt mechanism.

The DEC product line in 1964 is summarized
in Table 1 . Sales totaled $1 1 million then, and it
was felt that computers had to be offered in the
$20,000 to $300,000 range. We were sensitive to
the problems encountered by not having
enough address bits, having watched DEC and
IBM machines exceed their addressing capaci-
ties.

On the software side, most programmers at
DEC had been large-machine (16 Kword to 32
Kword) users, although they had most recently
programmed minicomputers where program
size of 4 Kwords to 8 Kwords was the main
constraint. There was not a good understanding
of operating systems structure and design in ei-
ther academia or industry. MIT’s Multics proj-
ect was just being formed and IBM’s 360/TSS
project did not start until 1965. Generally, there
were no people who directly represented the
users within the company, although all the de-
signers were computer users. A number of users
in the Cambridge (Mass.) community advised
on the design (especially John McCarthy, Mar-

Table l . DEC‘s 1964 Computer Products

Word
Year In- Size Price

Name troduced (Bits) ($K) Status

PDP-1 1960 18 120 Marketed

PDP-2 1960 24 - Reserved
for future
implementation

PDP-3 1961 36 - Paper machine

PDP-4 1962 18 60 Marketed

PDP-5 1964 12 27 Introduced

PDP-6 1964 36 300 Introduced

vin Minsky, and Peter Sampson at the MIT
Artificial Intelligence Laboratory).

Although there was little consensus that
FORTRAN would be so important, it was clear
that our machine would be used extensively to
execute FORTRAN. The macroassemblers,
basically unchanged even today, were used in
various laboratories; our first one for the PDP-
1 was done by MIT in 1961. We also felt that
the list languages, especially LISP for symbolic
processing, were important. There was virtually
no interest in business data processing although
we had all looked at COBOL.

We did not understand the concept of tech-
nology evolution very well, even though in-
tegrated circuits were both forecast and in
development. Germanium transistors were
available, and silicon transistors were just on
the market. IBM was using machine wirewrap
technology, while DEC back panels were hand-
wired and soldered. The basic DEC logic cir-
cuits were saturating transistors as distinct from
the more expensive current mode used by IBM
in the 7094 and Stretch computers. Production
core memories of 2 microseconds were begin-
ning to appear, and their speed was improving.
The PDP-1 used a 5 microseconds core. Hence,

492 THE PDP-10 FAMILY

it was unclear what memory speed a processor
should support.

The notions of compatibility and family
range were not appreciated even though SDS
(which eventually became XDS and is now non-
existent) had built a range of 24-bit computers.
We adhered to the then-imposed convention of
the word length being a multiple of six bits (the
number of bits in the standard character code),
but designed the machine to handle arbitrary
length characters.

OVERALL GOALS, CONSTRAINTS, AND
BASIC DESIGN DECISIONS

Table 2 lists the initial goals, constraints, and
some basic design decisions. Presenting this list
separately from the design is difficult because
the goals and constraints were not formally re-
corded as such and have to be extracted from
design descriptions and our unreliable, self-jus-
tifying memories. Table 2 will be used in dis-
cussing the design.

The initial design theme was to provide a
powerful, timeshared machine oriented to sci-
entific use, although it subsequently evolved to
commercial use. John McCarthy’s definition
[McCarthy and Maughly, 19621 of timesharing,
to which we subscribed, included providing
each user with the illusion of having his own
large computer. Thus, our base design provided
protection between the users and a mechanism
for allocating and controlling the common re-
sources. The machine also had to support a va-
riety of compiled and interpreted languages.
The construction was to be modular so that it
could evolve and users could build large sys-
tems including multiprocessors. It was intended
to enhance the top of DEC’s existing line of 12-
and 18-bit computers. It was designed to be
simple, buildable, and supportable by a small
organization. Thus i t should use as much DEC
hardware technology as possible.

THE INSTRUCTION SET
PROCESSOR

Our goals for an ISP were: to efficiently en-
code the various programs using both compiled
and interpreted languages; t o be under-
standable and remembered by its users; to be
buildable in current technology at a competitive
price; and to permit a compiler to provide ef-
ficient program production.

Data-Types and Operators

Earlier DEC designs and the then-current six-
bit character standard forced a word length that
was a multiple of 6, 12, and 18 bits. Thus, a 36-
bit word was selected.

The language goals and constraints forced
the inclusion of integer and real (floating-point)
variables. We chose two’s complement integer
representation rather than the sign-magnitude
representation used on the 7090 or the one’s
complement representation on PDP-1. The
floating-point format was chosen to be the same
as the 7090, but with a format that permitted
comparison to be made on the number as an
integer in order to speed up comparisons and
require only a single set of compare instruc-
tions.

Special (common) case operators (e.g., V = 0,
V = V + 1, V = V - 1) were included t o support
compiled code. Our desire to execute LISP
directly resulted in good address arithmetic. As
a result, both LISP and FORTRAN on DEC-
system-10 are encoded efficiently.

Since the computer spends a significant por-
tion of its time executing the operating system,
the efficient support of operating system data-
types is essential. A number of instructions
should be provided for manipulating and test-
ing the following data-types:

I . Boolean variables (bits).
2. Boolean vectors.

THE EVOLUTION OF THE DECsystem-10 493

Table 2. Initial Goals, Constraints, and Basic Design Decisions

User/Language/Operating System
Cheap cost/user via timesharing without inconvenience of batch processing
Timeshared use via terminals with protection between users
Independent user machines to execute from any location in physical memory
Unrestricted use of devices, e g , full-duplex use of terminals
Support for wide range of compiled and interpreted languages
No special batch mode. batch must appear like terminal via a command file
Device-independent I/O so that programs would run on different configurations and I/O
could be shared among the user community
Direct 1/0 for real-time users
Primitive command language to avoid need for large internal state
Minimum usable system 4 16 Kwords
Modular software to correspond to modular hardware configurations

Instruction-Set Processor (ISP)
Support user languages by data-types and special operations

Scientific (i.e.. FORTRAN) * integers, reals, Boolean
List processing (i.e.. LISP) =+ addresses, characters
Support recursive and reentrant programming 3. stack mechanism

Effective as machine language * Booleans. addresses, characters, I10
Operating system is an extension of hardware via defined operating codes

Support operating systems

Word length would be 36 bits (compatible with DEC's computers)
Large (1/4 million 36-bit words = 1 million 9-bit bytes) address
Require minimal hardware 3 simple
General-register based (design decision) with completely general use
Easy to use and remember machine language

Orthogonality of addressing (accessing) and operators
Completeness of operators
Direct (not base 4- displacement) addressing
Few exceptional instructions

2's complement arithmetic (multiple precision arithmetic)

PMS Structure

Easy to interface
Maximum modularity so that users could easily configure any system

Asynchronous operation - system must handle evolving technology
Multiprocessors for incremental and increased performance (2-4 in design)
No Pios (IBM channels). use simple programmed I10 with interrupts and direct-memory
access for high-speed data transmission

Implementation
Simple; reliable
Asynchronous logic and buses for speed in light of uncertain logic and memory speed
All state accessible to field service personnel via lights
Use DEC (10 MHz versus 5 MHz) circuit/logic technology (manpower constraint)
Buildable without microprogramming (no fast, read-only memories in 1963)

Add to high end of DEC's computers
Use minimal resources, while supporting DEC's minicomputer efforts

OrganizationaVMarketplace

,

494 THE PDP-10 FAMILY

3. Arbitrary length field access (load/store
only).

4. Addresses.
5. Programs (loops, branching, and sub-

programs).
6. Ordinary integers.
7. The control of I/O.

A significant number of control instructions
were included to test addresses and other data-
types. These tests controlled flow by either a
jump or skip of the next instruction (which is
usually a jump). Loop control was a most im-
portant design consideration.

Table 3 gives the data-types and instructions
present in the various implementations. The
KA I O and PDP-6 processor instruction sets
were essentially the same, but differed in the im-
plementation. The PDP-6 had 365 instructions.
A double-precision negate instruction in the
KA 10 improved the subroutine performance
for double-precision reals. The instruction,
“find first one in a bit vector,” was also added
to assist operating system resource allocation
and to help in a specific application sale (that
did not materialize). Finally, double-precision
real-arithmetic instructions were added to the
KIlO using the original PDP-6 programmed
scheme. A few minor incompatibilities were in-
troduced in the KI to improve performance.

With the decision to offer COBOL in 1970,
better character and decimal string processing
support was required from the intruction set.
The initial COBOL performance was poor for
character and decimal arithmetic because each
operation required: (1) software character by
character conversion to an integer, (2) the oper-
ation (in binary or double-precision binary),
and (3) software reconversion to a character or
a decimal number. The KLlO provided much
higher performance for COBOL by having the
basic instructions for comparing character and
decimal strings - where a character can be a
variable size. For arithmetic operations, in-
structions were added to convert between string

and double-precision binary. The actual oper-
ations are still carried out in binary. For add
and subtract, the time is slightly longer than a
pure string-based instruction, but for multi-
plying and dividing, the conversion approach is
faster.

Stack Versus General Registers
Organization

A stack machine was considered, based on
the B5000 and George Interpreter (which later
became the English Electric KDF9). A stack
with index register machine was proposed for
executing the operating system, LISP, and
FORTRAN; it was rejected on the basis of high
cost and fear of poor performance. The com-
promise we made was to provide a number of
instructions to operate on a stack, yet to use the
general registers as stack pointers.

An interesting result of our experience was
that one of us (Bell) discovered a more general
structure whereby either a stack or general reg-
ister machine could be implemented by extend-
ing addressing modes and using the general
registers for stack pointers. This scheme was the
basis of the PDP-11 ISP (Chapter 9).

We currently believe that stack and general
register structures are quite similar and tend to
offer a tradeoff between control (either in a pro-
gram or in the interpretation of the ISP) and
performance. Compilers for general register
machines often allocate registers as though they
were a stack. Table 4 compares the stack and
general register approaches.

A general register architecture was selected
with the registers in the memory address space.
The general registers (multiple accumulators)
should permit a wide (general) range of use.
Both 8 and 16 were considered. By the time the
uses were enumerated, especially to store inner
loops, we believed 16 were needed. They could
be used as: base and index, set of Booleans
(flags), ordinary accumulator and multiplier-
quotient (from 7090), subroutine linkage, fast

THE EVOLUTION OF THE DECsystem-10 495

Table 3. Data-Types of DECsystem- I O /DECSYSTEM-20

Length Operators and
Data-Type (bits) Machine [Number of Instructions] Operator Location

Boolean

Boolean-vector

Characters

Character-string

Digit-string

Half word, 2’s com-
plement integers =
addresses

1 All 0. 1. 11, test by skip 1641

36 All All 16 1641

0-36 = v All Load, store (51

v X n KL Compare 181: move 141

v X n KL Convert to double integer

18 All Load, store 1641; index loop
control

Full word, 2’s com- 36
plement integers
(and fractions)

Double word, 2’s 72
c o m p l e m e n t i n -
tegers (and frac-
tions)

Real 9 (exponent)
+ 2 7 (man-
tissa)

Double real 9 + 5 4
9 + 63

Word stack 36

Word vector 3 6 X k

I/O program 36

All

KL

Load, store, abs.. -(negate)
1161 +,-, X . +l,- l .X.rotate.test
(by skip & jumps)

Load, store, -(negate) [4]: +.
-, x. 141

AC c f (AC)

AC and/or mem c f (AC, mem)

AC u h e m)

f (mern) = g (mem); mem
f (mem)

f (AC) tt f (mem)

AC u f (rnem); AC c f (AC)

AC and/or mem c f (AC, mem)

AC tt f (rnem); AC t f (AC.
mem)

All Load, store. abs.. -(negate). AC and/or mem t f (AC. mem)
immediate mode was added in +. -, X. /, X (351; test (by

skip, jump) [161 KA

Load, store, abs., negate, +, KI. KL KA provided negate instruction
KI. KL -, X. 1 [8]

All Load, store, call, return [4] Stack tt Memory

All Move [l] Mem[a:a+k] t mem[b:b+k]

All Short call/return: UUO AC. memory

access for temporary and common sub- isters to reduce the minimal machine price. In
expressions, top of stack when accessed explic- reality, nearly all users bought fast registers.
itly, pointer-to-control stacks, and fast registers Eight registers may have been enough. A small
to hold small programs. number would have provided more rapid con-

Since the ACs were in the address space, or- text switching and assisted the assembly lan-
dinary memory could be used in lieu of fast reg- guage programmer who tried to optimize (and

496 THE PDP-10 FAMILY

Table 4.
General Register Architectures

Comparison of Stack and

Stack General Register

Number of Approximately the same
Registers

Register use Fixed to
stack oper-
ation

Control Built-in hard-
ware (impli-
cit)

Access to lo- 1 or 2 ele-
cal variables ments at top

of stack

Compiler Easy (no
choice)

Program en- Fewer bits
coding

Performance High if ele-
ment on
stack top

Can be arbitrary

Simple, explicit in pro-
gram when used as a
stack

Full set in general reg-
isters

An assignment (use)
problem

More bits give access
to registers for inter-
mediate and index val-
ues

High if in general regis-
ters (performs rela-
tively better than stack)

keep track of) their use. In fact, Lunde [I9771
has shown that eight working registers would be
sufficient to support the higher level language
usage. Multiple register sets were introduced in
the KI 10 to reduce context-switching time.

Instruction-Set Encoding and Layout

The ease-of-implementation goal forced an
instruction set design style that later turned out
to be easy to fabricate with the KLlO micro-
program implementation. This also simplified
the fabrication of compilers. I n fact, of the 222
instructions useful for FORTRAN data-types,
the earliest compiler used 180 of them and the

current compiler uses 212. We used three prin-
ciples, we now understand, for the ISP design:

1. Orthogonality. An address (with index
and indirect control fields) is always
computed in the same way, independent
of the data-type it references. Indirect
addressing occurs as long as the instruc-
tion addressed has an indirect bit.

Completeness and symmetry. Where pos-
sible, each arithmetic data-type should
have a complete and identical set of op-
erations.

2.

3. Mapping among data-types. Instructions
should exist to convert among all data-
types. Several data-types were in -
complete (characters, half-words), and
these should be converted to data-types
with a complete operator set.

The instruction is mapped into the 36-bit word
as follows:

ACCUMULATOR INDIRECT BIT INDEXREGISTER

AOORESS \ I ADDRESS

MEMORY ADDRESS INSTRUCTION CODE I
0 8 9 1 2 1 3 1 4 I I l 8 35

8AS1C lNSTRUCTlON I O R M h T

ACCUMULATOR ADDRESS IS 1 OF 16 ACCUMULATORS IGENERAL REGISTERS1
lNDEX REGISTER AODRESS IS INDEX DESIGNATOR TO 1 OF 15 ACs
817 13 I S INDIRECT & O 0 R I S S B I T
M E M O R Y AIDDRESS IS a D O R 1 S S OR LITERAL

The entire instruction set fits easily within a
single figure (Figure 2). The boldface letters de-
note instruction mnemonics. The data-types
and operations are generally deducible by the
instruction names: operator names (e.g., ADD)
for word (or integer); D double integers; H half-
world: BL vector: 16-operator names (e.g.,
AND) for Boolean vectors, Test-Boolean (bits);
J jump/skip for program control; F floating;
D F double floating. The 1 / 0 and interrupt in-
structions are described in the PMS section.

THE EVOLUTION OF THE DECsystem-10 497

BLock Tranrlrr

EXCHmrc AC and mrmon (Vector)

EXTEND

CoMPare S m n g and S a p if

new
Less
Eqd
Less 0I Equal
Greater 01 Equal
Not equal
Greater

EDIT

[Translation Offset

Left Jushfication
Rght Justlficabon

w t h byte
M i d w t h - m v e s m n g

and Jump
ADJlst Stack Pomter (Stack)

4, lmmedidc
with Complrmcnl of A< Memory

Cumplcmcnlr o i &,111

(Boolean Vector)
" W C ,

Inclusive OR
eXclurive OR
EQuValmcc

SKIP If memory
JUMP if A(

Add O n e 10 Equal
Suhlrarl O n e from A(and Jump Always

(Integer. Fraction,
Real)

ADD I

Integer MULliply
DlVidr
Integer DlVidc

Floating MulliPly
Floating LhVidc

Floaling K a l e

h i u h l e Floating Negate

Unnormilized Floating Add

F I X
F IX and Round

F l m T a n d Round

Double lntega

DIVnie

MultiRy I DiVide

Double Floating

'OV { 5 Ncgal ivc) { Memory

'IC) SuhRoutme
rnd Save Pc
2nd Save A<,
and Rcrlore Ac
11 Find First One
on Flag and C h a r II
on OVerllow (JFCL IO.)
on CaRrY 0 (JFCL 4.)
on CaRrY I (JFCL ?.)
on C a k Y (JFCL 6.)
on Floaling Overflow (JFCL 1.)
and RcSTorc
and RcSTorc Flags (JRST 2 .)

Jump '

.and ENab lc YI channel (JRST 12 ,)

H A L T (JRST 4.)

PORTAL (JRST I ,)

eXeCuTe
MAP

Figure 2. Instruction set

498 THE PDP-10 FAMILY

Multiprogramming/Monitor Facilities

The initial constraint (circa 1963) of a time-
shared computer with a common operating sys-
tem led to several hardware facilities:

1. Two basic machine modes. User and Ex-
ecutive (each with different privileges).

2. Protection. Protection against oper-
ations to halt the computer or oper-
ations that affect the common 1/0 when
in User mode.

3. Communication. Communication be-
tween the user and operating system for
calling 1 / 0 and other shared functions.

4. Memory mapping. Separation of user
programs into different parts of physical
memory with protection among the
parts and program relocation beyond
the control of user.

An Executive/User mode was necessary for
protection facilities in a shared operating sys-
tem while providing each user with his own en-
vironment. Although there was a temptation
(due to having a single operating system) to
eliminate or make optional the Executive mode
and the general registers, we persevered in the
design and now believe this to be an essential
part of virtually every computer! (The only
other necessary ingredient in every computer is
adequate error detection, such as parity.) Sepa-
ration into at least two separate operating re-
gions (user and executive) also permits the more
difficult, time-constrained 1/0 programs to be
written once and to have a more formal inter-
face between system utilities and user.

The Unimplemented User Operation (UUO)
is an instruction like the Atlas Extracode and
IBM 360 SVC to call operating system func-
tions and common user-defined functions. It
also calls functions not present in earlier ma-
chines. Thus, a single operating system could be
used (by selecting the appropriate options) over
several models. This use appears to be more ex-
tensive than it is in the IBM System 360/370.

The goals of low cost hardware and minimal
performance degradation constrained the pro-
tection facilities to a single pair of registers to
relocate programs in increments of 1 Kwords.
Two 8-bit registers (base and limit registers)
with two 8-bit adders were required for this so-
lution. Thus, each user area was protected while
running, and a program could be moved within
primary or secondary memory (and saved) be-
cause user programs were written beginning at
location 0. This is identical to the CDC 6600-
7600 protection/relocation scheme.

In the KAlO, a second pair of registers were
added so that the common read-only segment
of a user’s space could be shared. For example,
this enabled one copy of an editor, compiler, or
run-time system to be shared among multiple
users. Programs were divided into a 128 Kword
read-write segment and a 128 Kword read-only
segment. Since each user’s shared segment had
to occupy contiguous memory, holes would de-
velop as users with different shared segment re-
quirements were swapped. This led to “core
shuffling,” and, in a busy system, up to 2 per-
cent of the time might be spent in this activity.
The operating system was modified in the early
70s at the Stanford Artificial Intelligence Labo-
ratory so that the high, read-only segment could
share common, global data. In this way, a num-
ber of separate user programs could commu-
nicate to effectively extend the program size
beyond the 256 Kword limit. In retrospect, in-
structions to move data more easily between a
particular user region and the operating system
would have been useful; this was corrected in
KIlO and is described below.

With the availability of medium-scale in-
tegrated circuits, small (32 word) associative
memories could be built. This enabled the in-
troduction of a paging scheme in the KI10.
Each 5 12-word page could be declared sharable
or private with read-only or read-write access.
The basic two-mode protection facility was ex-
panded to four modes: Supervisor, Kernel,
Public, and Concealed. There are two monitor

THE EVOLUTION OF THE DECsystem-10 499

modes: Kernel mode provides protection for
1 / 0 and system functions common to all users,
and Supervisor mode is specialized for a single
user. The two user modes are: Concealed for
proprietary programs, and Public for shared
programs. For protection purposes, the modes
are only changed at selected entry portals. The
page table was more elaborate than that of the
Atlas (circa 1960) whose main goal was to pro-
vide a one-level store whereby large programs
could run on small physical memories. In fact,
the first use of KIlO paging required all pro-
grams to be resident rather than having pages
being demand driven. A gain over the KAlO
was realized by not requiring programs to be in
a single contiguous address space. The KIlO de-
sign provided more sharing and increased effi-
ciency over the KA10. The KLlO extended
KIlO paging for use in the TOPS-20 operating
system to be described later.

PMS" STRUCTURE

Table 2 gives the major goals and constraints
in the PMS structure design. This section de-
scribes system configurations, the 1 / 0 system,
the memory system, and computer-computer
communication structures.

System Configurations

We wanted to give the user considerable free-
dom in specifying a system configuration with
the ability to increase (or decrease) memory
size, processing power, and external interfaces
to people, other computers, and real-time
equipment. Overall, the PMS structure has re-
mained essentially the same as in the PDP-6 de-
sign, with periodic enhancements to provide
more performance and better real-time capabil-
ity. (A PDP-6 memory or 1 / 0 device could be

used on a KI 10 processor, and a PDP-6 1 / 0 de-
vice can be used on today's KLlO systems.) A
radical change occurred with the KL20 to a
more integrated, less costly design for the pro-
cessor, memory, and minicomputer 1 / 0 pre-
processors.

The PMS block diagram of a two-processor
PDP-6 is given in Figure 3. But for simple
uniprocessor systems, the PMS structure was
quite like that of our small computers with up
to 16 modules on both the 1 / 0 and Memory
Buses (Figure 4).

Interestingly, a unified 1 / 0 memory bus like
the PDP-11 Unibus was considered. The con-
cept was rejected because a unified bus designed
to operate at memory speed would have been
more costly.

The goal to provide arbitrary, modular com-
puting resources led to a multiprocessor struc-
ture with shared memory. The interconnection
between processors and memory modules was
chosen to be a cross-point switch with each pro-
cessor broadcasting to all memory modules.

An alternative interconnection scheme could
have been a more complex, synchronous, mes-
sage-oriented protocol on a single bus. More ef-
ficient cable utilization and higher bandwidth
would have resulted, but physical partitioning
into multiple processor/memory subsystems for
on-line maintenance would have been pre-
cluded. All in all, the cross-point switch deci-
sion was basically sound although more
expensive.

Figure 5 shows a PMS block diagram for the
KAlO and KIIO. There can be up to 16,
65 Kword, 4-port memory modules, giving a to-
tal of one Mword of memory. (Each processor
addressed four Mwords.) With high speed disk
and tape units (e.g., 250 Kwords/second) a pro-
gram-controlled 1/0 scheme would place too
much of a burden on the central processor.

*See Appendix 2.

500 THE PDP-10 FAMILY

MEMORY BUS 200 Kwords/s

[PAPERTAPE READER) OTHER

U P T O Z
MORE
Pc/Kc

I
DEVICE CONTROLLERS

CONTROLLERS FOR:
CARDS, LINE PRINTER,

.
E '} :El%APH

ICOMMUNICATIONI m 84 TERMINAL
LINES

I
I I

(DRUM) I

NOTES:
c : =
K. =
KC:

Mp: =
MI: =
T : =
PC. =

Computer
Controller
Called I/O processor.
actually a double buffer
Primary (program1 memory
Secondary memory
Transducer or terminal
Central processor

Figure 3. PMS diagram for PDP-6 system.

@ @ ... g g
I l a Pc 1 I

(Memory Bur) (I/O Burl

Figure 4. PDP-6 Memory Bus and I10 Bus.

THE EVOLUTION OF THE DECsystem-10 501

I I O B U S

(222 Kwords / r O N K A 1 0
370 K w o r d d s ON K l l O

M E M O R Y BUS

UP TO 4 MWOrdS
I N KI
165 Kwords l

SWlTCHiO
MULTIPLEX
SEVERAL
C H A N N E L S

P-
P-

CONTROLLERS FOR
CAROS. PRINTER, TELETYPE. I/Z/ PLOTTER. A / W A

K

K I M A G T A P E I # 1 2

KlDECtapol X1 2

K I D R U M) # 1 2

M S M.
I M A G T A P E I ...’ I M A G T A P E l

K I M A G T A P E I # 1 : 2 I I

KIOISKI #1 4

4 L \
CHANNELS I E D A T A BUFFERS

Figure 5. PMS diagram for KAlO and K l lO processor-based system.

Therefore, a direct port to memory was pro-
vided as in the PDP-6. In the KAIO/KIIO sys-
tems, a switch (called a multiplexer) was
introduced to expand the number of ports into
memory to four for each Memory Bus used.
The communications controllers were also ex-
panded to handle more asynchronous and syn-
chronous lines.

The KLlO was, by comparison, a radical de-
parture from previous PMS structures (Figure
6). In order to gain more performance, four
words from four low-order interleaved memory
modules were accessed i n each cycle. The effec-
tive processor-memory bandwidth was thus
over four Mwords/second. The processor also
connects to as many as four PDP-II mini-
computers [shown as C (1 1) in the figure]. Most

of the 1/0 is handled by these front-end com-
puters.

Each PDP-I1 can access the KLlO memory
via indirect address pointers and transfer data
in much the same manner as the peripheral pro-
cessing units of a CDC 6600. Notice also that
the KLlO’s console is tied to a PDP-11. This
PDP-I1 can load the KLlO microprogram
memory, run microdiagnostics, and provide a
potential remotely operated console. Each of
the PDP-lls can achieve a word rate of 70
Kchar/second.

Up to eight DEC Massbus controllers are in-
tegrated into the processor. The Massbus is an
18-bit data width bus for block-transfer-orien-
ted mass-storage devices such as disks and mag-
netic tapes. Each Massbus can transfer 1.6

502 THE PDP-10 FAMILY

\ \ Y
PC

ACCESS

...
1 8 .

8

Pc or K

V
2 PORT ACCESS

UP TO 16 MODULES <-"-,
OR Mwordr pc 16 X 8 DISTRIBUTED
1' Kword (VIA M E M O R Y BUS)
CACHE l6 C R O S S - P O I N T S W I T C H
GENERAL REGISTERS1

Figure 6. PMS diagram for K L l O processor-based system.

Mwords/second yielding a maximum 12.8
Mwords/second transfer rate for all channels.
However, contemporary disks need about 250
Kwords/second so that all eight channels only
r e q u i r e 2 .0 M w o r d s / s e c o n d of t h e 4
Mword/second memory bandwidth of four
modules. Individual disks and tapes can be con-
nected to a second port for increased con-
currency. For larger memory configurations, a
memory bandwidth of 16 Mwords/second is
not uncommon. A 2 Kword processor cache
provides roughly a 90 percent hit rate and re-
duces memory bandwidth demand by nearly a
factor of ten.

The cost-reduced KL20 evolved by in-
tegrating the Massbus controllers and PDP-11
interfaces onto a single high-speed, synchro-
nous bus. The model 2040 and 2050 computers
are based on the KLlO processor and integrate

256 Kwords of memory in a single cabinet with
the processor (thereby eliminating the external
Memory Bus). The 1 / 0 Bus is also eliminated,
and all 1 / 0 transfers are either via the Mass-
buses or the PDP-11 1 / 0 computers. (It must be
noted that the 2040 structure is possible only
because of the drastic increase in logic and
memory density!)

I/O System

Relatively, low speed 1 / 0 (200 Kwords/
second) in the PDP-6 was designed to be under
central processor programmed control rather
than via specialized 1 / 0 processors (IBM Sys-
tem 360/370 Channels). This method had pro-
ven effective in our minicomputers and was
extended to handle higher data rates with lower
overhead than specialized 1 / 0 processors.

THE EVOLUTION OF THE DECsystem-10 503

The decision not to use the IBM-type channel
structure was based on high overhead (cost) in
both programming and hardware. Because 1 / 0
record transmission usually caused a central
processor action, we felt the processor might as
well transfer the data while it had access to it.
This merely required a good interrupt and con-
text switching mechanism, not another special-
ized processing entity. However, when an
inordinately high fraction of the processor’s
time went to 1 / 0 processing, a second, fully
general processor was added - not a processor
that was fundamentally only capable of data
transmission.

The PDP-6 interrupt scheme was based on
our previous experience with a 16-level and 256-
level interrupt mechanism for PDP-1. The
PDP-1 scheme was an extension of the Lincoln
Laboratory TX-2 [Clark, 19571. The PDP-6 had
a 7-channel interrupt system, and each device
on the 1 / 0 Bus could be programmed to a par-
ticular level. Hence, a programmer could
change the priority of a particular device that
caused interrupts on the basis of need or ur-
gency. The PDP-6 also had an 1/0 instruction
(“block input” or “block output”) to transfer a
single data item between a block (vector) in
primary memory and an 1 / 0 device. Thus, as
each word was assembled by a controller, an in-
terrupt occurred; the block transfer was exe-
cuted for one word, taking only three memory
references (to the instruction, to increment the
address pointer and block counter, and to
transfer data). Most of the hardware to control
the count and address pointer was already part
of the processor logic.

In applications requiring higher data trans-
mission (e.g., swapping drums, disks, TV cam-
eras), a controller with a data buffer
(erroneously called an 1 / 0 Processor) and link
to memory was provided. This controller re-
quired only a single memory reference per data
transfer with the address pointer and block
counter in hardware. In the KAlO, the name
was changed to Channel, and parameters for

transferring contiguous records into various
parts of memory were part of the channel’s con-
trol. The device control was via the 1 / 0 Bus;
hence, we ended up with a structure for high
speed device control not unlike the IBM chan-
nels we originally wanted to avoid.

Competitive pressure from the Xerox Sigma
series caused a change in the way interrupts
were handled beginning with the KIlO. Al-
though the Xerox scheme had many priority
levels, its main utility was derived from rapid
dispatch to attend to a particular interrupt sig-
nal. We kept compatibility with the 7-channel
interrupt by using a spare wire in the bus and
adding the ability to directly dispatch to a par-
ticular program when a request occurred. At
the interruption, the processor sent a signal to
requesting devices and the highest priority de-
vice responded with a 33-bit command (3-bit
function, 18-bit address, 12-bit data). The func-
tions were: (1) execute the instruction found at
addressed location, (2) transfer a word to/from
addressed location, (3) trap to addressed loca-
tion, and (4) add data to addressed location.
Little use was made of these functions (espe-
cially number 4), since only a small number of
devices were typically connected to a large sys-
tem, thus relaxing the requirement of rapid dis-
patch. Summarily, the problem of competition
was resolved when Xerox left the competitive
scene. In systems that had a large number of
devices, a front-end 1 / 0 processing mini-
computer was more cost-effective than central
processor controlled I/O.

Memory System

Because it was unclear how memory tech-
nology would affect memory speed, a com-
pletely asynchronous, interlocked Memory Bus
was designed. Thus, the 16 fast general regis-
ters, the initial 5-microsecond memory, and the
next generation 2 microsecond memory could
all operate on a single system. (Most memories
are now less than 1-microsecond cycle time.)

5 0 4 THE PDP-10 FAMILY

The asynchronous bus avoided the problem of
distributing a single high-speed clock and al-
lowed interleaved memory operation.

Modularity was also introduced to clarify or-
ganizational boundaries within the company
and to make possible low cost, special purpose
production and engineering testers for the
memory and 1 / 0 equipment. We believe that
the concept of well defined modules was rela-
tively unique, especially for memory, and was
the basis for the formation of third party add-
on memory vendors. MIT and Stanford Uni-
versity purchased memories from Fabritek and
AMPEX, respectively, in the mid-1960s to start
this trend. (Note that this design style differed
from the IBM System/360 design with its rela-
tively bounded configurations and integrated
memory. Add-on memory did not appear until
the early 70s for the IBM machines because, we
believe, of the difficulty of the interface defini-
tion.)

The KIlO memory system was improved by
assigning signals to request multiple, over-

Table 5. Computer Interconnection Structures

lapped memory accesses and to increase the ad-
dress size from 18 bits to 24 bits. The additional
physical memory addresses are mapped into a
program’s 18-bit addresses via the core-held
page table.

The KLlO processor-memory organization
was a significant departure from the KIlO as
previously discussed. The KL20 eliminated the
original Memory Bus to provide an integrated
system. It should be noted that this evolution
was based on the drastic size reduction (a factor
of about 300) from a single cabinet (6 ft X 19 in
X 25 in or about 34,000 in3) for 16 Kwords to a
single logic module for 16 Kwords (1 5 in X 8 in
X 1 in or about 120 in3).

PMS Structures for Computer-Computer
intercommunication

Throughout the evolution, a number of
schemes have been used to interconnect with
other (usually smaller) computers. The schemes
are given in Table 5. Note that the first four

Scheme Data Rate Structure Models Examples

Standard communication 110, 300 Network All
link 1200, 4800,

9600, 5 0
Kbitslsec

Special parallel, block 100 Kwords- Tightly coupled All
transfer via hardware or 1 Mworddsec
software

Multiprocessors At memory ac- Multiprocessor All 2 Pc
cess rate 16 Pc, proposed

Access into mini address At memory ac- Multiprocessor PDP-6 The large computer accesses
space with interruption cess rate shared memory data in the small computer

The mini can transfer data At memory ac- Tightly coupled KA10-KL10 Scheme used to interconnect
into large machine via spe-
cia1 control

cess rate minis to do I/O

Multiple logical channels are
provided

THE EVOLUTION OF THE DECsystem-10 505

schemes were conventional, while the last
scheme was used in the KL10/20 structure so
that an attached PDP- 1 1 minicomputer could
transmit data directly into the memory of the
KLIO. This scheme was first used in the early
1970s for handling multiple communication
lines.

OPERATING SYSTEM

PDP-6 Monitor Design Goals and
Philosophy

The initial goals and constraints for the user
environment are summarized in Table 2 . The
most important goal was to provide a general-
purpose timesharing system. The Monitor was
to allow the user to run in the mode most suited
to his requirements, including interactive time-
sharing, real-time, and batch. In timesharing,
there was no requirement for a human operator
per se. Instead, the operator’s console was a
user terminal with special privileges. Real-time
programs had to be able to operate 1 /0
directly, locked in core, and batch was to be
provided as a special case of a terminal job.

Because of the modular expandability of the
hardware structure, the software system had to
be equally modular to facilitate varying system
configurations and growth. The core resident
timesharing monitor was only fixed at system
generation (Le., IBM’s SYSGEN) time when
software modules could be added to meet the
system requirements. The core space required
for monitor overhead had to be minimized.
Thus, job-specific functions were placed in the
user area instead of in the Monitor. The first 96
locations of each user job contained pertinent
information concerning that job. A temporary
area (stack) for monitor operations was also in-
cluded. In this way, the Monitor was not bur-
dened with information for the inactive jobs.
This structure permitted the entire job state to
be moved easily.

Adequate protection was to be given to each
user from other nonmalicious users. However,

the user was not protected against himself be-
cause various user status information in the job
area could be changed to affect his own job. Be-
cause common system resources were allocated
upon demand and deadlocks could occur, the
term “Gentlemen’s Timesharing” was coined
for the first monitor.

The UUO or “system call” instruction, pro-
vided both Monitor-user communication and
upward hardware compatibility. In the latter
case, the instruction would use the hardware if
available; otherwise, the instruction would trap
to the Monitor for execution. For example,
double-precision hardware was available o b
later CPU models. The number of UUOs im-
plemented in the Monitor for Monitor-user
communication has been significant. The initial
use of UUOs included requests for: core, 1 / 0
assignment, 1 / 0 transmission, file control, data
and time, etc.

PDP-6 Monitor

Monitor was the name given to a collection of
programs that were initially core resident and
provided overall coordination and control of
the operating environment. A nonresident part
was later added with the advent of secondary
program swapping and file memories (i.e.,
drum and disk). The Monitor did not include
utilities, languages, and their run-time support.

The PDP-6 Monitor was constrained to run
in a 16 Kword (minimum) macfiine with con-
sole printer, paper tape reader (for mainte-
nance) and two DECtape units. DECtape was a
128-word/block, block-addressable medium of
450 Kcharacters for which a file system was de-
veloped. Memory minimizing led to very spar-
ing use of shared tables. The key global variable
data was restricted to: core allocation table,
clock queue, job table, linked buffers for Tele-
type and other buffered 1 / 0 devices (e.g., DEC-
tape directory), and a directory of system
programs and Monitor facilities.

506 THE PDP-10 FAMILY

The original PDP-6 Monitor was less than 6
Kwords. The Monitor has increased at about 25
percent per year with the KAIO at 30 Kwords,
K I l O at 50 Kwords, and KLlO at 90 Kwords
(Figure 7). This increase provided increased
functionality (e g , better files, batch, automatic
spooling), larger system configuration size,
more 1 / 0 options, increased number of jobs,
easier system generation, and increased reliabil-
ity (e.g., checking, retries, file backup).

1 6 0 -

Y N -
0 96 -

R E S I D E N T O P E R A T I N G S Y S T E M

1966 67 69 7 1 73 7 6 77

T I M E WEAR1

Figure 7.
size versus time.

Monitor and main utilities program

Note that with a 16 Kword memory, a 9
Kword FORTRAN compiler with 5 Kword
run-time package, and 1 Kword utility pro-
grams, two users could simultaneously reside in
PDP-6 memory and use the machine for pro-
gram creation and checkout. By keeping the
Monitor program size small, subsequent func-
tionality increases kept the Monitor module
sizes in bounds such that program swapping
was reduced. This provided high performance
for a given configuration with little Monitor
overhead.

Monitor Structure

are arranged beginning with basics. The follow-
ing sections deal with the various facilities, in
turn.

Memory Protection Swapping. The basic
environment was discussed in the ISP section
on Multiprogramming/Monitor Facilities.

Facilities Allocator. The Facilities Alloca-
tor was a module called from a console or pro-
gram for an 1/0 device or memory space
request. This module would attach (or assign) a
given peripheral or contiguous physical mem-
ory area to a given job. Although this module
was relatively trivial initially, it evolved to a
more complex module because improper re-
sources allocation caused deadlocks.

The KA I O generation software introduced
queued operation. A line printer (output), pa-
per tape (input/output), and a card reader (in-
put) spooler were implemented. These spoolers
ran as timeshared jobs, accepted requests from
other user jobs, and managed the input/output
operation.

Program Scheduler. The scheduler was in-
voked by tine frequency (50 or 60 Hz) interrupts
to examine run queues and to determine the
next action. The first Monitor employed a
round-robin scheduling algorithm. At the end
of a given time quantum of 500 milliseconds,
the next job was run. A job was runnable if it
was not stopped by the console and was not
waiting for I/O.

Because terminal response time is the user’s
measure of system effectiveness, subsequent
scheduler improvements have favored inter-
active jobs. With the KAIO, separate priority
queues were added so that jobs with substantial
computation were placed in the lowest priority
and then run the longest without interruption.
This, in effect, approximated batched oper-
ation; for example, jobs from a card reader
would operate as a batch stream. Later, batch
operation was added for interactive users.

The introduction of disk/drum swapping
Table 6 summarizes the development of the

Monitor with the various systems. The facilities
caused additional complexities since runnable
jobs might be located in secondary memory.

THE EVOLUTION OF THE DECsystem-10 507

Table 6. Monitor Functions Evolution
~ _____

Facility PDP-6 (1964) KAlO (1967) KllO(1972) KLlOTl975)

Protection One segment
Der user

Two segments with
shared program seg-
ment (required for re-
entrant programs)

Four modes for shared
segments shared segments

Virtual machine with

Program swap-
P W

Core shuffling Core shuffling; with
swapping (via drum
disk)

Paging used for core
management

Demand paging (job
need not be wholly resi-
dent to run)

Facilities alloca-
tor

Devices as-
signed t o users
upon request
(deadlocks pos-
sible +gentle-
men’s t i me -
sharing)

Spooling of line printer
and card reader

Spooling of all devices

Round-robin
scheduler

Scheduler Scheduler to favor in-
teractive jobs using
multiple queues

Fairness and swapping
efficiency consid-
erations

Parameters for sched-
uling set by system man-
ager; priority job classes
and “pie-slice‘‘ schedule

User files User files on
DECtape, cards,
and magnetic
tape

Significant enhance-
ment of file function;
on-line. random-access
disk-based files

Improved file structure
reliability. error recov-
ery. protection and
sharing; mountable
structures

Disk head movement op-
timization

Command con-
trol program

Simple (to im-
plement) requir-
ing little state

Evolution to more pow-
erful, easier to use
command language

Remote and local
single-stream batch

Common Command
Language (CCL)

Extensions to CCL

Batch No real batch Multiprogramming
batch

Improved multi-
programming batch

Terminal han-
dling and com-
munications

Asynchronous
task-to-task
communications
(for interactive
terminals) as
monitor module

Synchronous commu-
nications for remote
job and concentrator
stations; ”birth” of
networks with simple
topologies; ARPA
network

Synchronous commu-
nications in complex
topologies; new pro-
tocol; IBM BISYNC for
2780 emula-
tiordtermination

DECnet commu-
nications*

Multiprocessing Dual processor support
(master/slave)

High availability
through bus switching
hardware

Symmetric multi.
processing

*DECnet is DEC’s computer network protocols and functions

508 THE PDP-10 FAMILY

The concept of “look-ahead” scheduling was
required, and a more complex queuing mecha-
nism was implemented. As the Monitor selected
the next job to be run, it would “look ahead” to
determine future queues and invoke the swap-
ping module if required to move a runnable job
into core. Because of the higher swapping over-
head, it was essential to run large jobs longer
and less often. A “fairness” consideration also
assured that each job, whatever its size, received
enough run time to maintain responsiveness.

Recent enhancements permitted a Systems
Manager to set scheduling parameters including
established priorities of job classes. A “pie-
slice” scheduler is used where classes of users
are guaranteed fixed parts of the machine time
and resources.

User Files and I/O Device Independence.
In the initial PDP-6 design, resources such as
magnetic tapes, unit record devices (e.g., card
readers, line printer, paper tape reader/punch)
and DECtapes (which were file structured) were
requested by each user as they were required.
The Monitor allocated the device to a request-
ing given job until released.

1/0 calls were evoked by the UUO call in-
structions. A particular device program call
could specify the number of 1 / 0 buffers to be
provided so that arbitrary amounts of over-
lapped 1 / 0 and computing could be realized.

I n order to realize the goal of modularity,
each 1 / 0 device handler was implemented as a
separate module. These modules used a com-
mon set of subroutines. The device tables were
made as identical as possible to help achieve the
device independent goal. Thus, a user specified
an 1 / 0 channel, not a specific 1/0 device. The
channel-to-name assignment could take place at
various times from log-on to program run time.

In the original Monitor, a user was allowed
to assign file devices to his job and read and
write named files with the devices. Permanent,
on-line user files with automatic backup were

not implemented until the K A IO-generation
Monitors. The concept of project/programmer
number was adopted (after MIT’s CTSS) in or-
der to provide increased file security and shar-
i ng . A use r was r e q u i r e d t o e n t e r a
project/programmer number with his associ-
ated password. This not only established a job,
but identified the user to the Monitor. In addi-
tion to having resource privileges associated
with better ID numbers, the user received a log-
ical disk area for files. File access can be al-
lowed (by the creator of the file) to any of the
following levels with decreasing protection (in-
creasing privileges): no access, execute only,
plus read, plus append, plus update, plus write,
plus rename, and plus alter protection.

Significant evolution occurred in the user file
facility. Improved file structure reliability and
error recovery (such as writing pointer blocks
twice) were achieved. With moving head disk
availability, disk head movement optimization
for file transfers on single or multiple drives was
added. The concept of “mountable” structures
was implemented to allow disk packs to be
mounted and dismounted during a timesharing
operation as well as allowing a user to have a
“private” pack mounted. As the number of
users supported on the system and the diversity
of their applications grew to include “business
data processing,” both hardware and software
allowed expansion of the number and capacity
of on-line disks.

Command Control Program. This pro-
gram processes all commands addressed to the
system from user terminals. Thus, terminals
served to communicate Monitor commands to
the system and to the user programs, and served
as an 1 / 0 device for user programs. Terminal
handling routines were an integral part of the
PDP-6 Monitor. The original commands were
designed to minimize the amount of state in the
Monitor. As a result, users had to type several
commands to control programs. A much more
powerful command language evolved.

THE EVOLUTION OF THE DECsystern-10 509

Batch Processing

Batch processing has evolved from the origi-
nal, fully interactive PDP-6, where a user was
expected to interactively provide commands for
each step in the generation/execution of a pro-
gram. The first batch on the KAlO was based
on a user-built command file that mimicked his
terminal actions. The user invoked this com-
mand file to execute his programs. Later, a mul-
tiprogrammed batch system was added, and the
job control syntax evolved to provide more
functions per command. However, batch/
interactive command commonality has been
preserved through the current Monitor ver-
sions. Still, batch control ran as a timeshared
job using queued batch control files. Thus, the
ability to log in a job, run to completion, and
log off is accomplished from a card reader or
any other storage or file device. Symbiant
(queued) operation allowed control of card
readers, line printers, etc., by the batch control
program so that the machine could be sched-
uled more effectively. During this batch evolu-
tion, little Monitor enhancement was necessary
to specifically address the batch environment.
Modules to improve efficiency (by multiple
strands and better scheduling) and increase
functionality were implemented as “user” jobs
and interprocess queuing allowed commu-
nication between the “user” modules.

A line printer spooler, for example, was run
as one of many jobs by the operator - a notion
that evolved beginning with the KAlO. If a spe-
cial form was required for a print job, the oper-
ator would be notified and act accordingly. The
user was relieved of this responsibility. Oper-
ator allocation, control, and media loading of
the card reader, magnetic tape, private disk
pack, DECtape, and plotter were provided in
the KIlO.

Terminal Handling and Communications.
We believe the users’ perception of system effec-
tiveness related directly to his feeling that he

was interacting and was in control. The require-
ment to communicate effectively with the user
via the terminal was one of the most difficult
design constraints. The very first version of the
Monitor used half-duplex communication for
simplicity. But finally we decided to pay the ad-
ditional price to gain the benefit of full-duplex
communication, Le., being able to continuously
input and output independently of system load.
These philosophies have guided subsequent
Monitor generations.

A hardware module was constructed to facil-
itate terminal communication. This hardware
was called the scanner because it looked at all
the interface lines connected to Teletypes and
interrupted the software when a character was
received or needed to be transmitted. These line
units, which we built on a single card, formed
the basis of the Universal Asynchronous Re-
ceiver/Transmitter (UART) LSI chip. A soft-
ware mon i to r , called Scanner Service
(SCNSER) handled interrupts from the hard-
ware. SCNSER provided the important func-
tion of logically coupling a physical terminal
with a job running under timesharing. The user
was never burdened with attempting to relate
his terminal with his job. This software module,
by far the most logical complex part of the
Monitor, has been rewritten twice to increase
terminal functionality.

Later, the KAlO terminal interface was im-
plemented via a “front-end’’ concentrator PDP-
8 computer for large numbers of terminals -
particularly where variable line speeds were in-
volved (up to 300 baud). This implementation
allowed some off-loading of the processor.
Characters were assembled (serial parallel con-
version) in the front-end PDP-8 and commu-
nicated with the KAlO via the 1 /0 Bus on an
interrupt basis.

In 1971, a front-end PDP-11 provided direct-
memory access over the 1 / 0 Bus. This con-
nection provided high speed, full-duplex, syn-
chronous communications and was the

510 THE PDP-10 FAMILY

prototype for the current KLlO/PDP-I 1 front-
end computer. Software modules were added to
the Monitor to allow these synchronous lines to
terminate remote PDP-8 and communication
concentrator stations in simple point-to-point
topologies. A remote station (e.g., line printer)
is viewed by the user in the same manner as is a
local printer.

With the KIlO, a second front-end was pro-
duced which allowed BISYNC protocol of the
IBM 2780 terminal to be used. However, most
of our users were laboratory-oriented and
wanted greater performance and functionality.
Thus, concentrator/remote station capability
including route-through (Le., communication
via multiple concentrators), and multiple hosts
were added. These formed the basis of some of
our understanding for subsequent DECnet pro-
tocol standards and functions. The use of DEC-
system- I O in the Advanced Research Projects
Agency (ARPA) funded projects formed an-
other key base for our DECnet protocols and
functions [Roberts, 19701.

DECnet-10 now provides the capability of
having processes in different computers (includ-
ing PDP-8s and PDP-I Is) communicate with
each other. These jobs appear to each other as
1 / 0 devices in the simplest applications.

Throughout all of this communication func-
tionality evolution, the goal has been to free the
user from concern with the link, commu-
nication mode, hardware location, and pro-
tocol.

Multiprocessing

Although we predicated the original PDP-6
hardware on multiprocessing, the Monitor was
not designed explicitly for it. Lawrence Liver-
more Laboratory did build a two-processor sys-
tem with their own operating system and special
segmentation hardware. To meet the needs of
the predominately scientific/computation mar-
ketplace in achieving higher processor through-
put, a dual-processor KA 10 was implemented

using a master/slave scheme with wholly shared
memory and one Monitor. The slave CPU
scanned the queue of runnable jobs, selected
one, and ran it. If a Monitor call was encoun-
tered, the job was placed in the appropriate
queue and the Monitor located another run-
nable job. The “master” handled all 1/0 and
privileged operations. In a CPU-bound envi-
ronment, the dual processor provided approx-
imately a 70 percent increase i n system
throughput.

An offshoot (and evolved design goal) of the
dual-processor implementation was high avail-
ability. Monitor reconfigurability and bus-
switching hardware allowed redundant com-
ponents to be fully utilized during normal oper-
ation and, in the case of a hardware
malfunction, to be separated into an operating
configuration (with all available I/O) and a
maintenance configuration (consisting of CPU,
memory, and the faulty component).

At Carnegie-Mellon University (CMU), we
proposed to build a 16 to 32 PDP-10 structure
[Bell et al., 19711. It would have 16 Mwords of
primary memory available via 16 ports at a
bandwidth of 2.1 to 8.6 gigabits/second. With
the use of processors larger than those of the
KLIO, performance would have been over 50
million instructions per second (MIPS). The 16
processor, C.mmp [Wulf and Bell, 19721, based
on PDP-I 1s at CMU, is a prototype of such a
system.

Languages and Utilities

Monitor commands called the utilities and
languages. The utilities, called CUSP (for Com-
mon User System Program), and languages in-
cluded: EDIT, an editor for creating and editing
a file from a user console; PIP, the peripheral
interchange program to convert information
among the 1/0 media and files; LOADER to
load object modules; DESK, an interactive cal-
culator; MACRO, an assembler; and FOR-
TRAN 11. Figure 1 shows these programs at
various times, together with their origins.

THE EVOLUTION OF THE DECsystem-10 51 1

Utilities and languages have taken advantage
of the interactive, terminal-oriented environ-
ment. Thus, highly interactive editing/
debugging facilities have evolved in terms of the
program’s own symbols. The file/data transfer
utility, PIP (for Peripheral Interchange Pro-
gram) is still in existence today, although in a
much enhanced form. It has since been ex-
panded to support the peripheral devices and
the data formats encountered in the DECsys-
tem-I0 memory and 1 / 0 devices. Such a utility
eliminated the need for a “library” of utilities
and conversion programs to transfer data be-
tween devices. Such tasks as a card-to-disk,
card-to-tape, tape-to-disk, etc., conversion are
controlled by a terminal using common PIP
commands. PIP evolved in a somewhat ad hoc
fashion from a 1 Kword or 2 Kword size in
1965 to 10 Kwords with substantial generality.

A powerful and sophisticated text editor,
TECO (Text Editor and Corrector) was initially
implemented at MIT using a graphics display.
TECO is character-string oriented and requires
a minimal number of keystrokes to execute
commands. It included the ability to define pro-
grams to do general string substitution. As the
sophistication of users was later perceived to
decline, the powerful editor created training
and use problems. Thus, a family of line- and
character-oriented editors evolved which was
easier to learn and remember. These were based
on other line-oriented editors, but especially
Stanford’s SOS, which replaced the initial
DECline editor in 1970.

Many of the higher level languages were in-
itially produced by non-DEC groups and m a d e
available through the DEC User Society
(DECUS). For example, APL, BASIC, DBMS,
and IQL (an interactive query language) were
purchased from outside sources and are now
standard, supported products.

BLISS (Basic Language for Implementing
System Software), developed at Carnegie-Mel-
Ion University, became DEC’s systems pro-
gramming language [Wulf et al., 1971bl. A

cross-compiler was subsequently developed for
the PDP-I 1 . Its use as a systems programming
language has been due to the close coupling it
provides to the machine, its general syntactic
and block structures, and its high-quality code
generator. BLISS has been used for various di-
agnostic programs, the BLISS Compilers, the
PDP-IO APL Interpreter, recent FORTRAN-
IV compilers for both PDP-IO and PDP-11, and
the BASIC PLUS TWO system. BLISS has also
been used extensively within DEC for com-
puter-aided design programs.

Tenex and the TOPS-20 Operating System

Bolt, Beranek, and Newman started a project
in 1969 to build an advanced operating system
called Tenex which was based on a modified
KA I O (including rather elaborate paging hard-
ware). This work was influenced by both the
Berkeley SDS 940 and the MIT Multics sys-
tems. Subsequently, Tenex influenced and im-
proved the KI 10 design which became the base
of TOPS-20. The system was described by
Bobrow et al. [19721, and the three major goals
stated in the reference were:

I . State-of-the-Art Virtual Machine

a.

b.

C.

d .

Paged virtual address space
equal to or greater than the ad-
dressing capability of the proces-
sor with full provision fo r
protection and sharing.
Multiple process capability in
virtual machine with appropri-
ate communication facilities.
File system integrated into vir-
tual address space, built on mul-
t i level s y m b o l i c d i r e c t o r y
structure with protection, and
providing consistent access to all
external 1/0 devices and data
streams.
Extended instruction repertoire
making available many common
operations as single instructions.

512 THE PDP-10 FAMILY

11. Good Human Engineering
Throughout Systems
a. An executive command lan-

guage interpreter which provides
direct access to a large variety of
small, commonly used system
functions, and access to and con-
trol over all other subsystems
and user programs. Command
language forms should be ex-
tremely versatile, adapting to the
skill and experience of the user.

b. Terminal interface design should
facilitate intimate interaction be-
tween program and user, pro-
vide extensive in t e r rup t
capability, and full ASCII char-
acter set.

c. Virtual machine functions
should provide all necessary op-
tions, with reasonable default
values simplifying common
cases, and require no system-cre-
ated objects to be placed in the
user address space.

d. The system should encourage
and facilitate cooperation
among users as well as provide
protection against undesired in-
teraction.

111. The System must be
Implementable, Maintainable,
and Modifiable
a. Software must be modular with

well defined interfaces and with
provision for adding or changing
modules clearly considered.

b. Software must be debuggable
and reliable, allowing use of
available debugging aids and in-
cluding internal redundancy
checks.

c. System should run efficiently, al-
low dynamic manual adjustment
of service if desired, and allow
extensive reconfiguration with-
out reassembly.

d. System should contain instru-
mentation to clearly indicate
performance.

Dan Murphy (one of Tenex’s designers/
implementers) came to DEC and led the archi-
tecture and development effort that produced
TOPS-20. The effort at DEC has been to in-
crease the performance of TOPS-20 to be com-
petitive with the highly tuned Monitor while
not losing its generality. The TOPS-20 structure
does provide increased reliability and modi-
fiability.

HARDWARE IMPLEMENTATION

While logic and memory technology are often
considered the prime determinant of the per-
formance and cost of a computer system, fabri-
cation and packaging technology are equally
important. This section surveys logic, manufac-
turing, and packaging technology as it affected
the various DECsystem-IO models. Table 7
summarizes those various logic and packaging
technologies.

Logic

The PDP-6 used a set of logic modules that
evolved from the earlier PDP-I, which in turn
were derived from the Lincoln Laboratory cir-
cuits developed for the TX-0 [Mitchell, Olsen,
19561 and TX-2 [Clark, 19571 (Chapter 4) com-
puters as part of the air defense program. These
circuits were direct-coupled transistor logic and
included both series and parallel transistor cir-
cuits to give great flexibility in designs. The
PDP-I circuits operated at a 5 MHz clock, and
new transistors enabled the PDP-6 circuits to
operate at IO MHz. The computer’s clock was
based on a delay line which carried pulses gen-
erated by a pulse amplifier using pulse trans-
f o r m e r s (t h i s t o o c a m e f r o m L i n c o l n
Laboratory via the early work at MIT on radar
and pulse transformers) The pulses were used
for register transfer operations (i.e., moving
data among the registers) and some logic gat-
ing.

THE EVOLUTION OF THE DECsystem-10 513

Instead of using a small number of lines in a
fixed, synchronous clock, many delay lines were
used. The route through the control path deter-
mined the state of the machine. At each deci-
sion point, the next line or chain (set of lines)
was selected. Hardware subroutines were also
unique with this implementation. A control
sequence consisting of a set of delay lines was
defined as a subroutine, and a calling module
marked the calling site (e.g., add, subtract, and
complement are at the lowest level). The basic
multiply subroutine used add or subtract; fi-
nally, floating multiply used the normalize and
multiply subroutines. In this way, the imple-
mentation was kept structured and turned out
to be quite straightforward. The flowcharts for
the PDP-6 were only 11 pages, where each page
has about 25 unique statements (actions), yield-
ing a total of only 250 microsteps (each step
causes 1 to 6 operations and corresponds
roughly to current microprogram statements).
The asynchronous adder was designed so that
on completion of all the carries, the sequence
would restart. Thus, we took advantage of the
observation made by von Neumann et al. in
1946, [Bell and Newell, 1971, ch. 41 that the av-
erage number of carries is log1 36 or slightly
over 5 , versus the worst case of 36. An average
delay time of about 20 nanoseconds per carry
reduced the average add time to only 100 na-
noseconds versus 720 nanoseconds, yielding a
very simple and fast circuit.

Ironically, the TTL/Schottky (TTL/S) series
was first available in production quantities at
about the time of the KIIO. The KIlO design
was started earlier and design options chosen so
as to preclude the subsequent advances in
speed, power, and density that the TTL/S gave.

The other important logic advances em-
ployed in the KIlO were the MSI register file
and associative memory packages. The register
file provided four sets of accumulators and thus
decreased the context switching time. (This
probably had a higher psychological than real
value but was useful where special devices were
operated on a high speed, real-time basis.) The
associative memory package permitted the con-
struction of a 32-word associative memory to
support a paged environment.

The KLlO provides almost a factor of 5 per-
formance improvement over the KAlO for pro-
grams using the basic instruction set. An even
larger performance improvement is realized for
COBOL or extended precision scientific pro-
grams. The organization and much of the base
work for the KLlO was done by Dave Poole,
Phil Petit, John Holloway, and Jack Wright at
the Stanford Artificial Intelligence Laboratory.

The KLlO is microprogrammed using a
memory based on the 1 Kbit bipolar RAM. A
cache memory is also constructed from the 1
Kbit chips. The KLlO is implemented in the
emitter coupled logic (ECL) 10K series rather
than in the TTL/Schottky of the original Stan-

The KAIO used essentially the Same circuitry ford design. It was that the ECL 'peed ad-
vantage with 3 nanoseconds gate delay versus 7 but with significantly better packaging so that

design effort especially because the ECL re- Note that in Table 7, the existence of certain
semiconductors was the basis of new machines. Wired more power and care to lay Out the

The TTL/H series logic appeared about 1969 board and
and formed the basis of a machine (the KIIO)
with roughly the same power dissipation and Fabrication

physical size as a KA10, but with a factor of 2.2 The Gardner-Denver automatic Wire-wrap
more performance. In scientific applications re- machine represented a significant advance in
quiring double-precision computation, this per- the manufacture of machines. Automatic Wire-
formance differential is much greater. wrap economically provided accurately wired

automatic wire-wrap backpanels could be used. nanoseconds for Schottky was worth the extra

2
P Table 7. Implementations for DECsystem-IO ardware

--I
Processor PDP-6 K A l O K i l o KL10 I

m

Design start

First ship

Logic

3/63 1/66

9/67

-0
12/69 1 /72 0

P
5/72 6/75 0

TTL/H (MSI) registers; as- ECL 10K; fast, 1 Kbit memories
sociative memory

0.72 1.8

4

3
5
I-
4

6/64

Germanium, silicon tran-
sistors

Discrete silicon transistors
and diodes

MIPS (avg.) 0.25 0.38

1 bit of AR. MB, MQ.
AD:88 transistors, 2-sided
PC etch; 2-18-pin and 2-
22-pin connectors (1 1 X
9 inch boards)

Implemented in R, S, W
series flip-chip (discrete)
modules (5-1/2 X 5-1/4
boards)

Implemented in R, S, W,
M series flip-chip (discrete + MSI) modules 5-112 X
5-114 boards inch boards)

6 bits of AR. ARX. MQ, BR. BRX.
AD, ADX:70 MSI ECL per mod-
ule: 21 6 pin connector: (8 X 16

Packaging (slice
of processor)

Processor size 2 bays 2 bays 2+ bays 1/2 bay (including internal chan-
nels)

$120K $1 50K

Same as PDP-6

$200K $250K Processor price

Control design Clocked synchronous KL20 is clocked synchronous;
microprogrammed

Asynchronous and sub-
routine logic

Module size Large modules Small modules wire-wrap Same Large modules (1 6 Kword core
memory module)

Registers

I/O calls

16 16

Same

4 X 16 8 X 16

Prog. interrupts UUO traps Vectored interrupts Integrated controller for Mass-
bus; I10 via PDP-1 1 computers

I/O transmission I/O and Memory Bus Added channels

18-bit phys. addr. pro-
tection and relocation reg-
isters

2 protection and reloca-
tion registers for shared
program segments

22-bit phys. addr: paged
using 32-word associative
memory

22-bit phys. addr. paged, using
associative memory via cache

Memory
management

Table 7. Implementations for DECsystem-10 Hardware (Cont)

Processor PDP-6 KAlO K110 KLlO

ISP See Table 3 (integers.
floating) float tegers

Conversion to assist d.p. Hardware d.p. float String and conversion for d.p. in-

Parallelism - Simpler (faster) data path Instruction look-ahead (4-
word) fetch

Instruction look-ahead: 2 Kword
cache memory

Fabrication (Too) large modules Gardner-Denver automatic Semiautomatic wire-wrap Large (hex) (KL20) in-
Wire-wrap for backpanel for twisted pair modules with tegrating Pc
interconnection many pins: and Mp to-

low-cost minis gether -
front-end eliminating

Memory
Bus3h igh -
density core
memory
modules

Consequences Served as PDP-10 produc- Buildable in production More performance (scien- More perform- Lower cost
tion prototype tific and real-time); ance via

and paging for cache; micro-
operating systems progra m mi ng

for better CO-
BOL ISP: 1/0
computers

-1
I
rn

54
-1
I
rn

516 THE PDP-10 FAMILY

backpanels. As a more important side effect, it
made the high-volume, low-cost fabrication of
minicomputers possible! Some backpanel wir-
ing on the KIlO and KLlO processors using
twisted pairs cannot be done using the Gardner-
Denver machinery. For this, DEC developed a
semiautomatic wire-wrap machine which lo-
cates the pins and selects the wire length for an
operator.

Computer design aids have evolved to sup-
port computer implementations on an “as-
needed” basis, barely keeping ahead of the im-
plementations. These have included printed cir-
cuit board layout/routing, backplane layout/
rout ing, c i rcui t / logic s imula t ion , wire
length/logic delay checking, and various manu-
facturing aids. One notable exception to this
trend has been the Stanford University Draw-
ing System (SUDS) developed by the Standard
Artificial Intelligence Laboratory. SUDS was
used for drawing the entire KLlO design. The
design time and cost would have been signifi-
cantly greater if SUDS had not been available.

Packaging

Semiconductor density is a major determi-
nant of the system size, and size in turn is a ma-
j o r determinant of speed (e.g., shorter
interconnection paths). Seymour Cray stated in
a lecture given at Lawrence Livermore Labora-
tory (December 1974) that for each generation
of his large computers, the density has im-
proved by a factor of 5.

The packaging for the PDP-6 was identical to
that of the PDP-1, 4, and 5 and used a board
area of about 40 in* with a 22-pin connector. A
logic density improvement of 2 was achieved
over the previous designs by using 6 special
function modules. However, this density turned
out to be too high for the number of pins. A
natural extension was a board twice as large
with 44 pins. The most interesting module was
the bit-slice of the working registers: Accumula-
tors, Multiplier-Quotient, and Memory Buffer.
This module required more than 44 pins, so the

extra signals were bused across the back of the
module. This busing increased module swap
time, and the mechanical coupling increased the
probability that fixing one fault would cause
another. Because of this, the designers of the
KA 10 and KIlO became fearful of large boards.
Only with the KLlO in 1972 were large boards
reintroduced into the DECsystem-10. On the
other hand, large boards had been used in DEC
minicomputers since 1969. Multilayered boards
were required for the KLlO ECL logic. These
boards were adapted from the multilayered
boards developed for the TTL/S PDP-11/45
(1972).

Price/Performance

Surprisingly, over time, the various models of
the DECsystem-IO have been implemented at
an essentially constant cost. The option to ap-
ply technology at constant performance with re-
duced price was never examined as an
alternative strategy. In the minicomputer part
of the company, both alternatives were vigor-
ously pursued in order to provide a growing
business and stimulate design alternatives. The
relatively static DECsystem-IO strategy with
constant price stems, no doubt, from the highly
coupled interaction of builders (wanting to go
on to provide the next highest level of perform-
ance which was the founding principle of the
group); the salespeople (many of whom came
from other companies and are only used to
working with a particular user class), users
(who want more performance so as to reduce
their overall cost/performance ratio), and mar-
keting (which integrates needs and alternatives).
This is illustrated in Figure 8. Here we give the
performance in terms of the number of general-
purpose users versus the system price.

Figure 9 gives a single price of the system for
each generation, together with the percentages
going of each for the system components. The
best cost/performance systems are shown (ex-
cept, in the case of the minimal PDP-6). Figure
I O gives the price of the various processors ver-

THE EVOLUTION OF THE DECsystem-10 517

8
70

-
VI = Y

2 60
U
P
2 50
2 a
Y
z

40
v
0
0

30

z :
20

L
Y n

10

PRICE IKSI

Figure 8.
versus price for each generation.

Performance (in general purpose users)

n OTHER

GENERATION

Figure 9. System component price
versus generation.

slOOK X 108t-1964 KLl 0
300 -

18% PRICE INCREASE
PER YEAR1

1OOK X 0 79 f-1964
121% PRICE DECREASE
PER YEAR)

20 -

1965 1967 1969 1971 1973 1975 1977
T I M E IYEARI

Figure 10. DECsystem-10 processor price versus time.

sus time for the family; note that the processor
price has been increasing roughly at the in-
flation rate, suggesting a manpower intensive
(or service-type) market structure. Note that
since the performance (Table 7) has improved
at roughly a factor of I O in 10 years, the in-
crease in performance/cost is nearly 20 percent
per year. In contrast, a minicomputer line (con-
stant performance) is plotted which shows the
price decreasing at 21 percent per year, with a
factor of 10 price decline in ten years. We
should ask: “Could a PDP-6 level processor be
built in 1975 to sell for $10K?”

Clearly it could, and such a system has been
built as an advanced development project. This
small 10 has a unified bus structure like the
PDP-11 with a connection to use the Unibus
family 1/0 devices. A system with 512 Kwords
and the performance of greater than that of a
KA 10 occupies a cabinet somewhat smaller
than a PDP-I 1/70 minicomputer.*

Figure 11 shows how the price of memory has
decreased with time. Note that even though
there was growth in the memory size of the

*The computer called the 2020 was introduced in May 1978.

518 THE PDP-10 FAMILY

4

2
-
H

c
-
n

g 1 0

: 0 8

L!
n
yl 0 6

L
0 4

0 2

130% PRICE DECREASE

1 9 6 9 1 9 7 0 1 9 7 2 1974 1976 1 9 7 8
0 1

T I M E IYEARI

Figure 11. DECsystem-10 primary
memory price per word versus time.

monitor of 25 percent per year, there was a pos-
itive improvement in the memory price per-
formance. In reality, many functions for which
the user was explicitly responsible were moved
to the Monitor as basic operations. A similar
plot for secondary memory prices is given in
Figure 12.

CONCLUSIONS
We believe the existence of the DECsystem-

10 has been beneficial to the many environ-
ments for which it has provided real-time and
interactive computation, including the com-
puter science and computer engineering com-

10K

H 8K

a

-
u)
n

5K

U 4K

a 3K
n

L! 2K
n

5
2

Y

z=8.000 x 0 8f -1969
120% PRICE DECLINE

1 9 6 8 1 9 7 0 1 9 7 2 1 9 7 4 1 9 7 6 1 9 7 8

T I M E IVEARl

Figure 1 2
Mwords versus time.

DECsystem- 10 secondary memory price per

munities. In turn, we have tried to respond to
the needs of these users. Its existence has also
been a positive force in encouraging alternative,
competitive products in what otherwise might
have been a dull, batch environment. The sys-
tem has also been used by and influenced mini-
c o m p u t e r (a n d now m i c r o c o m p u t e r)
development, including: hardware technology
(e.g., wire-wrap), support for machine devel-
opment (including simulation), and exemplary
design leading to timesharing systems (e.g.,
DEC's TSS/8, RSTS) and user environments
(e.g., RT- 1 1 and microcomputer systems).

We believe the key to the lo's longevity is its
basically simple, clean structure with ade-
quately large (one Mbyte) address space. In this
way, it has evolved easily with use and with
technology. An equally significant factor in its
success is a single operating system environ-
ment enabling user program sharing among all
machines. The machine has thus attracted users
who have built significant languages and appli-
cations in a variety of environments. These
user-developers are, therefore, the dominant
system architects-implementors.

In retrospect, the machine turned out to be
larger and further from a minicomputer than
we had expected. As such, it could easily have
died or destroyed the tiny DEC organization
that started it. We hope that this paper has pro-
vided insight into the interactions of its devel-
opment.

ACKNOWLEDGEMENTS

Dan Siewiorek deserves our greatest thanks for
helping with a complete editing of the text. The
referees and editors have been especially help-
ful. The important program contributions by
users are too numerous for us to give by name
but here are most of them: APL, BASIC,
BLISS, DDT, LISP, Pascal, Simula, SOS,
TECO, and Tenex. Likewise, there have been so
many contributions to the lo's architecture and
implementations within DEC and throughout
the user community that we dare not give what
would be a partial list.

An ISPS Primer for the
Instruction Set Processor Notation

MARIO BARBACCI

This appendix introduces the reader to the ISPS notation. Although some de-
tails have been excluded, it covers enough of the language to provide a “reading”
capability. Thus, although the primer by itself might not be sufficient to allow
writing ISPS descriptions, it should be detailed enough to permit the reading and
study of complex descriptions. We use the PDP-8 ISPS description as a source of
examples.

In the presentation of the PDP-8 registers and data-types the following conven-
tions are used: (1) names in upper case correspond to physical components on the
PDP-8 (e.g., program counter, interrupt lines, etc.); (2) names in lower case do not
have correspondent physical components (e.g., instruction mnemonics, instruc-
tion fields, etc.).

INSTRUCTION SET PROCESSOR DESCRIPTIONS

To describe the instruction set processor (ISP) of a computer, or any machine,
the operations, instructions, data-types, and interpretation rules used in the ma-
chine need to be defined. These are introduced gradually as the primary memory
state, the processor state, and the interpretation cycle are described. Primary
memory is not, in a strict sense, part of the ISP, but it plays such an important
role in its operation that it is typically included in the description. In general,
data-types (integers, floating-point numbers, characters, addresses, etc.) are ab-
stractions of the contents of the machine registers and memories. One data-type
that requires explicit treatment is the instruction, and the interpretation of in-
structions are explored in great detail.

51 9

520 ISPS PRIMER FOR THE INSTRUCTION SET PROCESSOR NOTATION

Memory State

The description of the PDP-8 begins by specifying the primary memory that is
used to store data and instructions:

M\Memory[0:4095]<0:11>,

The primary memory is declared as an array of 4,096 words, each 12 bits wide.
The memory has a name (M) and an alias (Memory). These aliases are a special
form of a comment and are useful for indicating the meaning or usage of a regis-
ter’s name. As in most programming languages, ISPS identifiers consist of letters
and digits, beginning with a letter. The period character (.) is also allowed, to
increase the readability. The expression [0:4095] describes the structure of the
array. It declares the size (4,096 words) and the names of the words (O,l , ...,
4094,4095).

The expression <0:11> describes the structure of each individual word. It de-
clares the size (12 bits) and the names of the bits (O,l, ..., lO,ll).*

Memory is divided into 128-word pages. Page zero is used for holding global
variables and can be accessed directly by each instruction. Locations 8 through 15
of page zero have the special property called auto indexing: when accessed in-
directly, the content of the location is incremented by 1. These regions of mem-
ory can be described as part of M as follows:

P.O\Page.Zero[O: 127]<0: 11 >
A.I\Auto.Index[O:7]<0:11>

:= M[O:127]<0:ll>,
:= M[8: 151 <0: 11 >,

The word (and bit) naming conventions on the left-hand side of a field declara-
tion are independent from the word (bit) names used on the right-hand side.
A.I[O] corresponds to M[8], A.I[1] corresponds to M[9], and so on.

Processor State

The processor state is defined by a collection of registers used to store data,
instructions, condition codes, and so on during the instruction interpretation
cycle.

The PDP-8 has a 1-bit register (L) which contains the overflow or carry gener-
ated by the arithmetic operations, and a 12-bit register (AC) which contains the
result of the arithmetic and logic operations. The concatenation of L and AC

*I t should be noted that bit and word “names” a re precisely that , i.e., identifiers for the sub-
components of a memory structure. These “names’’ do not necessarily indicate the relative position
of the subcomponents. Thus, R<7:3> is a valid definition of a 5-bit register. T h e fact that the five
bits are “named” 7,6,5,4, and 3 should not be confused with the 7th, 6th, etc., positions inside the
register. Thus, bit 7 is the leftmost bit, bit 6 is located in the next position toward its right, etc., while
bit 3 is the rightmost bit.

ISPS PRIMER FOR THE INSTRUCTION SET PROCESSOR NOTATION 521

constitutes an extended accumulator LAC. The structure of the extended accu-
mulator is shown below:

LAC<0:12>,
L\Link<> := LAC<O>,
AC\Accumulator<O:ll> := LAC<l:12>,

The expression < > indicates a single, unnamed bit (L is only one bit long and

The Program Counter (PC) is used to store the address of the current instruc-
there is no need to specify a name for it.)

tion being executed as the machine steps through a program:

PC\Program.Counter<O:l 1 >,
Twelve bits are needed in the PC to address all 4,096 locations of primary mem-
ory.

In the PDP-8, 1 / 0 devices are allowed to interrupt the central processor. When
a device requires service from the central processor, it emulates a subroutine call,
forcing the processor to execute an appropriate 1/0 subroutine. The presence of
an interrupt request is indicated by setting the 1NTERRUPT.REQUEST flag.
The processor can honor these requests or not, depending on the setting of the
1NTERRUPT.ENABLE bit:

INTERRUPT.ENABLE< >,
INTERRUPT.REQUEST< >,

There are 12 console switches which can be read by the processor. These
switches are treated as a 12-bit register by the central processor:

SWITCHES<O:ll>,

Instruction Format

As is the case with most data-types and registers on the PDP-8, instructions are
12 bits long:

i\instruction<O: 11 >,
An instruction is a special kind of data-type. It is really an aggregate of smaller

information units (operation codes, address modes, operand addresses, etc.). The
structure of the instructions must be exposed by describing the format. Most
PDP-8 instructions contain an operation code and an operand address:

op\operation.code<0:2> := i<0:2>,
ib\indirect.bit< > := i<3>,
pb\page.O.bit< > := i<4>,
pa\page.address <0:6 > := i<5:11>,

522 ISPS PRIMER FOR THE INSTRUCTION SET PROCESSOR NOTATION

The abstractions op, ib, pb, and pa allow the treatment of selected fields of the
PDP-8 instructions as individual entities.

PARTI TI ON I N G TH E DESCR I PTI 0 N

In ISPS, a description can be divided into sections of the form:

** section.name **
<declaration>,
<declaration>,
. . .

** sectionname **
<declaration>,
<declaration>,

Each section begins with a header, an identifier enclosed between ** and **. A
section consists of a list of declarations separated by commas. Section names are
not reserved keywords in the language; they are used to convey to the users of the
description some information about the entities declared inside the section. The
register and memory declarations presented so far could be grouped into the fol-
lowing sections:

** Memory.State **

M\Memory[0:4095]<0: 11>,
P.O\Page.Zero[O: 127]<0: 11 >
A.I\Auto.Index[O:7]<0:11>

** Processor.State **

LAC<O:12>,
L\Link<> := LAC<O>,
AC\Accumulator<O: 1 1 >

PC\Program.Counter<O:l 1 >,
RUN< >,
INTERRUPT.ENABLE< >,
INTERRUPT.REQUEST< >,
SWITCHES<O:ll>.

: = LAC < 1 : 12>,

= M[O: 127]<0: 11 >,
= M[8:15]<0:11>,

ISPS PRIMER FOR THE INSTRUCTION SET PROCESSOR NOTATION 523

** 1nstruction.Format **

i\instruction<O:ll>,
op\operation .code<0:2>
ib\indirect.bit<>
pb\page.O.bit< >
pa\page.address <0:6 >
IO.SELECT<O:5>
io.control<0:2>

IO.PULSE.Pl< >
IO.PULSE.P2< >
IO.PULSE.P4< >

sma< >
spa< >
sza< >
sna< >
snl< >
szl< >
is< >
group< >
cla< >
cll< >
cma< >
cml< >
rar< >
ral< >
rt< >
iac< >
osr< >

hlt< >

:= i<0:2>,
:= i<3>,
:= i<4>,
:= i<5:11>,
:= i<3:8>, ! device select
:= i<9 : l l> , ! device operation
:= io.control<O>,
:= io.control<l>,
:= io.control<2>,

:= i<5>,
:= i<5>,
:= i<6>,
:= i<6>,
:= i<7>,
:= i<7>,
:= i<8>,
:= i<3>,
:= i<4>,
:= i<5>,
:= i<6>,
:= i<7>,
:= i<8>,

! skip on minus AC
! skip on positive AC
! skip on zero AC
! skip on AC not zero
! skip on L not zero
! skip on L zero
! invert skip sense
! microinstruction group
! clear AC
! clear L
! complement AC
! complement L
! rotate right

< lo> ,
<11>,
<9>,

< l o > ,

<9>, ! rotate left
rotate twice
increment AC
logical or AC with
SWITCHES
halt the processor

A few more field declarations have been added. These are used to interpret the
1 /0 and Operate instructions. The PDP-8 1 /0 instruction uses the 9 bits of ad-
dressing information to specify operations for the 1 / 0 devices. These 9 bits are
divided into a device selector field (6 bits, IO.SELECT<O:5>) and a device oper-
ation field (3 bits, io.control<0:2>). Note that several alternate field declarations
may be associated with the same portion of a register or data-type, thus adding
flexibility to the description. Comments can be used to provide additional infor-
mation to the reader. A comment is indicated by an exclamation point (!), and all
characters following (!) to the end of the line are treated as commentary and not
as part of the description. The PDP-8 Operate instruction’s address field is not
interpreted as an address but as a list of suboperations. (Additional details can be
found in the DEC PDP-8 processor manuals.)

524 ISPS PRIMER FOR THE INSTRUCTION SET PROCESSOR NOTATION

EFFECTIVE ADDRESS

The effective address computation is an algorithm that computes addresses of
data and instructions:

** Effective.Address **

last.pc<O: 1 1 >,

eadd\effective.address<O: 1 1 > : = Begin

0 :=Begin
Decode pb 3 Begin

eadd = ‘00000 @ pa,
End

eadd = last.pc<0:4> @ pa
End

End Next

1 :=Begin

If Not ib 3 Leave eadd Next
I f eadd<0:8> Eqv #OOl =3 Begin

M[eadd] = M[eadd] + 1 Next
End

eadd = M[eadd]
End,

! Page Zero

! Current Page

! Auto Index

Since the memory of the machine is 4096 words long, addresses have to be 12
bits long. Of the 12 bits in an instruction, 3 bits have been allocated for the oper-
ation code (op), and there are only 9 bits (ib, pb, and pa) in the instruction register
left for addressing information. These bits, together with some other portions of
the processor state, are interpreted by the algorithm to yield the necessary 12 bits
of addressing.

Address Computation

Instructions and data tend to be accessed sequentially or within address clus-
ters. This property is called locality. The PDP-8 memory is logically divided into
32 pages of 128 words each. The concept of locality of memory references is used
to reduce the addressing information by assuming that data are usually in the
same page as the instructions that reference them. The pa portion of an instruc-
tion is the address within the current page. The pb portion on an instruction is
used as an escape mechanism to indicate when pa is to be used as an address
within page 0 (M[O:127]) instead of the current page. The address of the current
instruction is contained in last.pc and is used to compute the current page num-
ber.

ISPS PRIMER FOR THE INSTRUCTION SET PROCESSOR NOTATION 525

The first step of the algorithm,

Decode pb 3 Begin
0 : =Begin

eadd = ‘00000 @ pa, *
End

eadd = last.pc<0:4> @ pa
End

End Next

1 : =Begin

Page Zero

Current Page

indicates a group of alternative actions, to be selected according to the value of
the expression following the Decode operator. The alternatives appear enclosed
between Begin and End and are separated by the comma character (,). The expres-
sions (0 :=) and (1 :=) are used to label the statements with the corresponding
value of pb. The alternative statements can be left unnumbered, in which case
they are treated as if they were labelled (O:=), (I : =) , (2:=), ..., etc.

The effective address (eadd) is built by concatenating a page number with the
page address (pa). The at sign character (@) of the operator is used to indicate
concatenation of operands. If pb is equal to 0, page 0 is used in the computation.
I f pb is equal to I , the current page number is used instead.

Constants prefixed with the single quote character (‘) represent binary num-
bers. For example, ‘00000 represents a 5-bit string which is concatenated with the
7 bits of pa to yield the 12 bits needed.

The expression <0:4> is used to select bits 0,..,4 of last.pc. These 5 bits contain
the current page number, and, together with the 7 bits of pa, yield the necessary 12
bits.

Indirect Addresses

A full 12-bit target address can be stored in a memory location used as a
pointer, and the instruction only needs to specify the address of this pointer loca-
tion. Indirect addresses are specified via a bit in the instruction register (ib) that
indicates whether the address is direct (ib=O) or indirect (ib=l).

The second step of the algorithm,

If Not ib 3 Leave eadd Next

is separated from the previous by the operator Next. The statement(s) preceding
Next must be completed before the statement following it can be executed. The

* T h e transfer operator (=) modifies the memory or register specified on its left-hand side. I f the right-
hand side has more bits than the left-hand side, the right-hand side is truncated to the proper size by
dropping the leftmost extra bits. I f the right-hand side is shorter, enough 0 bits are added o n its left
until the length of the left-hand side is matched. Thus, the first conditional statement can be written
as 0 := eadd = pa.

526 ISPS PRIMER FOR THE INSTRUCTION SET PROCESSOR NOTATION

first step computed a preliminary effective address. The second step tests the value
of ib and if it is equal to 0, then the preliminary effective address is used as the real
effective address. If ib is equal to 1, the preliminary effective address is used to
access a memory location which contains the real effective address. In the former
case, the expression Leave eadd is used to indicate the termination of the pro-
cedure (this is similar to a RETURN statement in many programming lan-
guages).

Auto Indexing

the memory
address:

Constants prefixed with the number sign (#) represent octal numbers. For ex-
ample, #OOl represents the following 9-bit string: '000000001. The procedure
treats indirect addresses as special cases. If a preliminary effective address in the
range #0010:#0017 (8:15) is used as an indirect address (ib = l),
location is first incremented and the new value used as the indirect

If eadd<0:8> Eqv #OOl + Begin
M[eadd] = M[eadd] + 1 Next
End

! Auto Index

eadd = M[eadd]

By comparing the high order bits of eadd with #OOl and ignoring the lower 3
bits, we are in fact specifying a range of addresses (#0010, #OOll, #OO12, ..., #0017).
Memory locations #0010:#0017 constitute the auto indexing registers.

Regardless of whether auto indexing takes place or not, the last step of the
algorithm uses the preliminary effective address (which could have been modified
by auto indexing) as the address of a memory location which contains the real
effective address: eadd = M[eadd].

INSTRUCTION INTERPRETATION

fetching, decoding, and executing of instructions.

** 1nstruction.Interpretation **
interpret := Begin

Repeat Begin
i = M[PC]; last.pc = PC Next
PC = PC + 1 Next
execute() Next
If 1NTERRUPT.ENABLE And 1NTERRUPT.REQUEST =3 Begin

The instruction interpretation section describes the instruction cycle, Le., the

M[O] = PC Next
PC = 1
End

End
End.

ISPS PRIMER FOR THE INSTRUCTION SET PROCESSOR NOTATION 527

The instruction cycle is described by a loop. The Repeat operator precedes a
block of statements that are to be continuously executed. The instruction cycle of
the machine consists of four steps:

1.
2.

A new instruction is fetched (i = M[PC]).
The program counter is incremented (PC = PC + 1). It now points to the
next instruction. Under normal circumstances (i.e. unless a Jump takes
place), this will be the instruction to be executed next.
The instruction is executed (execute()).
Interrupt requests, if allowed, are honored. The cycle is then repeated.

3.
4.

The semicolon (;) separator is used to indicate concurrency, i.e., two statements
separated by (;) are executed concurrently:

i = M[PC]; 1ast.pc = PCNext

Notice how the value of the program counter is saved in last.pc before it is
incremented. The effective address procedure relies on the fact that last.pc con-
tains the address of the current instruction.

The execute procedure describes the individual instructions:

execute := Begin
Decode op 3 Begin

@\and
1 \tad
#2\isz := Begin

M[eadd] = M[eadd()] + 1 Next
If M[eadd] Eql 0 3 PC = PC + 1
End,

#3 \dca := Begin
M[eadd()] = AC Next
A C = O
End,

M[eadd()] = PC Next
PC = EADD + 1
End,

#5\imp
#6\iot : = input.output(),
#7\opr := operate()
End

:= AC = AC And M[eadd()I,
: = LAC = LAC + M [eadd()],

f i \ ims := Begin

:= PC = eadd(),

End.

528 ISPS PRIMER FOR THE INSTRUCTION SET PROCESSOR NOTATION

Instruction mnemonics can be specified as aliases for the constants used to
specify the operation codes:

#3\dca := Begin
M[eadd()] = AC Next
A C = O
End,

Operation Code O\and: Logical And

If the operation code is equal to 0, the contents of the Accumulator (excluding
the L bit) are replaced by the logical product of the Accumulator and a memory
location. To indicate that the effective address computation must be executed in
order to obtain the memory address, eadd() is used.

Operation Code 1 \tad: Two's Complement Add

The tad instruction follows the pattern of the previous instruction. Notice,
however, that the complete Accumulator (including the L bit) is involved in the
operation. The L bit contains the overflow or carry out of the sign position of AC.

Operation Code 2\isz: Increment and Skip if Zero

This instruction is described in two consecutive steps. The first step indicates
that some memory location, specified by the effective address computation, will
be incremented by 1. Notice the different uses of eadd in the statement:

M [eadd] = M [eadd()] + 1 Next

The effective address is computed once, eadd(), and is used to fetch the mem-
ory location, M[eadd()]. The result of the addition must be stored back in the
same memory location. This is indicated by using the effective address register,
eadd, on the left-hand side, M[eadd]. The eadd already contains the correct ad-
dress, and there is no need to recompute it. In fact, because of the auto indexing
operations performed during the effective address computation, the effective ad-
dress must be computed precisely once.

The second step of the instruction,

IfM[eadd]EqlO=> PC= PC+ 1

tests the result of the addition. If the result is equal to 0, the program counter is
incremented by one, thus in effect, skipping over the next instruction in sequence.
Once again, eadd is used instead of eadd() to avoid undesirable side-effects.

ISPS PRIMER FOR THE INSTRUCTION SET PROCESSOR NOTATION 529

Operation Code 3\dca: Deposit and Clear Accumulator

This instruction deposits the Accumulator in a memory location and then
clears the Accumulator (excluding the L bit).

Operation Code 4\jms: Jump to Subroutine

This instruction alters the normal sequence of instructions by modifying the
Program Counter so that the next instruction will not be the one following the
current instruction, but the one located at a memory location specified by the
effective address. The Program Counter is stored into the location preceding the
subroutine code (the result of eadd()). The Program Counter is then modified to
point to the first instruction of the subroutine (eadd + 1).

Operation Code 5\jmp: Jump

This instruction also modifies the normal sequence of instructions. It can be
used to jump to disjoint pieces of code. If we use ib= 1 and specify the address of
the location preceding the subroutine, the result of the effective address com-
putation yields the return address that was stored by the subroutine call.

Operation Code 6\iot: Input/Output

The input.output procedure describes two specific cases of 1/0 instruction,
namely, those used to control the interrupt mechanism:

input.output := Begin
Decode i<3: 1 1 > =3 Begin

#00 1 \ion := Begin ! turn Interrupt ON
1NTERRUPT.ENABLE = 1 Next
Restart interpret
End,

1NTERRUPT.ENABLE = 0
End,

#002\iof := Begin ! turn Interrupt OFF

Otherwise := No.Op() ! not implemented
End

End.

The Otherwise operation can be specified in a Decode operation to indicate a
default action to be executed if none of the explicitly named cases (801 or #002)
apply. All other 1/0 operations default to a predefined ISPS procedure
(No.Op()). This is done simply to keep the examples within the space limitations
of this appendix.

530 ISPS PRIMER FOR THE INSTRUCTION SET PROCESSOR NOTATION

1 / 0 operation #002 disables interrupts. It typically occurs as the first instruc-
tion of an interrupt handling routine. 1 /0 operation #OOl enables interrupts. It
typically occurs at the end of an interrupt handling subroutine. Its effect is de-
layed for one instruction (the return from the subroutine) to avoid losing the
return address if an interrupt were to occur immediately. This is achieved by
skipping over the last portion of the instruction interpretation cycle:

If 1NTERRUPT.ENABLE And 1NTERRUPT.REQUEST 3

The Restart interpret operation is used to indicate a return from the in-
put.output procedure, not to the place from were it was invoked (inside execute),
but to the beginning of the interpret procedure, thus bypassing the interrupt
trapping for one instruction.

Operation Code 7\opr: Operate

The Operate instruction encodes a large number of primitive micro-operations
in the address bits of an instruction. Some bits (e.g., cla) represent a micro-oper-
ation by themselves. Others (e.g., rt and ral) jointly represent a micro-operation.
There are several conditional skip micro-operations. These are grouped in a sepa-
rate procedure for readability:

skip< >,

skip.group := Begin
skip = 0 Next
Decode is 3 Begin ! invert skip condition

0 := Begin
If snl And (L Eql 1) 3 skip = 1;
If sza And (AC Eql 0) 3 skip = 1;
I f sma And (AC Lss 0) 3 skip = 1
End,

1 := Begin
IF szl@sna@spa Eql 0 3 skip = 1;
If szl And (L Eql 0) 3 skip = 1;
If sna And (AC Neq 0) 3 skip = 1;
If spa And (AC Geq 0) 3 skip = 1
End

End Next
If skip 3 PC = PC + 1
End,

! Skip

ISPS PRIMER FOR THE INSTRUCTION SET PROCESSOR NOTATION 531

operate := Begin
Decode group 3 Begin

0 := Begin ! group 1
If cia 3 AC = 0;
If cll 3 L = 0 Next
If cma 3 AC = Not AC;
If cml 3 L = Not L Next
If iac 3 LAC = LAC + 1 Next
Decode rt 3 Begin

0 := Begin
If ral 3 LAC = LAC Slr 1;
If rar 3 LAC = LAC Srr 1
End,

1 := Begin
If ral 3 LAC = LAC Sir 2;
If rar 3 LAC = LAC Srr 2
End

End
End,

Decode i< 1 I > 3 Begin

skip.group() Next
If cia 3 AC = 0 Next
If osr 3 AC = AC Or SWITCHES;
If hlt 3 RUN = 0
End,

If cia 3 AC = 0 Next

End

1 := Begin

0 := Begin

1 := Begin

NO.OP(1

End
End

End
End

! rotate once or twice
! once

! twice

! groups 2 and 3

! group 2

! group 3

! eae group

Several micro-operations can appear in the same instruction. Not all com-
binations are legal or useful. Micro-operations are executed at different points in
time thus allowing sequences of transformations applied to the Accumulator
and/or link bit. For instance, in the group 1 micro-operations, clearing AC/L is
done before complementing them; this is done before incrementing the combined
L@AC (LAC) register; and this in turn precedes the rotation of L@AC.

532 ISPS PRIMER FOR THE INSTRUCTION SET PROCESSOR NOTATION

OTHER FEATURES OF ISPS

Not all the features of the notation have been presented in the example. This
section attempts to provide a list of the missing operations to aid understanding
of the larger descriptions in the book. A detailed explanation of the complete
language is in the reference manual [Barbacci et al., 19771.

Constants

In general, a constant is a sequence of characters drawn from some alphabet
determined by the base of the constant. The base of a nondecimal constant is
given by a prefix character. The alphabets for the predefined bases in ISPS are:

Base Prefix Alphabet
2 0,1,?
8 # 0,1,2,3,4,5,6,7,?
I O 0,1,2,3,4,5,6,7,8,9,?
16 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,? "

The question mark character (?) can be used to specify a "don't care" digit. Its
presence stands for any digit in the corresponding alphabet.

The length of a constant is measured in bits. Decimal constants are one bit
longer than the smallest number of bits needed to represent its value (beware that
the use of "don't care" (?) decimal digits results in constants of unspecified
length). Binary constants have one bit for each digit explicitly written. Octal con-
stants have three bits for each digit explicitly written. Hexadecimal constants have
four bits for each digit explicitly written:

Example Length Bit Pattern

" 1000 16 000 1000000000000
15 5 01111
#17 6 001111
0 2 00
'0?101 5 0?101
#?2 6 ???O 10

Arithmetic Representation

ISPS allows the user to specify arithmetic operations in four different represen-
tations: two's complement, one's complement, sign magnitude, and unsigned
magnitude (the default is two's complement). To specify a different representa-
tion, the following modifiers can be used:

(TC I two's complement
(OCI one's complement
{SMI sign magnitude
{US) unsigned magnitude

ISPS PRIMER FOR THE INSTRUCTION SET PROCESSOR NOTATION 533

In all the signed representations, the sign bit is the leftmost position of the
operand (1 for negative numbers, 0 for positive numbers). The above modifiers
can be attached to any arithmetic or relational operator to override a default.
They can also be attached to a procedure declaration to set a default throughout
the body. When attached to a section name the default applies to all the declara-
tions in the section:

test := Begin (OCJ
.....
End,

** Section.1 ** (TC)

! Default for the body

! Default for the section

X = Y + (S M) Z ! Instance

Always remember that the arithmetic representation is a property of the oper-
ator, not the operand. Thus, the same bit pattern can be treated as a two’s com-
plement or an unsigned integer depending on the arithmetic context in which it is
used.

Sign Extension

All ISPS data operators define results whose length is determined by both the
lengths of the operands and the specific operator. Some operations require that
their operands be of the same length. This is usually accomplished by sign-extend-
ing the operands. In the context of unsigned magnitude arithmetic, sign-extension
is interpreted as zero-extension (i.e., padding with 0’s on the left). In one’s and
two’s complement arithmetic, the expansion is done by replication of the sign bit.
In sign magnitude arithmetic, the expansion is done by inserting Os between the
sign bit and the most significant bit of the operand.

Data Operators (in order of precedence)

Negation and Complement: -, NOT

Unary - generates the arithmetic complement of the operand (the operation is
invalid in unsigned arithmetic). The result is one bit longer than the oper-
and. The NOT operator generates the logical complement of the operand.
The result has the same length as the operand.

Concatenation: @

The @ operator concatenates the two operands. The length of the result is
the sum of the lengths of the operands.

534 ISPS PRIMER FOR THE INSTRUCTION SET PROCESSOR NOTATION

Shift and Rotate: S10, S11, Sld, Slr, SrO, Srl, Srd, Srr

These operators shift or rotate the left operand the number of places speci-
fied by the right operand. The result has the same length as the left operand.

The operators have the format Sxy where x is either l(eft) or r(ight) to in-
dicate the direction of movement. The y is either 0, 1, d(uplicate), or
r(otate), to indicate the source of bits to be shifted in. Sxl shifts its left
operand, inserting 1 s in the vacant positions. SxO is similar to Sxl, but in-
serts Os. Sxd inserts copies of the bit leaving the position to be vacated (not
the bit being shifted out). Sxr inserts copies of the bit being shifted out (i.e.,
rotates the left operand).

Multiplication, Division, and Remainder: *, /, MOD

These operators compute the arithmetic product, quotient, and remainder
of the two operands, respectively. The lengths of the results are:

Operation Length of Result

* Sum of lengths

/ Left Operand (dividend)
Right Operand (divisor) MOD

Addition and Subtraction: +, -
The + and - operators compute the arithmetic sum and difference of the
two operands, respectively. The shortest operand is sign-extended, and the
result is one bit longer than the largest operand.

Relational Operations: Eql, Neq, Lss, Leq, Gtr, Geq, Tst

These operations perform an arithmetic comparison between the two oper-
ands. The shortest operand is sign-extended, and the result is either 1 or 2
bits long. The first six operators (Le., all except Tst) produce a 1-bit result
indicating whether the relation is True (1) or False (0). The Tst operator
produces a 2-bit result indicating whether the relation between the left and
right operands is Lss (0), Eql (l) , or Gtr (2).

Conjunction and Equivalence: And, Eqv

These operators produce the logical product and coincidence operations of
the two operands, The shortest operand is zero-extended, and the result is as
long as the largest operand.

ISPS PRIMER FOR THE INSTRUCTION SET PROCESSOR NOTATION 535

Disjunction and Nonequivalence: Or, Xor

These operators produce the logical sum and difference operations of the
two operands. The shortest operand is zero-extended, and the result is as
long as the largest operand.

Logical and Arithmetic Assignment: =, t

The logical assignment operator (=) truncates or zero-extends the source
(right operand) to match the length of the destination (left operand). The
arithmetic assignment operator (+) truncates or sign-extends the source to
match the length of the destination.

The PMS Notation
J. CRAIG MUDGE

The PMS notation provides a structural representation of a digital computer
system as a graph which has the system’s components as the nodes and informa-
tion flows along the branches. These aspects of a digital computer system level
provide a description of the gross structure, including the amounts of information
held in various componenls, the distribution of control that accomplishes these
flows, and other interesting parameters (e.g., technology, function, cost, reliabil-
ity). Only those aspects of the notation that are used in this book are described; a
complete description is given in Bell and Newell [1971].

PMS PRIMITIVES

I n PMS there are seven basic component types, each distinguished by the kinds
of operations it performs:

Memory, M. A component that holds or stores information (i.e., i-units) over
time. Its operations are reading i-units out of the memory and writing i-units into
the memory. Each memory that holds more than a single i-unit has associated
with it an addressing system by means of which particular i-units can be desig-
nated or selected. A memory can also be considered as a switch to a number of
submemories. The i-units are not changed in any way by being stored in a mem-
ory.

Link, L. A component that transfers information (Le., i-units) from one place
to another in a computer system. It has fixed ports. The operation is that of
transmitting an i-unit (or a sequence of them) from the component a t one port to
the component at the other. Again, except for the change in spatial position, there
is no change of any sort in the i-units.

537

538 THE PROCESSOR-MEMORY-SWITCH (PMS) NOTATION

Control, K. A component that evokes the operations of other components in
the system. All other components are taken to consist of a set of discrete oper-
ations, each of which, when evoked, accomplishes some discrete transformation
of state.

With the exception of a processor, P, all other components are essentially pas-
sive and require some other active agent (a K) to set them into small episodes of
activity.

Switch, S. A component that constructs a link between other components.
Each switch has associated with it a set of possible links, and its operations consist
of setting some of these links and breaking others.

Transducer, T. A component that changes the i-unit used to encode a given
meaning (i.e., a given referent). The change may involve the medium used to
encode the basic bits (e.g., voltage levels to magnetic flux, or voltage levels to
holes in a paper card), or it may involve the structure of the i-unit (e.g., bit-serial
to bit-parallel). Note that T’s are meaning-preserving (in number of bits), since
the encodings of the (invariant) meaning need not be equally optimal.

Data-operation, D. A component that produces i-units with new meanings. It
is this component that accomplishes all the data-operations, e.g., arithmetic,
logic, shifting, etc.

Processor, P. A component that is capable of interpreting a program in order
IO execute a sequence of operations. It consists of a set of operations of the types
already mentioned (M, L, K, S, T, and D) with the control necessary to obtain
instructions from a memory and interpret them as operations to be carried out.

Each component has a set of attributes and associated values and takes on the
form:

X(a1 :VI ;a5 v2;. . .).

There are alternative, shorthand ways of saying the same thing when the attri-
bute names are clear. For example:

M(functi0n:primary) Complete specification.

M(primary)

M.primary

Drop the attribute name function, since it can be inferred
from the value.

A value can be concatenated with a component name us-
ing a dot convention.

Use an explicitly given abbreviation, namely, primary\p
(only if it is not ambiguous).

MP

THE PROCESSOR-MEMORY-SWITCH (PMS) NOTATION 539

w

lel

WHERE

L Link l e g Umbus)
Kea I/O Controller
M C M cache cache m e m o r y
M ~ \ M pr imary pr imary or program m e m o r y l e g core)
M s \ M racondary secondary m e m o r y l e g disk)
M t \ M tert iary
PC\P central central procersor
s S w i t c h l e g mult iplexer)
T Transducer (e g t y p e w r l t e r l

Figure 1. An example of a PMS diagram of a computer, C

Drop the concatenation if it is not needed to recover the
component name.

Components of the seven types can be connected to make stored program com-
puters, abbreviated by C , as shown in Figure 1.

Performance
C. GORDON BELL, J. CRAIG MUDGE

and JOHN E. McNAMARA

Performance parameters are a combination of architecture (the ISP), hardware
implementation, and resources (the PMS structure) being acted on by programs
(the use). Simplistic hardware measures, such as instruction times, can be used to
characterize machine performance for many cases. However, the ultimate per-
formance parameters have to be based on actual use parameters, otherwise there
is no way to correlate the primitive hardware measures to real performance.
Benchmarks of synthetic or real workload provide the only real test by which
performance can be compared. These might include standardized benchmarks
such as Whetstones for the algorithmic scientific languages and COBOL bench-
marks for commercial applications.

When one measures performance, there is a tacit assumption that sufficient
software exists to exploit a hardware structure, and that the transformation from
the basic hardware machine (the macromachine) to the user machine (as provided
by a language such as COBOL or FORTRAN) is relatively constant across vari-
ous architectures. As each level is crossed, a transformation requiring com-
putational work takes place. The form of the work with compiled languages is
direct execution via the processor and run-time support program. With inter-
preted languages, the processor executes an interpretation program which in-
directly interprets the data (Le., final program).

At the lowest level, the internal micromachine provides the architectural fa-
cade, the ISP, operating at roughly 10 times the speed of the macromachine.
Thus, a macromachine executing 1 million instructions per second may have an
effective microcycle time of 100 nanoseconds for executing I O million micro-
instructions per second. At the next level, a macromachine (ISP) executing 1 mil-
lion instructions per second is capable of perhaps 0. l to 0.25 million higher level
FORTRAN language statements (instructions) per second depending on the mix
of built-in functions and external functions called.

54 1

542 PERFORMANCE

It is difficult to use the simplistic constant ratio measures across each level-of-
interpretation when comparing machines of differing classes (e.g., micro to super)
because there is no consistency of data-types (e.g., micros started out with no
built-in real arithmetic at a time when minis included them). However, for ma-
chines within a class (e.g., mini) where the data-types are implied by the class
name, simplistic comparison is probably all right, since the two machines most
likely have about the same data-types. Hence a count of the number of data-types
reflecting the built-in operations is one of the more significant architectural per-
formance indicators, whether it be for a micromachine, macromachine, or a lan-
guage machine.

PMS (RESOURCES) PERFORMANCE PARAMETERS

The PMS structure, with the corresponding attributes determining perform-
ance (memory cycle time, processor execution rate), provides the basis for under-
standing machines and comparing them with each other. Figure 1 gives a PMS
diagram of a basic computer, with the parameters that, to a first approximation,
characterize performance. Alternatively, one might use a more descriptive, or
tabular, form; but the goal is to provide a structural/performance basis for defin-
ing parameters and comparing and specifying the finite resources of the computer
so that performance can be determined against actual workload.

It is imperative to consider the resource constraints and the effect of their inter-
action as each layer of a machine is designed. For example, a certain line printer
requires buffer space (memory size) and central processing time which is then
unavailable at the next machine level (e.g., FORTRAN).

Bell and Newel1 [I971521 argued that a machine (at any level) can be described
with any number of parameters, and carried out the exercise for up to five param-
eters (Table 1).

Information rate between the processor and memory is used as the processor
speed indicator instead of the more conventional instructions per second. Com-
pound indicators such as the product of processor speed times memory size to
indicate basic computational performance were not allowed.

The example in Table 2 shows three different architectures with two implemen-
tations of a stack architecture. One has the stack in the primary memory (Mp),
and the other assumes the stack is in the processor (Pc), using fast registers. The
hardware implementations are held roughly constant (the processor to primary
memory data rate) and the architecture is varied in order to compare the effect on
performance. Note the difference in the various measures in what should funda-
mentally be about the same performance for a simple benchmark problem.

The statement execution rate (the actual performance) is the highest for the 3-
address machine. In contrast, the conventional instructions per second measure
shows the 3-address machine to have the lowest performance (by a factor of 4). A
more subtle measure, operation rate, is correlated with the true benchmark state-
ment execution rate. It should be noted (ignoring the first machine, a stack ma-
chine with stack top in primary memory) that the information rate is a good

PERFORMANCE 543

performance indicator compared to the conventional, but poor, instruction rate
measure. For more unconventional machines, instructions per second tends to
become a significantly poorer measure. The various vector/array machines (e.g.,
ILLIAC IV, CDC STAR, CRAY-1) have single instructions to operate on at least
64 operands per instruction; hence instructions per second would be a poor mea-
sure. Hand-held calculators have single instructions such as Sin, Polar-to-Carte-
sian coordinate conversion; using anything but a final benchmark problem would
be unfair. Accesses per second used here are as a processor performance measure.

M p l S i i e . Iby ter l ,
r p e e d : * l b v / s l

LINKS FOR
INFORMATIOI
FLOW

c(rpewd'1accesseshl
d a t a - t v p e s * : (# l ,
c o n t e x t - s w - r a t e ' *

C O M M U N I C A T I O N
wiTn

T.human

direct ion'
Ihd I I d I s x l l

L

'SECONDARY M E A S U R E S

,EXTERNAL
C O M M U N I C A T I O N 1

Figure 1.
six relevant performance/structure dimensions.

Basic PMS computer structure model with

544 PERFORMANCE

Table 1. Characterizing Computer Systems With 1, 2, 3, 4. or 5 Parameters

Number of
Parameters
Allowed 1 2 3 4 5

1

4

5

Processor -

information
rate

Primary
memory
size

-

Processor -
operation
rate

-

Secondary -

memory
size

- Processor -

word length

- - Number

of terminals

THE MULTIPROCESSOR CASE

For multiprocessors the number of processors times the memory accesses per
second gives an approximate total. Processor speed can be computed more pre-
cisely by using the number of primary memory (Mp) modules and their data rate.
For a system where the memory access time and the memory rewrite time equal
the time for a processor to operate on a word, the performance is roughly [Stre-
cker, 19701:

Processor speed (in accesses per second) = (rn/t) X (1 - (1 - l / r n) P)

where m = number of memory modules, p = number of processors, and t = the
access time of a memory module.

Note that when p = m = large, the performance reaches an asymptote:

= m/tc x (l /e)

In the case of multiprogramming systems (e.g., real-time, transaction, and time-
sharing), the time to switch from job to job is important if there is a high context
switching rate.

The memory sizes (in bytes) for both primary and secondary memory give the
memory capability. The memory transfer rates are needed as secondary measures,
especially to compute memory interference when multiple processors are used.
This measure also permits system performance to be computed by subtracting the

Table 2. Performance Metr ics for Various Machines Interpreting the Expression, A +- B 4- C

Stack
(top in Mp)

Stack
(top in Pc)

1 -Address or
General Registers 3-Address

Program

Number of
Instructions

Accesses

Program size
(bits*)

Bits accessed*

Time to
execute7
(microseconds)

Statement
execution
rate (actual
performance)

Operation
rate

Instruction
rate

Processor
instruction
ratelword
length

PUSH B
PUSH C
ADD
POP A

4

40p + 3a + 6d

6 4

1 6 + 48 + 192 = 266

0.5 + 1.5 + 6 = 8

1/8 = 0.125M

218 = 0.25M

418 = 0.5M

3 2 M = 1M

PUSH B
PUSH C
ADD
POP A

4

4op + 3a +3d

6 4

1 6 + 4 8 + 9 6 = 160

0.5 + 1.5 + 3 = 5

1/5 = 0.2M

215 = 0 .4M

415 = 0.8M

32M = 1M

LOAD B ADD B.C,A
ADD C
STORE A

3 1

3op + 3a + 3d

72 6 0

l o p + 3a + 3d

2 4 + 4 8 + 9 6 = 168 1 2 + 4 8 + 9 6 = 156

0.75 + 1.5 + 3 = 5.25 0.37 + 1.5 + 3 = 4.87

1/5.25 = 0.19M 1/4.87 = 0.21 M

2/5.25 = 0.38M

3/5.25 = 0.57M

32M = 1M

2/4.87 = 0.42M

1/4.87 = 0.21M

32M = 1M

*Assumes address (a) = 16 bits; data (d) = 32 bits; operation code (op) = 4.4,8, and 12 bits
tAssumes a memory limited processor which can access 32 bits per microsecond.

VI

VI
P

546 PERFORMANCE

secondary memory transfers and external interface transfers. For file systems
which require multiple accesses to secondary memory for single items, the file
access rate capability is needed in order to compute performance. Similarly, for
multiprogrammed systems which use secondary memory to hold programs, the
access rate is needed.

Communications capability with humans, other computers, and other electron-
ically encoded processes are equally important structure and performance attri-
butes. Each channel (e.g., a typewriter) has a certain data rate and direction (full
duplex for simultaneous two-way communication). Collectively, the data rates
and the number of channels connected to each of the three different environments
(people, computers, electronically encoded processes) signify quite different styles
of computing capability, structure, and, ultimately, use.

ISP (ARCH ITECTU RE) PAR A M ETE RS

While the hardware structure and operation rates are the principal performance
determinants, the architecture is also important. Within a given machine class
(say minis), architecture has little effect on performance if the data-types are em-
bedded. The values for the data-types dimension in order of increasing complexity
are roughly:

word
integer
bit vector
instruction
character
floating or character string (depending upon scientific or commercial use)
program (including lists, stacks)
word vector
arrays

However, it is difficult to order the dimensions, except by complexity, because
performance is determined by whether a given problem requires the embedded
data-type.

In the U. S. Defense Department’s Computer Family Architecture (CFA) study
[Barbacci et al., 1977a; Burr e? al., 1977; Fuller e? al., 1977a; Fuller et al., 1977bl
which leads to the selection of the PDP-11 as the standard architecture, bench-
marking was used to compare several architectures.

The measures were the number of bits statically required to encode the al-
gorithm (S measure) and the number of bits that dynamically flow between the
processor and primary memory (M measure). A third measure gave the activity of
the internal register processor (R measure).

The benchmarks (see Table 3; from Fuller et al. [1977b: 149]), oriented to real-
time use were each programmed with assembly languages. The resultant pro-
grams were run on a simulator (instrumented to provide the s, M , and R mea-
sures) that interpreted the formal ISPS descriptions of the machines.

PERFORMANCE 547

Table 3. Test Programs

1. I/O kernel, four priority levels. Requires the processor to field interrupts from four devices,
each of which has its own priority level. While one device is being processed, interrupts from
higher priority devices are allowed.

2. 1/0 kernel, FIFO processing. Also fields interrupts from four devices, but without consid-
eration of priority level. Instead, each interrupt causes a request for processing to be queued;
requests are processed in FIFO order. While a request is being processed, interrupts from
other devices are allowed.

3. I/O device handler. Processes application programs' requests for I/O block transfers on a
typical tape drive, and returns the status of the transfer upon completion.

4. Large FFT. Computes the Fast Fourier Transform of a large vector of 32-bit floating-point
numbers. This benchmark exercises the machine's floating point instructions, but principally
tests its ability to manage a large address space.

5. Character search. Searches a potentially large character string for the first occurrence of a
potentially large argument string. It exercises the ability to move through character strings
sequentially.

6. Bit test, set, or reset. Tests the initial value of a bit within a bit string, then optionally sets or
resets the bit. It tests one kind of bit manipulation.

7. Runge-Kutta integration. Numerically integrates a simple differential equation using third-
order Runge-Kutta integration. It tests floating-point arithmetic.

8. Linked list insertion. Inserts a new entry in a doubly linked list. It tests pointer manipulation.
9. Quicksort. Sorts a potentially large vector of fixed-length strings using the Quicksort al-

gorithm. Like FFT. it tests the ability to manipulate a large address space, but it also tests the
ability of the machine to support recursive routines.

10. ASCII to floating point. Converts to ASCII string to a floating-point number. I t exercises
character-to-numeric conversion.

1 1. Boolean matrix transpose. Transposes a square, tightly packed bit matrix. I t tests the ability
to sequence through bit vectors by arbitrary increments.

12. Virtual memory space exchange. Changes the virtual memory mapping context of the
processor.

The CFA project also developed a single architectural measure based on a
weighted average of various ISP parameters. The weightings were determined by
the CFA user community, and each parameter was evaluated in comparison with
several competitive architectures. The parameters and their weights are given in
Table 4 from [Fuller et al., 1977a:140-144].

The measures are defined so that computer architectures maximize some and
minimize others. The measures that an architecture should maximize are Vi, V2,
P I , P2, U, K , B1, B2, and D; the measures that should be kept to a minimum are
CSl, CS2, CMI, CM2, I , L, J1, and J2. In the composite measures, a maximal
measure, the inverses of those measures to be minimized were used.

Lloyd Dickman, of DEC, calculated the measures for four DEC computers as
follows:

VAX-11
PDP-8

1.23 PDP-11 1.03
1.09 PDP-IO 0.66

548 PERFORMANCE

Table 4. Criteria for CFA Evaluation

Absolute Criteria

1.

2.

Virtual memory support. The architecture must support a virtual-to-physical translation
mechanism.
Protection. The architecture must have the capability to add new, experimental (Le., not
fully debugged) programs that may include I/O without endangering reliable operation of
existing programs.
Floating-point support. The architecture must explicitly support one or more floating-
point data-types with at least one of the formats yielding more than 10 decimal digits of
significance in the mantissa.
Interrupts and traps. It must be possible to write a trap handler that is capable of
executing a procedure to respond to any trap condition and then resume operation of the
program. The architecture must be defined such that it is capable of resuming execution
after any interrupt.
Subsetability. At least the following components of an architecture must be able to be
factored out of the full architecture:
Virtual-to-physical address translation mechanism
Floating-point instructions and registers (if separate from general-purpose registers)
Decimal instructions set (if present in full architecture)
Protection mechanism

3.

4.

5.

6. Multiprocessor support. The architecture must allow for multiprocessor configurations.
Specifically, it must support some form of "test-and-set" instruction to allow the imple-
mentation of synchronization functions such as P and V.
Controllability of I/O. A processor must be able to exercise control over any I10 proces-
sor and/or I10 controller.
Extendability. The architecture must have some method for adding instructions to the
architecture consistent with existing formats. There must be at least one undefined code
point in the existing operation code space of the instruction formats.
Read-only code. The architecture must allow programs to be kept in a read-only section
of primary memory.

7.

8.

9.

Quantitative Criteria Weight (%I

1. Virtual address space.
V i : The size of the virtual address space in bits.
V2: Number of addressable units in the virtual address space.

4.3
5.3

6.1
5.1

3. Fraction of instruction space unassigned. 6.0
4.

4.9
3.7

2. Physical address space.
Pi : The size of physical address space in bits.
P2: The number of addressable units in the physical address space.

Size of central processor state.
CS1: The number of bits in the processor state of the full architecture.
CSp: The number of bits in the processor state of the minimum subset
of the architecture (i.e., without Floating-point, Decimal, Protection. or
Address Translation Registers)

PERFORMANCE 549

Table 4. Criteria for C F A Evaluation (Cont)

Quantitative Criteria

5.

6.

7.

8.

9.

10.

CM1: The number of bits that must be transferred between the pro-
cessor and primary memory to first save the processor state of the full
architecture upon interruption and then restore the processor state
prior to resumption.
CM2: The measure analogous to CM1 for the minimum subset of the
architecture.

K is unity if the architecture is virtualizable as defined in Popek and
Goldberg [19741: otherwise K is zero.

81: Number of computers delivered as of the latest date for which
data exists prior to 1 June 1976.
82: Total dollar value of the installed computer base as of the latest
date for which data exists prior to 1 June 1976.

I : The minimum number of bits which must be transferred between
main memory and any processor (central or 110) in order to output one
8-bit to a standard peripheral device.

D: The maximum number of bits of primary memory which one in-
struction can directly address given a single base register which may
be used but not modified.

Let L be the maximum number of bits that may need to be transferred
between memory and any processor (CP. IOC. etc.) between the time
an interrupt is requested and the time that the computer starts pro-
cessing that interrupt (given that interrupts are enabled).

J1: The number of bits that must be transferred between the processor
and memory to save the user state. transfer to the called routine, re-
store the user state, and return to the calling routine. for the full archi-
tecture. No parameters are passed.
4 : The analogous measure to CS1 above for the minimum archi-
tecture (e.g., without Floating-point registers).

Virtualizability.

Usage base.

I/O initiation.

Direct instruction addressability.

Maximum interrupt latency.

Subroutine linkage.

Weight (%I

6.0

4.5

5.6

3.1

2.5

12.4

10.2

9.2

6.3

4.5

ACTUAL (COMPOUND PMS/ISP) PERFORMANCE MEASURE

In order to measure the performance of a specific computer (e.g., a PDP-
11/55), it is necessary to know the ISP, the hardware performance, and the fre-
quency of use for the various instructions. The execution time Tis the dot product
of the fractional utilization of each instruction Ui times the time to execute each
instruction Ti.

550 PERFORMANCE

There are three ways to estimate the instruction utilization U and, hence, ob-
tain T - each providing increasingly better answers. The first defines either a
typical or average instruction. The second uses standard benchmarks to charac-
terize a machine’s performance precisely. In this way, machines can be compared
with an absolute measure. Finally, since the actual use has not been characterized
in terms of the standard benchmark (and may even be difficult to characterize in
terms of it), a specific unique benchmark may be necessary. Such a character-
ization is quite possibly needed for real-time and transaction processing where
computer selection and installation is predicated on the job.

TYPICAL I N ST R U CTI 0 N S
The simplest, single parameter of performance is the instruction time for some

simple operation (e.g., add). These were used in the first two computer gener-
ations when high level languages were less used. Such a metric is an approx-
imation to the average instruction time and assumes that all machines have about
the same ISP and thus there is little difference among instructions, or that a spe-
cific data-type is used more heavily than another, or that a typical add time will be
given (e.g., the operand is in a random location in primary memory call rather
than being cached or in a fast register).

Although it is possible to take the average instruction time by executing one of
every possible instruction, since the instruction use depends so much on the data
interpreted, this average is relatively meaningless. A better measure is to keep
statistics about the use of all programs and to give the average instruction time
based on use on all programs. Again, such a measure, while useful for comparing
two machines’ implementations of models of the same architecture, is relatively
useless for particular practices.

Many years ago, there were attempts to make better characterizations by
weighting instruction use (i.e., forming a typical U) as to what each one did (e.g.,
floating point versus indexing and character handling) to give a better perform-
ance measure. Instruction mixes were developed that began to better evaluate
performance. These mixes, from Bell and Newel1 [1971:50], are given in Table 5.

The Gibson mix, best known, is still used even today. It has a decidedly com-
mercial flavor and quite possibly reflects the proportion of machines executing
commercial, as opposed to scientific, mixes with character operations, switching,
and control, where proportionally more integer and floating-point data-types are
used. Such mixes are still better approximations than a single instruction average,
because use enters in. Note that if the data-type operation is not present in the
machine, the programmed subroutine time must be given - typically a factor of
10-20 times greater than for built-in operations.

STANDARD BENCHMARKS
The best estimate of real use comes from carefully designed standard bench-

marks that are understood and that are used by other machines. Several organiza-

PERFORMANCE 551

tions, particularly those that purchase or use many machines extensively, have
one or more programs that they believe characterize their own workload.
Whether a standard benchmark can be of value in characterizing performance
depends on the degree that it is typical of the actual use of the computer. A further
advantage of benchmarks is that they are the language that the computer is to use,
and, hence, reflect the application and characterize the language machine archi-
tecture. To illustrate the variability in the scientific FORTRAN benchmark met-
rics, the performance of a number of machines (VAX-l1/780 with floating-point
accelerator option, PDP-11/70, and DECSYSTEM 2060), executing about a
dozen such benchmarks, is compared in Figure 2. Two scientific benchmarks of
the National Physical Laboratory in the United Kingdom [Curnow and Wich-

Table 5. Instruction-Mix Weights for Evaluating Computer Power

Arbuckle[lSSS] Gibson* Knight (scientific) Knight
(commercial)

Fixed +/-
Multiply
Divide
Floating +/-
Floating multiply
Floating divide
Loadlstore
Indexing
Conditional branch
Compare
Branch on character
Edit
1/0 initiate
Other

-
-
9.5
5.6
2.0
28.5
22.5
13.2

-
18.7

6
3
1

25 (move)

20
2 4
10
4
7

-

- 72

*Published reference unknown
+Extra weight for either indirect addressing or index registers

mann, 19761 are often singled out as being the most useful benchmarks because of
the extensive effort that was put into designing them as typical scientific pro-
grams. Several factors, such as the frequencies of the trigonometric functions,
frequencies of subroutine calls, and characteristics of the I/O, were considered.
The performance of computers executing these benchmarks is expressed in
Whetstones per second.

There are similar benchmarks for commercial processors that generally use the
COBOL language.

552 PERFORMANCE

EXACT US E CHARACTER IZATl ON

If a machine has to be fully characterized before installation, there is no alter-
native to running the exact problem which will be run on the final system. This is
the most expensive alternative to characterize performance and should be avoided
because of the dynamic nature of use. Showing that an application yields a given
performance on a particular machine is a weak guarantee of performance if any
part of the problem changes.

4.0 1

L lEGENO

1 3.0

1 .o

2 ' : ~

INTEGER ONLY
FLOATING INTENSIVE
DOUBLE FLOATING INTENSIVE
S.P. WHETSTONES
D.P WHETSTONES

d

-

Figure 2. Relative performance for various FORTRAN
benchmarks run on VAX-l1/780 and DECSYSTEM
2060.

[Advanced Micro Devices, Inc., 19751 AM 2900
Bipolar Microprocessor Circuits. Advanced Mi-
cro Devices, Inc., Sunnyvale, Calif. 1975.

[Advanced Micro Devices, Inc., 19771 AM 2900
Bipolar Microprocessor Family. Advanced Micro
Devices, Inc., Sunnyvale, Calif. 1977.

[Allmark and Lucking, 19621 Allmark, R.H., and
J.R. Lucking: Design of an Arithmetic Unit In-
corporating a Nesting Store. Proc. IFIP Congr.
pp. 694-698, 1962.

[Almes et al.. 19751 Almes, G.T., P.J. Drongowski,
and S.H. Fuller: Emulating the Nova on the PDP
11/40: A Case Study. Proc. IEEE Compcon
1153-56, Sept. 1975.

[Amdahl et al.. 19641 Amdahl, G.M., G.A. Blaauw,
and F.P. Brooks, Jr.: Architecture of the IBM
System/360. IBM J. Res. Dev. 8(2):87-101, April
1964.

[Arbuckle, 19661 Arbuckle, R.A.: Computer Analy-
sis and Thruput Evaluation. Comput. Aufomaf.
l5(I):l2-15 and 19, Jan. 1966.

[Asimow, 19621 Asimow, M.: Introduction f o Design.
Englewood Cliffs, N.J., copyright @’ Prentice-Hall,
Inc., 1962.

[Balas and Padberg, 19761 Balas, E., and M. Pad-
berg: Set Partitioning - A Survey. SIAM Rev.
18(4):71 1-760, Oct. 1976.

[Barbacci et al.. 19771 Barbacci M.R., G.E. Barnes,
R.G. Cattell, and D.P. Siewiorek: The ISPS Com-
puter Description Language. Carnegie-Mellon
University, Department of Computer Science,
Pittsburgh, technical report, August 14, 1977.

[Barbacci et al., 1977al Barbacci, M.R., D. Siewio-
rek, R. Gordon, R . R. Howbrigg, and S. Zucker-
man: An Architectural Research Facility - ISP
Descriptions, Simulation, Data Collection. Cont.
Proc. AFIPS NCC, pp. 161-173, 1977.

[Barnes et al., 19681 Barnes, G., R. Brown, M. Kato,
D. Kuck. D. Slotnick, and R. Stokes: The
ILLIAC IV Computer. IEEE Trans. Compuf.

[Bartee ef al., 19621 Bartee, T.C., I.L. Lebow, and
I.S. Reed: Theory and Design of Digital Machines.
New York, McGraw-Hill, 1962.

[Baskett and Smith, 19761 Baskett, F., and A.J.
Smith: Interference in Multiprocessor Computer
Systems with Interleaved Memory. Commun.
ACM 19(6):327-334 June, 1976.

[Baudet, 19761 Baudet, G.: Asynchronous Iterative
Methods for Multiprocessors. Carnegie-Mellon
University. Department of Computer Science,
Pittsburgh, technical report, Nov. 1976.

[Beckman et al., 19611 Beckman, P.S., F.P. Brooks,
Jr., and W.J. Lawless: Developments in the Log-
ical Organization of Computer Arithmetic and
Control Units. Proc. IRE49(1):53-66, Jan. 1961.

[Bell et al., 19691 Bell, C.G., A.N. Habermann, J .
McCredie, R. Rutledge, and W. Wulf Computer
Networks. Computer Science Research Review.
Pittsburgh, Carnegie-Mellon University, 1969.

[Bell et al., 19701 Bell, C.G., R. Cady, H. McFarland,
B. Delagi, J.F. O’Loughlin, and R. Noonan: A
New Architecture for Minicomputers -The DEC
PDP-I 1 . Conf: Proc. AFIPS SJCC 36657-675,
1970. Reprinted a s Chapter 9 of this text.

C-17:746-757, Aug. 1968.

553

554 BIBLIOGRAPHY

[Bell and Newell, 19701 Bell, C.G., and A. Newell:
The PMS and ISP Descriptive Systems for Com-
puter Structures. AFIPS Conf. Proc. SJCC
36:351-374, 1970.

[Bell and Freeman, 19711 Bell, C.G., and P. Free-
man: Cai-A Computer Architecture for AI Re-
search. A FIPS Con$ Proc. SJCC. 38:779-790.
Spring I97 1.

[Bell and Casasent, 19711 Bell, C.G., and D. Casa-
sent: Implementation of a Buffer Memory in
Minicomputers. Computer Dexign, pp. 83-89,
Nov. 1971.

[Bell and Grason, 19711 Bell, C.G., and J. Grason:
Register Transfer Module Design Concept. Coni-
puter Design, pp. 87-94, May 1971.

[Bell and Newell, 19711 Bell, C.G., and A. Newell:
Computer Structures: Readings and Examples.
New York, McGraw-Hill, 1971.

[Bell and Newell, 1971aI Bell, C.G., and A. Newell:
A Panel Session - Computer Structure - Past,
Present and Future, Possibilities for Computer
Structures. AFIPS Conf. Proc. FJCC 39:387-396,
1971.

[Bell et al., 19711 Bell, C.G., P. Freeman, M. Bar-
bacci, s. Bhatio, and W. Broodle: A Computing
Environment for AI Research - Overview, PMS,
and Operating System Considerations. Carnegie-
Mellon University, Department of Computer Sci-
ence, AD-737 531, Pittsburgh, technical report,
May 1971.

[Bell et ai., 19721 Bell, C.G., J. Grason, S. Mega, R.
Van Naarden, and P. Williams: The Description
and Use of the DEC Register Transfer Modules
(RTMs). IEEE Trans. Comput., pp. 495, May
1972.

[Bell et ai., 1972al Bell, C.G., J. Grason, and A.
Newell: Designing Computers and Digital Systems
Using PDP-16 Register Transfer Modules. May-
nard, Mass., Digital Press, 1972.

[Bell et al., 1972bI Bell, C.G., R. Chen, S. Rege: Ef-
fect of Technology on Near-Term Computer
Structures. IEEE Comp. 5(2):29-38. March-
April, 1972.

[Bell, J., 19731 Bell, J.R.: Threaded Code. Commun.
ACM 16(6):370-372, June 1973.

[Bell, et ai.. 19731 Bell, C.G., R.C. Chen, S.H. Fuller,
J . Grason, S. Rege, and D.P. Siewiorek: The Ar-
chitecture and Applications of Computer Mod-
ules: A Set of Components for Digital Design.
IEEE Compcon 73:177-180, March 1973.

[Bell et ai., 19741 Bell, J., D. Casasent, and C.G. Bell:
A n Investigation of Alternative Cache Organiza-
tions. IEEE Trans. Comput. C-23(4):346-351,
April 1974.

[Bell and Strecker, 19761 Bell, C.G., and W.D. Stre-
cker: Computer Structures: What Have We
Learned from the PDP-1 I ? Proc. Conference: 3rd
Annual Symposium on Computer Architecture,
IEEE and ACM, 1976.

[Bell Laboratories, 19751 Bell Laboratories: The
Safeguard Data-Processing System: An Experi-
ment in Software Development. Bell Syst. Tech.
J . , special supplement, 54:S199-S210, 1975.

[Best, 19571 Best, R.L.: Memory Units in the Lincoln
TX-2, Proc. WJCC. pp. 160-167, 1957.

[Bhandarkar, 19781 Bhandarkar, D.P.: Dynamic
MOS Memories: Serial or Random Access? IEEE
Compcon Digest of Papers, pp. 162-164, Feb.
1978.

(Blaauw, 19701 Blaauw, G.A.: Hardware Require-
ments for the Fourth Generation. In Fourth Gen-
eration Computers: User Requirements and
Transition, F. Gruenberger (ed.), Englewood
Cliffs, N.J., Prentice-Hall, pp. 155-168, 1970.

[Blaauw and Brooks, in preparation] Blaauw, G.A.,
and F.P. Brooks, Jr.: Computer Architecture, in
preparation.

[Bobrow et al., 19721 Bobrow, D.G., J.D. Burchfiel,
D.L. Murphy, and R.S. Tomlinson: TENEX, A
Paged Time Sharing System for the PDP-IO.
Comm. ACM 15(3):135-143, March 1972.

[Buchholz, 1962]Buchholz, W. (ed.): Planning a
Computer Sys t em. IBM Corp . New York,
McGraw-Hill, 1962.

[Bullman, 19771 Bullman, D.M. (ed.): Stack Com-
puters. IEEE Comput. 10(5):14-52, May 1977.

[Burks et a/., 19621 Burks, A.W., H.H. Goldstine,
and J. Von Neumann: Preliminary Discussion of
the Logical Design of an Electronic Computing
Instrument, pt. 11. Datamation 8(10):36-41, Oct.
1962.

BIBLIOGRAPHY 555

[Burr et a/.. 19771 Burr, W.E., A.H. Coleman, and
W.R. Smith: Overview of the Military Computer
Family Architecture Selection. AFIPS Proc. Cont.

[Case and Padegs, 19781 Case, R.P., and A. Padegs,
Architecture of the IBM System/370. Commun.
ACM. 21(1):73-96, Jan. 1978.

[Chaney and Molnar, 19731 Chaney, T.J., and C.E.
Molnar, Anomalous Behavior of Synchronizer
and Arbiter Circuits. IEEE Trans. Comput. C-

[Chu, 19701 Chu, Y.: Introduction to Computer Or-
ganization. Englewood Cliffs, N.J., Prentice-Hall,
1970.

[Clark, 19571 Clark, W.A.: The Lincoln TX-2 Com-
puter Development. Proc. WJCC, pp. 143-145,
1957.

[Clark and Molnar, 19641 Clark, W.A., and C.E.
Molnar: The LINC: A Description of the Labora-
tory Instrument Computer. Ann. N. Y. Acad. Sci.
115:653-668, July 1964.

[Clark and Molnar, 19651 Clark, W.A., and C.E.
Molnar, A Description of the LINC. In Com-
puters in Biomedical Research. (ed.) B.D. Wax-
man. New York, Academic Press, 1965. Vol. 11,
Chapter 2.

[Clark, 19671 Clark, W.A.: Macromodular Com-
puter Systems. AFIPS Conf. Proc. SJCC

[Coleman et al.. 19771 Coleman, V., M.W. Econo-
midis, and W.J. Harmon, Jr.: The Next Gener-
ation Four-Bit Bipolar Microprocessor Slice -
The AM 2903. Westcon, Session 16-4, p. I , 1977.

[Conti et al., 19681 Conti C.J., D.H. Gibson, and
S.H. Pitowsky: Structural Aspects of the Sys-
tem/360 Model 85. I . General Organization. IBM

[Conti, 19691 Conti, C.J.: Concepts for Buffer Stor-
age. IEEE Comput. Group News 2(8), March 1969.

[Conway, 19711 Conway, M.: A Multiprocessor Sys-
tem Design. Proc. lFIP Congr., Yugoslavia, 1971.

[Cooper and Chow, 19761 Cooper, A.E., and W.T.
Chow: Development of On-Board Space Com-
puter Systems. IBM J. Res. Dev. 20(1):5-19. Jan.
1976.

NCC, pp. 131-137, 1977.

22(4):421-422, April 1973.

30:335-336, 1967.

SJJS~. J . , 7(1):2-14, 1968.

[Corbato et a/.. 19621 Corbato F.J., M. Merwin-Dag-
get, and R.C. Daley: An Experimental Time-
sharing System. AFIPS Conf. Proc. SJCC, pp.
335-344, 1962.

[Curnow and Wichmann, 19761 Curnow, H.J., and
B.A. Wichmann: A Synthetic Benchmark. Com-
put. J. 19(1):43-62, Feb. 1976.

[Data General, 19741 Eclipse Computer Systems.
Westboro, Mass., Data General Corp., 1974.

[Davidow, 19721 Davidow, W.H.: The Rationale for
Logic from Semiconductor Memory. AFIPS
Con$ Proc. SJCC. pp. 353-358, 1972.

[DEC, 19721 DEC PDP-11 documents, Programmer
Reference Manual and Unibus Interface Manual.
Maynard Mass., Digital Equipment Corporation,
1972.

[DEC, 19731 PDP-I I Peripherals Handbook. May-
nard, Mass., Digital Equipment Corporation,
1973.

[DEC, 1973al PDP-l1/05/10/35/40 Processor
Handbook. Maynard, Mass., Digital Equipment
Corporation, 1973.

[DEC, 19741 DDCMP - Digital Data Commu-
nications Message Protocol. Maynard, Mass.,
Digital Equipment Corporation, 1974.

[DEC, 1974al Introduction to Minicomputer Net-
works. Maynard, Mass., Digital Equipment Cor-
poration, 1974.

[DEC, 1974b] PDP-11 FORTRAN Compiler Func-
tional Specification. DEC-11 -LFSCA-A-D. May-
nard, Mass., Digital Equipment Corporation,
1974.

[DEC, 1974~1 PDP-I 1 FORTRAN Object Time Sys-
tem Functional Specification. DEC- 1 I-LFSOA-
A-D. Maynard, Mass., Digital Equipment Corpo-
ration, 1974.

[DEC, 19751 PDP-11/70 Processor Handbook. May-
nard, Mass., Digital Equipment Corporation,
1975.

[DEC, 1975al LSI-I I , PDP-I 1/03 Processor Hand-
book. Maynard, Mass., Digital Equipment Cor-
poration, 1975.

[DEC, 1975b] LSI-I1 - PDP-11/03 User’s Manual
(EK-LSII I-TM-OOI), Maynard, Mass., Digital
Equipment Corporation, 1975.

556 BIBLIOGRAPHY

[DEC, 19761 MACRO-I 1 Reference Manual. DEC-
I I-OMMAA-B-D, Maynard, Mass., Digital
Equipment Corporation, 1976.

[DEC, 19771 Logic Handbook, 1977-78. Maynard,
Mass., Digital Equipment Corporation, 1977.

[DEC, 1977al PDP-I1/60 Processor Handbook.
Maynard, Mass., Digital Equipment Corpo-
ration, 1977.

[Denning, 19681 Denning, P.J.: The Working Set
Model for Program Behavior. Commun. ACM.
11(5):323-333, May 1968.

[Denning, 19701 Denning, P.J.: Virtual Memory.
Computing Surveys, pp. 153-189, Sept. 1970.

[Dennis, 19641 Dennis, J.B.: A Multiuser Com-
putation Facility for Education and Research.
Commun. ACM, 7(9):52 1-529, Sept. 1964.

[Dijkstra, 19681 Dijkstra, E.W.: Cooperating sequen-
tial processes. In Programming Languages. F.
Genuys (ed.), New York, Academic Press, pp.

[Dijkstra, 19691 Dijkstra, E. W.: Structured pro-
gramming. In Software Engineering: Concepts and
Techniques. Peter Naur, Brian Randell, and J.N.
Buxton (eds.), New York, Petrocelli/Charter,
1969.

[Eckhouse, 19751 Eckhouse, R.H.: Minicomputer
Systems: Organization and Programming (PDP
11). Englewood Cliffs, N.J., Prentice-Hall, 1975.

[Eichelberger and Williams, 19771 Eichelberger,
E.B., and T.W. Williams: A Logic Design Struc-
ture for LSI Testability. Proc. 14th Design Auto-
mation Conference. June 20-22, 1977.

[Elliott et al.. 19561 Elliott, W.S., C.E. Owen, C.H.
Devonald, and B.G. Maudsley: The Design Phi-
losophy of Pegasus, a Quantity-Production Com-
puter. Proc. IEEE 103:188-196, pt. B, supp. 2,
1956.

[Everett, 19511 Everett, R.R.: The Whirlwind I Com-
puter AIEE-IRE Conference, pp. 70-74, 1951 (re-
printed in Bell and Newell, Computer Structures.

[Fairchild Camera and Instrument Corp., 19761
Macrologic Bipolar Microprocessor Databook.
Fairchild Camera and Instrument Corporation,
Mountain View, Calif., 1976.

[Farber, 19751 Farber, D.J.: A Ring Network. Data-
mation 21(2):4446, Feb. 1975.

43-112, 1968.

chap. 6, pp. 137-145).

[Flynn, 19661 Flynn, M.J.: Very High Speed Com-
puting Systems. Proc. IEEE 54:1901-1909, Dec.
1966.

[Flynn, 19771 Flynn, M.J., The Interpretive Inter-
face: Resources and Program Representation in
Computer Organization. I n High Speed Computer
and Algorithm Organization. Kuck, Lawrie, and
Sameh (ed.). New York, Academic Press, 1977.

[Forbes, 19771 Forbes, B.E.: Silicon-On-Sapphire
Technology Produces High-speed Single-Chip
Processor. Hewlett-Packard J . , pp. 2-8, April
1977.

[Forgie, 19571 Forgie, J.W.: The Lincoln TX-2
Input-Output System. Proc. WJCC, 1957.

[Forgie, 19651 Forgie, J.W.: A Time- and Memory-
Sharing Executive Program for Quick-Response,
On-Line Applications. Proc. FJCC 1 1: 127-1 39,
599-610, 1965.

[Forrester, 1951) Forrester, J. W.: Digital Informa-
tion Storage in Three Dimensions Using Mag-
netic Cores. J . Appl. Phys. 22:44-48, 1951.

[Frankovich and Peterson, 19571 Frankovich, J.M.,
and H.P. Peterson: A Functional Description of
the Lincoln TX-2 Computer. Proc. WJCC, pp.

[Fraser, 19751 Fraser, A.G.: A Virtual Channel Net-

146-155, 1957.

work. Datamation 21(2):51-53, Feb. 1957.

[Friedman and Yang, 19691 Friedman, T.D., and
S.C. Yang: Methods Used in an Automatic Logic
Design Generator (ALERT). IEEE Trans. Com-
put. C-18:593-614, July 1969.

[Fuller, 19761 Fuller, S.H. : Price/Performance Com-
parison of C m m p and the PDP-IO. IEEEIACM
Symposium on Computer Architecture, p p .
195-202, Jan. 1976.

[Fuller and Oleinick, 19761 Fuller, S.H. , and P.N.
Oleinick: Initial Measurements of Parallel Pro-
grams on a Multi-Mini-processor. 13th IEEE
Computer Society International Conference,
Washington, D.C., pp. 358-363, Sept. 1976.

[Fuller and Siewiorek, 19731 Fuller, S.H., and D.P.
Siewiorek: Some Observations on Semiconductor
Technology and the Architecture of Larger
Digital Modules. IEEE Comput. 6(10):14-21, Oct.
1973.

BIBLIOGRAPHY 557

[Fuller et al., 19761 Fuller, S.H., T. McWilliams. and
W. Sherwood: CM U- 1 1 Engineering Documenta-
tion. Department of Computer Science, Carnegie-
Mellon University, Pittsburgh, Technical report,
1976.

[Fuller et al., 1977 Fuller, S.H., A.K. Jones, and L.
Durham (eds.): Cm* Review, June 1977. Dcpart-
ment of Computer Science, Carnegie-Mellon Uni-
versity, Pittsburgh, Technical report, June 1977.

[Fuller et ai. , 1977al Fuller, S.H.. P. Shaman, and D.
Lamb: Evaluation of Computer Architectures via
Test Programs. AFIPS Conf: Proc. NCC, pp.
147-160, 1977.

[Fuller et al., 1977b] Fuller, S.H., H.S. Stone, and
W.E. Burr: Initial Selection and Screening of the
CFA Candidate Computer Architectures. A FIPS

[Fusfeld, 19731 Fusfeld, A.R.: The Technological
Progress Function. Technol. Rev. 75(4)29-38, Feb.
1973.

Proc. NCC. pp. 139-146. 1977.

[Gaskill et a i . , 19761 Gaskill, J.R., J.H. Flint, R .G.
Meyer, L.J. Micheel, and L.R. Weill: Modular
Single-Stage Universal Logic Gate. IEEE J . Solid-
State Circuits SC-I 1(4):529-538, 1976.

[Gear, 19741 Gear, C.W.: Computer Organization and
Programming. 2d ed. New York, McGraw-Hill,
1974.

[Gibson. 19671 Gibson, D.H.: Considerations in
Block-Oriented Systems Design. AFIPS Con/:
Proc. SJCC 30:69-80, 1967.

[Gibson, 19741 Gibson, D.H.: The Cache Concept
for Large Scale Computers. In Rechnerstrukturen.
H. Hasselmeier and W.G. Sprath (eds.). New
York. Springer-Verlag, 1974.

[G ML Corp, 19771 Computer Review. Lexington,
Mass., G M L Corp.. vol. I , 1977.

[Grant. 19721 Grant, E.L.: Statistical Quality Con-
trol. 4th ed. New York, McGraw-Hill, 1972.

[Grason and Siewiorek, 19751 Grason, J., and D.P.
Siewiorek: Teaching with a Hierarchically Struc-
tured Digital Systems Laboratory. IEEE Conzp.
8(I2):73-8 I , Dec. 1975.

[Grason et ai.. 19731 Grason, J., C.G. Bell, J . Eggert:
The Commercialization of Register Transfer
Modules. IEEE Comput. Oct. 6(10):23-27, 1973.

[Haney, 19681 Haney, F.M.: Using a Computer to
Design Computer Instruction Sets. Thesis, Col-
lege of Engineering and Science, Department of
Computer Science, Carnegie-Mellon University,
Pittsburgh, May 1968.

[Hansen, 19751 Hansen, P.B.: The Programming
Language Concurrent Pascal. IEEE Trans. Soli-
ware Eng. SE-1(2):199-207, June 1975.

[Harbison and Wulf, 19771 Harbison, S., and W.A.
Wulf Reflections in a Pool of Processors. Depart-
ment of Computer Science, Carnegie-Mellon Uni-
versity, Pittsburgh, technical report, Nov. 1977.

[Heart et a i . , 19731 Heart, F.E.. S.M. Ornstein, W.R.
Crowther, and W.B. Barker: A New Mini-
computer/Multiprocessor for the ARPA Net-
work. AFIPS ConJ Proc. NCC, 42529-537, 1973.

[Hihbard, 19761 Hibbard, P.: Parallel Proc
cilities, New Directions in Algorith
guages, Operat ing Systems. Rocq uencourt ,
France, lnstitut de Recherche d’lnformatique, pp.
1-7, 1976.

[Hibbard et al. , 19781 Hibbard, P., A. Hisgen, a n d T .
Rodeheffer: A Language Implementation Design
for a Multiprocessor Computer System. A C M
IEEE 5th Annual Symposium on Computer Archi-
tecture. pp. 66-72, April 1978.

[Hobbs and Theis, 19701 Hobbs, L.C., and D.J.
Theis: Survey of Parallel Processor Approaches
and Techniques. In Parallel Processor Systems.
Technologies and Applications. L.C. Hobbs et al.
(eds.). New York, Spartan, pp.3-20, 1970.

[Hodges. 19751 Hodges, D.A.: A Review and Projec-
tion of Semiconductor Components for Digital
Storage. Proc. /EEE63(8):1136-1147, Aug. 1975.

[Hodges, 19771 Hodges, D.A.: Progress in Electronic
Technologies for Computers. National Bureau of
Standards Report T73219, March, 1977.

[Intel. 19751 Intel Schottky Bipolar LSI Micro-
computer Set: 3001 Microprogram Control Unit,
3002 Control Progressive Element, and 3003
Carry Lookahead Generator, Intel Corporation,
Santa Clara. Calif., 1975.

[Intel, 19771 Intel SBC 80/05, Single Board Com-
puter Hardware Reference Manual. Intel Corpo-
ration, Santa Clara, Calif., 1977.

558 BIBLIOGRAPHY

[Jensen and Anderson, 19751 Jensen, E.D., and G.A.
Anderson: Computer Interconnection Structures:
Taxonomy. Characteristics and Examples. Com-
puting Surve-vs 7(4):197-213, Dec. 1975.

[Jones et al., 19771 Jones, A.K., R. Chansler, Jr.. I.
Durham, P. Feiler, and K . Schwans: Software
Management of Cm* - A Distributed Multi-
processor. A F I P S Conf Proc. 46:657-663, 1977.

[Jones et a l . , 19781 Jones, A.K., R.J. Chansler, Jr., I .
Durham. P. Feiler, D. Scelza, K . Schwans, and
S.R. Vegdahl: Programming issues Raised by a
M ult i processo r. Pro c. IEEE, 6 6(2): 2 29-23 7, Fe b.
1978.

[Juran, 19621 Juran. J.M.: Quality Control Hand-
book. 2d ed. New York, McGraw-Hill, 1962.

[Kahn. 19721 Kahn, R.E.: Resources-Sharing, Com-
puter Communication Networks. Proc. IEEE
60(I) : 1397-1 407, Nov. 1972.

[Kilburn et al., 19621 Kilburn, T., D.L.G. Edwards,
M.J. Lanigan, and F.H. Sumner: One-level Stor-
age System. IRE Trans. EC-I 1 (2):223-235, April
1962.

[Knight, 19661 Knight, K.E.: Changes in Computer
Performance: A Historical Review. Datamation
12(9):40-54, Sept. 1966

[Knudsen, 19721 Knudsen, M: PMSL: A System for
Understanding Computer Structures, Ph.D.
Thesis, Computer Science Department, Carnegie-
Mellon University, Pittsburgh, 1972.

[Knuth, 19711 Knuth, D.E.: An Empirical study of
FORTRAN Programs. Software Prac. Exper.
l(2): 105-1 33, April-June 1971.

[Krutar, 19711 Krutar, R.: personal communication,
1971.

[Kuck et a/ . . 19721 Kuck, D.J., Y. Muraoka, and
S.C. Chen: On the Number of Operations Simul-
taneously Executable in Fortran-Like Programs
and Their Resulting Speed-up. IEEE Trans. Com-
put. C-21 (12):1293-1310, Dec. 1972.

[Landman and Russo. 19711 Landman, B.S., and
R.L. Russo: On a Pin Versus Block Relationship
for Partitioning of Logic Graphs. IEEE Trans.
Cornput. C-20(12)1469-1479, Dec. 1971.

[Lee, 19691 Lee, F.F.: Study of 'Look-Aside' Mem-
ory . IEEE Trans. Cornput. C-18(11):1062-1064,
Nov. 1969.

[Levy, 19741 Levy, J.V.: Software Structures: Levels
of Interpreters. Unpublished manuscript, July 6,
1974.

[Liplay, 19681 Liptay. J.S.: Structural Aspects of the
IBM System/360 Model 85. 11. The Cache. IBM
SJ'.V/. J . 7(l):l5-21, 1968.

[Logue et a / . . 19751 Logue, J.C., N.F. Brickman, F.
Howley, J.W. Jones, and W.W. Wu: Hardware
Implementation o f a Small System in Program-
mable Logic A r r a y s . I B M J . R ~ s , DPV.
19(2):110-1 19, March 1975.

[Lonergan and King, 19611 Lonergan, W., and P.
King: Design o f the B5000 system. Datamation
7(5):28-32, May 1961.

[Lowerre, 19761 Lowerre, B.: The HARPY Speech
Recognition System. Ph.D. Thesis, Department
of Computer Science, Carnegie-Mellon Univer-
sity, Pittsburgh, April 1976.

[Louie et al . . 19771 Louie, G. , Wipfli, J., Ebright, A,:
A Dual Processor Serial Data Central Chip.
Digest of International State Circuits Conjhrence,
Philadelphia, IEEE, pp. 144, 145, 1977.

[Luecke, 19761 Luecke, J.: Overview of Semi-
conductor Technology Trends. Digest of Papers.
13th IEEE Comp. Soc. Internat. Conf.. Washing-
ton, D.C., pp. 52-55, 1976.

[Lunde, 19771 Lunde, A.: Empirical Evaluation of
Some Features of Instruction Set Processor Ar-
chitecture. Commun. A C M 20(3): 143-1 53. March
1977.

[Marathe and Fuller, 19771 Marathe, M., and S.H.
Fuller: A Study of Multiprocessor Contention for
Shared Data in C.mmp. A C M S I G M E T R I C S
.Swlpo.siurn. pp. 255-262, 1977.

[Marill and Roberts, 19661 Marill, T., and L.G. Rob-
erts: Toward a Cooperative Network of Time-
shared Computers. A F I P S Con/.' Proc. FJCC
29425-432, 1966.

[Maurer, 19661 Maurer, W.D.: A Theory of Com-
puter Instructions. J . A C M 13(2):226-235, April
1966.

[McCarthy and Maughly, 19621 McCarthy, J., and
J.W. Maughly: Time Sharing Computer Systems.
In Management and the Computer oJ the Future.
M. Greenberger (ed.). Cambridge, MIT Press, pp.
221-248. 1962.

[McCarthy et a l . . 19631 McCarthy, J . , S . Boilen, E .
Fredkin, and J.C.R. Licklider: A Timesharing
Debugging System for a Small Computer. A F I P S
Con/,' Proc. S J C C 23:51-57, 1963.

[McCracken and Robertson, 19711 McCracken, D.,
and G. Robertson: C.ai (L*) - An L* Processor
for C.ai. Department of Computer Science, Car-
negie-Mellon University, Pittsburgh. technical re-
port, 1971.

B I BLlOG RAPHY 559

[McCredie, 19721 McCredie, J.: Analytic Models as
Aids in Multiprocessor Design. Department of
Computer Science, Carnegie-Mellon University,
Pittsburgh, technical report, 1972.

[McLean, 19771 McLean, J.: Univac Disbanding Fu-
ture Systems Plan. Electronic News 12:l-28, Dec.
1977.

[McWilliams et al., 19771 McWilliams, T.M., S.H.
Fuller, and W.H. Sherwood: Using LSI Processor
Bit-Slices to Build a PDP-I1 - A Case Study.
AFIPS Conf Proc. NCC. pp. 243-253, 1977. Re-
printed as Chapter 19 of this text.

[Meade, 19701 Meade, R.M.: On Memory System
Design. AFIPS Conf. Proc. FJCC 37:33-43, 1970.

[Meade, 19711 Meade, R.M.: Design Approaches for
Cache Memory Control. Comp. Des. 10(1):87-93,
Jan. 1971.

[Metcalfe and Boggs, 19761 Metcalfe, R.M., and
D.R. Boggs: Ethernet: Distributed Packet Switch-
ing for Local Computer Networks. Commun.
ACM 19(7):395404, July 1976.

[Mitchzll and Olsen, 19561 Mitchell, J.L., and K.H.
Olsen: TX-0: A Transistor Computer. AFIPS
Conf: Proc. EJCC 10:93-101, 1956.

[Moore, 19761 Moore, G.E.: Microprocessors and
Integrated Electronic Technology. Proc. IEEE
64(6):837-841, June 1976.

[Morris and Mudge, 19771 Morris, L.R., and J.C.
Mudge: Speed Enhancement of Digital Signal
Processing Software Via Microprogramming a
General Purpose Minicomputer. Conference Re-
cord, IEEE Internat. Conf. Acoustics, Speech,
and Signal Processing, May 1977.

[Mudge, 19771 Mudge, J.C.: Design Decisions
Achieve Price/Performance Balance in Mid-
Range Minicomputer. Comp. Des. 16(8):87-95,
Aug. 1977. Reprinted as Chapter 13 in this text.

[Murphy, 19721 Murphy, D.L.: Storage Organiza-
tion and Management in Tenex. Proc. AFIPS
FJCC. Vol. 41, pt. 1, Montvale, N.J., AFIPS
Press, pp. 23-32, 1972.

[Myers, 19771 Myers, G.J.: The Case Against Stack-
Oriented Instruction Sets. ACM Sigarch News,
Aug. 1977.

[Myer and Sutherland, 19681 Myer, T.H., and I.E.
Sutherland: On the Design of Display Processors.
Commun. ACM 11(6):410-414, June 1968.

[Nakano et al.. 19781 Nakano, T., 0. Tomisawa, K.
Anami, M. Ohmore, I . Okkura, and M. Nakaya:
A 920 Gate Masterslice. Digest of Technical Pa-
pers, IEEE Solid-state Circuits Conference, pp.

meedham, 19721 Needham, R.M.: Protection Sys-
tems and Protection Implementations. A FIPS
Conf Proc. FJCC. pt. 1,41:571-578, A720, 1972.

[Needham and Walker, 19771 Needham, R.M., and
R.D.H. Walker: The Cambridge CAP Computer
and its Protection System. Proc. Sixth Symposium
on Operating Systems Principles, 1977.

[Noyce. 19771 Noyce, R.N.: Large Scale Integration:
What is Yet to Come? Science 195:1102-1106,
1977.

[Noyce, 1977al Noyce, R.N.: Microelectronics. Sci.
Am. 237(3):62-69, Sept. 1977. Copyright 0 1977
by Scientific American Inc. All rights reserved.

[Nussbaum, 19751 Nussbaum, E.: New Technologies
and the Local Telephone Companies. National
Electronics ConJ Proc., p. 42, 1975.

[Oleinick, 19781 Oleinick, P.N.: The Implementation
of Parallel Algorithms on a Multiprocessor.
Ph.D. Thesis, Computer Science Department,
Carnegie-Mellon University, Pittsburgh, 1978, in
preparation.

[O’Loughlin, 19751 O’Loughlin, J .F. : Micro-
programming a Fixed Architecture Machine. Mi-
croprogramming and Svstems Architecture.
Maidenhead, Infotech State of the Art Report 23,

[Organick, 19721 Organick, E.I.: The Mu1tic.s Sys-
tems: An Examination of Its Structure. Cam-
bridge, M.1.T Press, 1972.

[Omstein et aL. 19671 Ornstein, S.M., M.J. Stucki,
and W.A. Clark: A Functional Description of
Macrornodules. AFIPS Conf. Proc. SJCC

[Omstein et al., 19721 Ornstein, S.M., E.E. Heart,
W.R. Crowther, H.K. Rising, S.B. Russell, and
A. Michael: The Terminal IMP for the ARPA
Computer Network. AFIPS Conf. Proc. SJCC

[Parke, 19781 Parke, N.G.: Personal Commu-
nication, 1978.

[Parnas, 19711 Parnas, D.L.: On the Criteria to be
Used in Decomposing Systems Into Modules. De-
partment of Computer Science, Carnegie-Mellon
University, Pittsburgh, technical report, 1971.

64-65, 1978.

pp. 205-221. 1975.

301337-355, 1967.

40:243-254, 1972.

560 BIBLIOGRAPHY

[Patil, 19781 Patil, S.S., and T. Welch : An approach
to Using VLSI in Digital Systems. In 5th Annual
Symposium on Computer Architecture. New Y ork,
ACM, pp. 139-143, April 1978.

[Phister, 19761 Phister, M.: Data Processing Tech-
nologv and Economics. Santa Monica Publishing
Co., Santa Monica, Calif., 1976.

[Popek and Goldberg, 19741 Popek, G.J., and R.P.
Goldberg: Formal Requirement for Virtualizable
Third Generation Architectures. Commun. A CM
17(7):412-421, July 1974.

[Rajchman, 19611 Rajchman, J.A.: Computer Mem-
ories: A Survey of the State-of-the-Art. Proc. IRE,
pp. 104-127. Jan. 1961.

[Redmond and Smith, 19771 Redmond, K.C., and
T.M. Smith: Lessons from “Project Whirlwind.”
IEEE Spectrum 14(10):50-59, Oct. 1977.

[Roberts, 19701 Roberts, L.G. (ed.): Computer Net-
work Development to Achieve Resource Sharing.
AFIPS Conf: Proc. SJCC 36:543-549, 1970.

[Rossman et al., 19751 Rossman, S.E., C.G. Bell,
M.J. Flynn, F.P. Brooks, Jr., S.H. Fuller, H. Hel-
lerman: A Course of Study in Computer Hard-
ware Architecture. IEEE Comput. pp. 44-63, Dec.
1975.

[Rothman, 19591 Rothman, S.: R/W 40 Data Pro-
cessing System. International Conference on Infor-
mation Processing and Auto-Math. Los Angeles,
Ramo- Wooldridge, 1959.

[Scarott, 19651 Scarott, G.G The Efficient Use of
Multilevel Storage. Wash gton, D.C., Spartan,
p. 137, 1965.

[Scelza, 19771 Scelza, D.: The Cm* Host Users Man-
ual. Department of Computer Science, Carnegie-
Mellon University, Pittsburgh, July 1977.

[Schroeder and Saltzer, 19711 Schroeder, M.D., and
J.H. Saltzer: A Hardware Architecture for Imple-
menting Protection Rings. Proceedings, 3rd Sym-
posium o n Operating System Principles. Commun.
ACM 15(3):157-170, 1972.

[Shannon, 19481 Shannon, C.E.: A Mathematical
Theory of Communication. Bell Syst. Tech. J .
27:379-423, 623-656, 1948.

[Sharpe, 19691 Sharpe, W.F.: The Economics of Com-
puters. New York, Columbia University Press,
1969.

[Siewiorek and Barbacci, 19761 Siewiorek, D.P., and
M.R. Barbacci: T h e C M U RT-CAD System - A n
Innovative Approach to Computer-Aided Design.
AFIPS Conf Proc. NCC 45:643-655, 1976.

[Siewiorek et al., 19761 Siewiorek, D.P., M. Canepa,
and S. Clark: C.vmp: The Analysis, Architecture
and Implementation of a Fault Tolerant Multi-
processor. Computer Science Department, Car-
negie-Mellon University, Pittsburgh, technical
report A038633, Dec. 1976.

[Signetics. 19751 Introducing the Series 3000 Bipolar
Microprocessor. Sunnyvale, Calif., Signetics Cor-
poration, 1975.

[Simon, 19691 Simon, H.A.: The Sciences of’the Arti-
ficial. Cambridge, M.1.T Press, 1969.

[Singleton, 19691 Singleton, R.C.: Algorithm 347: An
Efficient Algorithm for Sorting with Minimal
Storage. Commun. ACM 13(3):185-187, March
1969.

[Sklaroff, 19761 Sklaroff, J.R.: Redundancy Manage-
ment Technique for Space Shuttle Computers.
IBM J. Res. Dev. 20(1):20-28, Jan. 1976.

[Soha and Pohlman, 19741 Soha, Z., and W.B. Pohl-
man: A High Performance, Microprogrammed
NMOS-LSI Processor for 8- and 16-bit Appli-
cations. NEREM pt. 2, 16:10-19, Oct. 1974.

[Spencer, 19781 Spencer, R.F.: VLSI and Mini-
computers. IEEE Compcon, Spring 1978.

[Stone, 197 I] Stone, H.S.: Parallel Processing with
the Perfect Shuffle. IEEE Trans. Comput. C-
20(2):153-161, Feb. 1971.

[Stone and Siewiorek, 19751 Stone, H.S., and D.P.
Siewiorek: Introduction to Computer Organization
and Data Structures: PDP-I I Edition. New York,
McCraw-Hill, 1975.

[Strachey, 19601 Strachey, C.: Timesharing i n Large
Fast Computers. Proceedings of the International
Conference on Information Processing. 15-20 June
1959, Paris, UNESCO, pp. 336-341, 1960.

[Strecker, 19701 Strecker, W.D.: Analysis of the In-
struction Execution Rate in Certain Computer
Structures. Ph.D. Thesis, Carnegie-Mellon Uni-
versity, Pittsburgh, 1970.

[Strecker, 19761 Strecker, W.D.: Cache Memories for
PDP-I 1 Family Computers. Proceedings of the
3rd Annual Symposium on Computer Architecture,
pp. 155-1 5 8 , 1976. Reprinted as Chapter I O in this
text.

BIBLIOGRAPHY 561

[Strecker, 1976al Strecker, W.D.: personal commu-
nication, 1976.

[Strecker, 19781 Strecker, W.D.: Optimal Design of
Memory Hierarchies. Proceedings of the 11th
Hawaii International Conference on System Sci-
ences, Western Periodicals Co., p. 78. 1978.

[Swan et al., 19771 Swan, R.J., S.H. Fuller, and D.P.
Siewiorek: Cm* - A Modular, Multi-Micro-
processor. A FIPS Con$ Proc. 46:637444, 1977.

[Swan et al., 1977al Swan, R.J., A. Bechtolsheim,
K.W. Lai, and J.K. Ousterhout: The Implementa-
tion of the Cm* Multi-Microprocessor. AFIPS
Conf: Proc. 46545-655, 1977.

[Sweeney, 19651 Sweeney, D.W.: An Analysis of
Floating-Point Addition. IBM Syst. J. 4(1)31-42,
1965.

[Sutherland, 19631 Sutherland, I.E.: Sketchpad: A
Man-Machine Graphical Communication Sys-
tem. M.I.T. Lincoln Lab., Cambridge, technical
report 296, May 1965. Abridged version AFIPS
Con$ Proc. SJCC 23:329-346, 1963.

[Tandem, 19771 Tandem 16 System Introduction.
Cupertino, Calif., Tandem Computers, 1977.

[Thomas and Siewiorek, 19771 Thomas, D.E., and
D.P. Siewiorek: Measuring Designer Performance
to Verify Design Automation SystemsBesign
Automat. Conf: Proc. 14:411-418, 1977.

[Toombs, 19771 Toombs, D.: personal commu-
nication, 1977.

[Turn, 19741 Turn, R.: Computers in the 1980s. New
York, Columbia University Press, 1974.

[Vacroux, 19751 Vacroux, G . : Microcomputers. Sci.
Am. 232(5)32-40, May 1975.

[van de Goor et al., 19691 van de Goor, A.D., C.G.
Bell, and D.A. Witcraft: Design and Behavior of
TSS/8: A PDP-8 Based Time-sharing System.
IEEE Trans. Comput. C-18(11):1038-1043, Nov.
1969.

[von Hippel, 19771 von Hippel, E.: The Dominant
Role of the User in Semiconductor and Electronic
Subassembly Process Innovation. IEEE Trans.
Engineer. Management EM-24(2):60-71, May
1977.

[Wilkes, 19491 Wilkes, M.V.: A personal commu-
nication from M.V. Wilkes to S.H. Fuller Jan. 13,
1977. which confirmed that the quote (Chapter 1)
which appeared in a British Computer Society’s
History of Computing in 1949 was accurate.

[Wilkes, 19531 Wilkes, M.V.: The Best Way to De-
sign an Automatic Calculating Machine. Report
of Manchester University Computer Inaugural
Conference, July 1951, Manchester, 1953.

[Wilkes and Stringer, 19531 Wilkes, M.V., and J.B.
Stringer: Microprogramming and the Design of
the Control Circuits in an Electronic Digital
Computer. Proc. Cambridge Phil. Soc., pt. 2 ,
49:30-38, April 1953.

[Wilkes, 19651 Wilkes, M.V.: Slave Memories and
Dynamic Storage Allocation. IEEE Trans. Com-
put.; pp. 270-271, April 1965.

[Wirth, 19771 Wirth, N.: Towards a Discipline of
Real-t ime Programming. Commun. A C M

[Wulf, 19711 Wulf, W.: Programming Without the
Goto. Proc. IFIP Congr., Yugoslavia, 1971.

[Wulf et al., 19711 Corbin, K., W. Corwin, R . Good-
man, E. Hyde, K. Kramer, E. Werme, and W.
Wulf A Software Laboratory: Preliminary Re-
port. Department of Computer Science, Carnegie-
Mellon University, 1971.

[Wulf et al., 1971aI Apperson, J., R. Brender, C.
Geschke, A.N. Habermann, D. Russell, D. Wile,
and W.A. Wulf: Bliss Reference Manual. Depart-
ment of Computer Science, Carnegie-Mellon Uni-
versity, Pittsburgh, technical report, 197 I .

[Wulf et al., 1971bI Wulf, W.A., D. Russell, and
A.N. Habermann: BLISS: A Language for Sys-
tems Programming. Commun. A C M 14(12):780,
Dec. 1971.

[Wulf and Bell, 19721 Wulf, W.A., and C.G. Bell:
C.mmp - A Multi-Mini-Processor. AFIPS Conf:
Proc. FJCC pt. 11, 41:765-777, 1972.

[Wulf et al., 19751 Wulf, W.A., Levin, R., and Pier-
son, C.: Overview of the Hydra Operating System
Development. Proc. Ff th Symposium on Oper-
ating System Principles, New York, ACM, 1975.

20(8):577-583, Aug. 1977.

12-bit machines, 175-208
packaging, 197
performance, 194
power, 200
price, 193-199
second generation, 194, 195
third generation, 195

18-bit machines, 123-174
card handling equipment, 174
disks, 174
displays, 174
evolution, 174
1/0 bus structure, 174
implementations, 171
market, 170
packaging, 170, 171
performance, 169
price, 168, 169

36-bit family, 487-5 18
680/I, 73
7400-Series integrated circuits, 116

A
A-Series modules, 113
access time disk memories, 48
Accumulator, 142, 433

PDP-I, 104
PDP-4, 146

acknowledgement for error control, 295
acoustic noise, 68, 322
adder, asynchronous, 51 3
address computation, PDP-8, 524, 525
address mapping, Cm*, 465

address space
PDP-IO, 382
PDP-11, 231, 381
LSI- I 1, 303
VAX-I 1, 420-422

addressing
as a design constraint, 242
Unibus, 274
VAX-11, 412-416

addressing modes, PDP-I I , 373
advanced development, 59
Advanced Research Projects Agency (ARPA), 398,
437, 473, 510

ALGOL, 473
ALGOL 60, 143
ALGOL 68, Cm*, 478,479
algorithm

ALU (See arithmetic logic unit)
AMD 2900 Series bit-slices, 31, 435
AMD 2901,458

bit-slices, 458
Multiply instruction, 459, 460

Computer Family Architecture Study, 546

AMD microprocessors, 437
Amdahl V6, central processing unit, 4, 5
Amdahl's Rule, 390
American Research and Development, 123
Ampex Memories, 504
Anderson, Harlan, 129
APL, 511
applications

Cm*, 471-473
multiprocessor, 396
packaging levels-of-integration, 6

563

564 INDEX

Applications-Functional View of Computer Systems, arithmetic overflow
15-18
business use, 15-18
commercial use, 15- 18
communication and message based computers,

communication use, 15-18
control use, 15, 16
data-type, 15-1 8
file control use, 15-18
front ends, 17
high reliability, 16
minicomputers, 17, 18
on-board computers, 17
operating system, 15
packaging, 15
PMS level configurations, 15
scientific, 15
terminal use, 15, 16
timesharing use, 15, 16
word processing, 15-18

15-17

applied research, 59
arbitration methods

buses, 280-286
Direct Memory Access, 28 I , 283
interrupt, 283
LSI-l 1 Bus, 283, 284
Massbus, 286
SBI Bus (VAX 11/780), 284, 285
Unibus, 281-283

Blaauw Characterization, 24-26
capabilities, 408
Cm*, 469, 477
compatibility, 26
language, 25, 26
management, 386
microprogrammed machine, 24
operating system, 24

PDP-II, 24, 231
performance, 54 I , 546-549

archival memory, 53
areal density of disk memories, 49
arithmetic, general purpose, register transfer

arithmetic logic unit, 39

architecture

PDP-4/PDP-7, 148

modules, 444

C D C 6600, 468
IBM 360/9l, 468

PDP-I 1/60. 329
arithmetic operations

PDP-l I , 328, 329

PDP-I, 108

INTEL 3000 Series bit-slices, 459

ISPS, 532, 533
arithmetic representation

ARPA (See Advanced Research Projects Agency)
array processing, 437
Artificial Intelligence Laboratory,

(Stanford University), 498
ASCII, 242
ASCII Console, 302, 310, 31 1
Asimow, Morris, 18-20
Assembler, VAX-I 1,415, 416
associative memories, 53

asynchronous data transfer, Unibus, 277
Atlas, Extracode, 51, 53, 140, 384, 491, 498
Atomic Energy of Canada Limited, 139, 178
attributes of PMS components, 537, 538
auto index registers

auto increment, 141, 367

PDP-10, 498, 513

PDP-8, 215, 524

PDP-11, 382
VAX-I I , 414

availability
Carnegie-Mellon multiprocessors, 393
design goal, 23
PDP-I 1 /70 mP, 398

B
B-Series modules, 148
back-end processor, 164
backplane level

packaging, 71
wire-wrap, 71

backplanes
PDP-8/E, 75
third generation, 79

bandwidth, 298
buses, 274
PDP-l1/40, 389
PDP-I 1/60. 389
PDP-I 1/70, 389

Barbacci, Mario, 433
BASIC, Dartmouth College, 490, 51 I
Bastiani, Vincent, 73
batch multiprogramming, 140
batch processing, 164
battery backed-up power, 81
Bell, C. Gordon, 81, 141, 238
Bell Laboratories, 151

IBM 7094 Operating System, 490
Safeguard Computer, 392, 394

INDEX 565

benchmarks, 541, 546, 550
COBOL, 551
Gibson Mix, 550
National Physical Laboratory, 551
performance, 541

Bendix Corporation
(3-15 computer, 139
(3-21 computer, 467

Berkeley (University of California) SDS 940, 490
Best, Richard L., 95, 123, 125
bit density, magnetic tape, 50
bit-slice architecture

PDP-4, 146
PDP-5, 178

bit-slices, 3 1
AM D 2900 series, 435
AMD 2901, 458
Intel 3000 series, 435
Motorola 10800 ECL, 436
use in LSI-I I , 449-462
use in PDP- I 1 /34, 435

Blaauw, Gerrit A,, 24-26
Blaauw Characterization of Computer Systems,
24-26

architecture, 24-26
implementation, 24-26
realization, 24-26

Carnegie-Mellon University, 51 1
BLISS, 26. 51 I

BLISS-I I , 383
Bolt, Beranek, and Newman, 136, 140, 141, 147,490

Tenex, 490
bottom-up design, 349
box level packaging, 68
bo xes. pack aging levels-o f-i n t egra tion, 6
breadboard, 59, 85
Brender, Ronald F., 238
British Science Museum, 124
Brooks, Frederick P., Jr . , 26
Burroughs Corporation

B5000 computer, 494
D825 computer, 467
multiprogrammed system, 490

Bus Address register, PDP-I I , 329
bus contention, Cm*. 479-481
bus monitor, Cm*, 478
buses, 232, 269-299

arbitration methods, 280-286
bandwidth. 274
cable costs, 276
connections, 274
cost constraints. 270

data transfer synchroniration, 286-294
design, 270, 271
design notes, 271
design problems, 271
design tradeoffs, 275
Direct Memory Access, 273
electrical noise, 277
error control, 294-298
interrupt, 273
latency tolerance, 274
memory addressing, 273
parity error, 296
PDP- I I , 387
PDP-I 1/45, 277, 278
PMS notation, 537-539
power requirements, 276
propagation delays. 276
VAX-I I , 424, 425

business use of computers, Applications-Functional

byte swap logic, PDP-11/10, 352, 354
View, 15-18

c
C.mmp (Carnegie-Mellon University)

contention for shared resources, 394
crosspoint switch, 396
Hydra Operating System, 396
signal processing, 394

C. v m p (Ca rneg ie- Me llon University), 397
ca hi ne ts

Packaging Levels-of-l n tegrat ion, 6
PDP-I, 137
PDP-4, 137
PDP-5, 137

cabinet level packaging, 66
cable costs, buses, 276
cabling. PDP- 15, 159
cache, 52, 56. 232, 263-267, 278. 342. 352, 353, 389,
390, 398, 401

fully associative. 264
locality. 264
microprogramming, 52
miss ratio, 264
PDP-8, 56, 202
PDP- I I , 232, 390
PDP-l1/34A. 405
PDP-I 1/60, 318, 342, 352, 353, 389, 405
PDP-I 1/70. 56, 279. 405
PDP- I I /70m P, 398
PULSAR, 401
replacement algorithm, 264, 265

data transfer arbitration, 295 set associative,-264

566 INDEX

simulation, 265-267
size, 264

Cady, Roger, 379
capabilities, architecture, 408
capacitor-diode gates, 108
card-handling equipment, IS-bit machines, 174
Carnegie-Mellon University, 180, 203, 238, 465

availability, 393
BLISS, 51 I
C.vmp, 397
Cm*, 393, 398, 465
Digital Simulation System, 450
maintainability, 393
multiple PDP-lOs, 510
multiprocessors

availability, 393
maintainability, 393

PDP-8 with cache, 56
RT-CAD System, 434

Casasent, David, 203
C D C computers

CDC 160, 58, 141, 175
CDC 6600, 39, 63

arithmetic logic units, 468
Fast Fourier Transform vs. RTMs, 434
1/0 computer, 391
packaging, 63
peripheral processing units, 501
protection/relocation, 498

Matrix Multiply vs. RTMs, 434
packaging, 63
protection / re1 ocat ion, 49 8

performance, 543
central processing unit, 4, 5

CDC 7600, 39

CDC STAR

CFA Study (See Computer Family Architecture

Channels, IBM 360/370, 502
character handling, PDP-1 I , 382
character-string instructions, PDP-I I , 382, 384
charge-coupled devices, 47, 53, 58
check bits, error control, 295
Chin, Derrick, 151
chip level packaging, 71
circuit generation, 28, 29
circuit level, 95, 96

design, 327
modules, 43 1

structural levels, 2, 3

Study)

PDP-8, 224-228

circuit technology, design tradeoffs, 327

circuitry
module, 103-1 18
PDP-6, 512
TX-2, 97-102

Clark, Wesley A,, 127, 141, 178, 431
Clayton, Richard J.. 175
Cm*, 393, 398

address mapping, 465
ALGOL 68, 478, 479
application, 471 4 7 3
architecture, 469-477
bus contention, 479, 481
bus monitor, 478
Carnegie-Mellon University, 465
computer networks, 465
CONCURRENT PASCAL, 473
cost effectiveness, 463, 464
deadlock avoidance, 465
fault tolerance, 440, 465
I/O, 465
implementation, 47 3-475
interference, interprocessor, 465
interconnection structures, 465
LSI- 1 I , 473, 474
LSI-I 1 BUS, 398, 473
modularity, 440. 464, 473
multiprocessors, 463, 465
parallel processing, 440
performance, 477-482
PMS structure, 470
serial line, 476, 477
task decomposition, 464
virtual addressing, 465

CMOS-8, 181, 190
packaging, 74
programmable logic array, 190
register transfer, 190
stack, 217

computer-aided design, 460, 461
console, 453,454
control part, 451, 452
data part, 451, 452
microprocessor, 454
microprogramming, 4 5 0 4 53
Multiply instruction, 459, 460
packaging, 457
performance, 454, 459
programmable logic arrays, 460
read-only memories, 460
Stanford University Drawing System, 460, 46 1
Unibus interface, 451-453

CMU- 1 1 , 435

INDEX 567

COBOL, 55, 491, 494
benchmarks, 451
performance, 451

Columbia University, 144
combinational logic, 226

commercial instruction set, PDP-I I , 384
commercial use, Application-Functional View,

communication and message based computers

compatibility
architecture, 26
LSI-II, 386

structural levels, 3

15-1 8

Applications-Functional View, 15-1 8

PDP-I/PDP-4, 147
PDP-4/PDP-7, 148
PDP-9/PDP-15, 159
PD P- 1 I , 407, 408
PDP-lI/O5, 386
PDP-l1/20, 386
PDP-I1/40, 386
PDP-I 1/45, 386
TX-O/PDP-I, 128
VAX-I I , 409, 410, 423

Compatible Time Sharing System (CTSS), 140, 508
compiler, 416
computer-aided design, 164, 460, 461

Computer Family Architecture Study, algorithm,

computer-on-a-chip, packaging, 74, 75
Computer Automation Corporation, Naked (Mini)

Mini computer, 8
computer classes, 12-14

mainframe, 12
maxicomputer, 12
microcomputer, 12, 13, 542
midicomputer, 12
minicomputer, 12-14
submicrocomputer, 12
supercomputer, 12, 542

computer conferencing, 17
computer engineering, 488
Computer Family Architecture Performance Study,

computer generations

CMU-1 I , 460,461

546-549

546-549

Marketplace View, 9-14
packaging, 71

computer modules, 436440, 473475
computer networks, Cm*, 465
computer packaging generations, 72-75
computer systems level, packaging, 65, 66

CONCURRENT PASCAL, Cm*, 473
condition codes, PDP-1 I, 329
connections, buses, 274
console

CMU-I 1, 453, 454
LINC, 175
LSI-11, 302, 310, 311
PDP-15, 160
VAX-I I , 424

content ion
bus contention, 479-481
lock, 397
memory, 397
shared resources in C.mmp, 394

context registers, 52
context switching, 385

design constraints, 242
VAX-I I , 382, 385, 422, 423

PMS notation, 538
Register Transfer Modules, 442

control

control part, CMU-I I , 451, 452
control unit

design tradeoffs, 328
implementation, 328
PDP-I I , 329-331

control use. Applications-Functional View, 15, 16
controllers, I/O, 391
cooling, 64, 65

module level, 71
PDP-7, 75
PDP-9, 75, 153-155
PDP- I 1 /60. 324
power, 81-83

18-bit machines, 167
PDP-8, 220, 226
PDP-9, 154
PDP-14, 206
Whirlwind, 124

core memories, 47, 58, 154, 167, 206, 208, 220, 226

Corning Glass Company, 143
cost

Flip Chip modules, 80
life cycle, 23
module testing, 80
power supplies, 81-83
printed circuit board, 80
programming, 38, 41
semiconductor memory, 41, 42

cost constraints, buses, 270
cost effectiveness, Cm*, 463
cost (system) vs. cost (component), 22

568 INDEX

Cray. Seymour, 4, 63, 175, 516
Cray I . 39, 468

central processing unit, 4
performance, 543
packaging, 63

cross talk, module level, 71
crosspoint switch, C.mrnp, 396
CTSS (See Compatible Time Sharing System)
custom design of LSI chips, 44
cyclical memories, 47

D
Dartmouth College BASIC, 490
data break, PDP-8, 215
data encryption, 3 I
data flow, 24
Data General Corp.

ECLIPSE, 263
NOVA, 447

data operation
PMS notation, 538
Register Transfer Modules, 442

data part, CMU-I I , 451
data path organiration exceptions

PDP-I I /03, 35 1
PDP-l1/45. 351
PDP-I 1/60, 351

data path speed, PDP-I 1/34, 355
data path parallelism, PDP-I 1/45, 354, 355
data path topology, design tradeoffs, 327
data paths. PDP-I I , 328, 329
data rate, 390
data transfer arbitration, buses, 296
data transfer synchronization

LSI-I I Bus, 288-290
Massbus, 292-294
SBI Bus (VAX-I l/780), 290-292
Unibus, 287, 288

Applications-Functional View, 15

performance, 542

data-types, 15-18, 251, 519

PDP- IO, 492

VAX-I I , 41 2
data-type extensions, PDP-I I , 232
DBMS, 511
DC-12, 141
DDT, 141, 147
deadlock avoidance, Cm*, 465
debugging, 461
DEC 338 Display Computer, 201
DEC backplanes, 75
DEC boxes, packaging, 75
DEC cabinets, packaging, 75
DEC Distributed Museum Project, 127

DEC module product line growth, 434
DEC modules, 78-80, 103-1 18
DEC Users Society, 51 1
DeCastro, Edson, 178
decimal arithmetic data-types, PDP-I I , 384
DECnet-IO, 511
DECnet protocol, 466
DECsystem-IO (See also PDP-IO), 489-518
DECSYSTEM-20 (See also PDP-IO), 489-518
DECSYSTEM-2020, modules, 78, 11 8
DECSYSTEM-2060, 551

FORTRAN, 551
performance, 551

DECtape, 175, 215
DECUS (See DEC Users Society)
deferred auto increment, 367
Denning, P. J., 53
Dennis, Jack B., 126
density, semiconductor, 31
design

buses, 270, 271
circuit level, 327
computer, 2 I , 22
computer-aided design, 460, 46 I
custom design, 44
design constraints, 242-244
digital system design, 441
frequency driven design, 321
gate array, 42, 43
integrated circuits, 42

maintainability, 23
operating environment, 24

LSI-I I , 233

PDP-I, 128
PDP-8, 222
PDP-IO, 492
PDP-I I , 257
performance, 23
product life, 23
producibility, 23
reliability, 23
register transfer level, 44 I , 442
Register Transfer Modules, 445-447
standard cell design, 44
top-down design, 349

Marketplace View, 9-14
satisficing alternatives, 20

design constraints
addressing, 242
context switching, 242
design, 242-244
general registers, 242
1/0 processing, 242

design a Iter n a t i ve s

INDEX 569

interrupt, 242
machine language programming, 242
range of models, 242, 243
read-only memory, 242
stack, 242
string handling, 242

design maturity testing, 86
design notes, buses, 271
Design, Practice of, View of Computer Systems

design problems, buse;, 27 1
design protocol, Register Transfer Modules, 445
design tradeoffs

18-24

buses, 275-277
circuit technology, 327
control unit, 327

impact on performance
data path topology, 327-331

PDP-I I . 327-364
desk top computer, 193
development process, 59
development times, 168
device level, structural levels, 2
diagnostic programs, 86
Dickhut. Duane, 233
Dickman, Lloyd, 247
Digital Sim ula t ion S ys tem, Carnegie- Me1 Ion

digital system design, 441
diode-capacitor-diode gate, 11 2
Direct Memory Access, 127-129, 145, 155, 164, 185

arbitration methods, 28 I , 283
as overhead factor, 350
Massbus, 278

University, 450

PDP-8. 211, 215
PDP-I 1 /40, 389
PDP-I1/60, 319
Unibus, 274

disk supply process, 59
disks

18-bit machines, 174
access time, 48
areal density, 49

displays, 201
18-bit machines, 174
color, 123
high precision, 123
LINC, 136
PDP-6, 136
PDP-12, 136

documentation, PDP-4, 146
Doriot, General Georges F., 123
dual-inline package, 71, 115, 156
dual processor (See multiprocessor)

E
ECL (See emitter-coupled logic)
ECL bit-slices, 436
economy-of-scale. 56

effective address, PDP-8, 524-526
electrical noise, buses, 277
electromagnetic interference; module level, 68,7l, 80
emitter-coupled logic (ECL), 104, I IO, 116, 155, 203,

modules, 80

487
PDP-10, 513
semiconductor use, 39, 40

emitter follower, 97
emulation. 408
engineering

software engineering, 85
systems engineering, 85

engineering breadboards, 85
engineering prototypes, 86
English Electric KDF9 Computer, 494
environmental testing, 86
error control

acknowledgement, 295
buses, 295-298
check bits, 295
error reporting and logging. 295

Massbus, 297, 298
retry, 295

Unibus, 295

LSI-I 1 BUS, 295, 296

SBI B U S (VAX-1 I /780), 296

Ethernet, 466
event counting, 144
evolution

18-bit machines. 164-1 74
PDP-IO, 382,489-491
PDP-I I , 231, 381, 382, 385
programming, 39, 40

exceptional condition, 31
extendability, 440
Extracode, Atlas, 498

F
Fabritek Memories, 504
family tree, semiconductor, 27-29
Fast Fourier Transform, 15, 322, 437

C D C 6600 w. RTMs. 434
Register Transfer Modules, 434, 435

Fastbus, PDP- 1 1 /45, 348
fault-finding procedure, 91
fault tolerance. Cm*, 440, 465
field programmable logic array, 45
field service, 85
fifth generation, packaging, 74

570 INDEX

file control use, Applications-Functional View,

file memory, 53
file processor, 164
final assembly and test, 87
fixed head disks, 58
Flexowriter, Friden, 125

word processing antecedents, 17
Flip Chip, 74, 78, 80, 112, 148, 179

costs, 80
packaging, 112

flip-flop, 105

floating point

15-18

TX-2, 99, 100

PDP-I I , 256, 384
PDP-I 1 /45, 384
PDP-I1/70, 238, 385, 389, 390

floating-point hardware, 365
PDP-I I , 365
PDP-I 1 /20, 370-372
PDP- 1 1 /40, 370-372
PDP-I 1 /45, 370-372
performance, 377, 378

Floating-point Processor
PDP-8/A, 187
PDP-I 1/34, 405
PDP-11/45, 238
PDP-I1/60, 238, 321
PDP-l1/70, 238
PDP-15, 161

Forgie, J . W.. 127
Forrester, Jay, 124
FORTRAN, 143, 238, 365, 473,491,492

DECSYSTEM-2060, 551
PDP- 1 1 /70, 55 I
performance, 55 1
VAX-I 1/780, 417, 418, 551

FORTRAN-IV PLUS, 321, 383
FORTRAN Cross Assembler, LSI-I I , 301
FORTRAN virtual machine, 365, 366, 368-370
fourth generation, packaging, 74
Foxboro Corporation, 141, 143, 178
FPLA (See field programmable logic array)
frequency-driven design, PDP-I 1/60, 350
Friden Flexowriter (See Flexowriter)
front-ends, Applications-Functional View, 17
Fuller, Samuel H., 433
Fusfeld, A. R., 54

G
G-Series modules, 113, 114
Gardner-Denver (See Wire-Wrap)

gate arrays, 29. 44
Amdahl, G. M.. 39
design, 42-44
I B M , 39
testing, 89

gate level simulators, 461
gates

capacitor-diode gates, 109
diode-capacitor-diode gates, 1 I2

General Electric, G E 645 computer, 467
General Motors, 203
general registers, 52, 377

design constraints, 242
floating point, 377
PDP-I I , 382, 384, 385, 387
PDP-11/20, 371
PDP- I 1 /40, 37 1
PDP- I I /45, 37 1

generate and test, 21
generation circuit, 28. 29
GenRad Tester, 89
gentlemen’s timesharing, 518
George Interpreter, 494
germanium alloy transistors, 145
germanium transistors, 104, I I3
Gibson Mix, 355. 550
goals

PDP-II, 231, 381
understandability. 383

Grason, John, 434
Gurley, Ben. 123, 125

H
HARPY Speech Recognition Program, 394
Harris Semiconductor, 190
Helenius, AI, 164
Hewlett-Packard, HP35 calculator, 63
hex modules, PDP8/A, 187
high level languages, PDP-I I , 383
high reliability , Applications- Fu nc tio nal View, 16
high speed channel (See also Direct Memory Access)
history

PDP-I, 123, 124
PDP-4, 141, 147
PDP-5, 178, 179
PDP-7, 147-153
PDP-8, 179-182
PDP-9, 153-156
PDP-14, 203-208
PDP-15, 156162
PD P- 15/76, 162-1 64

Hodges, D. A,, 37

INDEX 571

Holloway, John, 513
home based computers, 17
horizontal microprogramming, LSI- 1 1, 345
Hully, Richard, 164
human factors engineering, packaging, 60
Hydra operating system, C.mmp, 396

I
I /o

18-bit machines, 164, 172-174
Cm*, 475
controllers, 391
design constraints, 242
1/0 computer, 129, 158, 391
IBM Channel, 391
PDP-I, 128, 129, 134, 390
PDP-4, 143-145
PDP-5, 179
PDP-6, 503

PDP-8, 21 1
PDP-8/E, 182, 184, 185

PDP-IO, 499. 503

PDP-7, 148

PDP-9, 155

PDP-I I , 18.5, 382, 386
PDP-15, 1.58, 159, 160
TX-2, 125, 126
VAX-I I , 425, 426

1/0 Bus daisy-chain, 155
1/0 connections, semiconductor, 37 .
1/0 device independence, PDP-6, 508
1/0 interfacing, 18-bit, 164
1/0 page. Unibus, 274
IBM Corporation

709 computer, 25
1130, 366
3330 disk, 278
3850 Mass Storage System, 15
7030 computer (STRETCH), 491
7090 computer, 25, 140, 356, 492
Channels, 129
7094 computer, 491

Bell Laboratories, 490
operating systems, 490

7441 Buffered Terminal Control Unit, 46
Channel I/O, 391, 491
Model B Typewriter, 143
STRETCH (7030 computer), 491
System 360 computers, 356, 407

attached support processor, 164
channels, 491

general registers, 250
memories, 48, 504
Model 40. 187
Model 65, 467
Model 85. S I , 56, 263
Model 91 arithmetic logic units, 468
Multiplexer/Selector Bus, 388
range. 384
SVC, 498
TSS, 491

channel-to-channel adapter, 466
Model 155, 263

performance. 543

18-bit machines, 171
Blauuw View, 24-26
Cm*, 473-475

System 370 computers

ILLIAC IV, 468

implement at ion

LSI- 1 I , 306, 307. 344-347
control unit, 327

Norden I l/34M, 25
PDP-4/PDP-7, 148
PDP-8. 181
PDP-10. 512, 513
PDP-I I , 23. 235
PDP-I I using Intel bit-slices, 458460
PDP-I 1 /04, 327, 340, 341
PDP-I 1/10, 328, 331, 339, 340
PDP-l I /20, 248, 328, 334
PDP-l1/34, 328, 341. 342
PDP-I 1 /40, 328, 334, 339
PD P- 1 1 /45, 347-349, 354
PDP-I1/60, 328, 331, 342-344
performance, 541
stack, 542
VAX-I 1/780, 423426

Index Registers, 141

indirect addressing, PDP-8, 525, 526
industrial modules, 114, 115
infant mortality testing, 91
information units (i-units), 537
Input-Output Register, PDP-I, 129
instruction decoding diagram, PDP-8, 216
instruction format, PDP-8, 521-523
instruction frequencies, 350
instruction interpretation

PDP-15, 158

PDP-8, 526-53 I
PDP-I I , 97, 98

instruction interpretation of microprogram, PDP-I I,
33 1-334

572 INDEX

instruct ion pre fetch
PDP-I 1 /40, 353, 354
PDP-I 1/45, 353, 354
PDP-l1/60, 353, 354

Instruction Register, PDP-I I , 329
instruction set design, 386
instruction set processor (See ISP)
interference, interprocessor, Cm*, 465
integrated circuit technology

7400-series, I 16
K l l O Processor (PDP-IO), 116
KLlO Processor (PDP-IO), 116
PDP-8/E, 116
PDP-IO. 116
PDP-I1/20, 116

integrated circuits
PDP-I 1/45. I I6

design, 42
packaging levels-of-integration, 7, 7 I

3000 Series bit-slices, 435, 449
arithmetic overflow, 459
Carnegie-Mellon University, 449
implementation of PDP-1 I , 458460
Multiply instruction, 459-460

Intel, 474

8086. 32
microprocessors, 436438
packaging levels-of-integration, 8

intelligent terminal, 190
interconnection structures, Cm*, 465
interfacing, LSI-I I , 309, 310
internal registers, PDP-I I , 329
International Telephone and Telegraph, I39
interpreter, 3, 366
interrupts (See also sequence break), 127-129, 139,

164
arbitration methods, 283
buses, 273
design constraints, 242-244
LSI-I I , 303
Massbus, 286

PUP-IO, 503
PDP-I I , 382
PDP-I 1/70mP, 398
VAX-I I , 422

PDP-8, 218

interrupt response, PDP-I I , 242
Intersil, 190
ISP, 24, 86, 129. 519-522

notations, 3
PUP- I , 130-1 34
PD P-4, 130-1 34
PDP-8, 209, 21 5-21 8

PDP-IO, 494
PDP-I I , 249-257, 383-387
PDP- I I / O 5 , 302
PDP-14, 204
Register Transfer Modules, 442-444

V A X - I 1, 41 1-423
TX-0, 126

ISP influence on performance, 546-548
ISPS, 519

arithrnet ic represen tation, 532-535
PDP-8, 519

K
K-Series modules, 1 14. 115

KAlO Processor (PDP-IO), 394, 489, 494, 499
PDP-14, 115

HARPY, 394
memory control, 503
performance. 51 3
wire-wrap, 5 I 3

KBI I Processor (PDP-I I) , 328
K l l O Processor (PDP-IO), 488, 489, 494

integrated circuit technology, 116
memory protection, 489, 499
paging, 498

HARPY, 394
integrated circuit technology, 116
microprogram, 496, 5 I3
performance, 5 13

KLlO Processor (PDP-10). 116, 394, 487, 489. 494

KL2O Processor (DECSYSTEM-20). 489
Kotok. Alan, 178

L
L-l computer, 141, 142, 178
Laboratory Instrument Computer (See LINC)
Laboratory Modules, 103-1 18

language
logic system, 104

architecture, 25
machine, 26

language processing system, onion skin levels, 3
languages. packaging levels-of-integration, 6
latency tolerance, buses, 274
Lawrence Livermore Laboratory, 139
learning constants. 54
learning curves, 54, 59, 61
Levy’s Levels-of-Interpreters, View of Computer

Levy, John V. , 3-6, 233, 269-299
Librascope, LGP-30 computer, 139
life cycle, 85-87

Systems, 3-6

INDEX 573

LINC, 175, 21 1
console, 175
display, 136
performance, 243
personal computer, 175
PMS, 175
tape unit, 175. 215

LINC-8, financial, 147
Lincoln Laboratory, 123, 175, 512

line switching power supplies, 81
linear predictive coding, 31
link bit, 142

PMS, 537
LISP, 491, 492
lithography, 32
Live Register, TX-0, 129
locality, 5 I , 52
Lockheed Corporation, SUE computer, 393
logic

logic design level, PDP-8, 222-224
logic diagrams, 105
logic elements, 105-107
logic, emitter follower, 97
logic gates, 105
logic level, structural levels, 2, 3
logic system

TX-2, 97-102. 104, 503

Schottky TTL, 11 5, 1 16

Laboratory Modules, 103
pulse, 105, 106
Systems Modules, 103

logical design, PDP-I I , 257, 258
LSI-I I , 303-313, 388, 398

address space, 303
bit-slices, 449-462
Cm*, 473-476
compatibility, 312, 386
console, 302, 310, 31 1
design, 233
FORTRAN Cross Assembler, 302
horizontal microprogramming, 345
implementation, 306, 307, 344-347, 354
1/0 Bus, 308-310
interfacing, 308-310
interrupt, 303
LSI circuitry, 355
maintenance, 312
memory, 307, 308
memory refresh, 3 1 I , 350
microcomputer, 301
microprogramming, 303, 457
modules, 80
packaging, 74, 455-457

packaging levels-of-integration, 8
performance, 455
PMS, 303
programmable logic array, 305
real-time clock, 3 I I
register transfer level, 303
software support, 3 I2
VA X-l I , 424

arbitration methods, 283, 284
Cm*, 398, 473
data transfer synchronization, 288
error control, 295, 296

modules, 3-9
LSI dilemma, 37-39, 43 I
Luecke, Jerry, 37

LSI-I 1 BUS, 308-310

LSI-I 112. 234

M
M-Series modules, packaging, I16
M.I.T., 123. 141, 147

CTSS. 1508
Multics. 490
memory purchases, SO4

M.I.T. Lincoln Laboratory (See Lincoln

machine language programming, design constraints,

Mackenzie. John, 126
macromachine ISP, performance, 541
macromodules, 43 1-433
MADT transistors, 109, 145
magnetic bubble memories, 47, 53, 58
magnetic tape, SO

bit density, 50
mainframe computer class, 12
maintainability

Carnegie-Mellon multiprocessors, 393
design, 23
PDP-l1/60, 324

mai n tenance

Laboratory)

242

LSI-I I , 312
PDP-4. 146
TX-2, 95, 99

manufacturing, 84-91
PDP-15, 159
TX-2, 95, 99

manufacturing process flows, PDP-l1/60, 87
mapping, program mapping, 52, 53
Marathe, M., 396
margin checking, TX-2, 100, 101
market, 18-bit machines, 170
marketing, 85

574 INDEX

Marketplace View, 9-14
computer generations, I O
design alternatives, 10-12
minimal computer, 1 1
price/performance ratios, 9
program compatibility, I O

arbitration methods, 286
data transfer synchronization, 292-294
error control, 297, 298
interrupts, 286

Massbus, 270, 292-294

master clock

master slice, 29
Matrix Multiply vs. RTMs, 434

CDC 7600, 434
maxicomputer class, 12
McCarthy, John, 492
medium-scale integration
Memorex Corporation, 49
memories

archival memory, 53
associative memory, 53, 513
cache memory, 51, 52, 278, 398, 401
charge-coupled device, 53. 47. 58
content addressed, 319
core memory, 47, 58, 154, 167, 220, 226
cyclical, 47
DEC 12-bit machine, 48
disk, 48, 49
file memory, 53
IBM System 360, 48
magnetic bubble, 47, 53
magnetic tape, 50
memory hierarchies, 50, 51
microprogram, 52
modularity, 504
multiport memory, 141, 162
paging, 53

SBI BUS (VAX-I 1/780), 284, 285

PDP-IO, 48
PDP-11/45, 405
PDP-I I / 5 5 , 405
programmable read-only, 41
read-only, 41, 58, 382
Register Transfer Modules, 442
relays, 114
rope memory, 154, 203
Whirlwind, 124
write-once, 46

memory addressing
buses, 273

Memory Bus
PDP- I 1 /70, 279

PDP-8. 21 I

PDP-IO, 499, 504
memory control, KA 10 Processor (PDP-IO), 503
memory hierarchies, 50, 5 1, 263
memory locality, 51, 52
memory management

PDP-1 I , 329, 381
PDP-I 1/45, 384

memory protection, 140

memory refresh, LSI-I I , 31 I , 350
memory state, PDP-8, 520
memory technology, 27-62, 403, 45
Memory Test Computer, 124
memory timing, performance parameters, 350
message switching applications, 139

microcomputer class, 12
micro-alloy diffused transistor, 109, 145
Microaddress Registers, PDP-I I , 329
microcoded instructions, PDP-8, 21 7
microcomputer, LSI-I 1, 301-313
microcomputer class

computer classes, 542
performance, 542

KllO Processor (PDP-IO), 498, 499

PDP-8, 180

microcycle time, performance parameters, 350, 35 1
microcycle timing selectivity

PDP- I I /34, 355
PDP-I 1 /40, 355

microdiagnostics, 86
micromachine

onion skin levels, 3
performance, 542
programming, 155

microprocessor, CMU-I I , 452-454
microprocessor-on-a-chip, 3 1
microprocessors, effects on RTMs, 434
microprogram

18-bit. 155, 167
K L l O Processor (PDP-IO), 496

memories, 52
LSI-I I , 302, 303

microprogrammed control, 405
PDP-8/A, 187
PDP-8/E, 185
PDP-I I , 329

microprogrammed machine
architecture, 25
onion skin levels, 3

microprogramming, 38
cache, 52

K L l O Processor (PDP-IO), 513
CM U- 1 I , 450-453

LSI-I I , 52, 449-453
PDP-8. 217

INDEX 575

PDP-9, 52
PDP-I I , 45, 244, 383
PDP-I 1/10, 457, 458
PDP- I I /40,45 I , 458
PDP-I 1/45, 457, 458
PDP- I I /60, 52, 235

TX-0, 126
Register Transfer Modules, 435

microprogramming, horizontal, 345
microword register, PDP-I 1, 329
mid-life kicker, 62
midicomputer class, 12
minicomputer, 58, 241

Applications-Functional View, 18
computer classes, 12-14
definition, 14
design constraints, 14
packaging, 63-84

minimal computer, Marketplace View, 11
multiprocessors, 238
modularity

Cm*, 440, 464
memories, 504
PDP-I I , 243, 383

module level
cooling, 71
cross talk, 71
electromagnetic interference, 7 I
packaging, 71

module mounting
PDP-4, 137
PDP-5, 137

module testing, cost, 80
modules

A-Series modules, I13
B-Series modules, 113, 148
circuit level, 431
computer modules, 436-440
DEC modules, 103-1 18

economy-of-scale, 80
electromagnetic interference, 80
Flip Chip, 78, I12
Flip Chip module costs, 80
G-Series Modules, 113, 114
hex modules, 187
industrial modules, 114, I15
K-Series modules, 114, I15
Laboratory Modules, 103-107
LSI- I I , 80
LSI-I 1/2, 80

DECSYSTEM-2020, I18

M-Series modules, I16
noise immunity, 114
packaging, 1 I4

packaging levels-of-integration, 7
PDP-I, 104
PDP-7, 113
PDP-8, 116
PD P-8/E, 80, I 18
PDP-8/1, 80, 116, I 18
PDP-8/1, 118
PDP-IO, 113. 116
PDP-I I , 258
PD P- I 1 /20, 80, I I6
PDP-15, 118
pin limitations on modules, 80
PMS level, 43 I , 436
R-Series modules, I12
register transfer level, 431
S-Series modules, I12
second generation, 78
Systems Modules, 79, 103
testing, 80
third generation, 79

VHF modules, I16
W-Series modules, 114

Molnar, Charles, 175
Monitor (See also operating systems)

VAX-l l/780, 78, 1 I8

PDP- IO, 505, 506
PDP-6, 505, 506

Motorola, 10800 ECL bit-slices, 436
MSI, 498

PDP-I I , 405
PDP-l1/40, 355

Multics, M.I.T., 490
multicomputers, 238
multiple PDP-lOs, Carnegie-Mellon University, 510
Multiplier Quotient Register, PDP-I, 129
Multiply instruction

A M D 2901, 459

Intel 3000 Series bit-slices, 459

memories, 141, 162

CMU-I 1 , 459

multiport memory

PDP-6. 141
PDP-15, 162

multiprocessing

PDP-IO, 510

application, 396
Carnegie-Mellon University, 393-398
Cm*, 463, 465

PDP-6, 5 I O

multiprocessors, 388, 391-403

PDP-15, 162
PDP- 15/76, 164
performance, 542
task decomposition, 464, 465

576 INDEX

multiprogrammed system, Burroughs B5000, 490
multiprogramming

PDP-IO, 498, 499

Murphy, Daniel, 512

N
National Biscuit Company (Nabisco), 143
National Physical Laboratory, benchmarks, 551
National Science Foundation, 398, 437
National Semiconductor Company, 437

PDP-15, 157

microprocessors, 437
noise immunity, modules, 114

Norden 11/34M, 24, 25
implementation, 25

North American Rockwell, packaging levels-of-
integration, 8
notations, ISP, 3

Noyce, Robert, 8, 9

0
OEM business, PDP-8, 180
Oleinick, Peter, 396
Olsen, Kenneth H. 95, 123, 124
Omnibus, 181, 185
on-board computers, Applications- Functional View,

one’s complement, 142
onion skin levels

17

central processing unit, 3
language processing system, 4
micromachine, 3, 4
microprogrammed processor, 4

operate instructions, PDP-8, 530, 53 1
operating environment, design, 24
operating system

Applications-Functional View, 15
architecture, 25
IBM 7094, 490
packaging levels-of-integration, 7
PDP-6, 505
PD P- 10, 489, 505

operation rate, performance, 542, 543
operator maintenance console, PDP-1, 134, 137
original equipment manufacturers (See OEM)

P
P. Display 338, 21 1
packaging, 63, 84

12-bit machines, 197
18-bit machines, 170, 171
applications, 7
Applications-Functional View 15
backplane level, 71

box level, 68
boxes, 7
cabinet level, 66
cabinet level electromagnetic interference, 68
cabinet level safety, 68
cabinets, 7
CDC 6600, 63
CDC 7600, 63
chip level, 71
CMOS-8, 74
CMU-11, 451
computer, 72
Computer Automation Naked Mini, 8
computer generations, 72
computer-on-a-chip, 74, 75
computer systems level, 65, 66
Cray 1, 63
DEC boxes, 75
DEC cabinets, 66, 68
dual-inline package, 71
fifth generation, 74
Flip Chip modules, 112
fourth generation, 74
general, 63, 64
human factors engineering, 66
integrated cicuit level, 71
integrated circuits, 7
Intel, 8
languages, 6

M-Series modules, 1 15, 1 16
minicomputer, 63-84
module level, 71
modules, 7, 114
North American Rockwell, 8
operating systems, 7

LSI-I 1, 8, 457

PDP-I, 73, 74
PDP-5, 75
PDP-6, 73
PDP-7, 71, 75, I50
PDP-8, 64, 73
PDP-8/A, 64
PDP-8/E, 186
PDP-8/1, 79
PDP-8/S, 75
PDP-9, 155
PDP-10, 65, 513, 517, 518
PDP-1 I , 8
PDP-11/10, 457, 458
PDP-II/20, 8
PDP-l1/40, 457, 458
PDP-I 1/45, 457, 458
PDP- 1 1 /60, 322
PDP-14, 204, 205

INDEX 577

PDP-15, 159
Register Transfer Modules, 446, 447
semiconductors, 7
View of Computer Systems, 6-9
wire-wrap, 112

paging, KIlO Processor (PDP-IO), 498, 499
paging memories, 53
Papian, William, 125
parallel processing, Cm*, 440
parallelism, 385
parameters, semiconductor, 28
parity error, buses, 296

Accumulator, 108
arithmetic operations, 108
cabinets, 137
design, 128
history, 123-141
I/O, 129, 134, 137, 138
Input/Output Register, 129

modules, 103
Multiplier Quotient Register, 129
operator maintenance console, 134, 137
packaging, 73, 74
PDP-I /PDP-4 compatibility, 147
register transfer, 107
timesharing, Stanford, 490
UART function, 73

PDP-I, 128, 164, 490, 512

rsp, 130-134

PDP-2, 141
PDP-3, 141
PDP-4, 164

Accumulator, 146
bit-slice architecture, 146, 178
cabinet, 137
documentation, 146
history, 141, 147
I/O, 143-144
ISP, 130-134
maintenance, 146
module mounting, 137
performance, 169

architecture, 148
compatibility, 148
implementation, 148
realization, 148

bit-slice architecture, 178
cabinet, 137
financial, 147
history, 178, 179
I/O.Bus, 179
module mounting, 137

PDP-4/PDB-7

PDP-5, 58

packaging, 75
performance, 243

circuits, 5 12
display, 136
financial, 147
1 / 0 Bus, 503
1/0 device independence, 508
Monitor, 505-508
multiport memory, 141
multiprocessing, 5 I O
operating systems, 505-508
packaging, 73
user files, 508

cabinet, 75
cooling, 75, 152, 153
history, 147-153
1/0 Bus, 148
modules, 113
packaging, 71, 75, 150
PMS structure, 148
wire-wrap, 71

address computation, 524, 525
auto indexing, 215, 526
cache, 56, 202, 203
circuit level, 224-228
Carnegie-Mellon, 56
core memory, 220, 226
data break, 215
design, 222-224
Direct Memory Access, 21 I , 215
effective address, 524-526
Gardner-Denver Wire-wrap, 180
history, 179, 182

implementations, 181
indirect address, 525, 526
instruction decoding diagram, 216
instruction format, 521-523
instruction interpretation, 526-535
interrupt system, 218
ISP, 209, 2 15-2 18
ISPS, 519
logic design level, 222
Memory Bus, 21 1
memory state, 520
message switching applications, 180
microcoded instructions, 217, 218
microprogramming, 217, 218
modules, I16
OEM business, 180
operate instructions, 530, 531

PDP-6, 489, 494

PDP-7, 164

PDP-8, 58, 241

I/O, 211

578 INDEX

packaging, 64, 73, 75

processor-on-a-chip, 187, I 9 0
processor state, 520, 521
register transfer level, 2 18-222
S-Series modules, 112
Structural levels, 209-228
timesharing, 18 1

PMS, 209, 210-215

PDP-8 emulation, Register Transfer Modules, 434,
447
PDP-8/A, 182

Floating-point Processor, 187
hex modules, 187
microprogrammed control, 187
packaging, I64
semiconductor memories, 187

PDP-8/B, 187
PDP-8/E, 102, 187

backplanes, 75
I/O, 182, 185
integrated circuit technology, I I6
modules, 118
microprogrammed control, 185
packaging, 186
read-only memories, 185

modules, 80, 116
packaging, 79
UART, 73

modules, 118

PDP-8/1, 181, 204

PDP-8/L, 181

PDP-8/M, 182, 186
PDP-8/S, 181

packaging, 75
PDP-9, 164, 167, 434

cooling, 75, 155
core memory, 154
history, 153-156
1/0 Bus, 155
microprogramming, 52
packaging, 155
PMS, 154
register transfer level, 154, 155
rope memory, 154

PDP-9/PDP-15, compatibility, 159
PDP-10, 1 IO, 407, 489-518

address space, 382
associative memories, 498
data-types, 492, 494
design, 492
ECL, 513
evolution, 382, 489, 492
Family, 487
general registers, 251

I/O, 499, 502, 503
implementation, 5 12-5 18
integrated circuit technology, 116
interrupt, 503
ISP, 492-499
memories, 48
Memory Bus, 499, 503
modules, 110
Monitor, 505-508
multiprocessing, 510
multiprogramming, 498, 499
operating systems, 489, 505-508
packaging, 65, 5 13-5 16

PMS structure, 499-505
price/performance, 5 16-5 18
range, 489, 490
stack, 251
UUO, 498

address space, 381, 231
addressing modes, 373, 374
architecture, 25, 26, 231
arithmetic logic unit (ALU), 328, 329
auto increment, 382
bus, 387
Bus Address Register, 329
cache, 232, 389, 390
character handling, 382
character-string instructions, 384
commercial instruction set, 384
compatibility, 386, 408
condition codes, 329
control unit, 329-331
data paths, 328, 329
data-type extensions, 232
decimal arithmetic data-types, 384
design. 257. 258

PDP-IO/PDP-l I , 499

PDP-11

Design Tradeoffs, Impact o n Performance,
327-364

evolution, 231, 381, 382, 385
Family, 231
floating point, 256, 257, 384
FORTRAN, 365-378
general registers, 25 I , 255,256, 382, 384, 385, 387
goals, 231, 381
high level languages, 383
I/O, 185, 382, 386
implementation, 24-26, 458-460
implementation using Intel bit-slices, 449-462
instruction interpretation of micro-
program, 331-333

Instruction Register, 329
internal registers, 329

INDEX 579

interrupt, 258, 382
interrupt response, 242

KBI 1 Processor, 328
logical design, 257, 258
memory management, 329, 381
Microaddress Register, 329
microprogrammed control, 329
microprogramming, 45, 244, 383
Microword Register, 329
modularity, 243, 383
modules, 258
MSI, 405
packaging levels-of-integration, 8
performance, 242, 243
performance range, 327
PMS level, 244-249
PMS structure, 387-391
processor priority, 329
Program Status Register, 329
range, 23 I , 368, 383
read-only memories, 382
reentrant programming, 382
registers, 382
RSTS, 181
Scratchpad Memory, 329
stack, 254, 255, 368, 387
status register, 329
technology, 403-405
two address machine, 256
understandability, 383
Unibus, 231
virtual memory, 231
word length, 242

ISP, 249-35 I , 383-387

PDP-I 1/03, data path organization exceptions, 351
PDP-I 1/04

implementation, 328, 340, 341
Processor Unibus overlap, 352
programmable logic arrays, 405
Unibus interface logic, 353

compatibility, 16-1 7
ISP, 302

byte swap logic, 354
byte swapper, 352
implementation, 328, 331, 339, 340
microprogramming, 457, 458
packaging, 457, 458

compatibility, 386
financial, 147
floating point, 370, 371
FORTRAN, 370-373

PDP- 1 1 /05

PDP-l1/10

PDP-I 1/20

implementation, 248, 329
integrated circuits, 116
modules, 80, 118
packaging levels-of-integration, 8
SSI, 334, 355
Unibus, 277

bit-slices, 405, 435
data path speed, 355

Floating-Point Processor, 405
implementation, 328, 341, 342
microcycle timing selectivity, 355
programmable logic arrays,405
Unibus interface logic, 353

cache, 405

compatibility, 386
Direct Memory Access, 389
floating point, 370-372
FORTRAN, 370-372
HARPY, 394
implementation, 328, 334, 339
instruction prefetch, 344, 353, 354
microcycle timing selectivity, 355
microprogramming, 457, 458
MSI, 339, 355
packaging, 457, 458
performance, 455-457

compatibility, 386
data path organization exceptions, 351
data path parallelism, 354
Fistbus, 348
floating point, 238, 370-373, 384
FORTRAN, 370-373
implementation, 347-349, 354
instruction prefetch, 353, 354
integrated circuit technology, 116
microprogramming, 457, 458
memory, 465
memory management, 384
packaging, 457, 458
Unibus, 278

Float in g- Poi n t Processor, 238
memory, 405

arithmetic logic unit, 328, 329
cache, 318, 342, 352, 353, 389, 405
data path organization exceptions, 35 1
frequency-driven design, 350
FORTRAN, 321
floating point, 238, 315, 321

PDP- 1 1 /34

PDP- I I /34A, 232

PDP-I 1/40

PDP-l1/45

PDP-11/55

PDP-I 1/60, 232, 235, 315-326

580 INDEX

implementation, 328, 33 I , 342-344
instruction prefetch, 344, 353, 354
manufacturing process flows, 87
microprogramming, 52, 235, 315, 317, 377
writable control store, 322, 323, 342, 383

cache, 56, 278
floating point, 238, 385, 389, 390

FORTRAN, 551
memory addressing, 279
performance, 409
Unibus, 389
Unibus Map, 384

PDP-I 1/70mP
availability, 398
cache, 398
interrupt, 400
maintainability, 398
perform an ce, 400
reliability, 398

PDP- I I /70, 232, 263

RSX- I 1 M, 398
PDP-I I/PDP-IO, 499
PDP-12, 175

display, 136

core memory, 206, 208
financial, 147
history, 203, 208
ISP, 205
K-Series modules, 114, 11 5
packaging, 204
rope memory, 204

cabling, 158-160
console logic, 160
Floating-Point Processor, 161
history, 156-162
I/O, 160
1/0 Processor, 158
Index Register, 158
manufacturing, 159
modules, 118
multiport memory, 162
multiprocessor, 162
multiprogramming, 157
packaging, 159
PMS, 159
range of sizes, 168
use of integrated circuits, 167

history, 162-164
multiprocessor, 162
PMS, 162

PDP-14

PDP- 15

PDP-15/76

performance
12-bit machines, 194
18-bit machines, 169
architecture, 541, 546-549
benchmarks, 541, 546
calculators, 543
CDC STAR, 543
Cm*, 477, 482

COBOL, 54 I , 555
Computer Family Architecture Performance
Study, 546

Cray I , 543
data-types, 542

design, 23
FORTRAN, 377, 378, 541, 551
ILLIAC IV, 543
implementation, 541
ISP influence on performance, 546-549
KAlO Processor (PDP-IO), 513
KLlO Processor (PDP-IO), 513
LINC, 243
LSI-I 1, 455
macromachine ISP, 541
microcomputer class, 542

multiprocessors, 544-546
operation rate, 542

CMU-I I , 454, 455

DECSYSTEM-2060, 551

micromachine, 54 1

PDP-4, 243
PDP-5, 243
PDP-I I , 243
PDP- 1 1 /40, 455
PDP-I 1 /70, 409, 55 1
PDP-I 1/70mP, 398
stack, 542
supercomputer class, 542
three-address machine, 542
transaction processing, 550
use, 541

workload, 541

memory timing, 350, 351
microcycle time, 350, 351

VAX-I 1/780, 551

performance parameters

performance quantifying, 349, 350
performance range, PDP-I 1, 327
peripheral base, 148
Peripheral Interchange Program (PIP), 510
peripheral processing units, C D C 6600, 501
personal computer

LINC, 175
Petit, Phil, 513

INDEX 581

Phister, Montgomery, 20
physical address, 384
physical address space, 405
pilot run, 81
pin limitations on modules, 80

PLA (See programmable logic array)
PMS

attributes of PMS components, 538
bus, 538
control, 538
Cm*, 470
data operation, 538
LINC, 175
LINK, 537

PL/I , 55

LSI- I I , 303
PDP-7, 148
PDP-8, 209, 210-215
PDP-9, 154
PDP- IO, 499-505
PDP-l I , 387-391
PDP-15, 159
PDP- 15/76, I62
processor, 538
switch, 538
transducer, 538

modules, 43 I , 436

structural levels, 3

Applications-Functional View, 15

PMS level

PDP- 1 I , 244-249

PMS level configurations,

PMS notation, 537-539
PMS primitives, 537-539
pocket calculators, 63, 64
Pohlman, W.B., 233
Poole, David, 513
power, 80-83

12-bit machines, 200
battery backed-up power, 81
cooling, 83, 84
line-switching power supplies, 8 1
power-line monitoring, 81
volumetric efficiency, 83

power distribution, 68
power-line monitoring, 81
power requirements, buses, 276
power supplies, 80-83

prefetch of instructions
cost, 81

PD P- 1 1 /40, 344
PDP- 1 1 /60, 344

price
12-bit machines, 193
18-bit machines, 168

primary memory, 47, 405
printed circuit board costs, 80
process control, 143, 385
process maturity testing, 86
processor, PMS, 538
processor-memory-switch (See PMS)
processor, multi-micro, 463-484
processor-on-a-chip, 394, 497

processor priority, PDP-I I , 329
processor state registers, 52
processor Unibus overlap, PDP-I 1/04, 352
productibility, design, 23
product announcement, 86
product life, 59, 85, 86, 168

product rejuvenation, 62
program and data relocatability, 140
program compatibility (See compatibility)
program controlled 1 / 0 transfers, 129
program mapping, 52, 53
program segmentation, 52, 53
Program Status Register, PDP-I I , 329
programmable logic array, 29, 45, 46

PDP-8, 187

design, 23, 24

CMOS-8, 190
CMU-I I , 460
LSI-I I . 305
PD P- 1 1 /04, 405
PD P- 1 1 /34, 405

programmable read-only memories, 41
programming

cost, 38, 41
evolution, 39, 40

PROMS (See programmable read-only memories)
propagation delays, buses, 276
protection/relocation

PDP-IO, 498
Pugh, Earl, 126
PULSAR, 401-403

cache, 401
pulse logic system, 105, 106, 512
pulse height analysis, 139, 144, 180

CDC 6600-7600,498

R
R-Series modules, I 13
radar signal processing, 437
Radio Corporation of America, RCA control
computer, 143

582 INDEX

range
design constraints, 242, 243
IBM 360, 384
PDP- IO, 489, 490
PDP-11, 231, 368, 383

Raytheon Company, 43
reentrant programming, 142, 187

read-only memories, 41, 45, 58, 185, 382
PDP-I 1, 382

CMU-I 1, 460

PDP-B/E, 185
PDP-I I , 382

design constraints, 242

realization
Blaauw Characterization, 24-26
PDP-I/PDP-7, 148

CMOS-8, 190
PDP-I, 107

register transfer

register transfer level, 24
design, 441-448

modules, 431
LSI-I 1, 303

PDP-8, 218-222
PDP-9, 154, 155
structural levels, 3

register transfer level structures, 107
Register Transfer Modules, 441-448

arithmetic, general purpose, 444
computers, 446, 447
control, 442, 443
data operation, 442
design, 442, 445-447
design protocol, 445
Fast Fourier Transform, 434

memory, 442
microprogramming, 435
packaging, 446, 447
PDP-8 emulation, 434, 447
PMS, 447
transducers, 443, 444

Bus Address Register, 329
context registers, 52
general registers, 52, 377, 382, 384
Instruction Registers, 329
internal registers, 329
Microaddress Registers, 329
Microword Register, 329

Processor State Registers, 52
Program Status Register, 329

ISP, 442-445

registers

PDP-11, 382

relay logic, 205

relay memories, 114
release to manufacturing, 86
reliability

design, 23, 324
PDP-l1/70mP, 398

relocatability, 140
replacement algorithm, cache, 264
research, 59
retry, error control, 295
ROMs (See read-only memories)
rope memory

PDP-9, 154
PDP-14, 204

RSX-I 1 M, 408
RSTS (PDP-I 1 timesharing), 181

PDP-I 1/70mP, 398
RT C A D System, Carnegie-Mellon University, 434

S
S-Series modules, 112

Safeguard Computer, 392, 394
SAGE (See simulation o f asynchronous gate

satisficing alternatives, design, 20
SBI Bus (See Synchronous Backplane Interconnect)
scientific use of computers, Applications-Functional

Scientific Data Systems, SDS 940 (Berkeley), 384,

Scientific Engineering Institute, 141
scientific environment, 487
Scratchpad Memory, PDP-I 1, 329
Sebern, Mark J., 233
second generation

12-bit machines, 195
modules, 78
TX-2, 97

PDP-8, 112

elements)

View, 15

490, 492

segmentation, program, 52, 53
Seligman, Larry, 153
semiconductors, 393

cost, 33, 34
density, 3 1 , 32
family tree, 27, 28
I/O connections, 37
memories, 47, 48, 58, 187
memory cost, 33, 34, 49
packaging levels-of-integration, 7
parameters, 28

performance, 35
reliability, 37
technology, 27-62, 95

PDP-8/A, 187

‘a,

INDEX 583

ECL, 35, 36, 39
I2L, 35, 36
MOS, 35, 36
PDP-IO, 35, 36
SOS, 35, 36
TTL, 35, 36

sequence break, 127, 129
sequential logic, structural levels, 3
serial line, Cm*, 476
Siewiorek, Daniel P., 235, 433
Sigma Series, XDS, 492, 503
signal processing, C m m p , 394
silicon transistors, 113
Simon, H.A., 20, 21
simulation of asynchronous gate elements (SAGE),

size, cache, 264
Smithsonian Institution, 264
Snow, Edward A., 235
software base, 148
software engineering, 85, 365-378
software support, 85

LSI-I I , 312
Sogge, Richard, 155
Soha, Z., 233
Solid State Data Systems, 73
spectrum analyzers, 180
Speech Recognition Program (HARPY), 394
SSI

stack

46 I

PDP-I 1/20, 334, 355

CMOS-8, 217
design constraints, 242
implementation, 542
PDP-IO, 251
PDP-I I, 254, 255, 366, 369, 387
performance, 542

standard cell design, 44
Stanford University, 141

Artificial Intelligence Laboratory, 498
Drawing System, use on CMU-1 I , 460, 461
memory purchases, 504
PDP- I timesharing, 490
timesharing, 490

state-of-the-art line, 58, 59, 60
Status Register, PDP-1 I , 329
Strecker, William D., SO, 232, 350, 387, 396
STRETCH, 140, 491
string handling, design constraints, 242
string instructions, 382
structural levels

circuit level, 2
combinational logic, 3
device level, 2

logic level, 2

PMS level, 3
register transfer level, 3
sequential logic, 3
switching circuit level, 2
View of Computer Systems, 2, 3

submicrocomputer class, 12
subscript calculation, 374
supercomputer

PDP-8, 209-228

computer cIasses, 12, 542
performance, 542

supervisor program, 140
surface barrier transistor, 124
Sutherland, Ivan E., 128
switch, PMS, 538
switching circuit level, structural levels, 2
synchronizer problem, 162
Synchronous Backplane Interconnect

arbitration methods, 284, 285
data transfer synchronization, 290-292
error control, 296
master clock, 284, 285
VAX- 1 11780, 279, 280

systems engineering, 85
Systems Modules, 79, 103-1 18

logic system, 105

T
task decomposition

Cm*, 464, 465
multiprocessors, 465

technology
PDP- 1 I , 403-405
improvements, 59
innovation, 55
progress, 53
push, 27
substitution, 57, 58

TECO (See Text Editor and Corrector)
teleprinters, 180
Teletype, 58, 143, 148, 168

Telex, word processing antecedents, 17
Tenex (See TOPS-20)
terminal use, Applications-Functional View, 15
testing, 87, 89, 91

word processing antecedents, 17

design maturity testing, 86
environmental testing, 86
fault-finding procedure, 91
gate arrays, 89
GenRad Tester, 89
infant mortality, 91
modules, 80

584 INDEX

process maturity testing, 86
Text Editor and Corrector (TECO), 51 1
third generation

12-bit machines, 195
backplane, 79
modules, 79, 80

threaded code, 365, 366-368
three-address machine

performance, 542
Three Cycle Data Break, 144, 154, 155
timesharing, 128, 140, 489

gentlemen’s timesharing, 505

RSTS, 181
Stanford, 490

PDP-8, 181

timesharing use, Applications-Functional View, 15
Titelbaum, Mike, 233
toggle switches, 124
Toombs, H. Dean, 47
top-down design, 349
TOPS-IO, 489
TOPS-20, 489, 499, 51 1, 512
transaction processing, 385

performance, 550
transducers

PMS, 538
Register Transfer Modules, 443

transfer of hardware technology, 487
transistor-transistor logic (See TTL)
transistor inverter, 97
transistors

germanium alloy transistors, 145
germanium transistors, 104, 113, 491
micro alloy diffused transistors, 109, 145
silicon transistors, 113

transparency, 238
TSS/8, 180
TTL, 115, 116, 156
TTL/H (high speed), 513
TTL/S (Schottky), 115, 116, 203, 513
Turn, R., 48
two-address machines, PDP-I I , 256
two’s complement, 142
TWX, word processing antecedents, 17
TX-0. 124, 125, 126, 512

ISP, 126
Live Register, 129
microprogramming, 126

TX-O/PDP-I, compatibility, 128
TX-2, 97-102, 124, 127

circuitry, 97-102
flip-flop, 99, 100
1 / 0 structure, 127
maintenance, 99, 100

manufacturing, 99, 100
margin checking, 100, 101
M.I.T. Lincoln Laboratory, 104, 503
second generation, 97

U
UART chip (See Universal Asynchronous

UART function
Receiver/Transmitter)

680-1, 73
PDP-I, 73
PDP-8/1, 73

understandability
goals, 383

VAX-I I , 410

addressing, 274
arbitration methods, 281-283
asynchronous data transfer, 277
data transfer synchronization, 287, 288
direct memory addressing, 274
error control, 295
1/0 page, 274
PDP-I I , 231
PDP- 1 1 /20, 277

PDP-I 1, 383

Unibus, 244, 257, 258, 379, 386-390, 449, 458

PDP-I1/60, 319
PDP- 1 1 /70, 389

Unibus as diagnostic tool, 388
Unibus interface

CMU-I I , 451-453
PDP-l1/04, 353
PDP-lI/34, 353

Unibus Map, PDP-I 1/70, 384
Unimplemented User Operation (UUO), 498
Universal Asynchronous Receiver/Transmitter,

universal logic arrays, 44, 45
university environment, 487
use, performance, 541
user files, PDP-6, 508
user microprogramming, 52
U U O (See Unimplemented User Operation)

73, 190

V
vacuum tubes, 98
van de Goor, Adrian, 180

address space, 420-422
addressing, 412-416
assembler, 415, 416
auto increment, 414
bus, 424, 425

VAX-I I , 14, 238, 239, 386, 405-408, 409-428

31.

INDEX 585

compatibility, 409, 410, 423
console. 424
context switching, 382, 422, 423
data-types. 412
FORTRAN, 417, 418, 541, 551
I/O. 425. 426
implementation, 423-426
interrupts, 422

LSI-I I , 424
master clock, 284, 285
modules, 78
performance, 55 I
procedure instruction, 418, 419
Synchronous Backplane Interconnect (SBI), 424,

understandability, 410

ISP, 41 1-423

325

VHF modules, 1 I O
video disks, 46
View of Computer Systems, 1-26

Applications-Functional View, 15-18
Blaauw Characterization, 24-26
Design, Practice of, 18-24
Levy’s Levels-of-Interpreters, 3-6
Marketplace View, 9-14
Packaging Levels-of-Integration, 6-9
Structural Levels, 2, 3

Cm*. 465
Virtual Address, 53, 239, 384, 405

virtual machine, 53
virtual memory, PDP- 1 1 ~ 23 1
volumetric efficiency, power, 83
von Neumann machine, 250
Vonada. Donald, 24
VT78. 190

W
W-Series modules, 114
Western Digital Corporation, 190
Western Union, word processing antecedents, 17
wheel of reincarnation, 201, 391
Whirlwind. 47. 123, 124
White, Donald A,, 184
Wilkes, Maurice. 24
Williams, Jack, 151
Wilson, Ronald, 151, 153
wire-wrap, 58, 74. 151. 152, 164

backplane level, I I , 7 5
KA I O Processor (PDP-IO), 513
packaging, 112
PDP-7, 71
PDP-8, 180

Wolf Research and Development, 124
word length

word processing
PDP-I I , 242

antecedents, 17
Flexowriters, I7
Teletypes, I7
Telex, 17
TWX, 17
Western Union, 17

Applications-Functional View, 17
working set, 53
workload (See benchmarks)
write-once memories, 46
writable control store, PDP-I 1/60, 342, 383, 322, 323
Wulf, William A,, 51 1
Xerox Data Systems (XDS), 492

Sigma Series, 503
Zereski. Donald, 15 I

	Foreword
	Preface
	Acknowledgements
	Seven Views of Computer Systems
	Logic and Memories

	Packaging and Manufacturing
	PART
	IN THE BEGINNING

	in the LincolnTX-2
	The Basis for Computers

	PART
	THE PDP-10 FAMILY
	The Evolution of the DECsystem-IO
	Appendix
	Instruction Set Processor Notation
	Appendix
	The PMS Notation
	Appendix
	Performance
	Bibliography
	Index

	1/2
	1/2
	112 03 1/3
	112 03 1/3
	1/2 03 1/3
	1/1
	1/2
	1/2 03 1/4
	1/1
	1/2
	1/2 03 1 1/3
	1/2
	1/2
	1/2
	1/2 03 15 1/5
	0/4
	0/1 0 15 12 0/2
	1/3
	1/4
	1/5
	1/4
	0/4
	0/3
	0/2
	0/2
	0/2
	1/6
	1/4
	2/7
	2/7

