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FOREWORD 

The progress which has brought the number of computers in use in the world 
from dozens to millions within a generation has not been the result of a single 
discovery or the work of a single inventor or company. Rather, men and women 
from fields as diverse as semiconductor physics and mechanical engineering have 
studied long hours and worked with various measures of inspiration and per- 
spiration to make the discoveries and develop the technologies needed to advance 
the state of the art in computer technology. 

There are several aspects of the progress in computer technology which have 
made it an exceptionally exciting and rewarding field for the people involved. 
First of all, a great many of the major steps forward, such as the invention of the 
transistor, have taken place within our lifetimes. Secondly, there has been an 
opportunity to associate with many fine colleagues whose brilliance, courage of 
conviction, and capacity for endless work have been a great inspiration. Finally, 
there has been the great promise of computers - their ability to free men’s minds 
of repetitive and boring tasks, their ability to reduce the cost of producing goods, 
their ability to improve the lives of so many people in so many ways - and the fun 
and excitement of working with them. 

In  the chapters of this book, various authors relate some of their experiences in 
the past twenty years, draw some conclusions about how computer technology 
got to  where it is, and project into the future from some of the trends they have 
seen. While it is impossible in a single book to capture all of the excitement and 
challenge of these years, they have done an admirable job for which they are to be 
commended. Hopefully, this glimpse into the past and present will encourage the 
students of the future to enter the computer engineering field and bring with them 
ideas, ambition, and courage. 

Kenneth H. Olsen 
President 
Digital Equipment Corporation 
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PREFACE 

This book has been written for practicing computer designers, whether their 
domain is microcomputers, minicomputers, or large computers, and for those 
who by their contact with computer are students of design - users, programmers, 
designers of peripherals and memories, and students of computer engineering and 
computer science. 

Computer engineering is a collage of different activities and disciplines, only 
one of which - the technical aspects (multiplier design, the behavior of synchro- 
nizer circuits, and series/parallel tradeoffs, for example) - is covered by conven- 
tional texts. This book uses the case study method to show how all the different 
factors (technology push, the marketplace, manufacturing, etc.) form the real- 
world constraints and opportunities which influence computer engineering. 

Computer engineering can be thought of as a multivariable mathematical prob- 
lem in which the engineer searches for an optimum within certain constraints. 
Unfortunately, an optimum in one variable is rarely an optimum in another, and 
thus a major portion of computer engineering is the search for reasonable com- 
promises. A common method used to aid the search is to assign weights to various 
system variables and to seek a weighted optimum. The weights vary with the 
intended application. In one situation, speed might receive the maximum weight; 
in another, instruction set compatibility might be the most important; and in yet 
another, reliability might be paramount. The number of dimensions to the prob- 
lem is large, and the meaningful measures for them are few. For example, the cost 
variable is multidimensional and includes manufacturing, development, and field 
support costs. In addition, there are numerous interdependencies among the vari- 
ables such as the relationships between instruction set, machine organization, 
logic design, and circuit design. These relationships and the contraints that con- 
trol the weighting of the variables change with time. For example, the cost func- 
tion changes when different subsystems use different technologies, and this 
influences the relationships. In addition, constraints such as maintainability and 
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compatibility vary in importance from year to  year. Finally, while some of the 
relationships, such as the time-space tradeoff in adder design, are well under- 
stood, others, particularly those involving marketing factors, are not. 

Because no theory exists to undergird this multidimensional design problem, 
we believe that there is no substitute for an extensive, critical understanding of the 
existing examples of designed and marketed systems. Therefore, this book uses 
the case study approach. For examples, we have used the thirty DEC computers 
that have been built over the twenty years that the company has existed, plus 
some PDP-I I-based machines built at Carnegie-Mellon University. Carnegie- 
Mellon’s machines explore interconnect structures that we feel will form the basis 
of future generations. 

The association between DEC and Carnegie-Mellon has produced not only 
some interesting machines to examine but also some of the written material for 
this book. People in universities can and do write, whereas engineers directly 
involved in  design work are less inclined or encouraged to publish their work. 

A substantial portion of the material contributed by DEC authors is historical. 
We strongly believe that historical information is worth the expense in terms of 
writing, reading, and learning; machine design principles and techniques change 
slowly. In  fact, the machines currently being designed are based on principles that 
have been understood and used for years, and we are often asked, “Are we run- 
ning out of design issues?” Yes, we feel technology provides the forcing function 
for new designs, not new principles. 

Learning about design is always important. Although new designs often appear 
to be a reapplication of old principles, in  the process of being reapplied they 
change and go beyond their first application. Design is learned by examining and 
emulating previous designs plus incorporating general principles, new use, and 
new technology. Indeed, the microcomputer developments draw (or should draw) 
extensively from the minicomputers. As we build new structures, we should be 
able to  avoid the pitfalls of the immediate past design. 

We have intentionally restricted our scope to DEC computers. The reason is 
obvious: we can speak with first-hand knowledge. If we had used other com- 
panies’ designs, our data would have been less accurate, and some factors, e.g., 
design styles, would have been omitted. The main reason, however, is a key part 
of the philosophy of the book. To  understand machine design evolution, the 
effects of changes in the underlying technologies, and time-invariant principles, 
we must analyze a family beginning at birth and follow it over several generations 
of technology. Four series of DEC computers allow such an analysis. DEC com- 
puters also provide an opportunity to study another dimension of computer engi- 
neering - the coexistence of complementary (and sometimes competing) products. 
Particular design efforts must compete for resources (design talent, manufac- 
turing-plant capacity, and software, marketing, and sales support). DEC com- 
puters have, in general, been designed to be complementary and to avoid 
overlapping or redundant products. Thus, another set of constraints can be seen 
at work in the design space. 
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The book concerns itself with general purpose computers which are intended to 
be widely available commercially. The engineering of computers for highly spe- 
cialized applications, for which only a few copies are built, is not treated. More- 
over, because not all major principles of computer architecture and computer 
engineering are embodied in the DEC computers, the reader may want to  examine 
other designs, as well. For example, the reader cannot learn about descriptor 
architectures, array processors, list-processing machines, or general purpose 
emulators from this book. 

At one time consideration was given to postponing the publication of a book 
until 1982, at which time DEC will celebrate its twenty-fifth anniversary. This 
idea was rejected because another five years would further impede the collection 
of data about the early machines. More importantly, the twenty-year period of 
DEC modules and computers (1957-1977) has extended from the early second 
generation to the fourth generation. Today, the processor of several DEC com- 
puters occupies a single large-scale integrated circuit consisting of several thou- 
sand transistors, whereas in 1957 only one transistor could be fabricated on a 
single piece of germanium. In another five years, the design, manufacture, and 
distribution of computers will be radically different - so much so as to merit a new 
book. 

We expect an increasingly larger number of people to  be involved in computer 
engineering and hence students of this material, because we expect computers as 
we know them today will disappear within ten years! With the processor-on-a- 
chip, the number of computer sysfems designers (users) has risen by several orders 
of magnitude. 

In the area of large computer systems, the buyers and users are also clearly the 
computer designers: they select components (from the set of available com- 
ponents) and interconnect them to form specific structures. It is essential for us all 
to have a model of the price, performance, and reliability parameters and how 
they vary with time. Previous generations have focused first on the invention of 
the computer, next on the understanding of price/performance tradeoffs, and 
most recently on manufacturing - especially the fabrication of the semiconductors 
that now drive computer evolution. In the next five years, design will focus on 
applications: conventional applications will be more efficient, computers will be 
extended to reach new applications, and life-cycle costs will receive more atten- 
tion. For the computer engineer, the evolution of DEC machines provides an 
excellent perspective on the influence of applications on design. For those of us 
who must deal with design goals, constraints, and objective functions to  improve 
reliability, availability and maintainability, it is imperative that we first clearly 
understand previous design problems. 

For the programmers who use computers and are a part of the computer design 
process, understanding this material is mandatory in order to know the rules of 
the game. We say comparatively little about software, other than how it has 
influenced hardware design. The increasing role of software functions in the hard- 
ware domain is a clear process that has allowed (and forced) computer archi- 
tecture to change. The engineering of DEC software will be treated in subsequent 
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volumes, perhaps one on language translators and one on operating systems. We 
hope also that future volumes will be devoted to  mass storage devices, terminals, 
and applications. 

Two notations, ISP and PMS, were introduced in the book, Computer Struc- 
tures [Bell and Newell, 19711. We continue to  use them in this book, especially 
since they have left the realm of  notations and have become working design tools. 
ISP was introduced to describe the instruction set processor of a computer - the 
machine seen by the program (and programmer). ISP is now used for machine 
description, simulation, verification of diagnostics, microprogramming, auto- 
matic assembler generation, and the comparison of computer architectures. The 
evolution and improvement of ISP is principally due to  needs of the Army/Navy 
Computer Family Architecture (CFA) project and the work of Mario Barbacci. 
The latest version, ISPS, is being used within DEC for implementing processors, 
simulators, etc. ISPS language descriptions of current DEC machines (PDP-8, 
PDP-IO, PDP-I 1, VAX-11) and several terminals have been made. We hope that 
these will be made widely available and so further stimulate the use of machine- 
description languages. The widespread application of good languages would help 
alleviate two current design problems: first, that of hand-crafted design tooling 
keeping up with the rate of introduction of new technologies and second, the 
problem of managing the ever-increasing complexity of computer structures. The 
PDP-8 description presented in Appendix 1 has been verified by machine diagnos- 
tics, in contrast to  conventional descriptions. 

PMS (processor-memory-switch) notation (given in Appendix 2) has not yet 
been widely used in formal methods to  aid design. It has, however, been used 
extensively to  describe computer structures. A prototype system which recognizes 
PMS and performs several performance analysis functions was constructed by 
Knudsen [ 19721. Currently, ISPS is being extended to include the interconnection 
of computational blocks so that PMS and ISPS form a single system describing 
structure and behavior. In this book, we use PMS t o  describe functional blocks. 
However, all PMS components are enclosed to  form a block diagram, unlike the 
original stick notation. 

The book begins with three introductory chapters. The first presents the major 
themes to  be illustrated by the book. We show that computer evolution has been 
based primarily on semiconductor and magnetic recording technologies. These 
technologies determine costs, and therefore price, performance, reliability, size, 
weight, power, and other dimensions which constitute the physical characteristics 
of the machines. The major theme of the book is that technology has enabled (or 
forced) three types of computers to  be built: 

1 .  
2. 
3. 

Machines with constant performance and decreasing cost. 
Machines with contant cost and increasing performance. 
Radically new (large or small) structures, often research machines, which 
create new computer classes outside the evolution possibilities. 



PREFACE xi 

Chapter 2 traces the evolution of memory and logic technology. Engineering is 
firmly rooted in economics and inherently practical. Packaging (including com- 
ponent interconnections) is covered in Chapter 3 for a very pragmatic reason: of 
the total product cost of a small computer system, 50 percent is due to packaging 
and power, and these costs are rising. To further emphasize the practical aspects 
of engineering in Chapter 3 ,  a section on high-volume manufacturing is included; 
the result of a designer’s creativity must not only work but be buildable by pro- 
duction-line methods. 

Following the introductory chapters are five parts: 

I .  In the Beginning 

11. Beginning of the Minicomputer 

111. The PDP-11 Family 

IV. The Evolution of Computer Building Blocks 

V. The PDP-IO Family 

The introductions to each part describe what to look for in the evolution of 
each machine: its interaction with designers, technology, and use (marketplace). 
More importantly, we have tried to point out the classic (timeless - so far) design 
principles. Data that has become available since the original papers were pub- 
lished is also included. 

Part I describes modules, the product on which DEC was initially founded. 
Chapter 5 shows how modules evolved and assimilated semiconductor technology 
in order to build computers. 

The PDP-1 and other 18-bit machines and the PDP-8 began the minicomputer 
phenomenon as described in Part 11. Although six computers form the 18-bit 
family, there is only one chapter devoted to them, primarily because there has 
been a dearth of written papers; this chapter was written for Computer Engineer- 
ing. Chapter 7 shows the historical development of the 12-bit machines, and 
Chapter 8 explores the structure of the PDP-8 in detail. 

Part 111, nearly two-thirds of the book, is based on the PDP-1 1. The PDP-I 1 
has been implemented with multiple technologies and multiple design goals at a 
given time, Le., a set of machines to span a performance range. Because of cost 
and performance goals, a number of problems have had to  be solved to permit 
subsetting (for the LSI-11) and supersetting (for the larger memory PDP-11/70 
and for VAX-11). 

Part IV is devoted to module set evolution. Chapter 18 describes the Register 
Transfer Modules (RTMs, also called PDP-I6), a set of modules for building 
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digital systems. Although these modules were unsuccessful in  the marketplace, 
they were the forerunner of the bit-slice approach now widely used for implement- 
ing mid-range processors and special-purpose digital systems. Chapter 20 de- 
scribes a set of modules based on the PDP-I l computer, called Computer Mod- 
ules, which grew out of the original RTM research and were used to construct 
Cm *, a multi-microprocessor system. 

Part V covers the PDP-IO. Prior to the publication of the paper reproduced 
here as Chapter 21, very little had been published at the engineering level. The 
published literature had emphasized operating systems, languages, networks, and 
applications. 

Computer Engineering is modeled after Computer Structures [Bel I and Newell, 
19711 and is intended to  complement the subject matter therein. Computer Struc- 
tures treats the design of instruction set architectures; Computer Engineering treats 
the design of machines which implement instruction sets. Computer Structures 
covers a broad range of ISP structures and PMS structures, from early stack 
machines and bit-serial machines, through list processors and higher level lan- 
guage machines, to supercomputers. By giving the seminal Burks, Goldstine, and 
von Neumann paper and the Whirlwind paper, it reaches far back into history. 
Computer Engineering on the other hand, takes a much narrower set of lSPs (four) 
and examines their implementations in detail. Instruction set design is mentioned 
only as  it interacts with implementation. We focus on four computer families 
from both the designer and the historical viewpoint. In particular, we emphasize 
the lower level technological, economic, organizational, and environmental forces 
affecting the evolution of DEC computer families. 

Although this book is principally for designers and students, it will also be of 
interest (as an historical record) to DEC employees who have been involved i n  the 
design, manufacture, distribution, and servicing of the computers. 

Our recommendations for the use of this text in university curricula are based 
on teaching experience, requests from academic colleagues for material to teach 
design, and our participation in curriculum development. The book directly ad- 
dresses the philosophy of the IEEE Computer Society Task Force on Computer 
Architecture [Rossman et al., 19751: “To appreciate how the architectures of 
computer systems develop, one must analyze complete systems.” As such, Com- 
puter Engineering serves to complement Buchholz [1962], Bell and Newell [1971], 
and Blaauw and Brooks [in preparation] in a course on computer architecture, for 
example, IEEE course CO-3.* 

For undergraduate courses on computer organization, such as IEEE CO-1* 
and the ACM courses 13 and A2t,  we believe that the book could be used as a 
supplementary text. In a course on computer engineering, using the style given in 

*“A Curriculum in Compute r  Science and Engineering-Committee Report.” Model Curricula Suh- 

t“Curr iculum 68,” Commun.  ACM,  I / .  3, pp. 151-197. March 1968. 
committee, IEEE Computer  Society, EHOl 19-8, January 1977. 



PREFACE xiii 

the syllabus of CO-2* (I/O and Memory Systems) as a model, this could be a 
primary text, provided that material on other manufacturers’ computers is made 
available to show different viewpoints. 
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Seven Views of Computer Systems 
C. G O R D O N  BELL, J. CRAIG MUDGE, 

and JOHN E. M c N A M A R A  

A computer is determined by many factors, 
including architecture, structural properties, the 
technological environment, and the human as- 
pects of the environment in which it was de- 
signed and built. In  this book various authors 
reflect on these factors for a wide range of DEC 
computers - their goals, their architectures, 
their various implementations and realizations, 
and occasionally on the people who designed 
them. 

Computer engineering is the complete set of 
activities, including the use of taxonomies, the- 
ories, models, and heuristics, associated with 
the design and construction of computers. It is 
like other engineering, and the definition that 
Richard Hamming (then at Bell Laboratories) 
gave is especially appropriate: engineers first 
turn to science for answers and help, then to 
mathematics for models and intuition, and fi- 
nally to the seat of their pants. 

In the few decades since computers were first 
conceived and built, computer engineering has 
come from a set of design activities that were 
mostly seat-of-the-pants based to  a point where 
some parts are quite well understood and based 

on good models and rules of thumb, such as 
technology models, and other parts are com- 
pletely understood and employ useful theories 
such as circuit minimization. 

In this chapter, seven views are presented that 
the authors have found useful in thinking about 
computers and the process that molds their 
form and function. They are intentionally inde- 
pendent; each is a different way of looking at  a 
computer. A computer scientist or mathemati- 
cian sees a computer as levels-of-interpreters. 
An engineer sees the computer on a structural 
basis, with particular emphasis on the logic de- 
sign of the structure. The view most often taken 
by a buyer is a marketplace view. While these 
people each favor a particular view of com- 
puters, each typically understands certain as- 
pects of the other views. The goals of Chapter 1 
are to  increase this understanding of other 
views and to increase the number of representa- 
tions used to describe the object of study and, 
hence, improve on its exposition. Thus, “The 
Seven Views of Computer Systems” forms a 
useful background for the subsequent chapters 
on past, present, and future computers. 

1 



2 COMPUTER ENGINEERING 

VIEW 1 : STRUCTURAL LEVELS OF A 
COMPUTER SYSTEM 

I n  Computer Stuctures [Bell and Newell, 
19711, a set of conceptual levels for describing, 
understanding, analyzing, designing, and using 
computer systems was postulated. The model 
has survived major changes in technology, such 
as the fabrication of a complete computer on a 
single silicon chip, and changes in architecture, 
such as the addition of vector and array data- 
types. 

As shown in Figure I ,  there are at least five 
levels of system description that can be used to 
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Figure 1. 
Bell and Newell [ !  97 1 I 

Hierarchy of computer levels, adapted from 

describe a computer. Each level is characterized 
by a distinct language for representing the com- 
ponents associated with that level, their modes 
of combination, and their laws of behavior. 
Within each level there exists a whole hierarchy 
of  systems and subsystems, but as long as these 
are all described in the same language, they do 
not constitute separate levels. With this general 
view, one can work up through the levels of 
computer systems, starting at the bottom. 

The lowest level in Figure 1 is the device level. 
Here the components are p-type and n-type 
semiconductor materials, dielectric materials, 
and metal formed in various ways. The behav- 
ior of the components is described in the lan- 
guages of semiconductor physics and materials 
science. 

The next level is the circuit level. Here the 
components are resistors, inductors, capacitors, 
voltage sources, and nonlinear devices. The be- 
havior of the system is measured in terms of 
voltage, current, and magnetic flux. These are 
continuously varying quantities associated with 
various components; hence, there is continuous 
behavior through time, and equations (includ- 
ing differential equations) can be written to de- 
scribe the behavior of the variables. The 
components have a discrete number of termi- 
nals whereby they can be connected to other 
components. 

Above the circuit level is the switching circuit 
or logic level. While the circuit level in digital 
technology is very similar to the rest of elec- 
trical engineering, the logic level is the point at 
which digital technology diverges from elec- 
trical engineering. The behavior of a system is 
now described by discrete variables which take 
on only two values, called 0 and 1 (or + and -, 
true and false, high and low). The components 
perform logic functions called AND, OR, 
NAND, NOR, and NOT. Systems are con- 
structed in the same way as at the circuit level, 
by connecting the terminals of components, 
\ \  : \ i L , i ,  !I1 %Ichy identify their behavioral values. 
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After a system has been so constructed, the laws 
of Boolean algebra can be used to compute the 
behavior of the system from the behavior and 
properties of its components. 

In addition to combinational logic circuits, 
whose outputs are directly related to the inputs 
at any instant of time, there are sequential logic 
circuits which have the ability to  hold values 
over time and thus store information. The prob- 
lem that the combinational level analysis solves 
is the production of a set of outputs at time t as 
a function of a number of inputs at the same 
time t .  The representation of a sequential 
switching circuit is basically the same as that of 
a combinational switching circuit, although one 
needs to add memory components. The equa- 
tions that specify sequential logic circuit struc- 
ture must be difference equations involving 
time, rather than the simple Boolean algebra 
equations which describe purely combinational 
logic circuits. 

The level above the switching circuit level is 
called the register transfer (RT) level. The com- 
ponents of the register transfer level are regis- 
ters and the functional transfers between those 
registers. The functional transfers occur as the 
system undergoes discrete operations, whereby 
the values of various registers are combined ac- 
cording to some rule and are then stored (trans- 
ferred) into another register. The rule, or law, of 
combination may be almost anything, from the 
simple unmodified transfer (A t B) to  logical 
combination (A t B A (AND) C) or arithmetic 
combination (A t B + (PLUS) C). Thus, a 
specification of the behavior, equivalent to the 
Boolean equations of sequential circuits or to 
the differential equations of the circuit level, is a 
set of expressions (often called productions) 
that give the conditions under which such trans- 
fers will be made. 

The fifth and last level in Figure 1 is called 
the processor-memory-switch (PMS) level. This 
level, which gives only the most aggregate be- 
havior of a computer system, consists of central 
processors, core memories, tapes, disks, in- 

put/output processors, communications lines, 
printers, tape controllers, buses, teleprinters, 
scopes, etc. The computer system is viewed as 
processing a medium, information, which can 
be measured in bits (or digits, characters, 
words, etc.). Thus, the components have capaci- 
ties and flow rates as their operating character- 
istics. 

The program level from the original set of 
levels shown in Bell and Newell has been 
dropped because it is a functional rather than a 
structural level. 

Many notations are used at each of the five 
structural levels. Two of the less common ones 
are the processor-memory-switch (PMS) and 
instruction set processor (ISP) notations. A 
complete description of these notations is given 
in Bell and Newell [1971: Chapter 21. Those as- 
pects of P M S  that are used in this book are de- 
scribed in Appendix 2. The ISP notation has 
evolved to the ISPS language, which is de- 
scribed in Appendix l .  

VIEW 2: LEVY’S LEVELS-OF- 
INTERPRETERS 

In  contrast to  the Structural View, this view is 
functional. According to this view, presented by 
John Levy [1974], a computer system consists 
of layers of interpreters, much like the layers of 
an onion. 

An interpreter is a processing system that is 
driven by instructions and operates upon state 
information. The basic interpretive loop, shown 
in Figure 2, is most familiar at the machine lan- 
guage level but also exists at several other levels. 

To formalize the notion of Levels-of-Inter- 
pretation, one can represent a processing sys- 
tem by the diagram in Figure 3. 

The state information operated on by an in- 
terpreter is either internal or external. This can 
best be understood by considering the “onion 
skin” levels of the five processing systems that 
form a typical airline reservation system. These 
levels are listed in Table 1.  
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The Level 0 system is the logic that sequences 
the Level 1 micromachine. The Level 1 system is 
a microprogrammed processor implemented in 
real hardware. It is the machine seen by the 
logic designer. The Level 2 system is the central 
processing unit (CPU). It is the machine seen by 
the machine language programmer. The Level 3 
system shown here is a FORTRAN language 
processing system. The Level 4 system is an air- 
line reservation system. Four of these five sys- 
tems form the hierarchy shown in Figure 4, 
where each system is an interpreter that se- 
quences through multiple steps in order to per- 
form a single operation for the next level 
interpreter. The highest level system, the airline 
reservation system, is an interpreter operating 
on messages received from outside of the sys- 
tem. It tests and modifies states and generates 

FETCH INSTRUCTION 
POINTED TO BY 

UPDATE 

DECODE 
INSTRUCTION 

EXECUTE INSTRUCTION 

Figure 2. The basic interpretive 
loop ILevy. 19741. 

I 1  

messages to send back outside the system, thus 
performing a single operation for the outermost 
interpreter. 

In practice, few systems are levels of pure in- 
terpreters, although layers are present. Devia- 
tions from the model have occurred for both 
hardware and software reasons. In the hard- 
ware deviation case, the micromachine shown 
in Level 1 is often not present, but rather the 
Level 2 central processing unit is implemented 
directly using Level 0 sequential controllers. 
This practice of skipping Level 1 was initially 
due to the lack of adequate read-only memories 
but is now generally limited to  the case of very 
high speed machines such as the Cray 1 and the 
Amdahl V6 which cannot tolerate the fetch and 
execute cycle times associated with a control 
store. 

r 

I FI L E V E L 4  (APP LICATIONI 

TRANSACTION 
PROCESSING 

LEVEL3 
[FORTRAN] STATEMENTS 

LEVEL2 
INSTRUCTIONS IPROCESSORI A Fm CONSOLE RATOR 
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MICRoCoDE [MICRO MACHINE] IU 1 * ~ c o N s o L E  MAINTENANCE 

I I 
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ISEClUENTIAL 
MACHINE- 

NOTSHOWNl 

Figure 3 A processmg system [Levy. 19741. Figure 4 A hlerarchy of interpreters [Levy, 19741 
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Table 1, 

Level 4 Instruction: Seat allocation request message 

Five Levels-of-Interpreters for an Airline Reservation System [Levy, 19741 

Interpreter: Airline reservation system 

Internal state: Number of requests pending at this moment 
Location of passenger list on a disk file 
Number of lines connected to system 

Number of reserved seats on a given flight 
Airline name for a given flight 

External state: 

Level 3 

Level 2 

Level 1 

Instructions: 

Interpreter: 

Internal state: 

External state: 

Instructions: 

Interpreter: 

Internal state. 

External state: 

Instructions: 

Interpreter: 

Internal state: 

External state: 

FORTRAN statement codes 

FORTRAN execution system 

Memory management parameters 
User name 
Main storage size 
Location of disk files 
Interrupt enable bits 
Expression evaluation stack 
Dimensions of arrays 

Subroutine names 
Values of data in arrays 
Statement number 
Program size 
Value of an expression 
DO-loop variable value 
Printed characters on line printer 

Machine language instructions 

Processor 

Program registers 
Condition codes 
Program counter 

Data in main memory 
Disk controller registers 

Microcode 

Micromachine 

Instruction register 
Flip-flops holding error status 
Stack of microprogram subroutine links 

Program registers 
Condition codes 
Program counter 

Level 0 Instructions: Hardwired combinational network 

Interpreter: Sequential machine controlling the 

Internal state: 

External state: Micromachine, console 

micromachine 

Clock, counters, etc., controlling 
micromachine timing 
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There are two primary software driven depar- 
tures from the pure interpreter model: ( 1 )  high 
level languages are usually executed by a com- 
piler rather than by an interpreter, and (2) some 
layers are bypassed when more ideal primitives 
exist at deeper levels. Figure 5 illustrates this 
bypassing process. A pure interpreter imple- 
mentation of FORTRAN would use an object 
time system (OTS) for all FORTRAN C oper- 
ations designated in the figure. The object time 
system would require an operating system 
(OPSYS) for the interpretation of some of its 
operations, and the operating system in turn 

Figure 5 Levels-of-interpreters with "pipes" that by- 
pass levels FORTRAN operation C is interpreted by an 
OTS function which in turn is interpreted by the oper- 
ating system which is interpreted by the ISP FORTRAN 
operation A has a pipe directly to the ISP interpreter 

would be interpreted by the instruction set in- 
terpreter (ISP interpreter). However, the A op- 
erations in the figure would be directly 
interpreted by the instruction set interpreter. 

I n  the final analysis, the number of levels is 
just another tradeoff. Performance consid- 
erations lead to the deletion of levels; com- 
plexity leads to the addition of levels. Having 
presented the pure interpreter model, one can 
now return to the Onion-Skin-Layered Model 

to better understand how the different layers re- 
late. 

The macromachine hardware can be thought 
of as a base level interpreter. It is most often 
extended upward with an operating system. 
There may be several operating system levels so 
that the machine can be built up in an orderly 
fashion. A kernel machine might manage and 
diagnose the hardware components (disks, ter- 
minals) and provide synchronizing operations 
so that the multiple processes controlling the 
physical hardware can operate concurrently. 
Next, more complex operations such as the file 
system and basic utilities are added, followed by 
policy elements such as facilities resource man- 
agement and accounting. As viewed through 
the operating system, one sees a much different 
machine than that provided by the basic in- 
struction set architecture. In fact, the resultant 
machine is hardly recognizable as the archi- 
tecture most usually given by a symbolic assem- 
bler. It includes the basic machine but has more 
capable 1 / 0  and often the ability to be shared 
by many programs (or tasks). 

Operating systems designers believe all these 
facilities are necessary in order to  implement 
the next higher level interpreter - the standard 
language. The language level may include inter- 
preters or compilers to translate back to the ma- 
chine architecture for ALGOL,  BASIC, 
COBOL, FORTRAN, or any of the other 
standard languages and their dialects. 

V I E W  3: PACKAGING L E V E L S - O F -  
INTEGRATION 

This is a structural view that packages the 
various components (hardware and software) 
into levels. The levels for DEC computers in 
1978 were as follows: 

9 Applications 
8 Applications components 
7 Special languages 
6 Standard languages 
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5 Operating systems 
4 

3 Boxes 
2 Modules (printed circuit boards) 
1 Integrated circuits 

Cabinets (to hold complete hardware 
systems) 

This view is the most important in the book, 
because it shows how computer systems are ac- 
tually structured and, hence, how their costs are 
structured. As a structural view of the object 
being sold, however, it is completely a function 
of the technology, the: organization building the 
system, and the marketplace, all of which are 
changing so rapidly that the view could better 
be titled “Dynamic Levels-of-Integration.” 
There are three major changes taking place: 

I .  Changes in the hardware levels, where 
the shrinking in physical size of func- 
tions has three effects: 
a. Lower levels subsume higher levels. 
b. The semiconductor component sup- 

plier is forced to assume higher and 
higher level design responsibilities. 

c. Levels disappear. 
Changes in the software levels, again 
with three effects: 
a. Each level grows in size as more 

functionality is added over time. 
b. More levels are added as mini- 

computers are applied to a broader 
range of applications. 

c. Functions migrate downward from 
level to level. 

Changes in the hardware/software inter- 
face, where software functions migrate 
into hardware for higher performance. 

2. 

3. 

For the first of these areas of change, hard- 
ware levels, it is interesting to note that inter- 
connection and packaging now constrain and 
limit design more than any other factor, exclud- 
ing the basic lowest level component (semi- 
conductor) technology. 

The constraint caused by the interconnection 
and packaging takes place because most manu- 
facturing costs are associated with the physical 
structure. As interconnection levels must be in- 
troduced to build complex structures, many 
usually undesirable side effects occur. Electrical 
interconnection requires cables which require 
space and interfere with cooling airflow. Long 
interconnections increase signal transmission 
delays, and these reduce performance. Signal 
transmission not only makes the computer sus- 
ceptible to electromechanical interference but 
also may radiate electromagnetic waves that 
need to be controlled. 

Figure 6 shows the costs of various levels-of- 
integration versus time for small computers. 
The cost depends partly on implementation and 
architecture word length. As the word length is 
made shorter, there are some savings, particu- 
larly for very small computers, because some 
levels-of-integration cease to exist. For ex- 
ample, most hand-held calculators are imple- 
mented using 4-bit, stored program computers 
with fixed programs that occupy a single in- 
tegrated circuit. There are associated modules, 
backplanes, boxes, and cabinets - but all are 
contained in a single package that fits in the 
hand. 

Semiconductors, the lowest level of tech- 
nology, have had the greatest price decline (Fig- 
ure 6). Modules have a lesser price decline 
because they are a mix of integrated circuits, 
printed circuit boards, component insertion la- 
bor, and testing labor. The price decline for the 
integrated circuit portion of the module cost is 
moderated by the labor-intensive nature of 
module fabrication, thus producing a price de- 
cline for modules that is markedly less than that 
for integrated circuits. At the box level-of-in- 
tegration, power supplies and metal or plastic 
boxes are also labor-intensive and further mod- 
erate the price decline provided by the in- 
tegrated circuits. Finally, as boxes are 
integrated (by people) and applied at a system 
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Figure 6. 
integration versus time. 

Machine price for various levels-of- 

level (by people), the price decline almost dis- 
appears. 

Many of the cost improvements brought 
about by new technology are derivative. They 
are by-products of using less power and less 
space, thus avoiding the labor-intensive levels 
of packaging integration. 

An astute marketing-oriented person might 
ask, “How, with all the technology, can we do 
something unique so that we can maximize the 
benefit from the technology without having to 
pay so much for labor-intensive items such as 
packaging?” One answer: “Reduce prices by 
not providing a power supply and mounting 
hardware. Let the user provide all added-on 
parts and mount the computer as needed. In 

this way, the price, though not necessarily the 
total cost to the user, is reduced. We’ll sell at the 
board level.” Computer Automation followed 
this philosophy when it introduced the Naked 
Mini so that users could supply more added 
value (packaging and power technology). 

A similar effect can be seen in the PDP-11 
series since the PDP-l1/20’s introduction in 
1970. At that time, the 4,096-word PDP- 1 1 /20 
(mounted in a box) sold for $9,300. In 1976, the 
boxed version of an LSI- 1 1 cost $1,995, reflect- 
ing a factor of 4.7 improvement over the PDP- 
11/20. The 4,096-word core memory module 
used in the PDP-11/20 sold for $3,500, while a 
16,384-word metal-oxide semiconductor (MOS) 
memory module for an LSI-11 sold for $1,800, 
reflecting a factor of 7.8 improvement. 

The changing levels-of-integration have also 
changed the domain of the semiconductor sup- 
pliers. In the early 1970s, Intel, North American 
Rockwell, and other semiconductor companies 
began to  use the higher semiconductor densities 
to reduce the number of levels-of-integration by 
packaging a complete processor-on-a-chip. 
These organizations had assimilated logic de- 
sign, but were frustrated because their custom- 
ers could really not identify higher functionality 
units (beyond memory) requiring on the order 
of 1,000 gates on a chip. Also, the speed of these 
high density units was quite low. 

They discovered that the best finite state ma- 
chine to  make was just a simple computer, be- 
cause it provided the finite state machine plus 
the useful functions that were not covered by 
switching circuit theory. It was “simply a small 
matter of programming” to  do something use- 
ful. Whereas programs for these simple com- 
puters cost $1 to $100 per instruction to  write, 
the prices for processors-on-a-chip have fol- 
lowed a very steep decline of up to 50 percent 
price reduction per year. 

Robert Noyce of Intel developed Figure 7 in 
October 1975. It illustrates what has been hap- 
pening in the semiconductor industry and has 
been modified slightly to show the technology 
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Figure 7. Semiconductolr (Noyce) manufacturer’s 
levels-of-integration versus time. 

that DEC has assimilated with time. It indicates 
the breadth that sem xconductor manufacturers 
now have in technology, starting from the semi- 
conductor device level, through Noyce’s view of 
the various levels-of-integration, and contin- 
uing into end-user applications. 

The Levels-of-Integration View can be sum- 
marized as components of one level being com- 
bined into a system at the next highest level in a 
hierarchy. A level denotes a single conceptual 
design discipline or set of interacting disciplines 
which determine the function, structure, per- 
formance, and cost of the constituent level. 
“Level” is a deceptive word, because as Figure 
8 shows, the structure is actually a lattice, or 
network, style of hierarchy rather than the clas- 
sical tree style of hierarchy. In  Figure 8 various 
standard languages can be used on any of sev- 
eral different hardware/software systems, 
which in turn can be implemented on several 
different processors. Ehch processor is available 
in several different boxes. 

I 
APPLICATION 

t 
L A N G U A ~ E  

t 
H A R D W A ~ E /  
SOFTWARE 
SYSTEM , 

HARDWARE t 

MDS BIPOLAR 

Figure 8 .  
not just a tree-structured hierarchy of 
eight distinct levels. 

A computer system is a network, 

VIEW 4: A MARKETPLACE VIEW OF 
COMPUTER CLASSES 

Because it is the complete marketplace pro- 
cess that produces the computer, this view is the 
most complex. In terms of marketability, a 
computer can be characterized as a function of 
price, performance, and time of introduction in 
what might appear to be a commodity-like envi- 
ronment. 

Because various computers operate a t  differ- 
ent performance rates and at various costs, 
computation can be purchased in multiple 
ways, and price/performance ratios will thus af- 
fect marketability. For example, computation 
can be supplied by a shared large, central batch 
computer; each organizational entity can own 
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and operate a shared minicomputer; an individ- 
ual can operate a single desk-top system; or 
each individual can operate a programmable 
calculator. 

The price/performance ratio is not the sole 
factor determining marketability, however. 
Program compatibility with previous machines 
is important. Compatibility considerations are 
based on the economic necessity of using a com- 
mon software base. The computer user’s invest- 
ment in software dwarfs that of the computer 
manufacturer, if  the machine is successful. For 
example, if there is only one man-year of soft- 
ware investment associated with each of the 
50,000 PDP-l Is, and each man-year costs about 
$40,000 and produces something on the order 
of 5,000 instructions, there is then a cumulative 
investment of $2 billion and 250 million lines of 
program for the PDP-11. This investment is 
roughly the same scale as the original hardware 
cost. 

Thus, while rapidly evolving technology per- 
mits new designs to be more cost-effective - 
even radical - in a price/performance sense, 
there must be backward (in time) compatibility 
in order to build on and preserve the user’s pro- 
gram base. The user must be able to  operate 
programs unchanged to take advantage of the 
improvements brought about by technology 
changes. 

In a similar way, compatibility over a range 
of machines at a given time allows a user to se- 
lect a machine that matches his problem set 
while having the comfort that the problems can 
change and there will be a sufficiently large or 
small machine available to solve the new prob- 
lems. 

For these reasons, nearly all modern com- 
puter designs are part of a compatible computer 
family which extends over price and time. Tech- 
nology provides basic improvements with each 
new generation at  approximately six-year inter- 
vals, and most new designs usually provide in- 
creased performance at  constant price. 

The influence of technology on the com- 
puters that are built and taken to  the market- 
place is so strong that the four generations of 
computers have been named after the tech- 
nology of their components: vacuum-tubes, 
transistors, integrated circuits (multiple transis- 
tors packaged together), and large-scale in- 
tegrated (LSI) circuits. 

Each electronic technology has its own set of 
characteristics, including cost, speed, heat dis- 
sipation, packing density, and reliability, all of 
which the designer must balance. These factors 
combine to limit the applicability of any one 
technology; typically, one technology is used 
until either a limit is reached or another tech- 
nology supersedes it. 

Design Alternatives 

When an improved basic technology becomes 
available to  a computer designer, there are four 
paths the designs can take to  incorporate the 
technology: 

1. 

2. 

3 .  

4. 

Use the newer technology to build a 
cheaper system with the same perform- 
ance. 
Hold the price constant and use the tech- 
nological improvement t o  get an in- 
crease in performance. 
Push the design to  the limits of the new 
technology, thereby increasing both per- 
formance and price. 
Find a drastically new structure using 
the computer as a basic archetype (e.g., 
calculators) such that the design can be 
considered off the evolutionary path. 

Figure 9 shows the trajectory of the first three 
design alternatives. I n  general, the design alter- 
natives occur in an evolutionary fashion as in 
Figure 10 with a first (base) design, and sub- 
sequent designs evolving from the base. 
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evolutionary path. 

Three design styles on the Figure 10. 
design B. 

Evolution from the base 

In  the first design style, the performance is 
held constant, and the improved technology is 

finite amount of money is available because the 
benefit - avoiding annihilation - is infinite. 

used to build lower price machines which at- 
tract new applications. This design style has as 
its most important consequence the concept of 
the minimal computer. The minimal computer 
has traditionally been the vehicle for entering 
new applications, since it is the smallest com- 
puter that can be constructed with a given tech- 
nology. Each year, as the price of the minimal 
computer declines, new applications become 
economically feasible. 

The second, constant cost alternative uses the 
improved technology to  get better performance 
at a constant price and will usually yield the 
best increase in total system cost and effective- 
ness, for reasons which will be discussed 
shortly. 

The third alternative is to use the new tech- 
nology to build the most powerful machine pos- 
sible. New designs using this alternative often 
solve previously unsolved problems and, in 
doing so, advance the state-of-the-art. This de- 
sign alternative must be used cautiously, how- 
ever, because going too  far in price or  
performance (i.e., building beyond the tech- 
nology) is dangerous and can lead to a zero per- 
formance, high-cost product. There are usually 
two motivations for operating at this leading 
edge: preliminary research motivated by the 
knowledge that the technology will catch up; 
and national defense, where an essentially in- 

Table 2 shows the effect of pursuing the two 
design strategies of (1) constant performance at 
decreased price, and (2) constant price at in- 
creased performance. The first column gives the 
base case at a given time t .  Because this is the 
base case, the price, performance, and  
price/performance ratio of the computer are all 
1. As the computer is applied to a particular en- 
vironment, operational overhead is added at a 
cost of 2 to 4 times the original cost of the com- 
puter; the total cost to operate the computer be- 
c o m e s  3 t o  5 t imes  h i g h e r ,  a n d  t h e  
performance/total cost ratio is reduced to be- 
tween 0.33 and 0.2 (depending on the total 
cost). 

Now assume the same operating environ- 
ment, with the same fixed (overhead) costs to 
operate, at a new time t + 1, when technology 
has improved by a factor of 2. Two alternative 
designs are carried out; one is at constant 
price/higher performance, and the other is at 
constant performance/lower price (columns 2 
and 3). The application is constant in three 
cases (columns 1-3), and a new application is 
discovered for the fourth case (column 4). Both 
the constant-cost and constant-performance de- 
signs give the same basic performance/cost im- 
provement - when only the cost of the 
computer is considered. However, when one 
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Table 2. 

introduction Ti me 

Using New Technology for Constant Price and Constant Performance Designs 

(generation) t t + l  t f l  t + l  

Design style Base case Constant price/ Constant Constant 
increased performance/ performance/ 
performance decreased decreased 

Application Base Base Base New base 

Computer price 1 1 0.5 0.5 

price price 

Operating costs 
(range) 

2 -4 2 -4 2-4 1-2 

Total cost 3-5 3-5 2.5-4.5 1.5-2.5 

Performance 1 2 
(and improvement) 

Improvement 
(in total cost) 

Performance/price 
(computer only 
and improvement) 

Performance/ 
total cost 

1 1 

1 2 

1 1 

0.83-0.9 0 .5  

2 2 

0.33-0.2 0.66-0.4 0.4-0.22 0.66-0.4 

Improvement 1 2 
(in performance/total cost) 

1.21 -1.1 2 

considers the high fixed overhead costs associ- 
ated with the application (columns l-3), there is 
a relatively small improvement in perform- 
ance/cost, although there has been a cost sav- 
ings of 17 to 10 percent. The greatest gains 
come in applying the computer with greater 
performance and getting the attendant factor of 
2 gain in performance and in price/per- 
formance ratio. 

To  summarize, the constant price/increased 
performance design style gives a better gain be- 
cause operating costs remain the same. Its gain 
can only be equalled by the constant-perform- 
ance design style when operating costs are 
halved upon its application. This only occurs 
when a new application is tackled, such as that 
shown in column 4. 

Computer Classes 

Applying the three design styles shown in 
Figure 9 over several generations produces the 
plot given in Figure 11. These figures lead t o  
one of the most interesting results of the Mar- 
ketplace View, which is that computer classes 
can be distinguished by price and named as fol- 
lows: submicro (to come in the next generation - 
say by 1980), micro, mini, midi, maxi,  and super. 
The classes midi and maxi are sometimes re- 
ferred to  by the single, nondescriptive name, 
main frame. 

When one distinguishes computer classes by 
price, a new range of price can be made possible 
by new technology and create a new class. The 
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Figure 11. Price versus time for each machine class. 

new class appears at the low end of the price 
scale where the minimal computer is introduced 
at a significantly lower price level than existing 
computers. 

The measure used to  define a new class is 
price, whereas the measure defining an estab- 
lished class is performance. This is because once 
a new class has become established in the mar- 
ketplace, the users become familiar with what 
computers of that class can do for their appli- 
cations and tend to characterize that class on a 
performance basis. The characterization of ex- 
isting classes on a performance basis is impor- 
tant to this discussion because at each new 
technology time, performance increases by one 
category, and midi performance becomes avail- 
able on a mini, for example. 

The effect of technology upon computer clas- 
ses can be summarized in the following thesis: 

Continual application of technology via 
the two major design styles results in: (1) 
price declines creating new classes of 
computers, (2) new classes becoming es- 
tablished classes, and (3) established 
classes being encroached upon. 

Some question may arise as to how much of a 
price reduction is necessary to  create a new 
class. The continuity implied by the thesis is de- 
ceptive in that it suggests that new classes come 
about by the continual application of the con- 
stant performance/decreasing cost style of de- 
sign. Viewing the industry as a whole, this is 
true. However, a new class is usually not cre- 
ated by the same organization that is designing 
computers in existing classes. A new company, 
or new organization within a company, is usu- 
ally required to provide the requisite fresh view- 
point needed to create a new class. It is the fresh 
viewpoint and not some arbitrary amount of 
price reduction that creates a new class. 

For both the minicomputer and micro- 
computer, a fresh organization broke out. A 
fresh viewpoint was needed because existing or- 
ganizations, like most human organizations, act 
to preserve the status quo, and adopt the in- 
creased performance/constant price design al- 
ternative for the existing customer base, as 
indicated by the analysis given in the discussion 
of Table 2. A new organization with a fresh 
viewpoint goes after new applications and new 
customers with a new minimal computer that 
establishes a new class. 

As a by-product of the use of new tech- 
nology, conflicts occur within the established 
computer classes. An established computer 
class, which is defined on the basis of perform- 
ance, is encroached upon by constant 
cost/higher performance successors from the 
class below it. Moreover, suppliers within a 
class are,  by their dominant constant 
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price/higher performance evolution, operating 
to move up out of their class. 

While movement by computer designs and 
computer suppliers between and among the var- 
ious classes may be encouraged by price and 
performance trends, the speed with which that 
movement occurs is moderated by the software 
compatibility considerations discussed earlier. 
The computer class thesis is not meant to imply 
that each class implements the same instruction 
set processor and processor-memory-switch 
configurations with the only difference being 
speed. Rather, much specialization occurs in 
each class, and many of the attributes of the 
higher performance machines appear in sub- 
stantially less degree in the lower performance 
classes. For example, there are more data-types 
in the larger machines, their address spaces 
(both physical and virtual) are larger, and the 
software support is generally broader. Re- 
sources devoted to  increasing reliability and 
availability are more common in the higher 
priced machines. The PDP-I 1 Family, from the 
LSI-11 up to the VAX-11/780, exemplifies 
these functionality differences. 

Definition of the Minicomputer 

The concept of computer classes that can be 
distinguished by price and named submicro, mi- 
cro, mini, midi, maxi, and super may be of as- 
sistance in finding a definition for t he  
minicomputer, a definition which has thus far 
been rather elusive. While the classes suggest 
that minicomputers are those computers whose 
prices fall between microcomputers and midi- 
computers, and thus somewhere near the 
middle of the range of computers available, ear- 
lier definitions [Bell and Newell, 1971aJ use the 
term mini to  denote minimal. 

The Marketplace View defines new computer 
classes according to  price and established com- 
puter classes according to performance. This 
would suggest that a definition of the mini- 
computer should include some historical data 

on price and some comments on performance, 
or at least some indication of performance by a 
discussion of applications and configurations. 
In 1977 Gordon Bell provided such a hybrid 
definition for the Director of Computer Re- 
sources, U.  s. Air Force. The definition was as 
follows: 

MINICOMPUTER: A computer 
originating in the early 1960s and predi- 
cated on being the lowest (minimum) 
priced computer built with current tech- 
nology. From this origin, at prices rang- 
ing from 50 to 100 thousand dollars, the 
computer has evolved both at a price re- 
duction rate of 20 percent per year and 
has also evolved to have increased func- 
tionality and a slightly higher price with 
increasing functionality and perform- 
ance. 

Minicomputers are integrated into 
systems requiring direct human and pro- 
cess interaction on a dedicated basis (ver- 
sus being configured with a structure to 
solve a wide set of problems on a highly 
general basis). 

Minicomputers are produced and dis- 
tributed in a variety of ways and levels- 
of-integration from: printed circuit 
boards containing the electronics; to 
boxes which hold the processor, primary 
memory, and interfaces to other equip- 
ment; to complete systems with periph- 
erals oriented to solving a particular 
application(s) problem. The price 
range(s) for the above levels-of-in- 
tegration, in 1978, are roughly: 500 to 
2,000; 2,000 to 50,000; and 5,000 to 
250,000. 

This discussion of the Marketplace View has 
been a qualitative explanation of the effect of 
technology on the computer industry. It is an 
engineering view, rather than one that would be 
given by technology historians or economists. 
The 20 years described in this book and the in- 
dividual cost and performance measures surely 
invite analysis by professionals. The studies re- 
ported in Phister [1976] and Sharpe [I9691 are a 
good departure point. 
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VIEW 5: AN APPLICATIONS/ 
FUNCTIONAL VIEW OF COMPUTER 
C LASS E S 

Because of the general purpose nature of 
computers, all of the functional specialization 
occurs at the time of programming rather than 
at  the time of design. As a result, there is re- 
markably little shaping of computer structure 
to fit the function to be performed. 

The shaping that does take place uses four 
primary techniques. 

1. PMS level configuration. A con- 
figuration is chosen to match the func- 
tion to be performed. The user (designer) 
chooses the amount of primary memory, 
the number and types of secondary 
memory, the types of switches, and the 
number and types of transducers to suit 
his particular application. 

2. Physical packaging. Special environmen- 
tal packaging is used to specialize a com- 
puter system for certain environments, 
such as factory floor, submarine, or 
aerospace applications. 
Data-type emphasis. Computers are de- 
signed with data-types (and operations 
to match) that are appropriate to their 
tasks. Some emphasize floating-point 
arithmetic, others string handling. Spe- 
cial-purpose processors, such as Fast 
Fourier Transform processors, belong in 
this category also. 
Operating system. The generality of the 
computer is used to program operating 
systems that emphasize batch, time shar- 
ing, real-time, or transacting processing 
needs. 

3 .  

4. 

Current Dimensions of Use 

In the early days of computers, there were 
just two classifications of computer use: scien- 
ti$c and commercial. By the early 1970s, com- 
puter use had diversified to seven different 

functional segmentations: scientific, business, 
control, communication, f i le control, terminal, 
and timesharing. Since that time, very little has 
changed in terms of functional characterization, 
but two points are worthy of mention. First, file 
control computers still have not materialized as 
mainstream separate functional entities, despite 
isolated cases such as the IBM 3850 Mass Stor- 
age System; second, terminal computers have 
evolved to a much higher degree than expected. 

The high degree of evolution in terminals has 
been due to  the use of microprocessors as con- 
trol elements, thus providing every terminal 
with a stored program computer. Given this 
generality, it has been simple to  provide the ter- 
minal user with facilities to write programs. In 
turn, this phenomenon has affected the evolu- 
tion of timesharing (when using the term to de- 
note close man-machine interaction as opposed 
to shared use of an expensive resource). 

Functional segmentation into categories with 
labels such as business, control, communication, 
and f i le  control reflects a naming convention 
rooted  in t h e  old two-category scien- 
tific/commercial tradition. An alternative clas- 
s i f i c a t i o n ,  m o r e  use fu l  t o d a y ,  i s  t h e  
segmentation scheme shown in Table 3. It is 
based on the intellectual disciplines and envi- 
ronment (e.g., home based) that use and de- 
velop the computer systems. It shows the 
evolving structures in each of the disciplines, 
permitting one to see that nearly all the environ- 
ments evolve to provide some form of direct, 
interactive use in a multiprogrammed environ- 
ment. The structures that interconnect to me- 
chanical processes are predominately for 
manufacturing control. Other environments, 
such as transportation, are also basically real- 
time control. Another feature of discipline- 
based functional segmentation is that each of 
the disciplines operates on different symbols. 
For example, commercial (or financial) envi- 
ronments hold records of identifier names for 
entities (e.g., part number) and numbers which 
are values for the entity (e.g., cost, number in 
inventory). 
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Table 3. Discipline/Environment-Based 
Functional Segmentation Scheme 

Commercial environment 

Records storage and processing 
Traditional batch data entry 

Business analysis (includes calculators)' 

Scientific, engineering, and design 

Traditional batch computation* 
Data acquisition 
Interactive problem solving* 

Signal and image processing* 

Manufacturing 

Financial control for industry. retaiVwholesale. and 
distribution 
Billing. inventory, payroll. accounts receivable/ 
payable 

Transaction processing against data base 

Numbers, algorithms, symbols, text, graphs, storage, 
and processing 

Real time (includes calculators and text processing) 

Data base (notebooks and records) 

Record storage and processing 
Batch' 
Data logging and alarm checking 
Continuous real-time control 
Discrete real-time control 
Machine based 
People/parts flow 

Communications and publishing 
Message switching 
Front-end processing 
Store and forward networks 
Speech input/output 
Terminals and systems 
Word processing, including computer conferencing 
and publishing 

Transportation systems 
Network flow control 
On-board control 

Education 
Computer-assisted instruction 

Drill and practice 
Library storage 

Home using television set 

Algorithms, symbols, text storage, and processing 

Entertainment, record keeping, instruction, data base 
access 

*Implies continuous program development 

The scientific, engineering, and design dis- 
ciplines use various algorithms for deriving 
symbols or evaluating values. Texts, graphs, 
and diagrams, the major ways of representing 
objects, have to  be processed. For these envi- 
ronments, the computer has changed from a 
calculator (it was initially funded to  do  tra- 
jectory calculations for ballistic weapons) to  a 
sophisticated notebook for keeping specifica- 
tions, designs, and scientific records. Whereas 
the minicomputer was initially only used as a 
transducer to collect data to be analyzed on 
larger machines, it has since evolved to direct 
recording and analysis of time-varying signals 
and images and even to direct analysis and con- 
trol. With minicomputers taking on such addi- 
tional capabilities, connections to  larger 
computers are used solely in a network fashion 
to  handle graphic display and control functions. 

The function of computers in both the manu- 
facturing and the commercial environments has 
evolved from simple record keeping to direct 
on-line human control. 

Process control computers have evolved from 
their initial use of assisting human operators 
(controllers) with data logging and alarm condi- 
tion monitoring to full control of processes with 
either human or secondary computer backup. 
The structure of the computer and the control 
task vary widely depending on whether the pro- 
cess is continuous (e.g., refinery, rolling mill) or 
discrete (e.g., warehouse, automotive, appliance 
manufacturing). 

Transportation applications for aircraft, 
trains, and eventually automotive vehicles are 
forms of real-time control that use both discrete 
and continuous control. Control is carried out 
in two parts: on board the vehicle and in the 
network (airspace, highway) that carries the ve- 
hicles. The transportation control function dic- 
tates three unique characteristics for the 
computer structure: 

1. Very high reliability. Society has placed 
such a high value on a single human life 
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that all computers in this environment 
cannot appreciably raise the likelihood 
of a fatality. 
Very small size for on-board computers. 
Extreme operating and storage temper- 
ature range for on-board computers - es- 
pecially for automotive vehicles. 

2. 
3. 

Communications and message-based com- 
puters have evolved from telephone switching 
control, message switching, and front ends to 
other computers to become the dominant part 
of communications systems. With these evolv- 
ing systems, the communications links have 
changed from analog-based transmission to 
sampled-data, digital transmission. By using 
digital transmission, data and voice (and video) 
can ultimately be used in the same system. 

Word processing (i.e., creation, editing, and 
reproduction) together with long term storage 
and retrieval and transmission to other sites 
(i.e., electronic mail) have evolved from several 
systems: 

1.  Conventional teletypewriter messages 
and torn-tape message switching (e.g., 
TWX, Western Union, Telex). 
Terminals with local storage and editing 
(e.g., Flexowriters, Teletype (with paper 
tape reader and punch), magnetic card/ 
magnetic tape automatic typewriters, 
and the evolving stand-alone word pro- 
cessing terminals for office use). 
Large, shared text preparation systems 
for centralized documentation prepara- 
tion, newspaper publication, etc. 

4. Large systems with central filing and 
transmission (distribution). These will 
negate the need for substantial hard 
copy. With these systems, text can be 
prepared either centrally with the system 
or with local intelligent word processing 
systems. 
Computer conferencing. People can sit 
at terminals and converse with others 
without leaving their office. 

2. 

3. 

5 .  

The education-based environment implies a 
system which is a combination of transaction 
processing (for the human interaction part), sci- 
entific computation as the computer is required 
to simulate real world conditions (Le., phys- 
ical/natural phenomena), and information re- 
trieval from a data base. These systems are 
evolving from the simple drill-and-practice sys- 
tems which use a small simple algorithm, 
through simulation of particular real world 
phenomena, to knowledge-based systems which 
have a limited, but useful, natural language 
communications capability. 

Home-based computers are beginning to 
emerge. The dominant use to date is in provid- 
ing entertainment in the form of games that 
model simple, real world phenomena, such as 
ping-pong. Appliances are beginning to have 
embedded computers that have particular 
knowledge of their environments. For example, 
computer-controlled ranges can cook in fairly 
standard ways. Alternatively, cooking can be 
controlled by embedded temperature sensors. 
Simple calculators to record checkbooks have 
existed for quite some time. These will soon 
evolve to provide written transactions for re- 
cording and control purposes. Many domestic 
activities are in essence scaled-down versions of 
commercial, scientific, educational, and mes- 
sage environments. 

With the evolution of each computer class, 
one can see several cases of machine structures 
which begin as highly specialized and evolve to 
being quite general. This evolution is driven by 
applications in accordance with the Appli- 
cations/Functional View of Computer Classes. 

The applications-driven evolution toward 
generality applies to both hardware and soft- 
ware. As a hardware example, consider the case 
of a computer installations using large, highly 
general computers, where minicomputers are 
applied to offload the large computers. The first 
application of the minicomputer is thus on a 
well-defined problem, but then more problems 
are added, and the minicomputer system is soon 
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performing as a general computation facility 
with the help of a general purpose operating 
system. A similar effect occurs in software, 
where operating systems take on multiple func- 
tions as they evolve with time because users 
specify additional needs, and operating systems 
designers like to add function. Thus, a COBOL 
run-time environment might be added to a 
simple FORTRAN-based real-time operating 
system. At the next stage, a comprehensive file 
system might be added. In the hardware system, 
the next step in the evolution is usually offload- 
ing the minicomputer; in the software case, the 
next step is often the development of a new 
small, simple, and fast operating system. 

Part of this evolution is due to the inherent 
generality of a computer, and part is a con- 
sequence of constant-cost design philosophy. 
The evolution is observable in computers of all 
classes, including calculators. The early scien- 
tific calculators evolved from just having logs, 
exponentials, and transcendental functions to  
include statistical analysis, curve fitting, vec- 
tors, and matrices. 

Machines, then, evolve to carry out more and 
more functions. Since a prime discriminant is 
data-type, Figure 12 is presented to show an es- 
timate of data-type usage for various appli- 
cations, using mostly high level data-types, e.g., 
process descriptions. The estimates shown are 
very rough, because attempts to measure such 
distributions to date have not shown marked 
differences across applications (except for nu- 
merical versus non-numerical) because the 
data-types have not been of a sufficiently high 
level. 

VIEW 6: THE PRACTICE OF DESIGN 

Whereas previous views emphasized the ob- 
ject being designed, this is a view of the design 
process which gives rise to the object. Two 
models of design, those of Asimow and Simon, 
are presented, followed by some remarks on 
factors that particularly influence computer de- 
sign. 

N U M E R I C A L  COMPUTATION 

? WORD PROCESSING 

F C O M M U N I C A T I O N S  

PROGRAM DEVELOPMENT 

2 REAL T I M E  PROCESS CONTROL 

Th TRANSACTION PROCESSING 

Figure 12. Data-type usage by application. 

In  Introduction to  Design [1962], Asimow 
gives a general perspective of engineering design 
and how the formal alternative generators and 
evaluating procedures are used. He also in- 
dicates where these formalisms break down and 
where they do not apply. He defines engineering 
design as an activity directed toward fulfilling 
human needs, based on the technology of our 
culture. 

Asimow distinguishes two types of design: 
design by evolution and design by innovation. 
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GENERAL n PRINCIPLE 

Figure 13. Philosophy of design. The feedback be- 
comes operable when a solution is judged to be in- 
adequate and requires improvement. The dotted 
elements represent a particular application [Asimow. 
1962:5]. 

While there are examples of both in this book, 
design by evolution predominates both in this 
book and in the computer industry. Asimow's 
first diagram (Figure 13), called Philosophy of 
Design, shows the basic design process. Asi- 
mow lists the following principles [Asimow, 
1962: 5-61. 

1. 

2. 

3. 

4. 

5 .  

Need. Design must be a response to indi- 
vidual or social needs which can be satis- 
fied by the technological factors of 
culture. 
Physical realizability. The object of a de- 
sign is a material good or service which 
must be physically realizable. 
Economic worthwhileness. The good or 
service, described by a design, must have 
a utility to the consumer that equals or 
exceeds the sum of the proper costs of 
making it available to him. 
Financial feasibility. The operations of 
designing, producing, and distributing 
the good must be financially suppor- 
table. 
Optimality. The choice of a design con- 
cept must be optimal among the avail- 
able alternatives; the selection of a 

6 .  

7. 

8. 

9. 

10. 

11 .  

12. 

13. 

manifestation of the chosen design con- 
cept must be optimal among all per- 
missible manifestations. 
Design criterion. Optimality must be es- 
tablished relative to a design criterion 
which represents the designer's com- 
promise among possibly conflicting 
value judgments that include those of the 
consumer, the producer, the distributor, 
and his own. 
Morphology. Design is a progression 
from the abstract to the concrete. (This 
gives a vertical structure to a design proj- 
ect.) 
Design process. Design is an iterative 
problem-solving process. (This gives a 
horizontal structure to each design step.) 
Subproblems. In attending to the solu- 
tion of a design problem, there is uncov- 
ered a substratum of subproblems; the 
solution of the original problem is de- 
pendent on the solution of the sub- 
problem. 
Reduction of uncertainty. Design is a pro- 
cessing of information that results in a 
transition from uncertainty about the 
success or failure of a design toward cer- 
tainty. 
Economic worth of evidence. Information 
and its processing has a cost which must 
be balanced by the worth of the evidence 
bearing on the success or failure of the 
design. 
Bases for decision. A design project (or 
subprobject) is terminated whenever 
confidence in its failure is sufficient to 
warrant its abandonment, or is contin- 
ued when confidence in an available de- 
sign solution is high enough to warrant 
the commitment of resources necessary 
for the next phase. 
Minimum commitment. In the solution of 
a design problem at any stage of the pro- 
cess, commitments which will fix future 
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design decisions must not be made be- 
yond what is necessary to execute the im- 
mediate solution. This will allow the 
maximum freedom in finding solutions 
to subproblems at the lower levels of de- 
sign. 
Communication. A design is a descrip- 
tion of an object and a prescription for 
its production; therefore, it will have ex- 
istence to the extent that it is expressed 
i n  the available modes of commu- 
nication. 

14. 

Asimow goes on to define the phases of a 
complete project. 

1. Feasibility study. The purpose is to deter- 
mine some useful solutions to the design 
problem. It also allows the problem to 
be fully defined and tests whether the 
original need which initiated the process 
can be realized. Here the general design 
principles are formulated and tested. 
Preliminary design. This is the sifting, 
from all possible alternatives, to find a 
useful alternative on which the detailed 
design is based. 
Detailed design. This furnishes the engi- 
neering description of a tested and pro- 
ducible design. 

2. 

3 .  

While the above are the primary design 
phases, there are four succeeding phases result- 
ing from the need for production and con- 
sumption by the outside world. 

4. Planning the production process. This is 
really another design process which is 
simply a special case of design. The goal 
is to design and build the system that will 
produce the object. 
Planning for distribution. This activity in- 
cludes all aspects related to sales, ship- 
ping, warehousing, promotion, and 
display of the product. 

5 .  

6. Planning for consumption. This includes 
maintenance, reliability, safety, use, aes- 
thetics, operational economy, and the 
base for enhancements to  extend the 
pro duct life. 

7. Retirement of the product. 

Obviously all of these activities overlap one 
another in time and interact as the basic design 
is carried out. Phister [1976] posits a model of 
this process (Figures 14 and IS)  and gives the 
amount of time spent in each activity (Figure 
16) for a hardware product. 

Simon uses a more abstract model of design 
for human problem solving, which he calls gen- 
erate and test. In  The Sciences of the Artificial, 
Simon [ 19691 discusses the science of design and 
breaks the problem into representing the design 
problem alternatives, searching (Le., generating 
alternatives), and computing the optimum. 
When it  is too expensive to search for the opti- 
mwn, as is often the case, satisfactory alterna- 
tives (which Simon calls satisficing alternatives) 
must be selected and tested. For most parts of 
computer design, the design variables are se- 
lected on the basis of satisfactory rather than 
optimal choice. Simon also discusses the tools 

TECHNOLOGY DEVELOPMENT 

PRODUCT DEVELOPMENT 6 MANUFACTURING 

I I I 1 I 
0 1 2 3 4 

TIME (YEARS) 

Figure 14. Hardware product development 
schedule I, comprehensive view [Phister. 19761 
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a $50.000 processor in 1974 (Phister. 19761. 

Hardware development costs for developing 

of design, including the use of simulation both 
as an alternative to building the complete sys- 
tem and as a method to evaluate the behavior of 
various alternatives. 

In addition to his contribution of the gener- 
ate and test design model to the Practice of De- 
sign View, Simon's work has also contributed 
indirectly to the first three views discussed ear- 
lier in  the chapter. In his discussion of the im- 
portance of the design hierarchy, Simon 
introduced the notion of architecture of com- 
plexity. 

In the search for design optima, whether it be 
by generate and test or some other algorithm, 
the problem of design representation is often 
encountered. The more representations one has, 
the larger the number of design problems that 
can be tackled and, hence, the closer one can get 
to a global optimum. Most disciplines have at 
least two representations: schematic and visual. 
I n  chemical engineering, heat balance is ob- 
tained by thermodynamic equations, not from a 
plant piping diagram. In the design of power 
supplies, transformer design is accomplished 
using equivalent circuits, not by using physical 
representations. In the design of computer 
buses, most designers work with timing dia- 
grams, although state diagrams and Petri nets 
are alternative representations. 

In general, the importance of alternative rep- 
resentations in computer engineering is not well 
understood. The large number of representa- 
tions that exist at the programming level is de- 
ceptive. There are many different algorithmic 
languages, but they differ mostly in syntax, not 
in semantics. 

I t  is too simplistic to think that computer de- 
sign should be a well-defined activity in which 
mathematical programming can be employed to 
obtain optimum solutions. There are major 
problems, five of which are listed below: 

1 .  
2. 

The cost function is multivariable. 
The primary measure, performance, is 
not well understood. 
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3. 

4. 

5. 

The objective function that relates cost 
and performance is not understood. 
Objectives are not as objective as they 
look. 
There is a dynamic aspect (because the 
technology changes rapidly) which is 
hard to quantify. 

These problems are explored i n  the following 
extract from a discussion of design given in Bell 
et af., [1972a:23-24]. 

Objectives can often be stated as max- 
imizing or minimizing some measure on 
a system. A system should be as reliable 
as possible, as cheap as possible, as small 
as possible, as fast as possible, as general 
as possible, as simple as possible, as easy 
to construct and debug as possible, as 
easy to maintain as possible - and so on, 
if there are any system virtues that have 
been left out. 

There are two deficiencies with such 
an enumeration. First, one cannot, in 
general, maximize all these aspects at 
once. The fastest system is not the 
cheapest system. Neither is it the most 
reliable. The most general system is not 
the simplest. The easiest to construct is 
not the smallest, and so on. Thus, the 
objectives for a system must be traded 
off against each other. More of one is 
less of another and one must decide 
which of all these desirables one wants 
most and to what degree. 

The second deficiency is that each of 
these objectives is not so objective as it 
looks. Each must be measured, and for 
complex systems there is no single satis- 
factory measurement. Even for some- 
thing as standardized as costs there are 
difficulties. Is it the cost of the materials 
- t he  components? Does one use a listed 
retail cost or a negotiated cost based on 
volume order? What about the cost of 
assembly? And should this be measured 
for the first item to be built, or for sub- 
sequent items if there are to  be several? 
What about the costs of design? That is 
particularly tricky, since the act of de- 
signing to minimize costs itself costs 

money. What about cost measured in 
the time to produce the equipment? 
What about the cost of revising the de- 
sign i f  it isn’t right; this is a cost that may 
or may not occur. How does one assign 
overhead or indirect costs? And so on. 
I n  a completely particular situation one 
can imagine an omniscient designer 
knowing exactly which of these costs 
count and being able to put dollar fig- 
ures on each to reduce them all to  acom-  
mon denominator.  I n  fact, no one  
knows that much about the world they 
live in and what they care about. 

The dilemma is real: there is no reduc- 
ing the evaluation of performance in the 
world to a few simple numbers. The so- 
lution is to understand what systems ob- 
j e c t i v e s  a r e :  t h e y  a r e  g u i d e s  t o  
understanding and assessing system be- 
havior in various partial aspects. Vari- 
ous measures for each type of objective 
are developed, and each shows some- 
thing useful. Since all measures are par- 
t i a l  a n d  a p p r o x i m a t e  ( e v e n  
conceptually), rough and ready mea- 
sures that are easy to make, display and 
understand are often to be preferred to  
more exact and complex measures. 
Standard measures are to  be developed 
and used, even if not perfect. Experience 
with how a measure behaves on many 
systems is often t o  be preferred to  a bet- 
ter, but unique, measure with which no 
experience exists. 

Although this book does not systematically 
treat all the different system measures, many of 
them are illustrated throughout the book. Table 
4 provides a guideline, listing in one place the 
components that contribute to overall cost and 
performance. 

The following list points out some tradeoffs, 
taken from experience, among the various ac- 
tivities. 

System Cost Versus Component Cost. 
DEC sells products at each of the packaging 
levels-of-integration - from chips to turnkey ap- 
plication systems. Because each product is con- 
structed from lower packaged levels, and 
because the levels model (View 3: Packaging 
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Table 4. 
for a System [Bell et al., 1972a:24] 

Cost and Performance Components 

Cost Components 
Arising from the design effort 

Specifying 
Designing (drawing. checking, verifying) 
Prototyping 
Packaging design 
Describing (documenting) 
Production system design 
Standardizing 

Arising from production 
Buying (parts) 
Assembling 
Inspecting 
Testing 

Arising from selling and distribution 
Understanding 
Configuring (i.e., user designing) 
Purchasing 
Applying 

Repairing 
Remodeling 
Redesigning 
Retiring 

Performance Components 
Arising from designing, producing, and selling environ- 
ment 

For a single task 

Operating in the environment (heat. humidity, vibra- 
tion, color, power, space) 

For a set of tasks 
operation times 
operation rate 
memory size and utilization 

mean time between failures (MTBF) 
availability (percent) 
mean time to repair (MTTR) 
error rate (detected, undetected) 

Reliability, availability, maintainability, and error rate 

Levels-of-Integration) strictly applies, it is very 
difficult to have designs that are optimally com- 
petitive at every level. For example, i f  DEC sold 
just hardware systems (cabinet level) it would 
not need a boxed version of its central proces- 

sors. The box level could then be deleted and 
the price of the systems product would be pro- 
portionately lower. When primitives are to be 
used as building blocks, there is a cost associ- 
ated with providing generality. For example, 
some boxes have too much power for most of 
their final applications because the powering 
was designed for the worst possible con- 
figuration of modules within the box. (Some 
boxes have too little power because increased 
logic density was accompanied by increased 
power density, permitting new worst-case con- 
figurations in existing boxes.) 

Initial Sales Price Versus User Life Cycle 
Cost. There is a cost associated with parts that 
break and have to be repaired and maintained. 
Nearly every part of the computer can be im- 
proved over a range of a maximum of a factor 
of 10 to provide increased reliability (extended 
mean time between failure) for a price. To the 
extent that these costs are added, the product 
will be less competitive in terms of a higher pur- 
chase price. However, if the total life cycle costs 
are considered, the product may still be better 
even at the higher initial cost. 

Reliability, Availability, Maintainability 
(and Producibility) Versus Performance. By 
designing to take advantage of the fastest com- 
ponents and operating them at the limit of their 
capability, one is able to have increased per- 
formance. In  doing so, the tradeoff is clear: pro- 
ducibility, reliability (error rate), and 
maintainability (ease of fixing) all generally suf- 
fer. 

Performance Versus Cost. This is the most 
traditional design tradeoff. In addition to the 
conventional product selection, the planning of 
a computer family further increases the selec- 
t ion/ t radeo ff process. 

Early Shipment Versus Product Life and 
Quality. Delivering products before they are 
fully engineered for manufacture is risky. If  
faults are found that have to be corrected in the 
factory or field, the cost far outweighs any early 
product availability. 
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Length of Time to Design Versus Product 
Life. By allowing more time for design, a prod- 
uct can be designed in such a way that it is eas- 
ier t o  enhance. On the other hand, i f  
prospective customers, especially new custom- 
ers, are faced with a choice between the com- 
petitor’s available nonoptimum product and 
your unavailable optimum product, they may 
not be willing to wait. 

Operating Environment Versus Cost. Here 
there are numerous tradeoffs even within a con- 
ventional environment. In each of the packag- 
ing dimensions (heat, humidity, altitude, dust, 
electromagnetic interface (EMI), etc.), there are 
similar tradeoffs that may appeal to  unique 
markets or may simply translate to  increased re- 
liability in  a given setting. The Norden 11/34M 
is an example of packaging to provide a PDP-11 
for the aerospace environment. 

The principles of computer design and the 
optimization efforts associated with those prin- 
ciples are parts of computer science and elec- 
trical engineering, the responsible disciplines. 
From computer science come many of the tech- 
nical aspects (such as instruction set archi- 
tecture), much of the theory (such as algorithms 
and computational complexity), and almost all 
of the software design (such as operating sys- 
tems and language translators) applied in the 

practice of computer engineering. However, in 
their construction, computers are electrical; and 
the discipline that has fundamental responsi- 
bility is electrical engineering. Thus, discussion 
of the Practice of Design View concludes with 
Table 5 ,  a set of maxims compiled by Don Vo- 
nada, an experienced DEC engineer. Many 
other engineers in many other companies have 
developed similar sets of maxims. 

VIEW 7: THE BLAAUW 
CHARACTERIZATION OF COMPUTER 
DESIGN 

Another view is based on the work of Blaauw 
[ 19701. He distinguishes between architecture, 
implementation, and realization as three sepa- 
rable levels in the construction of anything, in- 
cluding computer structures. 

The architecture of a computer system de- 
fines its functionality (behavior) as it appears to 
the machine level programmer and can be char- 
acterized by the instruction set processor (ISP). 
The implementation of a computer system is the 
actual hardware structure - the register transfer 
(RT) level behavior and data-flow organization. 
This also includes various algorithms for con- 
trolling a machine as it interprets an archi- 
tecture. Realization encompasses the actual 

Table 5. Vonada‘s Engineering Max ims 

1. There is no such thing as ground. 
2 .  Digital circuits are made from analog parts. 
3 .  Prototype designs always work. 
4. Asserted timing conditions are designed first; unasserted timlng conditions are found later. 
5. When all but one wire in a group of wires switch, that one will switch also. 
6. When al l  but one gate in a module switches, that one will switch also. 
7 .  Every little pic0 farad has a nano henry all its own. 
8. Capacitors convert voltage glitches to current glitches (conservation of energy). 
9. Interconnecting wires are probably transmission lines. 

10. Synchronizing circuits may take forever to make a decision. 
1 1. Worse-case tolerances never add - but when they do, they are found in the best customer’s machine. 
12. Piagnostics are highly efficient in finding solved problems. 
13. Processing systems are only partially tested since it is impractical to simulate a l l  possible machine states 
14. iwlurphy’s Laws apply 95 percent of the time. The other 5 percent of the time is a coffee break. 
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technologies used and includes the kind of logic 
and how it is packaged and interconnected. Re- 
alization includes all the details associated with 
the physical aspects of the machine. 

Modern architectures (ISPs) usually have 
multiple (RT) implementations. For example, 
the LSI- 1 1, PDP- 1 1 /40, and PDP- 1 1/60 are dif- 
ferent implementations of the same basic PDP- 
1 1 instruction set. Sometimes, although rarely, 
a particular implementation has more than one 
realization. For example, the IBM 7090 has the 
same architecture and implementation (Le., the 
same ISP and RT structure) as the IBM 709. 
The difference lies in realization: the 709 used 
vacuum tubes, the 7090 transistors. For a more 
recent example, two models of the PDP-11 ar- 
chitecture that share the same implementation 
are  the DEC PDP-11/34 and Norden’s 
1 1/34M. The realization differs, however, as 
the latter uses militarized semiconductor com- 
ponents and component mountings, and a dif- 
ferent packaging and cooling system. Table 6 
attempts to clarify the distinguishing character- 
istics of architecture, implementation, and reali- 
zation. 

This book concentrates on the realization 
and implementation columns in Table 6. In- 
struction set architecture is discussed only in- 
sofar as  it interacts with the  other  two 
characteristics. There are also some differences 
between the views of Blaauw and Brooks [in 
preparation] and those expressed in this book. 
It is important to  try to reconcile these differen- 
ces, because everyone engaged in computer en- 
gineering uses the words “architecture,” 
“implementation,” and “realization” - quite 
often b mean different things. This book will 
not limit the definition of architecture to just a 
machine as seen by a machine language pro- 
grammer. Instead, it will use architecture to 
mean the ISP associated with any of the ma- 
chine levels described in View 2, Levels-of-In- 
terpreters. Therefore, architecture standing 
alone will mean the machine language, the ISP. 
This book will also use architecture of the micro- 
programmed machine as seen by a micro- 
programmed machine’s microprogrammer, 
architecture of the operating system as the com- 
bined machine of operating system and ma- 
chine language, and architecture of a language 

Table 6. 
in preparation: Chapter 11 

Characteristics of Design Areas [Blaauw and Brooks, 

Architecture Implementation Realization 
~ 

Purpose Function Cost and Buildable and 
performance maintainable 

Product Principles of Logic design Release to 
operation manufacturing 

Lists and Language Written Block diagram. 
algorithms expressions diagrams 

Quality Consistency Broad scope Reliability 
measure 

Physical 

sequential machine physical 
(at logic level) implementation 

Meanings ISP RT level machine; 
(used herein) Machine ISP microprogrammed realization; 
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for each language machine. For example, AL- 
GOL, APL, BASIC, COBOL, and FORTRAN 
all have as separate and distinct architectures as 
a PDP-10 and a PDP-11 do. This use of archi- 
tecture, because it describes behavior, is quite 
consistent with that of Blaauw. Moreover, 
when applied to software structures, Blaauw’s 
framework fits well. There are two implementa- 
tions, FORTRAN IV-PLUS (an optimizing 
compiler) and the initial FORTRAN IV of the 
one ANSI FORTRAN architecture. Moreover, 
different implementations use different realiza- 
tion techniques: some use BLISS, others use as- 
sembler language. 

Although Blaauw and Brooks define imple- 
mentation and realization clearly, these defini- 
tions are not widely used. The main problem is 
that both terms are sensitive to technology 
changes and, hence, interact closely. Computer 
engineers tend to overuse and intermix them so 
that the two words are used interchangeably. 
This is reflected in this book, where they are 
used to have roughly the same meaning (e&, 
“The KIlO processor for the PDP-10 was im- 
plemented using high-speed (H-Series) transis- 
tor-transistor logic.”). In Table 6 ,  definitions 
are given for the two words so that the reader 
may further relate descriptions back to these 
definitions. “Implementation” is the register 
transfer level machine, roughly the micro- 

programmed machine; “realization” is the 
physical realization, the physical implementa- 
tion in terms of packaging and technology. 

The most useful distinction is between archi- 
tecture, on the one hand, and implementation 
(subsuming realization), on the other. Seeing 
the distinction clearly enables one to preserve 
architectural compatibility between machine 
models, and this is crucial if users’ and manu- 
facturers’ software investments are to be pre- 
served. Implementation can then be as dynamic 
as desired, being continually changed by tech- 
nology. Architecture must remain static for 
long periods (10 years is a common goal). 

In  1949 Maurice Wilkes, only one month af- 
ter his EDSAC computer was operational and 
before any stored program computers in the 
United States were operating, had already per- 
ceived the value in having a series, or set, of 
computers share the same instruction set: 

When a machine was finished, and a 
number of subroutines were in use, the 
order code could not be altered without 
causing a good deal of trouble. There 
would be almost as much capital sunk in 
the library of subroutines as the machine 
itself, and builders of new machines in 
the future might wish to make use of the 
same order code as an existing machine 
in order that the subroutines could be 
taken over without modification. 
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It is customary when reviewing the history of 
an industry to ascribe events to  either market 
pull or technology push. The history of the auto 
industry contains many good examples of mar- 
ket pull, such as the trends toward large cars, 
small cars, tail fins, and hood ornaments. The 
history of the computer industry, on the other 
hand, is almost solely one of technology push. 

Technology push in the computer industry 
has been strongest in the areas of logic and 
memory, as the case studies in the following 
chapters indicate. Where the following chapters 
give examples of the effects of the technology 
push in these areas, this chapter explores indi- 
vidual elements of that push, with particular 
emphasis on the role of semiconductors. 

Semiconductor devices are discussed from 
the viewpoint of the user because, until recently, 
DEC has always bought its semiconductors (es- 
pecially integrated circuits) from semiconductor 
manufacturers, and its engineers (users of in- 
tegrated circuits) have viewed the integrated cir- 
cuit as a black box with a carefully defined set 
of electrical and functional parameters. Most 
design engineers will probably continue to  hold 
that view (and be encouraged to  do so), even 

Technology Progress in 
Logic and Memories 

C GORDON BELL, J CRAIG MUDGE, 
and JOHN E. M c N A M A R A  

though some integrated circuits will be supplied 
by an in-house design and manufacturing facil- 
ity. The advantages and disadvantages of in- 
house integrated circuit design will be discussed 
later in the chapter. 

The portion of the discussion dealing with 
semiconductors begins by presenting a family 
tree of the possible technologies, arranged ac- 
cording to the function each carries out and 
showing how these have evolved over the last 
two or  three generations to  affect computer en- 
gineering. The cost, density, performance, and 
reliability parameters are briefly reviewed; the 
application of semiconductors, using various 
logic design methods, is then discussed with 
particular emphasis on how the semiconductor 
technology has pushed the design methods. 

The discussion of the use of semiconductors 
in logic applications is followed by a section on 
memories for primary, secondary, and tertiary 
storage. While semiconductors have been a 
dominant factor in technology push within the 
computer industry. for both logic and memory 
applications, magnetic recording density on 
disks and tapes has evolved rapidly, too, and 
must be understood as a component of cost and 
as a limit of system performance. 

27 
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The section on memory is followed by a sec- 
tion containing some general observations 
about technology evolution: how technology is 
measured, why it evolves (or does not), cases of 
it being overthrown, and a general model for 
how its use in computers operates and is man- 
aged. 

SEMICONDUCTOR LOGIC TECHNOLOGY 

A single transistor circuit performing a primi- 
tive logic function within an integrated circuit is 
among the smallest and most complex of man- 
made objects. Alone, such a circuit is in- 
trinsically trivial, but the fabrication process re- 
quired for a set of structures to form a complete 
integrated circuit is complex. For users of 
digital integrated circuits there are several rele- 
vant parameters: 

I .  

2. 

3. 
4. 

5. 

The function of an individual circuit in 
the integrated circuit, the aggregate 
function of the integrated circuit, and 
the functions of a complete integrated 
circuit family such as the 7400-series. 
The number of switching circuit func- 
tions per integrated circuit. This quan- 
tity and density is a measure of the 
capability of the integrated circuit and 
the ingenuity of the designers. 
cost .  
The speed of each circuit and the speed 
of the integrated circuit and set of in- 
tegrated circuits within a family. The 
semiconductor device family (transistor- 
transistor logic = TTL, Schottky TTL = 
TTL/S, emitter-coupled logic = ECL, 
metal oxide semiconductor = MOS, 
complementary MOS = CMOS, silicon 
on saphire = SOS, integrated injection 
logic = I2L) usually determines this per- 
formance. 
The number of interconnections (pins) 
to communicate outside the integrated 
circuit. 

The reliability. This is a function of the 
circuit technology, the density, the num- 
ber of pins, the operating temperature, 
the use (or misuse), and the maturity (ex- 
perience) of the manufacturing process. 
Power consumption and speed-power 
product. A frequently used metric is the 
speed-power product, where the delay 
through a typical gate is multiplied by 
the power consumption of the gate. For 
a particular technology, the speed-power 
product tends to be constant because 
short gate delays usually are accom- 
panied by high power consumption. A 
technical advance that lowers the speed- 
power product  is considered note- 
worthy. 

Figure 1 shows a family tree (taxonomy) of 
the most common digital integrated circuits. 
The least complex functions are in the upper 
portion of the figure, and the most complex are 
at the bottom. In  addition, the circuits are or- 
dered by generation, starting with the second 
generation on the left side of the figure and 
progressing to the fifth generation on the right 
side. The circuits are clustered roughly by the 
regularity of the function and whether memory 
is associated with the function. Circuit regu- 
larity is important in large-scale integrated cir- 
cuits because it is desirable to  implement 
regular structures to minimize area-consuming 
interconnections and, thus, to simplify layout 
and understanding and to aid testing. 

As indicated in Figure 1, the branching of the 
integrated circuit family tree began in earnest at  
the beginning of the third generation. At that 
time, advances in integrated-circuit technology 
permitted collections of basic logic primitives 
(AND, NAND, etc.) and sequential circuit 
components (flip-flops, registers, etc.) to oc- 
cupy a single integrated circuit rather than an 
entire module. This had the benefit of providing 
a drastic reduction in size between the second 
and third generation computer designs, as 
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functions. 

Family tree of digital integrated circuit 

shown most vividly by comparing the PDP-9 
and PDP-15 (Chapter 6), but it also had the 
drawback that modules contained a wide vari- 
ety of functions and were thus specialized. 

As the densities began to approach 100 gates, 
the construction of complete arithmetic units 
on a single chip became possible. The earliest 
and most famous function, the 74181 arithmetic 
logic unit (ALU) shown in Figure 2, provided 
up to 32 functions of two 4-bit variables. By the 

fourth generation, it became possible to con- 
struct on a single chip very large combinational 
circuits, such as a complete 16 X 16-bit multi- 
plication circuit (e.g., the TRW Corp. multi- 
plier) requiring about 5,000 gates. 

Progress during the fourth and fifth gener- 
ations has not been without its problems, how- 
ever. Without well defined functions such as 
addition and multiplication, semiconductor 
suppliers cannot provide high density products 
in high volume because there are few large- 
scale, general purpose universal functions. The 
alternative for users is to interconnect simple 
logic circuits (AND gates, flip-flops), but that 
does not permit efficient use of the technology, 
and the cost per function remains high (about 
that of the third generation) because the printed 
circuit board and integrated circuit packaging 
costs (pins) limit the cost reduction. 

To address these problems, two methods of 
effectively customizing large-scale integrated 
circuit logic are included in Figure 1 and dis- 
cussed in greater detail later in the chapter. 
These are the programmable logic array (PLA) 
and the gate array (also called master slice). The 
programmable logic array (PLA) is an array of 
AND-OR gates that can be interconnected to 
form the sum-of-products terms in a com- 
binational logic design. Gate arrays are simply 
a large number of gates placed on the chip in 
fixed locations where they can be inter- 
connected during the final metalization stages 
of semiconductor manufacture. 

There is a special branch of the tree shown in 
Figure 1 purely for memory functions. Memory 
is used in the processor as conventional mem- 
ory, but it can also be used as an alternative to 
conventional logic for performing com- 
binational logic functions. For example, the in- 
puts to a combinational function can be used as 
an address, and the output can be obtained by 
reading the contents of that address. Memory 
can also be used to implement sequential logic 
functions. For example, it can be used to hold 
state information for a microprogram. Because 
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memories have so many uses, this branch is dis- 
cussed separately in the memory section of this 
chapter. 

The remainder of the interesting logic func- 
tions include combinations of logic and mem- 
ory. There are various special functions such as 
linear predictive coding algorithms for use in 
real-time applications and data encryption al- 
gorithms for use in communication systems. 
One of the most useful communications func- 
tions, and the first one to use large-scale in- 
tegration, is the Universal Asynchronous 
Receiver/Transmitter (UART). 

There is a special branch for bit-slice com- 
ponents that can be combined to form data 
paths of arbitrary widths. These are being used 
to construct most of today’s high speed digital 
systems, mid-range computers, and computer 
peripherals. Although there have been several 
bit-slice families, the A M D  Corp. 2900-series 
whose register transfer diagram is shown in Fig- 
ure 3 has become the most widely used. Note 
that all the primitives of this series were present 
in the Register Transfer Module Family (Chap- 
ter 18), including the microprogrammed control 
unit referred to as the Programmed Control Se- 
quencer. 

The final branch of the tree in Figure 1 is the 
most complex and is used to mark the fourth 
(microprocessor-on-a-chip) generation of tech- 
nology and the beginning of the fifth (com- 
puter-on-a-chip) generation. The  fourth 
generation is marked by the packaging of a 
complete processor on a single silicon die; by 
this standard, the fifth generation has already 
begun since a complete computer (processor 
with memory) now occupies a single die. The 
evolution in complexity during each generation 
simply permits larger word length processors or 
computers to be placed on one chip. At the be- 
ginning of the fourth generation, a 4-bit proces- 
sor was the benchmark; toward the end of the 
fourth generation, a complete 16-bit processor 
such as the PDP-11 could be placed on a single 
chip. 

G 
P 

R s 
C.+. I 

8 FUNCTION ALU Fz ISIGNI 
OVERFLOW 
F = 0000 

OUTPUT DATA SELECTOR 
OUTPUT 
ENABLE 

DATA OUT 

Figure 3. AMD2900 four-bit microprocessor slice 
block diagram (registers and data path). 

Gates per Chip 

The function performed by a chip is clearly 
dependent on the number of gates that can be 
placed on a chip. Thus, density in gates per chip 
is the single most important parameter deter- 
mining chip functionality. By this measure, one 
can predict the functions likely to be imple- 
mented by just following the tree. It should be 
noted that the whole tree is relatively alive and 
has dense areas of new branches everywhere ex- 
cept at  the top, where unconnected gate and 
register structures have been relatively static. In 
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the growing areas, as density increases suf- 
ficiently, a new branch grows. For example, the 
processor-on-a-chip started out as a 4-bit pro- 
cessor (or rather as 2 chips for a single proces- 
sor) and then progressed to 8-bit and then 16- 
bit processors on a single chip. Similar effects 
can be observed with the arithmetic logic unit 
and with memories. 

The number of gate circuits per chip not only 
determines chip functionality, it also is the mea- 
sure of density as seen by a user (Figure 4). This 
metric is the product of the circuit area and the 
number of circuits per unit area. Progress in 
lithography has led to a reduction of conductor 
linewidths and a corresponding reduction of 
circuit size to yield higher speeds and higher 
densities. Linewidths have decreased from 10 
microns in early large-scale integrated circuit 
chips to 6 microns in the LSI-11 chips, and 
more recently to 3 or 4 microns in Intel's 8086. 
Linewidths of less than a micron have been 
achieved at the research level, but they require 
electron beam techniques instead of present 
photographic methods of production. The pro- 
cessing techniques to create semiconductor ma- 
terials have also been improved for better man- 
ufacturing yields (and lower costs). Circuit and 
device innovation (such as reducing the number 
of transistors per memory cell) have also con- 
tributed to density and yield increases. 

The result given in Figure 4 is exponential 
and indicates that the number of bits per chip 
for a metal oxide semiconductor (MOS) mem- 
ory doubles every two years according to the 
relationship: 

Number of bits per chip = 2t-1962 

There are separate curves, each following this 
relationship, for read-only memories in pro- 
totype quantities, read-only memories in pro- 
duction quantities, read-write memories in 
prototype quantities, and read-write memories 
in production quantities. Thus, depending on 
the product and the maturity of its production 
process, products lead or lag behind the above 
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Figure 4. Components per single integrated circuit die 
versus time. Number of components per circuit in the 
most advanced integrated circuits has doubled every 
year since 1959. when the planar transistor was devel- 
oped. Gordon E. Moore, then at Fairchild Semiconductor, 
noted the trend in 1964 and predicted that it would con- 
tinue (from [Noyce. 1977:67]; courtesy of Scientific 
American). 

state-of-the-art time line by one to three years 
according to the following rules: 

Bipolar read-write memories lag by two to  
three years. 
Bipolar read-only memories lag by about 
one year. 
MOS read-only memories lead by one 
year. 

This model gives the availability of various 
sizes of semiconductor memories as shown in 
Figure 5. The significance of various size mem- 
ory availabilities is that they determine (tech- 
nology push) when certain architectures and 
implementations can occur. The chapter dis- 
cussing the PDP-11 (Chapter 16) uses this 
model to show how semiconductors accomplish 
this push. 
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Figure 5. Logic and memory technology evolution timeline 

for memory arrays, the price is set in essentially 
the same way as the price of a commodity like 

After density, the most important character- 
istic of integrated circuits is cost. The cost of 
integrated circuits is probably the hardest of all 
the parameters to identify and predict because it 
is set by a complex marketplace. For circuits 
that have been in production for some time, and 

eggs or  bacon is set; and users generally con- 
sider these integrated circuits as very similar to  
commodities, with the attendant benefits, costs, 
and problems (having a sufficient supply). In 
low volumes, integrated circuit prices are pro- 
portional to the die cost (which is proportional 
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to the die area); but at higher volumes, assem- 
bly, testing, packaging, and distribution be- 
come the dominant cost factors. Furthermore, 
for those low volume circuits that have not yet 
reached commodity status, the prices also de- 
pend on the strategy of the supplier - whether 
he is willing to encourage competition. 

Two curves are presented to reflect the price 
of various components (transistors) imple- 
mented in integrated circuits. Figure 6 shows 
the price per gate for MOS and TTL circuits as 
a function of time and scale of integration. 
Table 1 gives some idea of how circuit density 
(in elements) relates to actual function. 

The cost history of integrated circuits is re- 
flected very dramatically in the cost history of a 
special class of integrated circuits, semi- 
conductor memory. The semiconductor mem- 
ory cost curves, given in Figure 7, are also 
interesting because of the important role of 
memory in past and future computer structures. 
As shown in the figure, the 1978 cost per bit was 
roughly 0.084 and 0.07$ per bit for the 4-Kbit 
and 16-Kbit integrated circuit chips, respec- 
tively, giving costs of $3.30 and $1 1.50. 

Two factors influence the cost of integrated 
circuits: density i n  bits per integrated circuit 
and cost per bit. The two factors have not had 
equal influence in reducing costs because, while 
chip density has improved by a factor of 2 each 
year (Figure 4) [Noyce, 19771, the cost per bit 
(at the integrated circuit level) has not declined 
by a factor of 2 every two years. The equation 
for the line drawn in Noyce's [I9771 Figure 7 is: 

- 
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Figure 6.  Price per gate versus time 
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It  is interesting to note that the cost decline 
compares favorably with the price decline in  
core memory over the period since 1960-1970 
for the 18-bit computers (Chapter 6), and with 
the memory price declines in  both the PDP-8 
(Chapter 7) and the PDP-10 (Chapter 21). 

Figure 7 .  Cost per bit of integrated circuit memory ver- 
sus time. Cost per bit of computer memory has declined 
and should continue to decline as is shown here for suc- 
cessive generations of random-access memory circuits 
capable of handling from 1,024 ( 1  K) to 65,536 (65 K) 
bits of memory. Increasing complexity of successive cir- 
cuits is primarily responsible for cost reduction, but less 
complex circuits also continue to decline in cost (adapted 
liuiri INoyce. 1977:69]; courtesy of Scientific American). 
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Table 1. The Number of Areal Elements to Implement  Logic Functions in Different Technologies 

MOS Bipolar 

Function N M O S  PMOS CMOS ECL l T L  12L 

Inverter 2 2 2 7 3 1 
2-input gate 3 3 3 o r 4  a 3 1 
8-input gate 9 9 9 o r l 6  14 3 2 
R/S latch 6 6 6 0 r 8  12 6 2 
Memory cell (dynamic) 2 2 2 2 
Memory cell (static) 6 6 6 4-6 4-6 4 
D flip-flop 2 0  20  20  or 28 28 2 0  9 

- - 

- 26 11 JK flip-flop 20  20 20 or 36 

Performance 

The performance for each semiconductor 
technology evolves at different rates depending 
on the cumulative learning associated with the 
design and manufacturing processes together 
with marketplace pressure to have higher per- 
formance for the particular technology. One 
may hypothesize that each technology can be 
looked at as being relatively appealing or rele- 
vant to the psi-ticular design(er) styles associ- 
ated with various computer marketplaces. One 
would then expect the evolution to continue 
along the lines shown in Table 2.  

DEC's use of the various integrated circuit 
technologies shown in Table 2 is probably typi- 
cal of most of the computer industry: TTL for 
mid- and high-sized minicomputers; ECL for 
the larger scale machines (PDP-IO); MOS for 
memories, microprocessors, and specialized 
high density circuits; and CMOS for special mi- 
crocomputers, especially those intended for bat- 
tery operation. 

Some of the lesser used technologies such as 
I'L (integrated-injection logic) and SOS (silicon 
on saphire) have been omitted from the table. 
12L features high density and very low power 
consumption, but it is slow as initially imple- 
mented. SOS MOS enhances CMOS speed by 
removing stray capacitance, making it com- 

parable with low power Schottky (TTL/LS) 
speed while retaining MOS complexity capabili- 
ties. Both 12L and SOS have been touted as re- 
placements for various technologies shown in 
the table. But, if  an entrenched technology has 
evolved for some time and continues to evolve, 
it is difficult for alternative technologies to dis- 
place it because of the investment in process 
technology and understanding. Semiconductors 
appear to be characteristic of other technologies 
in that usually only a single technology is used 
for a given problem. 

The early technologies, RTL (resistor transis- 
tor logic), TRL (transistor resistor logic), and 
DTL (diode transistor logic) have also been 
omitted from the table. These technologies are 
important historically because they were used in 
the first integrated circuits. However, many 
manufacturers, including DEC, did not use 
them in computers (RTL was used in DEC in- 
dustrial control modules) because they did not 
represent a sufficient advance over the discrete 
transistor circuits already being used. In addi- 
tion, early circuits were packaged in flat pack- 
ages and metal cans rather than in the dual in- 
line package used today, and automated manu- 
facture using the components was thus not eco- 
nomically feasible. 

Table 3 gives the speed-power product and 
the gate delay, the two most useful measures of 
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Table 2. Characteristics of Dominant (1 978) Semiconductor Technologies 

Type Evolution Use 

TTL (transistor-transistor logic) TTL Logic, bus interfacing 
TTL/Schottky Higher speed than TTL 
TTL/LS Same speed as TTL, but low power 

ECL (emitter-coupled logic) MECL 11. Ill High and higher performance 
Easier to work with 
Evolving to gate array design 

MECL 10 K.  100 K 

MOS (metal oxide semiconductor) p-channel Low cost 
n-channel Greater densities, cost 

Evolving to performance (memory) 
Evolving to shorter channels: HMOS. DMOS, 
VMOS 

CMOS (complementary MOS) CMOS Low power, higher speed 
Better noise immunity 

Table 3. Gate  Delay of Various Semiconductor Technologies [Luecke, 1976:53]* 

Type 
of 

Year Logic 

Gate Power Speed- Power 
Delay Dissipation Product 
(nanoseconds 1 (milliwatts) (picojoules) 

I 1963 
11964 
1965 
1967 
1968 
1970 
1972 

1967 
1974 

1970 
1973 
1973 
1974 
(1976 
(1978 

1975 
1976 

DT L 
RTL 
TTL 
TTUH-series 
TTL 
TTL (Schottky) 
TTL (low power Schottky) 

EC L 
ECL 

PMOS 
NMOS 
CMOS 
sos 
NMOS 
HMOs 

IZL 
12L 

- 
10 

5 
30 

3 
10 

2 
0.7 

200 
100 
30 
15 
4 
0.9 

35 
20 

- 
- 
10 
2 0  

1 
20 

2 

30  
43 

0.1 
0.1 
1 .o 
0.05 
1 
1 

0.085 
0.05 

2001 
1801 
100 
100 
3 0  
60 
20 

60 
3 0  

2 0  
10 
30 

7.5 

0.91 
41 

3.0 
1 .o 

*The four entrles in brackets have been added by the authors 
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performance, for the various technologies as 
they have evolved with time. The speed-power 
product metric for a technology at a given time 
indicates what performance versus power trade- 
offs the user can make. There are limits to this 
tradeoff. Only about one watt can be dissipated 
by the off-the-shelf integrated circuit package, 
and tradition in integrated circuit package de- 
sign has been strong. The table was formulated 
by Jerry Luecke of Texas Instruments (TI) at a 
time when I2L technology had just been in- 
troduced (October, 1975) by TI. 

Reliability 

Over the past 15 years, the failure rate for 
standard integrated circuits has been reduced 
by two orders of magnitude to the neighbor- 
hood of 0.01 percent per 1,000 hours. This cor- 
responds to I O 7  hours (about a millenium) mean 
time to failure (MTTF) per component. Figure 
8, from a recent survey article by Hodges 
[ 1977:63], shows the trend. The lower curves 
show the higher reliability obtained when more 
extensive testing and screening are employed. 
The improved MTTF of between IO8 and IO9 
are obtained at a cost increase of 4 to 100 times 
per component. 
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Figure 8 Failure rate of silicon integrated circuits 
(Rate of 0 0001 percent per 1,000 hours is 1 0 9  hours 
mean time to failure ) [Hodges. 1977 631 

I/O Connections 

The number of pins per integrated circuit 
package has risen relatively slowly because of 
the mechanical handling equipment (e.g., sort- 
ers, bonders, testers, inserters) to the point 
where 48 pins has just become accepted in 1978. 
The packages of the 1980s will no doubt go be- 
yond 100 with the ability for multiple die per 
pack age, 

The Large-Scale Integrated Circuit 
Dilemma 

As indicated in the discussion of Figure 1, a 
dilemma involving a search for universal cir- 
cuits has developed in the manufacture of large- 
scale integrated (LSI) circuits. The economics 
of the LSI industry make i t  essential that in- 
tegrated circuit suppliers produce circuits with a 
high degree of universality. This is because the 
learning curve of a manufacturing process 
causes cost to be inversely proportional to vol- 
ume, and for a design to be sold in  high volume, 
it must be usable in  a large number of appli- 
cations. However, the trend in circuit com- 
p l ex i ty ,  which  a l l o w s  s e m i c o n d u c t o r  
manufacturers to put more transistors o n  a con- 
stant die area each year, tends to increase spe- 
cialization of function, lowering the volume and 
raising the price. 

The LSI product designer is therefore contin- 
ually in search of universal primitives or build- 
ing blocks. For a certain class of applications, 
such as controller applications, the micro- 
processor is a fine primitive and has been so ex- 
ploited [Noyce, 19771. For other applications, 
circuit complexity can embrace even higher 
functionality at the processor-memory-switch 
level. The Intel 827X is an interesting example: 
two processors, a 1.25-microsecond byte-pro- 
cessor and a 250-nanosecond bit-processor, are 
combined in one large-scale integrated circuit 
[Louie et al., 19771. 
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Moore [I9761 discusses the LSI dilemma in a 
paper on the role of the microprocessor in the 
evolution of microelectronic technology. He  
points out that a similar situation existed when 
integrated circuits were first introduced. Users 
were reluctant to  relinquish the design pre- 
rogative they had when they built circuits from 
discrete components. It was not until sub- 
stantial price reductions were made that the im- 
passe was broken. Then the cost advantages 
were sufficient to force users to adopt the new 
technology circuits. 

The first high functionality, high universality 
circuit that comes to  mind is the micro- 
processor-on-a-chip. For many applications, in- 
c l u d i n g  m o s t  c o m p u t e r  s y s t e m s ,  t h e  
microprocessor-on-a-chip is not a cost-effective 
building block, and other solutions to  the di- 
lemma a re  used. For example, micro- 
programming is a highly general way of 
generating control signals for data path ele- 
ments, and table lookup using read-only memo- 
ries is a highly general technique. Both methods 
are attractive because they use memory, an in- 
herently low cos t  LSI c i rcu i t .  Micro-  
programming, however, does have limitations. 
The extra level of interpretation extracts a per- 
formance penalty, and some potential data path 
parallelism is often given up to  reduce cost. A 
more subtle, but practical, limitation is the de- 
velopment cost of microcode. Assuming the 
writing rate to  be 700 microwords per man-year 
for wide-word, unencoded (horizontal) micro- 
machines, a desire to  limit the effort to  20-24 
man-years would limit the maximum control 
store size to  about 16 Kwords. This maximum 
will tend to  increase in the future, when the use 
of better microprogramming tools increases the 
microcode writing rate beyond 700 microwords 
per man-year. 

At the register transfer level, the standard mi- 
croprogramming design method is (conserva- 
tively) twice as expensive per instruction as 
conventional programming. Moreover, because 
microinstructions are usually not as powerful as 

conventional instructions, more  micro- 
instructions than conventional instructions are 
usually required to solve a given problem. 
These two factors, more expense per instruction 
and more instructions, cause a microprogram 
to be five to ten times as expensive as a conven- 
tional program to solve the same problem. 
However, the instruction execution speeds of a 
microprogrammed controller are at least 10 
times faster than the instruction execution 
speeds of a conventional mini. 

The characteristics of microprocessor and 
read-only memory design methods of creating 
customized results from universal large-scale in- 
tegrated circuits are summarized, along with the 
characteristics of a number of other methods, in 
Table 4. 

Table 4. 
Building Blocks 

Design Techniques for Various LSI 

Technique Degree 
Building for Varying of Permanence 
Block Function Generality of Change 

Computer 
module 

Micro- 
processor 

Bit-slice 

ROM 

PROM 

EAROM, 
EPROM 

P LA 

FPLA 

Gate 
array 

RAM 

Program Very 
high 

Program High 

Microprogram Medium 

Factory mask Very 
change high 

Field change Very 
high 

Field change Very 
high 

Factory mask Medium 
change 

Field change Medium 

Factory mask Medium 
change 

Write Very high 

None 

Low to 
medium 

Medium 

Irreversible 

Irreversible 

Low 

Irreversible 

Irreversible 

Irreversible 

None 
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The increased basic circuit functionality 
available at each new generation has not only 
been an important part of semiconductor de- 
sign, but has also caused design methods to  
change with the generations. This book pro- 
vides examples, as summarized in Table 5. 

The design of most relatively high speed 
digital systems (including low- to mid-range 
minicomputers) is carried out using standard 
register transfer integrated circuits complete 
with data path and memory. For higher per- 
formance computers, there is no alternative t o  
using either tightly packed standard integrated 
circuits or building a unique set of integrated 
circuits using some form of customization. The 
high performance IBM and Amdahl machines, 
for example, use custom ECL circuits or gate 

Table 5. Design M e t h o d  versus Generation 

arrays to improve packaging. Although Sey- 
mour Cray continues to build his high speed 
computers (the CDC 6600, 7600 and Cray 1) 
with no custom logic, he does so by using im- 
pressively dense modules with high density in- 
terconnection and freon cooling. 

The current spectrum of integrated circuits 
and their use is summarized in Table 6. 

The Changing Nature of System Design 

With the advent of the processor-on-a-chip, 
digital system design has been, or soon will be, 
converted completely to computer system de- 
sign (design at the processor-memory-switch 
level of Chapter 1, View 1). Problems such as 
controlling a CRT, controlling a lathe, building 

Design Method 

Generations 
Examples in 

First Second Third Fourth Fifth this Book 

Combinational and sequential; use of 
"standard" modules, integrated circuits 

Read-only memory and PLA: micro- 
programming 

Microprogramming with standard RT ele- 
ments (high performance) minor logical 
design 

Programming using micros and logic for 
interfaces 

PMS design using completely specified 
and predesigned microcomputer com- 
ponents 

Customized chip design and standard 
(logic) design (high performance) 

S S S - - 18-bit: 
PDP-8 

- - m - PDP-9: 
PDP-1 1 

S 

- - - S m CMU- 11 

- P P S X LSI-11 

- - m m m LSI-11 

s - The standard method for most digital systems 
m - Done by manufacturers of basic equipment 
x - Alsoused 
p - Prelude to micros. also done using minis 
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Table 6. Integrated Circuit Organization and Use in Various Computers 

Unique Performance 
Organization Technology Chips (MIPS) cost Examples 

Microcomputer 

Microprocessor 

Microprocessor 

Microprocessor 

Bit-slice 
(micro- 
programmed) 

Gate array 

Medium-scale 
integration 

Gate array 

Small-scale 
integration 

MOS. very 
large-scale 
integration 
(VLSI) 

MOS 

MOS 

MOS 

l T L  

TLL 

TT L 

EC L 

EC L 

1 

1 

2-4 

> 4  

Few 

Most 

Few 

All 

Std. 

0.1 Lowest Intel 8048, MOSTEK 
3870 

Intel 8080, Zilog 280. 
Motorola 6800 

DEC LSI-1 1, 
Fairchild F-8 

Burroughs 880. 
National IMP 16 

DEC 11/34 
Floating-point 
Processor 

Raytheon RP16. 
IBM Series 1 

DEC VAX 1 1 /780.11/70. 
HP 3000 

IBM 37011 68, 
Amdahl47Oh6 

8 0  Highest CRAY 1 

a billing machine, or implementing a word pro- 
cessing system become computer system design 
problems similar to those attacked over the first 
three generations. The hardware part of the de- 
sign, the interface to the particular equipment, 
is straightforward. The major part of the design 
is the programming. Since the late 1940s, three 
generations have learned about computer de- 
sign, especially programming. The first gener- 
ation discovered and wrote about it. Then it 
was rediscovered and applied to minicomputer 
systems. This time, it is being learned by every- 
one who must use and program the micro- 
computer. Each time, for each individual or 
organization, the story is about the same: 
people start off by programming (using binary, 

octal, or hexadecimal codes) small tasks, using 
no structure or method of synchronizing the 
various multiple processes; the interrupt mecha- 
nism is learned, and the symbolic assembler is 
employed; and finally some more structured 
system, possibly an operating system, is em- 
ployed. Occasionally, users move to high level 
languages or macroassemblers. 

I n  view of this cyclical history, it seems likely 
that current digital systems design practice, 
which consists of building simple hardware in- 
terfaces to relatively poorly defined buses to- 
gether with programming the application, will 
be relatively short lived. The design method of 
the future (fifth generation) will be at the PMS 
level component, although at the moment there 
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are several factors that prevent this from being 
done reliably and cheaply by large numbers of 
engineers. 

One factor which impedes this progress to the 
fifth generation is the (fundamental) inter- 
connect problem. Currently, many small-scale 
integration components are required to  handle 
the mismatch between microprocessor chips 
and memory and 1 / 0  subsystems. Further- 
more, buses are hard to  specify, as will be dis- 
cussed in Chapter 1 1 ,  

Another impediment is that system level be- 
havior (the interaction of processors, memories, 
and transducers via switches and links) is less 
understood than is interaction at the register 
transfer level. 

Of substantial assistance in easing the transi- 
tion to  the fifth generation would be base level 
operating systems that were embedded in hard- 
ware. These should be placed in read-only 
memory to  give a feeling of permanence so that 
users would be less likely to  embark on the ex- 
pensive, unreliable rediscovery path. 

In summary, standard components must be 
built that can be interfaced to a wide range of 
external systems, via clearly defined links, using 
parameters that are specified by a field pro- 
gramming method (instead of using logic design 
and building with interconnection on modules). 
I n  this way, the complexity of individual in- 
tegrated circuits can be increased; and with a 
standard method for interconnection, higher 
volume and lower costs will result. 

Design Costs versus Unit Costs 

Before discussing the alternatives associated 
with integrated circuit design, it is important to 
characterize the various costs. Figure 9 shows, 
at a crude level, what the relative design costs 
might be for various inter- and intra-integrated 
circuit design methods. The design cost is highly 
variable depending on the project size, its goals, 
the manufacturing volumes expected, and most 
important, the computer aided design programs 
that are available. 

1 CUSTOM 
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0 u INTRA IC 
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GATE ARRAY 
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UNIVERSAL LOGIC 
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I 
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CIRCUIT DENSITY - 
NOTE 

None e x i s t  to date 

Figure 9 
density using various design methods 

Current design cost (or time) versus circuit 

The lowest design cost is achieved by staying 
completely away from modifying the integrated 
circuits, except for programming read-only 
memories. There are two elements to the cost of 
read-only memories, programming cost and 
parts cost. The programming cost has already 
been discussed, so this discussion is limited to  
parts cost. There are two kinds of read-only 
memories, the programmable read-only mem- 
ory (PROM) and the masked read-only mem- 
ory (ROM). PROM chips have a higher initial 
cost than ROMs, but they provide some inven- 
tory advantages in a manufacturing environ- 
ment because a common stock of unpro- 
grammed parts can be divided into various pro- 
grammed parts rather than stocking a full sup- 
ply of each required part. In many high volume 
applications, however, the cost of the extra test- 
ing steps involved in the common stock ap- 
proach, plus the extra piece part costs for 
PROMS, make masked ROMs preferable. 

The design costs discussed in the preceeding 
paragraphs are summarized in Figure 10, which 
shows the costs for conventional programming, 
costs for microprogramming, and the design 



42 

z 
0 

: 
0 z 

r 

0 0 

z 
c? 
w 
0 

COMPUTER ENGINEERING 

1 CUSTOM DESIGN 

STANDARD CELL 

GATE ARRAY 
IASSUME A FAMILY1 

STANDARD CIRCUITS. 
LOGIC DESIGN 

ROMIPLA DESIGN 
USING CDMBINATIONAL 
DESIGN 

MICROPROGRAMMING 
STANDARD PARTS 
DESIGN 

PROGRAMMING 

I I I I 
SSI MSI LSI VLSl 

CIRCUIT DENSITY --C 

Figure 10. 
density for various design techniques. 

Manufacturing costs versus LSI circuit 

costs for methods which use combinational 
techniques rather than programming tech- 
niques. These latter methods, employing read- 
only memories and programmable logic arrays, 
will be discussed shortly. The most costly ap- 
proach of all shown in Figure 10, excluding in- 
tra-IC design, is design using standard circuits 
and associated design techniques. 

Design of Integrated Circuits (Intra-IC 
Design) 

Despite the prospects of higher design cost 
with custom integrated circuits than with stand- 
ard integrated circuits, and, in  some cases, 
higher manufacturing cost, there are numerous 
reasons that a designer is often forced to design 
integrated circuits. These are summarized in 
Table 7. 

There are some drawbacks to custom in- 
tegrated circuit design. These are listed in Table 
8. 

The use of custom integrated circuits to re- 
duce the number of discrete components or  to 
reduce the total number of integrated circuits in 
a machine improves the reliability because the 
reliability of a system is mostly a function of the 

number of explicit physical connections, includ- 
ing the bonds to the semiconductor die. Thus, 
the anticipated reliability of two equal function- 
ality designs can be compared by counting dis- 
crete circuit pins, integrated circuit pins, 
module pins, and connector pins. 

Gate Array Design 

The most straightforward and extensively 
used intra-integrated circuit design method is to 
modify an existing design. I f  this approach can- 
not be used, the next most straightforward 
method is to use arrays of gates and inter- 
connect them to form the desired function. De- 
sign with gate arrays occurs in a completely 
defined environment because there is only one 
circuit from which the gate is formed and the 
gate can be completely characterized. The man- 
ufacture of gate arrays is fairly simple because 
the fabrication technique of all but the last few 
semiconductor processing steps is identical for 
all designs. The customization, accomplished 
by interconnection of the gates by metal, is car- 
ried out last. Interconnection is a well under- 
stood aspect of logic design and is used t o  form 
the more complex macrostructures (various 
flip-flop types, adders, etc.) and then to  form 
the higher levels of design by using arrays of 
gate arrays. A disadvantage of gate arrays is 
that gate array design methods do not permit 
the high density possible with the more custom 
methods because device placement is fixed. 

It should be noted that gate array design is 
not a new idea brought about by the need for a 
simple method of customizing large-scale in- 
tegrated circuits. Instead, it was one of the de- 
sign philosophies advocated in the first few 
generations. The concept then was to have a 
single module containing a set of gates, and all 
subsequent logic design would be done in terms 
of that module. For example, flip-flops would 
be constructed by interconnecting the gates. A 
design predicated on a single module type im- 
mensely simplifies the spare stocking and ser- 
vicing aspects, and it is possible to  troubleshoot 
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Table 7. Reasons To Do Custom integrated Circuit Design 

1. 

2.  

3. 

A performance advantage can be gained. 

Product life cycle costs can be lower if diagnosability and reliability features are added 

Diagnostic labor can be a high percentage of printed circuit board manufacturing cost. Diagnosis to the chip level 
can be sped up by features within the chip, and by a lower chip count, with a resultant lower manufacturing cost. 

Data buses can be absorbed entirely within a chip to avoid bus interface costs. Even shortening a data bus from 
multi-board to single-board length may reduce cost and/or improve performance by reducing stored energy and its 
attendant drive/speed penalties. 

Innovations concealed within a chip are difficult for competitors to study and duplicate 

Performance barriers rnay be breakable only through custom large-scale integration. In central processor design 
especially. and perhaps for certain memory interface applications, a custom integrated circuit approach rnay be the 
only practical way to get around conflicting issues of size. power, capacitance, etc. 

In some engineering environments there are extremely small amounts of space or very little power. 

4. 

5. 

6. 

7. 

Table 8. Reasons Not To Do Custom Integrated Circuit Design 

1. For designs in the 100-500 equivalent gate complexity range, it may take up to a year to do the design with 
primitive design tools. 

For designs in the 100-500 equivalent gate complexity range, it rnay take up to $100,000 to do the design 

Unless substantial product volumes are obtained, the chip cost will be high relative to off-the-shelf chips. 

A decision will have to be made whether to have the design done by an outside vendor or within the company. This 
can be a very complicated and expensive decision. 

The logic design and logic partitioning for large-scale integrated circuit design is different from that of conventional 
logic design, and designers used to dealing with conventional design will have to assimilate new knowledge to 
design large-scale integrated circuits themselves or even to talk with integrated circuit designers. 

2. 

3.  

4. 

5. 

a problem by simply replacing circuits accord- 
ing to a pattern. Designers did not find these 
advantages important enough at that time, 
however, so the gate array concept was set aside 
until it was rediscovered by integrated circuit 
designers. 

A representative gate array is a Raytheon 
RA-116. It has 300 TTL Schottky gates, of two 
cluster configurations, each repeated twelve 
times within the 160 mil X 160 mil chip: 

Type 1 
3 external driver gates (4-input NAND) 
5 internal driver gates (3-input NAND) 
5 internal expansion gates (3-input 
NAND) 

2 external driver gates (4-input NAND) 
5 internal driver gates (3-input NAND) 
5 internal expansion gates (3-input 
NAND) 

Type 2 
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Within each cluster, the expansion gates may 
be combined with the driver gates to form 7 or 8 
input NAND gates and AND-OR-INVERT 
circuits with up to six product terms. The gates 
have a typical propagation delay of 5-6 nanose- 
conds and dissipate 5.5-6 milliwatts per driver 
and 1 milliwatt per OR expander. Two metal 
layers are used for interconnect, and the result- 
ing circuitry can be connected to the outside 
world by means of 56 external pins, including 
power and ground. 

Because the use of integrated circuit gate ar- 
rays is recent, data on package count reduction 
is scarce, but one informal study for the Ray- 
theon RP- 16 aerospace computer measured a 
nine to  one replacement ratio and an overall im- 
provement by a factor of 2 over a system con- 
structed with standard components [Parke, 
19781. 

A 920-gate MOS array of 3 input NOR gates 
has been reported by Nakano et al., [1978]. Its 
3-nanosecond gate delay illustrates the per- 
formance potential as the metal oxide semi- 
conductor process continues to progress toward 
smaller, faster gates. For truly high speed appli- 
cations, an ECL gate array can be used. These 
devices, with subnanosecond speeds, exploit the 
inherent properties of current mode logic to ob- 
tain a particularly flexible element [Gaskill et 
al., 19761. 

Standard Cell Design 

An alternative to  gate array design is stand- 
ard cell design. Standard cell design is identical 
to the logical design of the first few generations 
because there is a previously designed, well 
characterized set of primitive components 
(AND gates, flip-flops) in which the design is 
carried out. The advantage of the standard cell 
design methods is that special functions can be 
mixed on the chip in greater variety. There may 
also be a density advantage over gate arrays. 
However, in  some schemes each cell occupies a 
different space and has a fixed shape. Careful 

planning of the cell arrangements is necessary 
to minimize loss of space. Hence, the improve- 
ment in packing density is not as substantial as 
direct comparisons between standard cell tech- 
nology and gate array technology might a t  first 
indicate. In addition, if there are a large number 
of circuit types, their interconnection rules may 
not be characterized well enough to achieve a 
quick, cheap design that works the first time. 

Custom Design 

Custom design is in some ways a variant of 
the standard cell because designers typically 
have a set of favorite circuits which they inter- 
connect to create designs for specified appli- 
cations. With custom design, the designer can 
(theoretically) specify a circuit for each use 
within a particular logic design. For example, 
upon observing that a particular gate or flip- 
flop only drives a certain load, the designer can 
modify that gate or flip-flop to provide only the 
appropriate driving capability. Therefore, with 
custom design, the whole integrated circuit can 
theoretically be an optimum size, since each 
part is no larger than i t  need be. The advantages 
are clearly size, cost, and speed. The design 
costs are high because each part can, in prin- 
ciple, be customized. The quality of the circuit 
design is totally dependent on the designer, who 
must analyze each circuit geometry in terms of 
his expectation of performance, operating mar- 
gins, etc. To the extent that this analysis is car- 
ried out, the circuit is clearly optimal. 

Universal Logic Arrays, PROMS, and ROMs 

Also shown in Figure 9 is a hypothetical line 
for universal logic arrays. For at least 15 years, 
academicians have studied the possibility of de- 
signing a single array of logical design elements, 
or a collection of such arrays, that could be in- 
terconnected on a custom basis to  carry out a 
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given function. The gate array can be looked at 
as the simplest example of this type of design. 
While many are skeptical that such a device ex- 
ists, a line representing it is placed on the graph 
as a target for those who search for the one 
truly universal logic array. 

Both programmable read-only memories and 
masked read-only memories are commonly 
used, but trivial, forms of the truly universal ar- 
rays, because they can be used in a table lookup 
fashion to create several functions of a number 
of input variables. For example, a 1,024 word 
read-only memory arranged in a 256 X 4-bit 
fashion can generate 4 independent functions of 
8 variables. This is a distinct alternative for us- 
ing a conventional gate structure to carry out 
combinational functions. A disadvantage of 
this method is that the required read-only mem- 
ory size doubles for each additional input vari- 
able. 

Programmable Logic Arrays 

The progammable logic array (PLA) is a 
combinational circuit which remedies the dis- 
advantages of the read-only memory implemen- 
tation of combinational functions by allowing 
the use of product terms rather than completely 
decoding the input variables. Figure 11  shows a 
typical circuit, which consists of separate AND 
and OR arrays. Inputs are connected to the 
AND array, and outputs are drawn from the 
OR array. Each row in the programmable logic 
array can implement an AND function of se- 
lected inputs or their complements, thus form- 
ing a Boolean product term, and the OR array 
can combine the product terms to implement 
any Boolean function. 

A simple application is operation-code de- 
coding. For the PDP-11, the 16-bit Instruction 
Register could be directly connected to a pro- 
grammable logic array and the output thereof 
used to specify the address of the microprogram 
that executed that instruction. Three different 

types of operation-code decoding are custom- 
arily applied to PDP-I 1 instructions: source 
mode decoding, destination mode decoding, 
and instruction decoding. With a program- 
mable logic array implementation, a PLA could 
be used for each of these decoding operations, 
and only three chips would be required. A read- 
only memory implementation, on the other 
hand, would require 128 K X 8 bits for address 
mode decoding and 64 K X 8 bits for instruc- 
tion decoding. Using 2 K X 8-bit read-only 
memories, 33 chips would be required. For this 
reason, modern minicomputers, such as the 
PDP- 1 1 /34, use programmable logic arrays 
rather than read-only memories or com- 
binational logic for instruction decoding. The 
technique is also extended downward into mi- 
crocomputers such as the LSI-l l ,  where pro- 
grammable logic arrays are used to conserve the 
die area used by the microcomputer control 
units. 

The programmable logic array becomes an 
even more useful building block when it is made 
field programmable - the FPLA. The program- 
mable connectors shown in Figure 1 1  are fu- 
sible nichrome links that are burned out when 
the unit is programmed. 

When a register is added to the outputs of the 
programmable logic array and incorporated in 
the same integrated circuit, a simple sequential 
machine is obtained in one package. Since regis- 
ter circuit packages are pin intensive, adding 
registers to programmable logic arrays (or to 
read-only memories) permits about a factor of 2 
package count reduction in typical applications. 

The first programmable logic arrays had 
propagation times of the order of 150 nanose- 
conds and were thus suitable building blocks 
for slow, low-cost computers. Propagation 
times of 45 nanoseconds are quite common to- 
day, and the programmable logic array is now 
more widely used. An attractive application 
with these higher speed components is the re- 
placement of the small-scale integration and 
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MEMORY 

FPLA 

PROGRAMMABLE 
CONNECTORS 

H E A D  HEAD 

Figure 1 1. Signetics field programmable logic array 
(FPLA) (courtesy of Signetics Corporation, from Signetics 
Field Programmable Logic Arrays - An Applications 
Manual, February 1977; copyright @ 1977 by Signetics 
Corporation). 

Figure 12. 
of Mernorex Corporation and S.H. Puthuff. 1977). 

Family tree of memory technology (courtesy 

medium-scale integration packages used to im- 
plement the control logic for Unibus arbitration 
in PDP-I 1 computers. 

A more complex application than instruction 
decoding has been documented [in Logue et al., 
19751. An IBM 7441 Buffered Terminal Con- 
trol Unit was implemented using program- 
mable logic arrays and compared with a version 
implemented with small- and medium-scale in- 
tegration. The programmable logic array design 
included two sets of registers fed by the OR ar- 
ray (PLA outputs): one set fed back to the 
AND array (PLA inputs); the other set held the 
PLA outputs. A factor of 2 reduction in printed 
circuit board count was obtained with the pro- 
grammable logic array version. The seven pro- 
grammable logic arrays used in the design 
replaced 85 percent of the circuits in the small- 
and medium-scale intregration version. Of these 
circuits, 48 percent were combinational logic 
and 52 percent were sequential logic. 

MEMORY TECHNOLOGY 
The previous section discussed the use of 

memory for microprogramming and table 
lookup in logic design, but that is not the princi- 
pal use of memory in the computer industry. 
The more typical use of memory components is 
to form a hierarchy of storage levels which hold 
information on a short-term basis while a pro- 
gram runs and on a longer term basis as per- 
manent files. Figure 12 shows the various 
technologies employed in these memory appli- 
cations. Although the principal focus of this 
section is on core and semiconductor memories, 
slower speed electromechanical memories 
(drums, disks, and tapes) are considered super- 
ficially, as their performance and price im- 
provements have pushed the  computer  
evolution. Because the typical uses for memory 
usually require read and write capabilities, 
write-once or read-only memory such as video 
disks is excluded from the discussion. 
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Measurement Parameters 

Because memory is the simplest of com- 
ponents, it should be possible to  discuss mem- 
ory using a minimal number of measurement 
parameters. One of the most important parame- 
ters is the state of development of the memory 
technology at  the time the other parameters are 
measured, relative to the likely life span of that 
technology. Unfortunately, this is one of the 
most difficult parameters t o  quantify, although 
its effects are readily observable, principally in 
the rate of change of the other parameters asso- 
ciated with that technology. Thus, in new tech- 
nologies many of the parameters vary rapidly 
with time. This is particularly true of semi- 
conductor memory price, which has declined at 
a compound rate of 28 percent per year (which 
amounts to about 50 percent in two years). The 
price is expressed only as price/bit, but it is im- 
portant to know the price (or size) of the total 
memory system for which that price applies. T o  
get the lowest price per bit, a user may be forced 
to a large system because of economy of scale. 

Performance for cyclical memories, both the 
electromechanical types such as disks and the 
electronic types such as bubbles, is expressed in 
two parameters: the time to access the start of a 
block of memory and the number of bits that 
can be accessed per second after the transfer be- 
gins. Other parameters, such as power con- 
sumption,  temperature  sensitivity, space 
consumption, and weight, affect the utility of 
memories in various applications. In  addition, 
reliability measures are needed to  see how much 
redundancy must be placed in the memory sys- 
tem to operate at a given level of availability 
and data integrity. 

In  summary, the relevant parameters for a 
given memory are: 

I .  State of development of the technology 
at  the time the measurements are taken 
relative to the likely life span of the tech- 
nology. 

2. Price per bit. 
3 .  Total memory size or total memory 

4. Performance. 
price. 

a. Access time to the first word of the 
block. 

b. Time to transfer each word (data 
rate) in the block. 

5. Operational power, temperature, space, 

6 .  Volatility. 
7. Reliability and repairability. 

weight. 

As indicated by the rapidity of the parameter 
changes, a good example of a technology that is 
young relative to its expected total lifetime is 
semiconductor memory. Figure 7 gives past 
prices and expected future prices of semi- 
conductor memory. As mentioned above, these 
memories have declined in price every two years 
by 50 percent, and that rate of decline is ex- 
pected to continue well into the 1980s because 
of continued increases in semiconductor den- 
sities. Figure 13, a graph by Dean Toombs of 
Texas Instruments, shows memory size versus 
performance with time for random-access mem- 
ories, and cyclically accessed charge-coupled 
devices (CCDs) and magnetic bubbles. 

Core and Semiconductor Memory 
Technology for Primary Memory 

The core memory was developed early in the 
first generation for Whirlwind (1953) and re- 
mained the dominant primary memory com- 
ponent for computers until it began to  be 
superseded by semiconductor technology. The 
advent of the I-Kbit memory chip in 1972 
started the demise of core as the dominant 
primary memory medium, and the crossover 
point occurred for most memory designs with 
the availability of the 4-Kbit semiconductor 
chip in  1974. 

Over the period since the early 1960s, the 
price of core memory declined roughly at  a rate 
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Figure 13. Memory size versus access time for various 
memories and yearly availability (courtesy of Dean 
Toombs. Texas Instruments. Inc.) 
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Cost per bit of core memory estimated by 

of 19 percent per year. This decline can be seen 
in the DEC 12-bit machine memory prices, the 
DEC 18-bit machine memory prices, and in the 
IBM 360/370 memory prices (since 1964). The 
price of PDP-10 memory has declined at 30 per- 
cent per year, although it is unclear why. A pos- 
sible reason is that the modular memory 
structure had a high overhead cost; with sub- 
sequent implementations, the memory module 
size was increased, thereby giving an effective 
decrease in overhead electronics and packaging 
costs and a greater decrease in the cost per bit. 

The cost of various memories was projected 
by several technology marketing groups in the 
period 1972-1974. Each study attempted to 
analyze and determine the core/semiconductor 
memory crossover point. Three such studies are 
plotted in Figure 14 along with Turn’s [I9741 
memory price data and Noyce’s [1977a] semi- 
conductor memory cost (less overhead electron- 
ics) projection. Most crossover points were 
projected to be in 1974, whereas one study 
showed a 1977 crossover. Even though all stud- 
ies were done at about the same time, the varia- 
tion in the studies shows the problem of getting 
consistent data from technology forecasts. 

While these graphs  of core and  semi- 
conductor prices and performance permit an 
understanding of trends in the principal use 
areas for these devices, additional information 
is needed for disk and tape memory in order to 
complete the collection of memory technologies 
that can be used to form a single memory hier- 
archy. 

Disk Memories 

Disk memories are a significant part of most 
systems costs in  the middle-range minicomputer 
systems; in larger systems, they dominate the 
costs. 

Although access time is determined by the 
rotational delays and the moving head arm 
speed, the single performance metric that is 
most often used is simply memory capacity and 
the resultant cost/bit. In  the subsequent section 
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on memory hierarchies, it will be argued that 
performance parameters are less important 
than cost because more higher speed memory 
can be traded off to gain the same system level 
performance at a lower cost. 

Memory capacity is measured in disk surface 
areal density (i.e., the number of bits per in2) 
and is the product of the number of bits re- 
corded along a track and the number of tracks 
of the disk. Figure 15 shows the progress in 
areal recording densities using digital recording 
methods. Figure 16 shows the price of the state- 
of-the-art large, multiple platter, moving head 
disks. Note that the price decline is a factor of 
I O  in 9 years, for a price decline of 22 percent 
per year. 

Figure 17 shows the performance plotted 
against the price per bit for the technology in 
1975 and 1980. 
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Figure 15. 
recording media (courtesy of Memorex Corporation, 
1978). 
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Figure 16. Price per bit of large, moving head disks and 
semiconductor memories (courtesy of Mernorex 
Corporation, 1977). 
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Magnetic Tape Units 

Figure 18 shows the relevant performance 
characteristics of magnetic tape units. The data 
is for several IBM tape drives between 1952 and 
1973. It shows that the first tape units started 
out at 75 inches per second and achieved a 
speed of 200 inches per second by 1973. Al- 
though this amounts to only a 5 percent im- 
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Figure 18 Characteristics of various IBM magnetic 
tape units versus time 

provement per year in speed over a 21-year 
period, this is a rather impressive gain consid- 
ering the physical mass movement problems in- 
volved. It is akin to a factor of 3 improvement 
in automobile speed. 

The bit density (in bits per linear inch) has 
improved from 100 to 6,250 in the same period, 
for a factor of 62.5, or 23 percent per year. With 
the speed and density improvements, the tape 
data rate has improved by a factor of 167, or 29 
percent per year. 

Tape unit prices (Figure 19) are based on the 
various design styles. Slow tape units (mini- 
tapes) are built for lowest cost. The most cost 
effective seem to be around 75 inches per sec- 
ond (the initial design), if one considers only the 
tape. High performance units, though dis- 
proportionately expensive, provide the best sys- 
t em cost effectiveness . 

Memory Hierarchies 

A memory hierarchy, according to Strecker 
[1978:72], “is a memory system built of a num- 
ber of different memory technologies: relatively 
small amounts of fast, expensive technologies 
and relatively large amounts of slow, in- 
expensive technologies. Most programs possess 
the property of locality: the tendency to access a 
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small, slowly varying subset of the memory lo- 
cations they can potentially access. By exploit- 
ing locality, a properly designed memory 
hierarchy results in most processor references 
being satisfied by the faster levels of the hier- 
archy and most memory locations residing in 
the inexpensive levels. Thus, in the limit a mem- 
ory hierarchy approaches the performance of 
the fastest technology and the per bit cost of the 
least expensive technology.” 

The key to achieving maximum performance 
per dollar from a memory hierarchy is to de- 
velop algorithms for moving information back 
and forth between the various types of storage 
in a fashion that exploits locality as much as 

possible. Two examples of hierarchies which de- 
pend on program locality for their effectiveness 
are the one level store (demand paging), first 
seen on the Atlas computer [Kilburn et al., 
19621, and the cache, described by Wilkes 
[I9651 and first seen on the IBM 360/85 [Lip- 
tay, 19681. Because both of these are automat- 
ically managed (exploiting locality), they are 
transparent to the programmer. This is in con- 
trast to the case where a programmer uses sec- 
ondary memory for file storage: in that case, he 
explicitly references the medium, and its use is 
no longer transparent. 

Table 9 lists, in order of memory speed, the 
memories used in current-day hierarchies. 

Table 9. Computer System Memory Component and Technology 

Part 

Transparency 
(To Machine Characteristics on 
Language 
Programs) 

Which Its Use Is 
Based 

Microprogram memory Yes Very fast 

Processor state No  Very small. very fast register set (e.g., 16 words) 

Alternative processor state Yes 
context 

Same (so speed up processor context swaps) 

Cache memory Yes Fast. Used in larger machines for speed 

Program mapping and 
segmentation 

Yes Small associative store 

Primary (program) memory No 

Paging memory 

Local file memory 

Yes 

No 

Relatively fast. and large depending on proces- 
sor weed 

Can be electromechanical, e.g., drum, fixed head 
disk, or moving head disk. Can be CCD or bub- 
bles. 

Usually moving head disk, relatively slow, low 
cost. 

Archival files memory Yes (preferably) Very slow, very cheap to permit information to 
be kept forever. 
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There is a continuum based on need together 
with memory technology size, cost, and per- 
formance parameters. 

The following sections discuss the individual 
elements of the heirarchy shown in Table 9. 

Microprogram Memories. Nearly every 
part of the hierarchy can be observed in the 
computers in this book. Part I l l  describes PDP- 
1 1  implementations that use microprogram- 
ming. These microprogram memories are trans- 
parent to the user, except in machines such as 
the PDP-I 1 /60 and LSI-11 which provide user 
microprogramming via a writable control store. 
Mudge (Chapter 13) describes the writable con- 
trol storage user aspects associated with the 
11/60 and the user microprogramming. 

In retrospect, DEC might have built on the 
experience gained from the small read-only 
memory used for the PDP-9 (1967) and ex- 
ploited the idea earlier. In particular, a read- 
only memory implementation might have pro- 
duced a lower cost PDP-l1/20 and might have 
been used to implement lower cost PDP-10s 
earlier. 

I n  principle, it is possible to have a cache to 
hold microprograms; hence, there could be an- 
other level to the hierarchy. At the moment, this 
would probably be used only in high cost/high 
performance machines because of the overhead 
cost of the loading mechanism and the cache 
control. However, like so many other technical 
advances, it will probably migrate down to 
lower cost machines. 

Processor State Registers. To the machine 
language program, the number of registers in 
the processor state is a very visible part of the 
architecture. This number is solely dictated by 
the availability of fast access, low cost registers. 
I t  is also occasionally the means of classifying 
architectures (e.g., single accumulator based, 
general register based, and stack based). 

I n  1964, even though registers were not avail- 
able in single integrated circuit packages, the 
PDP-6 adopted the general register structure 

because the cost of registers was only a small 
part of the system cost. In Chapter 21 on the 
PDP-IO, there is a discussion of whether an ar- 
chitecture should be implemented with general 
registers in an explicit (non-transparent) fash- 
ion, or whether the stack architecture should be 
used. Although a stack architecture does not 
provide registers for the programmer to  man- 
age, most implementations incur the cost of reg- 
isters for the top few elements of the stack. The 
change in register use from accumulator based 
design to general register based design and the 
associated increase in  the number of registers 
from 1 to 8 or 16 can be observed in com- 
parisons of the 12-bit and 18-bit designs with 
the later PDP-IO and PDP-11 designs. 

Alternative Processor State Context 
Registers. As the technology improved, the 
number of registers increased, and the proces- 
sor state storage was increased to provide mul- 
tiple sets of registers to improve process context 
switching time. 

Cache Memory. In the late 1960s, the cache 
memory was introduced for large scale com- 
puters. This concept was then applied to the lat- 
est PDP-10 processor (KLIO). It was applied to  
the PDP- 1 1 /70 in 1975 when the relatively large 
( 1  Kbit), relatively fast (factor of 5 faster than 
previously available) memory chip was in- 
troduced. The cache is described and discussed 
extensively in Chapter 10. It derives much 
power by the fact that it is an automatic mecha- 
nism and is transparent to the user. It is the best 
example of the use of the principle of memory 
locality. For example, a well designed cache of 4 
Kbytes can hold enough local computational 
memory so that, independent of program size, 
90 percent of the accesses to memory are via the 
cache. 

Program Mapping and Segmentation. A 
similar memory circuit is required to manage 
(map) multiprogrammed systems by providing 
relocation and protection among various user 
programs. The requirements are similar to the 
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cache and may be incorporated in the caching 
structure. The PDP-IO models with the KIlO 
processor use an associative memory for this 
mapping function, and the VAX 11/780 uses a 
64-entry, 2-way associative memory. 

Paging Memory. The Atlas computer [Kil- 
burn, et al., 19621 was designed to have a single, 
one level, large memory. This structure ulti- 
mately evolved so that multiple users could 
each have a large virtual address and virtual 
machine. The paging mechanism works because 
of the locality exhibited by program references. 
Denning pointed out the clustering of pages for 
a given program at a given time and introduced 
the notion of the working set 119681. For most 
programs, the number of pages accessed locally 
is small compared with the total program size. 
Initially, a magnetic drum was used to imple- 
ment the paging memory; but as disk tech- 
nology began to dominate the drum, both fixed 
head and moving head disks (backed up with 
larger primary memories) were used as the pag- 
ing memories. Denning’s tutorial article [ 19701 
is an excellent discussion of this section of the 
memory hierarchy. In the next few years, the 
relatively faster and cheaper charge coupled de- 
vice semiconductor memories and bubble mem- 
ories are clearly the candidates for paging 
memories. Hodges [ 19751 compares the candi- 
dates for paging memory in terms of reliability, 
power, cost per bit, and packaging. 

Local File Memory and Archival File 
Memory. For local file memory in medium- 
sized to large-scale systems there is no  alterna- 
tive to disks. Archival files, however, are usu- 
ally kept on magnetic tapes, which permit files 
to be stored cheaply o n  an indefinite basis. 
There are usually fewer memory technologies 
used in smaller systems than in larger systems 
because the smaller systems cannot afford the 
overhead costs (disk drives, tape drives, etc.) as- 
sociated with the various technologies. At most, 
two levels of storage would probably exist as 
separate entities in smaller systems. 

Alternatively, one might expect a com- 
bination of floppy disk, low cost tape, and mag- 
netic bubbles to be used to reduce the primary 
memory size and to provide file and archival 
memory. Currently, the floppy disk operates as 
a single level memory. Here there are two alter- 
natives for technology tradeoff using parts in 
the hierarchy: a tape or floppy disk can be used 
to provide removability and archivability, 
whereas bubbles or charge-coupled devices can 
be used to provide performance. The Strecker 
paper [ 19781 quoted at the beginning of this sec- 
tion on memory hierarchies elaborates on these 
concepts. 

MEASURING (AND CREATING) 
TECHNOLOGY PROGRESS 

The previous sections have presented tech- 
nology in terms of exponentially decreasing 
prices and/or exponentially increasing perform- 
ance. This section presents a basis for this con- 
stant change rate. The progress of a particular 
technology as a function of time, qt), has been 
classically observed to be: 

T(t )  = K X e c t  

where K = the base technology at the beginning 
of the time frame, and c = a learning constant. 

This can be converted to a yearly improvement 
rate, r ,  by changing the base of the exponential 
to: 

T ( t )  = T X rt-[O 

where T = the base technology at to, and r = 
yearly increase (or decrease) in the technology 
metric. 

This is the same form used for declining (or in- 
creasing) cost from base c: 

c = c x r t-tO 
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Clearly there are manufactured goods that 
neither improve nor decrease in price exponen- 
tially, although many presumably could with 
the proper design and manufacturing tooling 
investments. The notion of price decline is com- 
pletely tied to the cumulative learning curves of 
( I )  people building a product for a long time, 
(2) process improvement based on learning to 
build it better, and (3) design improvement by 
engineers learning from the history of design. 
Production learning per se is inadequate to 
drive cost and prices down because, after an ex- 
tremely long time in production, more units 
contribute little to learning. With inflation in la- 
bor costs, the costs actually rise when the learn- 
ing is flat. In  order to  provide a base for 
predicting the inflationary effect, the consumer 
price index has been plotted in Figure 20. 

Learning curves do not appear to be under- 
stood beyond intuition. They are (empirical) 
observations that the amount of human energy, 
En, required to produce the nth item is: 

E n = K X n d  

where K and d a r e  learning constants. Thus, by 
producing more items, the repetitive nature of a 
task causes learning, and the time (and perhaps 
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Figure 20. 
1967 as base. 

Consumer Price Index using 

cost) to produce an item decreases with the 
number produced and not with the calendar 
time in which an object is produced. 

In his study of technology progress, Fusfeld 
[ 19731 took six items, chose a measure of prog- 
ress in the production thereof, and plotted that 
measure against cumulative units produced. In  
each case, he found a relationship of the form: 

Ti = a X i h  

where i is the number of units produced and Ti 
is the value of his selected technology progress 
measure at the ith unit - the same as the learn- 
ing curves would predict. 

The graph for turbojet engines, where he used 
fuel consumed per pound as the technology 
measure, is reproduced in Figure 21. The results 
for all six items studied are shown in Table 10. 

Where two values are given for the tech- 
nology progress constant, a second rate of prog- 
ress was observed after a significant shift in the 
industry occurred. For example, such a shift oc- 
curred in the automobile industry in the late 
1920s when the acceptance of the automobile, 
the development of a new tire, and the expan- 
sion of the public road network operated con- 
currently to change the nature of the industry. 
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turbojet engines [Fusfeld, 19731. 
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Examination of the table will reveal sub- 
stantial variations in the technology progress 
constant from item to item. This is probably be- 
cause most of the technologies represented 
above are mechanically oriented with associ- 
ated physical limits. Computer technology is 
electronically oriented and has not yet reached 
its limits. In  essence, the table is comparing sys- 
tems constrained by Newton’s Laws with those 
constrained by Maxwell’s Equations. 

Using the two formulas, 

T(t)  = K X e Ct 

and 

T i = a X i b  

Fusfeld [I9731 related the unit learning curve 
concept to the more conventional, timely view 
of technology progress when the number of 
units produced increases exponentially with 
time, that is, relations expressed in the first two 
formulas are equivalent when the condition ex- 
pressed by the following formula holds: 

This previous formula indicates that the pro- 
duction rate is a constant fraction of the total 
production to date - i.e., production occurs 
with exponential growth. 

While the Fusfeld information shows inter- 
esting results, it does not explain why tech- 
nology improves exponentially, nor does it 

explain why cost declines exponentially. Learn- 
ing curves and an exponential increase in the 
quantity of items produced may depress cost, 
but simple production learning does not ac- 
count for the rapid technology changes in the 
integrated circuit, for example, where totally 
different production processes have been 
evolved to support the greater technology. 

I n  the computer industry, the mobility of 
technical personnel from company to company 
has certainly been a significant factor in  tech- 
nology innovation. The strongest force toward 
technology innovation in the computer in- 
dustry, however, has been the computer users. 
They have been doing a significant portion of 
the inventing, both in hardware development 
and in software development. Although the 
case studies in this book indicate several specific 
places where users have influenced hardware 
design, it would be a substantial oversight not 
to mention the profound effect users had on the 
creation of PL/ 1 and COBOL. Furthermore, all 
applications work is done first by users and 
then developed by manufacturers at a later date 
along the lines of the above model. 

The Influence of Technology Innovation on 
cost 

The cost of computing is the sum of the costs 
which correspond to the various levels-of-in- 
tegration described in Chapter 1, plus the oper- 
ational costs. The levels are integrated circuits, 

Table 10. Fusfeld‘s 11 9731 Measures of Technology Progress 

Item Measure, Ti 

Change 
Quantity Technology Observed Total 
Produced (i) Progress (b) In Study Change 

~ ~~~ ~ 

Light bulbs Lumens/bulb 10’0 0.04; 0.19 33 80 
Automobiles Vehicle h.p. 3 X 10’; 108 0.1 1 ;  0.74 10 6; 13 
Titanium Psi/$/l6 3 x  108 0.3; 1 ;  1.04 10 3 50 
Aircraft Maximum speed 2 x 1 0 5  0.33-1.2 6 56 

2 2.9 x 1 0 4  Turbojet engines Fuel consumed. weight 1.6 x 1 0 4  1.06 
Computers Memory size X rate 1 0 5  2.51 109 3.5 x 1012 
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boards, boxes, cabinets, operating systems, 
standard languages, special languages, appli- 
cations components, and applications. In  prac- 
tice, each additional level-of-integration is often 
looked at as overhead. Using standard account- 
ing practice, the basic hardware cost, at the low- 
est level, is then multiplied by an overhead 
factor at each subsequent outer level. While an 
overhead-based model may work operationally 
for a stable set of technologies, such a model 
will not adequately allow for rapidly evolving 
technologies or the elimination of levels. By ex- 
amining each level, observations can be made 
about the use and substitution of technology. 
More importantly, conclusions can be drawn 
about how structures are likely to evolve. 

Cost, Performance, and Economy of Scale 
For most technologies used in the computer 

industry, there is a relationship between cost, 
performance, and economy of scale: 

Performance = k X costs X r 

where k = base case performance, s = economy 
of scale coefficient, r = rate of improvement of 
technology, and t = calendar time. 

There are four possibilities for the effect of 
economy of scale on the production of any de- 
vice. These are: 

1. 

2. 

3. 

4. 

Economy of scale holds. A particular 
object can be implemented at any price, 
and the performance varies exponen- 
tially with price. 

Performance = k X prices; s > 1 
Linear price performance relationship. 
a. Performance = k X price 
b. Performance = base + K X price 
Constant performance, price independ- 
ent. 

Only a particular device has been imple- 
mented. The performance (or size) is a 
linear sum of such devices. 

Performance = n X ( k  X price) 

Performance = k 

Sometimes, economy of scale effects are ob- 
served in situations where they would not nor- 
mally be expected. For example, assume a 
performance improvement feature exists that 
costs the same whether it is added to a large 
computer or added to a small computer. Add- 
ing that feature to a product that is already high 
priced will have a modest effect (say 5 percent) 
on the cost but a substantial effect (say 100 per- 
cent) on the performance. Adding the same 
constant cost feature to a lower cost product 
will have a substantial effect (say 200 percent) 
on the cost but only a performance effect (again 
100 percent) similar to that obtained with the 
higher cost system. This condition is especially 
true in disks and computer systems. Use of a 
particular recording method employing costly 
logic for encoding/decoding, or addition of a 
cache memory, is often employed to the high 
priced systems first. With time and learning, the 
technique can then be applied to lower cost sys- 
tems. For example, cache, a nearly perfect ex- 
ample of the constant cost add-on, first 
appeared in such large machines as the IBM 
360/85 in 1968 and later migrated down to large 
minicomputers such as the PDP-11/70 in 1975. 
On a research basis, cache even reached the 
small minicomputer, the cache-based PDP-8/E 
at Carnegie-Mellon University (Chapter 7). 

In  Figure 22, the cost of the lowest price unit 
is kept to a minimum and decreases, while the 
cost of the mid-range product continues to in- 
crease. The cost of the highest performance 
product increases the most, because it can af- 
ford the overhead costs. Looking at the basic 
technology metric, there are really three curves, 
as shown in Figure 23. The first curve repre- 
sents the application of new technology to a 
high cost/high performance product to  get a 
substantial performance improvement. With 
time, the technology evolves and is reapplied to  
the mid-range products (the first level copy), 
and finally, several years later, the technique be- 
comes commonplace and is applied to low cost 
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OF SCALE 
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Figure 22. Cost versus time 

t+ 

Figure 23. Technology versus time 

products (second level copies). The resultant 
cost/performance ratios are shown in Figure 
24. 

The management of technology by applying 
it to products in various price and performance 
ranges occurs in a more or less ordered fashion 
in most industries, but has not occurred to the 
extent that it has in the computer industry. This 
is probably because no other industries have 
evolved in the same rapid and broad fashion as 
have the computer and semiconductor in- 
dustries. The computer industry is fundamen- 
tally driven by the semiconductor technology 
push on the one hand, and by IBM on the 
other. IBM follows the strategy of applying 
technology on an economy of scale basis. This 
permits the technology to be first tested at the 
high performance/high price lower volume sys- 
tems before being introduced in higher volume 
production. The following examples (from 
IBM) show this at work. In printing, the high 
price/low volume to low price/ high volume in- 
troduction cycle was followed in the use of dot 
matrix printing, chain printing, ink-jet printing, 
and computer printing as a precursor to systems 
products using xerography. In magnetic stor- 
age, the cycle saw the basic technology for large 
disks as a precursor to the use of similar tech- 
nology on smaller disks. 

Technology Substitution 

The cost and performance of a computer sys- 
tem are roughly the additive and multiplication 
functions, respectively, of the parts. The tech- 
nologies represented in those parts each evolve 
at their own rates. Usually, when one com- 
ponent begins to dominate the cost (e.g., pack- 
aging) or constrain the performance, then 
pressure occurs to more rapidly change and im- 
prove the associated technology to avoid the 
cost or Derformance bottleneck. Sometimes a 

Figure 24 CostAechnoJogy versus time slowly evolving technology is j u s t  eliminated as 
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a substitute is found. The following is a list of 
some of the substitutions that have occurred: 

1. Semiconductor memories are now used 
in place of core memories. Since the lat- 
ter has evolved more slowly in terms of 
price decline, semiconductors are now 
used to the exclusion of cores. (This has 
not occurred where information must be 
retained in the memory during periods 
of time without power.) 

2. Read-only semiconductor memories are 
now substituted for semiconductor logic 
elements. 
In  a similar way, programmable logic ar- 
rays can be potentially substituted for 
read-only memories, and true content 
addressable memories can replace vari- 
ous read-write and read-only memories. 
The judicious use of charge-coupled de- 
vices or bubble memories can cause 
drastic reduction (and quite possibly the 
elimination) of the use of MOS random- 
access memories for primary memory. 
The fixed head disk could be eliminated 
at the same time. 
Fer small systems, the main operational 
memories could be completely nonelec- 
tromechanical; electromechanical mem- 
ories (e.g., tape cassettes and floppies) 
would be used for loading files into the 
system and for archives. For even lower 
cost systems, semiconductor read-only 
memories could replace cassettes and 
floppies for program storage, as in pro- 
grammable calculators. 

3. 

4. 

5 .  

After a while those components of computer 
system cost which are decreasing less rapidly 
than other components, remaining static, or are 
rising (like the packaging and power) may be- 
come a significant fraction of the total cost. Be- 
cause costs are additive, the exponential 
decrease in some costs, such as those for semi- 
conductor logic and memories, will cause the 

costs that are not similarly decreasing to be 
more evident. This causes pressure for struc- 
tural change and may cause new packaging, for 
example, to become an especially important at- 
tribute of a new design. For instance, although 
the PDP-8 is normally considered to be the first 
minicomputer, it postdates the CDC 160 (1960) 
and DEC’s PDP-5 (1963). However, the PDP-8 
was unique in its use of technology because: 

It eliminated the full frame cabinets used 
by other systems. This also presented a 
new computer style such that users could 
embed the computer in their own cabi- 
nets. A separate small box held the pro- 
cessor, memory, and many options. 
Automatic wire-wrap technology was 
used to reduce printed circuit board in- 
terconnection cost. This also eliminated 
errors and reduced checkout time. 
Printed circuit board costs were reduced 
by using machine insertion of com- 
ponents. 
The Teletype Corporation Model 33 
Automatic Send Receive (ASR) tele- 
printer (also used on PDP-5) was con- 
nected as t he  peripheral .  I t  had  a 
combined printer, keyboard, and paper 
tape 1/0 device (for program loading). It 
eliminated the paper tape reader and 
punch. 

Technology Progress, Product 
Development, and the State-of-the-Art Line 

If  there were no such thing as technological 
progress, there would be no such thing as an 
obsolete product. In such a situation, it would 
not matter when a product was introduced into 
the market, as it would be technically equal to  
the other products available. In  the computer 
industry, this is far from the case: for computer 
processors, peripherals, and systems, there is a 
state-of-the-art line that indicates the average 
technological level at which present products 
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are being offered. Since higher technology has 
generally meant better price/performance, new 
products introduced in the market must have a 
proper relationship to the state-of-the-art line. 
The following paragraphs elaborate on the in- 
teraction between technology progress, product 
development, and the state-of-the-art line. 

The complete development process can be en- 
visioned as a pipeline process with the following 
stages: research, applied research, advanced de- 
velopment (product breadboard), development, 
test, sell/build, and use. In this model, ideas 
and information flow through the various or- 
ganizations in a process-like fashion, culminat- 
ing in a product. Each product type has a 
different set of delays associated with the parts 
of the pipeline. At the end of the pipeline, the 
“education of use” delay occurs while the pros- 
pective customers are taught how the product 
meets their needs; this delay culminates in mar- 
ket demand. For well defined, commodity-like 
products such as disks and primary memory, 
the education of use delay is zero, as each user 
“knows” the product. For a new language, on 
the other hand, there is a large education of use 
delay, and the market demand usually develops 

The disk supply process is a good example of 
the pipeline nature of the development process. 
The technology (as measured by the number of 
bits per areal inch) doubles about every two 
years (i.e., the density improves 41 percent per 
year). IBM is estimated to invest about 100 mil- 
lion dollars per year in the development and as- 
sociated manufacturing process pipelines. 
Because of this massive investment, the IBM 
disks essentially establish the state-of-the-art 
line in a structure that is typified by Figure 23. 
Using the pipeline development process, devel- 
opment of competitive disks by other com- 
panies would lie somewhere about four to six 
years behind the state-of-the-art line. This can 
be seen by looking at the development process 
and taking into account the delays through each 

slowly. 

stage. To be more competitive, the disk industry 
short circuits various delays by engaging in re- 
verse engineering; this results in only two-year 
lags. In  reverse engineering, the tools are mi- 
crometers and reverse molds. At the time of the 
first shipment of a new product by the tech- 
nology leader, the product is purchased by com- 
petitors and basically copied on a function per 
function basis. The more successful designs use 
pin for pin compatibility to take maximum ad- 
vantage of the leader’s design decisions. 

From the process, it is also easy to see how 
merely copying competitive products guaran- 
tees products that will be at least two years be- 
hind leadership products and lagging behind 
the state-of-the-art. Nonetheless, if there is a 
strong market function which operates to define 
products based on existing product use, and if 
the design and manufacturing process at the 
copying company is quite rapid, such a strategy 
can be effective. The copying process can also 
be very effective for software products because, 
while there are no delays associated with manu- 
facture, the time to learn about the product pro- 
vides a time window in which copiers can catch 
up with the leaders. 

A high technology, exponentially increasing 
(volume) product is denoted by: 

Exponential yearly cost improvement 
(price decline) rates through product 
technology improvements as measured 
by price decline of greater than 20 per- 
cent (e.g., disk price this year = 0.8 last 
year’s disk price, CPU = 0.79, primary 
memory = 0.7). 

Short product life (less than 4 years). 

Various types of learning curves. Some 
products require very little learning, 
while others require a great deal of learn- 
ing or require re-learning because of per- 
sonnel turnover or the frequent hiring of 
additional personnel. 



60 COMPUTER ENGINEERING 

The Product Problem (Behind the State-of- 
the-Art) 

Typical product situations, including com- 
petitive “problems,” can be seen in Figure 25. 
When a product is introduced to the market, it 
has a relationship to the state-of-the-art line. 
There are five possible situations: 

1.  

2. 

3. 

4. 

Ideal (on the state-of-the-art line). 

Advanced (moves below the line). 

Late (slip in time to the right). 

Expensive (more than expected in cost, 
straight above the line). 

Late and expensive (to the right and 
above the line). 

5 .  

Situations 3, 4, and 5 are product problems 
because they are behind the state-of-the-art line 
and, hence, less competitive. This implies in- 
creased sales costs, lower margins, loss of sales, 
and so on. Note that a late product could be 
acceptable if somehow the cost were lower. 
Similarly, an expensive product is acceptable if 
it appears earlier in time. 

EFFECTIVE L A T E N E S S  

EFFECTIVE 
OVER COST 

- O B  

IDEAL NEXT 
0 4  PRODUCT 

c = 08t 

0 1 2 3 4 6 6  
T I M E  (YEARS1 

Figure 25 
product cost problems and timing problems. 

Use of the state-of-the-art line to model 

Time Is Money (and vice versa) 

Thus, product problems can be solved by ei- 
ther: 

1. Movement in time (left) to get on the 
line. 

2. Movement in cost (straight down) to get 
on the line. 

With exponential price declines, a family of 
products over a long time will follow a cost 
curve. c: 

c = b X r f  

where c = cost at time, t (in years), b = base 
cost, and r = rate of  price decline. 

With dc = change in cost above (or below) to 
get back to the state-of-the-art line and dt = de- 
lay (or advance) in time to get back to the state- 
of-the-art line, let: 

f =  dc /c  = fraction of cost away from line 
f = 1 - r d t  = (poor cost, expressed as 
project slip) 

and: 

dt = In (1 - f )  /ln(r) = (poor timing, ex- 
pressed as poor cost) 

These formulas permit the interchange of time 
and money (cost). For example, in disks or cen- 
tral processors where r = 0.8 and 111.8 = 0.22, 
note: 

f =  1 - 0.8dt 

A one-year slip is equal to  a 20 percent cost 
overrun. 

dr = - 4.45 X in (1 - f) 

A 10 percent cost increase is equal to a 0.47- 
year slip. 
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Engineering, Manufacturing, and Inflation 
Effects 

Engineering, by establishing the product di- 
rection, has the greatest effect on the product. 
However, since most product problems may 
have multiple components, it is worth looking 
at each. 

1 .  Timing. 
a.  Engineering. Schedule slips translate 

into a competitive cost problem as a 
sub state-of-the-art, late product. 

b. Manufacturing. Building up the 
learning curve base quickly by mak- 
ing many units before the design is 
mature is risky, but it has a high 
payoff when considering the appar- 
ent cost and/or delay. 
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2. cost. 
A number of components and organiza- 
tions contribute to  the total product cost 
in an evolutionary fashion, as shown in 
Figure 26. 

\ NET = f ILEARNING TECHNOLOGY 
INFLATION. FUNCTIONALITYI 

-y4 MANUFACTURING ASSEMBLY 
ILEARNINGI 

NEW TECHNOLOGY. 
MATERIALS 

INFLATION FACTOR 

INCREASE IN FUNCTIONALITY 
IENGlNEERlNGl 

Figure 26. 
product cost. 

The various components that contribute to 

a. Engineering. Perhaps the major de- 
terminant of cost by the product de- 
sign - number of parts, ease of 
assembly, etc. The most common 
cost problems occur by continued 
product enhancement during the de- 
sign stage to provide increased func- 
tionality (called “one-plussing the 
design”). One-plussing often occurs 
because the market had not been 
modeled before the design was be- 
gun, and without a model of the 
market, engineering is a ship with- 
out a rudder. 

b. Manufacturing. Direct labor and 
manufacturing overhead really mat- 
ter when determining productivity. 
Making major changes in the design 
of a product or the location of man- 
ufacture for a product starts a new 
learning curve and serves to  stretch 
the production time out, and the in- 
creased costs associated therewith 
put false pressure on engineering to 
design new products. One curve in 
Figure 26 shows the direct costs as- 
sociated with manufacturing assem- 
bly. Some learning should take place 
as long as product volumes increase 
exponentially, to get a net lower 
cost. New technology materials 
show the greatest cost improvement 
for computers, assuming that semi- 
conductors and other electronic ma- 
terials continue to  improve with 
time. By capital equipment invest- 
ment (tooling), there can be stepwise 
cost reductions in materials costs. 

c. Inflation. While not a direct cost 
function, it combines with labor cost 
to negate the downward cost trends 
that were obtained from learning ef- 
fects. 
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d. Compound Cost. The costs are taken 
altogether. In terms of a sub state- 
of-the-art product, the costs are 
compound. 

3. Manufacturing learning. Learning curves 
and forgetting curves really matter. Left 
alone, a typical product may go down 
three alternative paths (Figure 27): 
a. c = b X 0.95‘ 

(a decrease of 5 percent/year) 
b. c = b  

(staying constant with little atten- 
tion) 
c = b X 1.06‘ 
(increasing with inflation as little 
learning occurs after many units are 
produced) 

Where c = cost at  time, t (in years), and 
b = base cost. 

c. 

M id-Life Kicker for Product Rejuvenation 

By enhancing an existing product (the “mid- 
l ife k i c k e r ” ) ,  o n e  c a n  i m p r o v e  t h e  
cost/performance metric of a given product. 
This is non-trivial, and for certain products 
must be inherent @e., designed in). Under these 
conditions, improvements in cost go immedi- 
ately to get the product back onto the state-of- 
the-art line. For example, a factor of 2 in per- 
formance halves cost/performance. The effect 
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FORGETTING 
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Figure 27. 
manufacturing learning. 

Product cost versus time within 

of doubling the density of a disk is to move the 
product back to the state-of-the-art line by a 
time shift. The preceding formula gives: 

dt = 4.45 X In (0.5) = 3.1 years 

This situation is shown in Figure 28 and is com- 
pared with a 5 percent per year learning curve. 

SUMMARY 

The discussions above have attempted to 
show how technology progress, particularly in 
the areas o f  semiconductor logic, semi- 
conductor memories, and magnetic memory 
media, have influenced progress in the com- 
puter industry and have provided choice and 
challenge for computer design engineers. 

As was implied in the Structural Levels-of- 
Integration and Packaging Levels-of-In- 
tegration Views of Chapter 1, computer engi- 
neering is not a one-dimensional undertaking 
and is not simply a matter of taking last year’s 
circuit schematics and this year’s semi- 
conductor vendor catalogues and turning some 
kind of design process crank. Instead, it is much 
more complicated and includes many more di- 
mensions. 

Two additional dimensions with which a dis- 
cussion of computer engineering must deal, be- 
fore going on the DEC computers as case 
studies, are packaging and manufacturing. 
These are discussed in Chapter 3. 

I P 

0 1 1 3  4 5 

TIME 

Figure 28. 
of cost/function. 

Product cost improvement by enhancement 
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Packaging and Manufacturing 
C. G O R D O N  BELL, J. CRAIG MUDGE, 

and J O H N  E. M c N A M A R A  

As indicated in the previous chapter, com- 
puter engineering is more complicated than 
simply applying new technology to  existing de- 
signs or designing new structures to exploit new 
technology. To design a successful new com- 
puter, the engineer must often deal with issues 
of packaging, manufacturing, software com- 
patibility, marketing, and corporate policy. 
Some of these issues have been briefly referred 
to in  the first two chapters, and some are be- 
yond the scope of this text. However, two issues 
that can and should be discussed before explor- 
ing the case studies are packaging and manufac- 
turing. Both of these are crucial to DEC, as well 
as to the computer industry in general. 

GENERAL PACKAGING 

Packaging is one of the most important ele- 
ments of computer engineering, but also one of 
the most complex. The importance of packag- 
ing spans the size and performance range of 
computers from the super computers (CDC 
6600, CDC 7600, Cray 1) to the pocket calcu- 
lator. Seymour Cray, the designer of the super 
computers cited, has described packaging as the 
most difficult part of the computer designer’s 

job. The two major problems he cites are heat 
removal and the thickness of the mat of wires 
covering the backplane. (The length of the wires 
is also important.) His rule of thumb indicates 
that with every generation of large computer 
(roughly five years), the size decreases by 
roughly a factor of 5, making these problems 
yet worse. In his latest machine, the Cray 1, the 
C-shaped physical structure is an effort to re- 
duce the time-consuming length of backplane 
wires while providing paths for the freon cool- 
ing system by having wedge-shaped channels 
between the modules. 

At the opposite end of the size and perform- 
ance range, pocket calculators are also greatly 
influenced by packaging. In fact, they are deter- 
mined by packaging. The first hand-held scien- 
tific calculator, the Hewlett-Packard HP35, was 
simply a new package for a common object, the 
calculator, which had been around for about a 
hundred years. It was not until semiconductor 
densities were high enough to permit implemen- 
tation of a calculator in  a few chips, and not 
until those chips could be repackaged in a par- 
ticular fashion, that the hand-held calculator 
came into existence. Currently this embodiment 
is synonymous with the calculator name, but 

63 
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other forms are appearing. The calculator 
watch, the calculator pencil, the calculator 
alarm clock, and the calculator checkbook have 
all been advertised. 

Between the two extremes of super computers 
and calculators, packaging has also been impor- 
tant in minicomputers and large computers. In 
particular, packaging seems to be the dominant 
reason for the success of the PDP-8 and the 
minicomputer phenomenon, although market- 
ing, the coining of the name, and the ease of 
manufacture (also part of packaging) are alter- 
native explanations. The principal packaging 
advantage of the PDP-8 over predecessor ma- 
chines was the half-cabinet mounting which 
permitted it to be placed on a laboratory bench 
or built into other equipment, both locations 
being important to  major market areas. 

The Packaging Design Problem 

The importance of packaging is equalled only 
by its complexity. The complexity stems from 
the range of engineering disciplines involved. 
Packaging is the complete design activity of in- 
terconnecting a set of components via a me- 
chanical structure in order to carry out a given 
function. To package a large structure such as a 
computer, the problem is further broken into a 
series of levels, each with components that carry 
out a given function. Figure 1 shows the hier- 
archy of levels that have evolved in the last 
twenty years for the DEC computers. There are 
eight levels which describe the component hier- 
archy resulting in a computer system. 

For each packaging level there is a set of in- 
terrelated design activities, as shown in Figure 
2. The activities are almost independent of the 
level at which they are carried out, and some 
design activities are carried out across several 
levels. 

While the initial design activities indicated in 
Figure 2 are each aimed at solving a particular 
problem, the solving of one problem in com- 
puter engineering usually creates other prob- 
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Figure 1. 
fourth generation computer systems. 

Eight-level packaging hierarchy for second t o  

lems as side effects. For example, the integrated 
circuits and other equipment that d o  informa- 
tion processing require power to operate. Power 
creates a safety hazard and is provided by 
power supplies that operate at less than 100 per- 
cent efficiency. These side effects create a need 
for designing insulators and providing methods 
of carrying the heat away from the power sup- 
ply and the components being powered. In this 
way, cooling problems are created. Cooling can 
be accomplished by conducting heat to an out- 
side surface so that it may be carried away by 
the air in a room. Alternatively, cooling can be 
done by convection: a cabinet fan draws air 
across the components to  be cooled and then 
carries the heated air out of the package into the 
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Figure 2.  
design activities. 

Packaging - a set of closely interrelated 

room. I n  either case, the air conditioning sys- 
tem is left with the problem of carrying the heat 
away, and the fans associated with that system 
are added to  the fans associated with the com- 
puter to create acoustical noise pollution in the 
room, making it more difficult for people to 
work. Furthermore, if the computer is used in 
an unusually harsh environment, a special heat 
exchanger is required in order to avoid con- 
tamination of the components within the com- 
puter by the pollutants present in the cooling 
airflow. 

Finally, the mechanical characteristics of a 
particular package such as weight and size 

directly affect manufacturing and shipment 
costs. They determine whether a system can be 
built and whether it can be shipped in a certain 
size airplane or carried by a particular distribu- 
tion channel such as the public postal system. 
The mechanical vibration sensitivity character- 
istics determine the type of vehicle (ordinary or 
special air ride van) in which equipment can be 
shipped. 

It is also necessary to examine the particular 
design parameter in order to determine whether 
it is a constraint (such as meeting a particular 
government standard), a goal (such as min- 
imum cost), or part of a more complex objective 
function (such as price/performance). Table 1 
lists the various kinds of design activities and 
constraints, goals, or parts of more complex ob- 
jective functions that they determine. The table 
also gives the dimensions of various metrics 
(e.g., cost, weight) available to measure the de- 
signs; many of these metrics are used in sub- 
sequent comparisons. 

Given the basic design activities, one may 
now examine their interaction with the hier- 
archy of levels (Le., the systems) being designed 
(see Table 2). This is done by looking at each 
level and examining the interaction of the de- 
sign activities for that level with other design 
activities (e.g., function requires power, power 
requires cooling, cooling requires fans, fans cre- 
ate noise, and noise requires noise suppression). 

Computer Systems Level. The topmost 
level in Table 2 is the computer system, which 
for the larger minicomputers and PDP-IO com- 
puters consists of a set of subsystems (proces- 
sor, memories, etc.) within cabinets, housed in a 
room, and interconnected by cables. The func- 
tional design activity is the selection and inter- 
connection of the cabinets, with a basic 
computer cabinet that holds the processor, 
memory, and interfaces to  peripheral units. 
Disks, magnetic tape units, printers, and termi- 
nals occupy free standing cabinets. The func- 
tional design is usually carried out by the user 
and consists of selecting the right components 
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Table 1.  Design Activities, Metrics, and Environment Goals and Constraints 

Design Activity Environment and (Metrics] 

Primary function and 
performance (e.9.. memory) 

Market, the consumer of the system 
[Memory size in bits, operation rate in bitslsec] 

Human engineering 

Visual/aesthetics 

Human factors criteria, competitive market factors 

Market, other similar objects, the environment in which the object is to exist 

Acoustic noise 

Mechanical 

Electromagnetic radiation 

Power 

Cooling and environment 

Government standards, operating environment, market 
[Decibels in various frequency bands] 

Shippability by various carriers, handling, assembly/disassembly time 
[Weight, floor area, volume. expandability, acceleration, mechanical frequency 
response] 

Government standards, must operate within intended environment 
[Power versus frequency] 

Operating environment, market 
[watts, voltage supply range] 

Market, intended storage and operating environment, government standards 
[Heat dissipation, temperature range, airflow, humidity range, salinity, dust par- 
ticle, hazardous gas] 

Safety Government standards 

cost 
Cost/rnetric ratios 

[Costlperformance (its function) - costlbit and cost/bit/sec, costlweight. 
costlarea. cost/volume, costlwattl 

Density metrics [Weight/volume. watts/volume, operation rate/volume] 

Power metrics [Operation ratdwatt; efficiency = power out/power in] 

Reliability (Reliability - failure rate (mean time between failures). availability - mean time 
to repair) 

to meet cost, speed, number of users, data base 
size, language (programming), reliability, and 
interface constraints. Aside from the functional 
design problem, cooling and power design are 
significant for larger computers. For smaller 
computers, accessibility, acoustic noise, and vis- 
ual considerations are significant because these 
machines become part of a local environment 
and must “fit in.” 

Cabinet Level. Since the cabinet is the low- 
est level component that users interface to and 
observe, physical design, visual appearance, 
and human factors engineering are important 
design activities. For the computer hardware 
designer, on the other hand, the component 
mounted in the cabinet is usually the largest sys- 
tem. Functional design efforts ensure that the 
various components (Le., boxes) that make up a 
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Table 2. Interrelationship of Hierarchy of Levels and Design Activities 

Level of Packaging 

Design Chip Computer 
Activi ty Chip Carrier Module Backplane Box Cabinet System 

Functional Logic c Configuration Selection of 
electrical options right 

components 
by user 

Human 
Interface 

Visual 

Acoustic 

Circuit design 
physical 
layout 

Mechanical Buildable 
and signal 
transmission 

Electromagnetic Noise coupling 
interface and rejection 

of radio 
frequency 
interference 
(RFI )  

Power Special 
on-chiD 

Cooling and Chip to  
other cooling 
environment special 

environment 

Safety 

Dominant Circuit 
design logic 
activities 

Physical Physical What fits Boxes and 
layout layout and operates operable 

configurations 

Location of Placement 
console, size for use 
for use 

Visible, Determines Set of .cabs, 
bought for system attractive 
integration appearance place to be 

Ai r f low c Quiet for 
vibration operators 

and users 

Shippable c Floor load 
and room size 
serviceable 

In terlin tra- 
module noise 
coupling, RFI  
containment 
and shielding 

RFI  P Away from 
containment, RFI  input 
external R F I  (outside 
shield ope rating 

range) 

Dist. and Dist. and Control, Interconnect By user 
regulation regulation dist. and with computer special power 

regulation system supplies for 
high 
availability 

IC  module IC to  Module 
cooling cooling 
special 
environment 

Power for 
various 
systems 

Logic L 

Cooling and Source 
covering 

Determines Determines 
safety if user safety 
used at 
this level 

lnterbox 
coupling to  
room air 
environment 

Mechanical, Configuration User 
power, visual, configuration 
cooling, EMI, shipping design 
acoustic EMI, safety 

The box and backplane levels can be considered as a single level (alternatively, the box level may be eliminated in large systems). 
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cabinet level system will operate correctly when 
interconnected. Safety and electromagnetic in- 
terference characteristics are important because 
the cabinet serves as the outermost place in 
which shielding can be installed. Cooling and 
power distribution must be considered, since a 
number of different boxes may be mounted 
within the same cabinet. Finally, the mechani- 
cal structure of a cabinet must be designed to 
maintain its physical integrity when shipped. 

Box Level. Box level functional design con- 
sists of taking one or more backplanes, the 
power supplies for the box, and any user inter- 
face such as an operator’s console and inter- 
connecting them mechanically (see Figure 3). 
For systems that are not sold at the box level, 
no separate box is required, and the power sup- 
ply and backplanes are mounted directly in a 
cabinet (see Figure 4) or other holding structure 

such as a desk or terminal case, so that box and 
backplane design merge. If systems are sold at 
the box level, then the visual characteristics may 
be important; otherwise, the design is basically 
mechanical and consists of cooling, power dis- 
tribution, and control of acoustic noise. The 
structure must be sound to protect the unit dur- 
ing shipment. 

Of all the dimensions to consider in the de- 
sign, perhaps the most important is how the box 
(or module mounting structure) is placed in a 
cabinet. This placement affects airflow, ship- 
pability, configurability, cable placement, and 
serviceability, and is a classical case of design 
tradeoffs. The scheme that provides the best 
metrics, such as packaging density and weight, 
may have the poorest access for service and the 
most undesirable cable connection character- 
istics. These characteristics are given in Table 3. 

Table 3. Fixed, Drawer, and Hinged Box/Cabinet Mounting 

Mounting Service Access Cabling Density Cooling Applicability 

Fixed Good for either Best (i.e.. 
backplane or module. shortest) 
but not both unless a 
thin cabinet is used 

Good for thin 
or rear 
cabinet 
power supply 
mounting 

Best Box not needed: 
(known) box can be used 

Drawer One-side access Long and 
movable 

Drawer (with tilt) Good 
for service 

Drawer vertical Very good 
mounting modules 

Longer and 
more movable 
than non-tilt 
version 

Long and 
movable 

Short 

Very high 

Very high 

High 

Medium 

Can be High density, self- 
cooled* contained 

Can be 
cooled* 

Hinged (module Very good Good (if Separate box is 
backplane) fans are awkward 

fixed to  
cage) 

*Density restricts cabinet airflow. 
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Figure 3. 

Side view (with top cover removed). 

PDP-1 1/05 computer box. 
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Figure 3. PDP-11106 computer box. 
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Figure 4. Major components and assemblies of PDP-1 1/70 mounted in standard DEC cabinet 
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Backplane Level. This level of design is the 
final level of interconnection for the computer 
components that are designed to stand alone, 
such as a basic computer disk or terminal. 
Backplane design is part of the computer’s log- 
ical design. In second generation machines such 
as the PDP-7 (Figure 24a, Chapter 6), the back- 
plane was wire-wrapped. In the early 1970s 
printed circuit boards were used to interconnect 
modules (Figure 5). Secondary design activities 
include holding, powering, and cooling the 
modules so they will operate correctly. Since the 
signals are transmitted on the backplane, there 
is an electromagnetic design problem. For in- 
dustrial control systems whose function is to 
switch power mains voltages, additional safety 
problems are created. 

Module Level. In the second generation, 
module level design was a circuit design activity 
taking discrete circuits and interconnecting 
them to provide a given logic function. In the 
third and fourth generations, this interface be- 
tween circuit and logic design moved within 
chip level design, so that module level design 
became the process of dealing with the physical 
layout problems associated with logic design. 
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Module level design is basically electronic, so 
power, cooling, and electromagnetic inter- 
ference (cross talk) considerations dominate. 

Integrated Circuit Package and Chip 
Level. Most integrated circuits used in the com- 
puter industry today are sold in a plastic or ce- 
ramic package configuration that has two rows 
of pins and is called a dual inline package 
(DIP). The majority of the integrated circuits in 
the module shown in Figure 6 are 16-pin DIPS. 
Because of the popularity of this packaging 
style, the terms “integrated circuit,” “chip,” 
and “DIP” are often used interchangeably. This 
is not strictly correct; an integrated circuit is ac- 
tually a 0.25- X 0.25-inch portion of semi- 
conductor material (die or chip) from a 2- to 4- 
inch diameter semiconductor wafer. Except for 
cases where multiple die are packaged within a 
single DIP, the integrated circuit, chip, and DIP 
can be discussed as a single level. 

Design considerations at the integrated cir- 
cuit level include power consumption, heat dis- 
sipation, and electromagnetic interference. 
Because some integrated circuits are designed to 
operate in hostile environments, there is consid- 
erable mechanical design activity associated 

Figure 5. 
backplane. 

Cross-section of a printed circuit Figure 6. LSI-1 1 processor with 8 Kbytes of memory 
and microcode for commercial instruction set. 
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Backplane Level. This level of design is the 
final lcvel of interconnection for the computer 
components that are designed to stand alone, 
such as a basic computer disk or terminal. 
Backplane design is part of the computer's log- 
ical design. In second generation machines such 
as the PDP-7 (Figure 24a. Chapter 6). the back- 
plane was wirbwrappcd. In the early 19709 
printed circuit boards were used to intewnnwt 
modulcs (Figure 5). Secondary design activities 
include holding, powering, and cooling the 
modules so they will operate correctly. Since the 
signals arc transmitted on the backplane, there 
is an electromagnetic design problem. For in- 
dustrial control systems whose function k to 
switch power mains voltages, additional safety 
problems arc created. 

Module Level. In the second generation, 
module level design was a circuit design activity 
taking discrete circuits and interconnecting 
than to provide a given logic function. In the 
third and fourth generations, this interface be- 
tween circuit and logic design moved within 
chip level design, so that module level d a i i  
bccame the process of dealing with the physical 
layout problems associated with logic d c s i  

. 

Module level design is basically elcctronic, so 
power, cooling, and electromagnetic inter- 
ference (cross talk) considerations dominate. 

Inte@rated Circuit Padug. and Chip 
Lwol. Most integrated circuits used in thtcom- 
puter industry today are sold in a plastic or cc- 
ramic package configuration that has two rows 
of pins and is called a dual inline package 
(DIP). The majority of the integrated circuits in 
the module shown in Figure 6 are lbpin DIPS. 
Because of the popularity of this pack- 
style, the terms "integrated circuit," "chip," 
and "DIP" are often uscd interchangeably. This 
is not strictly correct: an integrated circuit is ac- 
tually a 0.25- X 0.25-inch portion of semi- 
conductor material (die or chip) from a 2- to 4 
inch diameter semiconductor wafer. Except for 
cases where multiple die are packaged within a 
sin& DIP, the integrated cucuil, chip, and DIP 
can be discussed as a singk level. 

Design considerations at the integrated cir- 
cuit level include power consumption, heat die 
sipation, and electromagnetic interference. 
&cause some integrated circuits are designed to 
operate in hostile environments, them is consid- 
erable mechaRical design activity associated 

Figure 6. 
backohm. 

Ocm8-wction of a pintad circuit 

-I- 
Figure S. LSI-ll paces so^ with S Kbyt.s of mlll~ly 
and microcode f a  cornmrcid knhlchon set. 
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with packaging, interconnection, and manufac- 
turing. 

The Packaging Evolution 

Figure 7 shows the relation of packaging and 
the computer classes for the various computer 
generations. For each new generation there is a 
short, evolutionary transition phase. Ulti- 
mately, however, the new technology is re- 
packaged such that a complete information 
storage or processing component (bit, register, 
processor) occupies a small fraction of the space 
and costs a small fraction of the amount it did 

in the prior generation. Discrete events mark 
packaging characteristics of each generation, 
starting from 1 bit per vacuum tube chassis in 
the first generation and evolving to  a complete 
computer on a single integrated circuit chip in 
the fifth generation. Not only the size of the 
packaging changed, but also the mounting 
methods. In  the first generation, logic units 
were permanently mounted in racks, where they 
were removable for ease in servicing in later 
generations. 

While the timeline of Figure 7 shows the 
packaging evolution of a complete computer, 
Table 4 shows how a particular component, 
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Figure 7 .  Timeline evolution of packaging. 

Table 4. 
Telegraph Line Controller 

Packaging Hierarchy Evolution for Universal Asynchronous Receiver/Transmitter (UART) 

Generation 

Early Second Late Second Early Third Late Third Late Fourth 

Backplane, 
Modules. 2 modules Module, 
Discrete Discrete IC. I c. 
Circuit Circuit Chip Chip Chip area 
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now called the Universal Asynchronous Re- 
ceiver/Transmitter (IJART), has evolved. 

The UART logic carries out the function of 
interfacing to a communications line that car- 
ries serial data and transforms the data to paral- 
lel on a character-by-character basis for entry 
into the rest of the computer system. The 
UART has three basic components: the se- 
rial/parallel conversion and buffering, the in- 
terfaces to both the computer and to the 
communication line, and the sequential con- 
troller for the circuit. 

The UART is probably the first fourth gener- 
ation computer component, since it is some- 
what less complex than a processor yet rich 
enough to be identifiable with a clean, standard 
interface. * 

THE DEC COMPUTER PACKAGING 
GENERATIONS 

With this general background on packaging, 
one can examine the DEC packaging evolution 
more specifically and against the general arche- 
type of Figure 1. Figure 9 shows how the hier- 
archies have changed with the technology 
generations. The figure is segmented into the 
different product groupings. A product is iden- 
tified as being at a unique level if it is sold at the 
particular packaging level. The first DEC com- 
puters (i.e., PDP-1 to PDP-6) were sold at the 
cabinet level as complete hardware systems. Al- 
though the PDP-8 was available at the cabinet 
level for complete systems, it was significantly 
smaller than the previous machines and was 
principally sold at the mechanical box level. 

Figure 8.  
of the late second generation. 

4707 t ransmi t te r  line unit 

*Historically. D E C  played a significant part  in the development of the UART technology. With the PDP-I .  the first UART 
function was designed using 500-KHz systems modules and was used in a message switching application as described in 
Chapter 6. T h e  interface was called a line unit and  was subsequently repackaged in the late second generation as  two 
extended systems modules (Figure 8). T h e  UART function was also built into the PDP-8/1 using two modules that  were 
substantially smaller than those for the PDP-I .  In  the 680/1, a PDP-II/I-driven message switch, the UART function was 
accomplished by programmed bit sampling. Late in the third generation (or at  the beginning of the fourth generation), some 
designers from Solid State Data  Systems of Long Island, N.Y.,  worked with Vince Bastiani a t  D E C  and developed a UART 
that  occupied il single chip. This  subsequently evolved into the standard integrated circuit and  is used throughout the 
industry. 
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Figure 9 DEC physical structure (packaging) h i e r a r c h i e s  by technology generation 

Subsequently, computer systems became avail- 
able at the backplane level (LSI-1 l), and at the 
module level (CMOS-8). 

The original packaging hierarchy for most of 
DEC’s second generation computers used a rel- 
atively common packaging scheme based on the 
PDP- 1 .  The most significant change occurred 
late in the second generation when Flip Chip 
modules (Figure 9) were introduced so that 
backplanes could be wire-wrapped automat- 
ically. 

The change to wire-wrap technology not only 
reduced costs and increased production line 
throughput, it also enabled the box-level pro- 
duction of computers. The change to wire-wrap 
and two level products (box and cabinet) is 
clear in the second generation. The offering of 

products at these two levels continued into and 
through the third generation. 

With the advent of the fourth generation, 
large-scale integration permitted the construc- 
tion of a complete minicomputer processor on a 
single module. Although components are sold 
as separate modules (e.g., processor, commu- 
nications line interfaces, additional primary 
memory), a complete system requires a back- 
plane; thus, the lowest level for the product is 
the backplane. For larger systems, a power sup- 
ply is combined and placed in a metal box. A 
typical example of such a product is the LSI-11, 
which is marketed at three levels as shown in 
Figure 9. 

The late fourth generation has brought the 
processor-on-a-chip, and another packaging 
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level to the price list. An example of the proces- 
sor-on-a-chip is the CMOS-8, described in 
Chapter 7. The new packaging level offered to 
the customer is the CMOS-8 module, which is a 
single-board complete computer with proces- 
sor, 16-Kword memory, and all the optional 
controllers to directly interface up to five pe- 
ripheral options. 

DEC Boxes and Cabinets 

Since the function of the cabinet and box is to 
hold backplanes that in turn hold modules that 
in turn hold circuit level components, the metric 
of electronic enclosures is the number of printed 
circuit boards they hold. The earliest DEC 
method of mounting was to place the back- 
planes directly in a 6-foot-high cabinet which 
held 19-inch-wide equipment in a 22- X 30-inch 
floor space and weighed about 185 pounds. Fig- 
ure 10 shows the top view of the various cabi- 
nets used to hold module backplanes and boxes 
for minicomputers since 1960. The changes to 
the basic DEC 6-foot cabinet have mainly been 
for improved producibility. The latest (circa 
1973) was to use riveted upright supporting 
members so the cabinet could be assembled eas- 
ily without requiring bulk space for shipment 
and storage. 

The original cabinet used the entire cabinet as 
an air plenum so that air was forced between 
the modules and out the front doors. When the 
PDP-7 used the same cabinet and the module 
mounting frame cut off the airflow, it was nec- 
essary to add fans to the back doors to blow air 
at the modules. Since cooling was one of the 
weak points in the PDP-7, the PDP-9 used a 
self-contained mounting and cooling structure 
in which air was circulated between the modules 
with air pulled in from outside without going 
through the cabinet. 

A second, later packaging method, initiated 
with the PDP-8, packaged the metal-boxed 
minicomputer inside the 6-foot cabinet. Figure 
I I  shows the significant boxes that have been 

used to package minicomputers both within the 
6-foot cabinet and freestanding. The box pack- 
aging history begins with the PDP-8. The rows 
of Figure 1 1  indicate the four ways that are 
available to access the circuitry (fixed, book, 
slides, and tilt for access). The PDP-8 design 
was followed by the PDP-8/S design which ori- 
ented the modules with the pins up for access to 
the backplane. By tilting (rotating) the box, the 
handle side of the modules could be accessed. 
For the PDP-8/1 (not shown), modules were 
mounted in a vertical plane. 

Several fixed backplane module mounting 
structures were formed beginning with the 
PDP-8/A (1975), which was the first DEC mini- 
computer since the PDP-5 to be mounted in a 
fixed structure in a cabinet. 

DEC Backplanes 

Backplanes provide the next level-of-in- 
tegration packaging below cabinets and boxes; 
they are used to hold and interconnect a set of 
modules which form a computer or an option 
(e.g., processor, memory, or peripheral con- 
troller). Figure 12 gives the relative cost of in- 
terconnecting backplane module pins. Here the 
cost per interconnection is roughly the same as 
with a printed circuit module interconnection 
(Figure 13). This can be somewhat misleading 
because backplanes require a negligible cost for 
testing and few failures occur during testing. 

Figure 12 shows various kinds of inter- 
connection technologies. Even though there are 
exponential increases in quantities produced, 
the cost continues to increase in the long run 
with only occasional downward steps. The 
greatest cost decline occurred when inter- 
connections were carried out using automatic 
wire-wrap machinery, but the PDP-8/E was 
equally significant by being the first DEC com- 
puter to  use a completely wave-soldered back- 
plane. Figure 12 also shows how effectively the 
module pins were used (Le., whether all avail- 
able pins were used). 
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Figure 13. 
printed circuit board modules versus time. 

Relative cost per interconnection on DEC 

DEC Modules 

Since the function of modules is to inter- 
connect and hold components, the metrics for 
modules are the area for mounting the com- 
ponents and the cost of each circuit inter- 
connection. For minicomputers, the emphasis 
has been to have larger modules with more 
components packed on a module as a means to 
lower the interconnection cost. Figure 14 shows 
the area of DEC modules and the number of 
external pins per module versus time. Because 
integrated circuit densities have been increas- 
ing, in effect providing lower interconnection 
costs, a given module automatically provides 
increased interconnects simply by packaging 
the same number of integrated circuits on a 
module. Obviously, one does not want to  credit 
this effect to improved module packaging. By 
increasing the components per module, the cost 
per interconnect can be reduced provided the 
cost to test the module increases less rapidly 
than the increase in components. The emphasis 
on module size is usually most intense for larger 
systems, where a relatively large number of 
modules are needed to  form a complete system. 

Until recently, the increase in module area 
was accompanied by increases in the number of 
pins available to interconnect to the backplane. 
In the case of the VAX-11/780 and the DEC- 
SYSTEM 2020, the number of pins did not in- 
crease significantly over previous designs, 
although the board area was 50 percent larger. 
I n  these cases, the number of integrated ciruits 
that could be cooled limited the density. In 
other cases, either the number of pins or the 
module size limited the module's functionality. 
There are similar effects throughout the gener- 
ations. 

I n  the early second generation Systems Mod- 
ule designs, the number of pins and the circuit 
board area (in square inches) were about the 
same. Components were fairly large and loosely 
packed on modules. With the Flip Chip series, 
circuits were modified to pack a larger number 
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Figure 14. Module printed circuit board area and number of pins per module versus time for DEC modules. 

of smaller components on a single module, us- 
ing automatic component insertion equipment, 
and some of the space-consuming components 
(e.g., pulse transformers) of the earlier circuits 
were removed so that a module design was a 
better balance between area and pins. As a re- 
sult, the early second generation Flip Chip 
modules had higher packing densities than 
comparable Systems Modules. 

With the beginning of the third generation, 
the need for more printed pins to the backplane 
was clear because so many interconnections 

were made on the computer's backplane. The 
PDP-8/1 was the first DEC integrated circuit 
computer, and the packaging philosophy 
strictly followed that of the second generation. 
As a result, the sudden increase in component 
functions meant that the modules were drasti- 
cally lacking in pins. By putting pins on both 
sides of the module, the number of pins for a 
double-height module (20 in2) was increased 
from 36 to 72, which was still inadequate. As- 
suming that each integrated circuit has 14 signal 
pins and a module has 70 signal pins, only 5 
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integrated circuits could be placed on a board 
and still have pins brought out to  the backplane 
pins, although the 20-in2 area of the module 
could potentially hold 20 integrated circuits. 

Although the 8 / I  was packaged using the 20- 
in2 72-pin modules, it was clear that another 
packaging scheme was necessary to utilize in- 
tegrated circuits, modules, pins, and back- 
planes. Thus, when the PDP-11/20 and the 
PDP-8/E were designed (about 1970), they used 
larger modules in order to carry the large num- 
ber of intramodule interconnections required 
when many integrated circuits were placed on a 
single module. 

It is interesting to note that in a recent case of 
a processor using high density integrated cir- 
cuits, the LSI-11/2, the module area was too 
large to have a single option on a module, and 
since the LSI-11 Bus only required a few sig- 
nals, the number of pins was more than ade- 
quate. Here, the modules were functionality 
limited rather than pin limited. Figure 14 in- 
dicates situations in which either pins or mod- 
ules limited the design. 

Although the size of the module is important 
in determining the systems that can be built, 
how they are serviced, and how they are manu- 
factured, the important module metric is the 
cost per interconnection on the printed circuit 
board (and remainder of the system). Figure 13 
shows how this has varied with time. Here one 
can see that the introduction of Flip Chip mod- 
ules initially increased costs (because learning 
had to start almost anew). 

Interconnection costs consist of the costs of 
the printed circuit board, the insertion of the 
components on the module, and the testing of 
the module. Printed circuit board costs have 
been decreasing with time, reflecting benefits 
both of learning and of placing more integrated 
circuits on a single module, giving a compound 
economy-of-scale effect. The cost to  assemble 
the components on the module have decreased 
rapidly, reflecting the increasing use of auto- 
matic component insertion machines. Testing 

has not been a significant cost component in 
module manufacturing, although it does repre- 
sent a substantial cost by the time the module 
has been integrated into a system and delivered 
to the customer’s site. The total cost per inter- 
connection has been decreasing, but the trend 
may either remain constant or even increase as 
greater use of large-scale integration decreases 
the number of total connections in a system but 
makes the remaining interconnections more ex- 
pensive to assemble and test. 

Many of the important problems in packag- 
ing, specifically heat and electromagnetic inter- 
ference, originate not from a computer’s logic 
but rather from the power supplies that power 
the logic. 

POWER SUPPLIES 

Although logic functions can be performed 
using small quantities of electrons and can thus 
be accommodated in very small physical struc- 
tures, the power to move those electrons at use- 
ful speeds comes from power supplies which do  
not scale down in size as readily as the logic 
functions they support. Power supply tech- 
nology has not provided the impressive in- 
creases i n  capability per dollar or capability per 
cubic foot that semiconductor technology has. 
Power supplies involve such materials proper- 
ties as voltage breakdown limits, dielectric con- 
stants,  magnetic permeability, and  heat 
conductivity. Since these properties vary with 
physical dimension, increased capabilities in 
terms of voltage breakdown rating, capaci- 
tance, inductance, or heat dissipation are 
gained by making the component physically 
larger. 

The performance criteria for power supplies 
are predominantly determined by the appli- 
cation for which they are designed. These cri- 
teria are given in terms of various efficiencies of 
volume, weight, power conversion, and cost. It 
is somewhat difficult to compare the various 
supplies because all are available at different 
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Table 5. Characteristics of Power  Supply Types 

Terminal Processor and Memory Disk and Tape 

Power (watts) 

Use 

Quantity in system 

Cost sensitivity 

Size 

Weight 

Reliability 

Features 

250-2500 

Logic 

Low to medium 

Low 

Important. especially in 
boxed computers 

Relatively unimportant 

Very important 

Power line sensing, 
battery backup 

100-500 

Very low noise for head 
electronics; high current for 
servos 

Medium 

Medium 

Not important 

Not important 

Important 

0-1 50 

High voltage for CRT; high 
current for mechanical 
motions 

High 

High 

Very important 

Very important 

Important 

times, produced in different quantities, de- 
signed for different reliabilities, and available 
with different features. 

For the computer industry, power supplies 
can be divided into three main categories: pro- 
cessor and memory power supplies, disk and 
tape power supplies, and terminal power sup- 
plies. Each of these product categories has a 
unique set of requirements, which are summa- 
rized in Table 5. 

Three of the four efficiency measures, cost (in 
relative cost per watt), weight (in watts per 
pound), and volume (in watts per in3), are 
plotted for processor power supplies in Figures 
15 and 16. The plots in Figure 15 use a time 
axis; those in Figure 16, a watts-of-output axis. 
The fourth efficiency measure, power con- 
version (watts out per watts in), is given in Fig- 
ure 17 using a time axis. 

The cost of a power system is very dependent 
on the unit’s electrical size and technology. The 
features required on the units such as power line 
monitoring (ac low, dc low), battery backed-up 

power, and servicing aids also significantly in- 
fluence the cost. Since the cost is size depend- 
ent, a relative metric, dollars per watt, is chosen 
for processor power supplies. 

In the cost characteristics the different bands 
of cost curves are technology dependent: they 
span new, mature, and obsolete technologies. 
For example, the cost of power supply tech- 
nology until just recently depended on iron and 
copper prices and labor costs. Now, costs of 
power supply technology tend to track semi- 
conductor costs as a result of the widespread 
use of line switching power supplies. Bands 
within the cost curves represent the size depend- 
ency; larger power supplies are the most cost- 
effective, with one exception (Figures 15a and 
16a). 

The size of power supplies for minicomputers 
has been important, especially for the boxed 
versions. The volume occupied by logic has de- 
creased for the constant functionality com- 
puter; however, power requirements have 
declined far less than logic volume, and hence 
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Figure 15. Cost, weight, and volumetric efficiencies Figure 16. Cost, weight, and volumetric efficiencies 
versus time for various DEC computer power supplies. versus size for various DEC computer power supplies. 
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Figure 18. 
DEC computer boxes. 

Heat density (kilowatts per ft3) of various 

power densities have increased. Where 250 
watts used to suffice for a 10.5 X 19 X 25-inch 
box, 800 watts is now required, and the space 
for the power supply has barely increased. This 
has put substantial constraints on the weight 
and efficiency of power systems; and, at times, 
space utilization has been (inadvertently) traded 
for cost, manufacturability, and serviceability. 

In response to these space pressures, there 
has been a constant gain in volumetric effi- 
ciency (Figure 156) over the years with the 
highly dense power supplies on the top of the 
band and the modular packaged units on the 
bottom. With the introduction of line switching 
power supplies, this curve made a quantum 
jump. The increase in volumetric efficiency, 
plotted relative to time in Figure 156, is plotted 
relative to power output in Figure 16b. 

Power supply technology determines not only 
volumetric efficiency but also the weight of the 
unit. Here again the use of high frequency line 
switcher technology rather than low frequency 
transformer technology has produced marked 
results - in this case, two distinct curves. 

The weight efficiency (watts per pound) has 
been fairly constant over time but has shown a 
slight improvement as larger supplies were built 
(Figure 16c). 

Finally, Figure 17 shows how power supply 
efficiency is improving with time. Note that 
with direct line switching, efficiencies of 70 per- 
cent are expected. This efficiency permits the in- 
crease in volumetric efficiency because there is 
less heat to dissipate. 

HEAT 

Although the volumetric measures of module 
area and the size of the cabinet are also impor- 
tant, the amount of heat that the enclosure is 
capable of dissipating is the most important 
metric of reliability. Table 6 gives some of the 
important metrics of several of the recent DEC 
computer boxes. 

Figure 18 gives the heat density for the vari- 
ous boxes. The amount of heat dissipated by the 



84 COMPUTER ENGINEERING 

Table 6. Expansion Box Characteristics 

Module Heat Heat 
Weight Size Volume In  Density Space Box Used 

Model On Year (Ib) (ft3) Modules ft3 (kW) (kW/ft3) Efficiency 

BA11-D 11/35 1974 100 2.6 24  hex 0.93 0.7 0.27 0.35 
BA11-E 11/45 1972 100 2.6 27 quad 0.7 0.7 0.27 0.27 
BAl1-F 11/40*  1972 260  5.3 44 hex 1.7 2.2 0.42 0.32 
BA11-K 11/04? 1974 110 2.6 24hex 0.93 1 .o 0.38 0.36 
BA11-L 11/04 1976 50 1.3 9 hex 0.35 0.55 0.43 0.27 
BA11-M 11/03 1975 25 0.5 4quad 0.1 0.25 0.54 0.24 
BA11-N 11/03 1977 40 1.0 9quad 0.23 0.24 0.31 0.22 
BA11-P 11/60 1977 100 3.0 29 hex 1.1 1.1 0 .36  0.22 
BA8-CA 8/A 1975 117 2.4 20quad 0.52 1.2 0.50 0.22 
H9300 8/A 1977 55 1.1 10quad 0.26 0.3 0.26 0.24 
H9500$ 111780 1978 344 43.4 67 exthex 3.7 6.0 0.15 0.10 

*Also 11/45 and 1 1/70. 
?Also 11/34 and 11/70 memory. 
$Actually a cabinet. 

box (in kilowatts per cubic foot) has been rela- 
tively constant with time. There has been great 
variation about the norm, and the very high 
heat dissipation of the first PDP-8/A (due to 
high packing density and a relatively inefficient 
power supply) resulted in  the next design being 
of lower density. The space utilization follows a 
similar path, although the efficiency appears to 
be declining (Figure 19). This decline is hardly 
noticeable and is even surprising in light of 
more efficient power supplies which make it 
possible to place more components in a given 
enclosure. The cost-effectiveness of the average 
enclosure, as measured by the material cost, is 
declining with time as measured by the relative 
cost of materials per cubic foot of modules held 
(Figure 20). 

The time chart gives a completely erroneous 
view of the situation because economy of scale 
is not considered. Figure 21 shows how the rela- 
tive cost of box materials varies with the volume 
(in number of hex modules). Here the upward 
trend of the previous figure is not apparent, but 
it merely occurs because later packages are for 
smaller numbers of modules. 

AN OVERVIEW OF MANUFACTURING 

Although the result of a design project is an 
entity which is manufactured, very little is writ- 
ten about manufacturing i n  the computer engi- 
neering literature. Such literature generally 
discusses algorithms, logic design, and circuit 
technology. Yet for a computer to be com- 
mercially successful, it must be manufacturable, 
economically operable, and serviceable. More- 
over, for most of the computer engineering dis- 
cussed in this book, because the designs are 
intended for volume production, engineering 
costs are small (1 to 10 percent) compared with 
other product and life cycle costs. The product 
cost is determined by the price of the com- 
ponents and the manufacturing process; the life 
cycle cost includes the purchase price, the oper- 
ational costs, and service costs. 

For production, machines must be easy to as- 
semble and test, repair must be rapid, engineer- 
ing changes must be introduced smoothly, and 
the production line cannot be held up because 
of shortages of components - all parts of tradi- 
tional manufacturing considerations. 
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Figure 21. Relative cost of box materials versus num- 
ber of hex size modules for various DEC minicomputer 
boxes. 

The Life Cycle of a Product 
Figure 22 shows a simplistic process flow for 

the major phases and milestones in the life of a 
product. In reality, planning and designs for 
many of the phases go on concurrently. The 
early research, advanced development, and def- 
initional phases are not shown. Often, products 
proceed from the idea stage to the engineering 
breadboard and are then terminated because 
they do not meet original goals or because bet- 
ter ideas arise. 

To  facilitate changes, t he  engineering 
breadboard is usually built with wire-wrapped 
rather than printed circuit boards if the circuit 
technologies used permit the long wire lengths 
characteristic of wire-wrapped boards. At or 
before the breadboard stage, manufacturing 
start-up schedules are made. Other organiza- 
tions formulate and execute plans: systems engi- 
neering, for product test/verification; software 
engineering, for special software and veri- 
fication; marketing, for promotion and product 
distribution; sales, for training; field service, for 
training and parts logistics; and software sup- 
port. 



86 COMPUTER ENGINEERING 

b 
LIMITED 

RELEASE OF 
PRODUCT B E G I N  

PRODUCTION 

DESIGN 

MANUFACTURING 

Figure 22.  A simplified process flow for the major 
phases and milestones in the life of a product. 

After the engineering breadboard has been 
debugged, construction of engineering pro- 
totypes begins. The engineering prototypes test 
the design using the actual printed circuit mod- 
ules that will be used in manufacturing. Usually 
a number of prototypes are constructed, the 
number varying from 10 to 100 depending on 
the complexity, cost, and anticipated product 
volume. All processors and peripherals in the 
planned systems configurations are tested in 
conjunction with the prototypes. The complete 
system must meet the product specifications 
and must run all of the system software. 

The requirement that all of the system soft- 
ware be run is an excellent supplement to the 
normal testing of prototypes. It is especially 
useful when the product being designed is a pro- 
cessor with a mature architecture because more 
system software is then available. Because the 
number of possible states and state sequences in 
a computer system is very large, a diagnostic 
test which exercises every one is impractical. Di- 
agnostic programs and microdiagnostics there- 
fore test a judiciously chosen subset of all states. 
Such programs are not perfect in their coverage, 
however, and system software is run as well. 
Thus, the more software that is available to test 

a prototype, the less likely it is that a design er- 
ror will go unfound. The general problem of 
testing requires much more work before it can 
be considered mature. One would like to see, 
for example, the automatic generation of veri- 
fication programs from an ISP description of 
the architecture being built. 

Design maturity testing with a number of en- 
gineering prototypes verifies the design and jus- 
tifies the risk of releasing the design t o  
manufacturing. Tests for reliability and func- 
tionality are conducted. Environmental tests for 
shock, temperature, humidity, static discharge, 
radiation, power interrupt, and safety are also 
conducted at this stage. 

The release to manufacturing is a major mile- 
stone. The product is placed under formal engi- 
neering change control to ensure that everyone 
knows what version of the documentation is 
current; specifications and documentation are 
available for the product and manufacturing 
process. For the integrated circuits, sources of 
supply and testing procedures are in  place. Pro- 
cess control tapes are ready for the numerically 
controlled machine tools, such as component 
insertion, backplane wiring, and printed circuit 
board drilling machines. Any special tooling for 
the mechanical packaging has been obtained. 
Testing at all levels has been specified; test pro- 
grams for computer-controlled testers have 
been written, special test equipment has been 
built, and diagnostic programs are ready. 

For some products, particularly processors, a 
pilot run is manufactured. The pilot run shakes 
down and verifies the actual manufacturing 
process by building a small number of units, us- 
ing the product, and processing documentation 
at the manufacturing plant. 

Product announcement usually occurs during 
the design maturity testing period but can occur 
at any time - often as early as when the 
breadboard works or as late as the first cus- 
tomer shipment, depending on the marketing 
strategy. This strategy is clearly a function of 
the volume, novelty, and competitive needs. 
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Figure 23. Overview of manufacturing computer system flow 

Process maturity testing verifies that the 
product is being manufactured with the desired 
cost, quality, and production rate. After process 
maturity testing, the steady state phase of man- 
ufacturing continues (with possible per- 
turbations due to the introduction of product 
enhancements, engineering change orders, or 
process changes to  lower product costs) until 
the product is phased out. 

Manufacturing Process Flows 

An overview of a manufacturing process is 
given in Figure 23 which shows how a product 
moves through the various factories. There are 
often different plants for boards, peripherals, 
memories, and central processors. Integration 
from the other stages and stock storage occurs 
at the stage called “final assembly and test” 
(Figure 24). Here, the software system that is to 
be run ,  operations manuals, and other docu- 
mentation are also integrated and tested. 

Figure 25 gives the complete flow for a typi- 
cal volume manufacturing line, the PDP-I 1/60 
central processor facility in Aguadilla, Puerto 
Rico. 

Testing 

Since testing occurs at each stage in the man- 
ufacturing process, dedicated logic must be 
added to the design to provide physical access 
probes for the test equipment. To test a particu- 
lar function, it must be specifiable, invokable, 
and observable. For example, the function of an 
adder can be clearly specified, but it cannot be 
easily invoked or observed if its inputs and out- 
puts are etch runs on a printed circuit board. 
Several testing strategies are used: add signal 
lines from the adder to the backplane where 
there are adequate probe access points, probe 
directly onto the module etch or pins, and sub- 
sume the adder in a function whose inputs  a n d  
outputs can be more easily controlled and ob- 
served. The problems of observation and con- 
trol exist at all levels-of-integration. Examples 
of observation points at each level for the PDP- 
11/60 are given in Table 7. 

The problem of testability must be addressed 
at design time. Providing access for testing al- 
ways incurs added product cost (extra logic and 
module pins or circuit pins) but lowers manu- 
facturing cost and field service costs. As gate 
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Table 7. Examples of Observation Points a t  Each Structural Level for the PDP-11/60 

Level in Stage in 
Computer 0 bservation Manufacture 
Hierarchy Point of Computer Example 

Electrical circuit Transistor contacts on Semiconductor 
metallization layer fabrication Wafer test with microprobe 

Switching circuit Leads on IC Incoming inspection IC tester 
package of ICs 

Register transfer Etch run Module Probe on module 
(module-specific tester) 

Register transfer Backplane Module Memory exerciser for cache 

Central processor Unibus Central processor Unibus voltage margin tester 

Central processor Contents of memory Central processor Diagnostic programs at subsystem 
level, e.g.. memory management unit 
or processor instruction 
set tests 

Computer Contents of memory System integration Peripheral diagnostic programs 

Computer Unibus System integration Bus exerciser 

Figure 24. Final assembly and test (FA&T) for computer systems. 
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WL tern 
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Figure 25. The process flow for the PDP-1 1/60 manufacturing plant in Aguadilla. P.R 

density per chip continues to increase, the prob- 
lem worsens. One solution, which is economical 
in 1 / 0  connections, is to  design every storage 
element as a shift register which can be loaded 
in parallel (normal mode) or serially loaded 
(with an invoking state) or serially read (with 
the state to  be observed). Eichelberger and Wil- 
liams [1977] report on such a scheme for gate 
array designs. The individual shift register 
latches are connected to form one or more inde- 

pendent shift registers which are connected to 
the leads of the gate array package. 

The testing which occurs at the various stages 
of the manufacturing process can be classified 
into three types according to the different fail- 
ure modes anticipated. Type 1, a static test, is 
intended to find process-related faults. Exam- 
ples are solder shorts, open-circuit etch con- 
nections, dead components, and incorrectly 
valued resistors. Figure 26 shows a GenRad 
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Figure 26. GenRad Corp. (GR) tester for modules. 
Figure 27. Quick-Verify (QV) station to verify that 
tested modules operate within a system. 

Figure 28. Chambers for thermal cycling operating modules. 
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figure 26. GenRad Cow. {GR) tester for modules. 

. .  

Figure 27. Quick-Verify (QV) station to veriry that 
tested modules operate within a eystern. 
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Corp. (GR) tester of the type first used (Figure 
25) to  detect this type of fault. A module-spe- 
cific program in the tester guides the operator 
through a fault-finding procedure. Approx- 
imately 95 percent of all Type 1 failures are di- 
agnosed and repaired at this step. 

Type 2 is dynamic. It seeks to detect faults 
which are caused by timing parameters being 
out  of specification range, by logic in- 
compatibilities, and by other functional prob- 
lems. Figure 27 shows a tester (Figure 25) 
performing this type of test. 

Type 3 is the reliability or burn-in test. The 
manufacturing process includes extensive ther- 
mal cycling to ensure that component “infant 
mortality” cases are discovered early during 
manufacturing because it is more expensive to 
find defective components at the later, more in- 
tegrated systems level. For some components, 

notably integrated circuits, thermal cycling is 
done when the components are received from 
the vendor. In addition, thermal cycling and 
burn-in are done near the end of the production 
process for entire processors and options. The 
temperature/humidity environmental chambers 
used, which house twelve or sixteen processors 
each, are shown in Figure 28. Test chambers to 
heat entire computer systems are also used. 
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In the Beginning 

Because modules were DEC’s first product, and for many years their major 
product, it is appropriate to study the history of DEC’s modules and the influence 
of technology on their development. The history of modules is a subset of the 
history of computers, and many of the views of computers expressed in Chapter 1 
apply as readily to modules. In particular, the Structural View and the Packaging 
Levels-of-Integration View plainly apply. Further, a study of module history 
shows the effects of progress in semiconductor technology, as discussed in Chap- 
ter 2, and demonstrates on a small scale many of the packaging and manufac- 
turing concepts discussed in Chapter 3. 

With the advent of microprocessors, the distinction between a module and a 
computer has become blurred, and complete computer systems have become 
available at the printed circuit board/module level of packaging integration. The 
structural levels (Chapter 1, Figure 1) found on a single module have changed 
from solely circuit level to logic level, then to register transfer level, and finally to 
processor-memory-switch level. These developments will be explored more fully 
in Part IV, “The Evolution of Computer Building Blocks”; the discussion here is 
limited to the simpler modules that characterized the first 18 years of DEC’s 
computers. 

The two chapters in this part consist of a 1957 paper by Ken Olsen and a 
historical review by Dick Best. Both of these papers, but in particular the Olsen 
paper, give a glimpse of how early computer design was heavily weighted toward 
the electrical circuit level shown in Figure I of Chapter 1. As indicated above, the 
capability of modern technology to package complete switching circuit level and 
register transfer level systems into single chips has been a motivating force moving 
computer design toward the PMS level. There has also been increased activity 
“downward” however, as is also shown in Figure 1 of Chapter 1. To fit the mod- 
ern, more complex systems into chips, increased attention to the lowest level (the 
device level) has also been required. Since this has been more the domain of the 
materials scientist than the computer scientist, it is not discussed in detail here. 

While module design and computer design have evolved a great deal in the past 
18 to 20 years, certain aspects of the Olsen paper reflect design methods which 
have counterparts today. In particular, convenient maintenance was plainly one 
of the important goals in the TX-2 circuit design effort. The use of a single, stand- 
ard type of flip-flop and the use of a minimum number of different plug-in units 
were important elements in meeting that goal. These features simplified the de- 
sign, simplified maintenance training, and reduced the variety of spare modules 
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that needed to be stocked. A voltage adjusting (margining) system for identifying 
marginal circuits was another important feature of the TX-2 circuit design. 

Today, computer engineers generally try to use a limited number of flip-flop 
types (or RAM types, etc.) because they have certain favorites whose character- 
istics they understand well and because the cost of bringing new parts into a com- 
pany is very high. The old reasons - to simplify design, training, and stocking of 
spares - continue to apply as well. Even though keeping the number of different 
plug-in units (modules) to a minimum continues to have these advantages, this 
cannot be done as easily as it once was, principally because the increased func- 
tionality now available has customized modules to such a great degree. For ex- 
ample, in the case of an LSI-11, the computer is a single module. 

Modern designs do not use margining except in special cases where the refresh 
clock cycles of dynamic memories are altered to detect failures. However, special 
maintenance logic is often included in current designs. The idea of built-in main- 
tenance features is in some ways similar to the old margining idea: in other ways it 
is a substantial deviation because additional parts are required, and the old de- 
signers were extremely careful of the parts count. The emphasis on low com- 
ponent cost and parts count expressed in these chapters may seem odd to modern 
designers, but the gradual lessening of this concern (as discussed in Chapter 4) 
serves as an excellent example of the declining cost of electronic technology and of 
semiconductor technology in particular. 

In  summary, the modules chapters which follow form a starting point, both in  
time and in technology, for a study of how the views, concepts, and trends de- 
scribed in the first two chapters have applied in the development of DEC modules 
and computers. 



Transistor Circuitry 
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Only two basic circuits are needed to perform 
most of the logical operations in the TX-2 com- 
puter: a saturated transistor inverter and a satu- 
rated emitter follower. To the logical designer 
who works with them, these circuits can be con- 
sidered as simple switches that are either open 
or closed. 

The schematic diagram of an emitter follower 
and the symbol used by the logical designers is 
shown in Figure 1. With a negative input, the 
output is “shorted” to  the -3 V supply as 
through a switch. When several of these emitter 
followers are combined in parallel, as in Figure 

2, any one of them will clamp the output to -3 
V. We then have an OR circuit for negative sig- 
nals and an AND circuit for positive signals. 
The transistor inverter is shown in Figure 3 with 
its logic symbol. Basic AND, OR circuits result 
from the connection of these simple switches in 
series or parallel (Figures 4 and 5) .  More com- 
plex networks like the TX-2 carry circuit use 
these elements arranged in series-parallel (Fig- 
ure 6). 

In Figure 3 the resistor R I  is chosen so that 
under the worst combinations of stated com- 
ponent and power supply variations, the drop 

-3 v 
-3 v 

I 

Figure 1. Emitter follower. 

=&OUT -3 v 

Figure 2.  Parallel emitter follower. 
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across the transistor will be less than 200 mV 
during the “on-condition.’’ Rz biases the tran- 
sistor base positive during the off condition to  
provide greater tolerance to noise, Zoo, and sig- 
nal variations. Capacitance C was selected to  
remove all of the minority carriers from the 
base when the transistor is being turned off. The 
effect of C on a test circuit driven by a fast step 
is shown in Figure 7. Note that the delay due to 
hole storage is only a few millimicroseconds. 

We run the circuits under saturated condi- 
tions to achieve stability and a wide tolerance to 

I I 
GND 
P + l O V  

T 

1 
-10 v I 

Figure 3. Inverter. 

G N D  

7 

Figure 4 .  Parallel inverters. 

I TOUT 
-10 v 

parameters without the need for clamp diodes. 
Unlike vacuum tubes, which always need an ap- 
preciable voltage across them for operation, a 
transistor requires practically no voltage across 
it. In spite of the delay in turning off saturated 
transistors, these circuits are faster than most 
vacuum tube circuits. Faster circuit speed is not 
due to the fact that the transistors are faster 
than vacuum tubes, but because they operate at 
much lower voltage levels. A vacuum tube takes 
several volts to turn it from fully “on” to fully 
“off’: a transistor takes less than 1 V. 

CARRV’FROM 

~~ 

Figure 6. TX-2 carry circuits 
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Figure 5 .  Series inverters. Figure 7.  Turn-off time 



TRANSISTOR CIRCUITRY IN THE LINCOLN TX-2 99 

FLI P-F LOP 

On the basis of previous experience, we de- 
cided that the advantages of having one stan- 
dard flip-flop were worth some complication in 
TX-2 circuitry. The circuit diagram of the flip- 
flop package in Figure 8 is basically an Eccles- 
Jordan trigger circuit with a 3-transistor ampli- 
fier on each output. The input amplifiers isolate 
the pulse input circuits and give high-input im- 
pedance. The amplifiers give enough delay to 
allow the flip-flop to be set at the same time that 
it is being sensed. Figure 9 shows the waveforms 
of this flip-flop package when complemented at 
a IO-megapulse rate. The rise and fall times, 
about 25 millimicroseconds, are faster than one 
normally sees in a single inverter or an emitter 
follower because on each output there is an in- 

p Z E R O l N  

verter that pulls to ground and an emitter fol- 
lower that pulls to -3 V. Figure 10 is a plot of 
the pulse amplitude necessary to complement 
the flip-flop at various frequencies. Note the in- 
dependence of trigger sensitivity to pulse repeti- 
tion rate. This circuit will operate at a 10- 
megapulse rate, twice the maximum rate at 
which it will be used in TX-2. 

The TX-2 circuits reproduced most often 
were designed with a minimum number of com- 
ponents to achieve economies in manufacture 
and maintenance. The design of less frequently 
reproduced circuits made liberal use of com- 
ponents - even redundancy - to achieve long 
life and broad tolerance to component varia- 
tions. The goal was system simplicity and high 
performance with a lower total number of com- 
ponents than might otherwise be possible. For 
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i + l O V I  

I INPUT AMPLIFIER 1-I 

GROUND 

ZERO 
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I 

1 
I 

I 1 I 
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Figure 8. TX-2 flip-flop. 
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Figure 9. Flip-flop waveforms 
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Figure 10. Trigger sensitivity 

example, the number of flip-flops in the TX-2 is 
small compared to  the gates which transfer in- 
formation from one group of flip-flops to an- 
other. So the flip-flops were allowed to be 
relatively complicated, but the TX-2 transfer 
gates were made very simple. A transfer gate is 
only a single inverter. The emitter is connected 
to the output of the flip-flop being read, and the 
collector is connected to the input of the flip- 
flop being set. The output impedance of the 
flip-flop is so low that, when the output is at the 
ground level, a pulse on the base of the transfer 
gate shorts the input of the other flip-flop to  
ground and sets its condition. 

MARGINAL C H  ECKl N G 

We planned, of course, to incorporate mar- 
ginal checking in the design of these circuits so 

10 20 30 40 

" 0 '  SIDE, 6 

Figure 12. Beta margins 

that, under a program of regularly scheduled 
maintenance, deteriorating components could 
be located before they caused failure in the sys- 
tem. We also found it practical to use the tech- 
nique during the design of the circuits to locate 
the design center of the various parameters and 
to indicate the tolerance of circuit performance 
to these parameters. A further application of 
marginal checking has been found in other sys- 
tems during shakedown and initial operation to 
pinpoint noise and other system faults not 
serious enough to cause failure and therefore 
very difficult to isolate by other means. 

The operating condition of the inverters is in- 
dicated by varying the +10 V bias. In the flip- 
flop schematic in Figure 8, the inverters were 
divided into two groups for marginal checking, 
and the two leads labeled MCA and MCB were 
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Figure 14. -3 V supply margins 

Figure 15. Temperature margins. Figure 17 TX-2 plug-in unit 

varied one at a time for most critical checking 
of the circuit. The following curves show the 
locus of failure points for various parameters as 
a function of the marginal checking voltage. 
Figure 11 shows the tolerance to tau, a measure 
of hole storage, and Figure 12 shows the toler- 
ance to beta, the current gain. Operating mar- 
gins for supply voltages, temperature, and pulse 
amplitude are shown in Figures 13 through 16. 

PAC KAGl NG 

The number of types of plug-in units was 
kept small for ease of production and to keep 
the number of spares to a minimum. The cir- 
cuits are built on dip-soldered etched boards, 
and the components are hand soldered in solid 
turret lugs. The boards are mounted in steel 
shells shown in Figure 17 to keep the boards 
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varied one at a time for most critical checking 
of the circuit. The following curvcls h o w  the 
locus of failure points for various parameters as 
a function of the marginal checking voltage. 
Figure 1 1 shows the tolerance to tau, a measure 
of hole storqc and Figure 12 show the toler- 
ance to beta. the cumnt gain. Operating mar- 
gins for supply voltaga, temperature, and p u k  
8mpIitude are shown in Figures 13 through 16. 
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Figure 17. TX-2 plug-in unit. 
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The number of types of plug-in units WSI 
kept smalf for case of production and to keep 
the number of spar= to a minimum. Tbe cir- 
cuits are built on digsoldered ctched boards, 
and the cumponenu are hand soldered in solid 
turret Iugs. The boards are mounted in stcel 
shells shown in Figure 17 to keep the boards 
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Figure 18. TX-2 back panel. 

from flexing. The male and female contacts are 
machined and gold plated. The sockets are 
hand wired and soldered in panels (Figure 18). 

simplicity of the circuits has encouraged a de- 
gree of logical sophistication that would not 
have been chanced before. 
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The circuits and design concepts described in 
Chapter 4 were the basis for the subsequent de- 
velopment of DEC modules. In Chapter 5, the 
discussion of this development is broadened to 
include not only circuits and design concepts 
but also packaging and the effects of progress in 
semiconductor technology. DEC modules are 
impor tan t  because the progress in semi- 
conductor technology that has formed the ma- 
jor element of the technology push driving the 
computer industry is evident in the history of 
DEC modules on a scale convenient for close 
examination and understanding. 

The first modules produced by DEC were 
called Digital Laboratory Modules and were in- 
tended to sit on an engineer’s workbench or be 
mounted in a scientist’s equipment rack. To fa- 
cilitate the rapid construction of logic systems 
Lsing these modules, interconnection was ac- 
complished with simple cords equipped with 
banana plugs. As shown in Figure 1, the mod- 
ules were mounted in aluminum cases 1-3/4 X 
4- 1 /2 X 7 inches in size. All of the logic signals 
were brought out to the front of the case, where 
they appeared on miniature banana jacks 
mounted in a schematic diagram of the logic 
function performed by the module. The mod- 

Digital Modules, 
The Basis for Computers 

RICHARD L. BEST, RUSSELL C. DOANE, 
and JOHN E. McNAMARA 

ules were offered in three speed ranges with 
compatible signal levels. The three speed ranges 
were 5 MHz (1957), 500 kHz (1959), and 10 
MHz (1960). 

The Digital Laboratory Module product line 
was supplemented by the Digital Systems Mod- 
ules. These modules, samples of which are 

Figure 1. Digital Laboratory Modules. 
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Figure 2. Digital System Modules. 
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Figure 3. 
inverter used in  digital system modules 

Schematic drawing of an 

shown in Figure 2, were identical to the Labora- 
tory Modules in circuitry, signal levels, and 
speed range, but they had a different packaging 
scheme. The System Module packaging was de- 
signed for rack mounting and used 22-pin Am- 
phenol connectors at the backs of the modules 
rather than banana plugs at the front. The 22- 
pin connectors were originally available only in 
a soldered connection version, but a taper pin 
version was later offered. The System Module 

mounting method was chosen for the PDP-I 
computer, as it permitted a wired panel of 25 
modules to be mounted in a 5-1/4-inch section 
of standard 19-inch rack. 

The circuits used in both module series were 
based on the M.I.T. Lincoln Laboratory TX-2 
computer circuits described in Chapter 4. All of 
the TX-2 basic circuits were used, except those 
gates which used emitter followers. The emitter 
follower gates were not short circuit proof, and 
it was felt that misplaced patch cords in Labo- 
ratory Module configurations or slipping scope 
probes in System Module configurations would 
cause a high fatality rate for those circuits. 

What follows is a brief review of some of the 
circuits to indicate how much present day logic 
design differs from the logic design of 20 years 
ago. Today designers deal with arithmetic logic 
units and microprocessors as units, whereas in 
the early 1960s, single gates and flip-flops were 
units. 

In the early module designs, most logical op- 
erations were performed using saturating PNP 
germanium transistors. While the use of transis- 
tors in radios and television sets relies on the 
linear relationship between base current and 
emitter-to-collector current to provide the am- 
plification of radio frequency and audio fre- 
quency signals, the  use of t ransis tors  in 
computer circuits (except those using emitter- 
coupled logic (ECL)) relies primarily on the be- 
havior of transistors in either the saturated state 
or the cutoff state. The use of transistors in such 
circuits can best be appreciated from the simple 
examplexhown in Figure 3.  

Figure 3 is a schematic drawing of an in- 
verter. When the emitter is at ground and the 
base lead is brought to a sufficiently negative 
voltage, the resulting base current will saturate 
the transistor, effectively connecting the emitter 
to the collector. If ,  on the other hand, the base 
is grounded, then no base current flows, no 
emitter-to-collector current flows, and the tran- 
sistor is in the cutoff state. The collector would 
then assume the voltage of the negative voltage 
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Figure 4. Symbolic drawing of an inverter. 

source, were it not for the clamp diode which 
limits the voltage of the collector to -3 volts. 

To facilitate maintenance, the + 10-volt bias 
supply shown in Figure 3 was adjustable for 
margin checking, a feature which had been used 
in the TX-2 and which is discussed in Chapter 4. 

To simplify the logic drawings, a symbolic 
drawing like that in Figure 4 was customarily 
used to represent the inverter circuit. Note that 
neither Figure 3 nor Figure 4 shows the emitter 
directly connected to ground or the collector 
directly connected to the negative supply. 
Rather, a dotted line is used on the drawings to 
indicate that Laboratory Modules and System 
Modules often used a series connection of up to 
three inverter gates between the negative supply 
and ground to accomplish various logic func- 
tions. Parallel and series-parallel arrangements 
were also used, as shown in the sample circuits 
in Figure 5 .  

The Digital Laboratory Modules and the 
Digital System Modules used a dual polarity 
logic system employing both levels and pulses. 
The logic voltage levels were -3 volts and 
ground. Correspondence between the logic 
state, ONE or ZERO, and the voltage levels of 
-3 and ground were indicated at each point in 
the logic diagram by a diamond. The diamond 

to. 

Figure 5. 
arrangements of inverters. 

Sample circuits using series and parallel 

defined the necessary voltage level for the ac- 
tion desired. A solid diamond denoted that a 
-3-volt level was an assertion, and a hollow di- 
amond indicated that a ground level was an as- 
sertion. This convention gave two signal names 
to one physical signal: if  a given asserted signal 
A was passed through an inverter, four signals 
resulted, as shown in Figure 6 .  

A logic function lower in cost yet equivalent 
to both the series and parallel inverter arrange- 
ments used diodes added to the circuit of Figure 
3 to form AND or OR gates, as shown in Fig- 
ures 7 and 8. 

Except for very small amounts of delay, the 
inputs and outputs of these circuits changed si- 
multaneously; thus, no information was stored. 
The storage of information was accomplished 
by bistable devices called “flip-flops” whose 
state was controlled by the application of pul- 
ses. Before discussing the construction of flip- 
flops, it is therefore necessary to briefly describe 
pulses, which were an important type of logic 
signal. 

A pulse, as the name implies, was a very well 
controlled, short event in which a logic signal 
was asserted. Pulses were used for computer 
clocks and for carrying out the register transfer 
operations between the registers. Pulses were 
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Figure 8. OR gate for negative signals 

generated by pulse amplifiers which were block- 
ing oscillator circuits employing pulse trans- 
formers. The pulse transformer had both 
terminals of its secondary winding available so 
that either positive or negative pulses could be 
obtained, depending upon which terminal was 
grounded. A negative pulse (ground to - 3 volts 
and back to ground) was represented in the 
logic drawings by a solid triangle, and a positive 
pulse (ground to + 3  volts and back to ground) 
was represented by a hollow triangle. These sig- 
nals were normally distributed on twisted pair 
and could travel the long distances needed in 
large digital systems like the PDP-1 without 
degradation. 

Pulse amplifiers were important elements be- 
cause they produced high energy (high fan-out), 
standardly shaped pulses which could be used 
to gate a complete 18-bit register as a single log- 
ical signal. The use of pulses and  buf- 
fered/delayed output flip-flops is emphasized 
because the concept of gating a pulse at the 
source and using the gated pulse to transfer 
data from register to register on a parallel basis 
used a minimum of logic compared to  other 
methods in use at that time. Some other meth- 
ods used a common clock and dual rank flip- 
flops for register output delays or used clocked 
serial logic and delay lines to store register con- 
tents. 

Returning to the discussion of gates and flip- 
flops, a primitive flip-flop can be obtained by 
interconnecting two grounded emitter inverters 
as shown in Figure 9. When one inverter is cut 
off, its output is negative. This holds the other 
inverter on, which in turn holds the first in- 
verter off. If another inverter circuit is added to  
the circuit in Figure 9, the circuit in Figure 10 is 
obtained. 

The application of a negative pulse to  the in- 
put of the additional inverter changes the state 
of the flip-flop. In the actual implementations 
of DEC Laboratory Module flip-flops, buffer 
amplifiers were added to the outputs to permit a 
single flip-flop to drive the inputs of many other 
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Figure 9. Primitive flip-flop. 
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Figure 10. Primitive flip-flop with inverter 

gates. The buffer amplifiers also provided de- 
lays at the outputs of the flip-flops such that the 
output did not change until after the activating 
pulse was over. This permitted the state of the 
flip-flop to be sensed while the flip-flop was 
being pulsed, a necessary feature for the simple 
implementation of shift registers, simultaneous 
data exchange between two registers, counters, 
and adders. 

Collections of the inverters, gates, and flip- 
flops just described were packaged in appropri- 
ate quantities (i.e., as many as would fit within 
the module size and pin constraints) and sold as 
Laboratory Modules and System Modules. 

There were a relatively small number of module 
types available in the Laboratory Module 
Series. For example, the first product line, the 
100 Series, included: 

103 
110 
20 1 
302 
402 
406 
410 

50 1 
602 
650 

667 
80 1 

6 inverters 
2 6-input negative diode NORs 
1 buffered flip-flop 
1 one-shot 
1 clock pulse generator 
1 crystal clock 
1 Schmitt trigger circuit pulse gener- 
ator 
3 level standardizers 
2 pulse amplifiers 
1 tube pulser (15 volt, 100 nanosecond 
pulses) 
4 level amplifiers (0 to -15 volts) 
1 relay 

By contrast, there were many System Module 
types developed. With their higher packing den- 
sity, lower cost, and fixed backplane wiring, 
they were used for computers, memory testers, 
and other complex systems of logic. 

It is interesting to note that a large percentage 
of the modules on the above list were designed 
for generating and conditioning of the pulses 
and levels used in the relatively small number of 
logic circuits. Reference to a present day in- 
tegrated circuit catalog reveals few pulsing and 
clocking circuits but a great many logic circuits. 
The emphasis on pulses was one of economy, as 
previously noted. 

Register transfer level structures and the Sys- 
tem Module logic diagrams can easily be corol- 
lated, both because of the use of pulse 
ampli fiers to evoke operations and because of 
the buffered/delayed flip-flops. Figure 11  
shows in simplified form the interconnection of 
two PDP-I registers and lists some of the regis- 
ter transfer commands that could be used in 
conjunction with these registers. Typical exam- 
ples of such register arrangements in  the PDP-I 
were the Accumulator (AC), which was the 
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basic register in which all arithmetic operations 
were carried out, and the Memory Buffer (MB) 
register. 

Figure 12 shows the logic diagram for one bit 
of the Accumulator and Memory Buffer for op- 
erations given in the register transfer diagram. 
The operation to  clear the Accumulator is car- 
ried out by a pulse amplifier connected to all 18 
bits of the Accumulator, with logic a t  the input 

of the pulse amplifier to specify the conditions 
under which the Accumulator is to be set to 
ZERO. Complementing the Accumulator. is 
done by a transistor at one of the com- 
plementing inputs, C1, which receives a nega- 
tive control pulse. Addition is a two-step 
process in which the Accumulator and Memory 
Buffer are half-added to the Accumulator using 
an exclusive-OR operation (where an Accu- 
mulator bit is complemented if the correspond- 
ing Memory Buffer bit is a ONE), and then the 
carry operation is performed. A carry at a given 
bit position is initiated to the next bit if the 
Memory Buffer is ONE and the Accumulator is 
ZERO. Once a carry is started as a bit, it will 
continue to propagate if each bit of the Accu- 
mulator is a ONE. The propagation is done via 
a standard pulse at the propagation output P2. 
In a similar way, a ONE can be added to the 
Accumulator by pulsing the least significant bit 
of the Accumulator which, if it is a ONE, will 
create a carry that will propagate along all the 
digits that are ONE, complementing each bit of 
the Accumulator to ZERO as it propagates. 

In 1960 DEC began building modules with 
slightly different circuitry than that described 
above. While t ransis tor  inverters, buf- 
fered/delayed flip-flops, and their associated 
pulse logic were the best choice for 5- and 10- 
MHz logic, capacitor-diode (C-D) gates and 
unbuffered flip-flops were found to be prefer- 
able for low speed logic because greater logic 
density and lower cost could be achieved. 

A positive capacitor-diode gate is illustrated 
in Figure 13. With both the level input and the 
pulse input at ground for sufficent time to  allow 
the capacitor charge to reach 3 volts, a negative 
level change or a negative pulse a t  the pulse in- 
put will cause a positive pulse to appear at the 
output. Such gates could drive the direct set in- 
put of any flip-flop which required a positive 
pulse and were built into some unbuffered flip- 
flop inputs to be used for shifting and counting, 
using the capacitor as a delay element. Often 
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one inverter would drive many capacitor-diode 
combinations in the same module. 

A negative capacitor-diode gate is illustrated 
in Figure 14. With the level input at -3  and the 
capacitor input at ground for a sufficient time 
to allow the charge on the capacitor to become 
stable, a negative level change or a negative 
pulse at the capacitor input will cause the tran- 
sistor to conduct. The conducting transistor 
grounds the output for an amount of time de- 
termined by the gate time constant or the input 
pulse width, whichever is shorter. Gates of this 
type could be used to set and clear unbuffered 
flip-flops by momentarily grounding the correct 
flip-flop outputs in a fashion similar to the in- 
verter gate that was added to Figure 9 to obtain 
Figure 10. 

The principal advantages of the capacitor- 
diode gates were: 

1. The level input to the gate was used to 
charge a capacitor and was isolated from 
the rest of the circuit by a diode. Thus, 
no dc load was presented to the circuit 
driving the level input of a capacitor- 
diode gate. 
The resistor-capacitor time constant of 
the gate required that the conditioning 
level be present a certain amount of time 
before the pulse input occurred. This in- 
troduced a delay between the application 
of a new gate level and the time the gate 
was conditioned, and allowed the sam- 
pling of unbuffered flip-flop outputs at 
the same time that the flip-flop was 
being changed. 

3. The resistor-capacitor combination dif- 
ferentiated level changes, permitting a 
level change to create a pulse. 

2. 

The use of saturating micro alloy diffused 
transistor (MADT) transistors and toroidal 
pulse transformers appeared to be nearing an 
operating limit at I O  MHz. The pulses needed 
to operate the circuits shown in the previous di- 
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Figure 13. Positive C-D gate. 
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Figure 14. Negative C-D gate 

agrarns were 40 percent of the cycle time of 10- 
MHz logic (40 nanoseconds), which tightly con- 
strained transformer recovery time and made it 
difficult to design circuits that were not exces- 
sively sensitive to repetition rate. Furthermore, 
gate delays were large enough to prevent some 
needed logic configurations from propagating 
within the 100 nanosecond interval implied by 
the IO-MHz rating. 

A major break with previous circuit geo- 
metries appeared necessary. The use at IBM (in 
the IBM 7030 “STRETCH” machines) of non- 
saturating logic encouraged an exploration in 
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that direction. The project was called the “VHF 
Logic” project because operation at 30 MHz or 
better (the bottom end of the very high fre- 
quency (VHF) radio band) was the goal. 

The complex 30-MHz flip-flops were pack- 
aged one to  a module (Figure IS), with the re- 
sult that a great many interconnections were 
needed to implement logic functions. In systems 
designed for 30-MHz operation, the use of leads 
longer than a few centimeters was expected to 
require special care; hence, it was thought es- 
sential for ease of use that a satisfactory trans- 
mission line hookup medium be available. A 
new solid wall coaxial cable had just been in- 
troduced, the 50-ohm impedance version of 
which was chosen to hook up the VHF mod- 
ules. It appeared to  have a strong enough center 
conductor for practical hookup between mod- 
ules without being too bulky for easy hand- 
bending. 

Due to the low impedance needed for the 
coaxial cable connections, substantial driving 
current was necessary to achieve adequately 
high signal voltages, and considerable power 
had to be dissipated. The ability to drive a load 
at any point along the transmission line was 
deemed necessary for practical hookup, and 3- 
volt swings had to  be available to insure com- 
patibility with existing modules. These needs 
were met by choosing a 60-milliampere output 
current, producing a 1.5-volt swing on a 
double-terminated 50-ohm line and a 3-volt 
swing with a 50-ohm load when interfacing to 
existing slower logic. These voltage and current 
levels required the addition of heat sinks to the 
output transistors. This was accomplished by 
installing spring clips that fastened the-cases of 
the transistors directly to the connector pins, 
exploiting the connectors as heat sinks and at 
the same time providing a minimum inductance 
connection from the transistor collector (com- 
mon to the case) out of the module. 

The VHF modules contained a novel delay 
line implementation which has reappeared in 
recent days in the emitter-coupled logic boards 

used in the latest PDP-IO processor (KLIO). 
Flip-flop output delay was provided by a 10- 
nanosecond stripline etched onto the printed 
circuit board. A meander pattern was selected 
with a degree of local coupling between the 
loops t o  achieve a 7 to 1 delay-to-risetime ratio. 
Both the delayed and undelayed ends of this 50- 
ohm stripline were made available at the mod- 
ule pins. The undelayed outputs switched sim- 
ultaneously with the flip-flop outputs, allowing 
a subsequent gate to subtract a delayed flip-flop 
output from the undelayed complement output 
side of the flip-flop and produce a 10-nanose 
cond pulse when the flip-flop changed state. 

The performance of the VHF modules was 
rated at  30 MHz, which was the limit of the 
module testers used on the production floor. 
Bench testing demonstrated 40-MHz capability 
with the promise of 50-MHz performance if ad- 
equate testing apparatus could be found. Rise- 
times were better than 1 nanosecond. 

Modules delivered to customers were used to 
build satisfactory high performance systems, 
but the need for such high performance was not 
widespread. In addition, the product devel- 
opment cycle was, by the standards of the time, 
quite long (two years) and enthusiasm for the 
VHF modules among DEC engineers waned, 
further slowing product momentum. Despite 
their failure as a product, with only eight mod- 
ules in the series, the VHF modules eventually 
made a contribution to computer progress. To 
produce timesharing systems, t he  PDP-6 
needed a way of comparing relocated addresses 
at very high speed. A high speed register com- 
parator was quickly designed using current 
mode logic similar to that in the VHF modules. 

As a series of general purpose products for 
engineers to use, the VHF modules were too 
costly and their wiring too inconvenient. Fur- 
ther developments in general purpose logic 
modules were to lie in the opposite direction: 
toward cheaper, more compact, easier to use, 
and slower units. 
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By 1964, because of the decreasing cost of  
semiconductors during the early 1960s, the cost 
of System Module mounting hardware and of 

wiring had become a significant portion of the 
total system cost. In response to this trend, a 
new type of module was developed which was a 
2.5- X 5-inch printed circuit card with a color- 
coded plastic handle (Figure 16). The printed 
circuit card provided its own mechanical sup- 
port - there was no metal frame around it as 
there had been in the System Module design. 
The new modules, called Flip Chip modules, 
plugged into 144-pin connector blocks that 
could support eight such modules, providing 18 
pins per module. While the improvements in the 
cost of module mounting hardware realized 
with the new modules were important, the ma- 
jor advantage of the new Flip Chip modules 
was that automatic Gardner-Denver Wire-wrap 
equipment could be used to wire the module 
mounting blocks. 

The first series of the new modules was desig- 
nated the R-Series and was identified by using 
red handles. The R-Series circuits were a reac- 
tion to the rather complicated set of rules devel- 
oped for using the previous products. The goal 
was to make these modules easy to use and in- 
expensive. Integrated circuits were not used be- 
cause they were more expensive than discrete 
components, and the computer industry had 
not yet decided on the type of integrated circuit 
to use. The building block for R-Series logic 
was the diode gate, an example of which is 
shown in Figure 17. The other basic circuit was 
the diode-capacitor-diode (D-C-D) circuit 
shown in Figure 18. The diode-capacitor-diode 
gate was used to  standardize inputs to  active de- 
vices such as flip-flops and to produce the logic 
delay necessary to sense and change flip-flops at 
the same time. 

A second series of the new modules was de- 
veloped for the first PDP-8s. This series was 
called the S-Series, although it also had red han- 
dles. The S-Series modules used the same cir- 
cuits as their R-Series counterparts, but with 
variations in the values of the load resistors and 
diode-capacitor-diode gate storage Capacitors 
to obtain greater speed. 

Figure 16. 
PDP-7 and PDP-8. 

Single and double Flip Chip modules used in 
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Figure 17.  Diode gate. 

The B-Series with blue handles was essen- 
tially the same as the 6000 Series of IO-MHz 
System Modules, except that it was repackaged 
on new 2.5- X 5-inch cards and used silicon 
transistors rather than germanium transistors. 
The new silicon transistors were a mixed bless- 
ing. While they had temperature sensitivity 
characteristics superior to those of the germa- 
nium transistors, and their voltage drop charac- 
teristics permitted the elimination of the bias 
resistor to +10 volts, they did not saturate as 
well as the germanium transistors. Because they 
did not saturate well, the voltage between the 
collector and the emitter in the saturated state 
was not as low as it was with germanium tran- 
sistors. This meant that the series arrangement 
of three inverters discussed in conjunction with 
the dotted lines in Figure 4 could not be used. 
Instead, only two of the silicon transistor in- 
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Figure 18. D-C-D gate. 
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be connected in series if the output was in- 
tended to drive another inverter. The first com- 
puter to use the B-Series modules was the PDP- 
7, and the series was heavily used and extended 
by the first PDP-IO processor (KAIO). 

Analog applications were the target market 
for the A-Series modules, which had amber 
handles. This series, still being manufactured 
today, includes analog multiplexers, oper- 
ational amplifiers, sample and hold circuits, 
comparators, digital-to-analog converters, ref- 
erence voltage supplies, analog-to-digital con- 
verters, and various accessory modules. The 
development rate of analog modules peaked in 
1971 with 38 new types and declined to  5 new 
types in  1977. 

While all of the preceding modules had been 
designed as user-arrangeable building blocks, 
the green handled G-Series was intended for 
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modules that would be sold only as part of a 
system. For example, all of the DEC core mem- 
ory circuits have been in the G-Series because a 
core memory system is sufficiently complex that 
a cookbook approach using a standard series of 
modules is not appropriate. The G-Series is still 
actively used today for circuits other than logic, 
generally in peripheral devices such as disks, 
tapes, and terminals. 

Like the A-Series and G-Series, the W-Series 
(white handle) is still manufactured and is used 
to provide input/output capability between 
Flip Chip modules and other devices. Lamp 
drivers, relay drivers, solenoid drivers, level 
converters, and switch filters are included in 
this family, but the only modules used widely 
today are those modules which include cable 
termination modules and blank boards upon 
which the user can mount integrated circuits 
and wire-wrap them together. 

While the W-Series modules provided a vari- 
ety of interface capabilities, their circuitry was 
still too fast for typical industrial applications. 
Computer logic, by its very nature, is high speed 
and provides noise immunity far below that re- 
quired in small-scale industrial control systems 
located physically close to the process they con- 
trol. 

Unfortunately, industrial electrical noise is 
not predictable to  the nearest order of magni- 
tude. Thus, attempts to  solve noise problems 
with high level logic, whose voltage thresholds 
were merely a few times greater than computer 
logic thresholds, did not work well. 

A new series of modules was developed, the 
K-Series (with blac(K) handles), which relied 
on a combination of voltage, current, and time 
thresholds to protect storage elements such as 
flip-flops and timers from false triggering. Since 
industrial controls typically interact with phys- 
ically massive equipment which moves slowly 
relative to electronic speeds, time thresholds are 
particularly attractive. There are four ways of 
exploiting these: 

Using basic 100 KHz slow-down circuits 
everywhere. 
Making optional 5 KHz slow-down cir- 
cuits available. 
Providing transition-sensitive (edge-de- 
tecting) circuits with hysteresis to allow 
additional discrete capacitor loading of 
the input when all else fails. 

Replacing the conventional monostable 
multivibrator or “one-shot’’ circuit with 
a timing circuit which has both a low im- 
pedance and hysteresis at the input. 

The hardware for the K-Series was specifi- 
cally designed to  tit the NEMA (National Elec- 
trical Manufacturers Association) enclosures 
traditionally used with relay implemented in- 
dustrial controls. The K-Series used the same 
connectors as the other Flip Chip modules, 
however. Sensing and output terminals were 
provided with screw terminals and indicator 
lights, and appropriate arrangements were 
made to  interface with 120-volt ac devices. 
Wire-wrap terminals were protected from exter- 
nal voltages but were available for oscilloscope 
probes. Magnetically latched reed relays and 
diode arrays that could be programmed by 
snipping out diodes were provided as memory 
elements that would retain data during power 
failures. 

Gating in early K-Series modules was accom- 
plished with discrete diode-transistor circuits 
such as that shown in Figure 19. Other K-Series 
modules used integrated circuits for the logic 
functions. In these designs the inputs t o  the in- 
tegrated circuits were protected with fil- 
ter/trigger circuits which filtered out the noise 
and then restored the fast risetimes required by 
the integrated circuits. Outputs were protected 
from output-induced noise and converted to 
standard K-Series signals by circuits similar to 
those used in the discrete logic gates. 
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Figure 19. K-Series circuit. 
Figure 20. Basic TTL NAND gate circuit. 

Unlike other DEC modules, the K-Series 
modules were not directly useful for construct- 
ing computers or computer data processing 
subsystems due to their low speed and high 
cost. They did play an important part in bring- 
ing digital logic into industrial applications, and 
the noise protection techniques developed for 
these modules were useful in the design of the 
PDP- 14 Industrial Controller (Chapter 7). 

By 1967 the electronics world had settled on 
transistor-transistor logic (TTL) and the dual 
in-line package (DIP) as the technology and 
package of choice for integrated circuits. I n  ad- 
dition, the cost for logic functions implemented 
in TTL integrated circuits had dropped below 
that of discrete circuit implementations. With 
much more logic fitting into the same printed 
circuit board area, a single Flip Chip card could 
now accommodate much more complicated 
functions. However, there were not enough 
connector pins available to get the necessary 
signals on and off the card. The answer to the 
problem was to keep the cards the same size, 
but to have etch and associated contacts on 
both sides of the printed circuit board. This in- 
creased the number of contacts from 18 to 36, 
and a new series with magenta handles (the M- 
Series) was born. Subsequently, some G-Series 
and W-Series modules were also designed with 
integrated circuits and double-sided boards. 

The advent of transistor-transistor logic 
brought the first power supply and signal level 

change in DEC’s history. The -15-volt and 
+ IO-volt supplies were no longer required. 
Only a single +5-volt supply was needed to sup- 
ply the logic signals which were now 0 and +3 
volts. The packaging was kept consistent, how- 
ever, as the old single-sided modules could be 
plugged into the new connector blocks. Careful 
attention to pinning arrangements allowed half 
of the circuits of a double-sided module to be 
used in a single-sided block. 

The basic TTL circuit is the NAND gate 
shown in Figure 20. Since the change to TTL 
logic brought a change in logic symbols, a 
sample of the new symbology is also shown in 
Figure 20. 

The input of the TTL gate is a multiple emit- 
ter transistor. I f  either input is at or near 
ground (0 to 0.8 volts), transistor QI becomes 
saturated, bringing the base voltage of transis- 
tor Q2 low, turning off transistor Q3 while turn-  
ing on transistor Q4, and making the output 
high (+2.4 to +3.6 volts). If both inputs are 
high (above 2 volts), Q2 has base current sup- 
plied to it through the collector diode of Q I ,  
turning Q2 on. This in turn provides base cur- 
rent to Q3, saturating it and cutting off Q4, 
making the output low (0 to 0.4 volts). 

Like the transistor inverter circuits discussed 
in conjunction with System Modules, TTL 
NAND gates can be cross-connected to form 
flip-flops. 
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The first generation of M-Series modules was 
used in a redesign of the PDP-8, called the 
PDP-8/1. The circuits used in these modules 
used TTL integrated circuits which were called 
7400 series integrated circuits because of a 
growing tendency in the semiconductor in- 
dustry to standardize part numbers for TTL cir- 
cuits, calling a package of 4 NAND gates a 
7400, a package of 6 inverters a 7404, etc. Soon 
there was a need in the computer industry for 
higher speed circuits. This need led to the devel- 
opment of the 74H00 series. The 74H00 circuits 
were similar to those in the earlier 7400 series, 
but they were faster and used much more 
power. The first PDP-11 (the PDP-I 1/20), the 
second PDP-10 processor (KI IO), and the PDP- 
8/E used both 7400 and 74H00 series integrated 
circuits. The PDP-l1/45, designed between 
1970 and 1972, used Schottky TTL, a circuitry 
with such rapid switching speeds and high 
power consumption that four-layer boards had 
to be used such that the inner layers of power 
and ground etch could provide both shielding 
and an adequate supply of power and ground. 

In 1972 work began on a new PDP-IOproces- 
sor, the KLIO. This used current switching non- 
saturating logic from several vendors, including 
the MECL (Motorola Emitter Coupled Logic) 
10,000 series. This line of circuits is in some 
ways an integrated circuit version of the V H F  
modules. The basic gate is shown in Figure 21. 

In the circuit shown in Figure 21, transistor 
Q6 has a temperature compensated, internally 
generated reference voltage of - 1.3 volts on its 
base. The outputs drive 50-ohm terminated 
transmission lines returned to -2 volts. There is 
a complementary pair of outputs so that the cir- 
cuit is both an OR and a NOR gate. At 25 de- 
grees Celsius the upper level will be between 
-0.81 and -0.96 volts, while the lower level 
will be between - 1.65 and - 1.85 volts. The cir- 
cuits, like the Schottky circuits, are so fast that 
multi-layer boards are required. In  addition, a 
great deal of care i n  signal line termination is 
required. As with the previous logic families 
studied, flip-flops can be created. The ECL 
master-slave flip-flops are quite complex, typi- 
cally requiring 32 transistors and 7 diodes. 

OR 
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Figure 2 1 ECL circuit. 
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As the various module circuit technologies 
developed, more logic functionality tit in a 
given space, and the space provided on individ- 
ual logic modules was increased. The modules 
used in the PDP-8/1, PDP-8/L, PDP-10 (KI10 
processor), and PDP-15 were single (2.5 X 5- 
inch) and double ( 5  X 5-inch) general purpose 
modules, and these machines had relatively low 
packing  densit ies because  most inter-  
connections were carried out on the wired back- 
plane. The PDP-8/E (and, to  a lesser extent, the 
PDP-I 1/20) used 8.5 X 10.4-inch “extended 
quad’  modules which were functionally special- 
ized and eliminated many of the backplane con- 
nections required in previous designs. By 1973, 
the “hex” module (8.5 X 15.6 inches) was 
widely used, principally in  the PDP-11 family. 
By 1978 two DEC computers, the VAX 11/780 
(1977) and the DECSYSTEM 2020 (1978), were 
using 12 X 15.6-inch “super hex” modules to- 

further reduce interconnection cost by placing 
more logic on a single module. 

An evolution in circuits has continued as the 
technology has changed. As integrated circuits 
have become more functional by the reduction 
of the size of their active elements, each new 
computer introduced is smaller, faster, and less 
costly than its predecessor. While only DEC ex- 
amples have been mentioned here, the trend to- 
ward smaller, faster, and less costly computers 
has been consistent for all computer manufac- 
turers. 

The chart in Figure 22 shows the number of 
module types introduced each year from 1957 
to 1977. 
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Beginning of the Minicomputer 

In November 1960, the first PDP-1 computer was delivered. This machine and 
the 49 other PDP-1s that followed established Digital Equipment Corporation in 
the computer busirtess. Four and a half years later, in April 1965, the first PDP-8 
was delivered. This machine, and the 40,000 PDP-8s that followed, established the 
concept of minicomputers, leading the way to a multibillion dollar industry. In  
the chapters of Part 11, the development of DEC's 12-bit and 18-bit computers are 
explored in detail, with special attention paid to  the factors influencing their de- 
velopment, the technology used in their implementation, and the reception of 
each machine in the marketplace. Sections of these chapters were co-authored by 
the designers or key project team members of the machine where possible. This 
permits a glimpse into the thoughts of the designers as they recollect and critique 
the designs in the light of subsequent developments. 

Chapter 6 begins with a discussion of the PDP-I, showing the influence of 
various M.I.T. machines and exploring the design goals of the PDP-I, many of 
which are only speculations at this late date. The discussion of the PDP-I is fol- 
lowed by brief discussions of the PDP-4, PDP-7, and PDP-9. The PDP-15, the 
most significant of the 18-bit machines in terms of longevity, number in use, and 
product range, is also discussed. The architectural changes that made the PDP-15 
substantially different from the PDP-4, 7, and 9 are not included in the PDP-15 
discussion, but an interesting retrospective view of the design goals and decisions 
is included. Thus, this section provides a good model of how design should be 
carried out and reviewed - hopefully, on  an a priori basis. 

The final section of Chapter 6 on 18-bit machines compares them in terms of 
cost, performance, and physical metrics. This section can be read independently 
of the machine design descriptions. Here, it is important for designers to  realize 
that there is a continuity to design and that subsequent designs have to be better 
along one or more of the evaluation dimensions. Ignoring or not understanding 
the dimensions can lead to failure in the marketplace. 

Chapter 7 describes the PDP-5 and the PDP-8 Family of 12-bit machines.'The 
original PDP-8 is described, along with the various implementations of the same 
instruction set that occurred over the following fifteen years. Included is a brief 
discussion of the latest implementation, a computer on a single 40-pin chip. The 
chapter concludes with a discussion of the technology, price, and performance of 
the 12-bit computers, including a number of charts. 

Chapter 8 is a top-down, hierarchical description of the implementation of the 
PDP-8 computers; it is based on material from Computer Structures by Bell and 
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Newell [1971]. This chapter includes some use of ISP and PMS notation, and 
readers who are unfamiliar with these notations are advised to  study Bell and 
Newell, read Appendices 1 and 2, or scan this chapter lightly. 
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The PDP-I and Other 
18-Bit Computers 
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THE PDP-1 

Although Digital Equipment Corporation 
was formed in 1957 with the explicit goal of 
constructing computers, the company’s first 
computer, the PDP-1, was not demonstrated 
until almost two years later. The principal 
backer of DEC, American Research and Devel- 
opment headed by General Georges F. Doriot, 
was somewhat skeptical that a computer com- 
pany could be successful. They were enthusias- 
tic, however, about the business possibilities in 
logic modules for laboratory and system use, 
and they felt that the plan to build computers 
should be conditional upon building a solid 
base in the module business. 

After a year of operation, DEC met its profit 
and sales goals and was permitted to move on 
to the construction of computers. However, 
Ken Olsen felt it would be worthwhile to wait 
an additional year to obtain more business ex- 
perience and to  build a larger customer and fi- 
nancial base. Thus, it was not until the summer 

of 1959 that an engineer, Ben Gurley, was hired 
to design and build the PDP-1. Ben headed 
computer engineering until he left in 1962. In  
addition to logic and computer design, he spe- 
cialized in complex analog circuitry, including 
the circuits for core memories and displays. The 
displays (including high precision and color 
point plotting) were pivotal to DEC’s success, 
and many of the display circuits that he de- 
signed remained unchanged until the 1970s. His 
death in 1963 was a tragic loss to computer en- 
gineering and the industry. 

Ben Gurley and other engineers* at DEC had 
worked at the Massachusetts Institute of Tech- 
nology (M.I.T.) Computer Laboratory o n  
Whirlwind and had then gone on to develop 
computers at the M.I.T. Lincoln Laboratory. 
As a result, the machines constructed at the 
M.I.T. campus and at Lincoln Laboratory 
greatly influenced the design and construction 
of the PDP-1. In fact, the DEC System Modules 

*Harlan Anderson, Dick Best, Ken Olsen, Stan Olsen, and Bob Savell. 
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that formed the basis of the PDP-1 were directly 
patterned after the circuits of the TX-0 and the 
TX-2 computers at M.I.T., as discussed in 
Chapter 5.  

The TX-0 and TX-2 computers were among 
the most advanced machines of their time and 
were the offspring of M.I.T.’s Whirlwind [Ever- 
ett, 1951; Redmond and Smith, 19771, a com- 
puter that was operational in 1950. Whirlwind 
(Figure 1) was an important ancestor of the TX- 
0, the PDP-I, and modern minicomputers be- 
cause of the short word length (16 bits), because 
of the high speed operation, and because of the 
people involved in its development. The high 
speed operation was accomplished by using an 
M . I  .T.-developed random-access storage tube 
rather than a drum for primary memory. Sub- 
sequently, performance was further upgraded 
by using the core memory that was developed 
by Jay Forrester at M.I.T. in 1951 [Forrester, 
195 1].* 

To test the Whirlwind core memory, a special 
computer called the Memory Test Computer 
(MTC) was developed by a design team headed 
by Ken Olsen, a recent M.I.T. graduate. The 
core memory worked so well that it was imme- 
diately moved t o  Whirlwind. A 4-Kword mem- 
ory was built for MTC, permitting MTC t o  be 
operated as a special purpose computer for sev- 
eral years. 

MTC is shown in Figure 2 as it was first as- 
sembled and operated in a factory building near 
M.I.T. Its word length was selected t o  be 16 bits 
because that was the size of the Whirlwind 
memory being tested and because 16 bits were 
adequate to represent the data for M.I.T.’s 
Project Lincoln air defense applications. 

The MTC turned out to  be a useful training 
ground for the designers (especially K. Olsen) 

when they went to Project Lincoln’s new facil- 
ity, Lincoln Laboratory in Lexington, Massa- 
chusetts. The MTC packaging, circuits, and 
toggle switches influenced the subsequent TX-0 
design. The MTC packaging used various 
standard radio relay racks and had a somewhat 
homely appearance; this encouraged the design- 
ers to  be more concerned about appearance in 
the future. The MTC circuits used significantly 
smaller modules than those in Whirlwind and 
used a gated pulse delay line clock for control 
rather than the synchronous clock used in 
Whirlwind. In addition, MTC used a dc bus for 
gating registers to one another that was carried 
out on an open-wired bus (versus coaxial cable) 
that ran the entire length of the computer. The 
MTC toggle switches formed a memory of 32 
registers. As it turned out, when the 512 toggle 
switches were put together, they formed about 
the most unreliable part of the computer. At the 
time, lifetesting in large batches was not done; 
hence, the experience with the MTC toggle 
switches formed the basis for significant im- 
provement of switch designs in the TX-0. 

Although the speed of the MTC was about 
the same as the speed of Whirlwind, it was not 
fully used, perhaps because it lacked the soft- 
ware and peripherals. 

Like the MTC, the TX-0 was designed as a 
test device. It was designed to test transistor cir- 
cuitry, to  verify that a 256 X 256 (64-Kword) 
core memory could be built [Mitchell and 01- 
sen, 19561 and to serve as a prelude to the con- 
struction of a large-scale 36-bit computer, the 
TX-2. The transistor circuitry being tested fea- 
tured the new Philco SBTlOO surface barrier 
transistor, costing $80, which greatly simplified 
transistor circuit design. The work on the 256 X 
256 core memory, using vacuum-tube drivers, 

*Whirlwind was dismantled in 1959 a n d  moved to Wolf  Research and Development where it was reassembled and  operated 
until the 1970s. Whirlwind is now part of the Digital Distributed Museum Project, al though the first core memory module 
a n d  other parts have been given to the British Science Museum, the Smithsonian. a n d  other museums. 
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Figure 1. M.I.T. Whirlwind computer (courtesy of M.I.T. Lincoln Laboratory). 

Figure 2. M.I.T. Memory Test Computer (MTC) used to test first core memory (courtesy of M.I.T. Lincoln Laboratory). 

was done by William Papian and Dick Best 
[Best, 19571 and proceeded independently of 
work on the computer. 

The original TX-0 (Figure 3) had a number of 
1/0 devices. After it was moved to  M.I.T., the 
largest device was a 12-inch point-plotting cath- 
ode ray tube (designed by Ben Gurley) and light 
pen console, giving the TX-0 some physical re- 

semblance to Whirlwind. In addition to the 
cathode ray tube, there was a high speed (300 
characters per second) Ferranti paper tape 
reader and a Friden Flexowriter that was used 
as both a typewriter and paper tape punch. 
There was also a large bank of toggle switches, 
some of which formed the two program acces- 
sible registers and some of which formed the 
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Figure 3. Lincoln Laboratory TX-0 computer (courtesy of M.I.T. Lincoln Laboratory). 

first 16 memory locations, permitting direct en- 
try of variables. However, despite the multiple 
1 / 0  devices, the TX-0 had no program inter- 
rupt mechanism. 

The two program accessible registers were 
called the Accumulator and the Live Register. 
The Accumulator was used for logic functions 
and the Live Register was used for controlling 
and buffering transfers to  various 1 / 0  equip- 
ment. The initial version of the TX-0 had only 
four instructions encoded in two bits, leaving 
sixteen bits to access the large, 64-Kword mem- 
ory. Three of the instructions accessed memory: 
“store in location,” “add from location,” and 
“transfer if Accumulator is negative to loca- 
tion.” The fourth instruction, “operate,” was 
for program controlled 1 /0  transfers and in- 
cluded commands that could be combined to 
produce a large number of instructions. The 
combining process was called “micro- 
programming” because bits in the instruction 

specified particular register transfer operations 
and could be programmed. Among the instruc- 
tions that could be created were “clear the right 
half of the Accumulator,” “cycle the Accu- 
mulator right one position,” and “start the pa- 
per tape reader.” The operations encoded in the 
instruction could occur at any one of six pos- 
sible times during the instruction; thus, a multi- 
function instruction could be formed, such as 
one to display a point on the screen and to gen- 
erate a new pseudo-random point. 

In 1958 the TX-0 was transferred (by Earl 
Pugh and John MacKenzie) from Lincoln Lab- 
oratory to the M.I.T. campus for laboratory ex- 
periment control and for teaching. The memory 
size was reduced from 64 Kwords to 4 Kwords 
but used one of the first all-transistor driven 
core memories. A second memory stack was 
later added to provide 8 Kwords. In 1960 Pro- 
fessor Jack Dennis assumed the management of 
TX-0 and extended the architecture in an up- 
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Figure 4. Lincoln Laboraton/ TX-2 computer (courtesy of M.I.T. Lincoln Laboratorv). 

ward compatible fashion to include an index 
register and more instructions.* 

Following the completion of the original TX- 
0 at Lincoln, work began on what became the 
TX-2 [Clark, 1957; Frankovich and Peterson, 
19571. The TX-2 was a large machine, using 
22,000 transistors compared to the 3,600 in the 
TX-0 (Figure 4). A principal design goal of the 
new machine was to create an 1/0 organization 
that would be far more efficient than that of ex- 
isting machines. To accomplish this, the idea of 
a separate 1 / 0  processor was rejected, and a 
minimum buffering scheme with direct transfers 
to memory was chosen instead. Additional pro- 
gram sequences with associated program 

counters were provided to facilitate the 1/0 
transfers, using the processing facilities of the 
central processor to effect the 1 / 0  transfers. 
This 1 / 0  system [Forgie, 19571 formed much of 
the basis for the PDP-1 Sequence Break System 
and nearly all subsequent DEC computer de- 
signs. 

In addition to the 1/0 system improvements, 
the TX-2 featured increased parallelism. There 
were separate adders for indexing, program 
counter incrementation, and instruction execu- 
tion. The increase in word length from 18 bits 
for the TX-0 to 36 bits for the TX-2 permitted 
the construction of a 36-bit arithmetic unit that 
could be reconfigured dynamically and in- 

*The TX-0 remained in service at M.I.T. until 1975, when it was purchased by DEC for display in the Digital Distributed 
Museum Project. 
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cluded 4 X 9-bit, 2 X 18-bit, 9/27-bit, and 36- 
bit arithmetic.* 

By the time the PDP-1 was designed in 1959, 
most of the important ideas of logical organiza- 
tion, such as addressing, address modification, 
sequencing control, arithmetic, and 1/0 con- 
trol, had been invented. However, the major ad- 
vances in the hardware realizations of these 
concepts were yet to come. Machines were just 
entering the second (transistor) generation. A 
review o f  the state of the art in logical organiza- 
tion is given in [Beckman et al., 19611. A review 
of the state of the hardware art in core memo- 
ries is given in Rajchman [1961], and examples 
of the transistor circuitry used at the time are 
given in Chapter 4. 

There is no record of the goals, constraints, 
and objectives of the PDP-1 design. It is clear 
that the PDP-1 instruction set processor was a 
reaction to  the TX-0, but it is unclear whether 
an effort to  make the PDP-1 compatible to the 
TX-0 was ever considered. It seems unlikely be- 
cause there was little software when TX-0 ar- 
rived at M.I.T. As it turned out, it is fortunate 
that no such effort was pursued because the 
TX-0 was continuously extended, making com- 
patibility a difficult goal to achieve. Instead of 
being program compatible with the TX-0, the 
PDP-l was oriented toward being producible 
by a commercial enterprise and usable by a va- 
riety of programmers. To this end, it had more 
instructions than the TX-0 and a simpler 1 / 0  
structure for ease in interfacing. In contrast to 
the existing large-scale scientific and business 
computers, the PDP-1 had a much shorter word 
length (18 bits) and a simpler instruction set (28 
instructions). The 1 / 0  structure included a se- 
quence break option (the name given to the six- 
teen channel interrupt mechanism) and a high 

speed channel (now called Direct Memory Ac- 
cess). The hardware implementation of the ma- 
chine used DEC’s 5 MHz 10Wseries system 
modules and a 4-Kword memory which was 
later expanded to 64 Kwords. The processor 
and memory occupied four cabinets. 

The registers and functional units of the 
PDP-1 ‘are shown in Figure 5, a diagram taken 
from the original PDP-I programming manual. 
The PDP-1 registers were named after those of 

I I  I 

CONTROL EQUIPMENT 

Figure 5. PDP-1 processor register transfer diagram. 

*TX-2 operated until 1977, when it was dismantled. In the last decade of its use, it was modified and operated as a multi- 
programmed timesharing system (Forgie, 19651. The machine was used for a variety of applications. Two notable works 
included Sutherland’s Sketchpad [1963], an interactive graphic design program, and the first computer network experiment 
between Lincoln Laboratory and the System Development Corporation computer [Marill and Roberts, 19661. 
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the TX-0, except for the TX-0’s Live Register, 
which was renamed the Input-Output Register. 
The 1/0 register was also used as the Multi- 
plier-Quotient register when used as an accu- 
mulator extension. An appreciation of the 
relatively high cost of logic at the time of the 
PDP-1’s design can be obtained from the fact 
that an index register was rejected because of 
the high cost. 

Even more important than the cost of logic 

To make it a commercially viable machine, 
the PDP-I had not only more instructions than 
the TX-0, but also a simplified 1/0 structure to 
permit various 1 / 0  devices to be easily inter- 
faced to the computer. One of the first user 
manuals was the Input-Output Systems Manual, 
which described the methods available for inter- 
facing. These methods, now standard in mini- 
computer and microcomputer design, included: 

was the cost of memory, which had a major im- 
pact on the machine’s price. Since the cost of 
memory so strongly determined the machine’s 
price, a 4-Kword minimum was selected for the 
PDP-1, although a 1-Kword system also ap- 
peared in the price list. 

The instruction format used the 18 bits in a 
fashion quite different from the 2 bits for in- 
struction/l6 bits for address method of the 

1. Program controlled transfers. 
2. Program controlled transfers using the 

Sequence Break System (now called an 
interrupt system). 

3. Multiple channel interrupt programmed 
control. 

4. High speed channel data transmission 
(now called Direct Memory Access). 

original TX-0. In the PDP-I, five bits were used 
to encode the instruction, one bit was used for 
indirect addressing, and twelve bits were used 
for addressing the 4-Kword memory. Because 
the machine was oriented to control appli- 
cations and low cost was a goal, the only data- 
types which were included were word, integer, 
and Boolean vector (logical). Hence, just seven 
data operators ( +, -, X, /, AND, OR, and 
EXCLUSIVE OR) for the one accumulator 
structure and some control instructions were re- 
quired. 

The first description of the PDP-1 order code 
by Harlan Anderson, DEC’s Vice President, ap- 
peared in a company memorandum dated Octo- 
ber 27, 1959. That two-page memo assigned the 
order code and the instruction names for the 24 
instructions that were used in the initial design. 
A few instructions were later added to improve 
subroutine calling; thus, 28 instructions were 
eventually used in production machines. The in- 
struction set description of the PDP-1 is given 
in Figure 6, and the corresponding description 
for the PDP-4 is also shown for purposes of 
comparison. 

The first method, program controlled trans- 
fers, was a well established method, but the sec- 
ond method was a unique capability. The 
Sequence Break System permitted a program to 
handle much of the processing associated with 
1 / 0  devices instead of using special hardwired 
controllers. Each time that an 1/0 device had 
information to be transferred to  memory, it 
caused an interrupt to the processor and the 
processor handled the transfer. This was a 
marked change from the large computers that 
used extensive (and expensive) 1 / 0  processors, 
such as the IBM 7090 channels. A single IBM 
channel was more expensive than a PDP-I. 

The 1 /0  character rates for devices such as 
magnetic tapes and drums exceeded the rates 
which could be handled by the program, so in- 
formation was transmitted directly to the PDP- 
1’s memory in blocks under the control of the 
device. Inter-block control was handled by the 
interrupt facility, however. This basic scheme is 
still in use in today’s DEC computers. 

A block diagram of the magnetic tape control 
unit used on the PDP-1 is shown in Figure 7. 
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pdpl .=  
Begin (ocJ !One's Complement 

** Processor.State ** 

AC\Accumulator<O: I7>. 
IO\Input.Output.Register<O:l7>, 
PC\Program,Counter<6: I7>. 
OV\Overtlow< >. 
PF\Prograrn.Flags< 1:6>. 
RUN< > 

** MemoryState * *  

M\Meinory[O:4095]<0: I7>. 

** Console.State ** 

TWS\Test.Word.Switches<O.17>. 
SS\Sense.Switches< 1.6>, 
AS\Address.Switches<O: I5>, 

** Instruction.format **  

i\,instruction<O: 17>. 
op<O:4> ' =  i<O:4>. 
ih< > := i<5>. 
y<6:17> := i<6:17>. 
cli< > := i<6>. 
lat< > := i<7>. 
cma< > := i<8>, 
hlt< > := i<9>, 
cla< > .= i < l O > .  
lap< > := i < l l > ,  
stf< 0 3 >  := i<14:17>. 
clf<O:3> := i<14:17>. 
s p i i  > := i<7>. 
szo< > := i<8>. 
sLa< > := i<9>, 
spa< > := i < l O > .  
m a < >  := i < l l > .  
szs<O:2> := i<12:14>. 
szf<0:2> := i<15.17>. 

**  Effective Address * *  

z<6: I7> : = 
Begin 
z = y Next 
Repeat Begin 

I f  Not ib 3 Leave z Next 

7 = ih@y = M[y]<5:17> 
End 

End. 

! Operation Code 
! Indirect Bit 
! Address 
! Clear IO 
! OR AC and Test Switches 
! Complement AC 
! Halt 
! Clear AC 
! Load PC 
I Set Program Flags 
! Clear Program Flags 
! Skip i f  Positive IO 
! Skip if Zero OV 
! Skip ifZero AC 
! Skip i f  Positive AC 
! Skip i f  Negative AC 
! Skip if Zero Switches 
! Skip i f  Zero Flags 

! indefinite indirect 

pdp4 : = 
Begin {tcl ! Two's Complement 

** Processor.St;ite ** 

AC\Accumulator<O 17>. 

PC\Program.Counter<S: i 7 > ,  
L\Link< >. 

RUN< > 

**  Memory.State **  

M\Memory[O:8191]<O:l7>. 

* *  ConsokState ** 

ACS\AC.Switches<O: I7>. 

AS\Address.Switches<O: 12>, 

** Instruction.Format * *  

i\instruction<O: 17>. 
op<O:3> := i<O3>. 
ih< > '= i<4>. 
y<5:17> := i<5:17>, 
cla< > := i<5>. 
cll< > := i<6>, 
rt< > := i<7>. 
hlt< > := i<l2>. 
rar< > := i<13>, 
ral< > := i<14>. 
oas< > := i<l5>. 
cml< > := i<16>, 
cma< > := i<17>. 
is< > .= i<8>. 
szl< > := i<9>, 
snl< > := i<9>, 
m a <  > := i < I O > ,  
sLa< > := i < l O > ,  
spa< > := i < l l > ,  
$ma<  > := i < l l > .  

**  Effective.Address ** 

z<5:17> := 
Begin 
z = y Next 

I f  Not ib 3 Leave z Next 

! Operation Code 
! Indirect Bit 
! Address 
!Clear AC 
!Clear L 
! Rotate Twice 
! Halt 
! Rotate Right 
! Rotate Left 
! O R  AC and Switches 
! Complement L 
!Complement AC 
! Invert Sense of Skip 
! Skip if Zero Link 
! Skip if Non-Zero Link 
! Skip if Non-Zero AC 
! Skip if Zero AC 
! Skip if Positive AC 
! Skip i f  Negative AC 

I f  L Eqv #OOOI? 
z = M[z]<5:17> 

End. 

M(z] = M[z] + I Next 

Figure 6 PDP-1 and PDP-4 ISPS description (courtesy of Mario Barbacci) (part 1 of 5 )  
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** 1nstruction.lnterpretation * *  

interp '=  
Begin 
Repeat Begin 

I f  Not RUN 3 Stop( )Next 
i  = M[PC] Next 
PC = PC + I Next 
execute( ) 
End 

End. 

execute : = 
Begin 
Decode op 3 

! Load and Store Group 
lac :=AC = M[z( )], ! Load Accumulator 
lio .=IO = M[7( )]. ! Load 1/0 Register 
law :=AC<= ib@y. ! Load Immediate (sign extension) 
dac :=M[r( )] = AC, ! Deposit Accumulator 
dio :=M[z( )] = IO, ! Deposit I/O Register 
dap =M[z( )]<6:17> = AC<6:17>, ! Dep. Address Part 
dip =M[z( ) ] < 0 5 >  = AC<O:5>,! Deposit Instruction Part 
drm :=M[z( )] = 0, ! Deposit 0 in Memory 

! Arithmetic and Logical Group 
add :=Begin 

Begin 

OV@AC = AC + M[z( )]Next 
If AC Eqv #777777 = > AC = 0 
End. 

sub .=Begin 
OV@AC = AC - M [z( ) ]  Next 
I f  AC Eqv #777777 = > AC = 0 
End, 

If10<17> 3 AC = AC + /us/ M[r( )]Next 
AC@lO = (ACCIO) SrO 1 Next 
I f  AC Eqv #777777 3 AC = 0 
End, 

dis : = Begin ! Division Step 
AC@IO = AC<I:17>810@(Not AC<O>)Next 
If 10<17> 3 AC = AC - /us/ M[z( )]Next 
IfNot 10<17> 3 AC = AC + Ius M[z()] + I Next 
I f  AC Eqv #777777 3 AC = 0 

mus  :=Begin ! Multiplication Step 

End, 

:=AC = ACOr M[z( )], 
and. :=AC = AC And M[z( )]. 
ior 
xor. :=AC = AC Xor M[z( )]. 
! Program Control Group 

i m p  .=PC = L( ), 
jsp :=Begin !Jump and Save PC 

!Jump 

AC = OV~'0oooO@PC Next 

End, 
PC = y 

** 1nstruction.lnterpretation **  

interp := 
Begin 
Repeat Begin 

If Not RUN 3 Stop( ) Next 
I = M[PC] Next 
PC = PC + I Next 
execute( ) 
End 

End, 

execute = 
Begin 
Decode op + 

Begin 
' Load and Store Group 
lac =AC = M[r( )], 

drm :=M[r( )] = 0. 

! Arithmetic and Logical Group 
add :=Begin 

L@AC = AC + /oc/ M[z( ) ]  Next 
I f  AC Eqv #717777 3 AC = 0 
End, 

tad '=L&AC = AC + /IC/ M[z( )], 

and. :=AC = AC And M[z( )]. 

xor. :=AC = AC Xor M[r( )]. 
! Program Control Group 
jmp : = P C  = L(  ), 
jms := Begin 

M [ r (  )] = LC'OOOO@PC Next 
P C = z +  I 
End, 

Figure 6 PDP-1 and PDP-4 ISPS description (courtesy of Mario Barbacci) (part 2 of 5) 
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cal.jda :=Begin 
Decode ib 3 

Begin 
cal :=Begin ! Subroutine Call 

M[#100] = AC Next 
AC = OV@'OOOOO@PC Next 
PC = # I O 1  
End, 

M [z( )] = AC Next 
AC = OV@'OOOOO@ PC Next 
P C = y + l  
End 
End 

jda : = Begin ! Jump and save AC 

End, 

AC = M[z( )] + 1 Next 
I f  AC Eqv #777777 3 AC = 0 Next 
M[z] = AC 
End, 

AC = M [z( )] + I Next 
I f  AC Eqv #777777 3 AC = 0 Next 
M[z] = AC: 
I f  AC GeqO 3 PC = PC + I 
End, 

idx :=Begin ! Index 

isp :=Begin ! Increment and Skip if Positive 

sad : = I f  AC Neq M[z( )] 3 PC = PC + I .  ! Skip if AC Differs 
sas :=lfACEqlM[z()]  3 P C =  P C +  I,!SkipifACisSame 
xct :=Begin ! Execute 

i = M[z( )] Next 
Restart exec 
End, 

iot :=undefined( ), 
sft :=shift.rotate.group( ), 
skp :=skip.group( ), 
opr := operate.group( ), 

Otherwise := RUN = 0 

End, 

skip< >. 

End 
! Undefined Operations 

! Result of Condition Tests 

sk ipgoup := 
Begin 
skip = 0 Next 
Decode ib 3 

Begin 
0 : = Begin ! True Test 

If szo And (OV Eqv 0) 3 (skip = I ;  OV = 0); 
IfszaAnd(ACEqlO)+skip = I ;  
I f  spa And (AC Geq 0) 3 skip = I ;  
If sma And (AC Lss 0) + skip = I ;  
I f sp iAnd(IOGeqO)3skip  = I ;  
Decode szs 3 

Begin 
#O : = No.Op( ), 
#7 :=IfSSEqlO+skip= I ,  
Otherwise:= IfSS<szs> EqvO 3 skip = I 

! Test Sense Switches 

End; 

cal :=Decode ib 3 

0 : =  Begin 
Begin 

M[#20] = L@'OOOO@PC Next 

PC = #21 
End. 

M[M[N2O]C = L@'OOOO@PC Next 

PC = M[N20] + (us1 I 
End 

1 := Begin 

End, 

isz :=Begin ! Increment and Skip if Zero 
M[z] = M[z( )] + 1 Next 

I f  M[z] EqlO => PC = PC + I 
End, 

sad :=IfACNeqM[z()]+ P C =  PC + I ,  

xct :=Begin 
i = M [z( )] Next 
Restart exec 
End, 

iot :=Undefined( ), 

opr.law := Decode ib 3 
Begin 

O\opr ' = operate.group( ), 
I\law.= AC y 

End, 
Otherwise := RUN = 0 

End, 

skip< >. 

skip.group : = 
Begin 
skip = 0 Next 
Decode is + 

Begin 
0 : =  Begin ! True Test 

End 

! Result ofcondition Tests 

IfsnlAnd(LXor0) +sk ip=  I ;  
IfszaAnd(AC EqlO) 3 skip = 1;  

I f  sma And (AC Lss 0) 3 skip = 1 
End. 

Figure 6. PDP-I and PDP-4 ISPS description (courtesy of Mario Barbacci)  (part 3 of 5). 
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Decode szf 3 
Begin 

#o : = No.Op( ), 
#7 
Otherwise := I f  PF<srf> eqvO 3 skip = I 

End, 

! Test Program Flags 

:=If PF Eql 0 3 skip = I ,  

End 

I : = Begin ! Reverse Test 
I f  szo And (OV Xor 0) = > (skip = I :  OV = 0); 

Ifsza And (AC Neq 0) 3 skip = 1: 
I f s p a A n d ( A C L s s 0 ) 3  skip= I :  
lfsma And (AC Geq 0) 3 skip = I :  
I f s p i A n d ( I O L s s 0 ) 3  skip= 1 ;  
Decode szs 3 

Begin 
! Test Sense Switches 

#o ’= No.Op( ), 
#7 := l fSS NeqO 3 skip = I ,  
Otherwise := IfSS<szs> XorO 3 skip = I 

End; 
Decode szf 3 

Begin 
#o := No.Op( ), 
#7 := I fPFNeqO+skip= I ,  
Otherwise := If PF<szf> Xor 0 3 skip = 1 

End 

! Test Program Flags 

End 

End Next 
If skip 3 PC = PC + I ! Skip 
End, 
operate.group : = 
Begin 
If hlt 3 RUN = 0: 

If cla 3 AC = 0: 
I f  cli + 10 = 0; 

Decode clf 3 
Begin 
#01:#06:= PF<clf<l:3>> = 0, 
#o7:=PF=#OO. 
Otherwise := No.Op( ) 
End; 

Decode stf 3 
Begin 
#11:#16:= PF<stf<l:3>> = I ,  
#17:= PF=#77,  
Otherwise := No.Op( ) 
End Next 

I f  lat 3 AC = AC Or TWS Next 
If lap 3 Begin 

AC<O> = AC<O> Or OV: 
AC<1:5> = 0: 
AC<617> = PC 
End Next 

If cma 3 AC = Not AC 

End, 

1 := Begin ! Reverse Test 
l f sz lAnd(LEqvO)3skip= I ;  
lfsna And (AC Neq 0) 3 skip = I ;  

lfspa And (AC Geq 0) 3 skip = 1 
End 

End Next 
If skip 3 PC = PC + I 
End, 
operdte.group : = 
Begin 
I f  hlt 3 RUN = 0; 
skip.group( ) Next 
I f  cla 3 AC = 0 
If CII 3 L = 0, 
I f  rt 3 shift.rotate.group( ) Next 

I f  oas 3 AC = AC Or ACS: 

I f  cma 3 AC = Not AC; 
If cml 3 L = Not L; 
shift.rotate.group( ) 
End, 

! Shift and Rotate Operations 

hardware function ones(x<0:8>)<03>, 

! Shift and Rotate Operations 

!Count Number of 1’s in x 

!Skip 

Figure 6. PDP-1 and PDP-4 ISPS description (courtesy of Mario Barbacci) (par t  4 of 5). 
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shift.op<0:3> : = i<5:8>, 

shift.n<0:8> := i<9:17>. 

shift.rotate.group : = 
Begin 
Decode shift.op 3 

! Rotates 
#Ol\ral 
# I  I\rar 
#02\ril 
#12\ril 
#O3\rcl 
#13\rcr 
! Shifts 
#05\sal := Decode AC<O> 3 

Begin 

:= AC = AC Slr Ones(shift.n), 
:= AC = AC Srr Ones(shift.n), 
:= IO = 10 SlrOnes(shift.n), 
:= IO = 10 Srr Ones(shift.n), 
:= AC@IO = (AC@IO) Slr Ones(shift.n), 
:= AC@IO = (AC@IO) SrrOnes(shift.n), 

Begin ! AC Left 
0 := AC = AC SI0 Ones(shift.n), 
1 := AC = AC SI1 Ones(shift.n) 

End, 
:= AC = AC SrdOnes(shift.n), #15\sar 

#06\sil := Decode 10<0> 3 
Begin 

0 := IO = lOSIOOnes(shift.n), 
I := IO = IOSII Ones(shift.n) 

End, 
#l6\sir 
#07\scl := Decode AC<O> 3 

:= 10 = IO Srd Ones(shift.n), 

Begin 
0 := ACOlO = AC@IO SI0 Ones(shift.n), 
1 := ACOIO = AC@IO SI1 Ones(shif1.n) 

End, 
#17\scr 
Otherwise := Undefined( ) 

End 

:= AC@IO = (AC@IO) Srd Ones(shift.n), 

End 

!Shift Conditions 

! Shift Count 

shift.rotate.group : = 
Begin 

! AC Left 
! AC Right 
! 10 Left 
! IO Right 
! AC@lO Left 
! AC@IO Right 

! AC Right 

! IO Left 

! 10 Right 

! AC@IO Left 

End ! End of Description 

! AC@IO Right 

If raI 3 L@AC = (L@AC) Slr 1; 
I f  rar 3 L@AC = (L@AC) Srr I 

End 

End ! End of Description 

Figure 6. PDP-1 and PDP-4 ISPS description (courtesy of Mario Barbacci) (part 5 of 5). 

This controller, which operated under program 
control, used a minimum of hardware, but it 
used 100 percent of the processor’s time when it 
was reading or writing data. For high speed op- 
eration, the various tape movement signals were 
connected directly into the program flags. To 
minimize hardware, there were no word buffers 
in the controller; instead, characters were as- 
sembled in the processor’s 1 / 0  register. While a 
controller that requires 100 percent of a 
$1 20,000 computer’s attention would not be de- 
signed today, this structure is identical to mod- 

ern day microprocessor-based controllers that 
occupy 100 percent of a much cheaper proces- 
sor’s time. Thus, each computer generation 
goes exactly through all the stages of evolution 
of the predecessor generations. (A similar con- 
cept, the “wheel of reincarnation,” is discussed 
in the Chapter 7 description of displays.) 

The PDP-I engineering prototype (I /A) is 
shown in Figure 8. It was first shown in Boston 
at the Eastern Joint Computer Conference i n  
December 1959. The cathode ray tube was in- 
tegrated into the console, as shown in Figure 9, 
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Figure 7. 
from PDP-1 register transfer diagram. 

Program control-based magnetic tape control 

Figure 8. PDP-l/A prototype (circa 1960). 
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Figurn 8. PDP- 1 /A pototyp (circa 1980). 
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Figure 9. PDP-l /A CRT console. 

Figure 10 .  PDP-l /B at BBN (circa 19601. 

but this design was subsequently dropped for 
cost reasons. The use of a cathode ray tube in- 
tegrated into the console never returned to the 
DEC main line of computers, except briefly in a 
few PDP-6s and in the LINC and PDP-12 lab- 
oratory computers. In modern fourth gener- 
ation (large-scale integration) computers, the 

entire computer is integrated into the cathode 
ray tube housing. 

Bolt, Beranek, and Newman (BBN), a con- 
sulting firm in Cambridge, Massachusetts, pur- 
chased the first production machine ( I  /B) for 
delivery in  November 1960. This machine is 
shown in Figure 10. A third machine, similar to 
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Figure 9. POP-1 /A CRT oonsole. 

Figure- 10. PDP-l/B at BBN (circa 19601. 
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Figure 1 1 .  PDP-l/C production version (circa 1961) 

the 1/A and 1/B, was constructed for internal 
use. 

After building the first three machines, it was 
clear that modifications were needed to im- 
prove producibility, lower production costs, 
and improve reliability. The separate console 
required many cables, and the connectors be- 
tween the console and the computer were unre- 
liable. For this reason, the final design (called 
the PDP- 1 /C) used an operator/maintenance 
console integrated into the cabinets, as shown 
in Figure 11.  The cabinets were produced by 
DEC and were designed as air plenums to im- 
prove air flow by having air enter at the bottom 
of the cabinet and flow past all the modules. 
The PDP-1/C cabinet design and module 
mounting scheme were used directly in the 
PDP-4 and PDP-5 computers and have re- 
mained relatively unchanged (except for airflow 
direction) through the years. They are being 
used in housings of the smaller metal-boxed 
minicomputers and in options of the third (in- 

tegrated circuit) and the fourth (large-scale in- 
tegrated circuit) generations. 

The PDP-I/C design used four cabinets in- 
stead of the three cabinets of the earlier versions 
and preassigned the space in those cabinets for 
improved producibility and configuration con- 
trol. Each of the multiply-divide, sequence 
break, memory extension control, and high 
speed channel options had an assigned location. 
Figure 12 shows the numerous options that 
were offered for the PDP-1. Figure 13 shows a 
side view of a typical cabinet and shows the 
space for interconnecting to other options. Ex- 
pansion was accommodated by adding bays to 
the basic four-bay mechanical structure and by 
interconnecting stand-alone options via cables. 
Rather than the bused connection scheme com- 
monly used today, the PDP-1 used a radial in- 
terconnect system. The radial design of the 1/0 
structure and the free-standing controllers for 
the magtape, displays, card equipment, printer, 
and other devices made cabling relatively easy. 
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READER CENTRAL PROCESSOR 
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SEQUENCE BREAK. AUTOMATIC CONSOLE 

I/O TRANSFER CONTROL 
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TYPE 31 

U P T O 8  

TAPE 

TYPE 50 I B M  129 PRINTER 

CARD 
READER 

TAPE CAR0 
PUNCH 

I .INPUT/OUTPUT OPTIONS 

Figure 12. PDP-l  system block d i a g r a m  

As with device controllers, history is repeating 
itself today in this area, as new fourth gener- 
ation designs are returning to radial inter- 
connect due to  the decreased cost of logic, the 
high cost of interconnect, and the need to  
bound the system. 

The additional year of module design be- 
tween American Research and Development's 
permission to construct computers and DEC's 
actual commencement of computer construc- 

tion had permitted more low speed (500 KHz) 
modules to be designed. These newer modules 
used the same circuit techniques as their prede- 
cessors, but they used less expensive, slower 
transistors. These new modules were used for 
the 1/0 equipment. The PDP-1 was built from 
only 34 module types, including memory mod- 
ules. Each module type was fully general pur- 
pose, except the five module types that were 
used for the analog memory circuitry. The mod- 
ule types are shown in Table 1. 
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CONSOLE CENTRAL PROCESSOR 

Figure 13. PDP-l/C logic layout diagram 

Because of its short word length and high 
speed, the PDP-I was particularly suited to the 
laboratory and scientific control applications 
that were to emerge later in the second gener- 
ation. The small, scientific computers from 
Bendix (G- 15) and Librascope (LGP-30) had 
longer word lengths and cost less than the PDP- 
1,  but they were slower because of their serial 
design which was dictated by the use of a drum 
as primary memory. This slow speed limited the 
utility of these machines in computation, con- 
trol, and laboratory applications. 

There were some market credibility problems 
which inhibited PDP-I sales. It was an unortho- 
dox machine in that it had high speed, a short 
word length, and no built-in floating-point 
arithmetic. Also, potential buyers doubted that 
a company with only 100 employees and less 
than a million dollars in  sales could be a reliable 
and long-lived computer supplier. 

The first few PDP-1s were sold for the antici- 
pated applications in scientific computation 
and real-time control. Users directly interacted 
with the computer via its typewriter, cathode 
ray tube, and console. Customers included: 
Lawrence Livermore Laboratory (for periph- 

Table 1.  PDP-1 Modules 

High Low 
Speed Speed 
5MHz 500KHz 

Circuit Type Clock Clock 

Inverters. gates, decoders 7 5 

Pulse amplifiers, delay lines 4 2 

Flip-flop configurations 2 3 

Special drivers, 4 2 

Core memory circuits 5 - 

22  12 

signal conditioning 

- - 

era1 support processing to their large scientific 
calculators and for graphics I/O); Bolt, Ber- 
anek and Newman (for psycho-acoustics and 
general computer science research); and Atomic 
Energy of Canada Limited (for pulse height 
analysis and van de Graaf generator experiment 
control). The most important sale in terms of 
DEC’s future was to International Telephone 
and Telegraph (ITT), which used PDP-1s in 
message switching systems. 

Nearly half of the PDP-1s constructed were 
used, as the ADX 7300, for the ITT message 
switching application. The application was, in 
essence, the automation of a torn tape switching 
center. In a torn tape switching center, messages 
are received punched o n  tape, and the tapes are 
hand carried to a tape reader appropriate to the 
message’s destination. I n  the computerized ver- 
sion, up to 256 teleprinter lines could be 
switched under program control in a store and 
forward scheme on a character-by-character 
basis using the interrupt facility of the PDP-I. 
The PDP-1 was uniquely suited for this appli- 
cation because of its high speed and high per- 
formance Sequence Break System which 
permitted low cost teleprinter line interfaces. 
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Aside from the experience gained from hav- 
ing to produce computers that could run unat- 
tended and without service, the most important 
result of the ITT order was that it allowed DEC 
to build a number of identical machines without 
special engineering. This in turn provided a pro- 
duction base with decreased costs (as described 
in Chapter 3) and a discipline to be less special 
systems oriented. The first few machines or- 
dered by other customers had been nearly all 
different, requiring DEC to build options that 
were sold only a few times. In addition, many of 
those machines had interfaces that were unique 
to the applications. 

I t  should be noted that because the hardware 
for the PDP-I was relatively inexpensive, DEC 
could afford to stock an ample supply of basic 
modules for building special interfaces. Con- 
structing interfaces and specialized hardware 
was relatively easy compared to modern day 
hardware design. Also, design errors could be 
corrected with simple wiring changes - a much 
easier process than that demanded by the mod- 
ern day, where expensive printed circuit boards 
have fine etch lines to be cut and read-only 
memories to be changed. Finally, the special in- 
terfaces and controllers for the PDP-I were 
quite simple compared to modern designs. 

While the ITT sale was important to DEC’s 
future, the Bolt, Beranek, and Newman (BBN) 
sale was important to the future of the entire 
computer industry because it was one of the 
events leading to the development of time- 
sharing. A number of computer scientists at 
M.I.T. and BBN believed that it was necessary 
to provide interactive access to computers. The 
only way to make this economically viable was 
to simultaneously share the computer among 
the users. Three experiments were carried out to 
demonstrate its feasibility: the IBM 7090 system 
at M.I.T. [Corbato et al., 19621 which later be- 
came the Compatible Time Sharing System 
(CTSS), the multiuser PDP-I at M.I.T. [Den- 
nis, 19641 which was operational in 1963, and 
the shared PDP-I at BBN [McCarthy et al., 
19631. 

Batch multiprogramming [Strachey, 19591 
was an important part of the design of the 
Stretch computer [Buchholz, 19621 and the 
Atlas computer [Kilburn et a[., 19621. They 
were oriented toward hardware efficiency in 
that they aimed for high utilization of all com- 
ponents. Timesharing, on the other hand, was 
concerned with the efficiency of the people try- 
ing to use the computer - the efficiency of the 
man-computer interaction [Corbato et al.. 
19621. 

A set of requirements was identified for a 
timesharing system. Unless the workload was 
restricted to programs that were specially de- 
signed to run  concurrently and to programs 
that were error-free, one needed the following: 

I .  Memory protection. 
2. Program and data relocatability. 
3. A supervisor program. 
4. A timed return to the supervisor. 
5.  Interpretive execution of the 1/0 in- 

structions. 

The BBN timesharing system began oper- 
ation in  September 1962. Five teleprinter users 
shared the upper 4 Kwords of memory; the 
lower 4 Kwords held the supervisor program, 
called the “channel 17 routine.” The modifica- 
tions to the PDP-I to effect timesharing were 
embodied in the “restricted mode” of oper- 
ation. They matched the above requirements in 
the following way: 

I .  Memory protection. Switching between 
the two 4-Kword areas required the use 
of an 1/0 instruction. 
Program and data relocatability. Because 
only one user was resident at one time, 
this was not needed. 

3. A supervisor program. The channel 17 
clock routine fulfilled this function. 

4. A timed return to the supervisor. The 
channel 17 clock generated an interrupt 
every 20 milliseconds. 

2. 
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5 .  Interpretive execution of 1/0 instructions. 
Whenever the PDP-I was in restricted 
mode, an attempt to obey an 1 / 0  in- 
struction caused a sequence break. 

The TYC Control Language, a debugging aid 
adapted from the DDT language devised for the 
PDP-I and its predecessor languages, was re- 
garded as important because it allowed direct 
language program debugging. The “restricted 
mode” modifications, a high speed swapping 
drum, and the use of the new multiport memory 
designed for the PDP-6 formed the PDP-I/D 
design. Timeshared computers were built and 
operated at BBN, Stanford, and M.I.T. These 
timesharing efforts later influenced the use of 
timesharing in the PDP-6 (Chapter 21). 

THE PDP-4 

About two years after the PDP-I was first 
shown, the notion of a much smaller machine 
developed during discussions of process control 
applications with Foxboro Corporation and 
various other customers. A machine called the 
DC-12 Digital Controller was proposed. This 
would be a 12-bit computer oriented toward 
process control data collection and laboratory 
data processing. During the preparation of the 
proposal, the CDC 160 was studied, and the 
DEC engineers briefly considered building a 
copy or version of the IO-bit L-1 computer de- 
signed by Wes Clark at Lincoln Laboratory. 
However, the principal idea input for the 
Digital Controller came from another Wes 
Clark computer, the Laboratory Instrument 
Computer (LINC). 

The DC- 12 Digital Controller was never built 
by that name; instead, it became the PDP-5 
(Chapter 7). Some of the ideas studied in the 
LINC and L-1 were used in other DEC ma- 

chines, including the machine that became the 
PDP-I successor, the PDP-4 (Figure 14). The 
PDP-2 designation was saved for a possible 24- 
bit machine, but none was ever built. DEC also 
never built a PDP-3, although one was designed 
on paper as a 36-bit machine.* 

The decision to make the next machine an 18- 
bit machine, rather than a 12-bit machine, was 
taken very lightly when it was made in Decem- 
ber of 1962. In  retrospect, i t  may have been a 
poor decision, but the reasoning went some- 
what as follows. 

Based on the programming experience of the 
TX-0, Gordon Bell felt that an 18-bit machine 
significantly simpler than the PDP-1 could be 
built and that simple machines with few instruc- 
tions for a given number of data-types would 
perform nearly as well as those with more in- 
structions. This feeling was based on the use of 
Whirlwind, TX-0 as it evolved through its vari- 
ous versions, and the PDP-I. This was later 
proven to be true, as the PDP-4 was imple- 
mented in less than half the space of the PDP-I 
and provided 5/8 the performance for 1/2 the 
price. There is some question, however, as to 
how much of the size reduction was due to the 
simpler architecture, how much to the sub- 
stantially better logic design implementation, 
and how much to the increased logic packing 
density. 

Gordon Bell had conceived the idea of auto- 
incrementing memory registers. This allowed 
vectors to be accessed easily instead of using in- 
dex registers. The auto-incremented memory 
registers performed about as well as index regis- 
ters and were much less expensive to imple- 
ment. 

The PDP-I had used one’s complement arith- 
metic, which was especially poor for the fast 
multiple precision operations and floating- 
point arithmetic that DEC’s customers needed. 

* I n  1960 a customer (Scientific Engineering Institute. Waitham. Massachusetts) built a PDP-3. It was later dismantled and  
given to M.I.T.: as of 1974, it was up and running in Oregon. 
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Figure 14. PDP-4 

Multiple precision operations required the de- 
tection of carry or borrow and the ability to add 
or subtract the result into the next most signifi- 
cant word. One’s complement (especially as im- 
plemented on PDP-1) did not conveniently 
provide this capability, whereas two’s com- 
plement arithmetic did. Therefore, the PDP-4 
was designed to  use two’s complement arith- 
metic and to  use the Link bit idea from the Lin- 
coln Laboratory L-1 design to  permit the 
efficient programming of multiple precision 
arithmetic operations. 

Two control instructions were changed so 
that they would not affect the Accumulator and 
interfere with arithmetic instructions. The 
“jump to subroutine” instruction was changed 

to  store the return link in the program area. 
This convention would not be used today be- 
cause it destroys the state of subroutines, thus 
precluding reentrant programming, and it 
makes the use of read-only memory difficult. 
The other change was that the “index and skip” 
instruction operated on memory only. 

Those PDP-1 features that cost logic but 
added little to  performance were eliminated. 
Among these were program flags, sense 
switches, and the wired-in program (read-in 
mode) that controlled the automatic reading of 
paper tape. 

The PDP-I had used 4-Kword memory with 
memory bank switching, an arrangement that 
was common when the useful software required 
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Figure 14. POP-4. 
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plement arithmetic did. Therefore, the PDP4 
was designed to use two’s complement arith- 
metic and to use the Link bit idca from the Lin- 
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efficient programming of multiple precision 
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-use it datroys the state of subroutines, thus 
precluding reentrant programming, and it 
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8 Kwords of memory. It was felt that 8 Kwords 
of directly addressable memory would be ideal. 
The corollary to Parkinson’s Law that pro- 
grams expand to fill any physical memory size 
was clearly not understood. However, it turned 
out that most PDP-4s stayed within the 8- 
Kword constraint, although the machine could 
operate with up to 32 Kwords of memory. 

It was decided that the goal was to build a 
modular design such that the optional equip- 
ment cost would be associated with the option 
rather than wired into all of the machines. It 
was also decided that the Teletype Corporation 
Model 28 should be used instead of a modified 
IBM Model B typewriter such as that used on 
the PDP-1. It was felt that this would provide a 
lower failure rate, less time to repair, and lower 
cost. 

The logic design of the PDP-1, although quite 
straightforward, was optimized in the PDP-4 by 
eliminating redundant terms and encoding the 
instructions in ways that would simplify the im- 
plementation. (The only way to get a signifi- 
cantly smaller machine was to start over with a 
new instruction set processor.) However, the ex- 
isting peripherals and memories for the PDP-1 
could be used immediately to assist the imple- 
mentation of the new machine. This was an- 
other important factor in favor of building a 
new 18-bit machine rather than going to a 12- 
bit design. 

In  addition to the hardware design consid- 
erations, software offerings were an important 
consideration. The PDP-1 users and the pros- 
pective customers for the new machine were 
adamant about writing process control appli- 
cations in a high level language. The designers 
at DEC briefly considered providing ALGOL 
60, but decided that it would be better to pro- 
vide a FORTRAN I1 for the new machine. It 
turned out that FORTRAN was used some- 
what for computation, but most users stayed 
with assembly language programming, espe- 
cially where real-time programming was con- 
cerned. 

The designers had a fairly clear idea of the 
intended market for the new machine. Like its 
predecessor, the PDP-1, the PDP-4 was to be 
used predominately for process control, with 
some use in the laboratory for pulse height 
analysis, data gathering, and other similar ap- 
plications. In  fact, during the planning for the 
PDP-4, meetings were being held with Foxboro 
Corporation about applications at Nabisco for 
baking control and with Corning Glass about 
the control of a glass tube manufacturing pro- 
cess. The meetings with Foxboro may have 
been another factor in the 12-bit versus 18-bit 
decision, as Foxboro favored the longer word 
length due to their previous experience with a 
24-bit RCA control computer. When the PDP-4 
machines were produced, both Foxboro and 
Corning bought them. 

The simplifications achieved in the PDP-4 
can best be appreciated by comparing the PDP- 
1 and PDP-4 ISPs, as shown in Figure 6, and 
the register transfer structures, as shown in Fig- 
ures 5 and 15. 

As with the PDP-1, the major design goal of 
the 1 / 0  system was that users be able to connect 
equipment easily. The use of an 1 / 0  bus struc- 
ture such as party line or daisy chain was not 
considered for the PDP-4, although one was de- 
veloped one year later for the PDP-5. Instead, 
the design effort focused on improving the ex- 
isting radial scheme to achieve greater periph- 
eral compatibility. The 1/0 section, called the 
Real-Time Control (Figure 16), included the 
ability to interface with PDP-1 peripherals. 
There was a small taper pin patch panel where 
cable drivers and input gates could be patched 
to the cables which radiated out to the peripher- 
als from the main computer cabinets. The input 
capabilities were somewhat better than the 
cable drive capabilities, as the process control 
operations of that day were really more process 
monitoring than process control, a reflection of 
industry’s distrust of the reliability of com- 
puters for actual control applications. The sim- 
plicity of the 1 /0  distribution contributed a 
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great deal to  the compactness of the PDP-4. A 
complete PDP-4 with card reader, magnetic 
tape, display, and other options required three 
bays, but many systems could fit within the two 
standard bays (Figure 17), making PDP-4 sys- 
tems less than half the size of comparable PDP- 
1 systems. 

In  addition to the physical aspects of the 1 / 0  
system, the logical design of the 1 / 0  system in- 
cluded some new features. One of these was the 
ability to count events. Event counting was im- 
portant in scientific applications such as pulse 
height analysis, and the first customer to ex- 
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Figure 16. PDP-4 block diagram 

press a need for it was the Columbia University 
Physics Department. It was also important in 
process control applications such as metering 
flows and counting discrete items. Options such 
as the 16-channel clock implemented the event 
counting feature by having the option access a 
memory cell and then rewrite its contents plus 
one, thus changing the contents of memory as it 
was rewritten. Counting could occur at event 
rates up to the 125-KHz memory rate. 

This method of event counting lead to the de- 
sign of a relatively low cost, high performance 
Direct Memory Access feature called the Three 
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Figure 17. PDP-4 logic layout diagram 

Cycle Data Break. This feature was first used in 
the magnetic tape controller that was designed 
for the PDP-4, and it has been used extensively 
since then in PDP-8 options (Chapter 7). The 
Three Cycle Data Break method of Direct 
Memory Access works as follows: 

I .  During the first cycle, the word count 
(stored as a word in memory) is in- 
cremented. The word count is the nega- 
tive of the length of the block to be 
transferred, and the incrementation step 
indicates that the present transfer is re- 
ducing the number of words left to be 
transferred by one. 
During the second cycle, the current ad- 
dress pointer (also stored as a word in 
memory) is incremented. The current ad- 
dress pointer indicates the memory ad- 
dress to which or from which the data 
transfer is to take place. 

2. 

3 .  During the third cycle, the actual data 
transfer between the memory and the 
1/0 device takes place. 

In  addition to changes in the instruction set 
processor and the 1 / 0  system, the PDP-4 
differed from the PDP-1 in the module tech- 
nology used, as was discussed in Chapter 5.  
During the manufacture of the PDP-I, DEC 
had been extending its main business, the sale of 
logic modules, by extending the lower cost, 
slower speed 500-KHz versions of the 5-MHz 
modules that were used in the PDP-1. The new 
500-KHz modules, evolving to 1 MHz, were 50 
percent less expensive to build than the 5-MHz 
modules because they used germanium alloy 
transistors rather than micro alloy diffused 
transistor (MADT) transistors. They were also 
substantially easier to use and more reliable be- 
cause of their lower data rate and wider clock 
pulses. Two additional circuit design techniques 
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reduced the cost and increased reliability by re- 
ducing the number of active elements. Rather 
than use a transistor per gate as in the earlier 
designs, a diode-transistor logic design was 
used. In addition, capacitor-diode gates were 
used for the AND gates associated with register 
transfers. 

The changes in the technology not only per- 
mitted lower cost, greater noise immunity, and 
greater reliability, they also permitted greater 
densities. This made it possible, in some cases, 
to design entire device controls on a single mod- 
ule. Because the modules had only 22 pins (18 
pins for signals), the increased densities could 
not be applied directly to the more complicated 
logic functions. To  solve this problem, a 10-pin 
connector was added on the back of each mod- 
ule for the register transfer gating signals. In 
this way, bit-slice architecture could be used, 
packaging one bit of the Accumulator register 
and all of the associated input gates on a single 
module (Figure 18). 

An interesting device with multiple stable 
states was devised to simplify the control sec- 
tion of the PDP-4. It was a generalization of the 
flip-flop to n stable states, using n NAND gates 
in a cross-coupled way with each NAND gate 
having n-1 inputs. A patent was awarded for this 
circuit, and it was subsequently used in other 
computers and in the module product line. 

Maintenance did not represent such a high 
portion of the product cost as it does today, and 
the designers of the PDP-4 did not feel that the 
fraction of the total system represented by the 
memory justified such present day features as 
parity memory. Nonetheless, maintenance was 
a major consideration in the PDP-4 design, 
motivating the simplicity of architecture, 
straightforwardness of implementation, care in 
logic design, and clarity of the maintenance 
documentation. The machine instruction set de- 
scription occupied only one letter-size page. 
The logic design flow chart (a state diagram) OC- 

cupied only one D-size (22 X 34 inch) drawing, 
and the design drawings for the processor occu- 

A C  C A R R Y  OUT 
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NOTE 
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includes real time option type 25 

Figure 18. PDP-4 Accumulator bit-slice 
register transfer diagram. 

pied seven D-size sheets. To facilitate under- 
standing the machine operation, each signal 
name on the drawings had a mnemonic prefix 
identical to the drawing name (e.g., AC) in- 
dicating from which of the seven drawings that 
signal originated. This convention has been car- 
ried forward through many other DEC ma- 
chines. 

The operator’s console, shown in Figure 19, 
included several functions to assist mainte- 
nance. The console switches (Read, Read Next, 
Write, Write Next, Start, Continue) could be re- 
peated at a clock rate varied by a speed control 
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Figure 19. PDP-4 operator console 

on the console. This simplified testing by per- 
mitting easy use of an oscilloscope. In addition, 
simple checks on memory could be performed 
by using the console Read and Write switches 
and observing the results on the console lights. 

Because the PDP-1 had been generally used 
in dedicated applications, the users had written 
their own programs. M.I.T., for example, had 
contributed a good macroassembler, linking 
loader, and interactive debugging program - 
DDT. BBN had contributed various sub- 
programs. DEC had invested very little in PDP- 
1 software and thus had no concern for the cost 
of writing system software or for the concept 
that a new machine should capitalize on pre- 
vious systems programming. It was easy for 
people at DEC to believe that a small part of 
the savings achieved by building a simpler ma- 
chine could be used to pay for the writing of 
new software for that machine. 

I n  the present day, designers of new com- 
puters realize that program compatibility is a 
constraint and that any new machine must be 
on an improving cost/performance line. (This is 
discussed in greater detail in Chapters 2 and 
15.) At the time that compatibility decisions 
were being made with regard to the PDP-4, 
about 20 PDP-1s had been installed out of an 
eventual population of 50. Looking back from 
today’s vantage point, a compatible machine 
might have been built that would have inter- 

preted most of the PDP- 1 programs and offered 
the same improved cost/performance ratios as 
the PDP-4 did, but still not have been very 
much larger than the original PDP-4. 

The PDP-4 was a limited success. While it 
met the corporate profit standard, it did not sell 
as well as had been expected. The market de- 
mands were not as completely elastic as they 
had been for the PDP-I, and 5/8 of the per- 
formance for 1/2 the price was not good 
enough. According to the evolution model dis- 
cussed in the final section of this chapter, a ma- 
chine with a lower price should have had the 
same performance as the PDP-I, or else it 
should have been priced much less than the 
PDP- 1 to compensate for the relatively poor 
performance. In summary, the PDP-4 was not 
aggressive enough in performance or in  price. 
There is an additional reason for the poor fi- 
nancial showing of the PDP-4. Experience with 
other machines that were the first of a series, 
such as the PDP-5, PDP-6, LINC-8, PDP-14, 
and PDP-I 1/20, indicates that the financial per- 
formance of the first machine is always the 
poorest of the series, largely because of the lack 
of a software and hardware option base. The 
PDP-7, 9, 9/L, and 15 were necessary succes- 
sors that used the software and hardware op- 
tion base created by the PDP-4. 

THE PDP-7 

In many ways the original concept of the 
PDP-7 (or what was finally named the PDP-7) 
started with the design of the PDP-l/D. The in- 
itial plans were to  simply repackage the PDP-1, 
using some higher density systems modules, and 
to reduce the processor cycle time. The goal was 
to use these changes to produce a lower price 
machine with much better performance. This 
goal was met quite well in the PDP-7, as it had a 
greater performance/price gain over its prede- 
cessors than any other DEC 18-bit computer. 

The plan to simply repackage the PDP-I was 
abandoned when consideration was given to the 
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relative sizes of the existing software and pe- 
ripheral option bases of the PDP-l and the 
PDP-4. The PDP-4 had more extensive soft- 
ware than the PDP-1, including an operating 
system and a FORTRAN compiler. The PDP-4 
also had a much larger peripheral hardware op- 
tion base than the PDP-1. Therefore, the goal of 
program compatibility with the PDP-4 was 
added to the goal of a substantial perform- 
ance/price improvement, and the 1 / 0  interface 
scheme for the new machine was constrained to 
match the timing and structure of the past com- 
puters. Although sounding quite broad, these 
goals were rather restrictive, especially the re- 
quirements for program and peripheral com- 
patibility. The sales goal was truly broad, 
however. That goal was to sell 120 systems, 
more machines than the total of all other DEC 
computer systems sold to  date. 

To  sell all those systems, a substantial ad- 
vance in performance would be required. Thus, 
the performance goal was to decrease the cycle 
time from 8 microseconds to  1.75 micro- 
seconds, the practical limit of core memories at 
the time. This was a rather ambitious goal and 
required designing a new core memory system 
and a new set of modules, the B-Series, which 
were Flip Chip modules based on the IO-MHz 
systems modules (Chapter 5). These new mod- 
ules were used for the central processor and 
memory. Originally, they were also used in the 
1/0 section of the system, but that was sub- 
sequently redesigned to use primarily 2-MHz 
R-Series modules, as will be described near the 
end of this section. (Note the similarity to the 
PDP- 1, where cheaper, lower speed, 500-KHz 
modules were used in the l/O.) 

Program compatibility between the PDP-7 
and the PDP-4 was maintained generally, but 
was slightly modified in the 1 / 0  section to facil- 
itate the introduction of the ASCII 8-level code. 
The PDP-4 console teleprinter had been a Tele- 
type Corporation Model 28 KSR teleprinter 
that used Baudot (5-level) code. A shift to AS- 
CII (8-level) code had already started in the in- 

dustry, so the PDP-7 was designed to use the 
Teletype Corporation Model 33 KSR. This 
change necessitated that all programs determine 
whether they were running on a PDP-4 or on a 
PDP-7 so that they could determine how to in- 
terpret the characters typed on the console tele- 
p r i n t e r .  O t h e r  t h a n  t h i s ,  a n  u p w a r d  
compatibility was maintained. Downward com- 
patibility was not maintained, as the PDP-7 had 
some additional instructions, a trap feature, 
and a multilevel interrupt option to  allow multi- 
user environments. In addition, the program 
read-in mode of PDP-1 days returned to the 
console. This feature permitted the user to press 
a key and cause a paper tape, punched in a spe- 
cial format with address and data or termi- 
nating address, to be loaded into the computer’s 
memory. (Figure 20 shows the PDP-7 operator 
console.) 

The structure of the processor with its regis- 
ters and the interfaces to 1/0 and memory are 
shown in Figure 21. Note that the structure and 
style of the design was essentially the same as 
that used in the earlier designs, but modified for 
the higher speed technology. The PDP-7 and 
the PDP-4 had identical architectures and sim- 
ilar implementations, but they had radically dif- 
ferent realizations. Although the 1 / 0  section 
and the new options were designed to operate at 
the 1.75 microsecond cycle rate, to use the 
slower PDP-4 compatible 1 /0  equipment, spe- 
cial pulses were used to implement a slow cycle 
of 8 microseconds. 

r 

Figure 20. PDP-7 operator console. 
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Figure 21. PDP-7 processor and I10 section register transfer diagram. 
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The system diagram of the PDP-7 (Figure 22) 
shows the options and the general inter- 
connection scheme. It was fundamentally the 
same structure as its predecessors and was de- 
signed for use with many of the earlier periph- 
eral controllers. 

Physically, the PDP-7 was larger than the 
PDP-4 because the console was mounted on the 
side plane to facilitate maintenance instead of 
on the end as in PDP-1 and PDP-4. This per- 
mitted a service man to both look at a scope 
and operate the console. Also, the paper tape 
1 / 0  equipment, which had been on an extra 

table in the PDP-I and PDP-4, was now housed 
in the third bay of the main computer cabinets. 
Figure 23 shows that the number of logic panels 
for the processor of the PDP-7 was the same as 
that for the PDP-4, even though the circuit 
board area of the modules in the PDP-7 (3,348 
in2) was slightly larger than that in the PDP-4 
(3,300 in2). Although it does not show in the 
diagrams or in the photos, a significant portion 
of the volume of the PDP-4 was cable con- 
nectors to various subassemblies. The PDP-7 
improved the cabling by having all of the con- 
nectors in  the backplane so that all of the wiring 
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Figure 22. PDP-7 system block diagram. 
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could be done in a single wiring operation. The 
PDP-7 was thus the first DEC computer de- 
signed for automated wire-wrapping. Mechani- 
cal block holders were designed to mount the 
connector blocks for the modules and cable 
connectors in the cabinets and a semi-automatic 
wire-wrapping technique was developed to al- 
low a much higher speed production of wire- 
wrapped backplanes. Also, a Gardner-Denver 
fully automatic Wire-wrap machine was or- 
dered and programs to  control i t  were devel- 
oped. 

The PDP-7 (shown in Figure 24) was a suc- 
cessful product. The design costs, excluding 
module and labor costs, were less than $100,000 
from the start of the project to completion of 
the first prototype. Time was considered a very 
important factor in the design of the PDP-7. 
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The project started on April 1,  1964, and the 
first production system was delivered on De- 
cember 22 of the same year. The entire logic im- 
plementation was undertaken by Ron Wilson 
and one assistant, Jack Williams. Later, a Field 
Service representative, Don Zereski, literally 
hand-built the first production system to be de- 
livered to Bell Laboratories. The memory con- 
trol and stack were designed by a memory 
design engineer, Derrick Chin, who coordi- 
nated his design with the processor logic design. 
Despite the hand-building of the first unit, the 
production of the PDP-7 was the beginning of 
several mass production techniques at DEC, 
and it was an important machine in the history 
of DEC 18-bit computers. 

The development problems that were over- 
come were quite formidable. A complete new 
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Figure 23. PDP-7 front and back logic layout. 
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(a) Front. 

(b) Rear. 

Figure 24. PDP-7 

line of modules, the Flip Chip series, was devel- 
oped (although IO-MHz circuits had been 
tested in the PDP-6). New connector blocks had 
to be obtained to hold the modules, a design 
effort that was concurrent with similar efforts 
for the PDP-8. New wire-wrap techniques had 
to  be devised to  ease the labor requirements so 
that systems could be wired faster. Toward this 
end, a program was ultimately developed for 
the PDP-4 to do wire-routing and to  control the 
Gardner-Denver machine. System layouts had 
to be developed to facilitate wire-wrapping. The 
mechanical packaging and cooling had to  be al- 
tered to accommodate the new wiring panels, as 
the existing PDP-1, PDP-4, and PDP-5 air ple- 
num scheme was completely blocked by the new 
connector blocks. The memory performance 
goals (1.75 microseconds) were difficult to 
achieve, as the best memory performance to 
date was that of the PDP-6, which was 2 micro- 
seconds. All of the above had to be done within 
the cost goals. 

As the design phase of the PDP-7 neared an 
end and production models were being deliv- 
ered, two developments occurred that suggested 
the possibility of an improved production 
model. One of these was the R-Series module 
developments. These modules were lower speed 
than the B-Series modules that formed the pro- 
cessor, but they were lower in cost and more 
complete in the range of functions available. 
After analyzing the configurations that the cus- 
tomers were ordering, the designers came up 
with a new 1 / 0  panel that used R-Series mod- 
ules as much as possible and was prewired for 
several of the most popular peripheral controls, 
thus reducing the amount of special wiring re- 
quired to  produce a system. This improved sys- 
tem was called the PDP-7/A. 

With the PDP-7/A completed, the designers 
contemplated the possibilities of a next gener- 
ation system that would use the new tools that 
were now in place, such as the Gardner-Denver 
fully automatic Wire-wrap machine. The design 
criteria for the new machine would be that it be 
completely wire-wrappable using the automatic 
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were now in place, such as the Gmdner-Denver 
fully automatic Wk-wrap machine. Ths design 
criteria for the new machine would be that it be 
aompletaly wire-wrappabk wing the automatic 

Gardoer-Denv~ m d h .  S Y S W  lay0Uta had 

the COSt BOab. 

than the B-We m o d u l ~  that f o m d  the P~O- 

tcm WM d a d  the PDP-’I/A. 
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machine and that a system with 8 Kwords of 
memory sell for approximately $35,000. The 
new machine was called the PDP-7/X. 

To meet the goals set for the new machine, a 
new cabinet design was started that would 
mount the wire-wrap panels on door-type 
frames. These frames opened to allow access ei- 
ther to the connector side for oscilloscope trac- 
ing or to the module handle side for module 
replacement. The new cabinets also dealt with 
two problems involving the air flow. One of 
these was that the air flow needed to be in- 
creased due to the high density of the new logic, 
and the second was that the existing air flow 
method pulled air from the floor, which was 
sometimes dirty. To solve these two problems, a 
horizontal air flow system was implemented. 

To control the system costs, which were be- 
coming a major factor, the computer was di- 
vided both logically and physically into three 
divisions: memory, central processor, and in- 

put/output logic. This was done to permit the 
calculation and control of costs more accurately 
and to divide the computer into the largest 
single panels that the Gardner-Denver machine 
could wrap, 

The cabinet design and system partitioning 
completed, the logic design moved ahead 
smoothly. At this time, Larry Seligman, who 
had designed the Extended Arithmetic Element 
for the PDP-7, took over the project from Ron 
Wilson. By this time, the project had changed 
its name from PDP-7/X to PDP-9. 

THE PDP-9 

The basic logic and hardware for the PDP-9 
(Figure 25) were the same as that used in the 
PDP-7. Although some integrated circuits were 
available, no standards had yet been set, and 
there were no cost or speed advantages to be 
gained. Therefore, the logic used discrete PNP 

Figure 25. PDP-9. 
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transistor, capacitor-diode circuitry operatir,g 
with signal levels of - 3  volts and ground. The 
modules were about 2.5 X 5 inches or 5 X 10 
inches and were plugged into an assembly of 
144-pin connector blocks interconnected by 24- 
gauge wire-wrap. 

The major technology advance of the PDP-9 
over the PDP-7 was in memory. A new memory 
had been designed that used a 2-1/2 D driv- 
ing/sense structure. The 2-1/2 D system re- 
quired only three wires through each core in the 
stack, rather than the four wires used in earlier, 
coincident current designs such as that used in 
the PDP-8 memory. The new memory obtained 
a cost advantage by being oriented in an 8- 
Kword organization rather than a 4-Kword or- 
ganization. The costs of the discrete component 
logic in the machine were still high compared to  
those of memory, so the cost advantage was not 
as exciting as the second advantage of the new 
memory, which was speed. The new memory 
had a cycle time of 1 microsecond as opposed to  
1.75 microseconds for the memory in the PDP- 
7. Because memory speed limited system per- 
formance, the new memory would permit the 
system performance of the PDP-9 to  be 1.75 
times better than that of the PDP-7. 

The structure of the PDP-9 processor is 
shown in Figure 26. It was a great deal simpler 
than earlier designs and used a general data 
path through the adder rather than the ad hoc 
register structure of the earlier machines. The 
basic PDP-9 implemented the PDP-4 instruc- 
tion set processor and the Extended Arithmetic 
Element option using microprogrammed con- 
trol. It was the first DEC computer to use this 
technique. 

In  addition to being a technological advance- 
ment, the PDP-9 was an interesting precursor of 
things to come. A 64-word, 36-bit, 212-nanose- 
cond read-only, transformer-coupled, rope 
memory was used as the microprogrammed 
control store. The design allowed for easy 
bench modification in the event that the micro- 
code required changing. It was originally in- 
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PDP-9 central processor register transfei 

tended that the control words be arranged for 
unary encoding, or what is now called horizon- 
tal microprogramming. In such an arrange- 
ment, each bit in the microinstruction denotes 
an action and can be specified independently of 
other microinstructions. This behavior is sim- 
ilar to the operate class of instructions in the 12- 
bit and 18-bit computers. However, the in- 
tention of using horizontal microprogramming 
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was soon lost in the complexities of design, and 
the bits were encoded to reduce the width of the 
control words. This eliminated the possibility of 
providing special purpose machines by a simple 
read-only memory change, a feature that the de- 
signers had originally hoped to include. 

The necessity of staying within the size con- 
straints of the read-only memory also con- 
strained the extendability and use of the 
microprogram control, in that floating-point 
arithmetic could not be included due to space 
limitations. There were not enough words, a 
problem all too familiar when programming ei- 
ther macro or micromachines. The Extended 
Arithmetic Element was included in the micro- 
program-controlled portion of the machine. 
The Extended Arithmetic Element demon- 
strated the power of the control store technique 
because this option, a 36-bit multiply/divide 
option, was implemented in only six single 
height (5 X 2.5 inch) Flip Chip modules. The 
processor occupied about 320 module slots, for 
a total printed circuit board area of 3,100 in2. 
This was not only less than the 3,348 in2 for a 
PDP-7, but it also included both the optional 
arithmetic element and much of the 1 / 0  con- 
trol. Thus, when functionality is considered, the 
PDP-9 was about half the size of earlier ma- 
chines. 

Interesting sidelights of the processor design 
effort included the discovery of an error in the 
PDP-I signed integer divide algorithm and 
Richard Sogge’s design of a discrete carry adder 
which would develop the carry over 18 bits in 
under 30 nanoseconds. This was an especially 
impressive circuit since ECL technology is re- 
quired even today to obtain this speed. 

Figure 26 shows a register transfer level dia- 
gram of the processor together with 1 / 0  and 
memory interface lines. The 1 / 0  control ex- 
tended the features of earlier machines by im- 
plementing an eight level nested automatic 
priority interrupt facility and a data channel 
transfer facility. The Automatic Priority Inter- 

rupt had four levels of hardware interrupt capa- 
bility at the 1/0 Bus and four levels of software 
priority. The Data Channel Transfer Facility 
was the same as a Direct Memory Access chan- 
nel, but used the Three Cycle Data Break Sys- 
tem pioneered i n  the magnetic tape control for 
the PDP-4 (page 144). 

The Direct Memory Access channel was the 
most disappointing part of the 1 / 0  bus concept 
because the speed requirement dictated the use 
of an extra set of data and address lines which 
were carried between the DMA device and the 
memory bus multiplexer via an extra set of ca- 
bles. In addition, a second port to memory was 
required. A clean bus cabling scheme for high 
speed transfer devices could not be imple- 
mented because of the extra lines required, and 
the only alternative, slowing down the machine 
to handle the transfers, was not acceptable. 

Logic for the PDP-9 was mounted in three 
sections, each capable of holding eight rows of 
forty modules (Figure 27). Each of the three 
sections had self-contained cooling and final 
power regulation. 

A system block diagram of the PDP-9 (Fig- 
ure 28) shows the evolution of the 1/0 and 
memory bus structured computer. This scheme, 
derived from the PDP-5 and PDP-6, was in con- 
trast to the radial structure of the earlier 18-bit 
computers and provided greater modularity 
and a major cost improvement. The new bus 
was daisy-chained from device to device using 
twisted pair cables. This technique provided 
uniformity in 1/0 backplane wiring compared 
with the PDP-7, which was customized for each 
option. The daisy-chain method allowed inde- 
pendent development, manufacturing, and test 
of 1 / 0  options and simplified the field installa- 
tion of options. Also, it allowed costs to be as- 
sociated with each option rather than being 
initially higher as in the radial scheme where all 
options had to be planned for in the central pro- 
cessor. The new bus structure was a mixed 
blessing in that it created the illusion that sys- 
tems of unlimited size could be built. 
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Figure 28. PDP-9 system block diagram. 

Except for the 300 wire field change on the 
first ten processor backplanes, the PDP-9 en- 
joyed a good reputation for performance and 
up time. It was followed by a less costly version, 
the PDP-9/L. The cost reduction was accom- 
plished by using a new (and somewhat cumber- 
some) power supply design and by offering a 4- 
Kword minimal system with lower cost paper 
tape equipment. The 4-Kword memory planes 
were borrowed from the PDP-8 line and 
adapted to provide half the memory in half the 
space. To provide lower cost paper tape capa- 
bility, the PDP-9/L used a teleprinter equipped 
with paper tape reader and punch instead of a 
separate, heavy-duty paper tape reader and 
punch. The product life of the PDP-9/L was 
relatively short; it was soon made obsolete by 
the PDP-15. 

THE PDP-15 

Unlike its predecessors, the PDP-15 was de- 
signed to provide a range of systems with both 
hardware and software. While early 18-bit ma- 
chines had evolved to include several con- 
figurations, the notion of a planned range for 
PDP-15 systems was explicit from the start. As 
it turned out, the PDP-15 evolved too, and over 
a considerably larger range than was antici- 
pated. Table 2 shows the range of systems that 
eventually developed; of these, only the models 
up through 15/40 were in the original plan. 

As in the past, the goal for the new machine 
was to  provide better performance/cost than 
the predecessor. The PDP-7 to PDP-9 transi- 
tion had provided a performance improvement, 
but not a big cost improvement. The new semi- 
conductor technology, transistor-transistor 
logic (TTL) available in dual inline packages, 
could provide the cost improvement required. 
The 7400 and 74H00 series of TTL integrated 
circuits permitted clock speeds of 10 to 20 MHz 
and lower costs and higher packing densities 
than did the discrete circuits used in the PDP-9. 
Not only did the higher packing densities lower 
the packaging costs, but they also permitted the 
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Table 2. The PDP-15 Family of 18-Bit Computer Systems 

Model Hardware Software 

PDP-15/10 
(basic paper tape system) 

Central processor 
4-Kword memory 
Teleprinter 

PDP-15/20 
(keyboard monitor using 
DECtape file system) 

PDP-15/30 
(background/foreground) 

PDP- 15/35 

PDP- 15/40 
(Disk based background/ 
foreground) 

PDP-15/50 

PDP- 15/76 

Central processor 
8- Kword memory 
Extended arithmetic 
Paper tape 
DECtape 
Teleprinter 

Central processor 
16-Kword memory 
Extended arithmetic 
Automatic Priority 

Memory protection 
Clock 
Paper tape 
DE Cta pe 
2 teleprinters 

(PDP-l5/30 with disks) 

Central processor 
24-Kword memory 
Extended arithmetic 
Auto ma tic Prior it y 

Memory protection 
Clock 
Paper tape 
DECtape 
524-Kword fixed head disk 
2 teleprinters 

16-Kword memory 

Interrupt 

Interrupt 

Assembler 
Editor 
Debugger 
Utilities 

Keyboard monitor 
FORTRAN IV 
FOCAL 
PIP* 
Utilities 

B/F monitor 
FORTRAN IV 
FOCAL 
PIP* 
Utilities 

Disk B/F monitor 
FORTRAN IV 
FOCAL 
PIP* 
Utilities 

15/40 PIUS PDP- 1 1 1 1 -based file 
and I/O device 
ma nagement 

*PIP = Peripheral (Data) Interchange Program 

basic PDP 15/10 (Figure 29) to be the smallest 
of the 18-bit series, while providing a number of 
options and additional features including an ad- 
ditional instruction set with an index and limit 
register for multiprogramming. The new TTL 

technology had one substantial drawback, how- 
ever. Where the old discrete transistor tech- 
nology had used -3 volt and ground signals, 
the new technology used + 5  and ground. Thus, 
to permit the use of both existing peripherals 
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Figure 29. PDP-15/10. 

and new peripherals, level converters on the 
1 / 0  Bus were required. 

In addition to the cost improvements antici- 
pated from the use of integrated circuits, it was 
also hoped that new memory systems available 
would offer both cost and performance im- 
provements. The PDP-15 memory is contrasted 
with the PDP-1 memory in Table 3. 

With the new memories and changes in ad- 
dressing capabilities through the Index Register 
and relocation options, memory size could be 
expanded to 131 Kwords. A separate control 
unit, called the 1/0 Processor, handled the 
bookkeeping for the 1/0 channels and 1 / 0  Bus. 
Figure 30 shows a typical PDP-15 system. The 
two processors (main processor and 1 /0  Pro- 
cessor) occupied only a third of the cabinet 
space of a comparable PDP-9 system, yet were 
faster and had more capability. While on the 
subject of cabinets, note that the packaging for 
the PDP-15 reverted to the simplicity of the ear- 
lier PDP-l, PDP-4, and PDP-7 cabinets by us- 
ing a fixed mounting structure rather than 
having the module connector blocks mounted 
on a door. 

MEMORY 
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Figure 30. PDP-15 sidelfront logic layout. 

The goals for the PDP-15 were to obtain an 
850 nanosecond cycle time, to be compatible 
with the PDP-9, to have a low manufacturing 
cost, to  improve priority interrupt latency, to fit 
the basic system in one cabinet, to extend the 
length of the 1 / 0  Bus, and to improve main- 
tainability. The success in meeting these goals 
varied. 

The goal of achieving an 850-nanosecond 
cycle time was exceeded, as the PDP-15 was 
shipped with an 800-nanosecond cycle time. It 
was particularly gratifying that this goal was 
met and exceeded because there had been a 
number of obstacles to overcome. The central 
processor, memory, and 1/0 had been made 
asynchronous to reduce 1 / 0  latency, but this re- 
quired synchronizing logic that resulted in sig- 
nificant circuit delays. A dc (round-trip) 
interlocked memory bus had been designed so 
that speed independent memories could be 
used, but this caused communications delays. 
Finally, to minimize cabling, a single set of lines 
had been used for communicating address and 
data information to the memory. This caused 
further communications delays. 
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Table 3. Comparison of PDP-1 and PDP-15 Memories 

PDP-1 PDP-15 P D P - I 5  (Late) 

Year 1960 1968 1972 
Stack size 4 Kwords 4 Kwords 24  Kwords 
Cycle time 5 PS 800 ns 960 ns 
Worddcabinet 12 Kwords 48 Kwords 96 Kwords 
Electronics 113 cabinet 1 /12 cabinet 1/24 cabinet 
Configuration 3D stack 5 planes 

4 bits/plane 20  bits/plane 
Planar stack Planar stack 

Core size 30 mil 18 mil 18 mil 
Wiredcore 4 3 3 

The PDP-9 instruction compatibility was 
achieved with three minor exceptions about 
which no complaints were received. Com- 
patibility for 1 / 0  devices was achieved by 
changing the receiver/driver modules to pro- 
vide the required conversions back and forth 
between the older peripherals and the new 

To meet the manufacturing cost goals, a 
number of things were considered. The PDP-15 
was one of the first DEC computers to use in- 
tegrated circuits extensively. Because each logic 
type used in the machine would have to be spec- 
ified, purchased, delivered, and tested, it was 
important to minimize the number of logic 
types. (Note the similarity of this concern to 
that expressed in Chapter 4 with regard to min- 
imizing the number of flip-flop types in the TX- 
0.) The PDP-15 was designed with 21 semi- 
conductor types, including integrated circuits, 
transistors, and diodes. All of them were avail- 
able from multiple suppliers. To simplify manu- 
facturing and field installation of options, the 
PDP- 15 had fixed configuration rules. This was 
a mixed blessing because the fixed con- 
figuration rules resulted in higher costs from the 
greater number of partially filled cabinets. Mar- 
gin testing for the PDP-15 was planned using a 
combination of varying logic timing and tem- 
perature. Special test equipment was con- 
structed for the PDP-15 production line to 

PDP-15 1 / 0  BUS. 

permit rapid heat cycling of central processors 
and memories. In addition, a fast program 
loader system was designed using a PDP-8 with 
multiple DECtape units. This system permitted 
programs to be loaded into the memory of a 
unit being tested by merely pressing a button. 
This saved considerable checkout time com- 
pared to the previous methods of loading diag- 
nostics via paper tape. 

It was originally planned that manufacturing 
costs would also be reduced by using sub- 
assembly replacement. The concept was that if a 
processor, memory, power supply, or other 
logic assembly failed to work when it was in- 
tegrated into a system, the entire subassembly 
would be replaced and sent back to its appro- 
priate test line, rather than repairing it in the 
final assembly area. This process, planned for 
both the PDP-9 and PDP-15, did not work be- 
cause the production line was never filled with 
enough material to allow the subassembly sub- 
stitution to take place. 

The manufacturing cost goals were not met 
during the production of the first 50 units, so an 
examination was made to determine which 
items were most costly. It was determined that 
most of the cost difficulty was in the mechanical 
packaging, and that the cabling, in particular, 
was costing more than anticipated. Sights were 
set on reducing the cabling complexity by using 
a single power harness that could be built and 
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tested on a jig. The cabling was reduced to one 
console cable, one teleprinter cable, one 1 /0  
bus cable assembly, and two memory bus ca- 
bles. In  trying to limit console cabling, a time 
division multiplex communication scheme was 
designed to get the signals to the lights and from 
the switches. In  this scheme, a number of sig- 
nals were transmitted on the same wires on a 
timeshared basis, and the console lamp fila- 
ments were used as storage elements. While this 
scheme was clever enough to gain the PDP-15’s 
only patent, it was generally unsatisfactory. It 
made the console logic so complex that when it 
failed, it was harder to fix than the processor. 

The goal of reducing interrupt latency to two 
microseconds was not achieved. With the par- 
ity, memory protect, and memory relocation 
options implemented, and with adder and syn- 
chronizing delays added in, the latency could 
only be reduced to four microseconds; but that 
was acceptable. 

The goal of packaging the basic system (cen- 
tral processor, 1 / 0  processor, console, and 32 
Kwords) in one cabinet was met; it was a close 
fit, and there were virtually no spare module 
slots. Since few small systems were sold, it is not 
clear that this emphasis was warranted. 

The goal of extended 1 / 0  bus length was 
achieved by switching from an unterminated, 
diode-clamped 1 / 0  bus such as the PDP-9 used, 
to a new, terminated 1/0 bus. A new set of bus 
transceiver modules was designed to  provide 
greater speed and less bus loading. The new bus 
design, with cleaner signals and no reflections, 
combined with the new bus transceiver mod- 
ules, permitted the 1 / 0  bus to be extended to  75 
feet. The penalty paid was higher power con- 
sumption and greater power supply cost than in 
the PDP-9. 

The goal of better maintainability was par- 
tially achieved by equipping the logic with a 
means of monitoring 400 signal points. This 
feature was combined with a single step feature 
which permitted troubleshooting from the con- 
sole without the use of an oscilloscope. As it 

turned out, the single step feature was used in- 
frequently because of the training required to  
use it properly. 

Figure 31 shows the register transfer struc- 
ture of the PDP-15 processor. It was based on 
elements and features used in earlier designs 
and had a basic data path which permitted the 
results from any of the 1 1  registers to be read 
into the arithmetic unit and then back into the 
registers. In order to achieve high speed oper- 
ation, a number of separate registers (such as 
the Step Counter, the Program Counter, and 
the Multiplier-Quotient registers), operated in 
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parallel with the basic data path. In  this way, 
significant overlap occurred, permitting the 
800-nanosecond cycle time. The contrast be- 
tween this design and the PDP-4 design is 
noteworthy. The PDP-4 had only four registers 
in the basic machine, but the use of integrated 
circuits in the PDP-15 permitted more registers 
to be used without so much concern for cost. 

The first major extension of the PDP-I5 was 
the addition of the Floating-Point Processor 
(Figure 32) to enable it to perform well in the 
scientific/computation marketplace using 
FORTRAN and other algorithmic languages. 
With the addition of the Floating-point Proces- 
sor, the time for a programmed floating-point 
operation was reduced from 100-200 micro- 
seconds to 10-15 microseconds, giving nearly a 
factor of I O  increase in FORTRAN perform- 
ance - depending on the mix of floating-point 
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Figure 32. PDP-15 Floating-point Processor register 
transfer diagram. 
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operations. For most machines, the difference 
between built-in and programmed data-types is 
higher; but, because the machine was originally 
designed to operate effectively without hard- 
wiring, the difference is quite low. Table 4 gives 
a summary of the performance improvements 
offered by the floating-point option. 

The addition of the floating-point unit re- 
quired that a number of instructions be added 
to the machine. The irony of this extension is 
that the PDP-I1 and nearly all minicomputer 
instruction set extensions exactly follow this ev- 
olution. 

A low cost multi-user protection system was 
added in the form of a relocation register and a 
boundary register. Because this was marketed 
as an add-on option, it degraded the machine 
performance more than necessary. However, 
the minimum machine cost maintained the per- 
formance/cost target. 

The first PDP-15 was shipped in February 
1970, 18 months after the project had started. A 
number of difficulties had been encountered, in- 
cluding personnel turnover, that caused a two- 
month slip. However, the project at first cus- 
tomer ship was within the budget and, by 1977, 

Table 4. Floating-point Computation Times 

Without With 
Floating- Floating- 

Program Point Point 
Type Option Option Improvement 

Matrix 12.0 sec 5.0 sec 2.4 
Inversion 

Fourier 16.9 sec 2.9 sec 5.8 
Transform 

Least 5.1 sec 0.7 sec 7.3 
Squares Fit 

Test of all 1 1.4 sec 1 .4  sec 8.1 
FP Functions 

A Physics 37.0 sec 3.0 sec 12.3 
Application 
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790 machines had been shipped - more than the 
total of all other DEC 18-bit machines. 

Two of the PDP-15 models are of special in- 
terest. A dual central processor version and the 
PDP- 15/76. These are treated separately below. 

DUAL CENTRAL PROCESSOR PDP-15 

In 1973 the PDP-15 product line proposed 
and sold a system that was a dual processor. 
From the dual processor project came a dual 
port memory, which eventually was transferred 
to the PDP-15 standard product line. The dual 
port memory also expanded memory to the full 
128 Kwords built into the PDP-15 addressing 
structure. The unit occupied a single rack and 
used the M-Series logic modules. Because there 
was space to add a third port within the rack 
unit, the dual port memory was actually built to 
be a three port device. At the time, the labora- 
tory breadboard was an impressive array of 
three cabinets containing 128 Kwords of mem- 
ory and two processors. 

The logic included what went unrecognized 
as a “synchronizer” problem for two months, 
despite reviews by some senior engineers. The 
synchronizer problem, first described by 
Chaney and Molnar [ 19731 of Washington Uni- 
versity, is a classical logic design problem that is 
theoretically unsolvable. When synchronizing 
(detecting) the presence of an event occurring at 
a random time relative to  a fixed clock event, a 
small amount of energy is available to set the 
flip-flop. When the flip-flop is triggered with 
such a small signal, it can go into an undecided 
(metastable) state for a relatively long (even in- 
determinant) period of time. The problem oc- 
curred in the dual port memory design because 
the three inputs (2 ports and the memory clock) 
needed to be synchronized. Despite the theo- 
retical lack of a solution, the practical solution 
is usually to  wait longer (e.g., two clock times) 
or to improve the circuit by unbalancing it. 
Once the problem was recognized, the design 
went to a quick completion. 

PDP-15/76 

Of the systems listed in Table 2,  the PDP- 
15/76 was one of the most interesting. A sim- 
plified block diagram of the final evolved state 
of the PDP-15/76 is shown in Figure 33. The 
diagram is referred to  as an evolved design be- 
cause the PDP-I l connection and the floating- 
point arithmetic features were not part of the 
original PDP- 15 design. 

The design of the PDP-I 5/76, also referred to 
as the Unichannel 15/76, began as a problem: 
find the most cost-effective way to  attach a new 
moving head, removable platter disk to the 
PDP-15. After a review of the problem, it be- 
came clear that the correct way to solve the 
problem was to  use a PDP-11 processor and the 
controller that had been designed for the PDP- 
1 I .  The key reason for this was not the cost of 
designing a controller for the PDP-15, but 
rather the cost of writing a new set of disk diag- 
nostics in PDP-15 code. (By that time, it was 
clear to all designers that hardware costs were 
swamped by software costs.) 

As the system design progressed, it became 
clear that the PDP-I 1 could be used to run the 
other PDP-I 1 family peripherals that were the 
object of most of DEC’s development and pro- 
duction efforts. The list of new peripherals 
quickly grew to include communications lines, 
plotters, printers, and card equipment. Figure 
34 shows the options available for the PDP- 
15/76. 

U N I B U S  

I 33 

CORE 
M E M O R Y  

UNIBUS 

I I 

F p  PROCESSOR p&l p-zp PERIPHERALS 

PDP-15/76 simple system block diagram 
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Figure 34. PDP-15/76 (XVM) system block diagram. 
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The project had a very small but excellent 
staff, and the hardware part of the program 
went very smoothly. AI Helenius did much of 
the logic design for the memory multiplexer de- 
vice, using existing M-Series logic modules, and 
the prototype was operational in early Novem- 
ber 1972. The complexity and size of the soft- 
ware task was clearly underestimated. 
However, the successful system operation de- 
pended on having more software. Rick Hully 
proposed an operating system structure that, 
for the era and application, was elegant, ad- 
vanced, and yet straightforward. The reality 
was that  the PDP-15/76 was a “multi- 
processor’’ system, and today’s terms “back- 
end processor” and “file processor” apply to 
what was accomplished on this machine in the 
early 1970s. Also, this structure was used by 
IBM in the coupled 7090/7044 system and the 
360 Attached Support Processor. 

From an application point of view, the PDP- 
15/76 dual processor system was extremely ef- 
fective, especially in the following applications: 

1 .  Computer-aided design. With the PDP-I 5 
processor handling figures and com- 
putation while the PDP- 11 processor 
handled an input digitizer, high speed 
plotter, and printer; with the PDP-I1 
and PDP-15 sharing memory and the 
new disk. 
Batch processing. With the PDP-15 and 
the floating-point option handling com- 
putation while the PDP-I 1 handled 
spooling to printers, input from card 
readers, and terminals. 

2. 

THE SERIES AND ITS EVOLUTION 

It is useful to compare the five 18-bit com- 
puters that were designed over the course of 
roughly 10 years. The series began in the early 
second (transistor) generation and extended to 
the early part of the third (integrated circuit) 
generation. Had the series been extended to the 

fourth (large-scale integrated circuit) gener- 
ation, a version of the PDP-15 could have been 
easily implemented on a single silicon chip. The 
paragraphs which follow each summarize the 
important characteristics of one or two mem- 
bers of the series, and Table 5 gives the techni- 
cal information. 

Contributions of Individual Machines to 
Series Development 

The PDP-I had a number of innovations over 
its laboratory predecessors, the Whirlwind and 
TX-0. It contributed extremely straightforward 
1/0 interfacing capability together with a multi- 
channel interrupt structure and Direct Memory 
Access capability which enabled a high 1 / 0  
data rate. These characteristics made it ideal for 
high performance laboratory applications. The 
PDP-I also represented a major stepping stone 
in the early days of timesharing computers. The 
message switching application contributed sig- 
nificantly to its market success and motivated 
the design of good communication interfaces in 
subsequent computers. Because the PDP-1 
served as a thorough test vehicle for the circui- 
try of the 1000-series system modules, these 
modules were more suitable for their general 
application in building digital systems. 

The PDP-4 contributed in small ways: there 
were minor improvements in the instruction set 
processor; and, because the PDP-4 was oriented 
to a much lower cost, some of the modules were 
refined. The simplified logic design of the PDP- 
4 was a major influence on the implementation 
style of subsequent computers. It also contrib- 
uted the fundamental minicomputer notion that 
successor machines should be lower cost. More- 
over, the PDP-4 extended the marketplace to  
industrial control, which had not been possible 
at PDP-1’s price levels, and further improved 
the ease of 1 / 0  interfacing. 

The PDP-7 and PDP-9 Families exploited a 
significant refinement in the wire-wrap packag- 
ing technology. Although the circuits were 
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Table 5. Characteristics of DEC's 18-Bit Computers 

PDP-4 PDP-7 PDP-9; 9/L PDP-15 PDP-1 

4/64; 12/64 8/66 - 12/68 5/68: 2/70 Project start; 
first ship 

8/59; 11/60 11/61; 7/62 

Goals Cost; short word 
length: speed 

cost Speed; cost Speed; cost; 
producibility 

Cost; range of 
machines. hard- 
wa re/softwa re 
systems 

Applications Lab control; 
message 
switching; time- 
sharing 

Circuit use; 
package; ISP; 
interrupts; Di- 
rect Memory 
Access: I10 in- 
terfacing 

Process control: 
industrial testing 

Improved time- 
sharing 

Graphics Numerical com- 
putation: graphics 
processing 

Innovations/ 
improvements 

Functional (bit- 
slice) modules; 
ISP trend to 
mini; 3 Cycle 
DMA; I/O inter- 
facing 

65.5 (56.5) 

Package: mod- 
ules: perform- 
ance 

Micro- 
programming; 
I/O Bus 

Integrated cir- 
cuits; floating- 
point; multi- 
processor 

Price (K$) with 
paper tape 
reader/punch. 
Typewriter, 
4-Kwords 

120 45 25+: 24.4 
(1 9.9) 

19.8 (1 6.2) 

Pricelword ($1 7.32 

2800 

5 

3.66 3.99 2.19; 1.95 

- 

1; 1.5 

1.71; 1.32 

5400 

0.8 

MTBF (hours) - 

1.75 Memory cycle 
time (MUS)  

Memory ac- 
cessedsec 
(millions) 

0.2 0.125 0.57 1; 0.67 1.25 

Multiply/ 
divide time (ps)  

25/40 4.419 2.5/12.5 4.514.5 

4..... 131 

4.5- 

8.4.. Memory size 
(Kwords) 

1.4 ,... 165 1.4.8 ,.... 32 

34.5 (0.029) 

1.1 

4.....32 

227 (0.0044) 

32 

714 (0.0014) Bits accessed 
per sec per $ 

Perf./price 
improve * 

30 (0.033) 1 135 (0.00088) 

6.6 3.1 1.7 

*Uses previous model as base for improvement. 
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Table 5. Characteristics of DEC's 18-Bi t  Computers (Cont) 

PDP-1 PDP-4 PDP-7 PDP-9; 9/L PDP-15 

Price improve* 

Perf. improve* 

Product life 
(years) 

Number 
produced 

Power (W) 

Weight (Ib) 

Size (69 X 21 
X 28 inch bays) 

Volume ( h 3 )  

Power density 
(W/ft3) 

Weight density 
( 1wft3) 

Watts/$ 

Lb/$ 

Kbits accessed 
per W 

Kbits accessed 
per Ib 

Kbits accessed 
per Kft3 

Logic 
technology 

Module series 

Logic speed 
(MHz) 

- 

- 

4 

50 

2160 

1350 

4 

94  

22.9 

14.4 

0.01 8 

0.01 1 

1.6 

2.6 

38.3 

Saturating 
MADT transis- 
tors 

1,000 

5. 0.5 

1.8 

0.62 

3 

45 

1125 

1030 

2 

47 

23.9 

21.9 

0.01 7 

0.01 6 

1.1 

2.2 

47.9 

Capacitor-diode 
gates; diode 
transistors 

4.000 

1. 0.5,  5 

1.45 

4.57 

4 

120 

2100 

1150 

3 

70.5 

29.8 

16.3 

0.046 

0.026 

4.9 

8.9 

146.0 

Saturating 
transistors 

0 

10. 1. 0.5 

1.8 

1.75 

4 

445 

2000 

790 

1.5 (special) 

36 

55.5 

21.9 

0.08 

0.032 

9.0 

22.8 

500.0 

- 

- 

10. 1 

1.3 (1.5) 

1.25* 

7 

790  

2875 

7 50 

1 

23.5 

122.3 

31.9 

0.15 

0.038 

7.8 

30.0 

957.0 

7400, 74H00 
series integrated 
circuits 

M 

1 0 . 2 0  

~ 

*Uses previous model as base for improvement. 
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Table 5.  Characteristics of DEC's 18-Bit Computers (Cont) 

PDP-1 PDP-4 PDP-7 PDP-9; 9/L PDP-15 

Module size 5.25 X 4 5.25 X 4 2.25, 5 
( X  3.875) 

Same 2.25, 5, 10 
(X  3.875) 

Modules1types 544134 

3.5 K. 4.3 K 

236141 

- 

614139 644/44 300154 

350. 200, 3.4 K Transistors, 
diodes. ICs 

Power supply/ 
types 

814 412 914 1 /1 1 11 

18 X 25 

3 X 25 

3 X 25 

6 X 25 

3 X 25 

3 X 25 

Modules space 
processor 

12 X 32 a x 44  4 X 32 

Modules space, 
I10 interface 

4 X 32 

Modules space, 
reader, punch, 
typewriter 

a x 32 8 x 44 7 

Modules space, 
4-Kword 
memory 

4 X 25 4 X 25 (8 K) 3 X 32 3 x 44 4 X 32 

Pc, Mp. I10 logic 
area (in2 X K) 

11.9 

8.9 

18 

5.2 

3.3 

16 

5.3 

3.3 

5.6 

3.1 

3.4 

2.1 

75/2 

Processor logic 
area (inz X K) 

Logic prints 27 44/2 = 22 

*Uses previous model as base for improvement. 

based on the early PDP-6 IO-MHz circuits, the 
more cost-effective and producible Flip Chip 
package was used. Both machines had signifi- 
cant performance gains over all predecessors. 
Using the number of words or bits accessed by 
the processor per unit time as the performance 
measure, the PDP-7:PDP-4 ratio was 4.57 and 
the PDP-9:PDP-7 ratio was 1.75. Both gains 
were due to the use of faster core memories. The 
PDP-9 used microprogrammed control, even 
though the simple instruction set processor 

probably did not necessitate the high entry cost. 
A large microprogram store  could have 
changed the performance (and history) of suc- 
cessor minis. The change to an 1/0 bus struc- 
ture, pioneered in the PDP-5, entered the 18-bit 
series with the PDP-9. It distributed the 1 / 0  in- 
terface to each option and so further reduced 
the basic cost. 

The PDP-15's use of integrated circuits pro- 
vided an 18-bit series improvement. At last 
there was a significant reduction in size, al- 
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though the power consumption increased. The 
board area in the processor decreased by a fac- 
tor of three over previous implementations, 
where it  had been relatively constant at about 
3,000 in2. The two major contributions of the 
PDP- 15 were the notion that systems include 
both hardware and software and that the ma- 
chine would span a range of sizes. Finally, to 
extend the life of the machine, a number of im- 
provements (e.g., in memory, PDP-11 I/O) 
were later made to reduce price and to increase 
performance (floating-point, multiple proces- 
sors). 

Project Development Times and Product 
Lifetimes 

The duration of the projects generally in- 
creased with time, reflecting the longer tooling 
time for increased production volumes. The 
PDP-4 is an exception; it had the shortest de- 
sign time because the circuits and mechanical 
packaging were based on the PDP-1. In addi- 
tion to increased development times with pass- 
ing years, later members of the series had longer 
product lifetimes; hence, longer times elapsed 
before re-implementations occurred. The time 
between the first few implementations was only 
about two years. The final implementation, the 
PDP-15, was produced for seven years. The 
early (too frequent) implementations were per 
haps indicative of the attention paid to low 
hardware cost and performance, rather than to 
application and software enhancements to in- 
crease the market life. 

Price 

Figure 35 shows that the price for a basic 
“bare-bones’’ system declined by more than 19 
percent per year. The price of the typical mid- 
size system has never been properly analyzed, 
but roughly speaking, the average price de- 
clined from an initial cost of $250K for a PDP- l 
to $65K for a PDP-9. For a given processor, 
however, the size of typical systems purchased 
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Figure 35. 
paper tape I/O. typewriter, and 4-Kword memory. 

Price versus time for 18-bit computers with 

grew with time. For example, early PDP- 15 sys- 
tems were sold at an average price of $75K, 
while the final average price was about $125K. 

Not all price reductions were the result of 
cheaper logic technology or better manufac- 
turing techniques on the part of DEC. Some 
prices, particularly system prices, were in- 
fluenced strongly by the prices of peripherals. 
For example, the Teletype Corporation Model 
33 ASR teleprinter with built-in paper tape 
reader and punch helped reduce the price of the 
minimum configurations of later 18-bit com- 
puters by as much as any other component 
price reduction. 

The primary memory price decline (Figure 
36) of only 16 percent per year can be attributed 
to the fact that each subsequent machine 
needed higher performance memories. Memo- 
ries were always implemented at relatively con- 
stant price with increasing performance. Again, 
the PDP-4 is an exception; it shows the effect of 
building a low performance memory versus the 
fastest memory. While the first PDP-4s were 
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Figure 36. Price/word of 18-bit memory versus time. 
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Figure 37. Performance of 18-bit computers versus 
time. 

shipped with PDP-1 memory, the next ma- 
chines had 8-Kword memory systems that cost 
about half that of the PDP-1. The price of the 
18-bit memory systems decreased at a rate 
slightly less than that of the 12-bit or 36-bit 
computers. One possible explanation would be 
an economy of scale in quantity shipped in the 
12-bit case and an economy of scale in word 
length in the 36-bit case. 

Performance 

Performance (in millions of words accessed 
per second by the processor) is shown in Figure 
37 and exhibits a 29 percent yearly increase. 
Neither the PDP-15 nor PDP-4 fall on the line 
because both were oriented to lower price 
rather than to increased performance. In real- 
ity, the PDP-15 later evolved to have much 
greater effective performance when built-in 
floating-point arithmetic was added. Then its 
real performance (a factor of 2 to 10 better for 
FORTRAN programs involving floating-point) 
exceeded the line position. Midlife extensions of 
this sort were generally missing on the other 18- 
bit computers, as design resources went into de- 
veloping new processors. 

Price/Performance 

The performance/price ratio, a reasonable 
index for simple systems, is shown in Figure 38. 
This ratio has improved by 52 to 69 percent per 
year over the IO-year period. A variant of this 
plot is shown in Figure 39, where price is 
plotted against the performance (in millions of 
accesses per second by the processor). 

The lines of constant performance/price are 
separated by a factor of 2. In this representa- 
tion, any measure which changes by 41 percent 
per year takes two years to move from one line 
to another. A yearly improvement of 26 percent 
takes three years to double, and a yearly im- 
provement of 19 percent takes four years to 
double. 
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Since the gain in price/performance is at least 
52 percent per year, the 9.1 year evolution 
crosses five factor of 2 lines. Only the PDP-4 
stands out as being on a line of constant per- 
formance/price. It was either overpriced by a 
factor of 2 or should have performed better by a 
factor of 2 for the same price. 

Market Demand 

In  order to speculate on a theory of demand 
for small computers, two demand curves are 
given. Figure 40 is the classic demand curve: 
price of the unit versus quantity. If one ignores 
the PDP-I anomaly, it appears that there is 
complete price elasticity of demand. There are 
two possible reasons for the PDP-I anomaly. 
Twenty of the PDP-Is are accounted for by a 
single, perhaps fortuitous, order for the ADX 
7300 systems. By subtracting this amount from 
the PDP-1 quantity, one obtains the second 
conjecture: sales were higher than the model 
projection because the PDP-I was first into the 
market. 

An alternative to the demand model is given 
in Figure 41 where price per unit of perform- 
ance is plotted against quantity. This model is 
based on the thesis that computers are like 
power generators (or tractors): demand is based 
on the amount of work they can do per unit of 
cost. (This would explain why roughly the same 
number of PDP-1s and PDP-4s were sold.) 
Note that more PDP-9s and PDP-15s were sold 
than the curve would have predicted. Because 
both machines had longer lives before succes- 
sors were introduced, a better ordinate might be 
the maximum number shipped in any one year, 
which would take into account other market- 
place limits. 

Other Characteristics 

Table 5 has other data that has not been 
plotted. The input power (with the exception of 
PDP-4) is constant over all implementations. 
The weight is correlated with size, reflecting a 
relatively constant weight per bay. The volume 
has declined, which reflects consistent improve- 
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ments in packing density. In this respect, the 
PDP-4 was a better implementation than the 
PDP- 1 .  The PDP-7 was even better in packing 
density and provided a great performance im- 
provement. The PDP-9 improvements were in 

memory performance and packaging for manu- 
facturing, rather than in logic-related perform- 
ance or packaging, as it used the same logic (10 
MHz) as the PDP-7. The PDP-15 achieved its 
size reduction using integrated circuit tech- 
nology. The weight/price appears to have risen 
and almost seems to be correlated with in- 
flation. Power and weight density measure- 
ments are given in the table together, as are 
several ratios involving cost, weight, power, and 
performance. Note that performance changes 
most as a direct result of core memory speed 
improvements. The calculated mean time be- 
tween failures has declined by over a factor of 2 
between the PDP-I and PDP-15. 

The reader should compare the implementa- 
tions. With the exception of PDP-I and PDP- 
15, all computers required about 5,000 in2 of 
printed circuit board area for the processor, 
memory, and basic I/O. The bit-slice approach 
of the PDP-4 made possible a major reduction 
in backpanel interconnections by using two spe- 
cialized modules. All subsequent implementa- 
tions used the bit-slice approach with a few 
special purpose modules. Of special interest is 
the number of logic module types and power 
supply types. All but the PDP-15 had about 40 
different logic types. The PDP-15 had 54 types 
because the advent of integrated circuits en- 
abled higher packing density per module which 
resulted in lower generality per module given 
the limitation of the pins on each module. This 
small number of module types and relatively 
low cost per module meant that the cost of a 
complete package of spare modules for a com- 
puter represented a small fraction of the com- 
puter’s price. This is in contrast to the fourth 
and fifth generations, where a single module 
contains the whole computer and the cost of 
spare modules is therefore a large fraction of 
the computer’s price. 

Options 

Table 6 shows the options available for the 
various machines. Note that PDP-1 had quite a 
complete set of options, including both high 
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Table 6. Options for DEC's 18-Bit Computers* 
~ ~~~ . 

PDP-1 PDP-4 PDP-7 PDP-9 PDP-15 

- Multiply/Divide Std (181 EAE 11 771 EAE opt ,  floating- 
point opt 

Priority interrupt 1 ch. std.; (1 201 1 ch. std. 1 ch. std. ( 172) 1 ch. std; 8 opt. 1 ch. std; 8 opt 
- 16 ch.; also 
256 ch. 

16 ch. 

Direct Memory (191 3 ch. 1 std.; 3 opt. (17313ch. +1 to mem. Up t o  64 
Access (std.) 

Clock Yes 1 std.: (1321 Opt. opt. opt .  
l 6 c h .  

- - Power failure N/A Std. Opt 

Memory protect 4-Kword core None (KA70Al base (KA70Al I KA7 OAl 
images and bounds 

Secondary Memory 

Magtape (prog. 151 ] - 1501 200 (541 - (501 200  - - 

control) b/i b/ i 

Magtape (DMA) (521- (501 [57AI - I50 or (57Al - (50  or (TC591- (TU201 [TC59( - [TU20 or 
(5101 - [ IBM 5701 556 b/i 5701 TU30 I 
7291 

Drums 123 I (241 16 Kw ... 65  (241 32 32 Kw ... 524 Kw - 

Kw Kw ... 131 Kw 

Fixed disks N/A - - IRS091 1 MW (RS091 - 262  
Kw ... 2 M w  

Disk Pack - - - [R PO21 - 10 M w  - 

D ECta pe N/A (5501 - 1555) (550AI - I5551 [TC021 - [TU551 (TC02) - (TU551 

Links 

Inter-Computer - - (1951 OB97 DB98.99 DB98.99 

To 7090 11501 10 KW/S - - - - 

Commu- 8 ch. UP to  256 - 

nications 
16301 6 4  ch. 1630) 64  ch. lLT l9 )  
16341 8 ch. lLTO91 5 ch. 

To other - 

computer buses 
- - TO PDP-7 [DWl51 to  PDP- 

15 

*The DEC-assigned option number is given in square brackets, e.g.. (1771 
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Table 6.  Options for DEC's 18-Bi t  Computers (Cant)* 
~~ 

PDP-1 PDP-4 PDP-7 PDP-9 PDP-15 

Transducers 

Paper tape 
reader 

Paper tape 
punch 

Typewriter 

CRTs 

Point plotting 

Storage 

DMA 

Precision 

Alp ha nu m eric 

Card reader 

Card punch 

Line printer 

Plotter 

Relays 

A/D converter 

D/A converter 

Std. 400 CIS 

Std. 63  c/s 

Std. 10 c/s 

[30] 16 in. 
l K X 1 K  
points 
21 in. color 

1341 'Tektronix 
storage 

- 

131 I 5 in. 4 K X 
4 K points 

- 

(42 1 I 200 c/m 

1401 1 0 0  c/m 

1641 300 I/m 

- 

[140) 18 ch. 

[138/139) 
64  ch. 

- 

Std. 300 c/s 

175) 63 c/s 

1651 28 KSR. 
10 c/s 

(30DI (3401 
vector plot 

1341 

- 

- 

- 

(41 1200 c/m 

1401 100 c/m 

1641 300 I/m 

- 

11401 18ch. 

[ 13811 391 

- 

Std. 300 c/s 

1751 63 c/s 

16431 33 KSR 

[30DI (34OCI 

1341 

- 

- 

- 

(421 1 200 or 
800 c/m 

14101 l 0 0 c / m  

1641 300 I/m 

13501 to  
Calcomp 

11401 18ch.  

[ 1 3811 391 

- 

Std. 300 CIS 

[ PCO9 I 50 CIS 

33 KSR, ASR 

POD1 

l34Hl 

13393 P. display 
with 340 

- 

- 

(CROIEI 100 or 
200 c/m 

- 

1647 I 300 or 
600 I/m 

13501 

[DROSA] 

64 ch. 
1000 ch. 

- 

Std. 300  d s  

[ PC151 50 c/s 

33.35. ASR. KSR 

(VP151 

[VTl5)  

[VT05] 

(CR033~200  c/m 

- 

16471 3 0 0  or 
1000 I/m 

13501. 1x4151 

DRO9A 

[AF02] 64 ch. 
[AFO41 1000 ch. 

AFC 15-analog 
UDC 15-digital 

*The DEC-assigned option number is given in square brackets, e.g.. 11 771. 
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precision and color cathode ray tubes. The 
PDP-I, 4, and 7 were relatively compatible in 
terms of 1 / 0  interconnection and evolved to 
have about the same set of options. PDP-9 
changed to an 1 / 0  bus structure, requiring new 
option interfaces. Although PDP-I5 used that 
same 1 / 0  bus structure and signals, the voltages 
were different; again, new option interfaces 
were required. 

Displays have been major options through- 
out the series. Moving head disks were first 
available on the PDP-15. Although a number of 
card handling options were available, few were 
sold, reflecting the real-time, laboratory, and 
multiprogrammed (timesharing) use. 

Evolution 

This chapter concludes by relating the 18-bit 
series evolution to  the model of minicomputer 
evolution presented in Chapter 1. Three design 
styles are distinguished in the model, as can be 
seen in Figure 42. Chapter 7 shows the 12-bit 
family (PDP-8) evolving mostly along the con- 
stant performance/decreasing price curve. The 
16-bit PDP-I 1 family, presented in the chapters 
of Part IV,  evolved based on all three design 
styles. 

INCREASING PRICE, 
INCREASING PERFORMANCE 
( N E W  PERFORMANCE-ORIENTED 

PRICE 

/ M A R K E T  OPPORTUNITIES)  

CONSTANT PRICE,  
INCREASING PERFORMANCE x DECREASING CONSTANT PERFORMANCE PRICE. 

( N E W  MARKET 
OPPORTUNITIES)  

c 
T I M E  

For a family to evolve in  more than one de- 
sign style, design resources must be available 
for parallel development efforts. While the 
PDP-I 1 family had the multiplicity of designers 
and architects to do this, the 18-bit series did 
not. Each new implementation was designed by 
a member of a previous implementation team. 
For such a single-thread approach to be suc- 
cessful, it appears that one of the three design 
styles of the evolution model must be chosen 
and consistently followed. With the exception 
of PDP-4, the 18-bit series has followed the- 
middle style: constant price/increased perform- 
ance. 

It appears that a clear identity is needed to 
guide design decisions. Consider the physical 
packaging of the last of the 18-bit machines, the 
PDP-I  5. Although a comparable speed/ 
performance PDP- 1 1 required more integrated 
circuits to implement (the PDP-II has more 
modes of addressing, more instructions, and 
more data-types), the PDP- 15 implementation 
cost more. The PDP-15 remained packaged in a 
large cabinet, used smaller modules, and the 
component density per module was lower than 
that of the PDP-I 1 .  Had the evolution been 
guided by a consistently lower cost goal, metal 
box packaging rather than cabinet packaging 
would have been used. As it was, the PDP-15 
had to compete against the PDP-I 1 with the 
handicap of an extra level-of-integration in its 
physical packaging. 
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THE LINC 

Since the Laboratory Instrument Computer 
(LINC) was one of the machines that had a 
great influence on the design of the PDP-4 and 
the PDP-5, a discussion of the DEC 12-bit ma- 
chines must start with the LINC. 

The LINC was designed by Clark and Mol- 
nar [Clark and Molnar, 1964; 19651, who were 
in turn influenced by Control Data Corpo- 
ration’s (CDC) 160, designed by Seymour Cray. 
The relationship of these early computers is 
shown in Figure 1.  The first version of the 
LINC was built at the M.I.T. Lincoln Labora- 
tory where it was demonstrated in March 1962 
(Figure 2 ) .  In 1963 the LINC was redesigned for 
production at a special M.I.T. laboratory, the 
Center Development Office. 

While the LINC contributed to DEC history 
primarily as a forerunner of the PDP-4 and 
PDP-5, it also generated a number of other de- 
velopments. The LINC tape unit and the system 
ideas that permitted a user to have personal files 
were later incorporated directly into the DEC- 
tape design and programs. The tape system and 
a powerful CRT-based console made possible 
the first complete personal computer available 

The PDP-8 and Other 
12-Bit Computers 

C. GORDON BELL and JOHN E. McNAMARA 

to a user, in this case the researcher, at a reason- 
able price. The LINC machines had been con- 
structed mainly from DEC Systems Modules, a 
convenience when DEC subsequently manufac- 
tured LINC machines directly from the 1963 
design. Later, Wes Clark with Dick Clayton de- 
signed the LINC-8, a two-processor machine 
(LINC + PDP-8) which executed both instruc- 
tion sets in parallel. Clayton also designed the 
PDP-12, a single physical processor that exe- 
cuted either PDP-8 or LINC instructions se- 
quentially by switching modes. 

Some of the characteristics of the LINC 
Family machines are given in Table 1, and pho- 
tographs appear in Figures 3, 4, and 5. Note 
that the size remained essentially constant at 
one cabinet throughout the life of this computer 
family. 

On machines prior to the LINC, DEC had 
been stressing design flexibility and modularity, 
providing many ways to interconnect computer 
components in order to create a variety of struc- 
tures. This detracted from having a base system 
configuration complete with software. In con- 
trast, the LINC was quite constrained, with 
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Table 1. L l N C  Family Characteristics 

76 

16 

74 

12 

70 

68 

66 

64 

62 

60 

56 

LlNC LINC-8 PDP-12 

IEXTl IDECl IEXT 

* 4096, t 
BlTS OF 

RIW MEMORY - 
- 1024( 1 

- ECL 10011 I 

- 25611 

- 
- 641,  

TTL/S( I 
PASCAl - 

1 6 B l T S  - OFRIWMEM" 

- 
APLIJSI TTUH - E C L I O I "  

FLIP CHIPS FORTRAN 
AND WIRE 

- 
' 'WRAP - 

MITTECq 
SI T R l N S  4 1 BASIC 

TTLI  b 

- 
I C ,  

- 

COBOL6 
1 0 9 0 ( ,  ALGOL6 - WlRE WRAP 

BT - I )SYS& LAB MLCR 
MODULES 

GeTRINS-  CFORTRA 

Project start 1961 
First shipment 3/62 
Withdrawn 12/69 
Number produced 
Price (minimum) $43.600 

50 (21 by DEC) 

Summer 1965 6/67 
8/66 6/69 
12/69 617 5 
143 1,000 
$38.500 $28.1 00 

Goals and features Complete system for labora- Low cost. speed. PDP-8 Larger scope, bus com 
tory user (including file sys- software/hardware. com- pattble with PDP-8/1 
tern and scope) patibility 

Size 
(in inches) 

69 X 32 X 30 plus separate 
tape, keyboard. console. and 
interconnection boxes 

69 X 32 X 33 76 X 35 X 33 

Memory-processor 125 K 
accesses (per second) 

667 K 667 K 
(PDP-8 memory) (PDP-811 memory) 

Power (watts) 1,000 2.000 <2.000 

Cathode ray tube Originally 2 oscilloscopes. 1 1 
later only 1 

v 
PROCESSOR ON 
ACHIPFAMILY 

LANGUAGES oPERAT"G 
SYSTEMS 

TECHNOLOGY 

Figure 1 .  Family tree of 12-bit machines with associated timelines for technology, languages, and operating systems 
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Figure 2. The LlNC (Laboratory Instrument Computer) is a small stored program digital computer designed to accept 
analog as well as digital inputs directly from experiments, to  process data immediately, and to provide signals for the 
control of experimental equipment. The LlNC system comprises five physically distinct subassemblies which include 
four console modules connected by separate cables to  a remote cabinet containing the electronics and power supplies. 
The control module contains indicator lights, push buttons, and switches used in operating the LINC. A second module 
provides for display oscilloscopes, while a third module holds two magnetic tape transports of special design. The last 
module is provided with sockets, jacks, and terminals for interconnecting the LlNC and other laboratory equipment. This 
photograph shows the prototype version demonstrated on March 27. 1962. at the M.I.T. Lincoln Laboratory (courtesy 
of M.I.T. Lincoln Laboratory, from Clark and Molnar [1964]). 

Figure 3 The production version of the LINC. 
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Figure 4. The LINC-8. 

Figure 5. The LINC-12 

only 1 Kword or 2 Kwords of primary memory 
available, two LINC tapes, and one CRT. By 
bounding the system to a single configuration, 
it was possible to provide a complete computing 
environment including software and to provide 
for convenient interchange of user software. 

THE PDP-5 

As indicated in Chapter 6, discussions with 
Foxboro Corporation in the fall of 1961 led to 
the design, using many LINC ideas, of a 12-bit 
digital controller called the DC-12. Instead of 
building the DC-12, DEC built the 18-bit PDP- 
4 and sold one to  Atomic Energy of Canada 
Limited. AECL used the PDP-4 for a reactor 
control computer system at Chalk River, an ap- 
plication requiring an elaborate analog mon- 
itoring system as a front-end. To reduce the 
complexity of the analog system, a special 
front-end computer was needed. The Wes Clark 

10-bit L-1 design was considered but rejected 
because the encoded analog values required 
words longer than I O  bits, and because the size 
and complexity of the program seemed too 
great for such a small computer. After visiting 
Chalk River in the winter of 1962, DEC engi- 
neers decided that a 12-bit design based on the 
DC-12 would be excellent for such a front end 
in PDP-4 process control applications. The in- 
struction set for the new machine, the PDP-5, 
was specified in detail by Alan Kotok and Gor- 
don Bell, and the logic design was carried out 
by Edson DeCastro, the applications engineer 
responsible for building the analog front end at  
Chalk River. 

The intent of the design was to  simplify the 
system so that it would take no longer t o  design 
the PDP-5 than it had taken to design the 
analog front end that it would be replacing. The 
machine used the standard modules developed 
for the PDP-4, including the concept of bit-slice 
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ava'ilable, two LINC tapes, and one-CRT. By 
bounding the system to a single configuration, 
it was possible to provide a complete computing 
environment including software and to provide 
for convenient interchange of ustf softwam. 

THE P D P I  

As indicated in Chapter 6, disawions with 
Foxboro Corporation in the fall of 1%1 Id to 
the design, using many LINC ideas, of a f2-bit 
digital controlIer called the DC-12. Inmud of 
building the DC- 12, DEC built the IS-bit PDP- 
4 and sold one to Atomic Eaergy of C a d a  
Limited. AECL used the PDP-4 for 8 reactor 
control computer system at Chdk River, 8n ap- 
plication requiring an ehbrate andog mom 
itoring system 8s  a f r o n t a d .  To rdua the 
complexity of the analog system, a special 
f r o n t e d  computer was needed. The Wa Clark 

,1 

because the encoded analog v a l w  required 
words longer than IO bits, and because the s k  
and complexity of the program seemed too 
graat for such a small computer. After visiting 
Chalk River in the winter of 1962, DEC en& 
n m  decided that a 12-bit dmign based on the 
DC-12 would bo cxceIlcnt for such a front end 
in PDP-4 pmcm control applidons. The in- 
s t d o n  set for the new machine, the PDP-5, 
was s H f i d  in detail by Alan Kotuk and Qor- 
don Bell, and the logic design was canid out 
by Edron DcCastro, the applications engineer 
responsible for building the analog front end at 
chalk Rim. 
The intent of the design was to simplify the 

system 80 that it would take no longer to design 
the PDF4 than it had taken to design the 
analog front end that it would IM replacing. The 
machine used the standard modules developad 
for the PDM, including the concept of bit-dice 
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Figure 6. The PDP-5 

construction for the Accumulator, Memory 
Address, and Memory Buffer registers. The 
analog nature of the initial application was ad- 
dressed by building an analog-to-digital con- 
verter into the Accumulator, thus providing this 
capability at extremely low cost. The other part 
of the design that addressed cost was the use of 
an 1/0 Bus instead of the radial structure that 
had been used in the 18-bit designs. The 1/0 
Bus permitted equipment options to be added 
incrementally from a zero base instead of hav- 
ing the pre-allocated space, wiring, and cable 
drivers that characterized the radial structure. 
This lowered the entry cost of the system and 
simplified the later reconfiguring of machines in 
the field. 

Although the design was optimized around 
the 4-Kword memory, the PDP-5 ultimately 
evolved to 32-Kword configurations using a 
memory extension unit. Similarly, although the 
base machine design did not include built-in 
multiply and divide functions, these were added 
later in the form of an Extended Arithmetic Ele- 

ment. While the PDP-5 was designed for real 
time and control, the aspirations for it to be 
used generally in a system can be clearly seen in 
an early photograph (Figure 6) .  

THE PDP-8 
While the PDP-5 had been a reasonably suc- 

cessful computer, it soon became evident that a 
new machine capable of far greater perform- 
ance was required. A new series of modules, the 
Flip Chip series, was being developed for the 
PDP-7 and for the new version of the PDP-5. 
The new logic promised a substantial speed im- 
provement, and new core memory technology 
was becoming available that would permit the 
memory cycle time to be shortened from 6 mi- 
croseconds in the PDP-5 to l .6 microseconds in 
the new machine. In addition, the cost of logic 
was now low enough so that the program 
counter could be moved from the memory to a 
separate register, substantially reducing instruc- 
tion execution times. The new machine was 
called the PDP-8 (Figure 7). 
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Figure 7. The PDP-8 

In  a fashion similar to the technical devel- 
opments that marked the 18-bit family, the new 
12-bit machine was physically smaller than its 
predecessor. This time, however, the change 
was more than simply a change from three cabi- 
nets to two or from two cabinets to one. It was a 
change from one cabinet to a half cabinet. The 
new small size meant that the PDP-8 was the 
first true minicomputer. It could be placed on 
top of a lab bench or built into equipment. It 
was this latter property that was the most im- 
portant, as it laid the groundwork for the origi- 
nal equipment manufacturer (OEM) purchase 
of computers to be integrated into total systems 
sold by the OEM. 

The improvements in logic density permitted 
by the new Flip Chip modules also influenced 
packaging and manufacturing methods. The 
PDP-8 logic modules were mounted in con- 
nector blocks, which were in turn mounted in 
frames. The two frames were each the max- 
imum size that could be accommodated in the 
new Gardner-Denver automatic Wire-wrap ma- 
chine. Automatic wire-wrapping was very im- 
portant to the mass production success of the 
PDP-8 because it was both fast and accurate. 
The two wire-wrapped frames hung vertically 
and were hinged about a vertical axis at the rear 
of the computer cabinet. In some ways they re- 
sembled the pages of a book, with the wire- 
wrap pins on the surfaces that faced each other. 
The swinging gate backplane permitted access 
by maintenance personnel to both the con- 
nection pins and the modules. 

Like its predecessor the PDP-5, the PDP-8 
was a single-address 12-bit computer designed 
for task environments with minimum arith- 
metic computing and small primary memory re- 
quirements. Typical of these environments were 
process control applications and laboratory ap- 
plications such as controlling pulse height 
analyzers and spectrum analyzers. 

In addition to the originally envisioned appli- 
cations, the PDP-8 was used for innumerable 
other applications. One of the most interesting 
was message switching. The PDP-8 message 
switching hardware assembled characters by bit 
sampling, checking the status of teleprinter lines 
at 5 times the anticipated bit rate to accurately 
recover data. Another interesting application 
was the TSS/8 small-scale general purpose 
timesharing system developed by Carnegie- 
Mellon University and DEC [van de Goor et 
al., 19691. While only a hundred or so systems 
were sold, TSS/8* was significant because it es- 

*TSS/8 was designed at Carnegie-Mellon University with graduate student Adrian van de Goor, in reaction to  the cost, 
performance, reliability, and complexity of IBM’s TSS/360 (for their Model 67). Although the TSS/360 was not marketed, 
it eventually worked and contributed some ideas and trained thousands for IBM. At Carnegie-Mellon ( C M U ) ,  a TSS/8 
operated until 1974 when the special swapping disk expired. T h e  cost per user or  per j o b  tended to  be about 1/20 of the 
TSS/360 system C M U  ran. 
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tablished the notion that multiprogramming 
applied even to minicomputers. Until recently, 
TSS/8 was the lowest cost (per system and per 
user) and highest performance/cost timesharing 
system. A major side benefit of TSS/8 was the 
training of the implementors, who went on to 
implement the RSTS timesharing system for the 
PDP-I 1 based on the BASIC language. 

The PDP-8 was the first of the “8 Family.” A 
subset, called “Omnibus 8” machines, is in- 
troduced later when the PDP-8/E, PDP-8/M, 
and PDP-8/A machines are discussed. Finally, 
computers which implement the PDP-8 instruc- 
tion set in a single complementary metal oxide 
semiconductor (CMOS) chip will be referred to 
as “CMOS-8” based systems. 

The PDP-8, which was first shipped in April 
1965, and the other %Family machines that fol- 
lowed it achieved a production status formerly 
reserved for IBM computers, with about 50,000 
machines produced, excluding the CMOS-8 
based computers. During the 15 years that these 
machines have been produced, logic cost per 
function has decreased by orders of magnitude, 
permitting the cost of entire systems to be re- 
duced by a factor of 10. Thus, the 8 Family of- 
fers a rare opportunity to study the effect of 
technology on implementations of the same in- 
struction set processor. 

The PDP-8 was followed in late 1966 by the 
PDP-8/S, a cost-reduced version (Figure 8). 
The PDP-8/S was quite small in size, scarcely 
larger than a file cabinet drawer. It achieved its 
low cost by implementing the PDP-8 instruc- 
tion set in serial fashion. This did reduce the 
cost, but it so radically reduced the perform- 
ance that the machine was not a good seller. 

In 1968, the PDP-8/1 (Figure 9) was pro- 
duced, using medium-scale integration (MSI) 
integrated circuits to implement the PDP-8 in- 
struction set with better performance than the 
PDP-8, and at two-thirds the price. For those 
customers wishing a package with less option 
mounting space but the same performance, the 
PDP-8/L (Figure 10) was introduced later the 
same year. Figure 9 The PDP-8/1. 

F,gure 8 The PDP-8/S, 
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PDP-S/L (Figure 10) was introduced later the 
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Figure 8. The POP-8/S. 
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The PDP-8/S, PDP-8/1, and PDP-8/L are 
mentioned only briefly here because their char- 
acteristics were basically dictated by the cost 
and performance improvements made possible 
by the emerging integrated circuit technology. 
The cost and performance figures for these ma- 
chines are examined in greater detail in the 
charts at the end of this chapter. 

THE PDP-8/E, PDP-8/M, AND PDP-8/A 

Shortly after the introduction of the PDP- 
8/L, it became evident that customers wanted a 
faster and more expandable machine. The con- 
tinuing technological trend toward higher den- 
sity logic and some new concepts in packaging 
made it possible to satisfy both of these require- 
ments but to still produce a new machine that 
would be cheaper than its predecessor. The new 
machine was the PDP-8/E (Figure 11). 

A block diagram of a complete PDP-8/E 
computer system is shown in Figure 12. Note 
that the lower half of the drawing shows an 
adapter for interconnecting the positive bus 
family (PDP-8/1 and PDP-8/L) 1 / 0  devices. In 
addition, signal converters were available to  
convert a step further to the older negative bus 
family (PDP-5, PDP-8, and PDP-8/S) 1/0 de- 
vices. I n  this way, the new machine could capi- 
talize on the existing hardware option base. It 

Figure 10. The PDP-8/L Figure 1 1 .  The PDP-8/E. 
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would not be necessary to design a complete 
new set of options at the time the machine was 
introduced, and existing customers could up- 
grade to the new computer without having to 
buy new peripherals. 

The reason for using an adapter to connect to 
existing 1 / 0  devices was that the PDP-8/E fea- 
tured a new unified-bus 1 / 0  Bus implementa- 
tion related to the Unibus that was being 
designed for the PDP- 11. The electrical design 
of the 1/0 Bus for both the previous negative 

logic and positive bus machines had been 
straightforward, but the mechanical packaging 
and cabling had not. A new implementation 
was needed which would simplify the packaging 
and cabling and solve the problems created by 
the Direct Memory Access channel, which had 
not been bused in previous designs. Don White, 
who was leading the design team, conducted a 
contest to name the new bus. After discarding 
such entries as “Blunderbus,” the name “Om- 
nibus” was chosen. 
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The Omnibus, which is still in use in the 
PDP-8/A, has 144 pins, of which 96 are defined 
as Omnibus signals. The remainder are power 
and ground. The large number of signals permit 
a great number of intraprocessor commu- 
nications links as well as 1/0 signals to be ac- 
commodated. The Omnibus ‘signals can be 
grouped as follows: 

1. 
2. 

3. 

4. 

5 .  

6. 

Master timing to all components. 
Processor state information to the con- 
sole. 
Processor request to memory for instruc- 
tions and data. 
Processor to 1 / 0  device commands and 
data transfer. 
1 / 0  device to processor, signaling com- 
pletion (interrupts). 
1 / 0  Direct Memory Access control for 
both direct and Three Cycle Data Break 
transfers. 

The approximately 30 signals in groups 4 and 
5 provide programmed 1 / 0  capability. There 
are about 50 signals in group 6 to provide the 
Direct Memory Access capability. These 80 sig- 
nals are nearly equivalent in quantity and func- 
tion to the preceding PDP-8 1 / 0  Bus design, 
making the conversion from Omnibus structure 
to PDP-8/1 and PDP-8/L 1 / 0  equipment very 
simple. 

The complement of signals is quite different 
from that in the PDP-I 1 Unibus, which is more 
strictly an 1 / 0  bus, and the PDP-8/E processor 
handled many more of the Direct Memory Ac- 
cess and interrupt control functions than does 
the PDP- 1 1 processor. One specific signaling 
structure that differs between the two machines 
is the interrupt system, which in a PDP-I1 
Unibus passes a Bus Grant signal through the 
1/0 options to be propagated further or ab- 
sorbed by the option. There are no such pass- 
through signals on the Omnibus; hence, any op- 
tion can occupy any slot, and intervening slots 
between installed options can be left vacant. A 

by-product (or perhaps goal) of the Omnibus 
structure is that there are a fixed number of 
slots. The lack of cabling between options 
means that the electrical transmission charac- 
teristics are well defined. 

The processor for the PDP-8/E occupied 
three 8 X 10-inch boards; 4 Kwords of core 
memory took up three more boards; a memory 
shield board, a terminator board, a teleprinter 
control board, and the console board com- 
pleted the minimum system configuration. 
Thus, a total of ten 8 X 10-inch boards formed 
a complete system. The three-board PDP-8/E 
processor, occupying 240 in2, was in striking 
contrast to the 100-board PDP-5 processor, 
which occupied 2,100 in2. 

The PDP-8/E implementation was deter- 
mined by the availability of integrated circuits. 
Multiplexers, register files, and basic arithmetic 
logic units performed the basic operations in a 
straightforward fashion using a simple sequen- 
tial controller. Microprogrammed control was 
not feasible because suitable read-only memo- 
ries were not available. The read-only rope 
magnetic memory of the PDP-9 was too expen- 
sive and was unsuitable for PDP-8/E packag- 
ing. Integrated circuit read-only memories 
available at that time were too small, holding 
only about 64 bits. 

There was some problem partitioning the 
processor logic among the three modules. Fig- 
ure 13 shows the final arrangement, which was 
to place timing and interrupt on one module, 
the data path on a second, and the control on 
the third. Even with this partitioning, more pins 
were required between the data and control 
modules than were available through the Om- 
nibus. To provide the necessary connections, 
additional connectors were installed on each 
module on the edge opposite the Omnibus con- 
nection. 

The PDP-8/E was mounted in a chassis 
which had space and power to accommodate 
two blocks of Omnibus slots. Thirty-eight mod- 
ules could be mounted in the slots, allowing 
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space for the processor and almost 30 periph- 
era1 option controllers.  Many customers 
wanted to build the PDP-8/E into small cabi- 
nets and have it control only a few things. They 
found the large chassis and its associated price 
to be more than they wanted. To reach this 
market, the PDP-8/M was designed. 

The PDP-8/M was essentially a PDP-8/E cut 
in half. The cabinet had half the depth of a 
PDP-8/E, and the power supply was half as big. 
There were 18 slots available, enough for the 
basic processor-memory system and about eight 
options. The processor was the same as that for 
a PDP-8/E. 
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By 1975, DEC had been building “hex” size 
printed circuit boards for the PDP-I1/05 and 
PDP-11/40 for at least two years. The hex 
boards were 8 X 15 inches, half again as big as 
the “quad” boards used in the PDP-8/E and 
PDP-8/M, which were 8 X I O  inches. The di- 
mensional difference was along the contact side 
of the board. A hex board had six sets of 36 
contacts while the quad board had only four 
sets. Semiconductor memory chips had also be- 
come available, so a new machine was designed 
to utilize the larger boards and new memories 
to extend the PDP-8/E, PDP-8/M to a new, 
lower price range. The new machine was the 
PDP-8/A. The PDP-8/A processor and register 
transfer diagram is shown in Figure 14 and the 
8/A processor in  Figure 15. 

The hex modules permitted some of the pe- 
ripheral controller options that had occupied 
several boards in the PDP-8/E to fit on a single 
board in the PDP-8/A (Figure 16). The avail- 
ability of hex boards and of larger semi- 
conductor read-only memories permitted the 
PDP-8/A processor to use microprogrammed 
control and fit onto a single board. It should be 
noted here that when a logic system occupies 
more than one board, a lot of space on each 
board is used by etch runs going to the con- 
nectors. This was particularly true of the PDP- 
8/E and PDP-8/M processor boards, due to the 
contacts on two edges of the boards. When an 
option is condensed to a single board, more 
space becomes available than square inch com- 
parisons would at first indicate because many of 
the etch lines to the contacts are no longer re- 
quired. 

The first PDP-8/A semiconductor memory 
took only 48 chips ( 1  Kbit each) to implement 4 
Kwords of memory. Memories of 8 Kwords 
and 16 Kwords were also offered. In 1977, only 
96 16-Kbit chips were needed to form a 128- 
Kword memory. With greater use of semi- 
conductor memory, especially read-only mem- 
ory, a scheme was devised and added to the 

PDP-8/A to permit programs written for read- 
write memory to be run in read-only memory. 
The scheme adds a 13th bit to the read-only 
memory to signify that a particular location is 
actually a location that is both read and written. 
When the processor detects the assertion of the 
13th bit, the processor uses the other 12 bits to 
address a location in some read-write memory 
which holds the variable information. This ef- 
fectively provides an indirect memory reference. 

In 1976, an option to improve the speed of 
floating-point computation was added to the 
PDP-8/A. This option is a single accumulator 
floating-point processor occupying two hex 
boards and compatible with the floating-point 
processor in the PDP-12. It supports 3- or 6- 
word floating-point arithmetic (12-bit exponent 
and 24- or 60-bit fraction) and 2-word double 
precision 24-bit arithmetic. As a completely in- 
dependent processor with its own instruction 
set processor, it has its own program counter 
and eight index registers. The performance, ap- 
proximately equal to that of an IBM 360 Model 
40, provides what is probably the highest per- 
formance/cost ratio of any computer. 

More Omnibus 8 computers (PDP-8/E, 
PDP-8/M, PDP-8/A) have been constructed 
than any of the previous models. The high de- 
mand for this model appears to be due to the 
basic simplicity of the design, together with the 
ability of the user to easily build rather arbi- 
trary system configurations. 

In the fall of 1972, DEC began the design of a 
single chip P-channel metal oxide semi- 
conductor (MOS) processor to execute the 
PDP-8 instruction set. This processor was to be 
called the PDP-8/B, and it was hoped that pro- 
duction chips could be obtained by the spring of 
1974 for systems to be shipped in the fall of 
1974. The designers had progressed through the 
design tradeoffs in partitioning a PDP-8 for a 
single 40-pin chip when the project was stopped 
in the summer of 1973. The key reasons for 
stopping the project included the industry trend 



t 1 
COHTROL 
SIGNALS 

TIME STLTE 
SIG"1LS 

[-I 
I I 

OMNIBUS 

Figure 14. PDP-8/A processor and register transfer diagram 





THE PDP-8 AND OTHER 12-BIT COMPUTERS 189 

4 

Figura 15. POP-WA processor, 

I_- 

Figure- 18. PDP-B/A processor (interior). 



190 BEGINNING OF THE MINICOMPUTER 

from P-channel to N-channel and the fact that 
the Omnibus did not lend itself to cost reduc- 
tions with large-scale integrated circuit tech- 
nology. While the Omnibus was ideal for 
medium-scale integration and ease of inter- 
facing, it was not as cost-effective as the buses 
that microcomputers used, which multiplexed 
address and data on the same leads at different 
times. The percentage of system cost and com- 
plexity represented by the processor in an Om- 
nibus-8 system was too low to make the move 
to large-scale integrated (LSI) processor attrac- 
tive at that time. For these reasons, it was de- 
cided to apply the newer N-channel process to a 
system in which the processor was a more com- 
plex and costly part of the system -the PDP-11 
Family. Thus, in the summer of 1973, a project 
started in cooperation with Western Digital 
Corporation to build a PDP-I 1 on one or more 
N-channel LSI chips. 

I n  1976, Intersil offered the first PDP-8 pro- 
cessor to occupy a single chip, using CMOS 
technology. DEC verified that it was a PDP-8 
and began to apply it to a product in the fall of 
1976. In  the meantime, in addition to Intersil, 
Harris Semiconductor became a second source 
of chip supply for DEC. The two manufacturers 
each have their own designation for these chips, 
but in the discussion below they will be called 
“CMOS-8’’ chips. A microphotograph of the 
chip is shown in Figure 17. 

The CMOS-8 processor block diagram is 
given in Figure 18. Not surprisingly, it looks 
very much like a conventional PDP-8/E proces- 
sor design using medium-scale integrated cir- 
cuits. It has  a common da ta  pa th  for 
manipulating the Program Counter (PC), Mem- 
ory Address (MA), Multiplier-Quotient (MQ), 
Accumulator (AC), and Temporary (Temp) 
registers. The Instruction Register (IR), how- 
ever, does not share the common arithmetic 
logic unit (ALU). Register transfers, including 
those to the “outside world,” are controlled by 
a programmable logic array (PLA), as indicated 

by the dotted lines in the figure. CMOS-8 is an 
example of the use of programmable logic ar- 
rays for instruction decoding and for control 
purposes, as discussed in Chapter 2. 

While the CMOS-8 is the first DEC processor 
to be built on a single chip, the most interesting 
thing about it is the systems configurations that 
i t  makes possible. It is not only small in size (a 
single 40-pin chip), but it also has miniscule 
power requirements due to its CMOS construc- 
tion. Thus, some very compact systems can be 
built using it. The block diagram in Figure 19 
shows a system built with a CMOS-8 and com- 
patible components. In contrast to those of past 
systems, some of the other components in  this 
system now represent more dollar cost and 
more physical space than the processor itself. 
Among these are the random-access read-write 
memory, the read-only memory, and the Paral- 
lel Interface Elements associated with the 1 / 0  
devices. The Parallel Interface Elements enable 
interrupt signals to be sent back to the proces 
sor and decode the In-Out Transfer (IOT) com- 
mands that control data transfers. Also shown 
in Figure 19 are some specific 1 / 0  devices such 
as the Universal Asynchronous Receiver/ 
Transmitter (UART)  chips tha t  d o  se- 
rial/parallel conversions and formatting for 
communication lines. 

An excellent example of the use of a CMOS-8 
as part of a packaged system is the VT78 video 
terminal shown in Figure 20. The goals for this 
terminal were to drastically reduce costs by in- 
cluding the keyboard, cathode ray tube, and 
processor in a single package the size of an or- 
dinary terminal. The CMOS-8 chip and high 
density RAM chips made this possible. To form 
a complete, stand-alone computer system that 
supports five terminals, mass storage was 
added. Because the mass storage was floppy 
disks, it was not in the terminal but in a small 
cabinet. Even without the mass storage, how- 
ever, the VT78 forms an “intelligent terminal.” 
An intelligent terminal is usually defined to in- 
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Figure 17. Microphotograph of the CMOS-8 chip (courtesy of IntmLI Covat ionl .  
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ure 21 is a block diagram of a VT78 system ter- 
minal. 

An intelligent terminal can be used either as 
part of a network or as a stand-alone computer 
system. In the former case, the application is de- 
termined by the network to which the terminal 
is attached, but in the latter case, the terminal 
functions as a desk-top computer running vari- 
ous PDP-8 software. 

TECHNOLOGY, PRICE, AND 

FAMILY 
PERFORMANCE OF THE 12-BIT 

The PDP-8 has been re-implemented 10 times 
with new technology over a period of 15 years. 
The performance characteristics of these imple- 
mentations are given in Figure 22. As discussed 
in Chapter 1, new technology can be utilized in 
the computer industry in three ways: lower cost 
implementations at constant performance and 
functionality, higher performance implementa- 
tions at constant cost, implementation of new 
basic structures. Of these three ways, the PDP-8 
Family has primarily used lower cost imple- 
mentations of constant performance and func- 
tionality. 

The points in Figures 23 and 24 are arranged 
to show the cost trends of three configurations. 
The first configuration is merely a central pro- 
cessor with 4 Kwords of primary memory. The 
second configuration adds a console terminal, 
and the third configuration adds DECtapes or 
floppy disks for file storage. Note that the basic 
system represented in the first configuration has 
declined in price most rapidly: 22 percent per 
year in the early days and 15 percent per year in 
recent years. The price of primary memory, on 
the other hand, has declined at the rate of 19 
percent per year, as seen in Figure 25. 

The price and performance trajectories for 
the PDP-8 family of machines are plotted in 

Figure 2 0  The VT78 video terminal 

clude a computer whose program can be loaded 
(usually via a communication line) to take on a 
variety of characteristics - i.e., it can learn. Fig- 
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Figure 20. The VT78 video terminal. 

clude a computer whose program can be loaded 
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variety of characteristics - Le., it can learn. Fig- 

ure 2 1 is a block diagram 01 a JT78 system ter- 
minal. 

An intelligent terminal can be used either as 
part of a network or as a stand-alone computer 
system. In the former case, the application is de- 
termined by the network to which the terminal 
is attached, but in the latter case, the terminal 
functions as a desk-top computer running vari- 
ous PDP-8 software, 

TECHNOLOGY, PRICE, AND 
PERFORMANCE OF THE 12-BIT 
FAnnlLY 

The PDP-8 has been re-implemented 10 times 
with new technology over a period of 15 years. 
The performance characteristics of these imple- 
mentations are given in Figure 22. As discussed 
in Chapter 1, new technology can be utilized in 
the computer industry in three ways: lower cost 
implementations at constant performance and 
functionality, higher performance implcmenta- 
tions at constant cost, implementation of new 
basic structures. Of these three ways, the PDP-I 
Family has primarily used lower cost imple- 
mentations of constant performance and func- 
tionali ty . 

The points in Figures 23 and 24 are arranged 
to show the cost trends of three configurations. 
The first configuration is merely a central pro- 
cessor with 4 Kwords of primary memory, The 
second configuration adds a console terminal, 
and the third configuration adds DECtapes or 
floppy disks for file storage. Note that the basic 
system represented in the first configuration has 
declined in price most rapidly: 22 percent per 
year in the early days and i 5  percent per year in 
recent years. The price of primary memory, on 
the other hand, has declined at  the rate of 19 
percent per year, as seen in Figure 25.  

The price and performance trajectories for 
the PDP-8 family of machines are plotted in 
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Figure 26, with lines of constant price/ 
performance separated at factors of 2. Note 
that the early implementations had significantly 
lower performance than the original PDP-8. 
Memory performance and instruction execu- 
tion performance were directly related in all of 
these machines except the PDP-5 (which kept 
the Program Counter in primary memory) and 
the PDP-8/S (which was a serial machine). 
Thus, with the design emphasis on lowering the 
cost with each new machine, performance con- 
tinued to lag behind that of the PDP-8 until 
higher speed primary memory was available 
without a cost penalty. Other performance im- 
provements, such as the addition of floating- 
point hardware or the addition of a cache, are 
not treated in this comparative analysis. 
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Figure 22. Performance of DEC's 12-bit computers 
versus time. 

Figure 27 gives the performance/price ratio 
for the PDP-8 Family machines, and it can be 
directly compared with that of other machines 
described in this book. The 18-bit machines im- 
proved at a rate of 52 percent to 69 percent per 
year over a short time, as indicated on the 
graph. Setting aside the PDP-5 design point, the 
improvement for the 12-bit machines was sim- 
ilar during the same period but has since slowed 
to only 22 percent per year. 

Rather than try to fit a single exponential to 
the performance/price data points in Figure 27, 
it might be better to try two independent expo- 
nentials. The reason for this is that the data 
points really mark the transition between two 
generations. The PDP-5 was a mid-second 
(transistor) generation machine, and the PDP-8 
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represents a late second generation machine. 
The PDP-8/1 and PDP-8/L were beginning 
third (integrated circuit) generation designs. 
These four machines represent a relatively rapid 
evolution from 1963 to 1968. After the PDP- 
8/L, the evolution slows somewhat between 
1968 and 1977, as medium-scale integrated cir- 
cuits continued to be the implementation tech- 
nology, and  the cost  of  packaging and 
connecting components continued to be con- 
trolled by the relatively wide bus structure. 

During their evolution, the DEC 12-bit com- 
puters have significantly changed in physical 
structure, as can be seen from the block dia- 
grams in Figure 28. The machines up through 
the PDP-8/L had a relatively centralized struc- 
ture with three buses to interface to memory, 
program-controlled 1 / 0  devices, and Direct 
Memory Access devices. The Omnibus-8 ma- 
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Figure 24. Price of DEC's 12-bit computers versus 
time (linear). 

chines bundled these connections together in a 
simpler physical structure. The CMOS-8 avoids 
the wide bus problem by moving the bus to lines 
on a printed circuit board. The number of inter- 
connection signals on the bus is then reduced by 
roughly a factor of 4 to about 25 signals which 
can be brought into and out of the chip within 
the number of pins available. 

Figures 23 and 24 and Table 2 illustrate the 
price/performance oscillating history of the de- 
sign evolution summarized below: 

While the PDP-5 was designed to keep 
price at a minimum, the PDP-8 had ad- 
ditions to improve the performance 

1 .  
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2. 

3. 

4. 

5.  

6. 

while not increasing price significantly 
over that of a slower speed design. The 
cost per word was modestly higher with 
the PDP-8 than with the PDP-5, but the 
PDP-8 had 6 times the perfomance of a 
PDP-5. Thus, the PDP-8 crosses three 
lines of constant price/performance in 
Figure 26. 
The PDP-8/S was an attempt to  achieve 
a minimum price by using serial logic 
and a minimum price memory design. 
However, the performance of the PDP- 
8/S was slow. 
The market pressures created by PDP- 
8/S performance probably caused the re- 
turn to the PDP-8 design, but in an in- 
tegrated circuit implementation, the 

The PDP-8/1 was relatively expensive, 
so the PDP-8/L was quickly introduced 
to reduce cost and bring the design into 
line with market needs and expectations. 

The PDP-8/E was introduced as a high 
performance machine that would permit 
the building of systems larger than those 
possible with the PDP-8/L. 
The PDP-8/M was a lower cost, smaller 
cabinet version of the PDP-8/E and was 
intended to meet the needs of the OEM 
market. 

PDP-8/1. 

The design goal of machines subsequent to  
the PDP-8/M has been primarily one of price 
reduction. The PDP-8/A was introduced to fur- 
ther reduce cost from the level of the PDP-8/E 
and PDP-8/M, although some large system 
configurations are still built with PDP-8/E ma- 
chines. The CMOS-8 chips represent a sub- 
stantial cost reduction but also a substantial 
performance reduction. The CMOS-8 perform- 
ance is one-third that of a PDP-8/A, so a stand- 
alone system using a CMOS-8 is less cost-effec- 
tive than an PDP-8/A when the central proces- 
sor is used as the only performance criterion. 

x,1/0 OR 
SECONOARY 

MEMORY1 

(a) Negative (PDP-5.8,8/9 and 
positive (8/1, 8/L) logic families. 

ONMlBUS 196 SIGNALS1 

(b) Omnibus family (PDP-8/E. 8/F, 8/M, 8/A). 

CMOS B BUS I 2 5  SIGNALS 

(c) CMOS-8 (61 00) processor-on-a-chip family 

15 KVIORD 
COMPUTER 

ON A 
BOARD 
, U S E S  

(d) VT78 computer-in-a-terminal 

Figure 28. Evolution of PDP-8 Family PMS structures 

The main reason for using large-scale in- 
tegration is the reduced cost and smaller pack- 
age rather than performance. Obviously, the 
next step is increased performance or more 
memory, or both more performance and more 
memory on the same chip. 
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Figure 29 and Table 2 present the power re- 
quirements, weight, and volume of the 12-bit 
machines. In general, the power requirements 
have remained relatively constant. This is both 
because each package must house a fixed num- 
ber of devices and because each device has a rel- 
atively high overhead power cost associated 
with driving the Omnibus. However, the limited 
configuration, lack of an Omnibus, and low 
power requirements of CMOS make the VT78 
an exception to this rule. The weight and vol- 
ume have declined significantly with time as the 
design has moved from two cabinets to  a half 
cabinet, and then from a half cabinet to being 
embedded in a terminal. 

- 
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- 
- 
~ 

- 
- 

- 

SPECIAL DEVICES BASED ON THE 
PDP-8 

The PDP-8/A and the products which in- 
corporate the CMOS-8 chip are the current 12- 
bit product offerings, so the discussion of the 
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development of DEC’s 12-bit computers in 
chronological order must stop here. However, 
during the development of the main line of 12- 
bit computers, some interesting systems based 
on DEC 12-bit processors have been developed, 
both by DEC and by others. Among these are 
the DEC 338 Display Computer, the cache- 
based PDP-8, and the PDP-14 Programmable 
Controller (a I-bit machine similar in its in- 
struction set to the FDP-8 and using Omnibus 
packaging concepts). 

DEC 338 Display Computer 

The 338 display, a variant of the PDP-8, is 
interesting for its historical importance [Bell 
and Newell, 1971: Chapter 251. It was one of the 
earliest display processor-based computers - if 
not possibly the first. The problem of displaying 
data on a cathode ray tube clearly shows how 
the application need drives a complete change 
in hardware in order to interpret the necessary 
data-type (in this case, a graphic picture). 

The 338 display idea was extended and ap- 
plied to the displays used with the PDP-9, PDP- 
15, and the PDP-I 1 series. Although the 338 
had the right general capabilities, it did not 
have the refinements of later display processors 
for the PDP- 15 and PDP- 1 1 (GT40 and GT60). 

An observation that display and other spe- 
cialized processors evolve in a fashion called the 
“wheel of reincarnation” [Myer and Suther- 
land, 19681 is diagrammed in Figure 30. As the 
figure shows, the process starts with a very 
simple basic design - here, to have graphics pic- 
ture output for a computer. The trajectory 
around the wheel follows: 

Position 1 : Point-plotting. The computer 
includes a single instruction display controller 
which can plot a picture on a point-by-point 
basis under command of the central processor. 
For most displays, except storage scopes, the 
processor can barely calculate the next point 
fast enough to keep the display refreshed. 
Hence, the system is processor bound, and the 
display may be idle. The original PDP- 1 display 

is typical of this position, and a display of this 
type is offered on most DEC minicomputers. 

Position 2: Vector-plotting. By adding the 
ability to plot lines (i.e., vectors), a single in- 
struction to the display processor will free some 
of the processor and begin to keep all but the 
fastest display busy. 

Position 3: Character-plotting and al- 
phanumeric plotting. With the realization that 
characters are a major part of what is displayed, 
commands to display a character are added, 
further freeing the processor. Many of the 
point-plotting displays were extended to have 
character generation capability. 

Position 4: General figure and character 
display. In  reality, a picture does not consist of 
just characters and vectors; each element of the 
picture is actually a string of characters and a 
set of closed or open polygons to be displayed 
starting at a particular point. By providing the 
control display with a Direct Memory Access 
channel, the display can fetch each string of text 
and generate polygons without involving the 
central processor. 

Position 5: Display processors. With the 
ability to put up sub-pictures with no processor 
intervention, it is easy for the whole picture to 
be displayed by linking the elements together in 
some fashion. This merely requires “jump” and 
“subroutine” call instructions so that common 
picture elements do not have to be re-defined. 
The 338 and other display processors have 
roughly this capability. 

Position 6: integrated display and central 
processor. Now, all the data paths and states 
are present for a fully general purpose processor 
so that the central processor need never be 
called on again. This requires a slightly more 
general purpose interpreter. By minor per- 
turbations, the processor design can be refined 
in such a way as to execute the same instruction 
set as the original host computer because the 
cost of incompatibility is too great. Two proces- 
sors require two compilers, diagnostics, man- 
uals, and support for use. This state provides 
the same capability as that shown in Position 1. 



202 BEGINNING OF THE MINICOMPUTER 
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WITH DIRECT 

Figure 30. The wheel of reincarnation 

The original processor is completely free, and 
there is a display processor with the capability 
of executing both the original instruction set 
and the display instruction set. 

Position 7: Two computer structures. Al- 
ternatively, the processor can be isolated as a 
separate computer and reconnected in some 
fashion to the central processor-primary mem- 
ory pair in Position 1. Such a structure is just a 
basic computer with the addition of a general 
figure and character display (Position 4). 

Position 8: A separate computer. A sepa- 
rate computer is formed solely for display, and 
the options available for picture processing can 
be decided again from the “wheel of reincarna- 
tion.” 

The Cache-Based PDP-8 

This structure uses a small, fast memory to 
hold the results of recent references to primary 
memory. The structure has been subsequently 
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Table 3. Per formancdCost  Comparison of 8/E and 8/E with Cache 

Configuration Cost Performance Performance/Cost Ratio 
Model Minimum Average Large Factor Minimum Average Large 

PDP-WE $ 5K $10K $35K 1 .o 1 .o 1 .o 1 .o 
PDP-8/E with $10K $1 5K $40K 5.0 2.5 3.3 4.3 
cache 

used in the latest PDP-IO processor (KLIO), in 
the PDP-I 1/60, and in the PDP-I 1/70. 

A PDP-8 with cache was designed and con- 
structed by Professor David Casasent at Car- 
negie-Mellon University [Bell and Casasent, 
1971; Bell et ul., 19741. Initially, the project was 
proposed to explore the desirability and feasi- 
bility of using emitter-coupled logic for design- 
ing fast computers (including PDP-10s). As the 
investigation proceeded, the need for a large, 
fast memory emerged. Such a memory turned 
out to be so costly that a computer so equipped 
could not be feasibly marketed. It turned out 
that the easiest way to build a cost-effective, fast 
minicomputer was to use a cache structure in 
order to reduce the cost of primary memory. 
Also, instead of designing a very fast PDP-8, 
which ECL logic would have provided, the goal 
was modified to be less fast, much less costly, 
and potentially marketable. This caused TTL 
Schottky to be used in the design even though 
the logic family was just beginning to evolve. 

In order to make the prototype more market- 
able without completely redesigning it, the proj- 
ect was constrained to use the PDP-8/E 
Omnibus backplane and parts. The prototype 
did not become operational as quickly and 
cleanly as possible and was therefore not used 
to stimulate a market. Thus, instead of further 
pursuing marketing goals, the design was car- 
ried forward with the goals of testing the cache 
applicability, circuitry, and associated tech- 
niques for building faster computers. The diffi- 
culty in stimulating market interest was typical 
of products that are substantially different from 
those already in existence. 

A number of discoveries emerged from the 
research on the cache-based PDP-8. A 100-na- 
nosecond PDP-8 processor with 5 12-word 
cache and standard PDP-8/E core memory had 
the characteristics shown in Table 3. Note that 
the performance/cost ratio approaches 5 as the 
system price increases. This argues for always 
incorporating incremental performance im- 
provements in the most expensive machines. 

The work on the cache-based PDP-8 illus- 
trates the use of the 8 Family as an experimental 
vehicle for understanding a design in terms of 
program behavior. It also allows one to observe 
the flow of ideas from research through ad- 
vanced development to the production of ma- 
chines. Finally, it shows how, by rather minor 
perturbations, a design can be kept compatible 
with its predecessors while providing rather 
dramatic performance and performance/cost 
ratio improvements, as shown in Table 2. 

The PDP-14 

The PDP-14 was designed expressly as a con- 
troller for complex electromechanical machin- 
ery such as transfer machines, conveyors, and 
simple milling machines. The need for such a 
controller was first recognized when General 
Motors expressed its need to control a large ma- 
chine which handled engine blocks by a se- 
quence of operations (transfers). The design of 
a controller evolved from the use of standard 
DEC K-Series industrial modules (see Chapter 
5) for sequential circuits. These modules pro- 
vided increased reliability and replaced electro- 
mechanical control components such as relays 
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by using solid state sensing and switching. The 
new controller, designated the PDP- 14, repre- 
sented a cost reduction over controllers com- 
posed strictly of industrial modules. It did this 
by using time-multiplexing so that one control 
structure in memory - the processor - could 
serve as the interconnection (and processing) 
structure, as opposed to physically inter- 
connecting the modules together to behave as a 
controller. This tradeoff is a good example of 
how computers are used instead of hardwired 
logic to carry out a task. In  terms of the Levels- 
of-Interpreters View explained in Chapter I ,  an 
algorithm (machine) can be made entirely at the 
lowest level (Figure 31), or alternatively, a 
higher level interpreter can carry out the same 
algorithm. 

The design requirements that the PDP-14 had 
to meet were as follows: 

I .  

2. 

3 .  

4. 

5.  

Be lower priced (with lower life-cycle 
costs) and easier to  operate than existing 
control alternatives. 
Solve the control problem and be pro- 
grammable by users who have solved 
problems using a different representa- 
tion (e.g., relay ladder diagrams). 
Operate in a high electrical noise envi- 
ronment. 
Operate in the physical environment 
characteristic of the machine it con- 
trolled. 
Have the appropriate 1 / 0  interfaces to  
sense contacts and to control power re- 
lays. 

Although a PDP-S/I might have been pro- 
grammed to carry out the task, it was either not 
considered or rejected because the cost was per- 
ceived to be too great, and there was some per- 
ception that a conventional stored program 
computer could not solve the problem. In addi- 
tion, the PDP-S/I circuits did not appear to 
have adequate noise margins to operate in the 
anticipated environment, and there was in- 
adequate 1 / 0  capability. 

115vac 440 vac 

PowEn 
WIRES 

Figure 31 Hardwired machine for industrial control 

As a result, the PDP-14 was proposed and de- 
signed expressly to solve the problem and cost 
less than the PDP-S/I which was just going into 
production. The PDP-14 had no data oper- 
ations except on a single Boolean value using a 
I-bit accumulator called TEST. Even with so 
little arithmetic capability, the machine’s struc- 
ture and processor state were roughly equiva- 
lent to those in a PDP-8 design. Ultimately, the 
processor state was extended beyond that of a 
PDP-8 as the problem changed ( e g ,  when com- 
munication was required with host processors), 
but these extensions will not be discussed here. 

In  order to solve the Boolean equations that a 
conventional relay controller solves in parallel, 
the PDP-14 had to solve equations sequentially 
at a rate of approximately 30 Hz - fast enough 
to give the illusion that the equations were 
being solved in parallel. 

To operate in an environment with high elec- 
trical noise, the circuit logic was slowed down 
to improve noise margins. It was felt that core 
memory did not have adequate noise immunity, 
so a braided wire, read-only rope memory was 
used. To  battle the effects of the poor physical 
environment, the unit was housed in a dust- 
proof enclosure. To sense contacts and control 



THE PDP-8 AND OTHER 12-BIT COMPUTERS 205 

PDP14 = 
Begin 

If Memory Slate ** 

M p >  Prim3ry.Memory[0.4095]<0 I I >. 

’* Procrssor.State **  
PC\,Program C o u n t r r < O l  I >. 
SR‘ Suhrouiinr.Return.Register<0 I I >. 
Te\t\Onr.Bit.Accumulal~r< >. 
I R \ l n ~ t r u c t i o n  Regictcr<O:l I >. 

I original pdp-14. not 14/30 

Op\,Operation Code<0.3> = I R < O  3 > .  
L‘t, f lectivt. .Addres\<4~I I> = IR<4. I  I>. 

**  Input Output State ** 
I Input Contact\[0.255]< >. 
O\Output  Relay*[O 2 5 5 ] <  >. 

** In*truction Cycle * *  
I € -xK In\truct ion.txecution = 

Begin 
DWOdK o p  3 

HKgln 
! Test input for ON 

1 Test input for OFk 
= I F N O I T K ~ ~  And Not  I [Z ]  3 Test = I 

’ Test output for O N  

! Test output lor  O t  F 

‘ Jump i f  Teat ON 

1 Jump i f  Test OFF 

1 Set Output ON 

t Clear Output 

‘Jump 

t Jump to Subroutine 

’ Return from Subroutine. Skip 

‘010I~TXN = l f N o t T e s t A n d I [ L ] 3 T e \ l =  I, 

‘0100 T X t  

‘001 I TYN ’ =  I f  Not Test And O[Z] 3 Test = I, 

’0010‘TYF = I f N o t T c \ t A n d N o t O [ Z ]  3 Test = I, 

’101 I ,JFN := ( I f  Test + PC<4 I I > = Z: Test = 0). 

‘ IOIO‘JFt = ( I f N o t T e ~ t  3 PC<4: l l>  = Z . T e s t = O J .  

‘011I ‘SYN = O [ Z ] =  I .  

’0110 = ( I f L N e q # 3 7 7  3 O l Z ] = O . I f Z t q l # 3 7 7 = > 0 1 0 2 5 S ]  = 0 J ,  

‘IOOWJMP = l f Z  t q l  g224 3 PC = Mp[PCl .  

‘ I W l \ J M S  = I f Z  Eql g245 3 ( S R  = PC next  PC = Z). 

‘ooon = ( I ~ L ~ ~ ~ ~ I ~ ~ ~ P C = S R . I ~ L ~ ~ ~ # I ~ ~ ~ P C = P C +  I ) .  
Otherwise = No.Op( ) 

tnd.  
t h d  

ICycle\,lnterpretation.Cycle = 
Begin 
Repcat l lR  = M p [ P C ] n e x t P C  = P C +  I nexlIExec( ) )  
t.nd 

t.nd 

Figure 32. 
Mario Barbacci) .  

ISP description of the PDP-14 (courtesy of 

power relays, appropriate 1 / 0  interfaces were 
designed. 

The instruction set of the PDP-14, shown in 
Figure 32, was among the smallest, most trivial 
instruction sets that could be found. Techni- 
cally, the PDP-14 was called a computer be- 
cause it could perform computation in the same 
way a Turing machine can - without an arith- 
metic unit. However, it encoded the Boolean 

data operators for which it  was designed more 
efficiently than nearly any other computer, pro- 
vided the equations were simple enough. 

There were four instructions to take values 
from input switches or relay outputs and to 
compute new output values (the right side of a 
Boolean equation). Therefore, the PDP-14 also 
could simulate a sequential machine (state dia- 
gram or flowchart). Two additional instructions 
sensed the value of intermediate results (stored 
in TEST) and were used to eliminate the need to 
completely evaluate an equation each time. To 
direct program flow, there were four more in- 
structions: “jump,” “skip,” “jump to sub- 
routine” (a single level) and “return from 
subroutine.” To handle the “accessories box,” 
there was special 1 / 0  rather than having this 
carried out internally to a program. This 1 / 0  
included up to 16 Boolean variables for timers 
consisting of external one-shot multivibrators, 
and control memory bits. 

A good way to understand the PDP-14’s op- 
eration is to start with the application. Figure 
33 shows a combinational relay logic network 
that evaluates a Boolean expression (in paral- 
lel). When this network is implemented with the 
PDP-14, the inputs and outputs are simply con- 
nected, and the program forms the inter- 
connection which constitutes the solution of the 
equation (Figure 33b). Figure 33c gives the 
Boolean expression for the network in Figure 
33a. To evaluate this equation using a PDP-14 
requires a sequential program (Figure 3 3 4 .  
This program requires between 120 micro- 
seconds and 200 microseconds to compute the 
output value, y8, since each instruction requires 
20 microseconds. The speed of a computerized 
controller compared to that of relay operations 
is phenomenal. Heavy duty industrial control 
relays typically operate at a 30 Hz rate (33 mil- 
liseconds). If the PDP-14 can solve each equa- 
tion with 4 terms i n  approximately 150 
microseconds, the PDP-14 can solve 222 such 
equations in the time necessary to operate the 
relay. The memory requirements to solve the 
222 equations are not large either. This equa- 
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tion required 12 locations; hence, 222 such 
equations require about 2.5 Kwords. 

A number of PDP-14s were built and in- 

6 PB (n.o.1 4 LS 1n.o I 

SOLENOID 8 k--< 
7 PB (n .4  6 Ls I n s  I 4 

(a) Ladder diagram representation of a solenoid 
activated by two push buttons and two  limit switches. 

y 8  = 1x6 A X41 V 1-1 X 7  A -I X51 

stalled for the intended applications over the 
period 1970 to  1972. Programming was carried 
out in languages supported by compilers that 
operated on PDP-8. The languages allowed 
users to: 

1. 

2. 

Write ordinary assembly programs (re- 
sembling PDP-8 programs). 
Express a problem directly as a set of 
Boolean equations. 

are a set of Boolean equations). 

(b) 
diagram. 3. Express ladder diagrams (in effect, these Boolean equation expressing behavior of ladder 

6 P B l n o . l  

4 LS In.0.l 

5 LS 1n.o.l 

SOLENOID B - 
Y8 

(c) 
solenoid output connections to PDP- 14. 

Contact input (using normally open contacts) and 
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50 

INSTRUCTlON ISLE NOTE1 

+ T X F 6  
TXF 4 

J F F  50 

J T F  60 

SYF B 

S I P  
SYN 8 

NOTE 
Assume TEST = OFF mitially 

COMMENT 

TURN TEST ON IF EITHER Y 6  OR X4 IS  OFF 
TEST = 1 7 x 6  V 7 x 4 1  

1x6 A X51 

TEST = x 7  v x5 

1 7 x 7  v 7x51  

TURN SOLENOID OFF I F  
17x6  V 7 x 4 )  A 1x7 V XSI 

TURN SOLENOID OFF IF 
1x6 A X41 V I T X I  A ~ 7 x 5 1  

RETURN TO SCAN CONTACTS AGAIN 

(d) PDP-14 program to simulate solenoid network by 
sequentially (and repeatedly) solving Boolean equation 
(33b). 

Figure 33. 
solving Boolean equations. 

Combinational network representations for 

4. Write a program as a flowchart, i.e., as a 
sequential machine that goes state by 
state and tests and branches on various 
input values to create output state, per- 
mitting both combinational (Boolean 
equations) and sequential circuits to be 
implemented. 
Simulate the behavior of the program 
and system. 

5 .  

As the PDP-14 and contemporary machines 
were used, the demand arose for a second gen- 
eration controller. By 1972, the additional re- 
quirements included lower cost, higher speed, 
an easily changed read-only memory, and the 
ability to load programs via a communications 
line or connected console. In addition, the con- 
trollers were required to connect in a network 
fashion and report back status and results to a 
supervisory computer at the next level of a hier- 
archy. The second generation controller should 
be capable of recording events such as counting 
the number of parts processed. It also needed 
timers which could be used as part of the con- 
trol equations. The new unit should operate 
over an even wider environmental range than 
existing PDP-14 and have a more complete set 
of 1/0 interfaces. 

From these requirements, the PDP- 14/30 
evolved (Figures 34 and 35). The initial read- 
only memory was replaced by an 8-Kword core 
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memory. In  this way, the programs could be 
easily changed rather than having to be re- 
turned to DEC for manufacturing. Because the 
original PDP-14 was so slow compared to the 
capability of the logic from which it was made, 
the instruction time was reduced from 20 micro- 
seconds to 2.5 microseconds to achieve better 
frequency response and to handle a larger num- 
ber of equations. Additionally, because a large 
number of special registers had been added to 
hold numeric values (the shift registers, timers 
and counters), an arithmetic unit was added to 
the PDP-14/30 in an ad hoc fashion. All these 
additions forced the instruction set processor to 
change. The PDP-14/30 extensions could not 
be made in such a way as to have binary com- 
patibility; thus, software changes were also re- 
quired. 

An interesting offshoot of PDP-14 devel- 
opment was the creation of a special terminal 
for a programming, program load and observa- 
tion console. This terminal consisted of a CRT 
and PDP-8 mounted in a portable housing. 
Since the PDP-14/30 could report the status of 
its input and output variables, the terminal also 
had the ability to display the status of ladder 
diagrams (i.e., relay and contact position). A 
typical screen display is shown in Figure 36. 

Figure 36 Typical screen display 

At the time when the PDP-14/30 was pro- 
posed, there were some who felt that it should 
not be built because a standard 8 Family com- 
puter was cheaper to build, and more produc- 
tion volume and lower costs could be obtained 
by not constructing a special unit. In addition, 
the 8 Family machine could be extended to have 
the original PDP-14 instruction set; and the 
PDP-8 instruction set would be available for 
evolving tasks, such as self-diagnosis, more ex- 
tensive counting and timing functions, and 
dealing with non-Boolean data such as time, or 
non-discrete events including angular position. 
The more powerful PDP-8 instruction set 
would also be useful for handling general con- 
trol in both the analog and the digital domains 
communicating with computer networks re- 
quiring protocol control for intelligent and er- 
ror-free communication, and using algorithms 
to encode the control function instead of rela- 
tively large program state methods with no abil- 
ity to perform computation. 

Many of the previous arguments against us- 
ing PDP-8s had now lost their merit. Since the 
PDP-14/30 was proposed to be built using the 
same circuit family as that of the PDP-8s, the 
electrical noise margins arguments no longer 
held. Furthermore, the PDP-8 could be pack- 
aged in a proper cabinet for the physical envi- 
ronment,  and  there could be adequate 
interfaces built. Besides, the proposed PDP- 
14/30 would incorporate a PDP-8 anyway, and 
two computers were obviously more expensive 
than one. In addition, adding the necessary cab- 
inet and interface enhancements to the PDP-8 
would have greatly improved the marketability 
of PDP-8 for all industrial applications. Al- 
though the design group did not buy the argu- 
ments that the PDP-14/30 should become a 
PDP-8 with appropriate extensions and packag- 
ing, some PDP-8 parts were used in the PDP- 
14/30 design. 
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Structural Levels of the PDP-8 
C. GORDON BELL, ALLEN NEWELL, 

and DANIEL P. SlEWlOREK 

The history of the DEC 18-bit and 12-bit 
computers, summarized briefly in the previous 
two chapters, was basically that of a recursive 
process in which new technology was applied 
and re-applied to the same basic designs to ob- 
tain improved price/performance ratios. In the 
late 1960s, the availability of relatively in- 
expensive integrated circuits made logic cost a 
less pressing concern. Computer engineering, 
and architectural issues of elegance, flexibility, 
and expandability, grew more important as the 
importance of architecture to total system 
price/performance became more evident. The 
PDP-11 papers in Part I11 elaborate on these 
issues, but first the hierarchical nature of com- 
puter systems design will be explored by exam- 
ining the PDP-8 from the top down to lay the 
basic groundwork for future architectural dis- 
cussions. The description of the PDP-8 will use 
some of the processor-memory-switch (PMS) 
and instruction set processor (ISP) notations in- 
troduced in Computer Structures [Bell and 
Newell, 19713. These compact and straight- 
forward notations are useful in comparing and 
analyzing computer architectures, and their use 
in the PDP-8 context should be helpful to the 

reader when encountering these notations in 
other papers. 

A map of the PDP-8 design hierarchy, based 
on the Structural Levels View of Chapter 1, is 
given in Figure 1, starting from the PMS struc- 
ture, to the ISP, and down through logic design 
to circuit electronics. These description levels 
are subdivided to provide more organizational 
details such as registers, data operators, and 
functional units a t  the register transfer level. 

The relationship of the various description 
levels constitutes a tree structure, where the or- 
ganizationally complex computer is the top 
node and each descending description level rep- 
resents increasing detail (or smaller component 
size) until the final circuit element level is 
reached. For simplicity, only a few of the many 
possible paths through the structural descrip- 
tion tree are illustrated. For example, the path 
showing mechanical parts is missing. The de- 
scriptive path shown proceeds from the PDP-8 
computer to the processor and from there to the 
arithmetic unit or, more specifically, to the Ac- 
cumulator (AC) register of the arithmetic unit. 
Next, the logic implementing the register trans- 
fer operations and functions for thej th  bit of 

209 
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Figure 1. PDP-8 hierarchy of descriptions. 

the Accumulator is given, followed by the flip- 
flops and gates needed for this particular imple- 
mentation. Finally, on the last segment of the 
path, there are the electronic circuits and com- 
ponents from which flip-flops and gates are 
constructed. 

ABSTRACT REPRESENTATIONS 

Figure 1 also lists some of the methods used 
to represent the physical computer abstractly at 
the different description levels. As mentioned 
previously, only a small part of the PDP-8 de- 
scription tree is represented here. The many 
documents which constitute the complete repre- 
sentation of even this small computer include 
logic diagrams, wiring lists, circuit schematics, 
printed circuit board photo etching masks, pro- 

duction description diagrams, production parts 
lists, testing specifications, programs for testing 
and diagnosing faults, and manuals for modifi- 
cation, production, maintenance, and use. As 
the discussion continues down the abstract de- 
scription tree, the reader will observe that the 
tree conveniently represents the constituent ob- 
jects of each level and their interconnection at 
the next highest level. 

THE PMS LEVEL 

The PDP-8 computer in PMS notation is: 

descendants:‘PDP-8/S, ‘PDP-8/1, ‘PDP-8/L, 

antecedents: ‘PD P-5; 
Mp(core; #0:7; 4096 words: tc:l.5 ps/word); 

C(‘PDP-8; techno1ogy:transistors; 12 b/w; 

‘8/E, ‘8/F, %/M, ‘8/A, ‘CMOS-8; 
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Pc(Mps(2 to 4 words); 
instruction length: 1 12 words; 
address/instruction: 1 ; 
operations on data:( =, +, Not, And, Minus 
(negate), Srr l(/2), Slr 1 (X2),  + I )  
optional operations:( X ,/,normalize); 
data-types:word,integer,Boolean vector; 
operations for data access:4); 

P(disp1ay; '338); 
P(c; 'LINC); 
S('I/O Bus; 1 Pc; 64 K); 
Ms(disk, 'DECtape, magnetic tape); 
T(paper tape, card, analog, cathode-ray tube) 

As an example of PMS structure, the LINC- 
8-338 is shown in Figure 2;  it consists of three 
processors  (designated P): Pc( 'LINC),  
Pc('PDP-8), and P.display('338). The LINC 
processor described in Chapter 7 is a very ca- 
pable processor with more instructions than the 
PDP-8 and is available in the structure to inter- 
pret programs written for the LINC. Because of 
the rather limited instruction set being inter- 
preted, one would hardly expect to find all the 
components present in Figure 2 in an actual 
configuration. 

The switches (S) between the memory and the 
processor allow eight primary memories (Mp) 
to be connected. This switch, in PMS called 
S('memory Bus; 8 Mp; 1 Pc; time-multiplexed; 
1.5 ps/word), is actually a bus with a transfer 
rate of 1.5 microseconds per word. The switch 
makes the eight memory modules logically 
equivalent to a single 32,768-word memory 
module. There are two other connections (a 
switch and a link) to the processor excluding the 
console. They are the S('I/O Bus) and L('Data 
Break; Direct Memory Access) for inter- 
connection with peripheral devices. Associated 
with each device is a switch, and the 1 / 0  Bus 
links all the devices. A simplified PMS diagram 
(Figure 3) shows the structure and the logical- 
physical transformation for the 1/0 Bus, Mem- 
ory Bus, and Direct Memory Access link. Thus, 
the 1 / 0  Bus is: 

The 1/0 Bus is nearly the same for the PDP- 
5 ,  8, 8/S, 8/I, and 8/L. Hence, any controller 
can be used on any of the above computers pro- 
vided there is an appropriate logic level con- 
verter (PDP-5, 8, and 8/S use negative polarity 
logic; the 8/I and 8/L, positive logic). The 1 / 0  
Bus is the link to the controllers for processor- 
controlled data transfers. Each word trans- 
ferred is designated by a processor in-out trans- 
fer (IOT) instruction. Due to the high cost of 
hardware in 1965, the PDP-8 1 / 0  Bus protocol 
was designed to minimize the amount of hard- 
ware to interface a peripheral device. As a re- 
sult, only a minimal number of control signals 
were defined with the largest portion of 1/0 
control performed by software. 

A detailed structure of the processor and 
memory (Figure 4) shows the 1/0 Bus and Data 
Break connections to the registers and control 
in  the notation used in the initial PDP-8 refer- 
ence manual. This diagram is essentially a func- 
tional block diagram. The corresponding logic 
for a controller is given in Figure 3 in terms of 
logic design elements (ANDs and ORs). The 
operation of the 1 / 0  Bus starts when the pro- 
cessor sends a control signal and sets the six 1 / 0  
selection lines (IO.SELECT<O5>) to specify a 
particular controller. Each controller is hard- 
wired to respond to  its unique 6-bit code, The 
local control, K[k], select signal is then used to  
form three local commands when ANDed with 
the three IOT command lines from the proces- 
s o r .  T h e s e  c o m m a n d  l ines  a r e  ca l l ed  
IO.PULSE.l, I0.PULSE.2, and I0.PULSE.4. 
Twelve data bits are transmitted either to or 
from the processor, indirectly under the con- 
troller's control. This is accomplished by using 
the AND/OR gates in the controller for data 
input to the processor, and the AND gate for 
data input to the controller. A single skip input 
is used so that the processor can test a status bit 
in the controller. A controller communicates 
back to the processor via the interrupt request 

S('I/O Bus duplex; time-multiplexed; 1 Pc; 64 K; 
Pc controlled, K requests; tA.5 ps/w) 

line. Any controller wanting attention simply 
ORs its request signal into the interrupt request 
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Figure 2. LINC-8-338 PMS diagram 
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signal. Normally, the controller signal causing 
an interrupt is also connected to the skip input, 
and skip instructions are used in the software 
polling that determines the specific interrupting 
device. 

The Data Break input for Direct Memory 
Access provides a direct access path for a pro- 
cessor or a controller to  memory via the proces- 
sor. The number of access ports to memory can 
be expanded to eight by using the DMOl Data 
Multiplexer, a switch. The DMOl port is r e  
quested from a processor (e.g., LINC or Model 
338 Display Processor) or a controller (e.g., 
magnetic tape). A processor or controller sup- 
plies a memory address, a read or write access 
request, and then accepts or supplies data for 
the accessed word. In  the configuration (Figure 
I) ,  Pc('L1NC) and P('338) are connected to the 
multiplexer and make requests to memory for 
both their instructions and data in the same way 
as the PDP-8 processor. The global control of 
these processor programs is via the processor 
over the 1 /0  Bus. The processor issues start and 
stop commands, initializes their state, and ex- 
amines their final state when a program in the 
other processor halts or requires assistance. 

When a controller is connected to the Data 
Break or to the DMOl Data Multiplexer, i t  only 
accesses memory for data. The most complex 
function these controllers carry out is the trans- 
fer of a complete block of data between the 
memory and a high speed transducer or a sec- 
ondary memory (e.g., DECtape or disk). A spe- 
cial mode, the Three Cycle Data  Break 
(described in Chapter 6), allows a controller to  
request the next word from a block in memory. 

The DECtape was derived from M.I.T.'s Lin- 
coln Laboratory LINCtape unit, as indicated in 
Chapter 7. Data was explicitly addressed by 
blocks (variable but by convention 128 words). 
Thus, information in a block could be replaced 
or rewritten at random. This operation was un- 
like the early standard IBIM format magnetic 
tape in which data could be appended only to 
the end of a file. 

PROGRAMMING LEVEL (ISP) 

The ISP of the PDP-8 processor is probably 
the simplest for a general purpose stored pro- 
gram computer. It operates on 12-bit words, 12- 
bit integers, and 12-bit Boolean vectors. I t  has 
only a few data operators, namely, =, +, minus 
(negative of), Not, And, Slr I(rotate bits left), 
Srr 1 (2 rotate bits right), (optional) X,  /, and 
normalize. However, there are microcoded in- 
structions, which allow compound instructions 
to be formed in a single instruction. 

The ISP of the basic PDP-8 is presented in 
Appendix 1 of this book. The 2I2-word memory 
(declared M[0:4095]<0;11>) is divided into 32 
fixed-length pages of 128 words each (not 
shown in the ISPS description). Address calcu- 
lation is based on references to the first page, 
Page.Zero, or to the current page of the Pro- 
gram Counter (PC\Program.Counter). The ef- 
fective address calculation procedure, called 
eadd in Appendix 1, provides for both direct 
and indirect reference to either the current page 
or the first page. This scheme allows a 7-bit ad- 
dress to specify a local page address. 

A 2I5-word memory is available on the PDP- 
8, but addressing more than 212 words is com- 
paratively inefficient. In the extended range, 
two 3-bit registers, the Program Field and Data 
Field registers, select which of the eight 2'2- 
word blocks are being actively addressed as 
program and data. These are not given in the 
ISPS description. 

There is an array of eight 12-bit registers, 
called the A u t o h d e x  registers, which resides in  
Page.Zero. This array (Auto.Index[O:7]<0 
:l l>:=M[#lO: #17]<O:ll>) possesses a useful 
property: whenever an indirect reference is 
made to it, a 1 is first added to its contents. 
(That is, there is a side effect to referencing.) 
Thus, address integers in the register can select 
the next member of a vector or string for access- 
ing. 

The processor state is minimal, consisting of 
a 12-bit accumulator (AC\Accumulator 
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<0: 1 1 >), an accumulator extension bit called 
the Link (L\Link), the 12-bit Program Counter, 
t h e  R U N  f l ip - f lop ,  a n d  t h e  I N T E R -  
RUPT.ENABLE bit. The external processor 
state is composed of console switches and an 
interrupt request. 

The instruction format can also be presented 
as a decoding diagram or tree (Figure 5) .  Here, 
each block represents an encoding of bits in the 
instruction word. A decoding diagram allows 
one more descriptive dimension than the con- 

PRINCIPAL 
ADDRESSABLE 
INSTRUCTIONS 

ventional, linear ISPS description, revealing the  
assignment of bits to  the instruction. Figure 5 
still requires ISPS descriptions for the memory, 
the processor state, the effective address calcu- 
lation, the instruction interpreter, and the exe- 
cution for each instruction. Diagrams such as 
Figure 5 are useful in the ISP design to  deter- 
mine which instruction operation codes are t o  
be assigned to names and operations, and which 
instructions are free to be assigned (or en- 
coded). 

OPERATE GROUPS M I C R O C O D E D  INSTRUCTIONS 
, < I >  = group 1 And I < 15 And lime 1 1 2.3 I I 

group 2 And ! < I >  And llms 11.2 3.1 
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There are eight basic instructions encoded by 
3 opcode bits of the instruction, that is: 
op<O:2> := i<0:2>. Each of the first memory 
reference six instructions, where the opcode is 
less than or equal to  5, has four addressing 
modes (direct Page.Zero, direct Current.Page, 
indirect Page.Zero, and indirect Current.Page). 
The first six instructions in the following four 
categories are: 

1. Data transmission. 
“deposit and clear Accumulator” (dca). 
(Note that the add instruction, tad, is 
used for both data transmission and 
arithmetic.) 

2. Binary arithmetic. 
“two’s complement add to the Accu- 
mulator” (tad). 

3. Binary Boolean. 
“and to the Accumulator” (and). 

4. Program control. 
“jump/set Program Counter” (imp); 
“jump to subroutine” (ims); “index 
memory and skip if results are zero” 
(isz). 

The subroutine calling instruction, jms, pro- 
vides a method for transferring a link to the be- 
ginning (or head) of the subroutine. In this way 
arguments can be accessed indirectly, and a re- 
turn is executed by a “jump indirect” instruc- 
tion to  the location storing the returned 
address. This straightforward subroutine call 
mechanism, although inexpensive to irnple- 
ment. requires reentrant and recursive sub- 
routine calls to be interpreted by software 
rather than by hardware. A stack for subroutine 
linkage, as in the PDP-11, would allow the use 
of read-only memory program segments con- 
sisting of pure code. This scheme was adopted 
in the CMOS-8. 

The “in-out transfer” instruction, opcode 6, 
IOT (op Eqv #6), uses the remaining nine bits of 
the instruction to specify instructions to in- 

put/output devices. The six 1O.SELECT bits 
select 1 of 64 devices. Three conditional pulse 
commands to the selected device, IO.PULSE.1, 
I0.PULSE.2, and I0.PULSE.4, are controlled 
by the IOT, io.control<0:2> operation code 
bits. The instructions to a typical 1/0 device 
are: 

1 .  

2. 

3.  

Testing a Boolean Condition of an IO De- 
vice. 
I f  IO.PULSE.1 3 
( I f  IO.SKIP.FLAG[IO.SELECT] 3 
PC = PC -E I )  

Output data to a device from Accumulator. 
I f  I0.PULSE.4 3 
(OUTPUT.REGlSTER[IO.SELECT] = 
AC) 

Input data from a device to Accumulator. 
If I0.PULSE.2 3 
(AC = INPUT.REGISTER[IO.SELECT]) 

There are three microcoded instruction 
groups selected by (op<O:2> Eqv #7), called 
the operate instructions. The instruction decod- 
ing diagram (Figure 5) and the ISP description 
show the microinstructions which can be com- 
bined in a single instruction. These instructions 
are: operate group I ((op<O:2> Eqv #7) And 
Not ib) for operating on the processor state; op- 
erate group 2 ((op<O:2> Eqv #7) And ib<3> 
And i <  1 1 >) for testing the processor state; and 
the Extended Arithmetic Element group 
(op<0:2> Eqv #7 And i<3> And i < l l > )  for 
multiply, divide, etc. Within each instruction 
the remaining bits, <4:10> or <4:1 I > ,  are ex- 
tended instruction (or opcode) bits; that is, the 
bits are microcoded to select additional instruc- 
tions. I n  this way, an instruction is actually pro- 
grammed (or microcoded, as it was originally 
named before “microprogramming” was used 
extensively). For example, the instruction, “set 
link to I , ”  is formed by coding the two micro- 
instructions, “clear l ink” followed by “corn- 
plement link.” 
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If ((op <0:2> Eqv #7) And (group Eqv 0)) 3 ( 
If i < 5 >  3 L = 0; Next 
If i<7> 3 L = Not L ) 

Thus, in operate group 1, the instructions 
“clear link, complement link, and set link” are 
formed by coding i<5,7> = 10,01, and 11 ,  re- 
spectively. The operate group 2 instructions are 
used for testing the condition of the processor 
state. These instructions use bits 5, 6, and 8 to 
code tests for the Accumulator. The AC skip 
conditions are coded as never, always, AC Eql 
0, AC Neg 0, AC Lss 0, AC Leq 0, AC Geq 0 
and AC Gtr 0. The optional Extended Arith- 
metic Element (EAE) includes additional Mul- 
tiplier Quotient (MQ) and Shift Counter (SC) 
registers and provides the hardwired operations 
“multiply,” “divide,” “logical shift left,” 
“arithmetic shift,” and “normalize.” If all the 
nonredundant and useful variations in the two 
operate groups were available as separate in- 
structions in the manner of the first seven (dca, 
tad, etc.), there would be approximately 7 + 12 
(group 1) + 10 (group 2) + 6 (eae) = 35 instruc- 
tions in the PDP-8. 

THE INTERRUPT SCHEME 

External conditions in the input/output de- 
vices can request that the processor be inter- 
rupted. Interrupts are allowed if the processor’s 
interrupt enable flip-flop is set (If INTER- 
RUPT.ENABLE Eqv I). A request to  interrupt 
(i.e., INTERRUPT.REQUEST= 1) clears the 
interrupt enable bit (1NTERRUPT.ENABLE 
= 0), and the processor behaves as though a 
“jump to subroutine” 0 instruction (jms 0) had 
been executed. A special IOT instruction 
(i<O:ll> Eql #6001) followed by a “jump to 
subroutine indirect” to 0, and instruction 
(i<O:ll> Eql #5220) returns the processor to 
t h e  i n t e r r u p t a b l e  s t a t e  w i th  I N T E R -  
RUPT.ENABLE a 1.  The program time to save 
the processor state is six memory accesses (9 mi- 

croseconds), and the time to  restore the state is 
nine memory accesses (13.5 microseconds). 

Only one interrupt level is provided in the 
hardware. I f  multiple priority levels are desired, 
programmed polling is required. Most 1 / 0  de- 
vices have to interrupt because they do not have 
a program-controlled device interrupt-enable 
switch. For multiple devices, approximately 
three cycles (4.5 microseconds) are required to 
poll each interrupter. 

REGISTER TRANSFER LEVEL 

More detail is required than is provided by 
either the PMS or ISP levels to describe the in- 
ternal structure and behavior of the processor 
and memory. Figure 4 shows the registers and 
controllers at a block diagram level, and Figure 
6 gives a more detailed version using PMS nota- 
tion. Table l gives the permissible register 
transfer operations that the processor’s sequen- 
tial control circuit can give to the PDP-8 regis- 
ters. 

Although electrical pulse voltages and pola- 
rities are not shown in Table 1, the operations 
are presented in considerably more detail than 
shown in Figure 4. As Figure 6 shows, the regis- 
ters in the processor cannot be uniquely as- 
signed to a single function. In  a minimal 
machine such as the PDP-8, functional separa- 
tion is not economical. Thus, there are not com- 
pletely distinct registers and transfer paths for 
memory, arithmetic, program, and instruction 
flow. (This sharing complicates understanding 
of the machine.) However, Figure 6 clarifies the 
structure considerably by defining all the regis- 
ters in the processor (including temporaries and 
controls). For example, the Memory Buffer 
(MB\Memory.Buffer<O: 11>) is used to hold 
the word being read from or written to memory. 
The Memory Buffer also holds one of the oper- 
ands for binary operations (for example, AC = 
AC And MB). The Memory Buffer is also used 
as an extension of the 1nstruction.Register dur- 
ing the instruction interpretation. The addi- 
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Figure 6. PDP-8 register transfer level PMS diagram. 

tional physical registers, not part of the ISP, 
are: 

MB\Memory.Buffer<O: 1 1 > 

MA\Memory.Address<O: 1 1  > 

IR\Instruction.Register<0:2> 

Holds memory data, instruction, and operands. 

Holds address of word in  memory being accessed. 

Holds the value of current instruction being per- 
formed. 

A ternary state register holding the major state of 
memory cycle being performed - declared as 2 
bits. 

Memory cycle to fetch instruction. 

Memory cycle to get address of operand. 

Memory cycle to fetch (store) operand and exe- 
cute the instruction. 

State.Register<O: 1 > 

F\Fetch: = ( I f  State.Register Eqv 0) 

D\Deferred: =(I f  State.Register Eqv 1 )  

E\Execute:=(If State.Register Eqv 2) 

The emphasis in Figure 6 is on the static defi- 
nition (or declaration) of the information paths, 
the operations, and state. The ISP inter- 
pretation (Appendix I )  is the specification for 
the machine's behavior as seen by a program. 

As the temporary hardware registers are 
added, a more detailed ISPS definition must be 
given in terms of time and in terms of tempo- 
rary and control registers. Instead, a state dia- 
gram (Figure 7) is given to define the actual 
processor which is constrained by both the ISP 
registers, the temporary registers implied by the 
implementation, and time. The relationship 
among the state diagram, the ISP description, 
and the logic is shown in the hierarchy of Figure 
1.  In the relationships shown in the figures, one 
can observe that the ISPS definition does not 
have all the necessary detail for fully defining a 
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Table 1. 
Data Break Interface 

PDP-8 Register Transfer Control Signals and 

AC\Accumulator, L\Link and combined L, AC LAC 
AC = 0; AC = #7777; AC = Not AC; LAC = LAC -I- 1 
L = 0; L = 1; L = Not L; 
LAC = LAC Srr 1; LAC = LAC Srr 2; !rotates right 
LAC = LAC Slr 1; LAC = LAC Slr 2; !rotates left 
AC = AC Or SWITCHES; AC = AC And MB; AC = I0.BUS 
AC = AC Xor MB; LAC = Carry (AC.MB); 
(note that previous two commands form: LAC = AC + ME). 

MB\Memory. Buffer 
MB = 0; MB = MB 4- 1; 
MB = PC; MB = AC; MB = MIMA];  MB = DB.DATA. 

MA\Memory.Address 
MA<O:4> = 0; MA = PC; M A  = MB; MA<5:11> = MA<5:11>; 
MA = DB.ADDRESS. 

PC\Program.Counter 
p c  = 0; PC = PC + 1; PC<0:4> = 0; 
PC = MB; P C < 5 : l l >  = MB<5:11>. 

I R\lnstruction. Register 
IR = 0; IR = M[MAl<O:2> 

M\Memory[O:4095]<0:11> 
MIMA] = MB !write 
MB = MIMA] !read 

DB\DATA.BREA K interface 
DB.DATA<O:l 1 > 
DB.ADDRESS<O:l 1 > 
MB<O: 1 1 > 
DB. REQU EST 
DB.DIRECTION 
DB.CYCLE.SELECT<O: 11 > 
ADDRESS.ACCEPTED 
WORD.COUNT.OK 
B REAK.STATE 

! input to  MB 
! Input to  MA 

! Control inputs t o  Pc 

! Control outputs from Pc 

physical processor. The physical processor is 
constrained by actual hardware logic and lower 
level detals even at the circuit level. For ex- 
ample, a core memory is read by a destructive 
process and requires a temporary register (MB) 
to hold the value being rewritten. This is not 
represented within a single ISPS language state- 
ment because ISPS defines only the non- 
destructive transfer; however, i t  can be 

considered as the two parallel operations MB = 
M[MA]; M[MA] = 0. The explanation of the 
physical machine, including the rewriting of 
core using ISPS, is somewhat more tedious than 
the highest level description shown in Appendix 
1. For this reason, the state diagram is used 
(Figure 7), and the description of the physical 
machine (in ISPS) is left as an exercise for the 
reader. 
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I 

"FETCH" INSTRUCTION MEMORY CYCLE 

7 f  

If 101 3 If N o t  lopr Or 1011 3 

PC = PC t 1 N e x l  
I f M B < l l >  3 

I f M B < 1 0 >  3 

I f M B < S >  

End Nex t  

P c  = PC t 1 Nex t  BB9l" 

10 PULSE 1 = 1 Nex t  

10 PULSE 2 = 1 Nex t  

10 PULSE 4 = 1 

If opr 3 1 
If N o t  M 0 < 3 >  3 
Beg!" 
PC = PC +l 
If M B < 4 >  3 AC = 0 
I f M B < 5 >  L = O N e x t  

If M B < 3 >  A n d  N o t  MB<11>  3 

If r k w  c o n d i t i o m  Xor MB<B> 3 
Beg," 

PC = PC +2. 

PC = P c  + 1 Nex t  
I f  skip condl t lons Eqv MB<B> + 

If M B < 6 >  3 AC = N O 1  AC. I f M B < 4 >  3 AC = 0 
If M B < l >  3 L = N o t  L U End Next  End  Nex t  

M IMAI  = M B  Nex t  
MF = PC N e x t  6 WaitltZl N e x t  

A 
I f  N o t  M B < 3 >  3 
BBW" 
I f M B < 1 1 >  3 

L@AC = L@AC + 1 N e i l  
If MB <B> A n d  N o t  MB<10>  3 

LiaAC = L6AC Srr 1 
I f  MB'?B> And-MB<lO> 3 

L@AC = L@AC Srr 2 
I f  M B < 9 >  A n d  N o t  MB<10> 3 

L@AC = L@AC Slr 1 
I f  MB<S> A n d  MB<tO> 3 

LEAC = LiaAC Slr 2 
End N k t  . 

I R  = 0 
MB = 0 
State = 0 Next 

If M e a >  A n d  N o t  MB<11>  3 
I f M B < 9 >  3 

AC = AC Or SWITCHES, 
If MB<10>  RUN = 0 Next 

Figure 7. PDP-8 Pc state diagram (part 1 of 2) 

0 
I 
\ 

The state diagram (Figure 7) is fundamen- 
tally driven by minor clock cycles as seen from 
both the state diagram and the times when the 
four clock signals are generated. Thus, there are 
3 (State.Register Eqv #0,#1,#2) X 4 (clock) or 
12 major states in the implementation. The In- 
struction Register is used to obtain two more 
states, F2b and F3b, for the description. The 
State.Register values 0, 1, and 2 correspond to 

) WBltltZI Next 

b 
I 

If I N o t  M B < 3 > l A n d  

PC = MA,  
imp 3 

IR  = 0 
M B  = 0 
Sla te  = 0 Nex t  

I 

I f M B < 3 >  3 

we = 0 
state = 1 N e x l  

= o  Nex t  

If [No t  M B < 3 > I A n d  
INor imp l  3 

MB = 0 
State = 2 Nex t  

I 

fetching, deferred or indirect addressing (i.e., 
fetching an operand address), and executing. 
The state diagram does not describe the Ex- 
tended Arithmetic Element operation, the inter- 
rupt state, or the data break states (which add 
12 more states). The initialization procedure, 
including the console state diagram, is also not 
given. One should observe that, at the begin- 
ning of the memory cycle, a new State.Register 
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If  Imp 3 I f  Not imp 3 
PC = M e  N e r t  

IR = 0 
MB = 0 M B  = 0 
State = 0 Ne11 State = 2 Next  

"DEFER" ( INDIRECT)  
ADDRESS M E M O R Y  CYCLE "EXECUTION" M E M O R Y  CYCLE 

Waitltrndl Next 
M I M A I  = M B  Next 
If Not p r  3 M A  = PC 
If ]mr => M A  = M A  + 1 Next 

If and 3 I f  tad 3 If 151 3 If dca * l f j r n s  3 
AC = AC And MB Next PC = M A .  AC = csrryIAC,MBI Next AC = 0. 

* I 
I R  = 0 
MB = 0 
State = 0 N N m t  

( FO 1 
\ J  

Figure 7. PDP-8 Pc state diagram (part 2 of 2) 

value is selected. The State.Register value is al- 
ways held for the remainder of the cycle; Le., 
only the sequences FO, F1, F2, F3, or DO, D1, 
D2, D3, or EO, E l ,  E2, E3 are permitted. 

LOGIC DESIGN LEVEL (REGISTERS AND 
DATA 0 PER AT IONS) 

Proceeding from the register transfer and ISP 
descriptions, the next level of detail is the logic 
module. Typical of the level is the 1-bit logic 
module for an accumulator bit, AC<j>, illus- 
trated in Figure 8.  The horizontal data inputs in 
the figure are to the logic module from AC<j>, 
MB<j>, AC<j> input from the IO.Bus.In, 
and SWITCHES<j>. The control signal inputs 

whose names are identified using the vertical 
bar (e.g., I AC = 0 I ) command the register op- 
erations (i.e., the transfers). They are labeled by 
their respective ISP operations (for example, 
AC = AC And MB, AC = AC Slr 1, for rotate 
once left). The sequential state machine, for the 
processor Pc( K), generates these control signal 
inputs using a combinational circuit such as the 
one shown in Figure 9. 

LOGIC DESIGN LEVEL (PC CONTROL, 
PC(K) SEQUENTIAL STATE MACHINE 
N ETW OR K) 

The output signals from the processor se- 
quential machine (Figure 9) can be generated in 
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BUS TO EACH BIT OF AC 

A 

- 
And 

d 

NOTE 

AC = AC + 

Figure 8 

1 A c t  

IAC = A 

I 

13 farmed by AC<11> carry input 

PDP-8 AC<j> bit logic diagram, 

c 

in<o> 

I R < l >  

I R < 2 >  

IState register Eqv 01 

M 0 < 4 >  

Not M 0 < 6 >  

Logic diagram tor1 A C  

J 

= 01 

IAC = 01 = 111 And I 
IIR Eqv '1111 And IStateregister Eqv 01 And I 

(Not M 0 < 3 >  And M B < 4 >  And Not MB<B>I 01 
IMB<3>  And M B < 4 >  And M B < l l > l O r  

I M 0 < 3 >  And M B < 4  And M B > l l  < ) I  Or 
IlR Eqv '0111 And IStatersgistsr Eqv 2111 

Figure 9. PDP-8 Pc(K) AC = 0 signal logic equation and diagram. 
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a straightforward fashion by formulating the 
Boolean expressions directly from the state dia- 
gram in Figure 7. For example, the AC = 0 con- 
trol signal is expressed algebraically and with a 
combinational network in Figure 9. Obviously, 
these Boolean output control signals are func- 
t i o n s  w h i c h  i n c l u d e  t h e  c l o c k ,  t h e  
State.Register, and the states of the arithmetic 
registers (for example, AC = 0, L = 0, etc.). The 
expressions should be factored and minimized 
so as to reduce the hardware cost of the control 
for the interpreter. Although the sequential 

controller for the processor is mentioned here 
only briefly, it constitutes about half the logic 
within the processor. 

CIRCUIT LEVEL 

The final level of description is the circuits 
that form the logic functions of storage (flip- 
flops) and gating (NAND gates). Figures 10 
and 11 illustrate some of these logic devices in 
detail. In Figure 10 a direct set/direct clear flip- 
flop (a sequential logic element) is described in 

SET 
DIRECT 
CLEAR 

DIRECT 
SET CLEAR 
FLIP FLOP 

OUTPUT 'IRECT 
DIRECT SET OUTPUT 

SET 

(a) Flip-flop circuit (b) Combinational logic (c) Direct set-clear 
equivalent of flip-flop 
flip-flop. sequential logic 

element. 

Table of Circuit Input-Output Table of Flip-Flop Input-Output 

Inputs 
Inputs Outputs (At t+)  Outputs (at t+) 

Outputs (At  t) Direct Direct (See Note) Outputs (At t) Direct Direct (See Note) 
1 0 Set Clear 1 0 1 0 Set Clear 1 0 

0 -3 -3 -3 0 -3 1 0 0 0 1 0 
-3 0 -3 -3 -3 0 0 1 0 0 0 1 
-3 0 -3 0 -3 0 0 1 0 1 0 1 
0 -3 -3 0 -3 0 1 0 0 1 0 1 

-3  0 0 -3 0 -3 0 1 1 0 1 0 
0 -3 0 -3 0 -3 1 0 1 0 1 0 

Note this IS not an "ideal" sequential circuit element because there IS no delay in the output 

Figure 10. PDP-8 direct-coupled flip-flop and logic diagram 
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-16 volts 
-3 "Olt. , I  

OUTPUl  
-15 "OltS 

[-a NODE 

INPUT INPUT 

(a) Multiple input inverter circuit. (b) NAND logic element. (c) NOR logic element. 

Table of Circuit 
Behavior 

Table of NAND 
Behavior 

Input 

1 2 3 Output 

Input 

1 2 3 output 
~ 

0 0 0 
0 0 -3 
0 -3 0 
0 -3 -3 

-3 0 0 
-3 0 -3 
-3 -3 0 
-3 -3 -3 

-3 
-3 
-3 
-3 
-3 
-3 
-3 
0 

0 0 
0 0 
0 1 
0 1 
1 0 
1 0 
1 1 
1 1 

Table of NOR 
Behavior 

Input 

1 2 3 output 

1 1 1 
1 1 0 
1 0 1 
1 0 0 
0 1 1 
0 1 0 
0 0 1 
0 0 0 

Figure 1 1 .  PDP-8 combinational circuit and logic diagram 
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terms of circuit implementation, combinational 
logic equivalent, a state table, and its algebraic 
behavior. Note that this is not a conventional 
textbook circuit because it has no output delay 
and responds directly and immediately to an in- 
put. Some conventional sequential logic ele- 
ments are used in the PDP-8, including RS 
(Reset-Set), T(Trigger), D(Delay), and J K .  A 
delay in the flip-flops makes them behave in the 
same way as the “textbook” primitives in se- 
quential circuit theory. The outputs require a 
series delay, At, such that, i f  the inputs change 
at time, t, the outputs will not change until t + 
At. In actuality, the PDP-8 uses capacitor-diode 
gates at the flip-flop inputs so that input 
changes will not be noticed until after the clock 
passes. This achieves the same effect. 

Figure 1 1  illustrates the combinational logic 
elements used in the PDP-8. The circuit selec- 
tion is limited to the inverter circuit with single 
or multiple inputs. These are more familiarly 
called NAND gates or NOR gates, depending 
on whether one uses positive and/or negative 
logic level definitions (described in Chapter 4). 

The core memory structure is given in Figure 
6. A more detailed block diagram showing the 
core stack with its twelve 64 X 64 I-bit core 
planes is needed. Such a diagram, though still a 
functional block diagram, takes on some of the 
aspects of a circuit diagram because a core 
memory is largely circuit level details. The 
memory (Figure 12) consists of the component 
units: the two address decoders (which select 1 
each of 64 outputs in the X and Y axis direc- 
tions of the coincident current memory); selec- 
tion switches (which transform a coincident 
logic address into a high current path to switch 
the magnetic cores); the 12 inhibit drivers 
(which switch a high current or no current into 
a plane when either a 1 or 0 is rewritten): 12 
sense amplifiers (which take the induced low 
sense voltage from a selected core from a plane 
being switched or not switched and transform it 
into a 1 or 0); and the core stack, an array 
M [#0:#7777] <0: 1 1 >. Figure 12 also includes 

the associated circuit level hardware needed in 
the core memory operation (e.g., power sup- 
plies, timing, and logic signal level conversion 
amplifiers). 

The timing signals are generated within the 
control portion of the processor and are shown 
together with processor clock in Figure 13. The 
process of reading a word from memory is: 

1 .  

2. 

3 .  

4. 

5 .  

6. 

A 12-bit selection address is established 
on the MA<O: 1 1 > address lines, which 
is 1 of #IO000 (or 4096) unique numbers. 
The upper 6 bits <0:5> select 1 of 64 
groups of Y addresses, and the lower 6 
bits <6: 1 1  > select 1 of 64 groups of X 
addresses. 
The read logic signal is made a 1 a t  time 
t2. 
A high current path flows via the X and 
Y selection switches. In each of the X 
and Y directions, 64 X 12 cores have se- 
lection current (Ix and Iy). Only one core 
in each plane is selected since Ix = Iy = 
Iswitching/2, and the current at the se- 
lected intersection = Ix + Iy = Iswitch- 
ing. 
I f  a core is switched to 0 (by having 
Iswitching amperes through it), then a 1 
is present and is read at the output of the 
plane bit sense amplifiers. A sense ampli- 
fier receives an input from a winding 
that threads every core of every bit 
within a core plane [#0:#7777]. All 12 
cores of the selected word are reset to 0. 
The time at which the sense amplifier is 
observed is tms (the memory strobe), 
which also causes the transfer MB = 
M[MA]. 
The read current is turned off by timing 
in  the memory module. 
The inhibit and write (slightly delayed) 
logic signals are turned on at  time t l .  
The bit inhibit signal is present or not, 
depending on whether a 0 or I ,  respec- 
tively, is written into a bit. 
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Figure 13. PDP-8 clock and memory timing diagram. 
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7. A high current path flows via the X and 
Y selection switches, but in an opposite 
direction to  the read case (see item 2 ) .  If 
a 1 is written, no inhibit current is pre- 
sent and the net current in the selected 
core is -1switching. If a 0 is written, the 
current is -1switching +(Iswitching/2) 
and the core remains reset. 
The inhibit and write logic signals are 
turned off at time tmd specified by tim- 
ing in the memory module, and the 
memory cycle is completed. 

8 .  

Device Level 

For a discussion of the behavior of the tran- 
sistor as it is used in these switching circuit 
primitives, the reader should consult semi- 
conductor electronics and physics textbooks. It 
is hoped that the reader has gained a sense of 
how to think about the hierarchical decomposi- 
tion of computers into particular levels of anal- 
ysis (and synthesis) and that the hierarchical 
approach will be of aid in the reading of Part 
111. 

Opposite: 

Top, left to right: 

VAx-11/780. 
PDT-1 1 programmable data terminal 

Bottom, left to right: 
Model 20 central processor, 
PDP-1 1 packaging showing cabinet level integration. 
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The PDP-11 Family 

The PDP-11 has evolved quite differently from the other computers discussed 
in this book and, as a result, provides an independent and interesting story. Like 
the other computers, the factors that have created the various PDP-11 machines 
have been market and technology based, but they have generated a large number 
of implementations (ten) over a relatively short (eight-year) lifetime. Because 
there are multiple implementations spanning a performance range at the same 
time, the PDP-11 provides problems and insight which did not occur in the evolu- 
tions of the traditional mini (PDP-8 Family), the optimal price/performance ma- 
chines (18-bit), and the high performance timesharing machines (the DECsystem 
IO). The PDP-11 designs cover a range of 500: 1 in system price ($500 to $250,000) 
and 500:l in memory size (4 Kwords to  2 Mwords). 

Rather than attempt to  summarize the goals of designers, sentiments of users, 
or the thoughts of researchers, the discussion of the PDP-11 is divided into chap- 
ters which, in most cases, consist of papers written contemporaneously with vari- 
ous important PDP-11 developments. The chapters are arranged in five 
categories: introduction to  the PDP-11, conceptual basis for PDP-11 models, im- 
plementations of the PDP-I 1, evaluation of the PDP-I 1, and the virtual address 
extension of the PDP-I 1. 

INTRODUCTION TO THE PDP-11 

Chapter 9, first published when the PDP-11 was announced, introduces the 
PDP-11 architecture, gives its goals, and predicts how it might evolve. The con- 
cept of a family of machines is quite strong, but the actual development of that 
family has differed a good deal from the projections in this chapter. The major 
reasons (discussed in Chapter 16) for the disparity between the predicted and 
actual evolution are: 

1. The notion of designing with improved technology, especially for a family 
of machines, was not understood in 1970. This understanding came later 
and was presented in a paper in 1972 [Bell et af., 1972bl. 
The Unibus proved unacceptable for intercommunications at the very high 
and low-end designs. Although Chapter 9 suggests a multiprocessor and 
multiple Unibuses for high-end designs, such a structure did not evolve as 
a standard. 
The address space for both physical and virtual memory was too small. 

2. 

3 .  

231 
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4. Several data-type extensions were not predicted. Although floating-point 
arithmetic was envisioned, the character string and decimal operations 
were not envisioned, or at  least were not described. These data-types 
evolved in response to market needs that did not exist in 1970. 

CONCEPTUAL BASIS FOR THE PDP-11 MODELS 

Chapters 10 and 11 consist of two papers that form some of the conceptual 
basis for the various PDP-11 models. Chapter I O  by Strecker is an exposition of 
cache memory structure and its design parameters. The cache memory concept is 
the basis of three PDP-I1 models, the PDP-l1/34A, the PDP-I1/60, and the 
PDP-l1/70, in addition to the cache-8 (Chapter 7) and the KLlO processor for the 
PDP-IO (Chapter 21). 

Strecker gives the performance evaluation in terms of cache miss ratios, 
whereas the reader is probably interested in performance or speedup. These two 
measures, shown in Figure I ,  are related [Lee, 19691 in the following way (assum- 
ing an infinitely fast processor): 

p = Total number of memory accesses by the processor Pc 
m = Number of memory accesses that are missed by the cache and 

have to be referred to the primary memory Mp 
t.c = Cycle time of cache memory Mc 
t .p = Cycle time of primary memory Mp 
R = t . p / t . c  (ratio of memory speeds), where R is typically 3 to 10 

The relative execution speeds are: 

t (no cache) = pR 
t ( to  cache) = p + mR 

speedup = p R / ( p  + m R )  = R / ( l  + ( m / p )  R )  
a = miss ratio = m / p  

Therefore: 

speedup = R / ( l  + aR)  = l/(a + 1/R) 

Note that: 

If a = 0 (100% hit), the speedup is R 
If a = 1 (100% miss), the speedup is R / ( l  + R ) ,  Le., the speedup is 

less than 1 (i.e., time to reference both memories) 

Chapter 1 1  contains a unique discussion of buses - the communications link 
between two or more computer system components. Although buses are a stand- 
ard of interconnection, they are the least understood element of computer design 
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p = T O T A L N U M B E R  O F M E M O R Y A C C E S S E S  
BY T H E  PROCESSOR. Pc 

N U M B E R  OF M E M O R Y  ACCESSES T H A T  ARE 
M I S S E D  BY CACHE A N D  HAVE TO BE 
R E F E R R E D T O M p  n 

Figure 1 .  
and M p  of cached computer. 

The structure of Pc, Mcache. 

because their implementation is distributed in various components. Their behav- 
ior is difficult to express in a state diagram or other conventional representation 
(except a timing diagram) because the operation of buses is inherently pipelined; 
hence, design principles and understanding are minimal. 

In Chapter 11, Levy first characterizes the intercommunication problem into 
the constituent dialogues that must take place between pairs of components. After 
giving a general model of interconnection, Levy provides examples of PDP-11 
buses that characterize the general design space. Finally, he discusses the various 
intercommunications (model) aspects: arbitration (deciding which components 
can intercommunicate), data transmission, and error control. 

IMPLEMENTATIONS OF THE PDP-11 

Chapter 12 is a descriptive narrative about the design of the LSI-11 at the chip, 
board, and backplane levels. Since it was written from the viewpoint of a knowl- 
edgeable user, i t  lacks some of the detail that the designers at Western Digital 
(Roberts, Soha, Pohlman) or at DEC (Dickhut, Dickman, Olsen, Titelbaum) 
might have provided. A detailed account of the chip-level design is available, 
however [Soha and Pohlman, 19741. 

Two design levels are described: the three chip set microprogrammed computer 
used to  interpret the PDP-11 instruction set, and the particular PMS-level com- 
ponents that are integrated into a backplane to form a hardware system. Chapter 
12 also provides a discussion of the microprogramming tradeoff that took place 
between the chip and module levels. This tradeoff was necessary to carry out the 
clock, console, refresh, and power-fail functions which are normally in hardware. 

Since the time that the Sebern paper (Chapter 12) was written, packaging for 
LSI-11 systems has moved in two directions: toward the single board micro- 
computer and toward modularity. The single board microcomputer concept is 
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exemplified by the bounded system shown in Figure 2. This integrated system 
contains an LSI-11 chip set, 32 Kwords of memory, connectors for six commu- 
nication line interfaces, and a controller for two floppy disk drives. It uses 175 
circuits (to implement the same functionality using standard LSI-I 1 modules 
would require 375 integrated circuits). The modularity direction is exemplified by 
the LSI-l1/2, for which typical option modules are shown in Figure 3. 

Unlike the reports from an architect’s or reporter’s viewpoint, Chapter 13 is a 
direct account of the design process from the project viewpoint. A mid-range 
machine is an inherently difficult design because it is neither the lowest cost nor 

c 1 I EIA C O N N E C T O R  M O D U L E  

M O S  R A M  PERIPHERAL (CONSL)(PRNTR)(COMM) 

I 1 
I 

1 

4 8 1 6 3 2 K X 1 6  M D D U L E  
1 K X 16 R O M  13-6 USARTSI 

E IA  CONNECTOR M O D U L E  

S T A C K I N G  S T A C K I N G  
C O N N  C O N N  - 

T E R M I N A L  INTELLIGENCE M O D U L E  

LSI 11 
CHIP  SET 

M I C R O - P R O C  
110 E M U L A T O R  

+ 5  v 

Figure 2 .  A bounded LSI-1 1 based system. 



THE PDP-11 FAMILY 235 

the highest performance machine of the family, and thus has to have the right 
balance of features, price, and performance against criteria that are usually vague. 

Four interesting aspects of computer engineering are shown in the PDP-11/60: 
the cache to reduce Unibus traffic; trace-driven design of floating-point arith- 
metic processors; writable control store; and special features for reliability, avail- 
ability, and maintainability. 

The Unibus was found to be inadequate for handling all the data traffic in high 
performance systems, but by using a cache, most processor references do  not use 
the Unibus and so leave it free for 1 / 0  traffic. In the PDP-l1/60 work described 
in this chapter, Mudge uses Strecker’s (Chapter IO)  program traces and method- 
ology. The cache design process is implicit in the way in which the work is carried 
out to  determine the structure parameters. Sensitivity plots are used to determine 
the effects of varying each parameter of the design. The time between changes of 
context is an important parameter because all real-time and multiprogrammed 
systems have many context switches. The study leading to the determination of 
block size is also given. 

Microprogramming is used to provide both increased user-level capability and 
increased reliability, availability, and maintainability. The writable control store 
option is described together with its novel use for data storage. This option has 
been recently used for emulating the PDP-8 at the OS/8 operating system level. 

Chapter 14 presents a comprehensive comparison of the eight processor imple- 
mentations used in the ten PDP-11 models. The work was carried out to invest- 
igate various design styles for a given problem, namely, the interpretation of the 
PDP-11 instruction set. The tables provide valuable insight into processor imple- 
mentations, and the data is particularly useful because it comes from Snow and 
Siewiorek, non-DEC observers examining the PDP-11 machines. 

The tables include: 

1.  A set of instruction frequencies, by Strecker, for a set of ten different appli- 
cations. (The frequencies do not reflect all uses, e.g., there are no floating- 
point instructions, nor has operating system code been analyzed.) 
Implementation cost (modules, integrated circuits, control store widths) 
and performance (micro- and macroinstruction times) for each model. 
A canonical data path for all PDP-11 implementations against which each 
processor is compared. 

2. 

3.  

With this background data, a top-down model is built which explains the per- 
formance (macroinstruction time) of the various implementations in terms of the 
microinstruction execution and primary memory cycle time. Because these two 
parameters do not fully explain (model) performance, a bottom-up approach is 
also used, including various design techniques and the degree of processor over- 
lap. This analysis of a constrained problem should provide useful insight to both 
computer and general digital systems designers. 
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KD11 -HA 
LSI- 1 1 /2 microcomputer 
processor 

M S V l l - D  
Dynamic MOS RAM memory 

DLVl 1 -J 
Four-line serial interface 

lBV l  1 -A  
IEEE instrument bus interface 

M R V l l - B A  
4K UV PROM board with 
256-word RAM 

MRVl1-AA 
4K PROM board 

Figure 3 .  The double-height modules forming the LSI-1 1/2 (part 1 of 2) 
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DRVl 1 
16-bit Darallel interface 

DCK1 1 -AC 
Interface foundation kit 

RXVl 1 
Interface module for RXOl 
floppy disk 

REV1 1 -A 
Refresh/ bootstrap/ 
diagnostic/ terminator 
module 

KPVl 1 -A 
Power sequencer/ line clock 
module 

D L V l l  
Single-line serial interface 

Figure 3 The double-height modules forming the LSI-1 1/2 (part 2 of 2)  
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EVALUATION OF THE PDP-11 

Chapter 15 evaluates the PDP-I 1 as a machine for executing FORTRAN. Be- 
cause FORTRAN is the most often executed language for the PDP-I l ,  it is im- 
portant to observe the PDP- 11  architecture as seen by the language processor - its 
user. The first FORTRAN compiler and object (run) time system are described, 
together with the evolutionary extensions to improve performance. The FOR- 
TRAN IV-PLUS (optimizing) compiler is only briefly discussed because its im- 
provements, largely due to  compiler optimization technology, are less relevant to 
the PDP-I 1 architecture. 

The chapter title, “Turning Cousins into Sisters,” overstates the compatibility 
problem since the five variations of the PDP-I 1 instruction set for floating-point 
arithmetic are made compatible by essentially providing five separate object (run) 
time systems and a single compiler. This transparency is provided quite easily by 
“threaded code,” a concept discussed in the chapter. 

The first version of the FORTRAN machine was a simple stack machine. As 
such, the execution times turned out to be quite long. In the second version, the 
recognition of the special high-frequency-of-use cases (e.g., A t 0, A t A + 1 )  and 
the improved conventions for three-address operations (to and from the stack) 
allowed speedup factors of 1.3 and 2.0 for floating-point and integers. 

It is interesting to compare Brender’s idealized FORTRAN IV-PLUS machine 
with the Floating-point Processors (on the PDP-Il/34, 11/45, 11/55, 11 /60, and 
1 1 /70). If the FORTRAN machine described in the paper is implemented in mi- 
crocode and made to operate at Floating-point Processor speeds, the resulting 
machines operate at roughly the same speed and programs occupy roughly the 
same program space. 

The basis for Chapter 16, “What Have We Learned From the PDP-1 l?” [Bell 
and Strecker, 19761 was written to critique the original expository paper on the 
PDP-I 1 (Chapter 9) and to compare the actual with the predicted evolution. Four 
critical technological evolutions - bus bandwidth, PMS structure, address space, 
and data-type - are examined, along with various human organizational aspects 
of the design. 

The first section of Chapter 16 compares the original goals of the PDP-11 
(Chapter 9) with the goals of possible future models from the original design 
documents. Next, the ISP and PMS evolutions, including the VAX extension, are 
described. The Unibus characteristics are especially interesting as the bus turns 
out to be more cost-effective over a wider range than would be expected. 

The section of the chapter which deals with multiprocessors and multi- 
computers gives the rationale behind the slow evolution of these structures. Be- 
cause a number of these computer structures have been built (especially at 
Carnegie-Mellon University), they are described in detail. 

The final section of the chapter interrelates technology with the various imple- 
mentations (including VAX-I 1/780) that have occurred. Table 6 gives the per- 
formance characteristics for the various models with the relevant technology, 
contributions, and implementation techniques required to span the range. 
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VIRTUAL ADDRESS EXTENSION OF THE PDP-11 

The latest member of the PDP-11 family, the Virtual Address Extension 1 1  or 
VAX-11, is described in Chapter 17. This paper, by the architect of VAX-I I ,  
discusses the new architecture and its first implementation, the VAX-I 1 /780. 

VAX-11 extends the PDP-11 to provide a large, 32-bit virtual address for each 
user process. The architecture includes a compatibility mode that allows PDP-I 1 
programs written for the RSX-I 1 M program environment to run unchanged. In 
this way, PDP-I 1 programs can be moved among VAX and PDP-I 1 computers, 
depending on the user’s address size and computational and generality needs. 

Chapter 17 provides a clean, somewhat terse, yet comprehensive description of 
the VAX-11 architecture. Because the VAX part of the architecture is so complete 
in terms of data-types, operators, addressing and memory management, it can 
also serve as a textbook model and case study for architecture in general. Goals, 
constraints, and various design choices are given, although explanations of what 
was traded away in  the design choices are not detailed. 





A New Architecture 
for Minicomputers 
-The DEC PDP-11 

C. GORDON BELL, ROGER CADY, HAROLD McFARLAND, 
BRUCE A. DELAGI, JAMES F. O’LOUGHLIN, 
RONALD NOONAN, and WILLIAM A. WULF 

INTRODUCTION 

The minicomputer* has a wide variety of 
uses: communications controller, instrument 
controller, large-system preprocessor, real-time 
data acquisition systems, . . . desk calculator. 
Historically, Digital Equipment Corporation’s 
(DEC) PDP-8 family, with 6000 installations 
has been the archetype of these minicomputers. 

In  some applications current minicomputers 
have limitations. These limitations show up 
when the scope of their initial task is increased 
(e.g., using a higher level language, or process- 
ing more variables). Increasing the scope of the 

task generally requires the use of more com- 
prehensive executives and system control pro- 
grams, hence larger memories and  more 
processing. This larger system tends to be at the 
limit of current minicomputer capability, thus 
the user receives diminishing returns with re- 
spect to memory, speed efficiency, and program 
development time. This limitation is not sur- 
prising since the basic architectural concepts for 
current minicomputers were formed in the early 
1960s. First, the design was constrained by cost, 
resulting in rather simple processor logic and 

* T h e  PDP-I I design is predicated on being a member of one  (or  more) o f  the micro, midi. mini, . . , maxi (computer name) 
mnrkctr .  We will define these names as  belonging t o  computers of the third generation (integrated circuit to  medium-scale 
integrated circuit technology). having a core memory with cycle time of 0.5-2 ps. a clock rate of 5 -  IO M H z  . , . a single 
processor with interrupts and  usually applied to  doing a particular task (e.g.. controlling a memory o r  communications 
lines. preprocessing for a larger system, process control). T h e  specialized names are  defined as  follows. 

Maximum 
Addressable Processor and Word Processor 
Primary Memory Memory Cost Length State 
(Words) ( 1970 Kilodollars) (Bits) (Words) Data-Types 

Micro X K - 5  
Mini 32 K 5 -  I O  
Midi 65 K - I 2 8  K 10-20 

8-12 2 Integers, words, Boolean vectors 
12-16 2-4 Vectors (i.e., indexing) 
16-24 4-16 Double length floating point 

(occasionally) 

241 
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register configurations. Second, application ex- 
perience was not available. For example, the 
early constraints often created computing de- 
signs with what we now consider weaknesses: 

1 .  Limited addressing capability, particu- 
larly of larger core sizes. 

2. Few registers, general registers, accu- 
mulators, index registers, base registers. 

3. No hardware stack facilities. 
4. Limited priority interrupt structures, 

and thus slow context switching among 
multiple programs (tasks). 

5. No byte string handling. 
6. No read-only memory (ROM) facilities. 
7. Very elementary 1 / 0  processing. 
8. No larger model computer, once a user 

outgrows a particular model. 
9. High programming costs because users 

program in machine language. 

In developing a new computer, the archi- 
tecture should at least solve the above prob- 
lems. Fortunately, in the late 1960s, integrated 
circuit semiconductor technology became avail- 
able so that newer computers could be designed 
that solve these problems at low cost. Also, by 
1970, application experience was available to 
influence the design. The new architecture 
should thus lower programming cost while 
maintaining the low hardware cost of mini- 
computers. 

The DEC PDP-11 Model 20 is the first com- 
puter of a computer family designed to span a 
range of functions and performance. The 
Model 20 is specifically discussed, although de- 
sign guidelines are presented for other members 
of the family. The Model 20 would nominally 
be classified as a third generation (integrated 
circuits), 16-bit word, one central processor 
with eight 16-bit general registers, using two’s 
complement arithmetic and addressing up to  216 
8-bit bytes of primary memory (core). Though 
classified as a general register processor, the op- 

erand accessing mechanism allows it to perform 
equally well as a 0- (stack), 1- (general register), 
and 2- (memory-to-memory) address computer. 
The computer’s components (processor, memo- 
ries, controls, terminals) are connected via a 
single switch, called the Unibus. 

The machine is described using the processor- 
memory-switch (PMS) notation of Bell and 
Newell [I97 11 at different levels. The following 
descriptive sections correspond to the levels: ex- 
ternal design constraints level; the PMS level - 
the way components are interconnected and al- 
low information to flow; the program level - the 
abstract machine that interprets programs; and 
finally, the logical design level. (We omit a dis- 
cussion of the circuit level, the PDP-11 being 
constructed from TTL integrated circuits.) 

DES I G N CONSTRAINTS 

The principal design objective is yet to be 
tested; namely, do users like the machine? This 
will be tested both in  the marketplace and by 
the features that are emulated in newer ma- 
chines; it will be tested indirectly by the life span 
of the PDP- 11 and any offspring. 

Word Length 

The most critical constraint, word length (de- 
fined by IBM), was chosen to be a multiple of 8 
bits. The memory word length for the Model 20 
is 16 bits, although there are 32- and 48-bit in- 
structions and 8- and 16-bit data. Other mem- 
bers of the family might have up to  80-bit 
instructions with 8-, 16-, 32- and 48-bit data. 
The internal, and preferred external character 
set, was chosen to be 8-bit ASCII. 

Range and Performance 

Performance and function range (exten- 
dability) were the main design constraints; in 
fact, they were the main reasons to build a new 
computer. DEC already has four computer 
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families tha t  span a range* but a re  in- 
compatible. In addition to  the range, the initial 
machine was constrained to fall within the 
small-computer product line, which means to 
have about the same performance as a PDP-8. 
The initial machine outperforms the PDP-5, 
LINC, and PDP-4 based families. Performance, 
of course, is both a function of the instruction 
set and the technology. Here, we are fundamen- 
tally only concerned with the instruction set 
performance because faster hardware will al- 
ways increase performance for any family. Un- 
like the earlier DEC families, the PDP-11 had 
to be designed so that new models with signifi- 
cantly more performance can be added to  the 
family . 

A rather obvious goal is maximum perfor- 
mance for a given model. Designs were pro- 
grammed using benchmarks, and the results 
were compared with both DEC and potentially 
competitive machines. Although the selling 
price was constrained to  lie in the $5,000 to 
$10,000 range, it was realized that the decreas- 
ing cost of logic would allow a more complex 
organization than that of earlier DEC com- 
puters. A design that could take advantage of 
medium- and eventually large-scale integration 
was an important consideration. First, it could 
make the computer perform well; second, it 
would extend the computer family’s life. For 
these reasons, a general register organization 
was chosen. 

interrupt Response. Since the PDP-11 will 
be used for real-time control applications, it is 
important that devices can communicate with 
one another quickly (i.e., the response time of a 
request should be short). A multiple priority 
level, nested interrupt mechanism was selected; 
additional priority levels are provided by the 
physical position of a device on the Unibus. 

Software polling is unnecessary because each 
device interrupt corresponds to a unique ad- 
dress. 

Software 

The total system including software is, of 
course, the main objective of the design. Two 
techniques were used to aid programmability. 
First, benchmarks gave a continuous indication 
as to how well the machine interpreted pro- 
grams; second, systems programmers contin- 
ually evaluated the design. Their evaluation 
considered: what code the compiler would pro- 
duce; how would the loader work; ease of pro- 
gram relocatability; the use of a debugging 
program; how the compiler, assembler, and edi- 
tor would be coded - in effect, other bench- 
marks; how real-time monitors would be 
written to  use the various facilities and present a 
clean interface to the users; finally, the ease of 
coding a program. 

Modularity 

Structural flexibility (sometimes called mod- 
ularity) for a particular model was desired. A 
flexible and straightforward method for inter- 
connecting components had to  be used because 
of varying user needs (among user classes and 
over time). Users should have the ability to 
configure an optimum system based on cost, 
performance, and reliability, both by inter- 
connection and, when necessary, constructing 
new components. Since users build special 
hardware, a computer should be interfaced eas- 
ily. As a by-product of modularity, computer 
components can be produced and stocked, 
rather than tailor-made on order. The physical 
structure is almost identical to  the PMS struc- 
ture discussed in the following section; thus, 

* PDP-4, 7. 9, 15 family: PDP-5, 8, 8/S, 8/1, 8 / L  family: LINC, PDP-8ILINC.  PDP-I2  family: and  PDP-6, I O  family. The 
initial PDP-I did not achieve family status. 



244 THE PDP-11 FAMILY 

reasonably large building blocks are available 
to the user. 

Microprogramming 

A note on microprogramming is in order be- 
cause of current interest in the “firmware” con- 
cept. We believe microprogramming, as we 
understand it [Wilkes and Stringer, 19531, can 
be a worthwhile technique as it applies to  pro- 
cessor design. For example, microprogramming 
can probably be used in larger computers when 
floating-point data operators are needed. The 
IBM System 360 has made use of the technique 
for defining processors that interpret both the 
System 360 instruction set and earlier family in- 
struction sets (e.g., 1401, 1620, 7090). In the 
PDP-I I ,  the basic instruction set is quite 
straightforward and does not necessitate micro- 
programmed interpretation. The processor- 
memory connection is asynchronous; therefore, 
memory of any speed can be connected. The in- 
struction set encourages the user to write reen- 
trant programs. Thus, read-only memory can 
be used as part of primary memory to  gain the 
permanency and performance normally attri- 
buted to microprogramming. In fact, the Model 
10 computer, which will not be further dis- 
cussed, has a 1024-word read-only memory, 
and a 128-word read-write memory. 

Understandability 

Understandability was perhaps the most fun- 
damental constraint (or goal) although it is now 
somewhat less important to have a machine 
that can be understood quickly by a novice 
computer user than it was a few years ago. 
DEC’s early success has been predicated on sell- 
ing to an intelligent but inexperienced user. Un- 
derstandability, though hard to  measure, is an 

important goal because all (potential) users 
must understand the computer. A straight- 
forward design should simplify the systems pro- 
gramming task; in the case of a compiler, it 
should make translation (particularly code gen- 
eration) easier. 

PDP-11 STRUCTURE AT THE PMS 
LEVEL‘ 

Introduction 

PDP- 1 1 has the same organizational struc- 
ture as nearly all present-day computers (Figure 
I ) .  The primitive PMS components are: the 
primary memory M p  which holds the programs 
while the central processor Pc interprets them; 
1 / 0  controls Kio which manage data transfers 
between terminals T or secondary memories Ms 
to primary memory Mp; the components out- 
side the computer at periphery X either humans 
H or some external process (e.g., another com- 
puter); the processor console (T.console) by 
which humans communicate with the computer 
and observe its behavior and affect changes in 
its state; and a switch S with its control K which 
allows all the other components t o  commu- 
nicate with one another. In the case of PDP-11, 
the central logical switch structure is imple- 
mented using a bus or chained switch S called 
the Unibus, as shown in Figure 2. Each physical 
component has a switch for placing messages 
on the bus or taking messages off the bus. The 
central control decides the next component t o  
use the bus for a message (call). The S (Unibus) 
differs from most switches because any com- 
ponent can communicate with any other com- 
ponent. 

The types of messages in the PDP-11 are 
along the lines of the hierarchical structure 
common to present-day computers. The single 

* A  descriptive (hlock-diagram) level  [Bell a n d  Newell. 19701 t o  describe the relationship of the computer components:  
processors. memories, switches. controls,  links. terminals, a n d  data operators.  P M S  is described in Appendix 2. 
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Figure 2 PDP-1 1 physlcal structure PMS diagram. 

bus makes conventional and other structures 
possible. The message processes in the structure 
that utilize S (Unibus) are: 

1. The central processor Pc requests that 
data be read or written from or to 
primary memory Mp for instructions 
and data. The processor calls a particu- 
lar memory module by concurrently 
specifying the module’s address, and the 
address within the modules. Depending 
on whether the processor requests read- 
ing or writing, data is transmitted either 
from the memory to the processor or 
vice versa. 
The central processor Pc controls the in- 
itialization of secondary memory Ms 
and terminal T activity. The processor 
sets status bits in the control associated 
with a particular Ms or T, and the device 
proceeds with the specified action (e.g., 
reading a card or punching a character 
into paper tape). Since some devices 
transfer data vectors directly to primary 
memory, the vector control information 
(;.e., the memory location and length) is 
given as initialization information. 
Controls request the processor’s atten- 
tion in the form of interrupts. An inter- 
rupt request to the processor has the 
effect of changing the state of the proces- 
sor: thus, the processor begins executing 
a program associated with the inter- 
rupting process. Note that the interrupt 
process is only a signaling method, and 
when the processor interrupt occurs, the 
interrupter specifies a unique address 
value to the processor. The address is a 
starting address for a program. 
The central processor can control the 
transmission of data between a control 
(for T or Ms) and either the processor or 
a primary memory for program con- 
trolled data transfers. The device signals 
for attention using the interrupt dialogue 

2. 

3. 

4. 
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5 .  

6. 

and the central processor responds by 
managing the data transmission in a 
fashion similar t o  transmitt ing in- 
itialization information. 
Some device controls (for T or Ms) 
transfer data directly to/from primary 
memory without central processor inter- 
vention. In this mode the device behaves 
similarly to a processor; a memory ad- 
dress is specified, and the data is trans- 
mitted between the device and primary 
memory. 
The transfer of data between two con- 
trols, e.g., a secondary memory (disk) 
and say a terminal/T. display is not pre- 
cluded, provided the two use compatible 
message formats. 

As we show more detail in the structure there 
are, of course, more messages (and more simul- 
taneous activity). The above does not describe 
the shared control and its associated switching 
which is typical of a magnetic tape and mag- 
netic disk secondary memory systems. A con- 
trol for a DECtape memory (Figure 3) has an S 
('DECtape bus) for transmitting data between a 
single tape unit and the DECtape transport. 
The existence of this kind of structure is based 
on the relatively high cost of the control relative 
to the cost of the tape and the value of being 
able to run concurrently with other tapes. There 
is also a dialogue at the periphery between X-T 

COnCUrrene" 1 

UNIBUS 

Figure 3. DECtape control switching PMS diagram. 

and X-Ms that does not use the Unibus. (For 
example, the removal of a magnetic tape reel 
from a tape unit or a human user H striking a 
typewriter key are typical dialogues.) 

All of these dialogues lead to the hierarchy of 
present computers (Figure 4). In this hierarchy 
we can see the paths by which the above mes- 
sages are passed: Pc-Mp; Pc-K; K-Pc; Kio-T 
and Kio-Ms; and Kio-Mp; and, at the per- 
iphery, T-X and T-Ms; and T. console-H. 

Model 20 Implementation 

Figure 5 shows the detailed structure of a 
uniprocessor Model 20 PDP-I 1 with its various 
components (options). In  Figure 5, the Unibus 
characteristics are suppressed. (The detailed 
properties of the switch are described in the log- 
ical design section.) 

Extensions to Increase Performance 

The reader should note (Figure 5) that the 
important limitations of the bus are: a con- 
currency of one, namely, only one dialogue can 
occur at a given time, and a maximum transfer 
rate of one 16-bit word per 0.75 microsecond, 
giving a transfer rate of 21.3 megabits/second. 
While the bus is not a limit for a uniprocessor 
structure, it is a limit for multiprocessor struc- 
tures. The bus also imposes an artificial limit on 
the system performance when high-speed de- 
vices (e.g., TV cameras, disks) are transferring 

Figure 4. Conventional hierarchy computer structure 
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data to multiple primary memories. On a larger 
system with multiple independent memories, 
the supply of memory cycles is 17 mega- 
bits/second times the number of modules. Since 
there is such a large supply of memory cycles 
per second and since the central processor can 
a b s o r b  o n l y  a p p r o x i m a t e l y  16 mega-  
bits/second, the simple one-Unibus structure 
must be modified to make the memory cycles 
available. Two changes are necessary. First, 
each of the memory modules has to be changed 
so that multiple units can access each module 
on an independent basis. Second, there must be 
independent control accessing mechanisms. 
Figure 6 shows how a single memory is modi- 
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Figure 5. 
PMS diagram. 

PDP-1 1 structure and characteristics 

fied to have more access ports (Le., connect to 
four Unibuses). 

Figure 7 shows a system with three independ- 
ent memory modules that are accessed by two 
independent Unibuses. Note that two of the 
secondary memories and one of the transducers 
are connected to both Unibuses. It should be 
noted that devices that can potentially interfere 
with Pc-Mp accesses are constructed with two 
ports; for simple systems, both ports are con- 
nected to the same bus, but for systems with 
more buses, the second connection is to an inde- 
pendent bus. 

Figure 8 shows a multiprocessor system with 
two central processors and three Unibuses. Two 
of the Unibus controls are included within the 
two processors, and the third bus is controlled 
by an independent control unit. The structure 
also has a second switch to allow either of two 
processors (Unibuses) to access common shared 
devices. The interrupt mechanism allows either 

x 
(a) 1-port 

a1 I 

Lel 
(b) 4-pOrt. 

Figure 6. 
diagram. 

1- and 4-port memory modules PMS 
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Figure 7. 
PMS diagram. 

Three Mp, two S ('Unibus) structure 

DATA TRANSFERS 

1 KI 'Unibusl  
2. Kl'Unibus mult iple bus to single bus coupler. 

from. 2 Unibus. to 1 Unibus)  
3 KI'Processor-to-procersor coupler) 
4 Mslduplex l  

Figure 8. Dual Pc multiprocessor system PMS diagram 

processor to respond to  an interrupt, and sim- 
ilarly either processor may issue initialization 
information on an anonymous basis. A control 
unit is needed so that two processors can com- 
municate with one another; shared primary 
memory is normally used to carry the body of 
the message. A control connected to two Pc's 
(Figure 8) can be used for reliability; either pro- 
cessor or Unibus could fail, and the shared Ms 
would still be accessible. 

Higher Performance Processors 
Increasing the bus width has the greatest 

effect on performance. A single bus limits data 
transmission to 2 1.4 megabits/second, and 
though Model 20 memories are 16 mega- 
bits/second, faster (or wider) data path width 
modules will be limited by the bus. The Model 
20 is not restricted, but for higher performance 
processors operating on double-word (fixed- 
point) or triple-word (floating-point) data, two 



A NEW ARCHITECTURE FOR MINICOMPUTERS 249 

or three accesses are required for a single data- 
type. The direct method to improve the per- 
formance is to double or triple the primary 
memory and central processor data path 
widths. Thus, the bus data rate is automatically 
doubled or tripled. 

For 32- or 48-bit memories, a coupling con- 
trol unit is needed so that devices of either 
width appear isomorphic to one another. The 
coupler maps a data request of a given width 
into a higher- or lower-width request for the bus 
being coupled to, as shown in Figure 9. (The 
bus is limited to a fixed number of devices for 

from 4 8  bltr 

4 8  BITUNIBUS 16 BITUNIBUS 

Figure 9. 
Ms. T.PMS diagram.  

Computer  with 48 -b i t  Pc. Mp with 16-b i t  

electrical reasons; thus, to extend the bus, a bus- 
repeating unit is needed. The bus-repeating con- 
trol uni t  is almost identical to the bus coupler.) 
A computer with a 48-bit primary memory and 
processor and 16-bit secondary memory and 
terminals (transducers) is shown in Figure 9. 

In  summary, the design goal was to have a 
modular structure providing the final user with 

freedom and flexibility to match his needs. A 
secondary goal of the Unibus is open-endedness 
by providing multiple buses and defining wider 
path buses. Finally, and most important, the 
Unibus is straightforward. 

THE INSTRUCTION SET PROCESSOR 
(ISP) LEVEL-ARCHITECTURE 

Introduction, Background, and Design 
Constraints 

The Instruction Set Processor (ISP) is the 
machne defined by the hardware and/or soft- 
ware that interprets programs. As such, an ISP 
is independent of technology and specific imple- 
mentations. 

The instruction set is one of the least under- 
stood aspects of computer design; currently, it 
is an art. There is currently no theory of instruc- 
tion sets, although there have been attempts to 
construct them [Maurer, 19661, and there has 
also been an attempt to have a computer pro- 
gram design an instruction set [Haney, 19681. 
We have used the conventional approach in this 
design. First, a basic ISP was adopted and then 
incremental design modifications were made 
(based on the results of the benchmarks).? 

Although the approach to the design was 
conventional, the resulting machine is not. A 
common classification of processors is as 0-, 1-, 
2-, 3-, or 3-plus-1-address machines. This 
scheme has the form: 

op 11, 12, 13, 14 

* T h e  word “architecture” has been operationally defined [Amdahl et a / . .  19641 as “the attr ibutes of a system as  seen by a 
programmer.  i t . ,  the conceptual structure and  functional behavior, as  distinct from the organization of the data flow and  
controls, the logical design, and  the physical implementation.” 
t A predecessor multiregister computer was proposed that used a similar design process. Benchmark programs were coded on 

each of ten “competitive” machines, and  the object of the design was to  get a machine that gave the best score on the 
benchmarks. This approach had several fallacies: The  machine had no basic character of its own: the machine was difficult 
10 program since the multiple registers were assigned to  specific functions and had inherent idiosyncrasies to  score well on 
the benchmarks; the machine did not perform well for programs other than those used in the benchmark test: a n d  finally, 
compilers that took advantage of the machine appeared to  be difficult t o  write. Since all “competitive machines” had been 
hand-coded from a common flowchart rather than separate flowcharts for each machine, the apparent high performance 
may have been due  to  the flowchart organization. 
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where 11 specifies the location (address) in 
which to store the result of the binary operation 
(op) of the contents of operand locations 12 and 
13, and 14 specifies the location of the next in- 
struction. 

The action of the instruction is of the form: 

11 12 OP 13; goto 14 

The other addressing schemes assume specific 
values for one or more of these locations. Thus, 
the oneaddress von Neumann [Burks et al., 
19621 machines assume 11 = t2 = the accu- 
mulator and 14 is the location following that of 
the current instruction. The two-address ma- 
chine assumes l l  = 12; 14 is the next address. 

Historically, the trend in machine design has 
been to move from a 1- or 2-word accumulator 
structure as in the von Neumann machine to- 
ward a machine with accumulator and index 
register(s).* As the number of registers is in- 
creased, the assignment of the registers to spe- 
cific functions becomes more undesirable and 
inflexible; thus, the general register concept has 
developed. The use of an array of general regis- 
ters in the processor was apparently first used in 
the first generation, vacuum-tube machine, 
PEGASUS [Elliott et al., 19561 and appears to 
be an outgrowth of both 1- and 2-address struc- 
tures. (Two alternative structures - the early 2- 
and 3-address-per-instruction computers may 
be disregarded, since they tend to  always access 
primary memory for results as well as tempo- 
rary storage and thus are wasteful of time and 
memory cycles and require a long instruction.) 
The stack concept (0-address) provides the most 
efficient access method for specifying al- 
gorithms, since very little space, only the access 
addresses and the operators, needs to be given. 
In this scheme the operands of an operator are 
always assumed to be on the “top of the stack.” 
The stack has the additional advantage that 

arithmetic expression evaluation and compiler 
statement parsing have been developed to use a 
stack effectively. The disadvantage of the stack 
is due, in part, to the nature of current memory 
technology. That is, stack memories have to be 
simulated with random-access memories; mul- 
tiple stacks are usually required; and even 
though small stack memories exist, as the stack 
overflows, the primary memory (core) has to be 
used. 

Even though the trend has been toward the 
general register concept (which, of. course, is 
similar to a 2-address scheme in which one of 
the addresses is limited to small values), it is im- 
portant to recognize that any design is a com- 
promise. There are situations for which any of 
these schemes can be shown to be “best.” The 
IBM System 360 series uses a general register 
structure, and their designers [Amdahl et al., 
19641 claim the following advantages for the 
scheme. 

1. Registers can be assigned to various 
functions: base addressing, address cal- 
culation, fixed-point arithmetic, and in- 
dexing. 

2. Availability of technology makes the 
general register structure attractive. 

The System 360 designers also claim that a 
stack organized machine such as the English 
Electric KDF 9 [Allmark and Lucking, 19621 or 
the Burroughs B5000 [Lonergan and King, 
19611 has the following disadvantages. 

1. 

2. 

3. 

Performance is derived from fast regis- 
ters, not the way they are used. 
Stack organization is too limiting and re- 
quires many copy and swap operations. 
The overall storage of general registers 
and stack machines are the same, consid- 
ering point 2. 

*Due, in part, to needs, but mainly to technology that dictates how large the structure can be. 
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4. The stack has a bottom, and when 
placed in slower memory, there is a per- 
formance loss. 
Subroutine transparency is not easily re- 
alized with one stack. 
Variable length data is awkward with a 
stack. 

5. 

6. 

We generally concur with points I ,  2, and 4. 
Point 5 is an erroneous conclusion, and point 6 
is irrelevant (that is, general register machines 
have the same problem). The general register 
scheme also allows processor implementations 
with a high degree of parallelism since all in- 
structions of a local block can operate on sev- 
eral registers concurrently. A set of truly 
general purpose registers should also have addi- 
tional uses. For example, in the DEC PDP-IO, 
general registers are used for address integers, 
indexing, floating point, Boolean vectors (bits), 
or program flags and stack pointers. The gen- 
eral registers are also addressable as primary 
memory, and thus, short program loops can re- 
side within them and be interpreted faster. It 
was observed in operation that PDP-10 stack 
operations were very powerful and often used 
(accounting for as many as 20 percent of the 
executed instructions in some programs, e.g., 
the compilers). 

The basic design decision that sets the PDP- 
1 1  apart was based on the observation that by 
using truly general registers and by suitable ad- 
dressing mechanisms, it was possible to con- 
sider the machine as a 0-address (stack), 1- 
address (general register), or 2-address (mem- 
ory-to-memory) computer. Thus, it is possible 
to use whichever addressing scheme, or mixture 
of schemes, is most appropriate. 

Another important design decision for the in- 
struction set was to have only a few data-types 
in the basic machine, and to have a rather com- 
plete set of operations for each data-type. (AI- 
ternative designs might have more data-types 
with few operations, or few data-types with few 
operations.) In  part, this was dictated by the 

machine size. The conversion between data- 
types must be accomplished easily either auto- 
matically or with one or two instructions. The 
data-types should also be sufficiently primitive 
to allow other data-types to be defined by soft- 
ware (and by hardware in more powerful ver- 
sions of the machine). The basic data-type of 
the machine is the 16-bit integer which uses the 
two's complement convention for sign. This 
data-type is also identical to an address. 

PDP-11 Model 20 Instruction Set (Basic 
Instruction Set) 

A formal description of the basic instruction 
set is given in the original paper [Bell e? al., 
19701 using the ISPL notation [Bell and Newell, 
19701. The remainder of this section will discuss 
the machine in a conventional manner. 

Primary Memory. The primary memory 
(core) is addressed as either 2i6 bytes or 215 
words using a 16-bit number. The linear address 
space is also used to access the input/output de- 
vices. The device state, data and control regis- 
ters are read or written like normal memory 
locations. 

General Register. The general registers are 
named: R[O:7]<15:0>; that is, there are eight 
registers each with 16 bits. The naming is done 
starting at the left with bit 15 (the sign bit) to 
the least significant bit 0. There are synonyms 
for R[6] and R[7]: 

Stack Pointer\SP< 15:0> 
:= R[6]<@15:0> 
Used to access a special stack that is 
used to store the state of interrupts, 
traps, and subroutine calls. 
Program Counter\PC< 15:0> 
:= R[7]<@15:0> 
Points to the current instruction being 
interpreted. It will be seen that the fact 
that PC is one of the general registers is 
crucial to the design. 
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A n y  general register, R[O:7], can be used as a 
stack pointer. The special Stack Pointer SP has 
additional properties that force it to be used for 
changing processor state interrupts, traps, and 
subroutine calls. (It also can be used to control 
dynamic temporary storage subroutines.) 

In  addition to the above registers there are 8 
bits used (from a possible 16) for processor sta- 
tus, called PS< 15:0> register. Four bits are the 
Condition Codes\CC associated with arith- 
metic results; the T-bit controls tracing; and 3 
bits control the priority of running programs 
Priority <2:0>. Individual bits are mapped in 
PS as shown in the appendix. 

Data-Types and Primitive Operations. 
There are two data lengths in the basic machine: 
bytes and words, which are 8 and 16 bits, re- 
spectively. The nontrivial data-types are word- 
length integers (w.i.); byte-length integers (by.i); 
word-length Boolean vectors (w.bv); i.e., 16 in- 
dependent bits (Booleans) in a I-dimensional 
array; and byte-length Boolean vectors (by.bv). 
The operations on byte and word Boolean vec- 
tors are identical. Since a common use of a byte 
is to hold several flag bits (Booleans), the oper- 
ations can be combined to form the complete 
set of 16 operations. The logical operations are: 
“clear,” “complement,” “inclusive or,” and 
“implication” (x 3 y or l x  V y). 

There is a complete set of arithmetic oper- 
ations for the word integers in the basic instruc- 
tion set. The arithmetic operations are: “add,” 
“subtract,” “multiply” (optional), “divide” 
(optional), “compare,” “add one,” “subtract 
one,” “clear,” “negate,” and “multiply and di- 
vide” by powers of two (shift). Since the address 
integer size is 16 bits, these data-types are most 
important. Byte-length integers are operated on 
as words by moving them to the general regis- 
ters where they take on the value of word in- 
tegers. Word-length-integer operations are 

carried out and the results are returned to  mem- 
ory (truncated). 

The floating-point instructions defined by 
software (not part of the basic instruction set) 
require the definition of two additional data- 
types (of length two and three), i.e., double 
words (d.w.) and triple words (t.w.). Two addi- 
tional data-types, double integer (d.i.) and triple 
floating-point (t.f. or f) are provided for arith- 
metic. These data-types imply certain addi- 
tional operations and the conversion to the 
more primitive data-types. 

Address (Operand) Calculation. The gen- 
eral methods provided for accessing operands 
are the most interesting (perhaps unique) part 
of the machine’s structure. By defining several 
access methods to a set of general registers, to  
memory, or to a stack (controlled by a general 
register), the computer is able to be a 0-, 1-, and 
2-address machine. The encoding of the instruc- 
tion source (S) fields and destination (D) fields 
are given in Figure 10 together with a list of the 
various access modes that are possible. (The ap- 
pendix gives a formal description of the effec- 
tive address calculation process.) 

I t  should be noted from Figure 10 that all the 
common access modes are included (direct, 
indirect, immediate, relative, indexed, and in- 
dexed indirect) plus several relatively uncom- 
mon ones. Relative (to PC) access is used to 
simplify program loading, while immediate 
mode speeds up execution. The relatively un- 
common access modes, auto-increment and 
auto-decrement, are used for two purposes: ac- 
cess to a stack under control of the registers* 
and access to bytes or words organized as 
strings or vectors. The indirect access mode al- 
lows a stack to hold addresses of data (instead 
of data). This mode is desirable when manipu- 
lating longer and variable-length data-types 
(e.g., strings, double fixed, and triple floating 

* N o t e  t h a t .  by convention, a stack builds toward register 0. and when the stack crosses 4OOx. a stack overflow occurs. 
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m d  I 
7 6 B I T  

sr 
1 0 B I T  ’{ ‘ d m 4  ,”, dr 

r = R E G I S T E R  S P E C I F I C A T I O N  Rlr l  
d = D E F E R  I l N D l R E C T l  A D D R E S S  B I T  
m = MODE loo = R I ~ J .  01 = ~ l r l .  NEXT R I ~ I  t SI 

10 = Rlrl. Rlr l  -an. N E X T  R121 
11 = I N D E X E D  WITH N E X T  WORD1 

The following access modes can be specified 

0 

1 

2 

3 

4 

5 

2 

3 

6 

7 

6 

7 

Direct  to a register Rlr l  

Indtrect to a register. R l r l  lor address of data  

Auto  increment YIB register lpopl - use register as address. 
then increment  register 

Auto  increment  w a  register Ipopl - defer 

Auto decrement via register (push1 - decrement regtster. then 
use register as address 

Auto decrement indirect - decrement  register. then use register 
as the address of the address of data  

I m m e d i a t e  data - next full w o r d  1s the data  lr = P C I  

Direct data - nest full w o r d  45 the address of data l r  = P C I  

Direct  indexed - use next full word  indexed w l t h  Rlr l  as ad- 
dress of data  

Dnrect indexed - indirect - use next full word  indexed w i t h  Rlr l  
as the address of the address of data  

Relative access ~ next full w o r d  plus P C  is the address IR = 
P C I  

Relat ive indirect access - n e x t  full word  plus PC IS the address 
of the address of data lr = PCI. 

1 Address mcrement /a i  value 1s 1 or 2 

Figure 10 Address calculation formats. 

point). The register auto-increment mode may 
be used to access a byte string; thus, for ex- 
ample, after each access, the register can be 
made to point to the next data item. This is used 
for moving data blocks, searching for particular 
elements of a vector, and byte-string operations 
(e.g., movement, comparisons, editing). 

This addressing structure provides flexibility 
while retaining the same, or better, coding effi- 
ciency than classical machines. As an example 
of the flexibility possible, consider the varia- 
tions possible with the most trivial word in- 
struction MOVE (Table I). The MOVE instruc- 
tion is coded in conventional 2-address, I-ad- 
dress (general register) and 0-address (stack) 
computers. The 2-address format is particularly 
nice for MOVE, because it provides an efficient 

encoding for the common operation: A t B 
(note that the stack and general registers are not 
involved). The vector moves A[I] t B(1) is also 
efficiently encoded. For the general register 
(and I-address format), there are about 13 
MOVE operations that are commonly used. Six 
moves can be encoded for the stack (about the 
same number found in stack machines). 

Instruction Formats. There are several in- 
struction decoding formats depending on 
whether zero, one, or two operands have to be 
explicitly referenced. When two operands are 
required, they are identified as source S and 
destination D and the result is placed at destina- 
tion D. For single operand instructions (unary 
operators), the instruction action is D +- u D; 
and for two operand instructions (binary oper- 
ators), the action is D t D b S (where u and b 
are unary and binary operators, e.g., 1, - and 
+, -, X, /, respectively. Instructions are speci- 
fied by a 16-bit word. The most common binary 
operator format (that for operations requiring 
two addresses) uses bits 1512 to specify the op- 
eration code, bits 11:6 to specify the destination 
D, and bits 5:O to specify the source S. The 
other instruction formats are given in Figure 1 I .  

Instruction Interpretation Process. The 
instruction interpretation process is given in 
Figure 12, and follows the common fetch- 
execute cycle. There are three major states: ( I )  
interrupting - the PC and PS are placed on the 
stack accessed by the Stack Pointer/SP, and the 
new state is taken from an address specified by 
the source requesting the trap or interrupt; (2) 
trace (controlled by T-bit) - essentially one in- 
struction at a time is executed as a trace trap 
occurs after each instruction, and (3) normal in- 
struction interpretation. The five (lower) states 
in the diagram are concerned with instruction 
fetching, operand fetching, executing the oper- 
ation specified by the instruction and storing 
the result. The nontrivial details for fetching 
and storing the operands are not shown in the 
diagram but can be constructed from the effec- 
tive address calculation process (appendix). The 
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J U M P  0 000 000 0 0 1  

BINARY A R I T H M E T I C  A N 0  LOGICAL OPERATIONS 

~ J I S E E  NOTE) 

F O R M  0 .  S b  D 

EXAMPLE A D D  I =bop=OOlOl + I C C  0 .  D+SI 

UNARY A R I T H M E T I C  A N 0  LOGICAL OPERATION 

luoplDj 
F O R M  O c v D  

EXAMPLES N E G l  = u 0 p = 0 0 0 0 1 0 1 1 0 0 ~ ~  ICC D - - D l - N E G A T E  

A S L I  =uop=OOOOO11OO11~- ICC D .D X 21 SHIFT LEFT 

B R A N C H  IRELATlVEl  OPERATORS 

1-1 
F O R M  IF brap condition then IPC t PC f olfretl 

EXAMPLE B E 0  I = brop = 0316112 . IPC - P C  f offset1 

0 

F O R M  P C  c 0 + Pc 

J U M P  T O  SUBROUTINE 

D 000 1 0 0  

SAVE Rlrr l  O N  STACK ENTER S U B R O U T I N E  AT 0 + PC 

MISCELLANEOUS OPERATIONS 

code I 
F O R M  S T - f  

EXAMPLE HALT I = insfruct i~n = 0 )  - I R U N  I 01. 

NOTE 
There tnstructions are all one word D and/or S may each 
require one additional immediate data or address word 
Thus. mifructions can be  one. two. or three words long 

Figure 11 PDP-I 1 instruction formats (simplified) 

state diagram, though simplified, is similar to 2- 
and 3-address computers, but is distinctly dif- 
ferent than a 1 -address (1-accumulator) com- 
puter. 

The ISP description (appendix) gives the op- 
eration of each of the instructions, and the more 
conventional diagram (Figure 11) shows the de- 
coding of instruction classes. The ISP descrip- 
tion is somewhat incomplete; for example, the 
add instruction is defined as: 

EXECUTE 
STATES 

Figure 12 
state diagram 

PDP-1 1 instruction interpretation process 

the ADD instruction is executed with the above 
effect). I n  general, the CC are based on the re- 
sult, that is, Z is set if the result is zero, N if 
negative, C if a carry occurs, and V if an over- 
flow was detected as a result of the operation. 
Conditional branch instructions may thus fol- 
low the arithmetic instruction to test the results 
of the CC bits. 

Examples of Addressing Schemes 

Use as a Stack (Zero-Address) Machine. 
Table 2 lists typical 0-address machine instruc- 
tions together with the PDP- 11 instructions that 
perform the same function. It should be noted 
that translation (compilation) from normal in- 
fix expressions to  reverse Polish is a com- 
paratively trivial task. Thus, one of the primary 
reasons for using stacks is for the evaluation of 

ADD (:= bop = 0010~) + (CC,D D + S) 

Addition does not exactly describe the changes 
to the Condition Codes CC (which means 
whenever a binary opcode [bop] of 00102 occurs 

expressions in reverse Polish form. 

form: 
Consider an assignment statement of the 

D + A + B/C 
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Table 1. Coding for the M O V E  Instruction To Compare wi th  Conventional Machines 

Assembler Format Effect Description 

2-Address Machine 
Format 
MOVE B. A* 
MOVE #N, A 
MOVE B(RZ), A(RZ) 
MOVE (R3)+, (R4)+  

General-Register 
Machine Format 
MOVE A, R 1  
MOVE R1, A 
MOVE @A. R1 
MOVE R1, R3 
MOVE R1, A(R1) 
MOVE @A(RO), R1 
MOVE (Rl ) ,  R 3  
MOVE (R1)+. R 3  

Stack Machine Format 
MOVE #N, -(RO) 
MOVE A, -(RO) 
MOVE @(RO)+. -(RO) 
MOVE (RO)+. A 
MOVE (RO)+. @(RO)+ 
MOVE (RO). -(RO) 

R1 + A  
A t R 1  
R1 + M I A ]  
R 1  t R 3  
Al l ]  t R1 
R1 t M[A[ l l ]  
R1 t MIR2) 
R 3  t M [ l ]  

Replace A with contents of B 
Replace A with number B 
Replace element of a connector 
Replace element of  a vector. move to next element 

Load register 
Store register 
Load or store indirect via element A 
Register-to-register transfer 
Store indexed (load indexed) (or store) 
Load (or store) indexed indirect 
Load indirect via register 
Load (or store) element indirect via register, move to next element 

Load stack with literal 
Load stack with contents of A 
Load stack with memory specified by top of stack 
Store stack in A 
Store stack top in memory addressed by stack top -1 
Duplicate top of stack 

*Assembler Format 
( ) Denotes contents of memory addressed by 
~ Decrement register first 
+ Increment register after 
(u Indirect 
# Literal 

which has the reverse Polish form: 

DABC/ + t 
and would normally be encoded on a stack ma- 
chine as follows: 

Load stack address of D 
Load stack A 
Load stack B 
Load stack C 
I 

f + 
Store. 

However, with the PDP-11, there is an ad- 
dress method for improving the program en- 

coding and r u n  time, while not losing the stack 
concept. An encoding improvement is made by 
doing an operation to the top of the stack from 
a direct-memory location (while loading). Thus, 
the previous example could be coded as: 

Load stack B 
Divide stack by C 
Add A to stack 
Store stack D 

U s e  as a I - A d d r e s s  ( G e n e r a l  Reg is ter )  
M a c h i n e .  The PDP-11 is a general register 
computer and should be judged on that basis. 
Benchmarks have been coded to compare the 
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Table 2. Stack Computer Instructions and 
Equivalent PDP-11 Instructions 

Common Equivalent 
Stack Instruction PDP-11 Instruction 

Place address value A on 
stack 

Load stack from memory 
address specified by stack 

Load stack from memory lo- 
cation A 

Store stack at memory ad- 
dress specified by stack 

Store stack at memory loca- 
tion A 

Duplicate top of stack 

+, add two top data of stack 
to stack 

-, X .  1, subtract, multiply. 
divide 

-. negate top data of stack 

Clear top data of stack 

v. "inclusive or" two top 
data of stack "and" two top 
data of stack 

1, complement of stack 

Test top of stack (set branch 
indicators) 

Branch on indicator 

Jump unconditional 

Add addressed location A to 
top of stack (not common 
for stack machine) equiva- 
lent to load stack, add swap 
top two stack data 

Reset stack location to N 

A. "and" two top stack data 

MOVE M, - (RO)" 

MOVE A, - (RO) 

MOVE (RO)+. A 

MOVE (RO). -(RO) 

ADD (R0j-k. @RO 

See add 

NEG @ R O  

CLR @ R O  

BSET (RO)+, @RO 

COM @RO 

TST @ R O  

BR (-, f .  <. >/, >. <) 

JUMP 

ADD A. @RO 

MOVE (RO)+, R1 
MOVE (RO)+. R 2  
MOVE R 1 ,  -(RO) 
MOVE R2, -(RO) 

MOVE N, RO 
COM @RO 

BCLR (RO)+, @ R O c  

. Stack pointer has been arbitrarily used as register RO for this 
example 

PDP-I 1 with the larger DEC PDP-IO. A 16-bit 
processor performs better than the DEC PDP- 
10 in terms of bit efficiency, but not with time 
or memory cycles. A PDP-11 with a 32-bit-wide 
memory would, however, decrease time by 
nearly a factor of 2, making the times essentially 
comparable. 

Use as a 2-Address Machine. Table 3 lists 
typical 2-address machine instructions together 
with the equivalent PDP-I 1 instructions for 
performing the same operations. The most use- 
ful instruction is probably the MOVE instruc- 
tion because it does not use the stack or general 
registers. Unary instructions that operate on 
and test primary memory are also useful and 
efficient instructions. 

Table 3. Two-Address Computer Instructions 
and Equivalent PDP-11 instructions 

Two-Address Computer PDP-11 

A +- B; transfer B to A 

A +A -I- B; add 

-, x . /  See add 

A + - A;  negate 

A + A  V B; inclusive or 

A t  i A ;  not COM 

Jump unconditional JUMP 

Test A, and transfer to B TST A 
BR (-, f .  >. <, <. >/) B 

MOVE B, A 

ADD B. A 

NEG A 

BSETB. A 

Extensions of the Instruction Set for Real 
(Floating-point) Arithmetic 

The most significant factor that affects per- 
formance is whether a machine has operators 
for manipulating data in a particular format. 
The inherent generality of a stored program 
computer allows any computer by subroutine to 
simulate another -given enough time and mem- 
ory. The biggest and perhaps only factor that 
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separates a small computer from a large com- 
puter is whether floating-point data is under- 
stood by the computer. For example, a small 
computer with a cycle time of 1.0 microsecond 
and 16-bit memory width might have the fol- 
lowing characteristics for a floating-point add, 
excluding data accesses: 

Programmed: 250 ps 

Since the instruction set operation code is al- 
most completely encoded already for byte and 
word-length data, a new encoding scheme is 
necessary to specify the proposed additional in- 
structions. This scheme adds two instructions: 
enter floating-point mode and execute one 
floating-point instruction. The instructions for 
floating-point and double-word data are shown 
in Table 4. 

Programmed (but special 75ps 
normalize and differencing LOGICAL DESIGN OF S(UNIBUS) AND Pc 

of exponent instructions): The logical design level is concerned with the 
Microprogrammed 25 ps physical implementation and the constituent 

hardware: combinational and sequential logic elements 
that form the various computer components 
(e.g., processors, memories, controls). Phys- Hardwired: 2 PS 

ically, these components are separate and con- 
nected to the Unibus following the lines of the 
PMS structure. 

It should be noted that the ratios between 
programmed and hardwired interpretation var- 
ies by roughly two orders of magnitude. The 
basic hardwiring scheme and the programmed 
scheme should allow binary program com- 
patibility, assuming there is an interpretive pro- 
gram for the various operators in the Model 20. 
For example, consider one scheme that would 
add eight 48-bit registers that are addressable in 
the extended instruction set. The eight floating 
registers F would be mapped into eight double- 
length (32-bit) registers D. In order to access the 
various parts of F or D registers, registers FO 
and F1 are mapped onto registers RO to R2 and 
R3 to R5. 

Unibus Organization 

Figures 4 and 5 of Chapter 14 diagram the Pc 
and the entering signals from the Unibus. The 
control unit for the Unibus, housed in Pc for 
the Model 20, is not shown in the figure. 

The PDP-I 1 Unibus has 56 bidirectional sig- 
nals conventionally used for program- 
controlled data transfers (processor to control), 
direct memory data transfers (processor or con- 
trol-to-memory) and control-to-processor inter- 
rupt .  The  Unibus is interlocked; thus, 

Table 4. Floating-point and Double-Word Data  Instructions 

Binary Ops OP Floating Point/f Double Word/d 

bop’ S D t 

+ 
X 
/ 
compare 

- 

unary ops 
uop’ D - 

FMOVE DMOVE 
FADD DADD 
FSU B DSUB 
FMUL DMUL 
FDlV DDlV 
FCM P DCMP 

FNEG DNEG 
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transactions operate independently of the bus 
length and response time of the master and 
slave. Since the bus is bidirectional and is used 
by all devices, any device can communicate with 
any other device. The controlling device is the 
master, and the device to which the master is 
communicating is the slave. For example, a 
data transfer from processor (master) to mem- 
ory (always a slave) uses the Data Out dialogue 
facility for writing and a transfer from memory 
to processor uses the Data In dialogue facility 
for reading. 

Bus Control. Most of the time the processor 
is bus master fetching instructions and oper- 
ands from memory and storing results in mem- 
ory. Bus mastership is determined by the 
current processor priority and the priority line 
upon which a bus request is made and the phys- 
ical placement of a requesting device on the 
linked bus. The assignment of bus mastership is 
done concurrent with normal communication 
(dialogues). 

Unibus Dialogues 

Three types of dialogues use the Unibus. All 
the dialogues have a common protocol that first 
consists of obtaining the bus mastership (which 
is done concurrent with a previous transaction) 
followed by a data exchange with the requested 
device. The dialogues are: Interrupt; Data In 
and Data In Pause; and Data Out and Data Out 
Byte. 

Interrupt. Interrupt can be initiated by a 
master immediately after receiving bus master- 
ship. An address is transmitted from the master 
to the slave on Interrupt. Normally, subordi- 
nate control devices use this method to transmit 
an interrupt signal to the processor. 

Data In and Data In Pause. These two bus 
operations transmit slave’s data (whose address 
is specified by the master) to the master. For the 
Data In Pause operation, data is read into the 
master and the master responds with data 
which is to be rewritten in the slave. 

Data Out and Data Out Byte. These two 
operations transfer data from the master to the 
slave at  the address specified by the master. For 
Data Out, a word at the address specified by the 
address lines is transferred from master to  slave. 
Data Out Byte allows a single data byte to  be 
transmitted. 

Processor Logical Design 

The Pc is designed using TTL logical design 
components and occupies approximately eight 
8 inch X 12 inch printed circuit boards. The Pc 
is physically connected to two other com- 
ponents, the console and the Unibus. The con- 
trol for the Unibus is housed in the Pc and 
occupies one of the printed circuit boards. The 
most regular part of the Pc is the arithmetic and 
state section. The 16-word scratchpad memory 
and combinational logic data operators, D 
(shift) and D (adder, logical ops), form the most 
regular part of the processor’s structure. The 
16-word memory holds most of the 8-word pro- 
cessor state found in the ISP, and the 8 bits that 
form the Status word are stored in an 8-bit reg- 
ister. The input t o  the adder-shift network has 
two latches which are either memories or  gates. 
The output of the adder-shift network can be 
read to either the data o r  address parts of the 
Unibus, or back to the scratchpad array. 

The instruction decoding and arithmetic con- 
trol are less regular than the above data and 
state and these are shown in the lower part of 
the figure. There are two major sections: the in- 
struction fetching and decoding control and the 
instruction set interpreter (which, in effect, de- 
fines the ISP). The later control section operates 
on, hence controls, the arithmetic and state 
parts of the Pc. A final control is concerned 
with the interface to the Unibus (distinct from 
the Unibus control that is housed in the Pc). 

CONCLUSIONS 

In this paper we have endeavored to  give a 
compl,.(,. description of the PDP-I 1 Model 20 
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computer at four descriptive levels. These pre- 
sent an unambiguous specification at two levels 
(the PMS structure and the ISP), and, in  addi- 
tion, specify the constraints for the design at the 
top level, and give the reader some idea of the 
implementation at the bottom level logical de- 
sign. We have also presented guidelines for 
forming additional models that would belong to 
the same family. 
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APPENDIX. DEC PDP-11 INSTRUCTION SET PROCESSOR DESCRIPTION (IN ISPL) 

The following description gives a cursory description of the instructions in the ISPL, the initial 
notation of Bell and Newell [1971]. Only the processor state and a brief description of the instruc- 
tions are given. 

Primary Memory State 

M\Mb\Memory [0:216 - 1]<7:0> 
Mw[O:2'5 - 1]<15:0> := M[0:2'6 - 1]<7:0> 

Processor State (9 words) 

R\Registers [0:7]< 15:0> 
SP<15:0> := R[6]<15:0> 
PC<15:0> := R[7]<15:0> 

PS< 15:0> 

Priority\P<2:0> := PS<7:5> 

CC\Condition-Codes<3:0> := PS<3:0> 

Carry\C := CC<O> 

Negative\N := CC<3> 

Zero\Z := CC<2> 

Byte memory 
Word memory mapping 

Word general registers 
Stack pointer 
Program counter 

Processor state register 

Under program control; priority level of 
the process currently being interpreted; a 
higher level process may interrupt or trap 
this process. 

A result condition code indicating an arith- 
metic carry from bit 15 of the last oper- 
ation. 

A result condition code indicating last re- 
sult was negative. 

A result condition code indicating last re- 
sult was zero. 
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Overflow\V := C C < l >  

Trace\T := ST<4> 

Undefined<7:0> := PS<15:8> 

Run 
Wait 

A result condition code indicating an arith- 
metic overflow of the last operation. 

Denotes whether instruction trace trap is to 
occur after each instruction is executed. 

Unused 

Denotes normal execution. 
Denotes waiting for an interrupt. 

Instruction Set 

The following instruction set will be defined briefly and is incomplete. It is intended to give the 
reader a simple understanding of the machine operation. 

MOV (:= bop = 0001) -+ (CC,D t S); 
MOVB (:= bop = 1001) -+ (CC,Db t Sb); 

Binary Arithmetic: D t D b S; 
A D D  (:= bop = 01 10) -+ (CC,D e D + S); 
SUB (:= bop = 11 10) -+ (CC,D t D - S); 
CMP (:= bop = 0010) -+ (CC t D - S); 
CMPB (:= bop = 1010) -+ (CC t Db - Sb); 
MU L (: = bop = 01 1 1) -+ (CC, D c D X S) 

DIV (:= bop = 11 11) -+ (CC, D t D/S); 

Unary Arithmetic: D t US; 

CLR (:= UOP = 0508) + (CC,D t 0); 
CLRB (:= UOP = 10508) -+ (CC,Db t 0); 
COM (:= UOP = 0518) -+ (CC,D t - I D ) ;  
COMB (:= UOP = 10518) -+ (CC,Db t 1 D b ) ;  
INC( :=  UOP = 0528) + (CC,D t D + 1); 
INCB (:= UOP = 10528) -+ (CC,Db t Db + 1); 
DEC (:= UOP = 0538) -+ (CC,D t D - 1); 
DECB (:= UOP = 10538) -+ (CC,Db t D b  - 1); 
NEG (:= UOP = 0548) -+ (CC,D t - D); 
NEGB (:= UOP = 10548) -+ (CC,Db t - Db) 
ADC (:= UOP = 0558) -+ (CC,D t D + C);  
ADCB (:= UOP = 10558) -+ (CC,Db t Db + C);  
SBC (:= UOP = 0568) -+ (CC,D t D - C); 

Move word 
Move byte 

Add 
Subtract 
Word compare 
Byte compare 
Multiply, if D is a register then 
a double length operator 
Divide, if D is a register, then a 
remainder is saved 

Clear word 
Clear byte 
Complement word 
Complement byte 
Increment word 
Increment byte 
Decrement word 
Decrement byte 
Negate 
Negate byte 
Add the carry 
Add to byte the carry 
Subtract the carry 
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SBCB (:= UOP = 10568) -+ (CC,Db t Db - C); 
TST (:= UOP = 057s) -+ (CC + D); 
TST (:= UOP = 10578) -+ (CC + Db); 

Shift Operations: D t D X 2”; 

ROR (:= sop = 0608) -+ (C 0 D t C 0 D/2(rotate)); 
RORB (:= sop = 10608) -+ (C 0 Db t C 0 Db/2(rotate)); 
ROL (:= sop = 0618) -+ (C 0 D t C 0 D X 2 (rotate)); 
ROLB (:= sop = 10618) -+ (C 0 Db t C 0 Db X 2 (rotate]); 
ASR (:= SOP = 0628) -+ (CC,D +- D X 2); 
ASRB (:= SOP = 10628) -+ (CC,Db + Db/2); 
ASL (:= SOP = 0638) -+ (CC,D t D X 2); 
ASLB (:= SOP = 10638) -+ (CC,Db + Db X 2); 
ROT (:= SOP = 0648) -+ (C 0 D + D X 2’); 
ROTB (:= SOP = 10648) -+ (C 0 Db + D X 2’); 
LSH (:= sop = 0658) -+ (CC,D t D X 2S(logical)); 
LSHB (:= sop = 10658) -+ (CC,Db t Db X 2S(logical]); 
ASH (:= SOP = 0668) -+ (CC,D t D X 2’); 
ASHB (:= SOP = 10668) -+ (CC,Db e Db X 2 ’); 
NOR (:= sop = 0678+(CC,D t normalize (D)); 

NORD (:= sop = 10678 + (Db tnormalize (Dd)); 

SWAB (:= SOP = 3) -+ (CC,D + D<7:0, 15:8>) 

(R [ r’] -+ normalize-exponent (D)); 

(R[r’] t normalize,exponent (D)); 

Logical Operations 

BIC (:= bop = 0100) -+ (CC,D t D + D A 1s ) ;  
BICB (:= bop = 1100) -+ (CC,Db e Db V TSb); 
BIS (:= bop = 0101) -+ (CC,D t D V S); 
BISB (:E bop = 1101 -+ (CC,Db t Db V Sb); 
BIT (:= bop = 0011) -+ (CC + D A S); 
BITB (:= bop = 101 1) -+ (CC e Db A Sb); 

Branches and Subroutines Calling: PC t f; 

JMP (:= SOP = 00018) -+ (PC +- D’); 
BR (:= brop = 0116)  -+ (PC e PC + offset); 
BEQ (:= brop = 0316) -+ ( Z  -+ (PC t P c  + offset)); 
BNE (:= brop = 02,6) -+ ( i Z  -+ (PC t P c  + offset)); 
BLT (:= brop = 0516) -+ (N 0 V -+ (PC e PC + offset)); 
BGE (:= brop = 0416) -+ (N = V -+ (PC t PC + offset)); 
BLE (:= brop = 0716)-+ ( Z  V (N 0 V ) -+ (PC PC + offset)); 

Subtract from byte the carry 
Test 
Test byte 

Rotate right 
Byte rotate right 
Rotate left 
Byte rotate left 
Arithmetic shift right 
Byte arithmetic shift right 
Arithmetic shift left 
Byte arithmetic shift left 
Rotate 
Byte rotate 
Logical shift 
Byte logical shift 
Arithmetic shift 
Byte arithmetic shift 
Normalize 

Normalize double 

Swap bytes 

Bit clear 
Byte bit clear 
Bit set 
Byte bit set 
Bit test under mask 
Byte bit test under mask 

Jump unconditional 
Branch unconditional 
Equal to zero 
Not equal to zero 
Less than (zero) 
Greater than or equal (zero) 
Less than or equal (zero) 
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BGT (:= brop = 0616) -+ ( 1 ( Z  V (N 0 V)) -+ (PC t PC + 
BCS/BHIS (:= brop = 8716) -+ (C -+ (PC t PC + offset)); 

offset)); 

BCC/BLO (:= brop = 8616) -+ (IC -+ (PC t PC + offset)); 
BLOS (:= brop = 8316) -+ (C A Z + (PC t PC + offset)); 
BHI (: = brop = 8216) -+ ((1 C V Z) -+ (PC t PC + offset)); 
BVS (:= brop = U I 6 )  -+ (V + (PC t PC + offset)); 
BVC (:= brop = 8416) + (IV -+ (PC t PC + offset)); 
BMT (:= brop = 8116) -+ (N -+ (PC t PC + offset)); 
BPL (:= brop = 8016) + ( i N  + (PC t PC + offset)); 
JSR (:= SOP = 00408) -+ 

(SP t SP - 2; next 
M[SP] t R[sr]; 
R[sr] t PC; PC t D); 

R[dr] t M[SP]; 
RTS(: = i = 000200~) -+ (PC t R[dr]; 

SP t SP + 2); 

Miscellaneous Processor State Modification: 

RTI (: = i = 2 8 )  -+ (PC t M[SP]; 

PS t M[SP]; 
SP t SP + 2; next 

SP t SP + 2); 
HALT (: = i = 0) + (Run t 0); 
WAIT (: = i = 1) -+ (Wait t 1); 
TRAP (: = i = 3) -+ (SP c SP + 2; next 

M[SP] t PS; 
SP t SP + 2; next 
M[SP] t PC; 
PC + M [348]; 
PS t M[12]); 

EMT (: = brop - 8216) -+ (SP t SP + 2; next 
M[SP] e PS; 
SP t SP + 2; next 
M[SP] t PC; 
P c  t M[308]; 
PS t M[328]); 

IOT (: = i = 4) + (see TRAP) 
RESET (: = -i = 5) -+ (not described) 
OPERATE(: = i<5:15> = 5 ) - +  

(i<4> + (CC t CC V i<3:0>); 
i i<4> -+ (CC + CC A 1 i<3:0>)); 

end Instruction- execution 

Less greater than (zero) 
Carry set; higher or same (un- 
signed) 
Carry clear; lower (unsigned) 
Lower or same (unsigned) 
Higher than (unsigned) 
Overflow 
No overflow 
Minus 
Plus 
Jump to subroutine by putting 
R[sr], PC on stack and loading 
R[sr] with PC, and going to  
subroutine at D ) 
Return from subroutine 

Return from interrupt 

Trap to M[348] store status 
and PC 

Enter new process 
Emulator trap 

1 / 0  trap to M[208] 
Reset to external devices 
Condition code operate 
Set codes 
Clear codes 



Cache Memories for PDP-11 
Family Computers 

WILLIAM D. STRECKER 

INTRODUCTION 

One of the most important concepts in com- 
puter systems is that of a memory hierarchy. A 
memory hierarchy is simply a memory system 
built of two (or more*) memory technologies. 
The first technology is selected for fast access 
time and necessarily has a high per-bit cost. 
Relatively little of the memory system consists 
of this technology. The second technology is se- 
lected for low per-bit cost and necessarily has a 
slow access time. The bulk of the memory sys- 
tem consists of this technology. The use of the 
hierarchy is coordinated by user software, sys- 
tem software, or hardware so that the overall 
characteristics of the memory system approx- 
imate the fast access of the fast technology, and 
the low per-bit cost of the low cost technology. 
An example of a user software managed hier- 
archy is core/disk overlaying; an example of a 
system software managed hierarchy is core/disk 
demand paging. The prime example of a hard- 
ware managed hierarchy is a bipolar cache/core 
memory system. 

Until recently, the concept of cache memory 
appeared only in very large scale, performance- 
oriented computer systems such as the IBM 
360/85 [Conti, 1969; Conti et ai., 19681 and 370 
models 155 and larger. Recently a small cache 
was announced as an option for the DG Eclipse 
[Data General, 19741 computer system. A 
larger, internal cache memory is part of a re- 
cently announced Digital PDP-I 1 family com- 
puter system: the PDP-11/70 [DEC, 19751. The 
content of this paper is a summary of the re- 
search done on the feasibility of using a bipolar 
cache/core hierarchy in PDP-11 family com- 
puter systems. 

CACHE MEMORY 

A cache memory is a small, fast, associative 
memory located between the central processor 
Pc and the primary memory Mp. Typically the 
cache is implemented in bipolar technology 
while Mp is implemented in MOS or magnetic 

*Memory hierarchies can, of course, consist of three o r  more technologies. Discussion and analysis of these multilevel 
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hierarchies is a fairly obvious generalization of the discussion and analysis given here. 
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core technology. Stored in the cache are address 
data AD pairs consisting of an Mp address and 
a copy of the contents of the Mp location corre- 
sponding to that address. 

The operation of the cache is as follows. 
When the Pc addresses Mp, the address is first 
compared against the addresses stored in the 
cache. If there is a match, the access is per- 
formed on the data portion of the matched AD 
pair. This is called a hit and is performed at the 
fast access time of the cache. If there is no 
match - called a miss - Mp is accessed as usual. 
Generally, however, an AD pair corresponding 
to the latest access is stored in the cache, usually 
displacing some other A D  pair. It is the latter 
procedure which tends to keep the contents of 
the cache corresponding to the Mp locations 
most commonly accessed by the Pc. Because 
programs typically have the property of locality 
(i.e., over short periods of time most accesses 
are to a small group of Mp locations), even rela- 
tively small caches have a majority of Pc ac- 
cesses resulting in hits. The performance of a 
cache is described by its miss ratio - the fraction 
of all Pc references which result in misses. 

CACHE ORGANIZATION 

There are a number of possible cache organi- 
zational parameters. These include: 

1 .  

2. 

3. 

4. 
5 .  

The size of the cache in terms of data 
storage. 
The amount of data corresponding to 
each address in the A D  pair. 
The amount of data moved between Mp 
and the cache on a miss. 
The form of address comparison used. 
The replacement algorithm which de- 
cides which AD pair to replace after a 
miss. 

6. The time at which Mp is updated on 
write accesses. 

The most obvious form of cache organization 
is fully associative with the data portion of the 
AD pair corresponding to basic addressable 
unit of memory (typically a byte or word), as 
indicated by the system architecture. On a miss, 
this basic unit is brought into the cache from 
Mp. However, for several reasons, this is not 
always the most attractive organization. First, 
because procedures and data structures tend to  
be sequential, it is often desirable, on a miss, to 
bring a block of adjacent Mp words into the 
cache. This effectively gives instruction and 
data pre-fetching. Second, when associating a 
larger amount of data with an address, the rela- 
tive amount of the cache storage which is used 
to store data is increased. The number of words 
moved between Mp and the cache is termed the 
block size. The block size is also typically the 
size of the data in the AD pair* and is assumed 
to be that for this discussion. 

In a fully associative cache, any AD pair can 
be stored in any cache location. This implies 
that, for a single hardware address comparator, 
the Mp address must be compared serially 
against the address portions of the A D  pairs - 
which is too slow. Alternatively there must be a 
hardware comparator for each cache location - 
which is too expensive. An alternative form of 
cache organization which allows for an inter- 
mediate number of comparators is termed set 
associative. 

A set associative cache consists of a number 
of sets which are accessed by indexing rather 
than by association. Each of the sets contains 
one or more AD pairs (of which the data por- 
tion is a block). There are as many hardware 
comparators as there are AD pairs in  a set. The 

* In a few complex cache organizations such as that used in the IBM 360/85, the  size of the D portion of the A D  pair (called a 
sector in the  360/85) is larger than the block size. That  potential will be ignored in this discussion. 
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understanding of the operation of a set associ- 
ative cache is aided by Figure 1.  The n bit Mp 
address is divided into three fields of 1, i, and b 
bits. Assume that there are 2i sets. The i-bit in- 
dex field selects one of these sets. The A portion 
of each AD pair is compared against the I-bit 
label field* of the Mp address. If there is a 
match, the b-bit byte field selects the byte (or 
other sub-unit) in the D portion of the matched 
AD pair. 

7-"- 
1 - I I i - b -  

I LABEL I INDEX I BYTE 1 

This strategy is termed write-through. Alterna- 
tively, only the cache can be updated on a write 
hit, and only when the updated AD pair is re- 
placed on some future miss is Mp updated. This 
strategy is termed write-back. The choice be- 
tween these two strategies involves systems con- 
siderations which are beyond the scope of this 

There are other possible asymmetries in the 
handling of reads and writes. One possibility is 
that after a write miss an AD pair correspond- 
ing to that access is not stored in the cache. This 
is termed no-write-allocate. The alternative is, 
of course, termed write-allocate. 

paper.t 

Figure 1 .  Address  fields for a s e t  associative c a c h e  

I f  there is no match, Mp is accessed and (gen- 
erally) a new AD pair is moved into the cache. 
Which of the AD pairs to be replaced in the set 
is selected by the replacement algorithm. Typi- 
cal replacement algorithms are: first in, first out 
(FIFO); least recently used (LRU), or random 
(RAND). 

There are two limiting cases of the set associ- 
ative organization. When the number of sets is 
the cache size in blocks, only a single hardware 
comparator is needed. The resulting organiza- 
tion is called direct mapped. It is the simplest 
form of cache organization. When there is only 
one set, clearly a fully associative cache results. 

So far in the discussion there has been no dis- 
tinction made between read and write accesses. 
When the Pc makes a write access, ultimately 
Mp must be updated. There are two obvious 
times when this can be done. First is at the time 
the write access is made. Both Mp and the cache 
(if there is a hit) are updated simultaneously. 

CACH E M EM 0 RY SIM U LATl ON 

The understanding of memory hierarchies 
(and programs) has not reached the point where 
cache performance can be predicted analytically 
as a function of cache organizational parame- 
ters. As a consequence, the studying of cache 
memory behavior is done through simulation. 
(Some cache simulation results for other com- 
puter architectures are reported in [Conti et al., 
1968; Meade, 1970; Bell et al., 1974; Gibson, 
19671.) For the purposes of this study, a two 
part simulator was constructed. 

The first part was a PDP-11 simulator. This is 
a PDP-11 program which runs other PDP-I1 
programs interpretively. A variety of properties 
of the interpreted programs can be collected, in- 
cluding the sequence of generated Mp ad- 
dresses. The latter is termed an address trace. 
The address trace is processed by the second 
part, the cache simulator. This is parameterized 
by cache organization and determines the miss 
ratio for a given address trace. 

* N o t e  that,  in a set associative cache, only the label field must be stored in the cache A D  pair - not the entire Mp address. 

t For the PDP-1 I /70 system, write-through was chosen. The  main impact of this is that  each write access, as well as each read 
miss, results in an M p  access. Data suggests that ,  in PDP-I Is, about 10 percent of Pc accesses are  writes, 
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CACHE SIMULATION RESULTS 

Since the performance of cache memory is a 
function not only of cache organization param- 
eters but also of the program run, it is desirable 
to run cache simulations with a wide variety of 
programs. Multiplying these by a wide variety 
of a cache’s organizational parameters to be 
simulated resulted in a considerable amount of 
simulation data of which only the highlights are 
reported here. 

The first experiment was to determine the ap- 
proximate overall size of the cache memory. 
Plots of the miss ratio against cache size for sev- 
eral programs* are given in Figure 2 .  (All sizes 
in both the figures and the discussion are 16-bit 
PDP-I 1 words.) A block size of two and a set 
size of one were held constant. In general, the 
miss ratio falls rapidly for caches up to 1024 
words and falls less rapidly thereafter. 

Figure 3 depicts the effect of set size (associ- 
ativity) on cache performance. In order to clar- 
ify the results, Figures 3 through 6 only contain 
simulation data for a single program (the 
Macro assembler) which had the highest miss 

0 4  

z? 0 3  
a 
LL 
,A : 0 2  

01 

0 

BLOCK SIZE = 2 
SET SIZE = 1 

M A C R O  
ASSEMBLER 

IFFTI 

0 2 5 6  512  1024 2048 
C A C H E  SIZE 

Figure 2. 
miss  ratio. 

Effect of c a c h e  size on  

ratio in  Figure 2 .  As expected, a larger set size 
reduces the miss ratio. The largest improvement 
occurs in going from set size one to set size two. 
Although not shown, even going to fully associ- 
ative cache has little further effect on the miss 
ratio. 

BLOCK S IZE = 2  
0 2  

0 1  2 4 5 
SET SIZE 

Figure 3. 
miss ratio. 

Effect of s e t  size o n  

0 3  

0.2 

z? 
4 

,A 0.1  
E 
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SET S IZE = 1 

0 1 2  4 5  
BLOCK SIZE 

Figure 4. 
miss ratio. 

Effect of block size on 

*These programs a re  system and  user programs running under the PDP-I I DOS operating system. They include a Macro  
assembler, F O R T R A N  compiler, PIP (a file utility program), and  F O R T R A N  executions of numerical applications. T h e  
range of miss ratios is typical for the much wider group of programs actually simulated. Indeed, t he  miss ratio for the  Macro 
assembler for a given cache size was the worst of any program simulated. 
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? NO ALLOCATE 

CACHE SIZE = 1024 

SET SIZE = 2 

BLOCK SIZE = 2 

FIFO R A N D  LRU 

Figure 5. Effect of replacement 
algorithm and write allocation on 
miss ratio. 

I n  Figure 4, the impact of block size is shown. 
Especially in smaller caches, going to a larger 
block significantly reduces the miss ratio. This 
is a result of a smaller cache depending more on 
the pre-fetching effect for its performance. 

The effect of write allocation and replace- 
ment algorithm is given in Figure 5 .  For the 
program considered, there is a negligible per- 
formance difference across the different strate- 
gies. 

In  Figure 6 ,  the effect of periodically clearing 
the cache is depicted. This approximates the ef- 
fect on the cache of rapid context switching in 
that, when a new program is brought in, the 
cache appears “clear” to it. Even completely 
clearing the cache every 300 Pc accesses only 
degrades the miss ratio to 0.3. This represents a 
worst case condition that would be unrealized 
in practice. For example, the “new program” 
brought in every 300 Pc references might be an 

0 4  

C A C H E S I Z E  = 1024 

0 300 3000 30000 

CLEAR INTERVAL IACCESSESI 

Figure 6. 
miss ratio. 

Effect of clear interval on 

interrupt handler. Any program running that 
often would typically find that the cache always 
contained information relevant to it. Indeed, 
for the cache organization given, it is impossible 
in 300 accesses to significantly clear a 1024- 
word cache. 

CONCLUSIONS 

The performance goals of the PDP-I 1/70 
computer system required the typical miss ratio 
to be 0.1 or less. Analysis of the preceding data, 
with emphasis on the breaks in the curves, sug- 
gested that the optimal organization was a 
cache size of 1024 words, block size of two 
words, and a set size of two. Because the data 
suggests that the replacement algorithm and 
write allocation strategies have negligible effect, 
a no-write-allocate strategy and a random re- 
placement algorithm were selected. 
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Buses, The Skeleton of 
Corn pu ter Structures 

JOHN V. LEVY 

INTRODUCTION 

A bus is a communication pathway con- 
necting two or more electrical devices. In the 
context of minicomputer design, buses are the 
physical and electrical structures that determine 
how the building blocks are interconnected. 

I n  every computer system, there are many 
buses: internal pathways connect the registers 
and arithmetic logic of a central processor; in- 
put/output pathways connect processors, mem- 
ories, and peripheral devices; and external 
communication buses attach computer systems 
to the telephone and other data communication 
pathways. In this chapter, the discussion is re- 
stricted to buses that interconnect computer 
system components that are designed by differ- 
ent engineering groups. 

This particular approach may sound out of 
place, but one of the most important functions 
of a bus is to provide a well specified interface 
between complex subsystems. We exclude from 
discussion internal processor register transfer 

buses, as well as external buses whose specifica- 
tions are determined by engineers not involved 
in the minicomputer design process. Although 
none of the examples in this chapter is drawn 
from multiprocessor systems, most of the de- 
sign experience presented is relevant to such 
systems. 

What Does a Bus Do? 

A bus is a communication medium. Each one 
exists in order to transfer information from 
place to place within a computer system. In this 
chapter, we attempt to illustrate the com- 
plexities of bus design by drawing on the real 
history of some PDP-11 Family designs.* In 
computer systems being manufactured and 
sold, the success of bus designs is measured by 
the following criteria: 

1. Does the bus successfully establish the 
communication pathway required? 

* A l l  of the real buses presented as  exan~-,!es are proprietary products of Digital Equipment Corporation, protected by 
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United States and  foreign patents.  
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2. Is the bus well specified (and well docu- 
mented), so that a series of interfaces de- 
signed either concurrently or over a 
period of time by different engineers will 
in fact be compatible? 
Does the bus avoid imposing unneces- 
sarily strict performance constraints on 
the system? 
Is the cost of the bus and its connections 
commensurate with the computer system 
and the bus’ role in it? 
Does the bus design anticipate expan- 
sion of the system in the future (without 
excessive cost)? 
Can the bus be manufactured and tested 
in high volume production without ex- 
cessive hand-crafting or tuning? 

3 .  

4. 

5 .  

6. 

Beyond the scope of this chapter are some ad- 
ditional functions of buses, such as providing a 
means to diagnose and repair the system com- 
ponents connected to it and to  allow measure- 
ment of system loads and performance. 

Why Buses Are Important 

As the above list of criteria suggests, there are 
many ways in which poor bus design can spoil 
the performance or cost/performance ratio of 
an otherwise well designed computer system. 
Failure to  anticipate future expansion of a com- 
puter system is a common problem in bus de- 
signs. The PDP-I l Unibus, a very successful 
bus, first became inadequate as the main inter- 
connection pathway when processor and mem- 
ory speeds surpassed the bandwidth capability 
of the Unibus. Later, the Unibus 18-bit memory 
address width became a limitation. 

Computer design is driven by advances in 
semiconductor technology. Every time the cost 
of the components of a computer subsystem de- 
creases by, say, 50 percent, the subsystem is 
redesigned to take advantage of the lower cost. 
At present, the performance/cost (or storage 
capacity/cost) ratio for logic and memory is in- 
creasing a t  a rate of up to 100 percent per year. 

But the bandwidth/cost and other performance 
ratios of interconnections are steady or decreas- 
ing slightly. As a result, bus designs tend to per- 
sist in time across several redesigns of the other 
computer system components. This justifies the 
extensive engineering effort required in the in- 
itial design of a bus. 

How Buses Are Designed 
To design a bus, the engineer must first find 

out what system components are to be inter- 
connected. Then, studying the requirements of 
communications between these components, 
the engineer chooses a structure. Finally, the 
cost constraints and available technologies lead 
to a choice of implementation. 

The five-function model given below is not a 
set of bus designs but a functional model that 
results from taking the commonly used mini- 
computer building blocks and asking: What 
communications need to  occur between this 
component and each other component? The 
model shows the five types of communications 
which were the answers to that question. The 
five functional pathways are the maximum 
number of interconnections that would be use- 
ful in a conventional single-processor mini- 
computer. Real bus designs combine these 
functions in cost-effective implementations. 

After choosing the structure and functions of 
buses, the engineer must write a specification. 
This is crucial to the success of bus design if it is 
to be interfaced by a number of different engi- 
neers. As an example of the detail that can go 
into a bus specification, Figures 1,  2, and 3 
show how the Massbus Data Read operation 
has been specified in a DEC internal engineer- 
ing document. 

After writing a specification, the engineer 
builds a prototype and tests it. If other engi- 
neers concurrently build interfaces to  the bus, 
discrepancies, errors, and misunderstandings 
will be uncovered sooner. Finally, it is impor- 
tant that the specification be maintained, up- 
dating it to conform to the latest known design 
constraints. A very useful appendix to a bus 
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DATA BUS R E A D  S E Q U E N C E  
1 A read command is loaded into the Control registar 01 the drive. I f  the 

command 1s valid. the drive enables its data bus receivers and drivers 
and asserts OCC 
Not mote than 100 microseconds after step 1. the controller asserts 
RUN 
After a cable delay. the drive receives the RUN assertion. Disk drives 
now begin searching for the desired sector. Tape drives begin tape mo- 
n on 
When the drive has read the fwst data word, It generates parity lor the 
word. the data and DPA are gated onto the data lines and SCLK is 
asserted 
After a cable delay, the controller receives the SCLK assertton 
The drive negates SCLK no less than T nanoseconds alter asserting it, 
where T 1s either 225 nanoseconds or 30 percent of the nominal b u n t  
data period of the drive. whichever is  greater. The Data lines should be 
maintained valid lor no less than one hall of the SCLK interval after 
SCLK Is negated. 

7 After a cable delay. the controller receives the SCLK negation. The 
controller strobes the D lines and DPA and checks parity 

8 I1 there 1s more data t o  be read in this block, then not lass than T 
nanoseconds after step 6. the drive gates out the next data word onto 
the D lines. generates DPA. and asserts SCLK Steps 5. 6. and 7 then 
follow 
Alter the negation of SCLK (step 6 )  on the last word 01 data in the 
block. the drive asserts EEL 
After a cable delay. the controller receives the EEL assertion. A t  this 
time. the controller must decide whether or not to have the drive read 
the next black of data without disconnecting from the data bus Ithe 
controller may already have negated the RUN line). 
I1 the controller decides not to read the next block. it negates the RUN 
line not later than 500 nanoseconda after step 10. 
After a cable delay. the drive receives the RUN negation Ithe RUN line 
may already have been negatedl 
Not less than 1500 nanoseconds after step 9. the drive negates EEL. At 
this time the drive strobes the RUN line I1 RUN has been negated. the 
drive disconnects from the data bus lthe D R Y  bit shwld be set and 
OCC negated at this time) 

1 4  After a cable delay. the controller receives the EEL negation (the con- 
troller may now generate an end~ol-transfer interrupt and start another 
data translerl 

2 

3 

4 

5 
6 

9 

10 

11 

12 

13 

CONTROLLER 

DATA TRANSFER 

I h STROBE DATA 

Figure 1 
described in the Massbus specification 

The Massbus Data Read operation as 

specification is a list of the design problems that 
came up during the engineering of connections 
to it and the details of how they were resolved. 
This was done for the Massbus, in a section of 
the specification called “Design Notes.” 

NOTE 

p, 
ENOOF TRANSFER 

DRIVE 

RESETGO 

SET ATA 
ASSERT A T l N  

ENABLE DATA BUS 
ASSERT OCC 
RESETDRY 

NO 

ASSERTDATA 
ASSERTSCLI  

NEGATE S C L I  

VES 

ASSERT EBL 

NEGATE EBL 

1 = 22s “3 OR 3P 
WHlCHEYER I S  G R E I T E R  

D A T A  PERIOD OF 
RESETGO DRlYE 
S E T D R Y  

FUNCTIONS OF BUSES IN COMPUTER 
SYSTEMS: A FIVE-FUNCTION MODEL 

The functional building blocks of computers 
are central processing units, primary memory, 
input/output controllers, and peripheral units. 
Peripherals tend to be classed as either second- 
ary memory or  transducers (usually terminals). 

Figure 4 shows these components in a tradi- 
tional single-processor minicomputer system. 
Five different paths are shown interconnecting 
these components. These paths do not represent 

Minimum time from one assertion at SCLK to the next is either 
500 ns or P. whtchever IS greater: maximum unspecified 

Figure 2. 
Massbus specification. 

The Data Read flowchart in the 

actual buses. Instead, we have considered each 
pair of components in the system and asked 
whether they need to communicate with each 
other. I f  so, a pathway between the pair has 
been inserted. This leads to  a model which has 
more interconnection pathways than a typical 
computer has. 



272 THE PDP-11 FAMILY 

I I I 
I I 
I I I 
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I I I I 

RUN IDIIRI 

EEL IDIITI I I I L 

t t t f !t It, !t It, !t 11 !I t !  t f t t t 
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U = UNSPECIFIED MAXIMUM 
1 = 226 OR 30% OF P WHICHEVER IS GREATER 
P = NOMINAL BURST DATA PERIOD OF DRIVE 

IC1 = ATTHE CONTROLLER NOTES 
IO1 = A T  THE DRIVE 1. 100ZS. max 
IT1 = TRANSMITTING 2. zwrs. m a i  
in1 = RECEIVING 

Figure 3 The timing diagram of a Data Read in the Massbus specification 

CONTROLLER 

LEGEND 
A = ADDRESS PER WORD 
B = BLOCKTRANSFER 
C =CONTROL 
0 = DEVICE 
E = EXTERNAL 

I 
TERMINAL 
CONTROLLER 

TERMINAL 

Figure 4. A five-function model of computer buses. 



BUSES, THE SKELETON OF COMPUTER STRUCTURES 273 

Table 1. Requirements for the Five Pathway Types 

Pathway Types 

A 0 C D E 

Requirement CPU- Controller- CPU- Controller- Controller- 
Controller Peripheral External Memory Memory 

Memory 
Address 

Maximum 
Number of 
Connections 

Latency 
Tolerance 

Bandwidth 

Length 

Large: 222 
(one 
address 
per word) 

Small: Z4 

Low 
(0.5 /.IS) 

High 
(5 Mbytesls) 

Short 
(3  meters) 

Large: 222 
(one 
address 
per block) 

Small: 24 

High 
(50 /.IS) 

Medium 
(1.2 Mbyteds) 

Medium 
(30 meters) 

None None None 

Medium: 26 

Medium 
(5 /.Is) 

Low 
(0.1 M byteds) 

Long 
(30 meters) 
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large: 2 8  

Medium- 
high 

Low-high 

Medium-long 
(to 300 meters) 

Small- 
large: 28 

Medium- 
high 

Low-high 

M ed i u m - long 

In  real computer systems, the functions of these 
pathways are combined into multifunction 
buses in order to  get economical designs. 

There are five types of interconnection shown 
in Figure 4, labeled A ,  B, C ,  D,  and E. These 
labels have the mnemonic value given in the fig- 
ure legend. 

Pathway A ,  connecting the central processor 
(CPU) with the memory, is used to transfer in- 
structions and data. This pathway is distin- 
guished by requiring one address per word. 

Pathway B connects one or more mass stor- 
age and communication controllers to the 
primary memory. It is distinguished by being a 
block transfer medium. Only one memory ad- 
dress per block transfer is needed because the 
data is stored in consecutive memory locations. 

Pathway C is the control pathway. 1 / 0  com- 
mands are sent over this path from the CPU to 
the 1 / 0  controllers, and status information is 
returned from the controllers. 1 / 0  controllers 
can also cause an interruption to the CPU over 

this path. Small amounts of data are sometimes 
transferred over this path, for example, charac- 
ters moved to and from a console terminal. 

Pathways labeled D connect 1 / 0  controllers 
with their peripheral devices. In Figure 4, Path- 
way D I  represents a disk connection and D 2  a 
multiple terminal connection path. The termi- 
nal interconnection does not normally transfer 
blocks of data. Both DI and D2 carry control 
information as well as data. 

Finally, pathway E represents a connection 
to external communication lines. Usually, the 
computer designer does not have control over 
the specification of such external pathways. 

Five key parameters or requirements for 
these pathways affect cost and performance and 
are often traded against each other. Table 1 
summarizes these requirements for the five 
types of pathways. 

Memory addressing means selecting a word or 
block of words within the address space of the 
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memory subsystem. Memory address bits are 
no different from data bits, from the standpoint 
of the bus designer. Both must be transmitted 
from one bus connection to another. However, 
type A pathways must transmit one address per 
word accessed, while type B pathways need only 
send one address per block of words. This dif- 
ference can be exploited to gain lower cost 
buses in systems which implement separate 
buses for the A and B path functions. 

The maximum number of connections to  a bus 
tells us how many signals must be used to select 
a destination for a data transfer on the bus. 
Typically, a bus will carry some number, n, of 
“select” signals, and therefore be able to deliver 
data to as many as 2” connections. On a type A 
pathway, a CPU accesses connections which 
contain memory. We do not typically need 
more than four “select” signals, allowing up to 
16 memory connections. In the case of multi- 
processor shared-memory systems, it may be 
necessary for some additional select codes to  be 
available to identify the processor that is the 
destination for data from memory. 

Latency tolerance refers to how long a delay 
(latency) a connection can tolerate, after it de- 
cides to make a data (word) transfer, until the 
transfer is complete. Bandwidth refers to how 
many data (word) transfers per second can be 
made. 

Latency is different from bandwidth: latency 
refers to the interval, for any one data word 
transfer, from the time it is initiated until it is 
completed. Bandwidth is the repetition rate at 
which the initiation and completion of word 
transfers can be sustained over a given period of 
time. In particular, peak bandwidth - the max- 
imum possible repetition rate - is a parameter 
which strongly affects the cost of a bus, and is 
the bandwidth we refer to  here. 

Type A pathways require both low latency 
and high bandwidth. The performance of a 
CPU-memory system depends heavily on the 
rate (bandwidth) at which words can be deliv- 
ered to the central processor. Furthermore, the 

Comments o n  Unibus Addressing 

Transfers on the Unibus are  not di- 
rected by the selection mechanism just 
described. Instead, there is the single 
concept of memory addresses. Each 
data transfer (type A or type E )  on the 
Unibus is directed to  or  from a 1- or 2- 
byte section of memory. The memory 
address is broadcast to  all connections. 
I f  one of the connections recognizes the 
address as being one of its own, then it 
participates in the data transfer. This 
anonymity allows a very large number 
of connections to be made to the 
Unibus, with each connection imple- 
menting a locally determined number 
of memory bytes. 

For control transfers (type C), the 
Unibus has a concept called the “I/O 
page.” A block of memory addresses 
(the 1/0 page) is reserved for use in ac- 
cessing control and status registers in 
peripheral controllers and in the cen- 
tral processor. The uppermost 8,192 
bytes of memory are never imple- 
mented in real memory. Instead, small 
segments are assigned (by adminis- 
trative procedures) t o  each 1/0 con- 
troller type. Each controller responds 
to data transfers to and from addresses 
within its assigned segment. 

N o  fixed amount of address space 
need be allocated to  a given controller. 
I f  two controllers of the same type are 
connected to a Unibus, one of them is 
assigned to a “floating” address seg- 
ment, an area reserved for such conflict 
resolution. 

Unibus 1 / 0  controllers that perform 
Direct Memory Access (DMA) d o  so 
by making data transfers to memory at 
addresses below the 1 / 0  page. Block 
transfers are performed a word at  a 
time to or from successive memory ad- 
dresses, with the incrementing address 
being maintained by the 1 / 0  controller. 

An 1 / 0  controller on the Unibus 
causes an  interruption by doing a spe- 
cial control transfer whose destination 
is always the CPU. The interrupting 
controller transmits an “interrupt vec- 
tor” as the data. The address lines of 
the Unibus are not used in this transfer. 
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CPU instruction execution and memory access 
times are typically closely matched. Therefore, 
the performance of the system is also very de- 
pendent on low latency in the CPU-memory 
pathway. In this type of pathway, effective 
bandwidth and latency are directly (inversely) 
related to each other. 

On a type B pathway, high bandwidth is also 
typically required. Usually, this is the path by 
which disk and other mass storage data is 
moved to  and from memory. In most cases, the 
rate at which data is transferred is determined 
by the disk subsystem. In minicomputer sys- 
tems developed through 1977, the bandwidth 
required has not exceeded 1.2 megabytes per 
second for an individual disk controller-to- 
memory pathway. 

Type B pathways, on the other hand, tolerate 
relatively long latencies. If  there is sufficient 
buffering of data at  the controller, system per- 
formance is relatively insensitive to delays of as 
much as 100 to 1000 microseconds in starting up 
a block transfer. The insensitivity is due to the 
dominance of relatively long delays already pre- 
sent in disk data accessing. (Mechanical posi- 
tioning, both rotational and radial, may take 
tens of milliseconds in a typical disk access.) 

Type C pathways - the control and inter- 
ruption links - do not require high bandwidth 
compared with CPU instruction and DMA 
data activity. 1 / 0  control commands are issued 
relatively infrequently compared with the in- 
struction execution rate in the CPU. Inter- 
ruptions typically occur even less frequently. 
However, latency tolerance is not very high on 
the control pathway: it is important for inter- 
ruptions to be delivered promptly, and CPU in- 
structions that access 1/0 control and status 
registers usually are prevented from completing 
until the access has been completed. Therefore, 
Table 1 shows latency tolerance as “medium” 
( 1  to 10 microseconds) for type C pathways: it is 
permissible to take a little longer to complete an 
1 / 0  control instruction than other instructions, 
but not so long as initiating a block transfer 
from a disk. 

Type D and E pathways handle interactions 
which are a mixture of type B and type C. 
Therefore, their requirements for latency and 
bandwidth vary over the range shown for types 
B and C .  

Length refers to the maximum possible dis- 
tance along the pathway from one connection 
to another. Maximum length is important be- 
cause i t  affects both performance and cost of a 
bus. The CPU to memory pathway (type A )  has 
been shrinking in length in recent computer de- 
signs because of the relationship between la- 
tency and length. The speed of light (or, more 
properly, of signals in a wire) sets the minimum 
delay between request and response. As a result, 
we see memories and central processors more 
frequently packaged together or in  very close 
proximity. Fortunately, the continual size re- 
duction of a given amount of CPU logic or 
memory has encouraged this trend. The current 
length range of a type A pathway for mini- 
computers is approximately 0.1 to 3 meters. 

High speed block transfer 1 /0  controllers 
also tend to be packaged closer to the memory 
in recent system designs. But since there may be 
many controllers, the length of the type B path- 
way may have to be two to ten times longer 
than the CPU-memory pathway (0.2 to 30 me- 
ters). 

Design Tradeoffs 

Control pathways connecting the central pro- 
cessor to all 1 / 0  controllers often have to  be 
extended out of the CPU-memory package to  
reach peripheral subsystem packages. These 
tend t o  be the longest pathways in a system. 
Frequently, the design choice in connecting a 
peripheral to a minicomputer system is be- 
tween: ( I )  extending the main types B and C 
buses out to reach the farthest peripherals and 
(2) designing type D buses that extend from a 
centrally packaged controller to a remote pe- 
ripheral. Alternative (2) gives maximum flex- 
ibility and performance. But it costs more than 
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(1) and may lead to a proliferation of buses in 
the computer system. Figure 5 shows the two 
alternatives. 

All parameters shown in Table 1 contribute 
to cost. The cost of a computer system could be 
allocated in a simple way to power, logic, mem- 
ory, electromechanical parts, and package. As 
applied to the cost of buses, these become 
power, logic complexity, and cable/connector 
costs. 

Increasing memory addressing requirements 
leads to more signals in the pathway. Each sig- 
nal adds to power and cable costs. Lower band- 
width can be traded for wider memory 
addresses by time-multiplexing the addresses 
with data. Increasing the maximum number of 
connections adds to the electrical load and leads 
to increased power in the bus drivers or to  lower 
bandwidth, as it takes longer for signals to 
settle. Also, more signals are required (logarith- 
mically increasing with the number of con- 
nections) to select the destination of a transfer. 
Increasing maximum length also requires more 
bus drive power for a given signal level and in- 
creases the bus cost. Since longer buses have 
greater propagation delays, we can trade lower 
bandwidth and higher latency for increased 
length. Both length and load (connections) con- 
tribute to signal decay, and therefore these two 
are often traded against each other. For ex- 
ample, each section of a Unibus is rated for a 
maximum length of 50 feet or a maximum of 20 
bus ‘‘loads.’’ Exceeding either limit requires in- 
sertion of a “bus repeater” circuit. A Unibus 
with fewer loads could be operated at longer 
lengths than the maximum 50 feet, but con- 
figuration rules with fixed limits are easier to 

(a) Types B and C pathways contained within the understand. 
“mainframe” package, longer type D paths By accepting increased cost, some perform- 

ance parameters can be enhanced as follows. 
Decreased latency and increased bandwidth can 

1 be achieved by using higher power driver and 
I receiver circuits (such as ECL) which have 
I lower propagation delays in their logic gates. 
I Bandwidth can be increased by providing more 
I buffering logic (complexity) at each connection. 

For a given level of reliability, the data clocking 
rate can be increased with either faster logic 
(higher power) or  more logic parallelism (com- 

r - - - i A, r -- - i r------- 

plexity). More data transmission parallelism 
would mean higher cable and connector costs. 
Lower latency can sometimes be achieved by 

(b) 
the “mainframe” package; short type D paths. 

Single types B and C pathways. extending out of 

distributing the task of arbitration among thk 
connections. More logic is then required at each Figure 5. 

pathways. connection. 
A design tradeoff for types 8 and C 
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There are also considerations of physical and 
electrical environment that affect costs. To 
compensate for noisy environments, error de- 
tection and correction circuits may be added at 
each connection, adding to the complexity. Or 
shielded or twisted-pair cables may be included, 
adding to the cost of the interfaces. For phys- 
ically stressful environments, cable costs may 
become dominant as the cables are armored, 
strengthened, or given noncorrosive wrapping. 
In general, we can trade reduced bandwidth for 
increased immunity to  electrical noise, since 
most noise-induced errors can be overcome by 
repetition and redundant signaling. (At this 
tradeoff, bus design merges with applied com- 
munication theory.) 

EVOLUTION OF THE HIGH 
PERFORMANCE PDP-11 SYSTEMS 

The Unibus, introduced with the PDP-I1 in 
1970, is a novel bus structure because it is a 
single bus to which all system components are 
attached. It can be extended indefinitely; more- 
over, memory modules need not operate syn- 
chronously with the rest of the system. 

In this section the evolution of the high per- 
formance descendants of the PDP-l1/20 is 
traced, with emphasis on the development of 
buses in response to design goals for each 
model. 

PDP-11/20 

The Unibus design is integral to the PDP-I 1 
architecture in the handling of interrupts (the 
priority level of the central processor affects ar- 
bitration) and in the 1/0 page concept (control 
registers appear as memory locations). But the 
important aspect of Unibus design, as a bus, is 
its support of modularity. 

When the PDP-I 1/20 (Figure 6 )  was de- 
signed, it was natural to offer a bus that could 
be interfaced to many types of equipment, in- 
cluding users’ laboratory devices. Digital of- 
fered Unibus interfacing modules (such as the 

DRl1  series) which users of the PDP-11 could 
easily adapt to their own equipment. 

The standardization of interfacing was also a 
deliberate attempt to prolong the service lives of 
Digital’s peripheral equipment. As new mem- 
bers of the PDP-11 family were introduced, 
older peripherals could still be attached to the 
Unibus without electrical modifications. 

The asynchronous data transfer of the Un- 
ibus has allowed DEC to introduce a series of 
memory subsystems with progressively increas- 
ing speeds without changing the Unibus timing 
or data transfer protocol. In a single system, 
various memory technologies can be inter- 
mixed. 

PDP-11/45 

The goal of the PDP-I 1/45 project (Figure 7) 
was to design a very fast central processor to 
match the speed of the 300-nanosecond semi- 
conductor memory which was becoming avail- 
able. 

The PDP-l1/45 design places the semi- 
conductor memory in close proximity to the 
CPU and provides a private type A path, the 
Fastbus. This eliminates many of the access de- 
lays present when a Unibus was between the 
CPU and memory. For compatibility, however, 
it was necessary for the semiconductor memory 
to be accessible to DMA transfers from outside 
the CPU. Therefore, another Unibus was 
brought out of the CPU cabinet. 

With higher CPU speed came the need for 
larger memory sizes. While the PDP- 1 1 /20 can 
have up to 64 Kbytes of memory (less 8 Kbytes 
reserved for the 1/0 page), the PDP- 1 1 /45 in- 
troduced a memory management unit (the 

UNIBUS +, ,A, ,&, 
Figure 6.  The PDP-1 1/20 Unibus configuration 
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UNIBUS C I 
CONTROL PORT 

FASTBUS 

UNIBUS B 

(a) Proposed configuration 

PASTBUS 

SEMICONDUCTOR 

CNTRLR I 

MASSBUS 

-0 

(b) Actual configuration. 

Figure 7. PDP-1 1/45 configurations. 

K T l l )  that allows addressing of up to 256 
Kbytes. The Unibus design, with foresight, had 
been implemented with two spare address lines, 
allowing immediate use of the 18 bits of phys- 
ical memory address from the PDP-ll/45. 

By 1973, the IBM 3330 disk technology (100 
megabytes per spindle) had become available at 
a cost attractive to  minicomputer system users. 
The Massbus was developed specifically to in- 
terface this and other high data rate devices 
which were being planned. The R H l l  con- 
troller connects the Massbus to the two Uni- 
buses of PDP-I 1/45 systems as shown in Figure 

7a. The upper Unibus, Unibus C, was to carry 
the control and interruption (type C) transac- 
tions; the lower Unibus, Unibus B, was reserved 
exclusively for DMA (type B )  data transfers. 
For this purpose, a special stand-alone Unibus 
Arbitrator module was developed because Uni- 
bus B has no processor present to perform Uni- 
bus arbitration. (Note, however, that the BR 
signals are not used on Unibus B, because there 
is no CPU to be interrupted). 

Unfortunately, the configuration shown in 
Figure 7a could not be used for two reasons: 

1 .  DMA transfers from the R H l l  con- 
troller cannot reach memory modules at- 
tached to Unibus C if all block transfers 
are made on Unibus B. (The proposed 
solution of having the R H  1 1 DMA port 
selected by program control was rejected 
because of the complexity of determin- 
ing in software which memory is con- 
nected to which bus.) 
DMA transfers from controllers on Uni- 
bus C cannot reach the semiconductor 
memory unit. 

2. 

The second problem was fatal. The central 
processor is capable of dealing with only one 
1/0 page, and that is on Unibus C. Therefore, 
old DMA controllers had to be attached to  
Unibus C. In  fact, all controllers had to  attach 
to Unibus C, because that is the only inter- 
ruption path. Since compatible use of old pe- 
ripherals was essential to success of the family, 
the PDP-I 1/45 was configured only as shown in 
Figure 7b. Unibus B, when connected to Uni- 
bus C (with the separate arbitrator module re- 
moved) becomes part of the single Unibus 
system. 

PDP-11/70 

By 1974, semiconductor memory costs had 
become much lower. Therefore, a cache mem- 
ory became a feasible cost/performance en- 
hancement to  the PDP-11/45 (Chapter 10). 
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CACHE 
8, BITS 

CPU 

. 

Without great modification to the CPU logic, a 
cache memory was added with a width of 32 
bits - twice the word size of the PDP-11 (Figure 
8). The cache effectively interfaced to the PDP- 
11/70 CPU over the same Fastbus that was pre- 
sent in the PDP-11/45. 

I n  order to gain memory bandwidth for in- 
creases in both CPU and DMA performance, a 
new memory bus was added, with a 32-bit wide 
data path. Closely related to the memory bus 
was a backplane interconnection, which can 
carry 32 bits at a time to  the RH70 controllers 
(up to four of them). In Figure 8 the RH70-to- 
memory path is shown going through the cache 
because of a look-aside feature of the cache 
memory. 

The Massbus had been designed to provide 
very high block transfer bandwidth, while keep- 
ing the control registers accessible to the central 
processor at all times. The successful splitting of 
the type C path (the Unibus) from the type B 
path (the backplane data path) in the PDP- 
11/70 matched well with the Massbus design 
goals, and this match accounts in part for the 
relatively long life of the PDP-I 1/70 system in 
its marketplace. 

The PDP-I 1/70 also required more memory 
addressing capacity to balance its increased 
speed. The K T l l  memory management unit 
was easily expanded to address 4 megabytes of 
memory, and the RH70 controllers were de- 
signed to generate the required 22 bits of mem- 
ory address directly. 

Slower speed peripherals are still interfaced 
to the Unibus. In doing DMA transfers from 
them, it is necessary to transform the 18-bit ad- 
dress on the Unibus into a 22-bit main memory 
address. T o  do this, a Unibus Map module is 
inserted between the Unibus and the cache 
memory. This path carries 16 data bits at a 
time, and the bandwidth demands are relatively 
low. 

MEMORY U B I  M B A  MBA 

, , 32 

M E M O R Y  

iMEM;r?V BUS 

1 
I I 

- -- 

"NlBUS 

Figure 8 The PDP-1 1/70 configuration. 

MASSBUS MASSBUS 

VAX-11/780 

The VAX-I 1 /780 (Figure 9) emerging in late 
1977 returns to a single central bus organiza- 
tion, based on the Synchronous Backplane In-  
tercon nect (SBI). 

The SBI was originally conceived in I974 for 
use on a PDP-I 1 processor and was later 
planned for use on a PDP-IO processor. Those 
processors were not released, but the SBI was 
carried into the VAX-l1/780 design and tai- 
lored for the 32-bit environment.* 

*The VAX-I 1/780 SBI is the subject of a patent application filed by Digital Equipment Corporation 
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High DMA bandwidth is obtained by the SBI 
short time-slot and by memory read operation 
splitting which releases the bus during the mem- 
ory read-access delay. To  help overcome the de- 
lay associated with having to do a full bus 
transaction to start a memory read cycle, the 
memory control logic is capable of receiving 
and storing a queue of up to 4 memory read and 
write requests while it is working on one of the 
requests. 

Compatibility with existing PDP-I 1 peripher- 
als is provided by controllers that adapt the SBI 
to a Unibus (the Unibus Adaptor (UBA) in Fig- 
ure 9) and to several Massbuses (MBA). 

On the SBI, the 1-gigabyte address space is 
divided in half with the Unibus 1 / 0  page con- 
cept extended to cover the upper half. Within 
this rather large address space are contained 
control registers for all peripherals, an 18-bit 
memory address space mapped onto the Un- 
ibus, and a number of internal status and con- 
trol registers, such as those that contain error- 
reporting information. 

Figure 10 shows an historical summary of the 
buses used in the PDP- 1 1  computers. 

ARB ITRATION METHODS 

Since data transfer requests on a bus can 
originate from more than one source, there 
must be a means of deciding which source is to 
use the bus next. This process is called arbi- 
tration. 

A connection follows a two-step procedure to 
transfer data on a bus: 

1. 
2. 

Arbitration. Obtain the use of the bus. 
Data Transfer. Transfer data on the bus. 

To  assist our examination of arbitration 
methods, we define twelve categories, using 
three discriminating criteria. The criteria are: 

1. Where? Location of the arbitration logic 
(Centralized or Distributed). 
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Figure 10. Genealogy of PDP-11 Family buses 

2. How? Allocation rules (Priority, Demo- 
cratic, or Sequential). 

3. When? Timing relationship of arbi- 
tration to data transfer (Fixed or Vari- 
able).  

Centralized arbitration means that a signal 
must pass from a requesting connection to a 
common arbitration point, and a response sig- 
nal must return to the requesting connection be- 
fore it may transfer da t a .  In distributed 
arbitration there is no single common arbi- 
tration point. The Unibus, for example, has 
centralized arbitration (with the exception 
noted below). A contention-arbitrated serial 
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bus, like the Ethernet [Metcalfe and Boggs, 
19751, has distributed arbitration. The resolu- 
tion of conflicting requests is accomplished in 
all arbitration methods by allocation rules. Pri- 
ority arbitration means that in case of an appar- 
ent tie in the race to request use of the data 
transfer facilities, the rules always let one con- 
nection (or group) go ahead of another con- 
nection (or group). Democratic allocation 
means that there are no priority rules. An ap- 
parent tie is resolved arbitrarily or by some 
“fairness” rule which attempts to keep any one 
connection from monopolizing use of the data 
transfer facilities. Sequential allocation insures 
that there are never any apparent ties by giving 
request opportunities to only one connection at 
a time. (The sequence is not necessarily round- 
robin.) 

The Unibus has priority allocation, by 
groups. Most contention-arbitrated serial buses 
have democratic allocation. Centralized, se- 
quential (polled) buses are frequently used as 
type D pathways to connect character terminals 
to a concentrator (see Example 4, to follow). 

Finally, there is the question of the timing 
relationship between the arbitration of a 
request and the data transfer that occurs as a 
result of the request. Arbitration fixed with re- 
spect to data transfer means that a connection 
must request the data transfer facilities at a 
fixed time relative to the data transfer. This cat- 
egory includes buses in which the same signal 
lines are used for data transfer and for arbi- 
tration. 

Arbitration variable with respect to data 
transfer means that a connection may request 
use of the data transfer facilities at any time, 
independent of the current state of the data 
transfer facilities. 

The Unibus has variable arbitration. Polled 
buses have fixed arbitration because data trans- 
fer always occurs in the time slot immediately 
after the arbitration logic has polled a request- 
ing coti11~:~:t~on. Contention-arbitrated serial 

buses have fixed arbitration, too, in that the 
data transfer is the request for use of the bus. 

Table 2 summarizes the categories of arbi- 
tration methods; description of five example 
buses follows. 

Example 1: Unibus 

Figure 11  shows a simplified diagram of the 
Unibus arbitration section with two controllers 
sharing a Bus Request (BR) line. When Con- 
troller 1 wants to use the bus for an interruption 
transaction, i t  asserts the shared BR signal line. 
When the processor is in a state capable of re- 
ceiving an interruption, the arbitrator asserts 
the Bus Grant (BG) signal. 

The arbitration logic of Controller I is shown 
in Figure 12. The timing of an arbitration se- 
quence is shown in Figure 13. Controller 1 re- 
ceives the assertion of BG and may make a data 
transfer as soon as the ongoing data transfer is 
complete. Controller 1 acknowledges its selec- 
tion by asserting the Selection Acknowledge 
(SACK) signal. Controller 1 can use any BG as- 
sertion that arrives after the controller has as- 
serted BR t o  perform an interruption 
transaction. The serial wiring of BG could be 
called a kind of priority arbitration, but it is 
preferable to think of i t  as a sequential type of 
allocation, in which the sequence begins on de- 
mand and always starts at the controller closest 
to the processor and arbitrator. 

The Unibus actually has four groups of con- 
trollers, each group connected to a Bus Request 
line (called BR4, BR5, BR6, or BR7) and wired 
as shown in Figure 1 1 .  In addition, every con- 
troller capable of doing DMA data transactions 
is connected into a fifth group called Non-Pro- 
cessor Request (NPR) for data. All five groups 
share a common SACK line. 

Memory modules do not participate in arbi- 
tration on the Unibus since they never initiate 
data trans fc rs , 
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Table 2. The Twelve Categories of Arbitration Methods 

SACK 

4 b 

t 
- BR 

BG BG BG 

~~ ~ 

Fixed with Respect 
Arbitration Category to Data Transfer 

TERMINATOR 

Variable with 
Respect to Data Transfer 

v 

Central, 

I t  

Priority 

- - 
CONTROLLER 

1 
ARBITRATOR CPU - 

Central, Priority, Fixed 
SBI 

Central, Priority, Variable (plus some as- 
pects of distributed. sequential below) 
Unibus, LSI-11 Bus 

CONTROLLER 
2 

Central, Democratic Central, Democratic. Fixed Central, Democratic. Variable 
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arbitration section 

A simplified diagram of the Unibus 
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Figure 12 
attached to the Unibus. 

The arbitration logic of a controller 

BEGIN 

TRANSFER 

BG O U T  -4 

Figure 13 The timing of a Unibus arbitration sequence 



BUSES. THE SKELETON OF COMPUTER STRUCTURES 283 

I n  the most general case, a single controller 
on a Unibus can participate in three types of 
transactions: 

As the target of a control data transfer 
(type C ) ,  the controller behaves as if it 
were a memory. It receives commands 
(as data writes) into control registers and 
transmits status (as data reads) from sta- 
tus registers this way. The controller 
does not request the bus for these trans- 
actions: it is the “slave” of the processor 
which obtained the bus for this purpose. 
As the originator of a DMA, type B data 
transfer, the controller moves data to  or 
from memory. To  obtain the bus for this 
purpose, it asserts the shared NPR line, 
and waits for a Non-Processor Grant 
(NPG) signal to be passed to it from the 
left. 
As an interruption source (type C), the 
controller sends an interrupt vector to 
the processor. To  obtain the bus for this 
purpose, the controller asserts one of the 
four BR lines (BR4, BR5, BR6, or BR7), 
and waits for the corresponding BG sig- 
nal (BG4, BG5, BG6, or BG7) to be 
passed to it  from the Arbitrator. Each 
controller is assigned a single BR level at 
the time of its installation in the system. 
Thereafter, it never blocks any of the 
other three BG signals. 

Some controllers, such as simple terminal in- 
terfaces, do no DMA transfers, but perform an 
interruption transaction for each character of 
input  or output. 

The priority arbitration of the Unibus is af- 
fected directly by the priority state of the CPU. 
The CPU program execution priority (PRI) 
varies from 0 to 7. The Unibus Arbitrator 
grants use of the bus to non-CPU connections 
by the following rules: 

At any time, when assertion of NPR is 
received, assert NPG. (Interpretation: a 
controller may do DMA data transfers 
at any time.) 

1 .  

2. 

3.  

1 .  

2. Whenever the CPU is between instruc- 
tions (i.e., is interruptable), then: 
a. If  PRI <7 and BR7 is asserted, then 

assert BG7, else 
b. If  PRI <6 and BR6 is asserted, then 

assert BG6, else 
c. I f  PRI <5 and BR5 is asserted, then 

assert BG5, else 
d. I f  PRI <4 and BR4 is asserted, then 

assert BR4. 
(Interpretation: when the CPU is inter- 
ruptable, i t  will accept interruptions 
from a controller in a group whose pri- 
ority is greater than the current program 
execution priority of the CPU.) 

The priority arbitration rules of the Unibus 
involve both the processor priority and the rela- 
tive priorities of the BR signals, among them- 
selves. Assertion of a BR7, for example, blocks 
the grant signals BG6, BG5, and BG4 until all 
controllers asserting BR7 have accomplished 
their interruption transactions. Therefore, we 
classify the Unibus arbitration method as cen- 
tralized and variable, with a mixture of priority 
and sequential allocation rules. 

Example 2: The LSI-11 Bus 

The LSI- 1 1 Bus serves the same functions for 
the LSI-II system that the Unibus serves for 
most of the other PDP-I 1 processors. The LSI- 
I 1  bus is constrained to use fewer conductors 
and, therefore, less power and logic than the 
Unibus. It achieves the reduction from 56 sig- 
nals to 36 signals primarily by time-multi- 
plexing memory addresses and data on the same 
conductors (accepting lower bandwidth in or- 
der to achieve lower cost). 

Arbitration for DMA transfers is essentially 
identical to  that of the Unibus (Figures 1 1  and 
12). The corresponding signal names on the 
LSI-I 1 Bus are SACK (for Unibus SACK), 
DMR (for NPR), and DMG (for NPG). 

Arbitration for the interruption transaction 
has only one priority-group for all interrupting 
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controllers. When a controller wants to inter- 
rupt the processor, it asserts the Interrupt 
Request (IRQ) signal. This is similar to the BR 
signals on the Unibus. However, the LSI-11 Bus 
interruption transaction more closely resembles 
a data transfer, so it will be described in the sec- 
tion on data transfer synchronization. Arbi- 
tration on the LSI-11 Bus, like the Unibus, is 
classed as centralized and variable with a mix- 
ture of priority and sequential allocation rules. 
However, only one level of priority is used for 
interruption transactions. 

Example 3: Synchronous Backplane 
Interconnect (SBI), the VAX-11/780 
Memory Bus 

This memory bus is distinguished by its lim- 
ited length and its master clock which synchro- 
nizes all transactions on the bus. (The bus does 
not extend beyond the etched backplane of the 
computer cabinet.) The functions of the SBI are 
the same as those of the Unibus. However, the 
SBI differs in physical configuration because 
every controller must be directly connected to 
the backplane. Another difference between 
Unibus and SBI is that all transactions on the 
SBI are of fixed duration, which gives much 
higher bandwidth for data transfer. (The SBI is 
rated at 13.3 megabytes per second, while the 
Unibus is capable of approximately 1.7 me- 
gabytes p e r  second when operating with equiva- 
Ient speed memory.) To achieve this bandwidth, 
it was necessary to  split the memory read oper- 
ation into two bus transactions - one to trans- 
mit an address to the memory, another to 
transmit data back to, the requesting con- 
nection. In this way the SBI can accommodate 
memories of various cycle times, as can the Un- 
ibus, but the requesting connection does not oc- 
cupy the bus facilities for the duration of the 
cycle. 

Arbitration on the SBI is distributed, prior- 
ity, and fixed. Figure 14 shows a simplified dia- 
gram of the signals involved in SBI arbitration. 

A master clock, represented here by a single 
signal, defines a sequence of time-slots on the 
bus. Each slot (200 nanoseconds in the VAX- 
1 1 /780) is of long enough duration to complete 
a transfer of data from one connection to any 
other connection, but not for a reply signal to  
be sent back. 

There are four Transfer Request (TR) signals 
in this simplified example: TRO, TRI ,  TR2, and 
TR3. Each T R  signal “belongs” to one con- 
nection; that is, only one connection is permit- 
ted to assert the signal. 

Each TR signal has a priority associated with 
it: TRO has highest priority. A connection 
requests the use of the SBI data transfer facil- 
ities by the following procedure: 

1. At the beginning of the next time-slot 
(after deciding to transfer data), assert 
the T R  signal that belongs to this con- 
nection. 
At the end of the time-slot, sense the 
state of all of the higher priority TR 
lines. 
If none of the higher priority T R  lines is 
asserted, then at the beginning of the 
next slot negate “my own” T R  signal 
and begin transmitting data. 
If  any of the higher priority T R  lines is 
asserted, then do not negate “my own” 
TR signal, and go back to step 2. 

2. 

3. 

Figure 14. 
signals. 

A simplified diagram of SEI  arbitration 
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Figure 15 shows a timing diagram for a 
sample set of data transfers on the simplified 
SBI of Figure 14. In this example, connection 
number 3 (corresponding to TR3) requests the 
bus during slot 1, and connection numbers 1 
and 2 (corresponding to TRI  and TR2) request 
the bus during slot 2. 

At the end of slot I ,  connection 3 detects no 
higher priority TR signals, so it negates TR3 
and transmits data during slot 2. 

At the end of slot 2, connection 2 senses that 
T R l  is asserted, and therefore waits, leaving 
TR2 asserted. At the same time, connection 1 
senses no higher priority TR signals, so it ne- 
gates TRI  and transmits data during slot 3. 

Some transactions on the SBI require that a 
connection transmit on two or more con- 
secutive slots. A connection that requires a slot 
beyond its first one asserts TRO at the beginning 
of its first data transfer slot. TRO, the highest 
priority T R  signal, is not assigned to any one 
connection. 

The example in Figure 15 shows connection 2 
doing a two-slot data transfer. After waiting for 
connection 1 to transfer, connection 2 “holds” 
the bus for slot 5 by asserting TRO (hold signal) 
at the beginning of slot 4. In the SBI of the 
VAX- 11/780, connections are limited to trans- 
mitting in no more than three consecutive slots. 

We have shown four connections in this ex- 
ample, although only three TR signals are as- 
signed. The lowest priority connection, number 

Figure 15. Timing diagram of arbitration for an 
example set of data transfers on a simplified SBI 

4, does not have a TR signal assigned to  it be- 
cause there is no need to sense a TR signal from 
this lowest priority connection. Connection 4 
transmits only when no other connection is re- 
questing the next slot. Connection 4 gains an 
advantage by being lowest priority: it may 
transmit in any slot not used by the other SBI 
connections without asserting a TR signal of its 
own in the preceding slot. This gives it a shorter 
memory-access latency. For this reason, the 
CPU is usually given lowest priority on the SBI. 

The master clock is crucial to the operation 
of the SBI. I n  the VAX-11/780, the slots are 
defined by combining three clocks into four 
equal-interval phase markers. All transmitted 
TR signals are asserted at the beginning of 
phase I ,  and all received TR signals are sensed 
at the beginning of phase 4, three-fourths of the 
way through the nominal slot period. This guar- 
antees that signals from nearby connections are 
not sensed too early and that distant T R  signals 
are sensed early enough. 

Example 4: A Polled Character-Input Bus 
(Type D) 

Figure 16 shows a diagram of a hypothetical 
simple character-input bus. The controller at 
the left end accepts all input from the key- 
boards. It “asks” each keyboard in turn 
whether it has a character to send, and if so, the 
controller accepts the character during the next 

- 

CONTROL1 

POLLED ICENTRAL. FIXED. SEOUENTIALI 

UNIT 0 

Figure 16. A hypothetical polled character-input bus. 
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time slot. This arbitration scheme is centralized, 
sequential, and fixed with respect to data trans- 
fer. 

Three signals are broadcast from the con- 
troller to all terminals. One is the Clock, which 
defines the time-slots. The other two signals, 
called Unit 0 and Unit 1, send out a two-bit 
code which selects one of the four keyboards 
during each slot. The coding is binary. 

The controller changes the Unit Select signals 
at the beginning of each slot. The keyboard se- 
lected, if it contains a character to be trans- 
mitted, asserts the Send signal, and transmits 
the character at the beginning of the next slot. 

In the timing diagram shown in Figure 17, 
keyboard 1 transmits two characters and key- 
board 2 transmits one character. In this type of 

KEYBOARD 
SELECTED + 0 1 2 3 0 1 2 3 

“NIT 0 

“NIT 1 

CLOCK 

FROM 1 FROM 2 FROM 1 

DATA 181 

Figure 17. 
bus. 

Timing diagram of a polled character-input 

arbitration scheme, the polling (sequential sam- 
pling) of possible sources of data (the key- 
boards) eliminates the need for contention or 
priority rules. The logic of each connection is 
simple, but the scheme in this example limits 
each connection (keyboard) to using a max- 
imum of 25 percent of the data transfer band- 
width. 

Example 5: Massbus 

The Massbus is a peripheral-to-controller 
(type D) bus that has no arbitration at all. As in 

the previous example, a single controller at one 
end of the bus receives or sends on each data 
transfer. Control information is transferred as 
on the Unibus, but the “master” of the transfer 
is always the controller. Data blocks are trans- 
ferred using a peripheral-generated clock, and 
the transfers are always initiated by writing a 
control word into a register in the peripheral. 

Interruptions to the CPU are generated by 
the controller on demand from any peripheral. 
For this purpose an Attention signal exists in 
the control section of the Massbus. Each pe- 
ripheral is capable of asserting this signal. 

SYNCHRONIZATION OF DATA 
TRANSFERS 

Synchronization of a data transfer is coordi- 
nating the timing between two bus connections 
which are involved in a data transfer. The 
method by which data transfer is coordinated 
can be very different from the arbitration 
method. 

To classify the methods of data transfer syn- 
chronization, we use two criteria: 

1. Source. The location of the source of the 
synchronizing signals (centralized, one of 
the sending or receiving connections, or 
both connections). 
Periodicity. The type of synchronizing 
signals (periodic or aperiodic). 

2 .  

Table 3 shows the six resulting categories and 
how the examples fit into them. 

The location of the synchronizing signal or 
signals may be at one of the connections send- 
ing or receiving data (one),  at both of the con- 
nect ion s (both), or at neither (cen tralized) . T he 
Unibus data transfer is synchronized by signals 
from both the sending and receiving con- 
nections. 

The synchronizing signal may be a clock (pe- 
riodic), or it may be something else (aperiodic). 
The Unibus uses an aperiodic “handshake.” 
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Table 3. Data Transfer Synchronization 
Methods 

Location Periodicity 
of Signal 
Source Periodic Aperiodic 

Centralized SBI No examples 
polled 
character-input 

One Massbus Data No examples 
connection 

Both No examples Unibus, 
connections LSI-11 Bus. 

Massbus Control 

Example 1: Unibus 

DMA (type B)  and CPU-memory (type A )  
data transfers on the Unibus are accomplished 
with the same data timing. The interrupt-vector 
transaction timing is similar and thus is omitted 
from this discussion. 

Figure 18 shows the data transfer section of a 
Unibus with two connections: a controller or 
CPU (the “master” in a data transfer), and a 
memory (the “slave”). (For control and status 
register transfers (type C), a controller plays the 
role of memory or slave.) The timing of trans- 
fers on a Unibus is shown in Figure 19. Bus 
Busy (BBSY) indicates that the data transfer fa- 
cilities are in use. Control and Address signals 
are a group that specify the kind of transfer and 
the memory address. Master Sync (MSYN) is 
asserted by the master (the CPU or controller) 
to indicate that Control and Address signals are 
present . 

Slave Sync (SSYN) is asserted by the slave 
connection (memory) to  indicate that data is 
present on the Data lines. 

Unibus Data-Out moves data from the re- 
questing connection into memory. 

OR CPU 

Figure 18. Unibus data transfer section 

SDYN 
P R O M  

MP 

ADDRESS 
IN0 

CONTROL 

DATA OUT DATA IN 

Figure 19 Timing diagram of transfers on Unibus 

Having received permission from the arbi- 
trator and acknowledged it by asserting Select 
Acknowledge (SACK), the connection waits for 
Bus Busy (BBSY) to be negated. It then asserts 
BBSY and negates SACK. This connection now 
“owns” the data transfer section of the Unibus. 

Next, it must wait for SSYN to be negated to 
prevent its own logic from mistakenly sensing 
SSYN in  the asserted state too early. 

Next, the master connection transmits the 
Address and Control signals and the Data. I t  
then waits for an interval, the deskew time, be- 
fore asserting MSYN, to compensate for the 
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variable delay in transmission of different sig- 
nals from one connection to another. An addi- 
tional set-up time is inserted to allow all slave 
connections time to sense and compare against 
the Address and Control signals. 

The slave connection senses the Address and 
Control signals at all times. In this example, the 
address being transmitted by the controller 
matches one of the memory addresses “owned” 
by this memory connection. Therefore, this 
slave responds to the assertion of MSYN by 
sensing and storing the signals on the Data 
lines. 

Having captured the data, the slave asserts 
the SSYN signal. When the master receives the 
assertion of SSYN it knows that the data trans- 
fer has been completed. 

The master then stops transmitting the Ad- 
dress and Control, Data signals, MSYN, and 
BBSY. 

Unibus Data-In is a read from memory. The 
timing is siniilar to Unibus Data-Out, except 
that data is transmitted on the data lines by 
memory. The second part of Figure 19 shows 
the Data-In timing. 

Data transfer on the Unibus is aperiodic - 
there is no clock. Synchronization occurs by a 
“handshake” interaction between the MSYN 
and SSYN signals. In fact, two round-trips of 
signaling occur. We could look at this signaling 
in tabular form (Table 4). 

The sequence of four events insures a fully 
“interlocked” data transfer. The timing of a 
transfer is variable, depending on the speed of 
the slave’s memory (for Data-In) and on the 
speed of the logic at both connections. On the 
Unibus, 75 nanoseconds are allowed for deskew 
time and an additional 75 nanoseconds for set- 
up, where noted. 

Example 2: LSI-11 Bus 

Data transfers on the LSI-11 Bus also serve 
the functions of pathway types A and B .  Syn- 
chronization is from both sender and receiver 

Table 4. 
Transfer 

Synchronization of Unibus Data 

Data-Out Data-In 

MSYN Address and Address and 
assertion Control and Data Control present 

present 

SSYN Data captured (by Data present 
assertion slave) 

MSYN Stop transmitting Data captured (by 
negation Data and BBSY master): stop 

transmitting 
BBSY 

SSY N - 
negation 

Stop transmitting 
Data 

and is aperiodic. Below the CPU-memory (type 
A )  transfers are described. 

The signals involved in data transfers be- 
tween the central processor and memory are 
DAL, SYNC, DIN, DOUT, and RPLY, These 
are similar to the Unibus signals shown in Fig- 
ure 18. The processor initiates all data transfers 
of this type. Type C (control and status) trans- 
fers are also made using the synchronization de- 
scribed next, with a controller playing the part 
of memory in the transfer. 

Figures 20 and 21 show the timing of data 
transfers. The 16 DAL signals are used to  trans- 
mit address and then data, one after the other. 
SYNC is the signal which tells all memory de- 
vices on the bus to examine the DAL lines and 
to test for a matching address. DIN and DOUT 
initiate the memory read and memory write cy- 
cles, for Data-In and Data-Out transfers, re- 
spectively. RPLY, which is similar to the 
Unibus SSYN signal, indicates the presence of a 
response from the memory. 

Before proceeding with a transfer, the CPU 
must wait until both SYNC and RPLY have 
been negated, to be sure that no other transfer is 
in progress on the bus. 
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FROM Pc FROM M p  FRVM Pc FROM M p  

OAL 

SYNC 
FROM Pc 

DIN 
FRVM Pc 

RPLY 9 Ip-t 
D A T A  -1 N D A T A - O U T  

Figure 20. 
synchronization. 

LSI-1 1 Bus  Data-In and Data-Out 

FRVM P c  FROM ML FROM P c  
V*T* 

Figure 21 LSI-1 1 Bus Data-In-Out synchronization 

The CPU transmits the memory address on 
the DAL lines. After waiting for a fixed inter- 
val, to allow for deskew and set-up time at the 
memory, the processor asserts SYNC. 

The memory senses the DAL lines when it re- 
ceives the assertion of SYNC. The memory 
matches the address received and decides that 
the data word being addressed is in this memory 
module. 

After another fixed delay, to guarantee that 
the SYNC assertion always arrives at the mem- 
ory first, the processor asserts DIN and stops 
transmitting the address on the DAL lines. 

As soon as the memory receives the DIN as- 
sertion, i t  knows that a read cycle is desired. It 
retrieves the data word and transmits it on the 
DAL lines. Meanwhile, it may assert the RPLY 
signal as much as 125 nanoseconds before 
transmitting the data. 

When the processor receives the RPLY asser- 
tion, it waits at least 200 nanoseconds to  be sure 
that the data has arrived, and then senses and 
stores the data. Then the processor negates 
DIN. 

As soon as the memory receives the DIN ne- 
gation, it stops asserting RPLY. Not more than 
100 nanoseconds later, the memory stops trans- 
mitting the data on the DAL lines. 

When the processor receives the negation of 
RPLY, it negates SYNC. The bus is now avail- 
able for the next data transfer. 

The second part of Figure 20 shows the tim- 
ing of a Data-Out (write to memory) transfer. 

Figure 21 shows the timing of another type of 
LSI-11 Bus data transfer, the Data-In-Out op- 
eration. In  this transfer, a data word is read 
from memory, sent to the CPU, and then a 
word is sent back to the same memory location. 
This operation is useful for certain PDP-11 in- 
structions such as “increment memory” (INC), 
which modifies a single word in memory, and 
ADD, which stores a result at the address of the 
second operand. Bus transmission time is saved 
by not requiring the address to be sent a second 
time for the Data-Out portion of the cycle. On 
the other hand, the CPU may delay the oper- 
ation by an arbitrary amount of time, while the 
word to be written is generated. 

Figure 22 shows the timing of the inter- 
ruption transaction on the LSI-11 Bus. This 
transaction includes both arbitration and the 
transfer of a data word (an interrupt vector) 
from a controller to  the CPU. 

All controllers share the single Interruption 
Request (IRQ) line. It is similar to the Unibus 
BR signals, causing an interruption when as- 
serted. 
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Figure 22. 
synchronization. 

LSI- 1 1 Bus interruption transaction 

The Interruption Acknowledge (IAK) signal 
is similar to the Unibus BG signals. IAK is 
wired from the processor (arbitrator) serially 
through all controllers, just like a Unibus prior- 
ity group. 

A controller may assert 1RQ at  any time. 
When the processor is ready to  receive an inter- 
rupt vector, it begins a sequence which resem- 
bles a Data-In transfer. However, the SYNC 
signal is not used and no address is sent out on 
the DAL lines. 

Example 3: Synchronous Backplane 
Interconnect (SB I) 

The SBI synchronization method is central- 
ized and periodic. There is only one sequence of 
events which causes information transfers on 
the SBI, and that sequence is quite simple. 
However, the information transferred from one 
connection to another has two possible inter- 
pretations: Command and Address, or Data. A 
memory read or  write operation always consists 
of two sequences: one to transfer a command to 
the memory connection, the other to transfer 
data. The read operation is split, allowing other 
transactions to take place while a memory is ac- 
cessing data. 

There are four groups of signals used to effect 
da t a  transfer: I D ,  DATA,  FLAG,  a n d  

CLOCK. The I D  signals are used to  identify the 
destination of the transfer when the informa- 
tion transferred is data. The other use of the I D  
signals is explained below. 

The Data lines carry 32 bits of information. 
This information is either: (1) 32 bits of data, or 
(2) 28 bits of address and 4 bits of command 
code. The Flag signal is asserted to indicate case 
(2). In  this case, the destination of the transfer is 
determined by the 28 address bits, in a way sim- 
ilar to Unibus addressing. For these transfers, 
the ID  lines carry the identity of the source of 
the transfer. The connection receiving a Read 
command saves this source ID  value, so it can 
use it as a destination I D  on a later data trans- 
fer. 

Figure 23 shows the timing of the two SBI 
transfers which make up a read operation from 
memory. Remember that there is a master clock 
which defines a series of time-slots. The Trans- 
fer Request (TR) signals are shown again to il- 
lustrate the fixed time relationship of arbi- 
tration before a transfer. 

In Figure 23, the controller (connection 1) 
decides at the beginning of slot 1 to initiate a 

_... n ‘“‘A I 

SOURCE OESTINI\TION 
IO = 1 1 0 = 1  

ID  

A D D R E S S  D A T I  
FROM 1 F R O M 2  

D A T A  

FLAG 

CLOCK 

Figure 23 
up a read operation 

The timing of two SBI transfers which make 
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memory read operation. In slot 2 it transmits 
the following bits: 

ID  = 

DATA = 

FLAG = 

I ,  the identity of the source 
Connection. 
Read command code, plus 28 
bits of memory address. 
a s  se r t e d ,  ind ica t ing  t h a t  
DATA contains command 
and address. 

At the end of slot 2, the memory connection 
senses all of these bits and captures them in a 
buffer register. In fact, every connection on the 
SBI captures all of these bits on every slot. Sub- 
sequently, each connection matches the I D  bits 
to determine if  it should respond. 

In this case, the memory connection detects 
that the address refers to memory contained in 
itself, and it therefore begins a read cycle. 

The memory connection asserts its TR signal 
(TR2) one slot before it is ready to transmit 
data. The memory transmits its data to the re- 
questing controller in the next slot. (slot 7): 

ID = 1,  the identity of the destina- 
tion connection. 

DATA = 32 bits of data from memory. 
FLAG = n e g a t e d ,  i n d i c a t i n g  t h a t  

DATA carries data. 

At the end of slot 7, all connections to the 
SBI capture this information, and controller 1 
recognizes the match between the I D  bits and 
its own identity. A memory read has now been 
finished. 

On the SBI, a memory may wait a variable 
number of slots before replying to  a Read com- 
mand. Clearly there is a performance penalty 
for memories that require slightly more than an 
integral number of slot-times to access a word. 
Therefore, the SBI clock is "tuned" to be an 
integral submultiple of the access time of the 
memory subsystem we intend to use. However, 

we could attach a variety of memory sub- 
systems with different access times to  one SBI, 
without serious performance degradation, as 
long as the memory access times are sufficiently 
large multiples of the slot-time. 

The VAX-I 1/780 system uses a slot-time of 
200 nanoseconds and has a memory subsystem 
access time of just under 800 nanoseconds (in- 
cluding error detection). The four-slot access 
time shown in Figure 23 is typical of this sys- 
tem. 

Figure 24 shows the timing of a memory 
write operation on the SBI. The controller, con- 
nection 1 ,  transmits in the two consecutive slots 
following arbitration. In the first slot (slot lo), 
FLAG is asserted to  indicate that the Write 
command and address information is present. 
In  slot 1 I ,  the data is transmitted. The memory 
connection must be prepared to accept and cap- 
ture the sequence of two transmissions. 

During slots I O  and 1 I ,  the ID lines contain 
the identification of the controller, allowing the 
memory to verify that both transmissions came 
from the same source. 

TR1 I 

ID I D = 1  I D = 1  

WRITE 
AND ADDRESS DATA 

F R O M ?  F R O M ?  

FLAG F R O M  t 

CLOCK 

Figure 24 
the SEI. 

The timing of a memory write operation on 
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The two-slot write operation is kept con- 
tiguous by using the highest priority TRO 
“hold” signal to obtain use of the second slot. 
The SBI minimizes the slot interval and max- 
imizes bandwidth by eliminating all round-trip 
delays. 

Example 4: Polled Character-Input Bus 

Data transfer on this bus was described in the 
section on arbitration methods. The synchro- 
nization method is centralized and periodic. 

Data transfer occurs in time-slots just as on 
the SBI. The time-slots are defined by a master 
clock, and the receiver (always the controller) 
must accept the data at the end of the time-slot. 
In contrast to the SBI, this bus preallocates one 
of every four slots to each keyboard connection. 
The controller must keep internally an in- 
dication of which character is received from 
which keyboard. 

Example 5 (a): Massbus Control Section 

The Massbus actually consists of two sec- 
tions: a Control Section for reading and writing 
the contents of registers in the peripherals, and 
a Data Section for moving blocks of data. All 
transfers are between the controller and one of 
the (up to eight) peripherals. The two sections 
operate independently, except that a Control 
Section write into a control register of a periph- 
eral is required to initiate a block transfer on  
the Data Section. 

The Control Section of the Massbus is a min- 
iature Unibus. However, the controller is al- 
ways the master, and one of the peripherals is 
always the slave in the transfer. Figure 25 shows 
the Control Section signals involved in data 
(i.e., control and status register) transfers. The 
Demand (DEM) signal takes the place of 
MSYN, and Transfer (TRA) takes the place of 
SSYN. Instead of Address and Control lines, 
there is an eight-bit address on the Massbus 
Control Section: three bits of Drive Select (DS), 

I DEM 
I I 

Figure 25. The Control Section signals of the Massbus. 

and five bits of Register Select (RS). Thus, each 
of eight peripherals (drives) may contain up to  
32 two-byte registers. The Controller to Drive 
(CTOD) signal, when asserted, indicates that 
the transfer is a write into a peripheral register. 

Control information is transferred 16 bits at a 
time on the C lines. Timing of these transfers is 
equivalent to that shown for the Unibus in Fig- 
ure 19. 

There is also a shared Attention (ATTN) sig- 
nal in the Control Section that may be asserted 
at any time by a peripheral which requires CPU 
intervention. The controller normally creates an 
interruption to the CPU soon after ATTN is as- 
serted. 

Timing of normal Read transfers is shown in 
Figure 26. I t  is equivalent to a Unibus Data-In 
transfer (compare with Figure 19, second part). 

There is one special case which uses different 
timing on the Massbus Control Section. In or- 
der to determine which of the peripherals has 
caused an Attention interruption, the CPU 
reads the Attention Summary pseudo-register 
via the controller. This is a special “register” 
which is composed of one bit stored in each pe- 
ripheral. Figure 27 shows the timing for reading 
this register. When the RS lines carry a code of 
04, and the direction of transfer is drive to con- 
troller (CTOD negated), each peripheral (drive) 
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T R A  

STROBE 

Figure 26 
section of the Massbus 

Timing of a control read in the control 

c15 I 
O E M  I 
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Figure 27 Timing of a control read from Attention 
Summary pseudo-register 

transmits its Attention Active (ATA) bit onto 
one of the Control (C) lines. Peripheral number 
0 transmits its ATA on CO, peripheral 1 on C1, 
and so on. 

The timing of this transfer is different be- 
cause the TRA signal is driven by more than 
one peripheral. There is no way of knowing 
when all peripherals have asserted their ATA 
bits, so the controller must wait the maximum 
possible access time. This maximum delay 
“time-out” is present in the controller logic for 
normal reads and writes, to guard against pos- 
sible nonresponse from an addressed peripheral 
or register. The Attention Summary read oper- 
ation makes use of this time-out interval to  ter- 
minate its wait for the ATA bits. 

Example 5 (b): Massbus Data Section 

The Massbus Data Section is shown in Fig- 
ure 28. It contains 18 Data (D) lines, which 
carry data in both directions. Two clock signal 
lines, Synchronizing Clock (SCLK) and Write 
Clock (WCLK), carry a clock from and back to 
the peripheral, respectively. The R U N  and 
End-of-Block (EBL) signals control the termi- 
nation of a block data transfer. The Exception 
(EXC) signal is used to indicate error condi- 
tions. 

Data in the Massbus Data Section is always 
transferred in  multiple-word blocks. The data 
read from or written to a mass storage device, 
such as a disk drive, must be synchronized with 
the mechanical motion of the recording me- 
dium. Therefore, the clock (SCLK) originates 
in the peripheral. 

A Massbus Data Read begins when a control 
register in the selected peripheral is written with 
a Read command code. Figure 29 shows the 
timing of a Massbus Data Read. The controller 
asserts the RUN signal as soon as it is ready to 
receive data. 

When the peripheral has received the RUN 
assertion, it begins reading data from its storage 
medium. The peripheral asserts SCLK when a 
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Figure 28. Massbus Data Section. 
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Figure 29. Timing of a Massbus Data Read 
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Figure 30. Timing of a Massbus Data Write 

new data word is present on the D lines. The 
peripheral continues to assert and negate the 
SCLK signal at the characteristic data rate. 

Each time the controller receives the negation 
of SCLK, the controller captures and stores the 
data word from the D lines. 

Note that the peripheral does not receive any 
positive indication that the data word was re- 
ceived by the controller: the data transfer is 
“open loop.” 

At the end of the block of data words, the 
peripheral asserts EBL to indicate that it has 
reached the end of a data block. 

When the controller receives the EBL asser- 
tion, it decides whether to continue (usually by 
inspecting a word count register). Within 
slightly over one microsecond, the controller 
must negate RUN or else accept another block 
of data. 

As the peripheral negates EBL, it senses the 
RUN signal. If it is negated (as shown in Figure 
29), the peripheral disconnects itself from the 
Massbus Data Section. Otherwise, the periph- 
eral would transmit the next block of data. 

If the number of words desired by the con- 
troller is less than an integral number of data 
blocks, the controller may negate RUN before 
EBL is asserted. The controller then simply ig- 
nores the remaining data words being trans- 
mitted. 

Figure 30 shows the timing of a Massbus 
Data Write. As for a data read, the peripheral 
controls the rate at which data is transmitted. 
However, this time the data is coming from the 
controller, which asserts the WCLK signal 
whenever it puts data onto the D lines. 

The controller must have a data word ready 
each time it receives the negation of SCLK. 
Otherwise a “data overrun” condition occurs, 
which causes abnormal termination of the 
transfer. 

ERROR CONTROL STRATEGIES 

Unfortunately, buses do not always succeed 
in delivering to the receiving connection what 
was transmitted from the sending connection. 
Some of the causes of errors are logic failures, 
electromagnetic interference, broken con- 
ductors, shorted conductors, and power fail- 
ures. In this section, we examine the following 
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Table 5. Error Control Methods Used By Example Buses 

Check 
Bits 

Bus (Parity) ACK Time-out Retry Log 

1 Unibus No Yes ISSYN) Yes a b 
2 LSI-1 1 BUS No Yes (RPLY) Yes b b 
3 SBI Yes Yes (CNF) Yes Yes b 
4 Polled Character-Input - - - - - 

5a Massbus Control Yes Yes (TRA) Yes a b 
5b Massbus Data Yes Yes (EXC) Yes a b 

a 
b 

Retry IS implemented by software in some PDP-11 operating systems 
Logging is implemented at various levels by operating system software 

five categories of countermeasures to these er- 
rors: 

1 .  

2. 

3. 

4. 

5. 

Check bits. Extra information is sent 
which allows the receiver to detect and 
sometimes to correct errors in the data. 
Acknowledgement. A reply from the re- 
ceiver to the sender tells whether the 
data appeared “good.” 
Time-out. Failure of an expected ac- 
knowledgement to be received by the 
sender within a time limit indicates un- 
successful data transmission. 
Retry. A transfer which was unsuccessful 
is attempted one or more additional 
times. 
Error reporting and logging. Failures of 
all categories are recorded and reported 
to higher level (usually software) logic. 
Logging means recording the errors in a 
file which can be read later by a service 
engineer. 

Depending on the cost and service objectives, 
a real bus should have a data transfer procedure 
with all of the following steps: 

1 .  
2. 

Arbitration. Obtain the use of the bus. 
Data transfer. Transfer data (and check 
bits) on the bus. 

3. 

4. 

5 .  

Check. Check for error-free transfer, and 
transfer an acknowledgement. 
Retry. I f  the check or acknowledgement 
fails, repeat steps 1 through 3. 
Log. If all retries fail, enter a failure re- 
port in the log file, and send a message to 
higher level logic (software routinesj. 

Table 5 summarizes the error-control meth- 
ods used in the five example buses. 

Example 1: Unibus 

Data transfer on the Unibus is not checked. 
However, two lines are used by memory con- 
nections to signal whether a parity error has 
been detected while reading a word from mem- 
ory. 

A controller or CPU on the Unibus times out 
20 microseconds after MSYN has been as- 
serted, if  assertion of SSYN has not been re- 
ceived. Time-out occurs whenever an invalid or  
nonexistent memory address is given as the tar- 
get of a Unibus transfer. 

Example 2: LSI-11 Bus 

This bus does not have check bits for data 
transfers. However, it has two lines (DAL 17 
and 16) that can be used for transmitting the 
results of memory parity error checking. 
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The LSI-I 1 Bus also has time-outs specified 
for responses to the assertion of DIN and 
DOUT. If a memory does not respond within 
I O  microseconds, the CPU or controller as- 
sumes that the address is invalid. 

Example 3: SBI 

Data transfers on the SBI carry several parity 
check bits. Parity is generated at the sending 
connection and is checked at the receiving con- 
nection. 

The SBI also does acknowledgement on every 
data transfer. A code is returned to the sending 
connection two time-slots after the data was 
sent. Separate Confirm (CNF) lines are used to 
carry this code. The code indicates one of four 
possible events: 

1. 

2. 

No Response. There is no connection re- 
sponding to this address or ID value. 
Parity Error. The parity check shows an 
error in transmission; transfer is rejected 
by the receiving connection. 
Busy. (For commands only.) The receiv- 
ing connection (memory) addressed can- 
not accept another command now. 
Accepted. Parity checks “good” and the 
command or data is accepted. 

3. 

4. 

The Confirm code itself is error-protected. 
The No Response code is with all C N F  signals 
negated. The other codes differ from each other 
and from the No Response code in at least two 
bit positions. Therefore, an error in one C N F  
bit results in an invalid code. 

Figure 31 shows t.he timing of SBI data 
transfer acknowledgements. The example in 
this figure is a data word transfer from memory 
(the second half of a read operation). The C N F  
lines are always reserved for a reply from a re- 
ceiving connection exactly two slots after a data 
transfer. 

The error-control philosophy on the SBI says 
that if any connection detects bad parity on a 

DATA 
PARITY 

CHECK I N  0 

DATA RECEIVED CONFIRMATION 
BY 2 RECEIVED 

BY 1 

Figure 31. 
acknowledgements, including parity check. 

Timing of SBI data transfer 

data transfer, then the validity of the data trans- 
fer is suspect. Therefore, any connection may 
assert a Parity Error Confirm code at the begin- 
ning of slot 4 in Figure 31. 

As implemented in the VAX-l1/780, the SBI 
also uses time-outs, in case the memory does 
not respond within a fixed number of slots. The 
CPU or controller causes an interruption, pos- 
sibly leading to software-driven retry or logging 
of the event. The VAX-I 1/780 CPU also does 
microprogram-controlled retry of transfer 
requests that receive the Busy confirmation 
code. 

Example 4: Polled Character-Input Bus 

Since this example is hypothetical, we cannot 
claim to explain its actual error-control meth- 
ods. It is reasonable, however, to add one data 
signal to carry a parity check bit for each char- 
acter. A time-out is not relevant here, but an 
acknowledgement could be implemented by 
having the controller send a Confirm signal 
back to the keyboard during the slot following 
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Figure 32 
with acknowledgement and retry for polled character- 
input bus 

Timing of a plausible error-checking scheme 

the data transfer (Figure 32). If the Confirm sig- 
nal does not indicate “good transfer,” the key- 
board can send the character again 4 slots later 
(when its turn comes around again). 

Example 5a: Massbus Control Section 

The Massbus Control Section closely resem- 
bles the Unibus in timing, but it does carry one 
data parity check signal. If  an error occurs on 
reading a control register, the controller passes 
the “bad parity” indication on to the CPU, with 
consequences the same as a memory parity er- 
ror. 

If an error occurs on writing a control regis- 
ter, the  peripheral ignores the data word and 
asserts the Attention signal. “Control Bus Par- 
ity Error” is displayed in the Peripheral Error 
Status Register. 

The Massbus Control Section also has the 
same acknowledgement and time-out properties 
as the Unibus, with the exception of reading the 
Attention Summary pseudo-register, which al- 
ways uses the time-out to terminate the read 
cycle. 

P I \ R I T Y  EAROR 
D E T E C T E D  ON 

WORD 2 

Figure 33 
Write operation 

Timing of Exception signal in Massbus Data 

Example 5b: Massbus Data Section 

The Massbus Data Section carries a parity 
check bit with each 18-bit word of data. A sig- 
nal called Exception (EXC) can be asserted 
from either end to indicate a bad data transfer 
or other exceptional conditions. Figure 33 
shows an example of a Massbus Data Write op- 
eration that suffers a parity error during the 
transmission of the second word. The periph- 
eral asserts the EXC signal as soon as the error 
is detected. Although this is too late to stop the 
next word from being transmitted, the periph- 
eral stops accepting data words, and it termi- 
nates the block transfer early. The entire block 
has to be retransmitted. In this example, the 
controller displays a “Transfer Error” when it 
interrupts the CPU for “end-of-transfer” ser- 
vice. 

Two time-outs are used on the Massbus Data 
Section, both in the controller. One starts tim- 
ing at the assertion of R U N  and waits up to 
seven seconds for the SCLK signal to make a 
transition. This long time is required for ANSI 
standard magnetic tapes which may have up to 
of 25 feet of inter-record gap. 
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A shorter time-out, approximately 100 mi- 
croseconds, is used to detect a failure in a pe- 
ripheral after a t  least one SCLK signal 
transition has been received. If  this limit is 
reached, the controller asserts EXC to tell the 
peripheral to disconnect. 
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APPENDIX: A GLOSSARY OF TERMS 

The definitions below are offered as an aid to 
understanding the technical meaning of some 
words used in this chapter. 

Assert (transitive verb) - to cause a signal to take 
the  “true” or asserted state.  
Asserted (nominal) - to be in the “true” state. 
Assertion (noun) - the transition from negated 
to asserted. 
Bandwidth (noun) - data transfer rate measured 
in information units (e.g., bits, bytes, or words) 
per unit time. 
Connection (noun) - an attachment to a bus and 
the logic and functions of the attached sub- 
system. Synonyms: node, interface. 
Interval (noun) - an extent in time. Synonym: 
period. 
Negate (transitive verb) - to cause a signal to 
take the “false” or negated state. 

Negated (nominal) - to be in the “false” state. 
Negation (noun) - the transition from asserted 
to negated. 
Read (transitive verb) - to move data from a reg- 
ister, memory, or secondary storage. 
Sense (transitive verb) - to capture data from 
bus signal lines. Synonyms: receive, gate  in, 
strobe. 
Slot (noun) - a particular interval. 
Time-out (intransitive verb) - to wait for the end 
of an interval and to take an action associated 
with the failure of some event to  occur within 
the interval. 
Transfer (transitive verb) - to move data (a data 
word). 
Transmit (transitive verb) - to place data on bus 
signal lines. Synonyms: drive, gate out. 
When (adverb) - at the instant that. 
Whenever (adverb) - every time that. 
While (adverb) - throughout the interval that. 
Write (transitive verb) - to move data into a reg- 
ister, memory, or secondary storage. 
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A Minicomputer-Compatible 
M i croco m put e r S yst e m : 

The DEC LSI-11 
MARK J. SEBERN 

I NTRO D U CTI ON 

In recent years, minicomputers have found 
application in a wide range of areas. In  so 
doing, they have displaced larger computer sys- 
tems in many traditional maxicomputer mar- 
kets. At the same time, they have opened up 
many new markets, primarily because of their 
low cost, small size, and general ease of use. 
Still, in spite of this remarkable success, mini- 
computers are not without competition. In cost- 
sensitive areas, the minicomputer is being eased 
out of its dominant position by a new gener- 
ation of LSI microcomputers; the new “proces- 
sors on a chip” have found a warm reception 
from designers seeking inexpensive computing 
power. That warm reception sometimes cools, 
however, when the user finds himself with a col- 
lection of components, instead of a complete 
computing system. The discovery that he is 
largely on his own when it comes to  software 
and debugging support has a similarly chilling 
effect. The entry into the world of programming 
PROMS, using FORTRAN cross-assemblers 
and simulators, and writing even simple soft- 
ware routines from scratch can be a traumatic 
experience indeed. Still, the advantages of LSI 
microcomputers are very real, and many users 

have found the difficulties well worthwhile. 
Even so, some cannot help but wonder why 
they cannot simply have the best of both 
worlds: the cost and size of the microcomputer, 
and the ease of use and performance of the 
minicomputer systems with which they are fa- 
miliar. 

Therefore, the appearance of a new LSI mi- 
crocomputer system that is fully compatible 
with a line of 16-bit minicomputers is an event 
of some significance. This new microcomputer, 
the DEC LSI-II (see Figure I ) ,  is a complete 
4 K PDP-I 1 on a 21.6 cm X 26.7 cm (8.5 inch X 
10.5 inch) board; priced to compete with other 
LSI microcomputers, it offers true mini- 
computer performance and maxicomputer sup- 
port. The LSI-11, while not meant to be yet 
another low-end minicomputer, does bring 
many minicomputer strengths to  the new 
microcomputer applications for which it is in- 
tended. 

To provide minicomputer performance at a 
microcomputer price, the LSI-11 was designed 
to  optimize system costs, rather than com- 
ponent costs. A one-chip central processor, 
then, was not necessarily superior to a four-chip 

30 1 
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Figure 1 On one 21 6 cm X 26 7 cm board, the LSI- 
11 provides a complete PDP-1 1 processor, 4 Kwords of 
16-bit memory. an ASCII console, a real-time clock, an 
automatic dynamic memory refresh, and interface bus 
control 

one; the choice was made on the basis of total 
system cost and performance. On this basis, a 
microprogrammed processor was selected, per- 
mitting the inclusion of features like a “zero 
cost” real-time clock and automatic dynamic 
memory refresh. The built-in ASCII program- 
mer’s console was also made feasible by the 
LSI-1 1’s microprogrammed nature. 

Awareness of system costs and performance, 
then, was a primary motivation in the LSI-11 
design. System issues include cost and ease of 
interconnection, the customer’s investment in 
training and software, and the availability of 
design support for both hardware and software. 
The impact of these system concerns should be- 
come apparent in the following sections which 
detail the LSI-11 design. Two viewpoints are 
taken in this description: the first section treats 
the internals of the LSI-11 from the computer 
designer’s point of view, while the second con- 
siders the system from the user’s perspective. 

The former examines the architecture, organi- 
zation, and implementation of the LSI- 1 1, while 
the latter discusses interfacing, special features, 
and PDP-11 compatibility. Together, these two 
viewpoints will provide the reader with an in- 
troduction to  the DEC LSI-11, the first micro- 
programmed minicomputer-compatible LSI 
microcomputer, which provides minicomputer 
performance 

THE COMP 

For the pu 
of the LSI-I 
three levels: 

it a microcomputer price. 

ITER DESIGNER‘S VIEW 

pose of this discussion, the design 
will be studied at the following 

1 )  architecture - the machine as 
seen by the programmer, (2) organization - the 
block diagram view of subsystems and their in- 
terconnection, and (3) implementation - the ac- 
tual fabrication and physical arrangement of 
the various pieces a t  the component level. 

Architecture 

Instruction Set. The architectural level of a 
computer system includes its instruction set, ad- 
dress space, and interrupt structure. The basic 
LSI-I 1 instruction set is that of the PDP-11/40, 
without memory mapping. These instructions 
include several operations not found in other 
small PDP-11 processors, such as  Exclusive-Or 
(XOR), Sign-Extend (SXT), Subtract One and 
Branch (SOB), etc. Full integer multiply/divide 
(Extended Instruction Set or EIS) and floating- 
point arithmetic (Floating Instruction Set or 
FIS) may be provided by the addition of a 
single control read-only memory chip (to be dis- 
cussed later). Unlike other PDP-lls,  there are 
two special operation codes which facilitate ac- 
cess to the processor’s program status word 
(PSW). The instruction set is, then, more com- 
prehensive than that of the PDP-11/05, while 
the execution times (see Table 1) are a little 
slower. 

To take advantage of the microprogrammed 
nature of the LSI-11, it may at times be desir- 
able to  invoke a user-written microroutine. This 
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Figure 1. On m 21.6 cm X 21.7 cm bard. the LSI- 
11 providas a complete PDP-11 p m r ,  4 Kwords of 
16-bit memory, sn ASCII conwle, a rwl-time clock. an 
automatic dynarnk memory refresh, and interfeea bus 
control 

one; the choice was ma& on the basis of total 
system cost and performance. On this basis, a 
microprogrammed processor was sckkd,  per- 
mitting thc inclusion of features like a ‘ k o  
cost” real-time clock and automatic dynamic 
memory refresh. The built-in ASCII program- 
mer’s console was also made fasibk by the 
LSI-1 1’s microprogrammed nature. 

Awiarcncs of system costs and pcTfomancc, 
then, was a primary motivation in the LSI-11 
design. System issuwi include cost and - of 
interconnection, the customer’s investment in 
training and software, and the availability of 
design support for both hardware and software. 
The impact of these system conccrni should lx- 
come apparent in the following sections which 
detail the LSI-11 h * n .  Two v h p o h t s  are 
taken in this description: the fmt mtion treats 
the internds of the LSI-1 t from the computer 
designor’s point of view, while the second con- 
siders the system from the user’s perspective. 

The former examines the architecture, organi- 
zation, and implementation of the LSI-l 1 ,  while 
the latter discusses interfacing, special featurn, 
and PDP-11 compatibility. Together, these two 
viewpoints wiIl provide the reader with an in- 
troduction to the DEC LSI-11, the first micro- 
programmed minicomputer-compatible LSI 
microcomputer, which provides minicomputer 
performance at a microcomputer price. 

THE COMPUTER DESIGNER% VIEW 
For the purpose of this discussion, the design 

of the LSI-11 will be studied at the following 
three lcvek (1) architecture - the machine 88 
scen by the programmer, (2) organization - the 
block diagram view of subsystems and their io- 
tcrconnection, and (3) implementation - the au 
tual fabrication and physical arrangunmt of 
the various piem at the component b e l .  

Architecture 
Instmdon Sat. The architectural level af a 

compukr system includw its instruction set, ad- 
dram space, and interrupt structure. The basic 
LSI-I 1 instruction wt is that of the PDP-I 1/40, 
without memory mapping. These instructions 
include several operations not found in 0 t h  
mall PDP- 11 processom, such 85 ExcluivpOr 
(XOR), Sign-Extend (SXT‘), Subtract One and 
Branch (SOB), etc, Full integer rnultiply/divide 
(Extended Instruction Set or EIS) and batin& 
point arithmetic (Floating Instruction sd or 
HS) may be provided by the addition of a 
single control read-only memory chip (to be die 
cussed later). Unlike other PDP- 1 Is, there are 
two special operation codes which lacilit~te ac- 
cess to the processor’s program status word 
(PSW). The instruction set is, then, more com- 
prehensive than that of the FDP-I f /05, white 
the a d o n  tima (see Table 1) are a little 
slower. 
To take advantage of the micropragrammed 

nature of the LSI-11, it may at t ima be &r- 
able to invoke a user-written mhoroutiw. This 
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Table 1. LSI-11 Instruction Timing 

Execution 
Instruction Time (gs) Comments 

~ 

ADD R1, R2 
MOV R1, R2 
MOV A (PC), B (R2) 
TSTB ( R 1 ) +  
JMP(R1) 
JSR PC.A(R1) 
Bxx L 
RT1 
MUL* 
FADD* 
EMUL* 
FDIV* 1 

3.5 Register-register 
3.5 

5.25 Auto-indexed 
4.2 Indirect 
8.05 Subroutine call 
3.5 Conditional branch 
8.75-9.45 Rtn from interrupt 

11.55 PC-relative. indexed 

24-64 
42.1 
52.2-93.7 

151-232 

NOTES 
R 1. R2 = Registers 

A, B = Index constants 
Bxx = Any conditional branch 

L = 8-bit offset 

*Third MICROM installed for EIS/FIS 

is made possible by a set of reserved instruc- 
tions which cause branching to a fixed micro- 
address. These reserved instructions cause an 
illegal instruction trap to occur if user micro- 
code is not present. 

Address Space. Like other microcomputers 
without memory mapping facilities, the LSI-I 1 
virtual and physical address spaces are the 
same, both being 16 bits, or 64 Kbytes. (Since 
two 8-bit bytes make one 16-bit word, this is 
equivalent to 32 Kwords.) As in other members 
of the PDP-I 1 family, the top 4 Kwords of the 
address space are normally reserved for periph- 
eral device control and data registers. Thus the 
nominal maximum main memory size is 28 K 
16-bit words. 

Interrupt Structure. The LSI-11 interrupt 
structure is a subset of the full PDP- 1 1 interrupt 
system. Like other PDP-I 1 processors, the LSI- 
1 1 features arbitration between multiple periph- 
eral devices and automatic-service routine “vec- 
toring.” It  differs, however, in having only a 

single interrupt level. Interrupts on the LSI-I 1 
are either enabled or masked, these states being 
equivalent to PDP-11 processor levels 0 and 4. 
With this exception, however, interrupt oper- 
ation follows the same familiar sequence. Upon 
acknowledging an interrupt request, the proces- 
sor stores the current processor status word 
(PSW) and program counter (PC) on the stack 
and picks up a new PSW and PC from a mem- 
ory location (vector) specified by the inter- 
rupting device. 

Organization 

PMS Level Description. The “organiza- 
tion” of a computer system denotes the collec- 
tion of building blocks that comprise it, and the 
logical and physical links that connect them. A 
block diagram of the LSI-I1 organization is 
shown in Figure 2. The LSI-11 CPU, being a 
microprogrammed processor, is partitioned 
logically and physically into three main sections 
- data path, control logic, and micromemory. 
Each of these units is, in fact, a separate LSI 
chip. Interconnection of these chips is through 
the microinstruction bus (MIB). 

The Data Chip. The data chip contains an 
8-bit register file and arithmetic logic unit 
(ALU). The chip also provides a 16-bit interface 
to the data/address lines (DAL) upon which the 
external LSI-I 1 bus is built. 

The register file consists of 26 8-bit registers; 
of these registers, 10 may be addressed directly 
by the microinstruction, 4 may be addressed ei- 
ther directly or indirectly, and the remaining 12 
may be addressed only indirectly. Indirect ad- 
dressing is accomplished by means of a special 
3-bit register known as the G register, which 
may be easily loaded from the register address 
field of the PDP-I 1 instruction. Addressing of 
the register file is illustrated in Table 2. 

The 12 indirectly addressed 8-bit registers are 
used to realize the 6 PDP-I1 general purpose 
registers, RO through R5. The 4 registers which 
may be addressed either directly or indirectly 
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Table 2. Micromachine Register File Addressing 

File Directly Indirectly PDP-11 
Registers Addressed Addressed Equivalent 

0- 1 
2-3 
4-5 
6-7 

10-1 1 
12-13 
14-15 
16-1 7 
20-2 1 
22-23 
24-25 
26-27 
30-31 

RO 
R 1  
R2 
R3 
R 4  
R 5  
R6(SP) 
R7(PC) 
IR  
BA 
SRC 
D ST 
PSW 

NOTES 
SP = Stack Pointer 
PC = Program Counter 
I R  = Instruction Register 

BA = Bus Address 
SRC = Source Operand 
DST = Destination Operand 

PSW = Processor Status Word 

MICROM 1 
POP 11 EMULATOR 

ASCII CONSOLE 
612 I 22 

I DATAIAODRESS 

I CONTROI 

I 
PROGRAMMABLE 

TRANSLATION 
ARRAY 

Figure 2 Organization of the LSI-1 1 CPU 
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contain the PDP-I 1 program counter (PC) and 
stack pointer (SP), since they provide special 
processor functions and are accessed very fre- 
quently. The 5 remaining pairs of directly ad- 
dressed registers are used for microprogram 
workspace, and normally contain the following: 
( I )  the PDP-11 macroinstruction, (2) the bus 
address, (3) the source operand, (4) the destina- 
tion operand, and (5) the macro PSW and other 
status information. 

The 8-bit ALU operates on two operands ad- 
dressed by the microinstruction. When a full- 
word operation is specified, the data path is 
cycled twice, with the low order bit of each reg- 
ister address complemented during the second 
cycle. Thus a 16-bit macrolevel register is real- 
ized by two consecutive 8-bit registers in the 
register file. An 8-bit operand may also be sign- 
extended and used in a 16-bit operation, or an 
8-bit literal value from the microinstruction 
may be used as one of the operands. 

I n  addition to  the register file and ALU, the 
data chip contains storage for several condition 
codes. These include flags for zero or negative 
results, as well as for carry or overflow; 4- or 8- 
bit carry flags are also provided for use in deci- 
mal arithmetic. Special flag-testing circuitry is 
also provided for efficiency in executing PDP- 
I 1 conditional branch instructions. 

The Control Chip. The control chip gener- 
ates MICROM addresses and control signals 
for external 1/0 operations. It contains an 1 1 -  
bit location counter (LC), which is normally in- 
cremented after each MICROM access. The LC 
may also be loaded by “jump” instructions, or 
by the output of the programmable translation 
array. A one level subroutine capability is also 
provided by an 11-bit return register (RR), 
which may be used to save or restore the LC 
contents. 

The programmable translation array (PTA), 
the heart of the control chip, consists of two 
programmable logic arrays (PLAs); the PTA 
generates new LC addresses which are a func- 
tion of the microprocessor state and of external 

signals. Included in the microprocessor state is 
the 16-bit macroinstruction currently being 
interpreted; in this way, much of the macro- 
machine emulation may be done with the high 
efficiency provided by the PTA. The com- 
binational logic of the two PLAs allows the 
PTA to arbitrate interrupt priorities, translate 
macroinstructions, and, in general, to replace 
the conventional “branch-on-microtest” micro- 
primitive. Since the microlocation counter is 
one of the PTA inputs, it is normally unneces- 
sary to specify explicitly the desired translation 
or multiway branch; this information is implicit 
in the address of the microinstruction which in- 
vokes the PTA. External condition handling is 
made possible by four microlevel interrupt lines 
which are input to  the PTA. Also feeding the 
PTA are three internal status flags which are set 
and reset under microprogram control. 

The MICROM Chip. The micro read-only 
memory, or MICROM, serves as the control 
store for the microprocessor. The micro- 
instruction width is 22 bits. Sixteen of these bits 
comprise the traditional microinstruction; one 
is used to latch a subroutine return address, and 
one to invoke programmed translations; the re- 
maining four bits (which drive TTL-compatible 
outputs) perform special system-defined func- 
tions. 

Each MICROM chip contains 512 words, or 
one-fourth of the 2 K microaddress space. 
Proper “chip-select’’ decode is accomplished by 
masking a 2-bit select code (along with the 
microcode) into each MICROM at the time of 
manufacture; n o  external selection logic is re- 
quired. 

The Microinstruction Bus. As seen in 
Figure 2, microinstructions and microaddresses 
share the microinstruction bus lines (MIB 
00:2 I ) .  Instructions thus fetched are executed 
by the data chip while the next microaddress is 
computed by the control chip. The bus design, 
then, allows fully pipelined microinstruction ex- 
ecution, with data and control operations over- 
lapped. 
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~ 

OP 

Microinstruction Repertoire. Using the ac- 
cepted distinction between horizontal (unen- 
coded) and vertical (highly encoded) micro- 
order codes, the LSI-11 may be classified as an 
extremely vertical machine. In fact, the micro- 
instruction set strongly resembles the PDP-I 1 
code it emulates; the two differ largely in ad- 
dressing modes, not in primitive operations. 
(Microinstruction formats are depicted in Fig- 
ure 3, while a number of operation codes are 
tabulated in Table 3.) This similarity of instruc- 
tion sets is not accidental; while general-pur- 
pose emulation machines have a place, a 
micromachine designed with the macro order 
code in mind usually offers better performance. 
Thus while many operations are general pur- 
pose, like Add, Subtract, Compare, Decrement, 
And, Test, Or, Exclusive-Or, etc., others serve 
primarily in the emulation of the macrolevel 
PDP-11 instruction set, such as Read and In- 
crement Word By 2 and so on. 1 / 0  primitives 

LITERAL A 

OP cc 

~~ 

15 11 10 

(a) Jump format 

A D D R E S S  

0 

(b) Literal format. 

I OP I 8  1 . 1  
I I I 
15 8 7  4 3  0 

(d) Register format. 

Figure 3.  Microinstruction formats. 

allow for Read, Write, and Read-Modify-Write 
operations, as well as special polling transac- 
tions. 

Implementation 

LSI Technology. The “implementation” of 
the LSI-I I ,  or how it is actually put together, is 
a combination of both custom large-scale in- 
tegration (LSI) and medium- and small-scale 
transistor-transistor logic (TTL) integration. 
The control, data, and MICROM chips are fab- 
ricated in n-channel silicon-gate four-phase 
MOS. This technology was chosen as a reason- 
able compromise between performance expec- 
tations and development risks. Existing n- 
channel components exhibited the desired per- 
formance range, while other technologies (such 
as CMOS silicon-on-sapphire) were perceived 
as too risky for production during 1975 and 
1976. 

The micromachine operates with a nominal 
cycle time of 350 nanoseconds. A simple primi- 
tive operation such as a register-to-register 8-bit 
addition requires only one cycle, a marked 
speed advantage over other available MOS 
“processors on a chip.” A comparable 16-bit 
operation takes only two cycles. This intrinsic 
performance of the LSI-I 1 “inner machine” 
means extra flexibility when an application sug- 
gests the use of a user-written microcode. 

The CPU Module. The LSI-11 CPU, a 
quad-height (21.6 cm X 26.7 cm) module, con- 
sists of the microprogrammed processor and a 4 
Kword memory, together with bus transceivers 
and control logic. The processor itself consists 
of four 40-pin LSI parts - one control chip, one 
data chip, and two MICROM chips. These two 
MICROMs handle emulation of the basic PDP- 
1 1  instruction set. In addition, one extra 40-pin 
socket is provided to  allow the installation of a 
third MICROM, implementing the extended- 
arithmetic and floating-point instructions. Op- 
tionally, a custom MICROM containing user 
microcode may be installed in its place. 
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The 4 Kword memory on board the CPU 
module consists of sixteen 4 K dynamic n-chan- 
ne1 random-access memories (RAMS). This 
memory is implemented so as to  logically ap- 
pear on the external LSI-11 bus, while being 

Table 3. Some LSI-11 Microinstructions 

Arithmetic Operations 
Add Word (byte, literal) 
Test word (byte literal) 
Increment word (byte) by 1 
Increment word (byte) by 2 
Negate word (byte) 
Conditionally Increment (decrement) byte 
Contitionally add word (byte) 
Add word (byte) with carry 
Conditionally add digits 
Subtract word (byte) 
Compare word (byte. literal) 
Subtract word (byte) with carry 
Decrement word (byte) by 1 

Logical Operations 
And word (byte. literal) 
Test word (byte) 
Or word (byte) 
Exclusive-Or word (byte) 
Bit clear word (byte) 
Shift word (byte) right (left) with (without) carry 
Complement word (byte) 

General Operations 
MOV word (byte) 
Jump 
Return 
Conditional jump 
Set (reset) flags 
Copy (load) condition flags 
Load G low 
Conditionally MOV word (byte) 

Input/Output Operations 
Input word (byte) 
Input status word (byte) 
Read 
Write 
Read (write) and increment word (byte) by 1 
Read (write) and increment word (byte) by 2 
Read (write) acknowledge 
Output word (byte, status) 

physically resident on the CPU module. Acces- 
sibility to the bus allows external Direct Mem- 
ory Access (DMA) transfers to take place to  
and from the basic 4-Kword memory. Further- 
more, an optional jumper allows the CPU mod- 
ule memory to  occupy either the first or second 
4 K block of the bus address space. That is, it 
may respond to address 000000-017776 or 
020000-037776 as desired. 

Available Memory Options. The LSI-11 
macromemory is available in several forms; 
these include semiconductor random-access 
memories (RAM), ROM (or PROM), and mag- 
netic core. 

Both static and dynamic semiconductor 
memories are available. The MSVll-A is a 
1024-word static RAM, packaged on a double- 
height (21.6 cm X 12.7 cm) module. It may be 
used when dynamic memory is not desired. The 
MSVll-B is a 4-Kword dynamic memory, 
again packaged on one double-height module. 
The availability of automatic memory refresh 
(discussed in a later section) will in many cases 
make the dynamic memory a more attractive al- 
ternative than core or static semiconductor 
RAM. 

The use of a ROM for program storage is of- 
ten desirable; not only is the program safe from 
unintentional modification, but no external de- 
vice is needed to  load the system each time it is 
started. The LSI-11 instruction set is well suited 
to ROM program storage, since program and 
data are easily separable. To take advantage of 
this, the LSI-11 series includes a ROM module 
(designated the MRVll-AA); either a masked 
ROM or a programmable ROM (PROM) may 
be used. This memory uses standard 256 X 4 or 
512 X 4 ROM or PROM chips, to  a maximum 
of 2 Kwords or 4 Kwords depending on the 
chips employed. Programmable ROMs may be 
used for program development, and less expen- 
sive masked ROMs substituted for production 
use. 
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For applications that require nonvolatile 
READ/WRITE memory, a 4-Kword core 
memory (the M M V l  I-A) is available. This 
memory occupies two quad-height modules, 
and must overhang the last slot in a backplane 
unit. 

THE USER’S OUTLOOK 

Interfacing to the LSI-11 

The LSI-11 Bus. The LSI-I 1 bus (Table 4) 
serves as the link between the processor, mem- 
ory, and peripheral devices. Narrower (in terms 
of the number of signal lines) than some other 
minicomputer buses, it was designed to allow 
low cost peripheral interfaces for micro- 
computer applications, rather than to support 
the wide range of peripheral configurations 
common in large minicomputer systems. The 
wider PDP-I 1 Unibus, for example, is better 
suited to larger systems in which CPU and 
interconnection comprise a smaller part of the 
total system cost. 

To reduce the number of bus signals, sixteen 
bidirectional lines (BDAL 00:15) are time- 
multiplexed between data and address. Trans- 
fers on these lines are sequenced by several con- 
trol lines. BSYNC signals that a bus transaction 
is in progress and clocks address decoding logic; 
BDIN and BDOUT request input and output 
transfers, respectively; BWTBT is used to dis- 
tinguish word and byte output transfers; 
BRPLY is returned by the bus slave when data 
is ready or has been accepted. A special address 
line, BBS7, indicates that the bus address is in 
the range of 28 K-32 K; this simplifies periph- 
eral device design by indicating that the “I/O 
page” is being addressed. 

Two bus signals, BIRQ and BIAK, are used 
to control processor interrupts. An interrupting 
device asserts BIRQ and waits for an interrupt 
transaction from the CPU. When the proper 

Table 4. The LSI-11 Bus 

Bus Signal Signal Function 

BDAL 00-15 L 

BDIN L 

BDOUT L 

BSYNC L 

BRPLY L 

BWT8T L 

BBS7 L 

BREF L 

BIRQ L 

BlAK I L 

BlAK 0 L 

BDMR L 

BDMG I L 

BDMG 0 L 

BSACK L 

BHALT L 

BEVNT L 

BlNlT L 

BPOK H 

BDCOK H 

Buffered dataladdress lines (time- 
multiplexed) 

Data input transfer control line 

Data output transfer control line 

Synchronizing control signal; as- 
serted by bus master (normally CPU) 

Reply control signal; returned by bus 
slave (memory or peripheral device) 

WritelByte control: 

A t  address time, specifies a write 
A t  data time, a byte output 

Marks an address in the range 28 K 
- 32 K. the “ I lO page” 

Signals a refresh transaction: over- 
rides normal memory addressing for 
dynamic memories 

Interrupt request from device 

Interrupt grant in 

Interrupt grant out; used with BlAK I 
to arbitrate interrupt priority 

Direct  Memory Access (DMA’, 
request line 

DMA grant in 

DMA grant out; like BlAK 

Bus DMA acknowledge 

Forces entry to ASCII console micro- 
code 

External event line; used with real- 
time clock 

Bus initialize signal 

Power OK line from supply 

DC power OK, from supply 
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conditions have been met, the CPU, which re- 
mains bus master, strobes the interrupting de- 
vices by asserting BIAK. During this bus cycle, 
BIAK is “daisy-chained’’ through all peripher- 
als, allowing priority arbitration to take place. 
The selected device then places an interrupt vec- 
tor address on the bus and returns BRPLY, ter- 
minating the transaction. In a similar manner, 
BDMR, BDMG, and BSACK are used to con- 
trol requests for direct memory access transac- 
tions by other peripherals desiring to become 
bus master. The lines BINIT, BPOK, and 
BDCOK are used for system reset and power- 
fail/restart. 

Three other bus lines perform additional sys- 
tem functions; these are BREF, BHALT, and 
BEVNT. BHALT is used to stop PDP-I 1 emu- 
lation and enter console mode; BREF and 
BEVNT are used for microcode refresh of dy- 
namic memories and real-time clock operation, 
to be discussed in a later section. 

Standard Modules. To assist the system 
designer, the LSI-11 series includes several 
standard interface modules. Currently available 
are both serial and parallel 1 / 0  interfaces. The 
DLV- I I handles a single asynchronous serial 
line at speeds of 50-9600 baud, while the DRV- 
1 1  provides a full 16-bit parallel interface com- 
plete with two interrupt control units. The 
DRV-I 1 is completely compatible with the DR- 
I IC interface used with other PDP-I 1s. In or- 
der to facilitate program loading when volatile 
memory is used, a flexible disk drive and inter- 
face is also available. This unit, the RXV-11, 
employs industry-standard media and format- 
ting. 

An Interfacing Example. The design of a 
simple interface to the LSI-I 1 system is pictured 
in Figure 4. Here, the problem is to interface an 
analog-to-digital (A/D) converter and a four- 
digit light-emitting-diode (LED) display. The 
A/D converter is presumed to have a resolution 
of 8-16 bits, and the LED display is driven as 
four binary-coded-decimal (BCD) digits of four 

CSRO START C O N V E R S I O N  fi fiqkw 
DRIVER 

V I -  I N 1  REQ 0 - P U S H B U T T O N  

Figure 4 An interfacing example 

bits each. To simplify the design further, the 
standard DRV-I 1 parallel interface module is 
employed. 

On the input side, the data lines from the 
A/D converter are connected to the input lines 
(INOO: 15) of the DRV-I I ,  and the End-of-Con- 
version signal (EOC) from the A/D is fed to 
one of the interface’s interrupt request lines 
(INT REQ A). If  the processor enables the in- 
terrupt control in the interface, the EOC signal 
will now cause an interrupt, and the CPU may 
read in the data. To initiate sampling of the 
analog input signal, a control line (Start Con- 
version) is needed; this is controlled by an out- 
put line (CSRO) from the DRV- 1 1 .  

On the output side, the data lines (OUT 
00: 15) from the DRV-I 1 are fed directly to the 
seven-segment decoder drivers which control 
the LED displays. The processor may then 
write out a single 16-bit word containing four 
BCD digits, and the data will appear in the dis- 
play. Since a second interrupt input (INT REQ 
B) is available, an operator pushbutton is con- 
nected to this line; by interrupting the proces- 
sor, the user may request a new sample from the 
A/D converter or perform some other function. 

To aid the designer in applying the LSI-I I ,  
detailed interfacing information is available 
[DEC, 1975a; DEC, 1975bl; these manuals 
cover both the standard interface modules and 
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the methods used to interface directly to the 
LSI-11 Bus (Figure 5). In most cases, peripheral 
interface design is a little simpler than in the 
case of the traditional PDP-11 Unibus. 

Special Features 

Several special features of value in low cost 
systems have been implemented in the LSI-11 
microcode. These include an ASCII console, a 
real-time clock, an automatic dynamic memory 
refresh, flexible power-up options, and internal 
maintenance features. 

ASCII Console. The LSI-11 ASCII console 
serves to replace the conventional “lights and 
switches” front panel often associated with 
minicomputer operation. The ASCII console 
functions with a standard terminal device which 
communicates over a serial or parallel link at 

any desired rate. The available functions are 
very similar to those of PDP-11 octal debugging 
technique (ODT), which is familiar to users of 
other PDP-11 systems. These include exam- 
ination and alteration of the contents of mem- 
ory and processor registers, calculation of 
effective addresses for PC-relative and indirect 
addressing, and the control functions of Halt, 
Single-Step, Continue, and Restart. Internal 
processor registers are also accessible, making 
possible a determination of the type of entry to 
the console routines (Halt instruction, etc.). 

The advantages of the ASCII console include 
low cost, remote diagnostic capability, and 
high-level operator interface. The user retains 
all the direct hardware control of a conven- 
tional front panel, while being freed from 
tedious switch register operation. This use of 
the terminal device in no way conflicts with its 

Figure 5. The LSI-1 1 series contains the LSI-1 1 CPU (center). together with parallel and 
serial interfaces, and RAM and ROM memory modules. These modules may be housed in a 
backplane assembly. connected by the LSI-11 bus. 



the methods umd to interface directly to the 
m i  1 B;S (~igure 5). I n  most psriphd 
interfaaoll design la a little simpler than in the 
cas0 of the traditional PDP-11 Unibus. 
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normal use by the program being debugged. 
The ASCII console routines also allow the user 
to boot load from a specified device in a byte 
transfer mode. All together, the ASCII console 
routines occupy about 340 words of microcode; 
since this space is available in the second 
MICROM, the console functions are made pos- 
sible at no extra cost. 

Real-Time Clock. Many low-end con- 
figurations require a real-time clock, driven by 
the power-line frequency or other timing signal, 
which is normally implemented with external 
control logic. To save this expense, such a de- 
vice has been programmed into the LSI-l l pro- 
cessor microcode. To use this clock, the user 
need only connect the timing signal to the pro- 
cessor through the bus line BEVNT. Once con- 
nected, this clock is identical to the KW-11L 
line clock when used in an interrupt mode, ex- 
cept that it may not be turned on and off. An 
optional jumper disables the real-time clock if 
its operation is not desired. 

Automatic Dynamic Memory Refresh. 
One disadvantage of using dynamic MOS mem- 
ories is the necessity of refreshing their contents 
at appropriate intervals. This refresh operation 
is needed to replace the stored charge in each 
memory cell which has been lost through leak- 
age current. In typical dynamic MOS memo- 
ries, each cell must be refreshed every 2 
milliseconds. Most dynamic memories are im- 
plemented in such a way that any normal mem- 
ory access refreshes a group of cells (or “row”) 
on all selected memory chips. One access must 
then be made to each row of every memory 
chip; the 4 K memories used in the LSI-I 1 sys- 
tem require that 64 accesses be made. Nor- 
mally, the logic to control the refresh operation 
would include a 6-bit counter, a clock, and 
memory access arbitration circuitry. 

In  order to minimize this control circuitry, 
the LSI-I 1 CPU microcode features automatic 
refresh control. When enabled by an optional 
jumper, the CPU takes a refresh trap approx- 
imately every 1.6 ms. At this time, it performs 

64 memory references while asserting a special 
bus signal, BREF. This signals all dynamic 
memories to cycle at the same time. Direct 
Memory Access (DMA) requests are arbitrated 
between bus refresh cycles to reduce DMA 
latency. External interrupts, however, are 
locked out during the burst refresh time, tempo- 
rarily increasing interrupt latency. (When this 
latency can not be tolerated, external refresh 
circuitry can drive the bus and assert BREF, al- 
lowing use of either refresh method with the 
same memory modules.) The automatic refresh 
feature is not needed, of course, in systems 
without dynamic memories. 

Power-FaiVRestart Options. The flex- 
ibility of the LSI-11 system is further enhanced 
by the availability of several power-fail/restart 
options. The power-fail sequence, which is nor- 
mally of use only with nonvolatile main mem- 
ory, is compatible with other members of the 
PDP-I 1 family. Upon sensing a warning signal 
from the power supply, the power-fail trap is 
taken. The current PSW and PC are pushed on 
the processor stack, and a new PC and PSW are 
taken from a vector at octal location 24. Nor- 
mally, the routine thus invoked would save pro- 
cessor registers, set up a restart routine, and 
HALT. When volatile memory is used, the reg- 
ister may not be saved; in this case, the power- 
fail trap allows an orderly system shut-down to 
occur. 

Four power-up options are selected by two 
jumpers on the LSI-11 CPU module. The first 
of these is to load a previously set-up PSW and 
PC from the vector at location 24. Normally 
used with nonvolatile memory to continue 
execution from the power-fail point, this option 
is compatible with the normal PDP-11 power- 
up sequence. If ROM program storage is 
employed, this option allows the program to be 
started at an arbitrary address. If the BHALT 
line on the bus (the HALT switch) is asserted 
during this power-up sequence, the console 
microcode will be entered immediately after 
loading the PSW and PC. 
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The second power-up option causes an un- 
conditional entry to the ASCII console rou- 
tines. This allows remote system startup 
without the necessity of controlling the bus Halt 
line. The processor may then be started, as 
usual, by an ASCII console command. 

The last two options allow program execu- 
tion to begin at a specified address in either 
macrocode or microcode. Option three sets the 
macro PC to 173 000 octal and starts normal 
execution. Option four causes a jump to micro- 
code location 3002 octal, i n  the fourth 
MICROM page. Here, the CPU expects to find 
a user-written microcode routine to perform a 
special power-up sequence. The state of the 
BHALT line is not checked in this last case until 
the execution of the first macrocode instruction 
is completed. 

The Maintenance Instruction. For ease in 
hardware checkout, a special maintenance in- 
struction is included in the LSI-11 repertoire. 
This instruction stores the contents of five inter- 
nal registers in a specified block in the main 
memory. The information may then be used by 
a diagnostic program to probe the internal op- 
eration of the microlevel processor. 

The LSI-11 as a Member of the PDP-11 
Family 

Upward Compatibility. Because the basic 
instruction set of the LSI-I 1 processor is that of 
the  entire PDP-11 family, the user has an ex- 
tremely large range of compatible processing 
systems at his disposal. This range extends from 
the LSI- 1 1 on the low end to the PDP-I 1 /70 on 
the high end. The consistency of the instruction 
set provides economies in training and docu- 
mentation costs, as well as the ability to carry 
specific application programs, or even complete 
operating systems, from one family member to 
another. Thus, a user currently employing a 
small PDP-11, like the PDP-11/05, can easily 
convert to  the low cost LSI-11 without losing a 
past investment in software development. This 

compatibility also eases the program devel- 
opment problems often associated with micro- 
computer systems; assembly, compilation, and 
initial debugging may be done on any PDP-11 
system, with the generated code loaded into an 
LSI-11 system for testing and final debug. 
Through the use of the LSI-11 ASCII console, a 
central PDP-11 system may initialize, load, and 
start up a remote LSI-11 system over an asyn- 
chronous serial line or other link. 

Software Support. Other members of the 
PDP-11 family, beginning with the Model 20 
(Chapter 9), have been in service for some time. 
Thus the system designer has at immediate 
hand a large number of language processors, 
utility routines, and application programs. 
Many of these programs will run with little or 
no modification on an LSI-11 system. This ex- 
isting library of software provides the user with 
a head start in the application of micro- 
computers, at  little or no development cost. 

Network Capability. Since the LSI-1 I 
shares a common set of data-types and file 
structures with other PDP-I 1 systems, many 
communication problems disappear. When 
linked through line protocols such as DDCMP 
(digital data communications message protocol 
[DEC, 1974; DEC, 1974a]), LSI-11s may ex- 
change programs and files with other PDP-1 1s 
without adjustments for differing word sizes, 
operating systems, file structures, etc. This fact 
makes the LSI-11 the ideal choice for a network 
node processor. Used with distributed pro- 
gramming systems such as RSX-11, RSTS, or 
RT-11, the individual LSI-11 processors may 
not even require their own mass storage devices, 
but rather share those of other network nodes. 
A monitoring network might then consist of a 
large central PDP-11 with disks, magnetic tape 
units, and other peripherals, together with sev- 
eral remote LSI-I 1s which would directly con- 
trol transducers and communication lines. Yet, 
even in such a functionally differentiated sys- 
tem, all processors would be homogeneous in  
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instruction set; the distributed nature of the net- 
work need not even be visible to  the user. 

SUMMARY 

The LSI-I I ,  then, is the first of a new class of 
microcomputers and offers the user most of the 
advantages of a full-blown minicomputer at a 
significantly lower cost. It is, in fact, the first 
member of the PDP-I 1 family ever offered as a 
single-board component to original equipment 
manufacturers and others. Gaining power and 
flexibility from its microprogrammed design, 
the LSI-I I provides a number of important sys- 
tem features not yet found in other LSI micro- 
computers. With its minicomputer-compatible 
instruction set, the LSI-11 offers a new level of 
microcomputer accessibility and ease of use. 
Whether seen as low-end minicomputers or 
high-end microcomputers, machines like the 
LSI-I 1 serve to bridge the gap which has sepa- 
rated minicomputer performance and conven- 

ience from microcomputer economy and  
flexibility. 

And so, the computer revolution continues; 
from the maxi to the mini to the micro, the 
number and breadth of computer applications 
continue to grow. The DEC LSI-11, a micro- 
programmed minicomputer-compatible micro- 
computer system, contributes to this growth. 
The LSI-1 I is an important step in this contin- 
uing evolution; it will certainly not be the last. 
For both designers and users of this new gener- 
ation of computer systems, there remain many 
interesting days ahead. 
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Design Decisions for the 
PDP-11/60 M id -Range Minicomputer 

J. CRAIG MUDGE 

I N T R 0 D U CT I 0 N 

Design evolution of a minicomputer family 
usually proceeds along three basic dimensions: 
cost, functionality, and size. That is, the mini- 
computer becomes cheaper, more powerful, 
and smaller with time. The underlying hard- 
ware technology is the dominant factor in deter- 
mining the evolution. In contrast t o  the 
evolution of large computers, market factors 
have less influence on the growth pattern of 
minicomputers. However, minicomputer soft- 
ware characteristics are affected by the market. 
These requirements rapidly feed down to mod- 
ify the hardware, given that the technology will 
support user needs. 

The DEC PDP-I 1/60 serves to demonstrate 
minicomputer designing with improved tech- 
nologies. Being a mid-range machine, Le., nei- 
ther the lowest in cost nor the highest in 
performance, its design is a rich source of 
tradeoff examples. Its cache design illustrates a 
price/performance trade; the decreasing cost of 
read-only memories (ROMs) show how 
hardware-microcode tradeoffs change over 
time, and its integral floating-point arithmetic 
unit exemplifies a software-hardware tradeoff. 

DESIGN STYLES 

Equipment history reveals that a member is 
added to a minicomputer family whenever tech- 
nology advances by a factor of 2; for example, 
doubling of bit density on a memory chip. Over 
the past 15 years, such an improvement has oc- 
curred about every two years. 

These advances in technology can be trans- 
lated into either of two fundamentally different 
design styles. One provides essentially constant 
functionality at a minimal price (which de- 
creases over time); the second keeps cost con- 
stant and increases functionality. (Here, and in 
the discussion to  follow, the definition of func- 
tionality has been broadened from its conven- 
tional single component, speed, to  include 
components such as extended instructions and 
self-checking.) Both design approaches coordi- 
nate with the basic marketing philosophy of the 
minicomputer industry: more computation for 
more users at less cost. There have been ten 
models, or implementations, of the PDP-11 ar- 
chitecture since the unit was introduced in 1970 
(Chapter 9). Figure 1 illustrates how the two de- 
sign styles affected successive implementations 
within this minicomputer family. 

315 
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Figure 1 Minicomputer family evolution Advances in 
technology translate into two design styles constant 
cost/increasing functionality and constant function- 
ality/decreasing cost The PDP- 1 1 /60 represents former 
design style Functionality added to PDP-1 1/40 is de- 
picted by shaded area Tradeoffs discussed occur within 
this area 
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Figure 2 Internal structure. Cache placement between 
Unibus and CPU permits faster execution and allows use 
of standard memories. However, DMA monitoring mech- 
anism is needed for traffic on path CBA. Module count is 
six for CPU and cache, one for writable control store, one 
for microdiagnostics unit, and four for floating-point pro- 
cessor. This processor operates in parallel with CPU exe- 
cution of nonfloating-point instructions; instruction times 
are 1.02 f i s  for double-precision add and 1.53 ps for 
single-precision multiply. Writable control store uses 
1024 control words that are reloadable and that control 
170 ns inner machine. Machine is design optimized for 
user environment characterized by real-time operating 
system and FORTRAN. 

Lower cost members trace the decreasing 
cost/constant functionality curve. (This is the 
1 1/20, 1 1/05, and LSI-11 or 11/03 line.) The 
horizontal line in Figure 1 connects the con- 
stant cost/increasing functionality designs. 
(Not shown are "growth-path'' members that 
provide greater performance at slightly in- 
creased costs; 11/45, 11/55, and  11/70 
machines trace an upward growth-path curve.) 
Shaded area in the figure represents the added 
functionality possible through technology ad- 
vances. Mid-range minicomputers attempt to 
optimize price/functionality and, hence, offer 
an excellent vantage point for discussing design 
tradeoffs made under the constant-cost design 
style. 

In  addition to the capabilities provided by 
technological advances, a mature family archi- 
tecture and user base allows the minicomputer 
designer to include those capabilities that were 
not considered feasible in the original archi- 
tecture. These features may not have been in- 
cluded because they were too  costly t o  
implement, not sufficiently general purpose to 
justify their inclusion, or not perceived as being 
essential to users. Reliability, maintainability, 
the integral floating-point unit, and the writable 
control store (WCS) option represent such 
capabilities. 

Internal structure of the 1 1 /60 (Figure 2) in- 
corporates a 2048-byte cache, memory manage- 
ment unit (for virtual-to-physical address 
translation), and an integral floating-point uni t  
as standard components. The unit can perform 
a register-to-register add instruction in an aver- 
age time of 530 ns; internal cycle time is 170 ns. 
Available as options are a floating-point pro- 
cessor, which implements at higher speed the 
same 46 instructions as the integral unit, a writ- 
able control store, and a microdiagnostic unit. 

ADVANCES IN  MEMORY TECHNOLOGY 

Improvements in memory technology have 
been the principal forces in  minicomputer de- 
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velopments. Memory is the most basic com- 
ponent of a computer, and it is utilized 
throughout the design. In addition to obvious 
uses as main program and data memory, and as 
file storage devices (disks and tapes), memory is 
also located within the central processor in the 
form of registers, state indicators, control, and 
buffer storage between the central processor 
and main (primary) memory. In input/output 
(I/O) devices, there are buffers and staging 
areas. Memory can be substituted for nearly all 
logic by substituting table lookup for com- 
putation. 

The constantly increasing bit density men- 
tioned previously has been the most dramatic 
development in memories. For example, bi- 
polar read-write or random-access memory 
(RAM) chips have advanced as follows. 

Year When First Number 
Widely Available of Bits 

1969-70 16 
I97 1-72 64 
1973 256 
1975 1024 
1977 4096 

Cost reductions have paralleled bit density 
increases. A consequence of high density RAM 
technology is that cache memories are now ex- 
tensively used in mid- and upper-range mini- 
computers. Bipolar ROM densities have led 
RAM densities by about a year. Thus, the 2048- 
bit ROM, organized as 512x4, was available in 
1975. 

These factors have made microprogrammed 
control increasingly attractive to the mini- 
computer designer. While large-scale computers 
utilized extensive microprogramming during 
the 196Os, it was not a cost-effective choice for 
the minicomputer designer because of the pro- 
hibitive cost of the read-only storage tech- 
nology then available. 

Both hardwired control devices and micro- 
programmed control devices have curves that 
trace increases in cost as they implement in- 
creasing functionality (Figure 3). However, the 
rate o f  cost increase is less for micro- 
programmed controls than for hardwired con- 
trols. Davidow [ 19721 demonstrates that a 
factor of 4 difference exists between the two 
slopes. 

At some point, the two related hardwired and 
microprogrammed curves cross. Beyond that 
intersection, microprogrammed controls are 

HARDWIRED 

I3 x2 PDP-11 X 1  

FUNCTIONALITY 

Figure 3. Semiconductor technology trends in control 
implementations. Cost comparisons, at three different 
points in time, of conventional hardwired control and ad- 
vanced microprogrammed control show two important 
trends. First, at fixed point in time in 1970s (e.g., time 
(3). microprogrammed control is less expensive above 
certain level of complexity ( x 3 ) .  For simplest type of ma- 
chine, random logic gives most economical design. Mi- 
croprogrammed design has base cost associated with 
address sequencing and memory selection circuitry. Mi-  
croprogrammed control cost increases slowly with num- 
ber of sequencing cycles. which are added as complexity 
increases. because each additional cycle requires one ad- 
ditional word of control store. Second. because rate of 
cost-decrease for memories is greater than the rate for 
random logic. crossover points move with time, gradually 
shifting in favor of microprogrammed control. When 
11/20 was designed (time t l )  hardwired controls were 
cheaper. Its successor, the 11/40. was designed at time 
t2 and used microprogramming. The 11/60, at time t3. 
used increased microprogramming. 
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more economical to use in a design. Both of 
these curves are moving downward in cost with 
time, but the curve for microprogrammed con- 
trols is moving downward at a faster rate. Thus, 
the intersection point of the two curves is grad- 
ually shifting in favor of microprogrammed 
controls because the two technologies are mov- 
ing at different rates. The PDP-I 1 family offers 
an example of this trend. At the time the 11/20 
was designed, the crossover point was to the 
right of the PDP-II instruction set on the ab- 
scissa. Hence, the 11/20 used hardwired con- 
trols. However, all subsequent implementations 
h a v e  used  a R O M - c o n t r o l l e d  m i c r o -  
programmed processor. O’Loughlin [ 19751 con- 
trasts the control implementations of four 
members of the family. 

Instruction decode on the 11/60 provides an 
example of a different use of ROMs. For the 
secondary decode (the primary is done by com- 
binational logic), part of the instruction register 
addresses a ROM in which control-store- 
address offsets are stored. This data-table ap- 
proach offers both a component saving and a 
more systematic design. Another example is a 
ROM-stored table that inspects memory ad- 
dresses to detect those that refer to locations in- 
ternal to the processor. 

Other advances in semiconductor technology 
that have affected the minicomputer designer’s 
task include the development of 3-state logic de- 
vices and greater levels of gate integration in 
logic chips. Widely available in 1975, 3-state 
logic encourages bus-oriented designs. Six 3- 
state buses are implemented in the 11/60. 
Examples are the 48-bit-wide control signal bus 
in the CPU and the 60-bit-wide fraction data 
and IO-bit-wide exponent data buses in the 
floating-point processor. 

Increased gate integration in logic chips had 
its major impact on  constant-cost mini- 
computers when the design evolution moved 
from the 11/20 to the 11/40. The latter machine 
made heavy use of medium-scale integration 
(MSI). The MSI available to 11/60 designers 

had negligible density gains over that available 
to the 1 1 /40 designers. However, after the basic 
technology decision for the 11/60 was made, a 
significant step in gate integration occurred. 
The bit-slice technology, as typified by the 4- 
bit-wide bipolar AM2901 microprocessor slice, 
became widely available. A 1977 technology de- 
cision for a mid-range minicomputer would 
clearly choose bit-slice components. For the 
1 I /60, however, improvements came from the 
introduction of 3-state logic and from avail- 
ability of a wider range of Schottky logic com- 
ponents. 

Three semiconductor technology advances 
contributed to the 11/60 price/performance de- 
sign in differing degrees. Most important was 
the cost reduction in ROMs, next was the den- 
sity improvement in RAMS, and third was the 
(minor) increase in random logic density. 

P R IC E/PE R FORM A N  C E BALANCE 

Two components, the cache memory and the 
medium-bandwidth 1/0 structure, demonstrate 
the price/performance balance characteristic of 
the I 1 /60 mid-range minicomputer. 

Cache is now a well-proven technique in 
computer memory implementation. Its purpose 
is to achieve the effect of an all-high-speed 
memory by using two memories - one slow 
(primary) and one fast (cache) - and by taking 
advantage of the fact that, most of the time, 
data being used is in  the fast or cache memory. 
Programs typically have the property of local- 
ity; that is, over short periods of time, most ac- 
cesses are to a small number of memory 
locations. The hardware algorithm managing 
the cache attempts to keep copies of these loca- 
tions in the cache. The term “hit ratio” is used 
to describe the proportion of requests for data 
or instructions that are satisfied by reference 
only to the cache. Alternatively, “miss ratio” is 
the complement of hit ratio. Performance is de- 
termined by the hit ratio, which is a function of 
several cache organizational parameters, in- 
cluding: ( I )  cache size, (2) block size (amount of 
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data moved between the slow or primary mem- 
ory and the cache), and (3) form of address 
comparison used. 

Strecker (Chapter IO) describes the research 
that led to the use of a cache memory in the 
I 1 /70. His simulation models were also used in 
the 11/60 design. By comparing the designs of 
these machines, several tradeoffs made to ob- 
tain a lower cost memory system appropriate to 
the mid-range 11/60 can be noted. 

The first parameter to be determined was the 
amount of data to be moved between primary 
memory and cache. This decision was closely 
related to the width of the internal memory bus 
connecting 1/0 devices to  primary memory. 
Since the 11/70 was planned to support several 
high speed Direct Memory Access (DMA) de- 
vices, (e.g., swapping disks operating con- 
currently), its designers provided a 32-bit bus to 
memory to supplement the 16-bit-wide Unibus. 
Because the target 11/60 users do not require 
such a large 1 / 0  bandwidth, the Unibus is used 
for DMA traffic. The 11/70 cache has a block 
size of two 16-bit words and transfers 32 bits 
from memory to cache across its dedicated 
memory bus. Since the 11/60 uses the 16-bit 
Unibus as its memory bus, the simplest block 
size - one 16-bit word - was chosen. Note that a 
2-word block size can be achieved with a 16-bit 
bus; the bus is cycled twice to effect a 2-word 
transfer. Cache simulations showed that this 
bus cycling would raise the hit ratio of the 
1 1 /60 from 87 to 92 percent. However, the asso- 
ciated performance gain was judged not to be 
worth the significant added cost of the extra 
control logic needed to cycle the bus twice. 

The next decision concerned the size of the 
cache. Simulation results showed that the miss 
ratio decreases rapidly for cache sizes up to 
1024 words and less rapidly for larger sizes. But 
how should the 1024 words be partitioned? Be- 
cause a full-associative cache requires an expen- 
s ive c o n t e n t - a d d r e s s e d  m e m o r y ,  t h e  
partitioning choice for minicomputers is for a 
set-associative cache. Since a complete dis- 

cussion of associativity and replacement is be- 
yond the scope of this article, the reader is 
referred to the papers by Meade [I9711 and 
Strecker (Chapter IO). 

Degree of associativity and total cache size 
was dominated by the form factors of two can- 
didate RAM chips (256 X 1 and 1024 X 1). 
These factors are illustrated in Figure 4. The 
fo l lowing  l is t  s h o w s  t h e  c l e a r  p r i c e /  
performance advantage of the chosen 1024- 
word, set-size-of-one cache. 

RAM RAM 
Chip Set Cache Chip Hit 
Capacity Size Size Count Ratio 
256X 1 1 256 n 0.70 
256X 1 1 512 2n 0.75 
256X 1 2 512 2n 0.82 

1024X 1 1 1024 n 0.87 

256 X 1 2 1024 4n 0.93 
1024X 1 2 2048 2n 0.93 

The resulting structure is shown in Figure 5. 
This simple, direct-mapped organization should 
dominate minicomputer cache designs in the 
near-term future. By using the design evolution 
model shown in Figure I ,  it is projected that the 
two candidate RAM chips for the successor to 
the 11/60 cache will be the 1024 X 1 and 4096 X 
1 chips. Obviously, the design choice for that 
new class of machine will be a 4096-word direct- 
mapped cache. 

Since simulation data show negligible per- 
formance difference between various write- 
allocation strategies, the lowest cost strategy, 
that of allocate-on-write, was implemented. Be- 
cause the l l /60 utilized a set-size-of-one cache, 
there was no need to decide upon a replacement 
algorithm. The 11/70 uses a random-replace- 
ment algorithm. 

The next decision to be made concerned 
placement of cache. Two choices were eval- 
uated. The cache could be placed between the 
Unibus and the primary memory or between 
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Figure 4 Cache comparison Simple direct mapped 
cache of the 11/60 contrasted with the 11/70 cache 
illustrates a price-performance tradeoff The 1 1 /70 
cache has a block size of two (two words are transferred 
from primary memory) and a set size of two (a word may 
be placed in either set) Component savings of the sim- 
pler organization are clear only one address comparator 
is needed no multiplexer is required to select the output 
of the data store and only one set of parity checkers is 
needed Hit ratio of the simpler 11/60 cache is 0 87 as 
compared with 0 93 for the 1 1/70 cache, which required 
five times the component count 
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Figure 5 Direct-mapped cache Mapping occurs from 
128 Kwords of primary memory to 1024-word cache 
High-order seven bits of an 18-bit address are stored in 
tag store to ensure uniqueness in mapping Tag store 
also holds a valid bit and parity bits Cache word format 
(27 bits in total) is as shown in the bit map 

the Unibus and the central processor. The latter 
was chosen because of the following advan- 
t ages. 

Machine execution is faster since the 
high speed cache is local to the central 
processor. Time delays associated with 
synchronization and transmission on the 
Unibus are avoided. 
Instead of designing specific 11/60 mem- 
ory modules, existing memory sub- 
systems that interface to  the Unibus 
could be used. Moreover, as faster 
Unibus-interfaced memories become 
available, they can be installed on the 
machine without change. 
DMA traffic interferes with processor 
activity to a lesser extent. DMA activity 
takes place over the path labeled ABC in 
Figure 2. Processor speed is degraded by 
interference with 1 / 0  operations only 
when the cache needs to reference the 
primary memory, using path ABD in 
Figure 2. This happens only in the event 
of a read miss, typically less than 13 per- 
cent of the time, and on write operations 
(10 percent of memory references). 

The disadvantage of this placement is that a 
mechanism to monitor DMA traffic must be 
added to the cache to avoid the "stale data" 
problem. (When the processor reads a location 
that has been written by DMA, it must receive 
the information from primary memory.) The al- 
ternative placement avoids this extra mecha- 
nism by handling both DMA and processor 
requests with the same mechanism. However, 
there is more interference between the processor 
and 1 / 0  activity. 

Increased memory chip density and the cache 
performance tradeoff resulted in a significant 
component reduction. The 11/70 cache oc- 
cupies four printed circuit boards (approx- 
imately 440 chips); the 11/60 occupies less than 
one board (approximately 85 chips). This factor 
of 5 component reduction is due to: (1) absence 
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of the 32-bit bus, (2) simpler cache organiza- 
tion, and (3) semiconductor technology ad- 
vances. These three factors contributed in 
approximately equal proportions. 

FREQUENCY -D R IVE N DESIGN 

Because the 11/60 implemented a stable, ma- 
ture instruction set, several years of program- 
ming experience were incorporated into the 
system design. A simulator program was used 
to gather execution statistics on a range of pro- 
grams. Frequency distributions of operation 
codes and addressing modes drove the design of 
the base 11/60 and the floating-point processor 
option. 

Functions implemented in hardware, as 
opposed to microcode, require less time to 
execute. However, microprogrammed imple- 
mentations are less expensive, as shown in 
Figure 3. Frequency distributions of operation 
codes guided the tradeoff. A balanced mixture 
of hardwired and microprogrammed implemen- 
tation of functions produced a central processor 
that approached the speed of a computer with 
completely hardwired control functions, but at 
a lower cost. 

Frequency distributions of floating-point 
operands were also used. Sweeney [I9651 
analyzed the execution of more than one mil- 
lion floating-point additions and tabulated the 
behavior of preshift alignment and postshift 
normalization. Both distributions are highly 
skewed toward low numbers of shifts. By ex- 
ploiting these data, the floating-point processor 
performs a double-precision add in 1.02 micro- 
seconds as compared with 1.68 microseconds 
on a comparable unit that uses a conventional 
algorithm. 

To measure the price/performance advan- 
tage claimed for the frequency-driven design 
approach in the base 11/60, a similar machine 
was needed for comparison. Obviously, such a 
machine, realized in the same semiconductor 
technology and designed so that the hardware 

resources were divided equally among all in- 
structions, was not available. However, data 
was available on floating-point implementa- 
tions. The floating-point processor design was a 
four printed circuit board unit that exploited 
the frequency distributions of operation codes, 
addressing modes, and shift amounts. A theo- 
retical comparison was made with another four 
board design that did not use a frequency- 
driven approach. The 1 1 /60 floating-point pro- 
cessor was estimated to exhibit a performance 
gain of 30 to 40 percent on the standard set of 
benchmark programs used throughout the de- 
sign process. 

INTEGRAL FLOAT1 NG-POI NT 
ARITHMETIC UNIT 

Addition of an integral floating-point arith- 
metic unit to the 11/60 was a direct con- 
sequence of market feedback. In particular, it 
was determined that the majority of the 
machine’s users would use FORTRAN IV as a 
source language. In addition, among those 
using that language, many were not interested 
in heavy floating-point computation because in- 
teger arithmetic dominated their applications. 

The FORTRAN IV-PLUS compiler has been 
optimized for execution speed (as opposed to 
compile speed) - typically a factor of three over 
other available FORTRAN IV compilers. This 
compiler, however, employs the instruction set 
and auxiliary registers of the PDP-I 1 floating- 
point processors. Thus, to take advantage of the 
compiler’s efficiency without burdening the 
user with the cost of a fast floating-point pro- 
cessor, the central processor must provide those 
floating-point instructions. This is done by 
emulating the 46 instructions, including the 64- 
bit data operations, of the full floating-point in- 
struction set using the 16-bit-wide data path of 
the base 11/60. Fo r  users who require 
FORTRAN IV but have low floating-point 
content in their programs, the integral floating- 
point uni t  is all that is necessary. 
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Additional microcode and register space 
added a few percent to the CPU cost. However, 
for that small cost increase, FORTRAN IV per- 
formance on integer programs was increased by 
300 percent - a dramatic increase. 

CABINET-LEVEL INTEGRATION 

Physical packaging of minicomputer systems 
involves another set of tradeoffs. Several levels 
of size integration are available, ranging from 
the chip level (LSI-1 1), through the board level 
( 1  1 /04) and the box level (1 1 /34), to the cabinet 
level ( 1  1 /60). 

At the cabinet level, packaging techniques are 
generally traditional. System fabrication is fre- 
quently the result of determining methods to in- 
stall subassemblies into standard racks. At this 
configuration level, generalized subassemblies 
are usually chosen for certain functions. 

This generally evokes a cost. For instance, 
there may be a great deal of unused space in 
conventional industrial racks; in most cases this 
excess space is simply covered with blank panel- 
ing. The cooling system, however, must be de- 
signed as if all the racks within the cabinet were 
occupied with subassemblies. 

It was projected that the majority of the con- 
figurations sold would be system oriented; thus, 
design optimization at the cabinet level would 
be worthwhile. Therefore, the standard 11/60 is 
cabinet packaged. Figure 6 shows how the 
CPU, memory, disk units, power supplies, and 
expansion backplane are packaged to  gain the 
advantages that stem from cabinet level in- 
tegration. This integration also yielded added 
volume, allowing a more powerful blower sys- 
tem to be installed. Acoustic sound power emit- 
tance is very low, considering that the rated 
operating environment is DEC Standard 102 
Class C (122" F) for the processor. Improved 
power efficiency, appearance for the office envi- 
ronment, and subassembly accessibility are also 
provided. 

USER MICROPROGRAMMING OPTION 

User microprogramming was incorporated in 
the system to meet growing market demands. 
The option allows the user to create instructions 
that tailor the central processor, particularly the 
data flow, to his particular application. 

Many potential applications of micro- 
programming were considered during the de- 
sign of the data path and control sections of the 
11/60. They ranged from instruction set exten- 
sions, e.g., translation, string, and decimal 
arithmetic operations, to application kernels, 
such as node manipulation in list processing 
and fast Fourier transform in signal processing. 
Merely substituting RAM for ROM control 
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Figure 6 Cabinet packaging Primary design goals 
were reliability and maintainability System logic is 
mounted on swing-out card cages C and D for easy ac- 
cess Rear access power supplies E are modular Cable 
routing reduces electrical noise and crosstalk Blower 
system F keeps all devices cool Keypad B with numer- 
ical display facilitates machine control and maintenance 
Disks A are top- or front-loading units 
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does not result in a microprogrammable com- 
puter. A microprogrammable computer system 
should have the following: 

I .  Extra address space in the control store. 
2. Generality in the data path’s processing 

elements. 
3. A means to load the writable control 

store (WCS). 
4. User-oriented hardware documentation. 
5 .  Software to support writing and debug- 

ging microprograms. 
6. Integration of hardware and software 

protocols. 

All these capabilities were designed into the 
1 1 /60 WCS option. 

A previously reserved operation code, 
0767XX in the PDP-I 1 instruction set, has been 
allocated for users. Its designation is XFC, ex- 
tended function code. When this code is recog- 
nized, the CPU transfers control to the upper 
1024-word block of the 4096-word micro- 
program address space. User-written microcode 
may take over from there. 

A second (asynchronous) type of entry to 
user’s microcode is also provided. This occurs 
when a WCS-serviced interrupt is recognized by 
the base machine. Thus, a user can write inter- 
rupt service routines in microcode and invoke 
them without the usual inerrupt overhead. Such 
routines may even be complete 1/0 channel 
emulations. 

Implementation of the basic 11/60 demon- 
strated flexibility of microprogramming. The 
techniques were used in such diverse functions 
as console service, error logging, floating-point 
arithmetic, and cache initialization. 

Microprogramming does not always result in 
significant performance gains. Well-suited ap- 
plications can gain by a factor of 5 ;  poorly 
suited ones may give only minimal improve- 
ment. This is supported by measurements on 
digital signal processing software reported by 
Morris and Mudge [1977]. Prospective users 

must carefully analyze the execution behavior 
of the application to determine which parts are 
“hot spots,” i.e., most frequently executed. For 
the average application, an overall factor of 2 
improvement should be expected. This average, 
found to be a useful rule of thumb, is derived by 
assuming that  all hot spots are  micro- 
programmed and the remainder of the program 
is left unchanged. 

Two user-microprogramming options are 
available. The first is composed of the writable 
control store module, software tools, and asso- 
ciated manuals. The second is a board contain- 
ing control logic and sockets ready for the 
insertion of custom-programmable ROMs 
(PROMS) containing microprograms developed 
with the writable control store. This extended 
control store (ECS) option is designed for situa- 
tions where microcode integrity and/or mul- 
tiple installations are required. 

A novel structuring of the writable control 
store allows it to be used to store data. Avail- 
ability of data storage local to a processor, i.e., 
not accessed through a main, general purpose 
memory bus, can increase system speed. Such 
local store is usually implemented in some spe- 
cial technology that has low capacity but high 
performance. Writable control store has been 
structured so that the 48-bit microinstruction 
storage words can be read and written as 16-bit 
data words. In addition to conventional writ- 
able control store hardware, logic is available to 
realize a local store address register (LSAR) 
and a local store data register (LSDR). 

Thus, the microprogrammer has fast local 
store available. This storage is block-oriented. 
A three-cycle overhead is needed to start a 
block read (or block write); then, words are 
read (or written) at the rate of one per micro- 
cycle. The microprogram can be logically parti- 
tioned into two sections: control store - 48-bit 
control words; and local store - 16-bit data 
words (three per microword). A common parti- 
tioning would be 512 words of control store and 
1536 words of local store. 
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RE LI A B I LlTY A N  D M A  I NTA I NAB I LlTY 

Design decisions to allocate a portion of the 
cost of the 11/60 to reliability and maintainabil- 
ity, rather than to further improving perfor- 
mance, were motivated by user and market 
needs. Prime considerations were the increasing 
labor cost associated with maintenance and the 
growing use of minicomputers in applications 
demanding more reliability. 

The first goal was to increase the mean time 
between failures (MTBF) by: (1) reducing the 
occurrence and impact of normally fatal hard- 
ware malfunctions, (2) providing error statis- 
tics, and (3) providing operating alternatives to 
keep the system running after failures occur, al- 
beit at a lower performance. 

The second goal was to reduce the mean time 
to repair (MTTR) when hardware malfunctions 
occur by: (1) hardware design and packaging 
that facilitate error diagnosis and repair during 
scheduled and nonscheduled maintenance, (2) 
continuous logging of hardware errors during 
system operation, and (3) provision of software 
and microdiagnostic tools for problem isola- 
tion. 

MTBF 

Reducing the incidence of fatal hardware 
malfunctions was a joint effort by engineering 
and manufacturing. The Schottky transistor- 
transistor logic (TTL) used in the machine, hav- 
ing been in widespread use for over five years, is 
a well proven family of devices. Moreover, con- 
servative electrical design practices were fol- 
lowed. 

Plotted against time, chip failure rate tends to 
follow a bathtub-shaped curve, high at either 
end of the life cycle. The 11/60 production pro 
cess includes extensive thermal cycling to ensure 
that “infant mortality” cases are discovered 
early during manufacturing. 

The cabinet is designed to minimize buildup 
of hot air over the processor boards. Power sup- 
plies are mounted at the rear of the cabinet, 
away from the logic, so that radiant heating ef- 

fects are minimized. A blower system cools the 
logic card cage by drawing fresh, filtered air 
down over the printed circuit boards such that 
no board receives exhaust air from another. 

Other physical packaging to reduce hardware 
problems include cable troughs,  impact- 
absorbing casters, and special cabinet ground- 
ing. A filter is attached to the maintenance con- 
sole to reduce electrostatic noise interference. 

Console microcode double checks every entry 
to verify data received from the keypad. A sig- 
nificant proportion of the 11/60 microcode 
(Table 1)  is devoted to logging microlevel state 
upon the occurrence of a detected error. This 
logged state can be accessed via a maintenance 
examine and deposit (MED) instruction. Log- 
ged information is used by an operating system 
to compile error records, which aid in tracking 
down intermittent errors. 

To reduce the impact of hardware malfunc- 
tions on the user environment, a number of fail- 
soft capabilities have been implemented. 

If the cache fails, it is turned off and the 
still-functioning primary memory is used 
to keep the system running. 
If a parity error occurs in WCS, the pro- 
cessor disables that control store. Then 
the operating system is notified, and pro- 
gram execution can continue using the 
basic PDP-11 instructions. 
Systems can be programmed to fall back 
onto the integral floating-point unit if an 
error is detected in the floating-point 
processor. 
The bootstrap loader permits system 
loading from an alternative device if the 
primary bootstrapping device is dis- 
abled. 

MTTR 
Error diagnosis is the most time-consuming 

problem facing the field service engineer. Spe- 
cial diagnostic tools, both hardware and soft- 
ware, have been designed to reduce the time 
spent in error isolation. 
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Table 1. Control Store Usage by Category 

Category 
Number of Percentage 
Microwords of Total 

A PDP-1 1 Instruction Set 
Initialization 
Operand fetch. execution, and operand 
store 
Infrequent intraprocessor transfers 

9 5  

51 5 
230  840 

B 

C 

D 

E 

Integral Floating-point Instruction Set 

Reliability and Maintainability 
Error logging, MED, and cache fail-soft 
Console, boot, and initial diagnostic 

Support of Options 

Writable control store 

Floating-point processor 

Reserved for Future Changes and 

Additions 

1010 

190 
230  

60  

80 

150 

4 

2 0  

9 

40 

7 
9 

2 
3 

6 

2560 100 

Total address space for microprograms is 4096 words of which the 2560 categorized in the table are 
implemented in ROM 

Note the increased utilization of microprogramming in the 11/60 as compared to the 11/40 Category A 
totaling 840  words was implemented in 256 words for the 11/40 The two machines have comparable 
microword widths 

The third subcategory in Category A illustrates the use of microprogramming in the frequency-driven 
design approach Examples of infrequent tntraprocessor transfers are error handling and data transfer to and 
from internal addresses e g , memory management relocation registers 

One of the benefits of a microprogrammed implementation of control is the ease with which engineering 
change orders (ECO) can be implemented Space in Category E is reserved for such use and for the further 
correction of undetected errors in the microcode itself 

Focal point of the hardware maintainability 
effort is the microdiagnostic unit. This single 
board tests the logic on five of the six processor 
boards. When faults are detected, an error code 
is displayed on light-emitting diodes (LEDs). A In addition, a number of on-board diagnostic 
fault directory can then be used to determine aids are included in the CPU design. These in- 
which boards are to be replaced. The unit clude LEDs to display the contents of the next 

requires only a small portion of the internal 
machine (the microword sequencing) to be op- 
erational. 



326 THE PDP-11 FAMILY 

microaddress register, a single-step mode, and a 
microbreak function. 

Software diagnostic programs are used to 
diagnose errors in  system peripherals as well as 
in all CPU subsystems, such as memory man- 
agement unit and cache. User mode diagnostic 
programs allow peripheral diagnosis to occur 
while the system is available for other users. 
Conventional standalone diagnostic programs 
can also be used. 

Physical packaging facilitates quick repair. 
Hinged card cages and modular power supplies 
allow easy access and module change. 

SUMMARY 

The design of a mid-range minicomputer has 
been used as a concrete illustration of tradeoffs 
made to effect a price/performance balance. 

Designers use technology advances, e.g., dou- 
bling of density on a memory chip, to produce 
new designs in one of two design styles: con- 
stant cost/increasing functionality or constant 
functionality/decreasing cost. Increased use of 
microprogramming, a factor of 3 in this case 
study, is a trend that was observed. 

By choosing a less powerful cache organiza- 
tion, the 11/60 design obtained a factor of 5 
component reduction. Cache design also illus- 
trates how some design parameters are highly 
interdependent. The frequency-driven design 
approach used on the floating-point processor 
can lead to a 40 percent performance gain. 

Examples of added functionality in the con- 
stant-cost style of design include greater relia- 
bility and maintainability, and user micro- 
programming . 
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The PDP-11, A Case Study 
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I NTROD U CTl ON 

As semiconductor technology has evolved, 
the digital systems designer has been presented 
with an ever increasing set of primitive com- 
ponents from which to construct systems: 
standard SSI, MSI, and LSI as well as custom 
LSI components. This expanding choice makes 
it more difficult to arrive at a near-optimal 
cost/performance ratio in a design. In the case 
of highly complex systems, the situation is even 
worse since different primitives may be cost-ef- 
fective in different subareas of such systems. 

Historically, digital system design has been 
more an art than a science. Good designs 
evolved from a mixture of experience, intuition, 
and trial and error. Only rarely have design 
methodologies been developed (e.g., two level 
combinational logic minimization, wire-wrap 
routing schemes, etc.). Effective design method- 
ologies are essential for the cost-effective design 
of more complex systems. In addition, if the 
methodologies are sufficiently detailed, they 
can be applied in high level design automation 
systems [Siewiorek and Barbacci, 19761. 

Design methodologies may be developed by 
studying the results of the human design pro- 
cess. There are at least two ways to study this 

process. The first involves a controlled design 
experiment where several designers perform the 
same task. By contrasting the results, the range 
of design variation and technique can be estab- 
lished [Thomas and Siewiorek, 19771. However, 
this approach is limited to a fairly small number 
of design situations due to the redundant use of 
the human designers. 

The second approach examines a series of ex- 
isting designs that meet the same functional 
specification while spanning a wide range of de- 
sign constraints in terms of cost, performance, 
etc. This paper considers the second approach 
and uses the DEC PDP- 1 1 minicomputer line as 
a basis of study. The PDP-11 was selected due 
to the large number of implementations (eight 
are considered here) with designs spanning a 
wide range in performance (roughly 7:l) and 
component technology (bipolar SSI, MSI, 
MOS custom LSI). The designs are relatively 
complex and seem to embody good design 
tradeoffs as ultimately reflected by their 
price/performance and commercial success. 

The design tradeoffs considered fall into 
three categories: circuit technology, control unit 
implementation, and data path topology. All 
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three have had considerable impact on perform- 
ance. Attention here is focused mainly upon the 
CPU. Memory performance enhancements 
such as caching are considered only in so far as 
they affect CPU performance. 

This paper is divided into two major parts. 
The first part presents an archetypal implemen- 
tation followed by the model-specific variations 
from the archetype. These variations represent 
the design tradeoffs. The second part presents 
methodologies for determining the impact of 
various design parameters on system perform- 
ance. The magnitude of the impact is quantified 
for several parameters and the use of the results 
in design situations is discussed. 

The PDP-I 1 Family is a set of small- to me- 
dium-scale stored program central processors 
with compatible instruction sets. The I1 Family 
evolution in terms of increased performance, 
constant cost, and constant performance suc- 
cessors is traced in Figure 1. Since the 11/45, 
1 1/55 and 11/70 use the same processor, the 
KB 1 1, only the 1 1 /45 is treated in this study. 

IMPLEMENTATION OF M E D I U M  
PERFORMANCE PDP-1 IS 

The broad middle range of PDP-lls have 
comparable implementations yet their perform- 
ances vary by a factor of 2. The processors mak- 
ing up this group are the PDP-l1/04, 11/10,* 
11/20, 11/34, 11/40, and 11/60. This section 
discusses the features common to these imple- 
mentations and the variations found between 
machines which provide the dimensions along 
which they may be characterized. 

Common Implementation Features 

All PDP-11 implementations, be they low, 
medium, or high performance, can be decom- 
posed into a set of data paths and a control 
unit. The data paths store and operate upon 
byte and word data and interface to the Unibus, 
permitting them to read from and write to 

PDP-1 

TIME 

Figure 1 .  PDP-1 1 Family tree 

memory and peripheral devices. The control 
unit provides all the signals necessary to  evoke 
the appropriate operations in the data paths 
and Unibus interface. Mid-range PDP- 11s have 
comparable data path and control unit imple- 
mentations allowing them to be contrasted in a 
uniform way. In this section, a basis for com- 
paring these machines is established and used to  
characterize them. 

Data Paths. An archetype may be con- 
structed from which the data paths of all mid- 
range PDP-1 Is differ but minimally. This arch- 
etype is diagrammed in Figure 2. All major reg- 
isters and processing elements as well as the 
links and switches which interconnect them are 
indicated. The data path illustrations for indi- 
vidual implementations are grouped with Fig- 
ure 2 at the end of the chapter. These figures are 
laid out in a common format to encourage com- 
parison. Note that with very few exceptions, all 
data paths are 16 bits wide (PDP-11 word size). 

The heart of the data paths is the arithmetic 
logic unit or ALU through which all data circu- 
lates and where most of the processing actually 
takes place. Among the operations performed 
by the ALU are addition, subtraction, one’s 

*The  11/05 and  the 11/10 a re  identical machines sold to different markets.  This chapter refers t o  the machine as the 11/10 
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CONOlTlON 
CODES 
t 0- 

NOTE 
All data paths are 16 bits wide unless otherwise indicated 

Figure 2. Archetypal medium-range PDP-1 1 data 
paths 

and two’s complementation, and logical AND- 
ing and ORing. 

The inputs to the ALU are the A leg and the 
B leg. The A leg is normally fed from a multi- 
plexer (A leg MUX) which may select from an 
operand supplied to it from the Scratchpad 
Memory (SPM) and possibly from a small set of 
constants and/or the Processor Status register 
(PS). The B leg also is typically fed from its own 
MUX (B leg MUX), its selections being from 
the B Register and certain constants. In addi- 
tion, the B leg MUX may be configured so that 
byte selection, sign extension, and other func- 
tions may be performed on the operand which it 
supplies to the ALU. 

Following the ALU is a multiplexer (the A 
MUX) typically used to select between the out- 
put of the ALU, the data lines of the Unibus, 
and certain constants. The output of the A 
MUX provides the only feedback path in all 
mid-range PDP- 1 1 implementations except the 
11/60 and acts as an input to all major proces- 
sor registers. 

The internal registers lie at the beginning of 
the data paths. The Instruction Register (IR) 
contains the current instruction. The Bus Ad- 
dress register (BA) holds the address placed on 
the Unibus by the processor. The Program Sta- 
tus register (PS) contains the processor priority, 
memory management unit modes, condition 

code flags, and instruction trace trap enable bit. 
The Scratchpad Memory (SPM) is an array of 
16 individually addressable registers which in- 
clude the general registers (RO-R7) plus a num- 
ber of internal registers not accessible to the 
programmer. The B Register (B Reg) is used to 
hold the B leg operand supplied to the ALU. 

The variations from this archetype are minor 
as discussed in the section entitled “Character- 
ization of Individual Implementations.” Varia- 
tions encountered include routings for Bus 
Address and Processor Status register, the point 
of generation for certain constants, the posi- 
tioning of the byte swapper, sign extender, and 
rotate/shift logic, and the use of certain aux- 
iliary registers present in some designs and not 
others. I n  general, these variations are all pe- 
ripheral to the major elements and inter- 
connections of the data paths. 

Control Unit. The control unit for all PDP- 
11 processors (with the exception of the PDP- 
11/20) is microprogrammed [Wilkes and 
Stringer, 19531. The considerations leading to  
the use of this style of control implementation 
in  the PDP-I 1 are discussed in [O’Loughlin, 
19751. The major advantage of micro- 
programming is flexibility in the derivation of 
control signals to gate register transfers, syn- 
chronization with Unibus logic, control of mi- 
crocycle timing, and evocation of changes in 
control flow. The way in which a micro- 
programmed control unit accomplishes all of 
these actions impacts performance. 

Figure 3 represents the archetypal PDP-I 1 
microprogrammed control unit. The contents 
of the Microaddress Register determine the cur- 
rent control unit state and are used to access the 
next microinstruction word from the control 
store. Pulses from the clock generator strobe 
the Microword and Microaddress Registers 
loading them with the next microword and next 
microaddress respectively. Repeated clock pul- 
ses thus cause the control unit to sequence 
through a series of states. The period spent by 
the control unit in one state is called a micro- 
cycle (or simply cycle when this does not lead to 
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Figure 3 
control unit 

Archetypal microprogrammed PDP-1 1 

confusion with memory or instruction cycles), 
and the duration of the state as determined by 
the clock is known as the cycle time. The Micro- 
word Register shortens cycle time by allowing 
the next microword to be fetched from the con- 
trol store while the current microword is being 
used. 

Most of the fields of the microword supply 
signals for conditioning and clocking the data 
paths. Many of the fields act directly or with a 
small amount of decoding, supplying their sig- 
nals to multiplexers and registers to select rout- 
ings for data and to enable registers to shift, 
increment, or load on the master clock. Other 
fields are decoded based upon the state of the 
data paths. An instance of this is the use of aux- 
iliary ALU control logic to generate function 
select signals for the ALU as a function of the 
instruction contained in the IR. Performance as 
determined by microcycle count is in large mea- 
sure established by the connectivity of the data 
paths and the degree to which their function- 
ality can be evoked by the data path control 
fields of the microprogram word. 

The complexity of the clock logic varies with 
each implementation. Typically, the clock is 
fixed at a single period and duty cycle; however, 

processors such as the 11/34 and 11/40 can se- 
lect from two or three different clock periods 
for a given cycle depending upon a field in the 
Microword Register. This can significantly im- 
prove performance in machines where the 
longer cycles are necessary only infrequently. 
The clock logic must provide some means for 
synchronizing processor and Unibus operation 
since the two operate asynchronously with re- 
spect to one another. Two alternate approaches 
are employed in mid-range implementations. 
Interlocked operation, the simpler approach, 
shuts off the processor clock when a Unibus op- 
eration is initiated and turns it back on when 
the operation is complete. This effectively keeps 
microprogram flow and Unibus operation in 
lockstep with no overlap. Overlapped operation 
is a somewhat more involved approach which 
continues processor clocking after a DATI or 
DATIP is initiated. The microinstruction re- 
quiring the result of the operation has a func- 
tion bit set which turns off the processor clock 
until the result is available. This approach 
makes it possible for the processor to continue 
running for several microcycles while a data 
transfer is being performed, improving per- 
formance. 

The sequence of states through which the 
control unit passes would be fixed if not for the 
branch on microtest (BUT) logic. This logic 
generates a modifier based upon the current 
state of the data paths and Unibus interface 
(contents of the Instruction Register, current 
bus requests, etc.) and a BUT field in the micro- 
word currently being accessed from the control 
store which selects the condition on which the 
branch is to  be based. The modifier (which will 
be zero in the case that no branch is selected or 
that the condition is false) is ORed in with the 
next microinstruction address so that the next 
control unit state is not only a function of the 
current state but also a function of the state of 
the data paths as well. Instruction decoding and 
addressing mode decoding are two prime exam- 
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ples of the application of BUTs. Certain code 
points in the BUT field do not select branch 
conditions, but rather provide control signals to 
the data paths, Unibus interface, or the control 
unit itself. These are known as active or work- 
ing BUTs. 

The JAM logic is a part of the microprogram 
flow-altering mechanism. This logic forces the 
Microaddress Register to a known state in the 
event of an exceptional condition such as a 
memory access error (bus timeout, stack over- 
flow, parity error, etc.) or power up by ORing 
all one’s into the next microaddress through the 
BUT logic. A microroutine beginning at the all- 
one’s address handles these trapped conditions. 
The old microaddress is not saved (an exception 
to this occurs in the case of the PDP-11/60); 
consequently, the interrupted microprogram se- 
quence is lost and the microtrap ends by restart- 
ing the instruction interpretation cycle with the 
fetch phase. 

The structure of the microprogram is deter- 
mined largely by the BUTS available to imple- 
ment it and by the degree to which special cases 
in the instruction set are exploited by these 
BUTs. This may have a measurable influence 
on performance as in the case of instruction de- 
coding. The fetch phase of the instruction cycle 
is concluded by a BUT that branches to the ap- 
propriate point in the microcode based upon 
the contents of the Instruction Register. This 
branch can be quite complex since it is based 
upon source mode for double operand instruc- 
tions, destination mode for single operand in- 
structions, and operation code for all other 
types of instructions. Some processors can per- 
form the execute phase of certain instructions 
like set/clear condition code during the last 
cycle of the fetch phase meaning that the fetch 
or service phases for the next instruction might 
also be entered from BUT IRDECODE. Com- 
plicating the situation is the large number of 
possibilities for each phase. For instance, there 
are not only eight different destination address- 

ing modes, but also subcases for each that vary 
for byte and word and for memory modifying, 
memory nonmodifying, MOV, and JMP/JSR 
instructions. 

Some PDP-11 implementations such as the 
11/10 make as much use of common microcode 
as possible to reduce the number of control 
states. This allows much of the IR decoding to 
be deferred until some time into a microroutine 
which might handle a number of different cases. 
For instance, byte and word operand address- 
ing is done by the same microroutine in a num- 
ber of PDP-1 1s. With the cost of control states 
dropping with the cost of control store ROM, 
there has been a trend toward providing sepa- 
rate microroutines optimized for each special 
case as in the 11/60. Thus, more special cases 
must be broken out at the BUT IRDECODE, 
making the logic to implement this BUT in- 
creasingly involved. There is a payoff, though, 
because there is a smaller number of control 
states for IR decoding and fewer BUTs. Per- 
formance is boosted as well since frequently oc- 
curring special cases such as MOV register to 
destination can be optimized. 

Typical Instruction Interpretation Cycle. 
To get a feel for the PDP-11 data paths and 
control unit in operation, consider the inter- 
pretation of a representative instruction by the 
archetypal PDP-11. The instruction to be fol- 
lowed is a word bit set (BIS), an instruction 
which takes its source operand, logically ORs it 
with the destination operand, and returns the 
result to the destination. Register addressing 
with register 2 is used for the source; indexed 
addressing with register 7 is used for the desti- 
nation. 

What follows is the sequence of micro- 
instructions evoked during the execution of the 
macroinstruction described in Table 1. Each 
microinstruction is numbered and consists of 
the register transfers and any Unibus operation 
or branch on microtest initiated by the micro- 
word. 



332 THE PDP-11 FAMILY 

Table 1. Microinstructions Evoked During Execution of Macroinstruction 

Phase Cycle Operation Explanation 

FETCH 1 BA t PC; 
DATI: CLKOFF 

I 
2 I R ' t  BUSDATA 

3 

SOURCE 4 

DESTINA- 5 
TlON 

8 

PC t PC + 2; 
BUT IRDECODE 

A read operation is initiated to fetch the instruction 
addressed by the Program Counter 

The instruction is placed in the Instruction Register. 

1 BUT IRDECODE 

source mode zero 

The Program Counter is incremented to address the 
next location in the instruction stream (in this case 
the location containing the index for the destina- 
tion) The instruction (held in the IR)  is decoded by 
the BUT and found to be a double operand instruc- 
tion causing a branch to the microcode for source 
mode 0 

SRCOPR t RS: 
BUT DESTINATION 

BUT DESTINATION 

modifying word: 
destination mode b 

The contents of the register addressed by the source 
field of the instruction (register 2) are copied into 
the Scratchpad Register reserved for source oper- 
ands The next state is determined by the destina- 
tion addressing mode and the fact that BIS is a 
word instruction which modifies its destination 

BA t PC: 
DATl 

PC'+ PC + 2: 
CLKOFF 

4 
B t BUSDATA 

1 
BA t RD + B; 
DATIP: CLKOFF 

9 B t BUSDATA 

t 
A read operation is initiated to get the index word 
(pointed to currently by the Program Counter) for 
the effective address of the destination operand. 

The Program Counter is incremented to point to the 
next instruction. Note that this cycle is overlapped 
with the DATl started in cycle 5. 

The index is stored for use in the next cycle. 

The index is added to the contents of the destina- 
tion register to form the effective address of the 
destination operand A DATIP is performed to read 
the operand since the operand is to be modified and 
then restored to its original location in memory 

The destination operand is stored so it IS available to 
the B leg of the ALU I 
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Table 1. Microinstructions Evoked During Execution of Macroinstruction (Cont)  

Phase Cycle Operation Explanation 

The source and destination operands are logically 
ORed together and put out on the Unibus t o  be writ- 
ten into the memory location from which the desti- 
nation operand was read. (Note that the destination 
address is still in BA.) Upon completion of the 
DATO, the control unit branches into the service 
phase if a serviceable condition is pending; other- 
wise, it branches back to repeat the fetch phase for 
the next instruction. Although it performs an exe- 
cute phase function, this microinstruction is part of 

+ 
EXECUTE 10 BUSDATA c SRCOPR OP B; 

DATO; CLKOFF; 
BUT SERVICE 

I 
the same destination mode microroutine that gener- 
ated cycles 5 through 9. 

I BUTSERVICE 
service 
request 

request 
next fetch service phase 

Notation used in microinstructions for Table 1: 

B = B Register 
BA = Bus Address register 

CLKOFF = Stop the processor clock 
until a Unibus transaction 
is completed; used for pro- 
cessor/Unibus overlap 

IR = Instruction Register 
PC = Program Counter (Scratch- 

pad Register 7) 
R D  = Scratchpad Register ad-  

dressed by macroinstruc- 
t i o n  d e s t i n a t i o n  f ie ld  
(IR<2:0>) 

RS = Scratchpad Register ad-  
dressed by macroinstruc- 
tion source field (IR<8:6>) 

BUSDATA = Unibus data lines 

SRCOPR = Scratchpad Register 10 (not 
accessible to programmer); 
used as a temporary for 
source operands 

a OP b = Operand a (on the A leg of 
the ALU) and operand b 
(on the B leg of the ALU) 
are combined according to 
the operation specified by 
the macroinstruction. The 
ALU function is selected by 
the auxiliary ALU logic as 
described in the subsection 
“Control Unit.” 

a e b = Register a is loaded with 
operand b 

At a detailed level, the instruction inter- 
pretation process of each PDP-11 implementa- 
tion varies significantly from that outlined in 
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Table I ;  however, the scenario is still highly rep- 
resentative of the operation of the control unit 
and data paths in the designs to  be considered. 

Characterization of Individual 
Implementations 

A set of common implementation features 
may be used to characterize each mid-range 
PDP-II to provide the raw data upon which 
comparisons may be based. A summary of these 
characteristics is given in Tables 2 and 3. 

PDP-11/20. The 11/20 was the first of the 
PDP-I 1 family. The 11/20 is atypical in a num- 
ber of important aspects. Because the semi- 
conductor read-only memory technology which 
makes microprogramming economically attrac- 
tive was unavailable when the PDP- 1 1 /20 was 
designed, control was implemented in random 
logic in contrast to the microprogrammed con- 
trol used in all the succeeding members of the 
PDP- 1 1 family. This causes control to be forced 
into a very stylized form so as to minimize the 
number of control unit states. Finally, the Un- 
ibus control generates a number of signals con- 
trolling the operation of the data paths. This 
makes it necessary for the Unibus and proces- 
sor control unit to operate in tight lockstep with 
each other with no possibility of asynchronous 
data transfer. 

The absence of MSI also has significant im- 
pact on the implementation of the data paths 
(Figures 4 and 5). The extensive use of SSI logic 
has several ramifications beyond increased cost 
and complexity. The A leg and B leg MUXs are 
set up to act as latches in  addition to acting as 
data selectors (Figure 5). One may think of a B 
leg being placed between the B leg MUX and 
the ALU. The ALU is a simple adder in con- 
trast to the multifunctioned TTL MSI 74181 
ALUs used in every other medium performance 
PDP-11. Logical operations are carried out in 
the A leg MUX/latch. The MUX can select ei- 
ther the true or  complemented form of oper- 
ands to support logical NOT. Logical OR is 

accomplished by gating the two operands into 
the MUX simultaneously (one operand may 
have been latched beforehand). Logical AND is 
performed by making use of DeMorgan’s Rule 
(A-B = -[-AV-B]). Since there is no logic 
for complementing the output of the A leg 
MUX/latch, two cycles are necessary: the first 
to form -AV-B, the second to run it through 
the A leg MUX again to form the complement. 
The rotate/shift/byte swap logic is built into 
the MUX following the adder. A final peculiar- 
ity of the 11/20 is the separate paths provided 
from the Unibus for the IR and PS. Inter- 
estingly enough, even with all of these rather 
striking differences in implementation, the 
PDP-I 1/20 still shows a strong kinship to its 
successors. 

PDP-11/40. The PDP-I 1/40 was designed 
to improve upon the performance of the PDP- 
11/20 without an increase in price by taking ad- 
vantage of the TTL MSI technology arising af- 
ter the introduction of the 11/20. With the 
exception of the PDP-11/60 (and the 11/20 
which exceeds the 11/40 in cost), the 11 /40 is 
both the fastest and most expensive mid-range 
PDP-I 1 processor. 

The data paths of the 1 1 /40 (Figure 6) corre- 
spond closely to those of the archetype except in 
the immediate vicinity of the ALU. What has 
been indicated as the A leg MUX is really the 
negative-logic wired OR of a number of signals. 
Options such as the Floating-Point Processor 
are added by simply tying them into the D 
MUX output and A leg. Two paths exist out of 
the PS: one running to the A leg MUX as in the 
archetype and a second running directly to the 
Unibus as in  the 11/20. A path from the A leg 
MUX directly to the D MUX (equivalent to the 
A MUX of other models) exists allowing the 
ALU (and thus the propagation delay incurred 
by passing through it) to be bypassed in those 
cases where the contents of the SPM or PS are 
to be routed directly back to the B Register of 
SPM. Single-bit shifts and rotates right are han- 
dled in the D MUX in a fashion similar to the 



Table 2. PDP-11 Circuit Technology and Data Paths 

Circuit Technology 

Performance Level of 
Relative Logic Integra- Suatchpad 

Model to LSI-11 Family tion Memory ALU 

Data Paths 

Sign Rotate1 Byte 
Extension Shift Swap Other Features 

LSI-11 

11 IO4 

11/10 

1 1 120 

1 1 I34 

1.000 

1.455 

1.436 

1.667 

1.942 

N-channel 
MOS 

TT L 

TT L 

TT L 

TT L 
TTLIS 

LS I 

MSI 

MS I 

ss I 

MSI 

0 Organized 26 8-bit nMOS ALU 
registers X 8 
bits 

0 1 write12 read 
ports 

16X 16 74181s with 74182 
with SP Reg for 
write after read 

carry lookahead 

16X 16 74181s with 74182 
read and write carry lookahead 
may not take 
place within same 
cycle 

16X 16 7482 adders, 
with input latches 
for write after combinational 
read logic 

ripple carry plus 

16X 16 74S181s with 
write while read 748182 carry 

loo ka head 

Not 
needed; 
done in 
microcode 

In B leg 
MUX 

In B leg 
MUX 

In B leg 
MUXI 
latch 

Following 
AMUX 

In ALU 

B Reg is  
bidirectional 
shift register 

B Reg is  
bid irect io na I 
shift register 

Following 
adder 

B Reg is bi- 
directional 
shift register 

8-bit-wide data paths, Not 
needed; 16-bit operands re- 
done in 
microcode Non-Unibus, datal 

quire two cycles 

address lines MUXed 

Before 0 Complementor at 
SPM ALU A leg for sub- 

tract instruction 

None 
performed 
as 8 shifts 

- 

Following Bus data has own 
adder path to IR and PS 

0 PS has own path out 
to bus data, no other 
outgoing paths 

Following 0 B extension register 
AMUX, (BX Reg) for EIS 
speeds 
odd-byte 
accesses 

instructions 

- z 
9 

s1 

5 

0 
--I 

- z 
rn 

Z 
-I 
D 
i 
0 z 
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rn 
v, 
c) 
Z 
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0 
rn 
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Table 2. PDP-11 Circuit Technology and Data Paths (Cont) 

2 s 
r; 

Circuit Technology Data Paths 

Performance Level of 
Relative Logic Integra- Scratchpad Sign Rota te l  Byte 

Model t o  LSI-11 Family t ion Memory A L U  Extension Shi f t  Swap Other Features 

11 I40  

11 I45  

11/60 

2.819 

6.820 
(with 
bipolar 
memory) 

3.727 

cache hit 
ratio) 

(87% 

TT L MSI 1 6 X  1 6  
D Reg and mult i -  
phase cycle allow 
write after read 

TTL/S MSI Two banksof 
1 6 x  1 6 f o r  1 
write/2 read 
parts 

write may not 
occupy same 
cycle 

Read and 

T T L / S  MSI 0 Two banksof 
32 registers 
X 1 6 b i t s  

0 Only RO-R7 
and user R 6  
duplicated 
Write after 
read 

74181s w i th  74182 
carry lookahead MUX 

In B leg 

74S181s with In A L U  
74182 carry 
lookahead 

74S181s with In shift 
74182 carry tree 
lookahead 

To left  i n  
A L U  to  right 
in D M U X  

T o  left  in 
A LU 
To right i n  
SHFMUX 

In shift tree 

In B leg 
MUX 

In 
SHFMUX 

In shift 
tree 

Bypass f r o m  A leg 
MUX around A L U  
and D Reg 
Two paths in to  BA 

0 PC broken ou t  
separately f r o m  
scratchpads 

0 Multiple paths in to  
A L U  
Fastbus supports 
semiconductor 
memory 

0 Shift tree allows 
mul t ib i t  shifts 

0 Scratchpad C 
for constants, bus 
input, and status 
logging 

0 3-state logic used 
extensively 



Table 3. PDP-11 Control Unit and Physical Assembly 

Controller Physical Assembly 

Control 

Words Circuit Circuit Circuit 
Cycle Processor/ Control Store Integrated Integrated 

Control Time(s) Unibus Store Size 
Other Features Boards Packages Types Model Derivation (ns) Synchronization (bits X words) Used 

LSI-11 

11 IO4 

11/10 

1 1/20 

11 /34 

1 1 I40 

11 I45 

11/60 

Vertical 400 Interlocked 
microcode 

Horizontal 260 Interlocked 
microcode 

Horizontal 300 Overlapped 
microcode (1 50 

for fast 
shift) 

Random 280 Interlocked 
logic 

Horizontal 180 Interlocked 
microcode 240 

Horizontal 140 Overlapped 
microcode 200 

300 

Horizontal 150 Overlapped 
microcode 

Horizontal 170 Interlocked 
microcode 

22X 1024 
(expandable 
t o  2048) 

40 X 256 

4 0 X  256 

- 

48X 512 

56X 256 

6 4 X  256 

48 X 2560 
(excluding 
user control 
store space) 

994 0 

249 

249 e 

- e 

488 

251 e 

256 0 

2410 0 

(including e 
integral 0 

f loating 
point)  0 

No next microaddress in 
microword; microwords 
are selected sequentially 
unti l  a branch, jump, or 
translate i s  encountered 
- 

Microword i s  no t  buffered 

Control states are encoded 
in major and minor state 
shift registers 

BUT field is  buffered, BUT 
must be placed one micro- 
instruction ahead of where 
it is  t o  take place 

Forks and microbranches 
may be enabled together, 
microbranches taking 
precedence 

Multilevel microsubroutines 
Page-addressed microstore 
Extensive use of residual 
control 
Control store available to  
user through WCS 

1 quad 
(4 positions) 

1 hex 
(6 positions) 

2 hex 
(12 positions) 

6 quad, 
6 double, 
2 single 
(38 positions) 

2 hex 
(12 positions) 

4 hex, 
1 quad 
(28 positions) 

7 hex, 
1 quad 
(46 positions) 

6 hex 
(36 positions) 

48 24 

138 

203 

523 

231 

41 7 

648 

40 

60 

27 

54 

53 

78 

74 
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BUS 
ADDRESS 

b 
1 0  

A LEG MUX 
AND LATCH 

ADDER ROTATEISHIFTI 
BYTE SWAP 

MUX n 

CONSTANTS :;.D" AND B LEG LATCH MUX 

BUS DATA 

4 

CONDITION 
CODES 

NOTE: 
All data paths are 16 bits wide unless otherwise indicated. 

Figure 4. PDP-1 1/20 data paths 

A LEG MUX/LATCH 

1 / 4  7 4 H 0 0  

LATCH A < 1 5  00> H 
G A T E A - R  < 1 5 0 1 > H  

GATE A .  - R  <15  01> ti 
GATE A -BD < i 5 0 0 >  ti 

R <03>  H 
( F R O M  SPMl 

74H53  

B D  <03> H 
I B U S  DATA1 

STPM <03> H 
ICONSTANTS1 4 B LEG M U W L A T C H  

LATCH B < 1 5 0 0 >  H 

GATE B - BD 1 1 5  00> H 
GATE - R <oi  oo> ti 

GATE B c STPM <15  W> H 

KEY 
"S IGNAL NAME"  H-S IGNAL IS ASSERTED 111 WHEN H I G H  
"S IGNAL N A M E "  L -S IGNAL I S  ASSERTED I11 WHEN L O W  

BUS 
DATA 

- A D D  <03> L 

ROTATEISHIFT M U X  

D <03>  H 

DATA PATHS1 

A D D  <11>  L 

A D O  <W> L 

A D D  <02> L 

GATE A D D  <07 00> H 

GATE BYTE <07 oO> H 
GATE RIGHT < I 5  W> H 

GATE LEFT < 1 5  OD> H 

Figure 5. 
KC1 1 Processor Manuall. 

Detail of central part of PDP- 11/20 data paths. One-bit (03) slice (adapted from 
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BA MUX 

DATA I 

NOTE. 
All data oaths are 16 bits wide unlmss otherwise indicated 

Figure 6 PDP-1 1/40 data paths. 

11/20. Rotate/shifts to the left, however, are 
performed in the ALU. Sign extension and byte 
swapping are performed in the B leg MUX. 
Since the Scratchpad Register may not be both 
simultaneously read and written, the D Register 
(D Reg) is used to hold results generated while 
the SPM is being read in one processor clock 
phase so that during a later phase they may be 
written back into the Scratchpad. In this way 
the D Register permits read-write access of the 
SPM within a single cycle. A final feature is the 
presence of two paths into the Bus Address reg- 
ister, one from the A leg MUX and one from 
the ALU. This is of benefit in such operations 
as autoincrement and autodecrement address- 
ing modes in which the contents of a register 
can be modifed and either the premodification 
(autoincrement) or postmodification (auto- 
decrement) value of the register can be put into 
the Bus Address register in a single cycle. 

The 1 1 /40 microprogrammed control unit is 
quite elaborate to gain full benefit of the poten- 
tial of the data paths. Among its features are 
overlapped processor/Unibus operation and 
three selectable microcycle clock periods. The 
latter feature increases performance immensely 
since the maximum cycle time of 300 nanose- 

conds is needed only when a full circle from 
Scratchpad through ALU and back to Scratch- 
pad is made. In cycles which do not write into 
the Scratchpad, a 200-nanosecond cycle may be 
selected. When the data paths are unused and 
only microbranching is involved, an even 
shorter cycle time of 140 nanoseconds is pos- 
sible. A final unique feature of the 11/40 is a 
variation in the branch on microtest logic from 
that of the archetypal control unit. To increase 
microbranch speed, the microword BUT select 
field is buffered in the Microword Register 
rather than being routed directly from the con- 
trol store to the BUT logic. This causes a one- 
cycle delay in processing the branch and forces 
all BUTS to be placed one microinstruction 
ahead of where they are to take effect. In some 
cases, dummy steps are required to provide suf- 
ficient lead time for BUT action to occur, some- 
w h a t  o f f s e t t i n g  t h e  s p e e d u p  o f  t h i s  
arrangement. 

One way in which the 11/40 uses its proces- 
sor/Unibus overlap feature to advantage is by 
prefetching words from memory whenever pos- 
sible. At the end of the fetch phase, a check is 
made to see if the next memory reference fet- 
ches an instruction or operand index. If it does, 
the read access is begun immediately using the 
contents of the PC as the address. Exceptions to 
this are when the PC is used as a destination or 
when a service request is pending, both of which 
mean that the current value of the PC will not 
be the address of the next instruction. Starting 
the access early allows it to proceed in parallel 
with the execution of the current instruction. 
This reduces the time the processor idles wait- 
ing for the accessed word. Updating of the PC is 
deferred until the proper point in the instruc- 
tion interpretation process is reached. This 
guarantees that references to the PC will result 
in the proper value being used. 

PDP-11/10. The PDP-ll/IO was designed 
as a minimal cost processor. The implementa- 
tion is again TTL MSI but stripped to the bare 
essentials without the elaboration of the 11/40. 
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The data paths of the 11/10 (Figure 7) follow 
the conventions of the archetype closely. A con- 
stant zero may be selected onto the A MUX in 
addition to A L U  or Unibus data. The A L U  A 
leg multiplexer allows selection of the PS, some 
constants, and some internal addresses as well 
as the Scratchpad memory. The B Register is 
implemented as a universal bidirectional shift 
register so that single-bit shifts and rotates may 
be performed without additional logic. The 

BUS 
ADDRESS 

18 

0 

CONSTANT B U S D A T A  BUS 

0 

1 

 SIGN^ 
8 LEG M U X  

EXTEND 

I I 

NOTE 
All data paths are 16 bits wide unless otherwise indicated 

Figure 7 PDP-1 1/10 data paths 

ALU B leg multiplexer includes the constants 
one and zero and permits sign extension of the 
low order byte of the B Register. The Scratch- 
pad Memory may not be both read and written 
in the same cycle; thus, operations such as in- 
crementing the PC, which takes only a single 
microcycle on other processors, takes two mi- 
crocycles to complete on the 11/10, A byte 
swapping path is absent in the 11/10. As a con- 
sequence, odd-byte addressing and swapping 
must be accomplished by a series of eight shifts 
or rotates. 

The 11/10 control unit has a relatively aus- 
tere implementation. There is no Microword 

Register in the control unit although there is 
necessarily a Microaddress Register. As a con- 
sequence, the output of the control store is used 
directly to condition the data paths. This pre- 
cludes the overlap of current microinstruction 
execution with next microinstruction fetch. 
Hence, the propagation delay of the control 
store must be added to that of the data paths in 
setting the microcycle time, causing it to be a 
relatively long 300 nanoseconds. The simplicity 
of the data paths allows the use of a microword 
only 40 bits wide. The microcode contains very 
few frills and gains very little in performance 
from special cases. A notable example of this is 
the jump address calculation for JMP and JSR 
instructions. The 1 1 / I O  uses the same section of 
microcode for JMP and JSR destination modes 
as it uses to fetch conventional destination op- 
erands. This costs an extra memory reference 
over the separate microroutines used in other 
PDP-I 1 processors because, in addition to the 
effective address of the jump being calculated, 
its contents are also fetched (the microprogram 
logic precludes using this operand as a pre- 
fetched instruction even though this is effec- 
tively what it is). Overlapped processor/Unibus 
operation allows some of the extra microcycles 
necessitated by the data paths to  be effectively 
hidden by putting them in parallel with Unibus 
accesses. The other concession to performance 
is clock speed doubling during shift operations 
to partially compensate for the performance 
lost in the absence of a byte swapper. 

PDP-11/04. The PDP-11/04 is the simplest 
PDP-I I  except for the LSI-11. Although 
simple, the 11/04 embodies a very good set of 
design tradeoffs. Figure 8 diagrams the 11/04 
data paths. The Scratchpad Memory has a reg- 
ister (SP Reg, part of the SPM shown in Figure 
8) sitting between it and the A MUX. This reg- 
ister allows the Scratchpad to support read- 
modify-write accesses, saving a microcycle in  
each such access over the 11/10. A multiplexer 
sitting before the SPM implements the swap 
byte operation, allowing the halves of a word to  
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be interchanged. This improves byte operation 
performance considerably over the 1 1 / I O  and 
obviates the need for the 1 1 / 10’s fast shift logic. 
Also e l imina ted  is over lapped  proces- 
sor/Unibus operation because the savings from 
it are reduced with the overall reduction in 
number of microcycles. 

The A MUX (the major data bus and the 
multiplexer which drives it) can select the PS 
and a number of constants in addition to ALU 

BUS 
ADDRESS 

L 

I 8  
8”s D A T A  

B I T E  

SIGN 4 
E X T E N D  1 M U X  I B LEG MUI: 

I 8  
8”s D A T A  

B I T E  
BUS r 
I 

CONOlTlON 
C O D E S  

NOTE. 
All data paths are 16 bits wide unless otherwise indicated 

Figure 8. PDP-1 1/04 data paths 

output and Unibus data. Between the SPM and 
ALU is a one’s complementor so that the 74181 
ALU may be used to perform the B leg minus A 
leg operation used in the “subtract” instruction, 
in addition to the A leg minus B leg operation 
used in the “compare” instruction. The A leg 
MUX also directly drives the Unibus address 
lines without a Bus Address register (if proces- 
sor/Unibus overlap had been used, a BA regis- 
ter would have been necessary). Between the B 
Register and ALU is a multiplexer which allows 
the B Register, sign-extended low order byte of 
the B Register, or the constants zero or one to 

be selected into the B leg of the ALU in a man- 
ner identical to that of the B leg MUX of the 
1 1 / I O .  The B Register is also identical to  that of 
the 11/10 in that it is a bidirectional shift regis- 
ter implementing rotate/shifts. 

The final contributor to increased perform- 
ance of the 11/04 is the decrease in  cycle time 
from 300 nanoseconds in the 11/10 to 260 na- 
noseconds, made possible in part by pipelining 
the microword fetch. On the whole, the 11/04 is 

B U S  
ADDRESS 

18 

B U S  BUS D A T I  I CONSTANT: I I 

U B l T L  

SWAP, 
SIGN 
EXTENO 

M U X  

CONDITION 
CODES 

NOTE: 
All data paths are 16 bits wide unless otherwise indicated. 

Figure 9 PDP-1 1/34 data paths 

superior in performance to the 11/10 in all cases 
except the fetch phase and certain addressing 
modes where the use of its processor/Unibus 
overlap capability is sufficient to put the 11/10 
ahead. 

PDP-11/34. The PDP-I 1/34 is an elabora- 
tion of the 11/04. The 11/34 data paths (Figure 
9) bear close resemblance to those of the 1 1 /04. 
The 11/04 complementor has been replaced in 
the 11/34 by additional microcode which re- 
verses the placement of source and destination 
operands on the A and B legs of the ALU dur- 
ing the subtract instruction from that of the 
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other double operand instructions. This frees 
the 11/34 from performing the adjustments that 
must be made in the data paths of the PDP-I 1 
processors to make the subtract instruction op- 
erate correctly under the restrictions of the 
74181 ALU. Added is a B Extension register 
(BX register) which, when concatenated with 
the B Register, forms a 32-bit register for 
double-width operand and results manipulated 
by extended instruction set operations such as 
multiply and divide. Also notable is the reloca- 
tion of the byte swapper to the tail of the A 
MUX allowing odd-byte accessing to  occur as 
data is entered from or placed upon the Unibus 
without the customary extra microcycle needed 
in other implementations to right adjust the 
byte. Included with the byte swapper is the sign 
extension logic. Schottky TTL is used in critical 
places in the data paths, notably the ALU, to 
speed up microcycle time from the 260 nanose- 
conds of the 11/04 to 180 nanoseconds. Addi- 
tional hardware for memory management (not 
shown in Figure 9) and extended instruction set 
microcode are standard features. 

The 11/34 microprogrammed control unit 
makes some concessions to the improved per- 
formance of the data paths. In addition to the 
normal 180-nanosecond cycle, there is a 240-na- 
nosecond cycle used primarily for Unibus oper- 
ations. Again, there is no processor/Unibus 
overlap feature because considerations of sim- 
plicity (i.e., cost) outweighed the incremental 
improvement in performance that would be net- 
ted. Because of its additional logic, the PDP- 
11/34 has a wider microword than the 11/04 
(48 bits versus 40 bits). Also, since many more 
cases are broken out by the BUT IRDECODE 
in the 11/34 than in the machines preceding it, 
the size of the control store has been increased 
to 5 12 words, double that of earlier horizontally 
microprogrammed implementations. 
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Figure 1 0  PDP-1 1 /60 data paths. 

PDP-11/60. The PDP-11/60 is the latest 
implementation covered in this paper and in 
many ways the most unique. Its design exploits 
advances in circuit technology occurring since 
the introduction of the earlier models giving it a 
number of features which set it apart from other 
PDP- 1 1 family members. Two major enhance- 
ments are a larger microcode addressing space, 
making an integral floating-point instruction 
set and a writable control store option feasible, 
and a cache memory.* Both are possible due to  
increases in the density and decreases in the cost 
of bipolar ROM and RAM (see Chapter 13). 

As illustrated in Figure IO,  the 11/60 data 
paths show significant differences from those of 
other midrange implementations. A major dif- 
ference is the presence of three Scratchpad 
Memories feeding the ALU. Scratchpads A and 
B are 32-word X 16-bit register arrays, each 
having twice the number of registers of the 

*The PDP-I I /70 also uses a cache. 



IMPACT OF IMPLEMENTATION DESIGN TRADEOFFS ON PERFORMANCE: THE PDP-11, A CASE STUDY 343 

single Scratchpad found in other mid-range de- 
signs. As with the 11/45 (see the section entitled 
“Implementation of a High-Performance PDP- 
l l”),  the contents of the general registers are 
kept in both Scratchpads allowing different reg- 
isters to be read onto the A and B legs of the 
ALU simultaneously within the same cycle. 
This speeds register-to-register operations. The 
additional registers in the A and B Scratchpads 
are used as floating-point registers by the in- 
tegral floating-point microcode, working stor- 
age by user microprograms, and console, 
maintenance, and status registers by the proces- 
sor. Scratchpad C is a 16-word X 16-bit array 
which holds bus data and constants used by the 
processor and takes the place of the constants 
ROM on the B leg of other midrange imple- 
mentations. During exceptional situations these 
constants may be overwritten with other infor- 
mation but must be restored before execution of 
the base machine microcode may be resumed. 

The 1 1 /60 is the first PDP-11 implementation 
to make use of three-state devices to eliminate 
many of the multiplexers used in other designs 
(the 1 1 /40 uses open-collector logic on the A leg 
bus to the same effect). For instance, instead of 
actual A leg and B leg MUXs, the 11/60 uses 
registers and combinational elements with 
three-state outputs that can be independently 
enabled onto a common bus for each ALU leg. 
The ALU itself is the conventional 181 type 
used in all of the other MSI implementations. 
As in the 11/40, the D Register (D Reg) latches 
the ALU output so that results may be rewrit- 
ten to the Scratchpads during a later clock 
phase of the microcycle in which they are gener- 
ated. The output of the D Register is the major, 
but not sole, feedback route in the data paths. 

The Bus Address register (BA) is loaded from 
the A leg bus as in the 11/04 and 11/34. The 
Address Out bus is driven by the BA and sup- 
plies addresses to the memory subsystem 
(cache, relocation hardware, and Unibus inter- 
face). The Data In (DIN) bus routes data into 

the processor from the memory subsystem, in- 
ternal registers accessed via Unibus addresses 
such as the PS, and constants emitted by the 
microinstruction word. Scratchpad C and the 
Instruction Register are loaded directly from 
DIN in a manner reminiscent of the 11/20. A 
register in SPM C is set aside specifically for 
transfers from memory to the data paths. Re- 
sults are routed from the data paths back to the 
memory subsystem and internal registers via a 
separate bus data out (DOUT) bus. 

As compared to  the other mid-range ma- 
chines, several data path elements are unique to 
the 11/60. The counter (CNTR) is an iteration 
counter used by the Extended Instruction Set 
and floating-point microcode. The Shift Regis- 
ter and Shift Register guard (shown together as 
the SR in Figure 10) can be loaded in parallel 
with D Reg and shifted one position right or 
left. Either all or the low order seven bits of the 
SR may be gated onto the A leg bus through the 
X MUX (not shown). The shift tree is a net- 
work of multiplexers used for byte swapping, 
sign extension, and field isolation and position- 
ing. It is unusual in that it allows right shifts of 
from 1 to 14 bit positions combinationally in a 
single microcycle. 

The PDP-11/60 control unit is horizontally 
microprogrammed in much the same manner as 
the other midrange implementations. Extensive 
use of Schottky logic throughout the processor 
allows a fixed 170-nanosecond microcycle time. 
Processor/Unibus communication is inter- 
locked unlike either the 11/40 or 11/45. There 
are several significant differences from the more 
conventional implementations. Many of these 
differences are generalizations of the micro- 
program flow control mechanism to allow more 
functions of the base machine to be performed 
by microcode rather than hardwired logic and 
to create a user microprogramming environ- 
ment which can be put to uses beyond executing 
the PDP-11 instruction set. The 11/60 has a 
larger and more generalized set of BUTS than 
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earlier machines. Also included for the first 
time in a horizontally microprogrammed ma- 
ch ine  is a multi level mic rosubrou t ine  
call/return capability. 

Increased reliance on microcode has ex- 
panded the control store to 4,096 words by 48 
bits. Of this, 2,560 words are used to implement 
the basic machine. The remaining 1,536 words 
are available to the user through a ROM con- 
trol store option; 1,024 are available through a 
writable control store option. Since addressing 
the microstore requires 12 bits, a page-address- 
ing scheme has been adopted to avoid widening 
the microword. Page size is 512 words reducing 
microaddresses to 9 bits within a page. Micro- 
branches across a page boundary require that 
an additional 3-bit page field be specified. 

Another concept used extensively in the 
1 1 /60 to reduce microword size is residual con- 
trol. In this technique relatively static control 
information is kept in set-up registers separate 
from the microword. The microprogram must 
load these registers to affect the data path ele- 
ments which they control. Set-up registers are 
used in the 11/60 to gate registers onto DIN 
bus, enable data into registers from the DOUT 
bus, select SR functions, and control certain ac- 
tions of the shift tree. 

The overlapping of a number of different 
control fields by bit steering is a final means of 
keeping the microword relatively narrow. Cer- 
tain bits in  the microword control the inter- 
pretation of corresponding microword fields. 
This allows a single field to control several dif- 
ferent functions. The one drawback of this tech- 
nique is that these functions become mutually 
exclusive within a single microword since their 
simultaneous use would involve two different 
interpretations of the same microfield. 

Hardwired logic in the memory subsystem 
detects internal addresses in a manner similar to 
other PDP-11 processors. However, the actual 
access to  these registers is accomplished 
through microcode instead of additional con- 
trol logic. Internal address access has been 

added to the exceptional conditions detected by 
the JAM logic of the 11/60. If the JAM micro- 
routine finds that a microtrap has been caused 
by an internal address access, an intraprocessor 
transfer to or from the addressed register is per- 
formed. Unlike other JAM sequences, such 
transfers are terminated by resuming the inter- 
rupted microprogram. Microcoded register ac- 
cess requires much more t ime than  the 
corresponding hardwired access. Reading the 
PS, for instance, takes 33 microcycles or 5.610 
microseconds using microcode where a single 
microcycle suffices for the hardwired approach. 
This is justified, however, by the decreased cost 
of microcode versus hardwired logic and by the 
infrequent access made to these registers. 

Like the 11/40, the 11/60 prefetches instruc- 
tions and operand indices whenever possible. 
Unlike the 11/40, the PC is incremented at the 
time the prefetch is performed. Because of this, 
prefetching cannot be done when the current in- 
struction uses the PC as either a source or desti- 
nation register. A second difference is that 
service requests are not polled until the end of 
the current instruction, when the next instruc- 
tion may already be prefetched and the PC up- 
dated. When this occurs, two microcycles must 
be spent to decrement the PC to restore its old 
value before proceeding with the service phase. 

IMPLEMENTATION OF A M I N I M A L  COST 
PDP-11 

The LSI-11 (Chapter 12) is designed for the 
low-end market where there is more concern for 
low cost than high performance. Integrated cir- 
cuit package count and printed circuit board 
area, the main determinants of manufacturing 
cost, are kept low through an n-channel MOS 
LSI technology implementation of the CPU. 
The result is a PDP-11 processor with four kilo- 
words of semiconductor memory on a single 8.5 
X 10.5-inch (standard DEC quad height) 
printed circuit board which can execute the en- 
tire PDP-I 1/40 instruction set. 
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The constraints imposed by current semi- 
conductor technology dictate much of the im- 
plementation of the LSI-I 1.  The entire CPU 
consists of four LSI packages plus a number of 
standard TTL SSI and MSI packages for clock 
generation and bus interfacing. A system con- 
trol chip provides microinstruction addressing 
logic plus an interface to  external signals used in 
bus control. A data paths chip contains the reg- 
isters and arithmetic logic unit of the machine. 
Two chips are microcode ROMs (MICROMs). 
Each contains 5 12 microinstruction words with 
a width of 22 bits. An optional third MICROM 
adds the Extended Instruction Set/floating- 
point instruction set option of the PDP-11/40. 
To decrease the complexity of the machine, the 
traditional Unibus was abandoned in favor of a 
scheme requiring fewer bus lines. Most notable 
is the multiplexing of both data and addresses 
onto a single set of 18 data/address lines, 
DAL< 17:00>. A significant savings over the 34 
lines dedicated to data and address in the 
Unibus results at the expense of bus cycle speed. 

The 22-bit microinstruction word of the LSI- 
1 1  is quite narrow compared to the microwords 
of the horizontally microprogrammed PDP-1 Is  
which range from 40 to  64 bits wide. Four bits 
are not decoded and provide direct TTL-com- 
patible signals which are used by logic external 
to the CPU chips. Another two bits are used 
within the CPU chips to control next micro- 
instruction addressing. The remaining 16 bits 
are decoded as a microinstruction by the CPU 
chips. LSI-I I microinstructions differ little in 
form from conventional minicomputer instruc- 
tions with their operation code and operand 
(which may be register, microcode address, or 
literal) fields. These require a great deal more 
decoding than the horizontal microinstructions 
of other designs. 

The LSI-11 microstore is larger than the con- 
trol store of any other PDP-11 except the 1 1/60. 

Since LSI-I 1 microinstructions lack the possi- 
bilities for parallelism inherent in  the horizontal 
microinstructions, more LSI-I 1 micro- 
instructions are needed to code a given oper- 
ation. In addition, certain functions which are 
handled with combinational logic in other 
PDP-11 control units and data paths are micro- 
coded in the LSI-11. Finally, the LSI-II has 
more elaborate console microcode than the 
other implementations. As a result, the LSI-I 1 
has 22,528 bits of microstore versus 14,336 bits 
for the PDP-1 1/40, 16,384 bits for the PDP- 
11/45, and 122,880 bits for the PDP-I 1/60. The 
narrow microword is used in spite of its attend- 
ant problems due to the limitation imposed by 
the packaging of the MOS CPU chips. Only 40 
pins are available to carry power and signals to 
and from each chip, limiting the number of lines 
available for transmitting the microword from 
the MICROMs to the control and data path 
chips. 

Technology also imposes a serious constraint 
on instruction decoding. The equivalent of a 
branch on microtest allows only eight bits to be 
decoded at a time. This is sufficient for decod- 
ing the majority of instructions; however, the 
remainder require additional decoding which 
may consume as many as eight microcycles. 
This is in marked contrast with all other PDP- 
11s which require only a single microcycle to do 
the initial instruction decode at the end of the 
fetch phase (BUT IRDECODE).* The effect 
that this has on the average duration of the LSI- 
1 1  fetch phase is evident from Table 4. 

Figure 1 1  details the data paths around which 
the operands of the macroinstruction level ma- 
chine circulate. As with the medium-perform- 
ance implementations, the ALU is the hub of 
activity, operating upon quantities supplied 
from the Scratchpad memory. The A MUX se- 
lects from the output of the ALU, the high or 

*The 11/60 requires two  microcycles to decode certain instructions 
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Table 4. Average PDP-11 Instruction Execution Times in Microseconds 

Speed 
Relative 

Fetch Source Dest. Execute Total to LSI-11 

LSI-11 2.514 0.689 1.360 1.320 5.883 1.000 

PDP-11/04 1.940 0.610 0.81 1 0.682 4.043 1.455 

PDP-11/10 1.500 0.573 0.929 1.094 4.096 1.436 

PDP-11/20 1.490 0.468 0.802 0.768 3.529 1.667 

PDP-11/34 1.630 0.397 0.538 0.464 3.029 1.942 

PDP-11/40 0.958 0.260 0.294 0.575 2.087 2.819 

PDP- 1 1 /45 0.363 0.101 0.213 0.185 0.863 6.820 
(bipolar 
memory) 

PDP- 1 1 /60 0.54 1 0.185 0.218 0.635 1.578 3.727 
(87 percent 
cache hit 
ratio) 

low byte of the data/address lines, and the pro- 
cessor flags. The selected quantity is fed back to 
be rewritten into the Scratchpad. Constants 
supplied as literals from the microinstruction 

I CoNsTANTs-v B LEG N 

COllDlTlON 
CODES 

Figure 11. LSI-1 1 data paths. 

word may be gated into the data paths through 
the B leg MUX to the ALU. Additional paths 
exist for transmitting information in and out on 
the data/address lines. 

Significant differences exist between the data 
paths of the LSI-11 and the mid-range ma- 
chines. One major difference is in the width of 
the data paths. The LSI-11 is the only member 
of the PDP- 11 family with data paths 8 bits 
rather than 16 bits wide. This is necessitated by 
limitations in current semiconductor chip den- 
sity. Bus paths in particular occupy large 
amounts of chip real estate dictating their re 
duction in width. Since only 8 bits of data can 
be processed at a time, 2 microcycles are re- 
quired to accomplish any 16-bit operation. A 
second effect is the elimination of logic that 
would otherwise be necessary to configure the 
data paths for both byte and word operations. 
A last unique characteristic is the absence of a B 
Register for feeding the B leg of the ALU. In- 
stead, the B leg is fed from a second read port 
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into the Scratchpad Memory. In this, the LSI- 
1 1  bears a curious resemblance to the PDP- 
11/45 and 11/60. The difference is that while 
the LSI-11 uses this feature to eliminate cycles 
that would be needed to load a B Register, there 
is not sufficient logic to allow source and desti- 
nation registers to be accessed simultaneously. 
Consequently, multiple cycles are still required 
to set up register/register operations on the 
LSI- 1 1. 

The final important performance factor is 
again a direct result of the circuit technology 
employed. NMOS logic is not as fast as the 
bipolar logic found in every other PDP-11 im- 
plementation so that the microcycle time of the 
LSI-11 is 400 nanoseconds or one-third slower 
than the next slowest PDP- 1 1 .  Coupled with the 
larger number of microcycles necessary to exe  
cute a given macroinstruction, this causes the 
LSI-11 to lag in performance. 

IMPLEMENTATION OF A HIGH 
PERFORMANCE PDP-11 

The PDP-11/45 was designed for maximum 
performance and followed the 11/20 to  become 
the second member of the PDP-11 family. Max- 
imum performance is achieved with a complex 
set of data paths allowing highly parallel oper- 
ation and  an opt ional  high-speed semi- 
conductor memory (bipolar or MOS) with its 
own path into the processor called the Fastbus. 
The extensive use of Schottky TTL in the pro- 
cessor makes possible a 150-nanosecond cycle 
time, half as long as that in some mid-range de- 
signs. 

The complexity of the PDP-l1/45 data paths 
is evident from Figure 12 even with several of 
the special purpose registers and buses omitted 
for clarity. The overall organization still bears 
some resemblance to the mid-range PDP-11 
data paths, however. The ALU remains the hub 
of data path activity with its output the primary 
feedback path to the processor registers, al- 

though not the only one as in other implemen- 
tations. The ALU is based upon the Schottky 
equivalent of the 74181 chip used in most other 
PDP-11 designs. The difference begins with the 
multiplexers driving the A and B legs of the 
ALU. These MUXs allow operands to be 
routed directly to the proper leg without using 
additional cycles to move operands from regis- 
ter to register. KO MUX and K1 MUX (com- 
bined in Figure 12) are multiplexers used in 
conjunction with the B MUX to gate constants, 
trap vector addresses, and branch offsets into 
the B leg of the ALU. 

Among the registers supplying the A MUX 
and B MUX are the source and destination op- 
erand registers (S Reg and D Reg, respectively). 
These, in turn, are supplied by the SR MUX 
and DR MUX which select data from individ- 
ual Scratchpad Registers or the Program 
Counter. Besides holding operands from the 
general registers, the S Reg and D Reg act as 
working registers. In particular, D Reg is a shift 

NOTE 
All data paths are 16 bits wide unless otherwise indicated 

Figure 12  PDP-1 1/45 data paths 
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register used to accumulate the less significant 
half of results during multiply and divide. 

Separate Scratchpads are maintained so that 
source and destination general registers may be 
read simultaneously and independently. This 
necessitates both Scratchpads being written to- 
gether to keep their contents identical. Each 
Scratchpad is organized as 16 words of 16 bits 
each. Fifteen words in each Scratchpad are ac- 
tually used: two sets of general registers (RO 
through R5) and three sets of stack pointers 
(R6). Register set selection is controlled by sta- 
tus bits in the PS. 

The Program Counter is not maintained in 
the Scratchpad Registers as in other PDP-I Is. 
Rather, it is held separately so that it may be 
routed directly to the BA MUX while the S Reg 
and D Reg are occupied with other operations. 
Moreover, two Program Counters are imple- 
mented. PCB holds the current value of the Pro- 
gram Counter and is used as a general register 
or bus address. PCA holds the new value of the 
Program Counter allowing the PC to be up- 
dated while the old PC value is still in use, after 
which PCB is clocked to load it with the new 
value contained i n  PCA. 

The SHF MUX can right shift or byte swap 
data from the ALU before it is clocked into the 
Scratchpads. It also provides a route from PCB 
to the S Reg and/or D Reg when the PC is used 
as a general register. This arrangement pre- 
cludes the shifting or byte swapping of data 
being loaded into the PC that is possible with 
data destined for one of the other general regis- 
ters residing in the Scratchpads. As a con- 
sequence, arithmetic shift left and byte swap 
operations on the PC do not cause the PC to be 
modified, although the condition codes are up- 
dated as though it were. 

Processor access to the Unibus, Fastbus, and 
internal registers is via the Bus Register MUX 
(BR MUX), the bus register (BR and BRA), 
and the Data Out MUX (D MUX). The BR 
and BRA (the duplication is due to electrical 
loading considerations) are logically a single 

register as shown in Figure 12. They receive all 
incoming data and transmit almost all outgoing 
data in addition to accumulating the more sig- 
nificant half of results during multiply and di- 
vide. The BR MUX selects the input to the BR 
(and BRA) from among the two external buses 
and internal input bus for input to the processor 
and from the SHF MUX for output from the 
processor via the BR and D MUX to the exter- 
nal buses and internal output bus. The internal 
buses connect a number of special registers and 
an optional Floating-point Processor to the 
data paths. Of these, only the PS is indicated in 
Figure 12. The Instruction Register (duplicated 
as IR and AF IR, again for electrical loading 
reasons) are also loaded from the BR MUX but 
are clocked only when an instruction is fetched. 

Bus addresses are applied directly to the 
Unibus or to an optional memory mapping unit 
by the Bus Address multiplexer (BA MUX). No 
Bus Address register is needed since memory 
access and processor clocking are fully inter- 
locked except during an overlapped fetch in 
which case the PCB is held selected while oper- 
ations continue in other parts of the data paths. 

The PDP- 1 1 /45 control unit is horizontally 
microprogrammed and is for the most part 
quite similar to the archetype described for mid- 
range PDP- 1 1 implementations. The control 
store is 256 words X 64 bits. The relatively wide 
microword is necessary for generating the large 
number of control signals used in conditioning 
and clocking the complicated data paths. An 
additional source of complexity is the timing 
logic needed to produce and use the five proces- 
sor clock phases. 

There are two classes of microsequence-alter- 
ing functions corresponding to the BUTS of 
other PDP-1 1s. The first class consists of simple 
branches having four or fewer possible branch 
addresses. These operate in the same fashion as 
BUTS. The second class of branches consists of 
three complex instruction decoding functions 
called forks. The first, fork A, does the initial 
instruction decode and corresponds to the BUT 
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IRDECODE of other implementations. Fork B 
dispatches to an execute phase microroutine 
following a destination operand fetch. Fork C 
dispatches to a destination phase microroutine 
following a source operand fetch. A fork enable 
field in the microword is used to enable one 
fork at most during a cycle. When a fork and 
branch are combined in the same cycle, the fork 
is disabled if the branch is taken. This permits 
the implementation of certain functions without 
the use of additional cycles. 

The 11/45 microcode is structured to take 
full advantage of the data paths and proces- 
sor/Unibus overlap. Besides intensively exploit- 
ing special cases in the addressing modes and 
instruction set, the microprogram implements 
operand and instruction fetch overlap in much 
the same way as the 11/40. The one difference 
between the two prefetch mechanisms is that 
the 11/45 updates the PC value in PCB and 
stores it in PCA at the time the prefetch is 
started. References to the PC work correctly be- 
cause PCB holds the old PC value until i t  is up- 
dated at the appropriate time. 

All the design decisions described above are 
directed toward implementing the fastest sys- 
tem possible. Tradeoffs involving circuit tech- 
nology and control unit and data path 
organization have all been made with this end 
in mind. 

MEASURING THE EFFECT OF DESIGN 
TRADEOFFS ON PERFORMANCE 

There are two alternative approaches to the 
problem of determining just how the particular 
binding of different design decisions affects the 
performance of each machine: 

1.  Top-down approach. Attempt to isolate 
the effect of a particular design tradeoff 
over the entire space of implementations 
by fitting the individual performance fig- 
ures for the whole family of machines to 
a mathematical model which treats the 

2 .  

design parameters as independent varia- 
bles and performance as the dependent 
variable. 
Bottom-up approach. Make a detailed 
sensitivity analysis of a particular 
tradeoff within a particular machine by 
comparing the performance of the ma- 
chine both with and without the design 
feature while leaving all other design fea- 
tures the same. 

Each approach has its assets and liabilities 
for assessing design tradeoffs. The first method 
requires no information about the implementa- 
tion of a machine, but does require a suf- 
f i c i en t ly  l a r g e  co l l ec t ion  of d i f f e r e n t  
implementations, a sufficiently small number of 
independent variables, and an adequate mathe- 
matical model in order to explain the variance 
in the dependent variable to some reasonable 
level of statistical confidence. The second 
method, on the other hand, requires a great deal 
of knowledge about the implementation of the 
given system and a correspondingly great 
amount of analysis to isolate the effect of the 
single design decision on the performance of the 
complete system. The information that is 
yielded is quite exact, but applies only to the 
single point chosen in the design space and may 
not be generalized to other points in the space 
unless the assumptions concerning the ma- 
chine’s implementation are similarly general- 
izable. In  the following subsections the first 
method is used to determine the dominant 
tradeoffs, and the second method is used to esti- 
mate the impact of individual implementation 
tradeo ffs. 

Quantifying Performance 

Measuring the change in performance of a 
particular PDP-11 processor model due to de- 
sign changes presupposes the existence of some 
performance metric. Average instruction execu- 
tion time was chosen because of its obvious 
relationship to instruction stream throughput. 
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Neglected are such overhead factors as Direct 
Memory Access, interrupt servicing, and, on 
the LSI-I 1, dynamic memory refresh. Average 
instruction execution times may be obtained by 
benchmarking or by calculation from instruc- 
tion frequency and timing data. The latter 
method was chosen due to its freedom from the 
extraneous factors noted above and from the 
normal clock rate variations found from ma- 
chine to machine of a given model. This method 
also allows the designer to calculate the change 
in average instruction execution time that 
would result from some change in the imple- 
mentation. Such frequency-driven design has 
already been applied in practice to the PDP- 
11/60 (Chapter 13). 

The instruction frequencies are tabulated in 
Appendix A and include the frequencies of the 
various addressing modes. These figures were 
calculated from measurements made by Stre- 
cker [1976a] on 7.6 million instruction execu- 
tions traced in ten different PDP-I 1 instruction 
streams encountered in various applications. 
While there is a reasonable amount of variation 
of frequencies from one stream to the next, the 
figures in  Appendix A should be representative. 

Instruction times are tabulated in Appendix 
B. These times were calculated from the engi- 
neering documents for each machine. The times 
vary from those published in the PDP-11 pro- 
cessor handbooks for two reasons. First, in the 
handbooks, times have been redistributed 
among phases to ease the process of calculating 
instruction times. In the appendix an attempt 
has been to accurately characterize each phase. 
Second, there are inaccuracies in the handbooks 
arising from conservative timing estimates and 
engineering revisions. The figures included here 
may be considered more accurate. 

A performance figure is derived for each ma- 
chine by weighting its instruction times by fre- 
quency. The results, given in Table 4, form the 
basis of the analyses to  follow. 

Analysis of Variance of PDP-11 
Performance Top-Down Approach 

The first method of analysis described is em- 
ployed in an attempt to explain most of the var- 
iance in PDP-I1 performance in terms of two 
parameters: 

1. Microcycle time. The microcycle time is 
used as a measure of processor perform- 
ance which excludes the effect of the 
memory subsystem. 
Memory read pause time. The memory 
read pause time is defined as the period 
of time during which the processor clock 
is suspended during a memory read. For 
machines with processor/Unibus over- 
lap, the clock is assumed to  be turned off 
by the same microinstruction that in- 
itiates the memory access. Memory read 
pause time is used as a measure of the 
memory subsystem’s impact on proces- 
sor performance. Note that this time is 
less than the memory access time since 
all PDP-11 processor clocks will con- 
tinue to run at least partially con- 
currently with a memory access. 

2 .  

The choice of these two factors is motivated 
by their dominant contribution to, and (ap- 
proximately) linear relationship with, perform- 
ance. Keeping the number of independent 
variables low is also important due to the small 
number of data points being fit to  the model. 

The model itself is of the form: 

where ti is the average instruction execution 
time of machine i from Table 3. The microcycle 
time of machine i is c l i  (for machine with select- 
able microcycle times, the predominant time is 
used). c2i is the memory read pause time of ma- 
chine i. 
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This model is only an approximation since it 
assumes kl and k2 will be constant over all ma- 
chines. In general this will not be the case. kl is 
the number of microcycles expected in a canoni- 
cal instruction. This number will be a function 
mainly of data path connectivity, and strictly 
speaking, another factor should be included to 
take that variability into account; however, 
since the data path organization of all PDP-11 
implementations considered here (excepting the 
11/03, 11/45, and 11/60) are comparable, the 
simplifying assumption of calling them all iden- 
tical at the price of explaining somewhat less of 
the variance is made. The number of memory 
accesses expected in a canonical instruction is 
k2; it also exhibits some variability from ma- 
chine to machine. A small part of this is due to 
the fact that some PDP-1 Is actually take more 
memory cycles to perform a given instruction 
than do others (this is really only a factor in 
certain 11/10 instructions, notably JMP and 
JSR, and the 11/20 MOV instruction). A more 
impor t an t  source  of variabil i ty is t he  
Uni bus/processor overlap logic incorporated 
into some PDP-11 implementations which ef- 
fectively reduces the actual contribution of the 
k 2 ~ 2 i  term by overlapping more memory access- 
time with processor operation than is excluded 
from the memory read pause time. 

Given the model and the dependent and inde- 
pendent data for each machine (Table 5) ,  a 
linear regression is applied to determine the 
coefficients kl and k2 and to find out how much 
of the variance is explained by the model. 

Applying the regression over all eight proces- 
sors: kl = 11.580, k2 = 1.162, R2 = 0.904. R2is 
the amount of variance accounted for by the 
model or 90.4 percent. If the regression is ap- 
plied to just the six mid-range processors, kl = 
10.896, k2 = 1.194, R2 = 0.962. R2 increases to 
96.2 percent partly because the LSI-11 and 
11/45 can be expected to have a different k 
coefficients than the mid-range machines and 

do not fit the model as well. Note that if two 
mid-range machines, the 11/04 and the 11/40, 
are eliminated instead of the LSI-11 and 11/45, 
R2 decreases to 89.3 percent rather than in- 
creasing. The k coefficients are close to what 
should be expected for average microcycle and 
memory cycle counts. Since kl is much larger 
than k2,  average instruction time is more sensi- 
tive to microcycle time than to memory read 
pause time by a factor of k l / k 2  or approx- 
imately 10. The implication for the designer is 
that much more performance can be gained or 
lost by perturbing the microcycle time than 
memory read pause time. 

Although this method lacks statistical rigor, 
it is reasonably safe to say that memory and mi- 
crocycle speed do have by far the largest impact 
on performance and that the dependency is 
quantifiable to some degree. 

Table 5. 
Microseconds 

Top-Down Model Parameters in 

Dependent 
Independent Variables Variable 

Memory Average 
Micro- Read Instruction 
Cycle Pause Execution 
Time Time Time 

LSI-11 0.400 0.400 5.883 

PDP-11/04 0.260 0.940 4.043 

PDP-11/10 0.300 0.600 4.096 

PDP- 1 1/20 0.280 0.370 3.529 

PDP-i1/34 0.180 0.940 3.029 

PDP-1 1/40 0.140 0.500 2.087 

PDP-1 1/45 0.1 50 0.000 0.863 
(bipolar 
memory) 

PDP-1 1/60 0.170 0.140 1.578 
(87 percent 
cache hit 
ratio) 
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Measuring Second Order Effects: Bottom- 
Up Approach 

It is much harder to measure the effect of 
other design tradeoffs on performance. The ap- 
proximate methods employed in the previous 
section cannot be used because the effects being 
measured tend to be swamped out by first order 
effects and often either cancel or reinforce one 
another making linear models useless. For these 
reasons, such tradeoffs must be evaluated on a 
design-by-design basis as explained above. This 
subsection evaluates several design tradeoffs in 
this way. 

Effect of Adding a Byte Swapper to the 
11/10. It is evident that the lack of a byte 
swapper on the PDP- 11/ 10 has a negative effect 
on performance. In this subsection, the per- 
formance gained by the addition of a byte swap- 
per either before the B Register or as part of the 
B leg multiplexer is calculated. Adding a byte 
swapper would change five different parts of the 
instruction interpretation process: the source 
and destination phases where an odd-byte oper- 
and is read from memory, the execute phase 
where a swap byte instruction is executed in 
destination mode 0 and in destination modes 1 
through 7, and the execute phase where an odd- 
byte address is modified. In each of these cases, 
seven fast shift cycles would be eliminated and 
the remaining normal speed shift cycle could be 
replaced by a byte swap cycle resulting in a sav- 
ings of seven fast shift cycles or 1.050 micro- 
seconds. None of this time is overlapped with 
Unibus operations; hence, all would be saved. 
This savings is effected, however, only when a 
byte swap or odd-byte access is actually per- 
formed. The frequency with which this occurs is 
just the sum of the frequencies of the individual 
cases noted above or 0.0640. Multiplied by the 
time saved per occurrence gives a savings of 
0.0672 microsecond or 1.64 percent of the aver- 
age instruction execution time. The in-  
significance of this savings could well be used to 
support the decision for leaving the byte swap- 
per out of the PDP-1 1/10. 

Effect of Adding Processor/Unibus Over- 
lap to the 11/04. Processor/Unibus overlap is 
not a feature of the 11/04 control unit. Adding 
this feature involves altering the control 
unit/Unibus synchronization logic so that the 
processor clock continues to run until a micro- 
cycle requiring the Unibus data from a DATI 
or DATIP is detected. A Bus Address register 
must also be added to drive the Unibus lines 
after the microcycle initiating the DATIP is 
completed. This alteration allows time to be 
saved in two ways. First, processor cycles may 
be overlapped with memory read cycles as ex- 
plained in the subsection on control units. Sec- 
ond, since Unibus data is not read into the data 
paths during the cycle in which the DATIP oc- 
curs, the path from the ALU through the A 
MUX and back to the registers is freed. This 
permits certain operations to be performed in 
the same cycle as the DATIP. For example, the 
microword BA t PC; DATI; PC e PC + 2 
could be used to start fetching the word pointed 
to by the PC while simultaneously incrementing 
the PC to address the next word. The cycle fol- 
lowing could then load the Unibus data directly 
into a Scratchpad register rather than loading 
the data into the B Register and then into the 
Scratchpad on the following cycle as is neces- 
sary without overlap logic. A savings of two mi- 
crocycle times would result. 

DATI and DATIP operations are scattered 
liberally throughout the 11/04 microcode; how- 
ever, only those cycles in which an overlap 
would produce a time savings need be consid- 
ered. An average of 0.730 cycles can be saved or 
overlapped during each instruction. If all of the 
overlapped time is actually saved, 0.190 micro- 
second or 4.70 percent will be pared from the 
average instruction execution time. This  
amounts to a 4.93 percent increase in perform- 
ance. 

Effect of Caching on the 11/60. The PDP- 
11/60 uses a cache to decrease its effective 
memory read pause time. The degree to  which 
this time is reduced depends upon three factors: 



IMPACTOF IMPLEMENTATION DESIGN TRADEOFFS ON PERFORMANCE: THE PDP-11, A CASE STUDY 353 

the cache read hit pause time, the cache read 
miss pause time, and the ratio of cache read hits 
to total memory read accesses. A write-through 
cache is assumed; therefore, the timing of mem- 
ory write accesses is not affected by caching and 
only read accesses need be considered. The per- 
formance of the 11/60 as measured by average 
instruction execution time is modeled exactly as 
a function of the above three parameters by the 
equation: 

t = kl + kz(k3a + k4[l - a] )  

where t is the average instruction execution 
time, a is the cache hit ratio, kl is the average 
execution time of a PDP- 1 1 /60 instruction ex- 
cluding memory read pause time but including 
memory write pause time (1.339 microseconds); 
k2 is the number of memory reads per average 
instruction (1.713); k3 is the memory read pause 
time for a cache hit (0.000 microseconds); and 
k4 is the memory read pause time for a cache 
miss (1.075 microseconds). 

The above equation can be rearranged to 
yield: 

t = ( k l  + k2k4) - k2(k4 - k3)a 

The first term and the coefficient of the sec- 
ond term in the equation above evaluate to 
3.18 1 microseconds and 1.842 microseconds, re- 
spectively, with the given k parameter values. 
This reduces the average instruction time to a 
function of the cache hit ratio making it pos- 
sible to compare the effect of various caching 
schemes on 11/60 performance in terms of this 
one parameter. 

The effect of various cache organizations on 
the hit ratio is described for the PDP-11 Family 
in general (Chapter 10) and for the PDP-11/60 
in particular in Mudge (Chapter 13). If no cache 
is provided, the hit ratio is effectively zero and 
the average instruction execution time reduces 
to the first term in the model or 3.181 micro- 

seconds. A set associative cache with a set size 
of 1 word and a cache size of 1,024 words has 
been found through simulation to  give a 0.87 hit 
ratio. An average instruction time of 1.578 mi- 
croseconds results in a 101.52 percent improve- 
ment in  performance over that without the 
cache. 

The cache organization described above is 
that actually employed in the 11/60. It has the 
virtue of being relatively simple to implement 
and therefore reasonably inexpensive. Set size 
or cache size can be increased to attain a higher 
hit ratio at a correspondingly higher cost. One 
alternative cache organization is a set size of 2 
words and a cache size of 2,048 words. This or- 
ganization boosts the hit ratio to 0.93 resulting 
in an instruction time of 1.468 microseconds, an 
increase in performance of 7.53 percent. This 
increased performance must be paid for, how- 
ever, since twice as many memory chips are 
needed. Because the performance increment de- 
rived from the second cache organization is 
much smaller than that of the first while the 
cost increment is approximately the same, the 
first organization is more cost-effective. 

Design Tradeoffs Affecting the Fetch 
Phase. The fetch phase holds much potential 
for performance improvement since it consists 
of a single short sequence of micro-operations 
that, as Table 4 clearly shows, involves a sizable 
fraction of the average instruction time due to 
the inevitable memory access and possible ser- 
vice operations. In this subsection, two ap- 
proaches to cutting this time are evaluated for 
four different processors. 

The Unibus interface logic of the PDP-11/04 
and 11/34 are very similar. Both insert a delay 
into the initial microcycle of the fetch phase to 
allow time for Bus Grant arbitration circuitry 
to settle so that a microbranch can be taken if a 
serviceable condition exists. If the arbitration 
logic were redesigned to eliminate this delay, 
the average instruction execution time would 
drop by 0.220 microsecond for the 11/04 and 
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0.150 microsecond for the 11/34.* The resulting 
increases in  performance would be 5.75 percent 
and 5.21 percent, respectively. 

Another example of a design feature affecting 
the fetch phase is the operand/instruction fetch 
overlap mechanism of the 11  /40, 11/45, and 
11/60. From the normal fetch times in Appen- 
dix B and the actual average fetch times given in 
Table 4, the savings in fetch phase time alone 
can be calculated to be 0.162 microsecond for 
the 11/40,0.087 microsecond for the 11/45, and 
0.118 microsecond for the 11/60 or an increase 
of 7.77 percent, 10.07 percent, and 8.11 percent 
over what their respective performances would 
be i f  fetch phase time were not overlapped. 

These examples demonstrate the practicality 
of optimizing sequences of control states that 
have a high frequency of occurrence rather than 
just those which have long durations. The 1 1 / 10 
byte swap logic is quite slow, but is utilized in- 
frequently causing its impact upon performance 
to be small while the bus arbitration logic of the 
1 1 /34 exacts only a small time penalty, but does 
so each time an instruction is executed and re- 
sults in a larger performance impact. The use- 
fulness of frequency data should thus be 
apparent since the bottlenecks in  a design are 
often not where intuition says they should be. 

SUMMARY AND USE OF THE 
M ETH 0 D 0 LOG I ES 

The PDP-11 offers an interesting opportunity 
to examine an architecture with numerous im- 
plementations spanning a wide range of price 
and performance. The implementations appear 
to fall into three distinct categories: the mid- 
range machines (PDP-11/04, 11/10, 11/20, 
1 1 /34, 1 1 /40, 1 1 /60); an inexpensive, relatively 
low performance machine (LSI-1 I); and a com- 
paratively expensive, but high performance ma- 
chine (PDP-11/45). The mid-range machines 
are all minor variations on a common theme 

with each implementation introducing much 
less variability than might be expected. Their 
differences reside in the presence or absence of 
certain embellishments rather than in any major 
structural differences. This common design 
scheme is still quite recognizable in the LSI-I 1 
and even in the PDP-l1/45. The deviations of 
the LSI-II arise from limitations imposed by 
sem ico nd uctor techno logy rat her than directly 
from cost or performance considerations al- 
though the technology decision derives from 
cost. I n  the PDP-I 1/45, on the other hand, the 
quantum jump in complexity is motivated 
purely by the desire to squeeze the maximum 
performance out of the architecture. 

From the overall performance model pre- 
sented in the section on top-down performance 
analysis, it is evident that instruction stream 
processing can be sped up either by improving 
the performance of the memory subsystem or 
the performance of the processor. Memory sub- 
system performance depends upon number of 
memory accesses in a canonical instruction and 
the effective memory read pause time. There is 
not much that can be done about the first num- 
ber since it is a function of the architecture and 
thus largely fixed. The second number may be 
improved, however, by the use of faster mem- 
ory components or techniques such as caching. 

Performance of the PDP- 11 processor itself 
can be enhanced in two ways: by cutting the 
number of processor cycles to perform a given 
function or by cutting the time used per micro- 
cycle. Several approaches to decreasing the ef- 
fect ive m i c r o c y c l e  c o u n t  h a v e  been  
demonstrated: 

1. Structure the data paths for maximum 
parallelism. The PDP-I 1 /45 can perform 
much more in a given microcycle than 
any of the mid-range PDP-11s and, thus, 
needs fewer microcycles to  complete an 
instruction. To obtain this increased 

*These figures a re  typical. Since the delay 3 set by an RC circuit :tnd Sch’nitt tripper. t he  delay may  vary considerably from 
machine to machine of a given model. 
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2 .  

3 .  

functionality, however, a much more 
elaborate set of data paths is required in 
addition to a highly developed control 
unit to exercise them to maximum po- 
tential. Such a change is not an in- 
cremental one and involves rethinking 
the entire implementation. 
Structure the microcode to take best ad- 
vantage of instruction features. All pro- 
cessors  except t h e  11/10 hand le  
JMP/JSR addressing modes as a special 
case in the microcode. Most do the same 
for the destination modes of the MOV 
instruction because of its high frequency. 
Varying degrees of sophistication in in- 
struction dispatching from the BUT IR- 
DECODE at the end of every fetch is 
evident in different machines resulting in 
various performance improvements. 
Cut effective microcycle count by over- 
lapping processor and Unibus operation. 
The PDP-I 1/10 demonstrates that a 
large microcycle count can be effectively 
reduced by placing cycles in parallel with 
memory access operations whenever 
possible. 

Increasing microcycle speed is perhaps more 
generally useful since it can often be applied 
without making substantial changes to an entire 
implementation. Several of the mid-range PDP- 
1 Is achieve most of their performance improve- 
ment by increasing microcycle speed in the fol- 
lowing ways: 

1.  Make the data paths faster. The PDP- 
11/34 demonstrates the improvement in 
microcycle time that can result from the 
judicious use of Schottky TTL in such 
heavily travelled points as the ALU. Re- 
placing the ALU and carry-lookahead 
logic alone with Schottky equivalents 
saves approximately 35 nanoseconds in 
propagation delay. With cycle times run- 
ning 300 nanoseconds and less, this 
amounts to better than a 10 percent in- 
crease in speed. 

2 .  Make each microcycle take only as long 
as necessary. The 1 1 /34 and 1 1 /40 both 
use selectable microcycle times to speed 
up cycles which do not entail long data 
path propagation delays. 

Circuit technology is perhaps the single most 
important factor in performance. It is only stat- 
ing the obvious to say that doubling circuit 
speed doubles total performance. Aside from 
raw speed, circuit technology dictates what it is 
economically feasible to build as witnessed by 
the SSI PDP-I 1/20, the MSI PDP-I 1/40, and 
the LSI-I 1 .  Just the limitation of a particular 
circuit technology at a given point in time may 
dictate much about the design tradeoffs that 
can be made - as in the case of the LSI-I 1. 

Turning to the methodologies, the two pre- 
sented in the previous section can be used at 
various times during the design cycle. The top- 
down approach can be used to estimate the per- 
formance of a proposed implementation or to  
plan a family of implementations, given only 
the characteristics of the selected technology 
and a general estimate of data path and mem- 
ory cycle utilization. The bottom-up ap- 
proach can be used to perturb an existing or 
planned design to determine the performance 
payoff of a particular design tradeoff. The rela- 
tive frequencies of each function (e.g., address- 
ing modes, instructions, etc.), while required for 
an accurate prediction, may not be available. 
There are, however, alternative ways to esti- 
mate relative frequencies. Consider the three 
following situations: 

1 .  At least one implementation exists. An 
analysis of the implementation in typical 
usage (Le., benchmark programs for a 
stored program computer) can provide 
the relative frequencies. 
No implementation exists, but similar sys- 
tems exist. The frequency data may be 
extrapolated from measurements made 
on a machine with a similar architecture. 
For example, the Gibson Mix [Bell and 

2 .  
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Newell, 19711 provided the relative fre- 
quencies of IBM 7090 functions from 
which the relative frequencies of IBM 
360 functions were estimated. 
No implementation exists, and there are 
no prior similar systems. From knowl- 
edge of the specifications, a set of most- 
used functions can be estimated (e.g., in- 
struction fetch, register and relative ad- 
dressing, move and add instructions for 
a stored program computer). The design 
is then optimized for these functions. 

3. 

Of course, the relative frequency data should 
always be updated to take into account new 
data. 

Our purpose in  writing this paper has been 
twofold: to provide data about design tradeoffs 
and to suggest design methodologies based on 
this data. It is hoped that the design data will 
stimulate the study of other methodologies 
while the results of the design methodologies 
presented here have demonstrated their useful- 
ness to  designers. 

APPENDIX A: INSTRUCTION TIME COMPONENT FREQUENCIES 

Frequency 
Fetch 1 .oooo 
Source Mode 0.4069 

0.1377 
0.0338 
0.1587 
0.01 22 
0.0352 
0.0000 
0.027 1 
0.0022 
0.593 1 

Frequency of odd-byte addressing 

Destination 0.6872 
Data Manipulation Mode 0.6355 
OR 0.3146 
1 @R or (R) 0.0599 
2 (R)+ 0.0854 
3 @(R)+ 0.0307 
4 -(R) 0.0823 

6 X(R) 0.0547 

NOTE: 
Frequency of odd-byte addressing 

(SM 1-7) = 0.0252. 

5 @-(R) 0.0000 

7 @XW) 0.0080 

(DM1-7) = 0.0213. 

Frequency 
JumD (JMP/JSR) Mode 0.05 17 

OR 0.0000 
(I LL EG A L) 
0.0000 
0.0000 
0.0079 
0.0000 
0.0000 
0.0438 
0.0000 

~~ 

Execute Instruct ion 1 .om0 

Double Operand 0.4069 

ADD 
SUB 
BIC 
BICB 
BI S 
BISB 
CMP 
CMPB 
BIT 
BITB 
MOV 
MOVB 
XOR 

0.0524 
0.0274 
0.0309 
0. 
0.001 2 
0.001 3 
0.0626 
0.021 2 
0.004 1 
0.001 4 
0.1517 
0.0524 
0. 
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Frequency Frequency 

Single Operand 
CLR 
CLRB 
CO M 
COMB 
INC 
INCB 
DEC 
DECB 
N EG 
NEGB 
A DC 
ADCB 
SBC 
SBCB 
ROR 
RORB 
ROL 
ROLB 
AS R 
ASRB 
AS L 
ASL B 
TST 
TST B 
SWAB 
SXT 

0.2286 
0.0186 
0.00 1 8 
0. 
0. 
0.0224 
0. 
0.0809 
0. 
0.0038 
0. 
0.0070 
0. 
0. 
0. 
0.0036 
0. 
0.0059 
0. 
0.0069 
0. 
0.0298 
0. 
0.0329 
0.0079 
0.0038 
0. 

No Destination 0.3 128 
~ 

Branch 0.2853 

All Branches (false) 0.1 109 
All Branches (true) 0.1744 

SOB (true) 0. 
SOB (false) 0. 

Jump 
JMP 
JSR 

0.05 17 
0.0272 
0.0245 

Control, Trap, and 
Miscellaneous 
Set/Clear Condition Codes 
MARK 
RTS 
RTI 
RTT 
IOT 
EMT 
TRAP 
BPT 

0.0270 
0.001 7 
0. 
0.0236 
0. 
0. 
0. 
0.001 7 
0. 
0. 

NOTES: 
Frequency of destination odd-byte addressing (DM 1-7) = 
0.02 I3 
Execution frequencies indicated as 0. have an  aggregate fre- 
quency <0.0050. 
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Appendix B: Instruction Execution Times for PDP-11 Models 

--I 
Microcycle LSI-11 PDP-l l /W PDP-11/10 PDP-11/20 PDP-11/34 PDP-11/40 PDP-11/45 PDP-11/60 
(/.IS) 0.40 0.26 0.30 0.28 . 1 8/ .  34 0.15 0.17 1 

rn 
. 1 4/.20/.30 

n 
1/5 240  

011 0 40 
113 160  1 
1/4 200 3 
2/7 3 6 0  1 
1/5 240  2 
2/8 400  1 
2/9 440  1 
3/12 6 00 1 

011 0 4 0  
1/4 2 00 
1/5 240  1 
2/8 400  
1/6 280 1 
219 4 4 0  
2/10480 
3/13 6 40 

Jump (JMP/JSR) 
101 R o r ( R 1  0/3 120  
2 ( R )  + 015 200  
3Cr ( R )  + 1/5 240 
4 ( R l  015 200  
5 6 1  ~ ( R )  1/6 2 80 
6 X ( R l  1/7 3 2 0  
7(0 X ( R I  2/10 4 80 
MOV 1/3 160 2 
MOVE 112 
ADD 113 
SUB 1 /3 
BIC 113 
BlC8 1 /2 
BIS 113 
8lSB 1 /2 

20 1 
60 3 
60 3 
60 3 
20 3 
60 3 
20 3 

BIT 0/2 0 8 0  
BIT6 011 0 4 0  
CMP 012 0 8 0  

1/3 1 94 

0/2 052 
1/2 146 
1/3 172 
2/5 3 18 
1/3 172 
2/5 318 
2/6 344 
3/8 4 9  

0/1 026 
1/1 120 
1/2 146 
2/4 292 
1/2 1 46 
2/4 292 
2/5 318 
3/7 464 

0/2 0 5 2  
0/3 078 
1/3 172 
0/3 078 
1/3 172 
1/4 198 
2/6 344 

115 1 5 0  

0/2 0 6 0  
113 1 5 0  
115 1 5 0  
2/7 2 7 0  
114 1 5 0  
2/6 2 70 
2/7 2 70 
3/9 3 9 0  

012 0 6 0  1 
1/3 1 50 
1/5 1 50 
217 2 70 
1/4 1 50 
216 2 7 0  
217 2 70 
319 3 9 0  

111 0 9 0  
113 0 9 0  
215 2 10 
112 0 9 0  
214 2 10 
215 2 10 
3/7 3 30 

1/2 106 1.2 1/4 1 8 0  1 
1/2 106 1 2  114 1 8 0  
112 106 1 1/4 1 8 0  
1/2 106 1 114 1 8 0  
1/2 106 1 1/4 1 8 0  
1/2 106 1 1/4 1 8 0  
1/2 106 1 114 1 8 0  
1/2 106 1 1/4 1 8 0  
0/1 026 012 0 6 0  
0/1 026 012 0 6 0  
011 026 012 0 6 0  

114 1 49 

010 0 0  
1/4 1 49 
1/4 1 4 9  
2/7 2 70 
1/4 1 49 
2/7 2 70 
217 2 70 
3/10 3 91 

0/1 0 2 8  
1/4 139 
114 139  
217 2 60 
1/4 139  
217 2 60 
2/7 2 60 
3/10 3 81 

0/4 1 12 
0/4 1 12 
117 233 
0/4 1 12 
117 233  
1/7 2 3 3  
2/10 3 54 
113 0 8 0  1 
113 0 8 0  
1/3 0 8 0  
1/3 0 8 0  
1/5 1 40 
1/5 1 40 
113 0 8 0  
113 1 8 0  
0/4 1 12 
0/4 1 12 
0/2 0 5 6  1 

113 1 63 

011 0 18 1 
1/1 112  
112 1 30 
213 242  
112 1 30 
2/3 242  
214 2 60 
315 3 7 2  

114 112  

010 0 0  
1/3 0 7 8  
1/3 0 8 4  
2/5 172  
1/3 0 8 4  
215 172  
215 1 3 4  
3/7 2 12 

0/1 0 18 1.2 /O 0 0  
1/1 112  
1/2 1 3 0  1 
2/3 2 4 2  
112 1 30 
2/3 2 42 
2/4 2 60 
315 3 7 2  

010 0 0  1 
0/2 0 3 6  
112 1 3 0  
0/1 0 1 8  
1/2 1 30 
1/2 1 3 0  1 
214 2 6 0  
1/1 0 7 8  1 
1/1 0 7 8  1 
1/1 0 7 8  1 
1/1 0 7 8  1 
1/1 0 7 8  1 
1/1 0 7 8  1 
111 0 7 8  1 
1/1 0 7 8  1 
0/1 0 18 
011 0 1 8  
0/1 0 18 

113 0 7 8  
113 0 8 4  
215 1 7 0  
113 0 8 4  
215 1 7 0  
2/5 1 7 8  1 
3/7 2 56 1 

012 0 3 4  
0/3 0 6 4  
1/2 0 9 4  
0/2 0 4 4  
1/2 0 9 4  
1/4 0 8 4  
2/4 1 34 
1/3 0 6 4  4 
1/3 0 6 4  4 
113 0 5 4  1.2 
114 0 6 8  1 
113 0 5 4  1.2 
1/3 0 5 4  1 2  
113 0 5 4  1.2 
113 0 5 4  1.2 
0/3 0 4 8  3 
013 0 4 8  3 
013 0 4 8  3 

113 0 4 5  

010 0 0  
112 0 3 0  
112 0 3 0  
215 0 7 5  
1/3 0 4 5  
2/6 0 9 0  
214 0 6 0  
317 1 0 5  

010 0 0 
112 0 3  
1/2 0 3  
215 0 15 
1/3 0 4 5  
2/6 0 9  
215 0 7 5  1 
3/8 1 2 1 

0/2  0 3  
012 0 3  
114 0 6  
0/2 0 3  
1/5 0 7 5  
1/3 0 4 5  
2/6 0 9 0  

113 0 5 1  

o/o 0 0  
1/2 0 3 4  
112 0 3 4  
215 0 8 5  
113 0 5 1  
216 102  
214 0 6 8  
317 1 19 

010 0 0  
112 0 3 4  
112 0 3 4  
215 0 8 5  
113 0 5 1  
216 102 
2 / 5  0 8 5  
318 136  

011 0 17 
012 0 3 4  
1/2 0 3 4  
011 017  
113 051  
1/2 0 3 4  
215 0 8 5  

1/0 0 0  1.3 1/2 117 
1/2 0 3  
1/2 0 3  
112 0 3  
1/2 0 3  
1/2 0 3  
1/2 0 3  
1/2 0 3  

1 /2 
1 /2 
113 
1 /2 
112 
1 /2 
112 

17 
17 
34 
17 
17 
17 
17 

0/1 0 15 1 2  011 0 1 7  
0/1 0 15 1 2  0/1 017  
011 0 15 1 2  0/1 0 1 7  

- 
0 
? 

1 
1 

1.6 
4 
1.6 
1.7 
1.6.C 
1.6.C 
1.6.C 
1.6.C 
1 
1 
1 .B 

*Format r/m t tt n ( r  = number of memory reads or writes. m = number of microcycles t t t  = time in ps, n = footnotes number) 



Microcycle LSI-11 PDP-11/04 PDP-11/10 PDP-11/20 PDP-11/34 PDP-11/40 PDP-11/45 PDP-l1/60 
( F S )  0.40 0.26 0.30 0.28 .1 W.34 .14/.20/.30 0.1 5 0.17 

CMPB 
XO R 
CLR (6) .  COMB 
CO M 
INC. DEC 
INCB, DECB 
ADC 
ADCB 
SBC 
S8CB 
ROL. ASL 
ROLB. ASLB 
RO R 
RORB 
AS R 
ASRB 
TST 
TSTB 
N EG 
NEGB 
SWAB 
SXT 
BRANCH 

0/1 0 4 0  
1/3 1 6 0  3 
113 1 6 0  2 
1/4 2 0 0  2 
1/5 2 4 0  3 
1/4 200  3 
115 2 4 0 3  
1/4 2 0 0 3  
1/5 2 4 0  3 
114 2 0 0 3  
1/4 2 0 0 3  
113 1 6 0  3 
118 3 6 0  3 
1/5 2 4 0  3 
119 4 0 0  3 
1/8 3 6 0 4  
0/4 1 6 0  
0/3 1 2 0  
114 2 0 0 2  
1/3 1 6 0  2 
113 1 6 0  2 
116 2 8 0  3 

0/1 0 2 6  

1/2 1 0 6  1 
112 1 0 6  
112 1 0 6  
1/2 1 0 6  
1/2 1 0 6  
112 1 0 6  
112 1 0 6  
112 1 0 6  
113 1 3 2  
1/3 1 3 2  
1/3 1 3 2  
113 1 3 2  
1/3 1 32 
113 1 3 2  
011 0 2 6  
011 0 2 6  
1/2 1 0 6  1 
112 1 0 6  1 
113 1 3 2  1 

BRANCH (TRUE) 014 1 6 6  
BRANCH (FALSE) 014 1 60 
SOB ITRUE) 0/8 3 2 0  
SOBIFALSE) 016 2 4 0  
JUMP 
JM P 0 / 2  0 8 0  
JSR 1016 2 80 9 
SETKLEAR CC 0/3 1 2 0  
MARK 1 /16680 
RTS 116 2 8 0  
RTI 2115680 5 6  
R TT 2115680 5 7  
IOT EMT TRAP 2/33 1480 
E 
B PT 

013 0 7 8  
0 0  

0 0  
117 2 3 6  
012 0 5 2  

1/5 2 24 
216 3 4 4  

012 0 6 0  

115 2 10 1 
115 2 10 
115 2 10 
115 2 10 
115 2 10 
115 2 1 0  
1/5 2 10 
115 2 10 
1/5 2 10 
115 2 10 
1/5 2 10 
115 2 1 0  
115 2 10 
115 2 1 0  
013 0 9 0  
013 0 9 0  
1/5 2 10 
115 2 10 1 

012 0 56 

113 0 8 4  1 
113 0 8 4  1 
113 0 8 4  1 
113 0 8 4  1 
113 0 8 4  1 
113 0 8 4  1 
1/3 0 8 4  1 
1/3 0 8 4  1 
1/3 0 8 4  1.2 
113 0 8 4  1.2 
113 0 8 4  1.2 
1/3 0 8 4  1.2 
113 0 8 4  1.2 
113 0 8 4  1.2 
012 0 56 
012 0 5 6  

1 / 1 2 3 1 5  1.2 113 0 8 4  1 

013 0 9 0  014 1 12 
013 0 3 0  010 0 0  

012 0 6 0  010 0 0  
1/9 3 3 0  1 / 1 0 2 8 0  
0/3 0 9 0  010 0 0  

1/7 2 10 116 2 0 5  
219 2 70 2/9 3 26 

5.8 2/12 6.08 2/13 6.3 2/21 6.62 

011 0 18 
111 0 7 8  1 
111 0 7 8  1 
1/1 0 7 8  1 
111 0 7 8  1 
1/1 0 7 8  1 
1/1 0 7 8  1 
1/1 0 7 8  1 
1/1 0 7 8  1 
1/1 0 7 8  1 
112 0 9 6  2 
112 0 9 6 2  
1/2 0 9 6 2  
112 0 9 6  2 
112 0 9 6 2  
112 0 9 6 2  
011 0 1 8  
011 0 1 8  
1/2 0 9 6  1 
1/2 0 9 6  1 
1/1 0 7 8  2 
111 0 7 8  1 

0/3 0 5 4  
010 0 0  
0/4 0 7 8  
0/2 0 4 2  

0/1 0 1 8  
1/5 1 50 
0/2 0 3 6  
118 2 3 8  
1/4 1 6 6  
2/6 2 9 6  
216 2 9 6  
2113542 

013 0.48 3 

1/4 0.62 1.2 
1/4 0 6 2  
114 0 6 2  
1/4 0 6 2  
114 0 6 2  
114 0 6 2  
114 0 6 2  
114 0 6 2  
114 0 6 2  

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 
1/4 0 6 2  1 2  
1/4 0 8 4  5 
114 0 8 4  5 
114 0 8 4  5 
114 0 8 4  5 
0/4 0 6 2  1 2  
014 0 62 1 2  
1/3 0 5 4  1 2  
113 0 5 4  1 2  
1/3 0 5 4  1 
1/4 0 6 2  1 2  

013 0 6 4  
012 0 2 8  
0/5 1 2 4  
015 92 

0/2 0 3 4  
116 1 48 
012 0 6  
1/6 1 54 
114 1 2 8  
216 2 3 2  
216 2 3 2  
2/14 4 1 8  

0/1 0 15 1 2  0/1 0 1 7  
1/2 0 3  1 113 1 3 4  
1/2 0 3  1 113 1 3 4  
112 0 3  1/3 1 34 
112 0 3  1/3 1 34 
1/2 0 3  1/3 1 34 
112 0 3  113 1 34 
1/2 0 3  113 1 3 4  
1/2 0 3  1/4 1 5 1  
112 0 3  114 1 5 1  
1/2 0 3  113 1 34 
1/2 0 3  1 1/3 1 3 4  
1/2 0 3  1 5  114 1 5 1  
1/2 0 3  1 5  114 1 5 1  
1/2 0 3  1 5  115 1 6 8  
1/2 0 3  1 5  1/5 1 6 8  
011 0 15 1 2  012 0 3 4  
0/1 0 15 1 2  0/2 0 3 4  
114 0 6  4 
1/4 0 6  4 
112 0 3  1 
112 0 3  1 

011 0 15 
010 0 0  6 
0/3 0 4 5  6 
012 0 3  6 

011 0 15 
115 0 7 5  
012 0 15 
114 0 6  6 
114 0 6  
2/7 1 0 5  
2/7 1 0 5  
2/11 1 6 5  7 

114 1 5 1  
1/4 1 5 1  
1/5 1 68 
116 1 8 5  

0/4 0 6 8  
0/2 0 3 4  
0110 1 70 
017 1 19 

011 0 1 7  
1/6 1 8 5  
018 1 19 
119 1 5 3  
114 68 
2/10 1 70 
2/19 3 23 
2/22 5 4 0  

1 B  
7 
2 7  
2 7  
2 7 8  
2 7 8  
2 7 8  
2 7 8  
6 8  
6 8  
2 7 8  
2 7 8  
6 
6 
7 9  
7 9  
2 5  
2 5  
7 8  
7 8  
7 
7 

3 

3 

3 A  

*Format r/m t tt n (r = number of memory reads or writes. m = number of microcycles. t t t  = time in ps. n = footnotes number) 
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LSI-11 NOTES 

Fetch: 

All single-operand instructions except 
SWAB, SXT, MFPS, and MTPS add 1 
pcycle (+0.400 p s ) .  
XOR, JMP, RTS, RTI, RTT, set/clear 
condition codes add 1 pcycle (+0.400 p s ) .  
SWAB adds 2 pcycles (+0.800 p s ) .  
SXT adds 5 pscycles (+2.000 p s ) .  
BPT, IOT add 6 pcycles (+2.400 p s ) .  
MARK adds 8 pcycles (+3.200 ps). 

Source: 

( I )  Byte addressing subtracts 1 pcycle (-0.400 
PUS). 

(2) Byte addressing adds 1 pcycle (+0.400 p s ) .  
(3) I f  register f R6 or R7, byte addressing 

adds 1 pcycle (+0.400 p s ) .  

(7) If new PS has bit 4 set, add I O  pcycles 
(+4.000 p s ) .  

(8) I f  new PS has bit 4 set, add 1 pcycle 
(+0.400 p s ) .  

(9) If register not 7, then 1/15 (6.40 p s ) .  

Times Assumed for All  Calculations: 

(1) Microcycle time is 0.400 p s .  
(2) Microcycle time is extended by 0.400 p s  

during DATI/DATIP/DATO/DATOB. 
(Note: 1 extra wait pcycle is actually gener- 
ated for each memory access; however, 
these pcycles have not been tallied in the 
microcycle counts above.) 

PDP-11/04 NOTES 

Source: 

Odd-byte addressing (SMI-7) adds 2 pcy- 
cles (+OS20 p s ) .  

Destination: 
Destination: 

For MOV: DMO subtracts 1 pcycle (-0.400 
p s ) .  DMI-7 subtracts 2 pcycles and mem- 
ory read (-1.200 p s ) .  
Byte addressing (DM 1-7) subtracts 1 pcycle 
(-0.400 p s ) .  

( I )  I f  register = R6 or R7, byte addressing 
adds 2 pcycles (+0.800 p s )  additive to the 
time noted directly above. 

Execute: 

( I )  DMO adds 1 pcycle and subtracts memory 
write (+O.OOO ps). 

(2) DMO subtracts memory write (-0.400 ps). 
(3) DMO subtracts 1 pcycle and memory write 

(-0.800 p s ) .  
(4) DMO subtracts 3 pcycles and memory 

write (-1.600 p s ) .  
( 5 )  I f  new PS has bit 7 clear, add 1 pcycle 

(+0.400 ps). 
(6) I f  new PS has bit 4 set, add 9 pcycles 

(+3.600 p s ) .  

Odd-byte addressing (DMI-7) adds 2 pcy- 
cles (+OS20 p s ) .  

Execute: 

( I )  Destination odd-byte addressing (DMI-7) 
adds 2 pcycles (+0.520 p s ) .  DMO subtracts 
memory write (-0.540 p s ) .  

( 2 )  DMO subtracts 1 additional pcycle (-0.260 
F). 

Times Assumed for  Al l  Calculations: 

(1) Microcycle time is 0.260 ps. 
(2) Microcycle time is extended by 0.220 p s  by 

bus priority arbitration delay during BUT 
SERVICE. 

(3) Microcycle time is extended by 0.940 p s  
during DATI/DATIP (MOS memory). 

(4) Microcycle time is extended by 0.540 ps 
during DATO/DATOB (MOS memory). 
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PDP-11/10 NOTES 

Source: 

Odd-byte addressing (SMI-7) adds 7 fast 
shift (0.150 ps/pcycle) and 1 regular pcycle 
for a total of + 1.350 ps. 

Destination: 

Odd-byte addressing (DMI-7) adds 7 fast 
shift (0.150 ps/pcycle) and 1 regular pcycle 
for a total of + 1.350 ps. 

( I )  MOV subtracts 1 pcycle (-0.300 ps). 

Execute: 

Destination odd-byte addressing (DM 1-7) 
adds 7 fast shift pcycles (0.150 ps/pcycle) 
for a total of +1.050 ps. DMO subtracts 2 
pcycles and memory write (-1.200 ps). 
Byte swap consists of 7 fast shift (0.150 
ps/pcycle) and 1 regular pcycle for a total 
of + 1.350 ps. 

Times Assumed for  All Calculations: 

( I )  Microcycle time is 0.300 ps. 
(2) A C K O F F  f o l l o w i n g  a D A T I /  

DATIP/DATO/DATOB extends pcycle 
time by 0.600 ps minus 0.300 ps for each 
pcycle that the CKOFF is removed from 
the cycle initiating the bus transaction. 

PDP-11/20 NOTES 
Source: 

Odd-byte addressing (SMI-7)  adds 2 
lcycles (+0.560 ps). 

Destination: 

Odd-byte addressing (DMI-7) adds 2 pcy- 
cles (+OS60 ps). 
Non-modifying instruction (CMP(B), 
BIT(B), TST( B)) adds 0 pcycles (+O.  100 ps 
for DATI in place of DATIP). 

Execute: 

( I )  DMO subtracts 1 pcycle and memory write 
(-0.280 ps). PS as destination adds 1 pcycle 
(+0.280 ps). 

(2) Odd-byte addressing (DMI-7) adds 2 pcy- 
cles (+0.560 ps). 

Times Assumed for AI1 Calculations: 

( I )  Microcycle time is 0.280 ps 
(2) Microcycle time is extended by 0.370 ps 

during DATI. 
(3) Microcycle time is extended by 0.270 ps 

during DATIP. 
(4) Microcycle time is extended by 0.000 ps 

during DATO/DATOB. 

PDP-11/34 NOTES 
Source: 

( I )  DMO subtracts 1 pcycle (-0.180 ps). 

Destination. 

MOV(B) and DMI-7 changes long to short 
pcycle and subtracts memory read (-1.000 
W ) .  

( I )  MOV(B) subtracts an additional pcycle 
(-0.180 ps) 

(2) Single-operand instruction except NEG(B) 
subtracts 1 pcycle (-0.180 ps). 

Execute: 

( I )  DMO subtracts memory write and changes 
long to short pcycle (-0.600 ps). 

(2) DMO subtracts memory write, changes 
long to short pcycle, and adds 1 pcycle 
(-0.420 p ~ ) .  

Times Assumed f o r  All Calculations: 

( I )  Microcycle times are 0.180 and 0.240 ps. 
(2) Microcycle time is extended by 0.150 ps by 

bus priority arbitration delay during BUT 
SERVICE. 
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(3) Microcycle time is extended by 0.940 ps 
during DATI/DATIP (MOS memory). 

(4) Microcycle time is extended by 0.540 ps 
during DATO/DATOB (MOS memory). 

(5) Memory management unit delay is not 
included (+O. 120 ps/memory cycle when 
enabled). 

PDP-11/40 NOTES 

Source: 

Odd-byte addressing (SM1-7) adds 2 pcy- 
cles (+0.340 ps). 

Destination: 

Odd-byte addressing (DMI-7) adds 2 pcy- 
cles (+0.340 ps). 

( I )  Single-operand instruction or SMO sub- 
tracts 0 pcycles (-0.440 ps). 

Execute: 

If (single-operand instruction or SMO and 
doub le -ope rand  instruct ion except 
MOVB), DMO, destination f register 7, 
and no service request pending, then next 
fetch is overlapped (-1 pcycle/-0.640 ps 
from next fetch). 

( I )  I f  DMO, phase takes 3 pcycles and memory 
write is not done (0.480 11s). 

(2) If odd-byte addressing (DM1-7), phase 
takes 5 pcycles (1.020 ps). 

(3) I f  odd-byte addressing (DM1-7), phase 
takes 5 pcycles (0.820 ps). 

(4) If byte instruction and DM1-7, phase takes 
4 pcycles (0.880 ps). For DMO: If word in- 
struction, phase takes 2 pcycles (0.340 ps). 
I f  byte instruction, phase takes 4 pcycles 
(0.680 ps). 

( 5 )  For DMO: I f  word instruction, phase takes 
3 pcycles (0.740 ps). I f  byte instruction, 
phase takes 4 pcycles (0.880 ps). In  neither 
case is memory write done. 

Times Assumed for  All Calculations: 

( I )  Microcycle times are 0.140, 0.200, and 
0.300 ps. 

(2) A CLKOFF following a DATI/DATIP ex- 
tends pcycle time by 0.500 ps minus sum of 
cycle times between DATI/DATIP (exclu- 
sive) and CLKOFF (inclusive). 

(3) A CLKOFF following a DATO/DATOB 
extends pcycle time by 0.200 ps minus sum 
of cycle times between DATO/DATOB 
(exclusive) and CLKOFF (inclusive). 

(4) Memory management unit delay is not 
included ( + O .  150 ps/memory cycle when 
enabled). 

PDP-11/45 NOTES 

Fetch: 

Execute phase of previous instruction may 
be overlapped with fetch. Consult execute 
phase note for effect on timing. 

Destination: 

MOV and DM1-7 subtracts memory read 
(-0.000 ps). Odd-byte addressing (DM 1-7) 
adds 1 pcycle (+O.  150 ps). 

(1 )  Single-operand instruction or SMO sub- 
tracts 1 pcycle (+0.150 ps). 

Execute: 

( I )  For DMO: 
I f  double-operand instruction, destination 
f register 7, and SM1-7: 

If odd-byte addressing, then phase 
takes 2 pcycles (0.300 ps), else phase 
takes 1 pcycle (0.150 ps). I f  no ser- 
vice request is pending, then next 
f e t c h  i s  o v e r l a p p e d  ( - 1  
pcycle/-0.150 ps from next fetch). 
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I f  double-operand instruction, destination 
= register 7, and SMI1-7: 

Otherwise (single-operand instruction or 
S M 0): 

Phase takes I pcycle (0.150 p s ) .  If 
destination f register 7 and no ser- 
vice request is pending, then next 
fe tch is o v e r l a p p e d  (-2 pcy -  
des/-0.300 p s  from next fetch). 

Phase takes 2 pcycles (0.300 p s ) .  

No memory write is done. 
(2) For DM1-7, if destination fetch is via Fast- 

bus and no service request is pending, then 
next instruction fetch is overlapped (-1 
pcycle/-0. 150 p s  from next fetch). 

(3) DM 1-2 adds 1 pcycle (+O. 150 p s ) .  If no ser- 
vice request is pending, then next fetch is 
overlapped (-1 pcycle/-O.150 p s  from next 
fetch). 

(4) DMO subtracts 2 pcycles and memory 
write (-0.300 p s ) .  

(5) Odd-byte addressing adds 1 pcycle (+O. 150 
P S I .  

(6) If no service request is pending, then next 
fetch is overlapped (-I pcycle/-0.150 p s  
from next fetch). 

(7) IOT 1.65 p s ,  BPT 1.8 p s .  

Times Assumed for All Calculations: 

(1) Microcycle time is 0.150 p s .  
(2) Memory access time does not influence mi- 

crocycle times (bipolar memory). 
(3) Memory management unit delay is not 

included (+0.090 ps/memory cycle when 
enabled). 

PDP-11/60 NOTES 

Fetch: 

The following instructions take 1 addi- 
tional pcycle (+O. 170ps) to decode: XOR, 
SWAB, SXT, JSR, set/clear condition 

codes, MARK, SOB, RTS, RTI, RTT, 
IOT, EMT, TRAP,  BPT, MFPI(D) ,  
MTPI(D). 

Fetch or execute phase of previoiis instruc- 
tion may be overlapped with fetch. Consult 
execute phase notes for effect on timing. 

Source: 

For SM 1-7: Word instruction except MOV 
and DM1-7 adds 1 pcycle (+0.170 p s ) .  Byte 
instruction adds 2 pcycles (+0.340 p s ) .  

Destination: 

Byte addressing (DMI-7) adds 2 pcycles 
(0.340 p s ) .  

(1) Single-operand instruction except SWAB 
or SXT or SMO and double-operand in- 
struction except XOR subtracts 1 pcycle 
(-0.170 p~). 

Execute: 

( I )  If SMO, DMO, source # register 7, and 
destination # register 7, then fetch overlap 
is attempted. I f  no service request is pend- 
ing at conclusion of instruction, then next 
fetch is overlapped (-2 pcycles/-0.340 p s  
from next fetch); otherwise, add 2 pcycles 
(+0.340 p s )  to service phase following in- 
struction for PC rollback, add 1 memory 
read (+O.OOO p s )  to next fetch for instruc- 
tion refetch. 

(2) If DMO and destination # register 7, then 
fetch overlap is attempted. If no service 
request is pending at conclusion of instruc- 
tion, then next fetch is overlapped (-2 pcy- 
cles/-0.340 p s  from next fetch); otherwise, 
add 2 pcycles (+0.340 p s )  to service phase 
following instruction for PC rollback, add 
1 memory read (+O.OOO p s )  to next fetch for 
instruction refetch. 
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(3) I f  no service request is pending, then next 
fetch is overlapped (-2 pcycles/-0.340 ps 
from next fetch); otherwise, subtract 1 
pcycle (-0.170 p s )  from execute. 

(4) For DMO: SMO subtracts memory write 
(-0.830 ps). SMI-7 subtracts 1 pcycle and 
memory write (-1 .OOO ps). 

( 5 )  DMO subtracts 1 pcycle (-0.170 ps). 
(6) DMO subtracts 1 pcycle and memory write 

(7) D M O  subtracts 2 pcycles and memory 
write (-1 .I70 ps). 

(8) DMI-7 and byte addressing adds 1 pcycle 
(+O. 170 ps). 

(9) DM1-7 and byte addressing adds 3 pcycles 
(+OS10 ps). 

(A) DM3, 5-7 adds 1 pcycle (+0.170 ps). 
( B )  SM1-7, DMO, and word addressing adds 1 

(C) SMO, DM1-7, and byte addressing adds 1 

(D) SMO adds 1 pcycle (+0.170 ps). 
(E) I f  new PC odd: Microcontrol transfers to 

writable control store if present and in- 
struction timing does not apply; otherwise, 
trap sequence continues normally with 3 
extra pcycles (+OS10 ps). 

(-1 .ooo ps). 

pcycle (+0.170 ps). 

pcycle (+O. 170 ps). 

Accessing the following internal addresses in- 
vokes microcode which adds additional micro- 
cycles in all phases: 

772300-16 Kernel Page Descriptor 
Registers 

772340-56 Kernel Page Address Regis- 
ters 

777540 Writable Control Store Sta- 
tus Register 

777542 

777544 

777570 

717572 

777574 

777576 

777600- I6 

777640-56 

777744 

777746 
777752 
777766 
777770 

777774 
777776 

Writable Control Store Ad- 
dress Register 
Writable Control  Store 
Data Register 
Console Switch and Display 
Register 
Memory Management Sta- 
tus Register 0 
Memory Management Sta- 
tus Register 1 
Memory Management Sta- 
tus Register 2 
User Page Descriptor Reg- 
isters 
User Page Address Regis- 
ters 
Memory System Error Reg- 
ister 
Cache Control Register 
Cache Hit/Miss Register 
CPU Error Register 
Microprogram Break Reg- 
ister 
Stack Limit Register 
Processor Status Word 

Times Assumed for All  Calculations: 

( I )  Microcycle time is 0. I70 p s .  
(2) Microcycle time is extended by 0.000 ps 

during DATI/DATIP with cache hit (all 
tabulated times assume cache hit on read). 

(3) Microcycle time is extended by 1.075 ps 
during DATI/DATIP with cache miss. 

(4) Microcycle time is extended by 0.830 ps 
during DATO/DATOB. 

( 5 )  Memory Management unit adds no delay 
when enabled. 
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Turning Cousins into Sisters: 
An Example of Software Smoothing 

of Hardware Differences 
RONALD F. BRENDER 

INTRODU CTlON 

I n  1970, the PDP-II was Digital Equipment 
Corporation’s newly announced minicomputer 
and its first offering in the 16-bit world. Among 
the many software components needed to com- 
plement the hardware, a FORTRAN system 
was high on the list. A FORTRAN project was 
begun in 1970 and the first release of the result- 
ing product took place in mid-1971. In the suc- 
ceeding years, the number of PDP-11 CPUs and 
related options increased dramatically to pro- 
vide a wide range of price/performance alterna- 
tives. What makes the original FORTRAN 
interesting, even today, is the extent to  which 
the basic implementation approach was able to  
be extended gracefully to span the entire family 
with modest incremental effort. 

This paper describes the design concepts, 
threaded code and a FORTRAN virtual ma- 
chine, used to implement the original PDP-1 l 
FORTRAN product. As the PDP-I 1 family of 
processors expanded with new models and op- 
tions, these original design concepts proved 
both stable enough and flexible enough to be 
employed successfully across the entire family. 

When this FORTRAN was finally super- 
seded in early 1975, it had two successors. One, 
called FORTRAN IV, continued the threaded 
code and virtual machine concepts of the earlier 
product with similar execution performance 
across the PDP-1 I family, but offered much fas- 
ter compilation rates in smaller memory. The 
other successor, called FORTRAN IV-PLUS, 
produced direct PDP-11 code and obtained sig- 
nificantly improved execution performance for 
the PDP-I 1/45, PDP-l1/70, and PDP-I 1/60 
with FPl1  floating-point hardware relative to  
both of the other FORTRANs. 

In the Beginning 
The PDP-11/20 was a significant advance 

over other minicomputers of its time, but was a 
bare machine architecture by today’s standards. 
There was no floating-point hardware of any 
kind (even as an option) and integer multiply 
and divide operations were available only by 
means of an 1 / 0  bus option, the Extended 
Arithmetic Element (EAE). (The EAE also pro- 
vided multiple-bit arithmetic shift operations; 

365 
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the PDP- 1 1 /20 instructions provided only 
single-bit shifts.) 

The first disk-based operating system, DOS, 
was designed for a minimum standard system 
that included 8 Kwords (I6 Kbytes) of memory. 
After allowing typically 2 Kwords for the resi- 
dent parts of the monitor, only 5 K to 6 K re- 
mained for other use. Consequently, size 
constraints played a major role in the FOR- 
TRAN system design and implementation. 

There were not many competitors at  the time, 
but at least one, the IBM 1130, offered a disk- 
based operating system and FORTRAN sys- 
tem. To meet this competition, an important 
goal was to deliver the PDP-11 FORTRAN sys- 
tem to the market as quickly as possible, even at 
the cost of performance, if necessary. 

Neither Compiler nor Interpreter, but 
Threaded Code 

The fundamental design strategy to be deter- 
mined was the structure of  the executing code, 
the “run-time environment” [DEC, 1974b; 
DEC, 1974~1. 

We were leery of a compiler that generated 
direct machine code primarily because of the 
size of compiled code. Much of the compiled 
code would necessarily consist of calls to float- 
ing-point and other support routines, and on 
the PDP-1 I ,  each subroutine call required two 
words of memory, not counting argument 
transmission. 

An interpreter would easily solve the space 
problem, but this had its own disadvantages. 
The basic interpreter loop overhead was a con- 
cern, but not crucial at that stage in our deliber- 

ations. However, a disadvantage of interpreters 
is that they must be “always present” even 
though not all of the capabilities are being used. 
For example, routines for complex arithmetic 
are part of the interpreter even though the par- 
ticular program in use does not perform com- 
plex arithmetic. Further, we wanted to maintain 
the traditional FORTRAN features of inde- 
pendent compilation and linking of routines, 
and easy writing of routines in assembler for in- 
clusion in the program. 

The solution was threaded code [Bell, J., 
19731. Threaded code is a kind of combination 
of an interpreter and compiled code with most 
of the best features of each. On the PDP-11 it 
works in the following way. 

The “compiled code” consists simply of a se- 
quence of service routine addresses. A single 
register (we used R4) is chosen to contain a 
pointer to the next address in the sequence to be 
invoked. Each service routine completes by 
transferring control to the next routine in  the 
sequence and simultaneously advancing the 
pointer. 

To  illustrate, consider a service routine whose 
purpose is to perform floating-point addition of 
two real values found in a stack (we used R6, 
the hardware stack pointer, for the value stack) 
and leave the result on the top of the stack in 
place of the parameters. The service routine 
would look like the following.* 

$ADR: <<code for floating point add> > 
JMP @(R4)+ 

The JMP instruction with deferred auto- 
increment addressing mode provides just the 

*The brackets << and  >> a re  used in examples in place of code to  indicate the purpose of code that  is t oo  bulky and /o r  not 
relevant for the example. 

In  the PDP-I 1 M A C R O  assembler language [DEC, 19761, identifiers may consist of up to  six characters from among the 
letters, numerals,  “.” and “$’. Identifiers created by the F O R T R A N  compiler include either a period or dollar sign to 
assure that  they a re  distinct from F O R T R A N  language identifiers. 

In the PDP-I 1 M A C R O  assembler language, a colon follows a label and  separates the label from assembler instructions. 
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combination needed to  sequence through the 
table of addresses. It is a single one-word in- 
struction. 

The instruction corresponds to the basic loop 
of an interpreter. Consequently, there is no cen- 
tralized interpreter: the interpreter is distributed 
throughout every one of the service routines. 

Arguments to a service routine can also be 
placed in-line following the routine address. 
The routine picks up the arguments using the 
pointer register, each time advancing the 
pointer for the next use. For this, both the auto- 
increment and deferred auto-increment ad- 
dressing modes are ideal. 

For example, the following service routine 
copies onto the stack the value of an integer 
variable whose address follows the call: 

$PUSHV: MOV @(R4)+, -(SP) 
JMP @(R4)+ 

Similarly, the following routine pops a value 
from the stack and stores it in the variable 
whose address follows the call: 

$POPV: MOV (SP)+,@(R4)+ 
JMP @(R4)+ 

Using the two primitives $PUSHV and 
$POPV, the FORTRAN assignment statement: 

I = J  

can be implemented by “compiling” code as 
follows:* 

$PUSHV 
J 
$POPV 
I 

; Address of $PUSHV routine 
: Address of storage for J 
; Address of $POPV routine 
: Address of storage for I 

The principal disadvantage of a normal inter- 
preter is avoided by representing the address of 
a service routine in symbolic fashion as the 
name of a module to be obtained from a library 
of routines. Only those routines that are ac- 
tually referred to are included in the program 
when it is linked for execution. 

We complete this introduction by briefly il- 
lustrating how flow of control and changing 
modes is accomplished. 

A simple transfer of control, e.g., the FOR- 
TRAN statement: 

GOTO 100 

can be compiled to: 

$GOTO,. 100 

using the service routine: 

$GOTO: MOV (R4),R4 
JMP @(R4)+ 

The implementation of the FORTRAN- 
computed GOTO statement is illustrated in 
Figure 1. Notice that the count of the number 
of labels is included in the arguments to the ser- 
vice routine. The service routine checks that the 
index value is in  the correct range: if it is not, an 
error is reported and control continues in-line 
(no transfer takes place). In this example, regis- 
ter 1 (Rl)  is used as a temporary location within 
the service routine. 

To enter threaded code mode when executing 
normal code, the following call is executed: 

JSR R4,$POLSH 

*In subsequent examples, the arguments of a service routine will be written on the same line as the routine address. Thus, the 
above would appear as: 

$PU SHV,J 
$POPV, I 

This is more compact and suggestive of conventional assembler notations; the effect is identical to the previous example, 
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FORTRAN SOURCE 

GOTO I1 00 200 3001 I 
1 0 0  
200 
300 

THREADED CODE 

SCGOTO I 3  100 200 300 
loo 
200 
300 

COMPUTED GOTO SERVICE ROUTINE 

SCGOTO M O V  
BLE 
C M P  
BGT 
ASL 
A 0 0  
M O V  
J M P  

@ l R 4 l f . R 1  , Fetch  v a l u ~  of index 
1 s  ; Error i f  less or equa l  zero 
R l . l R 4 1  , C o m p a r e  w i t h  label  count 
l $  ; Error if greater 
R1 ; * 2  lor w o r d  of fset  
R 1 .R4 ; Pointer t o  target lebsl 
IR4l .R4 . Fetch  target  label  
@ l R 4 l +  ; C o n t i n u e .  . 

1 s  ERROR " C o m p u t e d  GOTO va lue  out  of bounds" 
M O V  IR4 l+ .R1  ; Fetch  label count,  adjust R 4  
ASL R1 ; * 2 for word ol f *e1  
ADD R l . R 4  . Pointer t o  next  i n  l ine  
J M P  @IR41+ , C o n t i n u e .  . . 

Figure 1 Threaded code for FORTRAN-computed 
GOTO statement. 

Threaded mode begins immediately follow- 
ing this call. The service routine is: 

$POLSH: MOV (SP)+,R4 
J M P  @(R4)+ 

Leaving threaded mode requires no service 
routine at all; the operator is simply the address 
of the immediately following word of memory. 

A Virtual Machine 

By now it should be apparent that we have 
the beginning of a FORTRAN virtual machine. 
Instructions in this machine language are en- 
coded as the addresses of the service routines. 
The PDP-11 instruction set provides the 
pseudo-microinstruction set used to emulate the 
FORTRAN machine. Register 4 (R4) is the vir- 
tual program counter. 

For a complete characterization of a virtual 
machine, it is necessary to identify the complete 
state of the machine, that is, all of the values 
that must be preserved in order to interrupt the 

execution of the machine, apply the machine to  
another purpose, and later resume the original 
execution as though the interruption had not 
occurred. In  this sense, the state clearly includes 
the stack pointer (SP) register and the program 
counter (R4) register as well as the memory re- 
gions occupied by the program, variables, and 
values on the stack. In the actual implementa- 
tion, some virtual machine instructions also left 
values in general register 0 (RO) or in the pro- 
cessor condition codes for use by the sub- 
sequent virtual machine instruction. Thus, these 
values must also be considered part of the vir- 
tual machine state. However, the remaining 
general registers of the PDP-11 are not part of 
the state even though they are used freely by 
individual instructions to  hold temporary val- 
ues during the execution of a single virtual in- 
struction, as illustrated in Figure 1.  

This FORTRAN machine went through two 
phases of development. In  the first phase, the 
virtual machine specification did not change; 
rather, the implementation was broadened to  
take advantage of newer models of the PDP-I 1 
family. Increased performance was achieved 
through improved performance of the new 
CPU and the floating-point hardware options. 
In the second phase, the virtual machine specifi- 
cation itself was extended to  achieve greater 
performance across all of the PDP-11 family 
processors. 

FORTRAN MACHINE - PHASE 1 

The introduction described the basic tech- 
nique, threaded code, by which it was possible 
to produce a FORTRAN processor for the first 
PDP-11 processor, the PDP-I 1/20. This section 
focuses on the design of the FORTRAN virtual 
machine proper and how it was implemented 
across the range of PDP-1 1 CPUs. 

The major part of the FORTRAN virtual 
machine was relatively ad hoc in form, more or 
less closely following the form of the FOR- 
TRAN language. The previous example of the 
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computed G O T 0  statement is representative of 
the approaches taken. This correspondence be- 
tween the language and the virtual machine 
greatly simplified the compiler. Variations in 
the order of arguments and/or the introductioa 
of extra arguments (such as the label list count) 
were made to aid the speed and/or the error 
checking capability of the supporting service 
routines. 

One part of the machine had a more regular 
structure - assignment statements and expres- 
sion evaluation. We will focus our attention on 
this part of the machine because this is where 
the majority of FORTRAN execution time is 
spent. 

Many details of the machine are easily 
sketched. It was a stack-oriented machine - val- 
ues were pushed onto the stack, and operators 
took their operands from the stack and replaced 
them with the result. The hardware stack 
pointer (SP) was used to control the value stack. 
Consideration was given to using the PDP-11 
general registers as fast top-of-stack locations. 
However, this was rejected because it violated 
the inherent simplicity of the pure stack model 
and because analysis showed that the extra 
overhead of managing these locations sub- 
stantially eliminated any benefits. 

Naming conventions were adopted for the 
operators as a mnemonic convenience. The 
arithmetic operators were named as illustrated 
in  Figure 2. For example, $ADR designated the 
routine to add two single-precision (real) oper- 
ands, while $ADC designated the routine to 
add two complex operands, and so on. 

Throughout this design process the size of the 
generated code continued to be the most impor- 
tant factor. This led to the most unusual aspect 
of the machine design. 

To push a value onto the stack required two 
words: one for the push instruction and one for 

F O R M  $501 

WHERE o = AD For addit ion 
= 58 For subtract ion 
= M L  For mUltipliCatiOn 
= DV For division 
= PW For exponent ia t ion (raising to a p o w e r )  

t = B For byte  d a t a  
= L Far logical data  
= I For integer data  
= R For real data  
= D For double-precis ion d a t a  
= c For complex  data  

NOTE 
"SPW" has a 2 - le t te r  suffix T h e  first indicates t h e  base d a t a - t y p e .  

t h e  second t h e  exponent  d a t a - t y p e  

Figure 2. FORTRAN Phase  1 arithmetic instructions.  

the address of the variable. To reduce this to a 
single word, the compiler produced a service 
routine for each variable that would push the 
value of the variable onto the stack. Such a rou- 
tine was called a push routine. In this way, the 
compiler reduced the size of the compiled code 
by producing specialized service routines that 
complemented the general service routines ob- 
tained from the FORTRAN library. 

For example, the push routine for an integer 
variable, I ,  would be: 

$P.I: MOV I,-(SP) 
JMP @(R4)+ 

The push routine for a complex variable, C ,  
would be:* 

$P.C: MOV #C+8,RO 
MOV -( RO),-(SP) 
MOV -(RO),-(SP) 
MOV -(RO),-(SP) 
MOV -( RO),-(SP) 
JMP @(R$)+ 

Of course, each push routine itself took 
space: three words for an integer variable and 
five words for a real variable. Consequently, the 

*Note that  since the stack of the PDP-11 grows downward in memory, values must be copied from high address toward low 
address to obtain a correct copy on  the stack. 
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breakeven point was three uses for an integer 
variable and five uses for a real variable. 

Three uses of an integer variable were 
deemed likely to  be achieved in most programs, 
especially in larger and more complex programs 
where space would be most critical. The five 
uses for a real variable were reduced by some 
complex merging of code for multiple push rou- 
tines for real, complex, and double-precision 
variables. The compiler also maintained a bit in 
the symbol table entry for each variable in- 
dicating that a push routine was actually 
needed. (It is fairly common for a particular 
subroutine to reference only a few variables out 
of a large COMMON block.) 

Pop routines for each variable were also con- 
sidered, but rejected. There are typically more 
uses of a variable’s value than assignments of 
new values. Consequently, the breakeven point 
is less likely to  be consistently achieved. In- 
stead, general pop routines for each data-type 
(actually, each size of data value - 1, 2,4,  or 8 
bytes) were used. 

Figure 3 presents a complete example of the 
compiled code produced by the compiler for 
two sample assignment statements. The figure 
includes push routines automatically generated 
by the compiler, as well as the allocation of 
storage for the variables of the program. All 
service routines not shown are obtained from 
the FORTRAN library when the program is 
linked for execution. 

It should be apparent from this figure that 
the compiled code corresponds to the well- 
known Polish postfix notation, which is a re- 
arrangement of expression information suitable 
for stack evaluation disciplines. 

The Virtual Machine Across the PDP-11 
Family 

Even as the FORTRAN system was in its 
early development phase, new models of the 
PDP-I 1 family were under development by the 

hardware groups. The next in line was the PDP- 
11/45 with a floating-point hardware option. 
How could the software development group 
that had just produced a FORTRAN tailored 
for an 8 K PDP-11/20 without even integer 
rnultiply/divide instructions respond with an- 
other FORTRAN for the high-performance 

FORTRAN SOURCE 

K = K t l  
X2= IA- IB . .2 -4 .A .C I I / IZ  .AI 

END 

THREADEOCOOE 

$START J S R  R~.SPOLSH 
I P  K 
SP 1 
SA01 
I P O P l  K 

SP A 
SP B 
SP 2 
SPWRl 
SP 4 
S P A  
SMLR 
SP c 
SMLR 
SSBR 
SSBR 
SP 2 
SP A 
SMLR 
SOVR 
SPOP2 > 

, P U S H  ROUTINES 

SP K 

SP 1 

S P A  

SP B 

SP 2 

SP 4 

SP c 

SP 2 
SF 

MOV 
J M P  
M O V  
J M P  
M O V  
BR 
M O V  
BR 
M O V  
J M P  
M O V  
BR 
M O V  
BR 
M O V  
M O V  
M O V  
J M P  

(2 

K.-lSPI 
@lR41+ 
#l.-lSPl 
@lR41t 
X A + ~ . R O  
I F  
#B+4.RO 
SF 
#2.-ISPl 
@lR41+ 
#sn 4 .RO 
I F  
#C+4,RO 
SF 
HSR 2+4 ,RO 

-lROl.-ISPl 
@lR41+ 

-inoi.-isw 

STORAGE ALLOCATION 

K BLKW 1 
A BLKW 2 
B BLKW 2 
SR 4 FLT2 4 
C BLKW 2 
SR 2 FLT2 2 

END SSTART 

, Push K 
, Push 1 
, Add integer giving K + 1 
, Pop to K 

, Push A 
, Push B 
: Push 2 
: B. .2  
, Push 4 
; Push A 
; 4 .A 
, Push C 
, 4 .A.C 
.B . .2 -4 .A .C  
, IA-IB.-2-4 .A.CII 
; Push 2 
: Push A 
, 2 .A 
, I  1/12 - A I  
: Pop IO x2 

, Shared code for pushing 
; the values of A. B. C and 
: the conslants 2. and 4. 

Figure 3. Example of code generation 
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PDP- 1 1 /45 with optional hardware floating 
point? Fortunately, the virtual FORTRAN ma- 
chine approach made it relatively easy. All that 
was needed was to re-implement the virtual ma- 
chine using the new and more extensive "micro- 
code." The compiler did not even have to be 
changed at all! How this was accomplished is 
discussed below. 

The PDP-I 1/20, with its EAE option, re- 
quired two implementations of the virtual ma- 
chine. The PDP-I 1/45 added two more: one for 
the floating-point option and another because it 
added instructions for integer multiply/divide 
and multiple bit shifting as part of the standard 
instruction set.* 

Later the PDP-I 1/40 added a fifth variation 
for its Floating Instruction Set (FIS) option.? 

By the time we were done, there were five ver- 
sions of the FORTRAN machine which corre- 
sponded to the family processors as follows: 

1 .  Basic 

2. EAE 

3. EIS 

4. FIS 

PDP-11/20, PDP-I1/40 

PDP-11/20 with EAE, PDP- 
11/40 with EAE 

Integer multiply/divide 

PDP-11/40 with EIS, PDP- 
11/45 

Integer multiply/divide 

PDP-11/40 with EIS and FIS 

Integer multiply/divide and 
single-precision floating point 

5. FP l l  PDP-11/45 with FPll  

Integer multiply/divide and 
single/double precision floating 
point 

Later processors (PDP- I 1 /70, 1 1 /60, 1 1 /34, 
1 1 /05, 1 1 /04, and LSI-I 1) have all matched one 
of these five categories. 

Figure 4 illustrates the general logical struc- 
ture of a typical floating-point service routine. 
As presented in this logically extreme form, it 
consisted of five completely independent imple- 
mentations. They were combined in a single 
source file to help manage and minimize the 
proliferation of files. (This also significantly 

IADR IF NDF EAE'EIS!FIS!FPP 
<<no option baric implsmsntafmn> > 
ENDC 

IF DF EAE 
<<EAE version>> 
ENDC 

IF  DF ElS 
<<EIS version>> 
ENDC 

IF DF FIS 
<<FIS version>> 
ENDC 

IF DF FPP 
<<FPP version>> 
ENDC 

END 

NOTE:  
In the  P D P - 1 1  MACRO assembler language. ."IF" in. 
traduces a sequence of statements ~ i n s t r ~ ~ f i ~ n s l  that 
are included in a given assembly only if a specified 
condition 15 slltiilied. The statament. " E N D C "  fermi- 
nates the sequence. Also. conditmnal sequences can 
be tasted within Other conditional sequences, as illus- 
trated en other figures. I n  this tigum. the condition. 
" D F  EAE" is satisfied if the name EAE has a defined 
value "DF EIS" is satisfied if E IS  9s defined. and Y) 

on The condition. " N D F  EAE!E IS!  ..." IS satisfied if 
none of the given mamar has a defined value. 

~ ~ 

Figure 4 
conditionallzed FORTRAN operator  routine 

General logical s t ructure  of 

*These Extended Instruction Set (EIS) operations were similar in function to  the capability of the EAE, but were an integral 
part of the instruction set instead of an 1 / 0  bus add-on. This was more efficient since the initialization necessary to  begin 
execution of these functions was less. 

t o n  the PDP-I I /40, the  EIS instructions were an option also 
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I S A D R  I F  N D F  F I S ' F P P  
<<haw mplernentation>> 

IF DF EAE 
<<EAE variation>, 
ENDC 

IF DF EIS 
<<EIS variation>> 
ENDC 

IF NDF EIS1EAE 

ENDC 
<<no DPtlD" YBr,at,o">, 

<<baric mplernentman>> 
ENDC NDF FISIFPP 

IF DF FIS 
F A D 0  SP 
JMP(a IR4 l f  
ENDC DF FIS 

IF DF FPP 
SETF 
LDF ISPI+ FO 
ADDF ISPI+ FO 
STF FO lSPl 
J M P  @lR41+ 
ENDC DFFPP 

END 

aided maintenance.) This one file would be as- 
sembled five times, each time with a different 
conditional assembly parameter, to produce the 
five different object files that implemented the 
same operation on the different systems. 

In practice, the separation of implementa- 
tions was not as complete as shown. Some in- 
structions, such as the computed GOTO, 
remained independent of the hardware con- 
figuration. Generally, the EIS and EAE ver- 
sions were localized variations of the basic (no 
option) implementation, while the F P l l  and 
FIS versions tended to be totally distinct. 

A more representative illustration of the kind 
of conditionalization used is shown in Figure 5. 
Notice that the conditional use of EIS or EAE 
operations is nested within an outer condi- 
tionalization for neither FIS nor FPl1. The FIS 
and FPI 1 versions are distinct. 

The FORTRAN Machine and the 
PDP-11/40 EIS 

Because of the incompatibility in operand ad- 
dressing capability between the FPI 1 and FIS, 
the FIS option of the PDP-11/40 seems at best 
an architectural curiosity and at worst an un- 
fathomable aberration. In a broader per- 
spective, however, it was an excellent 
compromise between goals and constraints for 
the combined hardware and software system at 
the time it  was introduced. 

The marketing requirement was simple. 
There must be at least a single-precision float- 
ing-point option for the PDP- 11/40 to maintain 
competitive FORTRAN performance and it 
must sell for no more than a given (relatively 
low) price. The cost constraint, combined with 
other engineering factors, precluded the imple- 
mentation of even a simple subset of the FPI 1 
instruction set. 

Consultation between the hardware and soft- 
ware engineers led to the resulting Floating In- 
struction Set. The FIS provided four single- 
precision floating-point instructions (add, sub- 

Figure 5 Partial detail of implementation of $ADR. 

tract, multiply, and divide) which corresponded 
exactly with the FORTRAN virtual machine 
requirements. As seen in Figure 5, the FIS ver- 
sion of the FORTRAN $ADR service routine 
consists of just two single-word instructions 
(compared to the F P l l  variant that occupies 
five words). 

The FIS option for the PDP-l1/40 accom- 
plished everything that it was supposed to ac- 
complish. 

FORTRAN MACHINE - PHASE 2 
While the FORTRAN product successfully 

"supported" the full range of the PDP-11 fam- 
ily, the design tradeoffs made for the original 
and low end of the family were not valid at the 
high end. Benchmark competition of FOR- 
TRAN on the PDP-I 1/45 with FPl I became 
significant even though the underlying hard- 
ware was the fastest available by clear margins. 
The reason is easy to understand. The FOR- 
TRAN virtual machine and its implementation 
did not fully exploit the hardware capability. 
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To illustrate, consider the execution of the 
statement, I = I + I ,  as shown in Figure 3. This 
statement compiled to five words of threaded 
code (not counting the overhead of service or 
push routines), and required 18 memory cycles 
to execute. I n  conrast, the single PDP-I I in- 
struction, INC I, would obtain the same effect 
with only two words of code and three memory 
cycles to execute. Similar overheads existed for 
floating-point operations. As shown in Figure 
5, the basic arithmetic operators had to copy 
their operands from the stack into the FPI 1 reg- 
isters to do the operation, and then immediately 
return the result to the stack. 

On the PDP-I 1/20, integer execution times of 
20 microseconds instead of 4 microseconds did 
not matter much when floating-point times 
where typically 300 to 1000 microseconds. 
However, with F P l l  times under I O  micro- 
seconds for these operations, the tradeoffs are 
much different. 

Since the existing compiler was based totally 
on the threaded code implementation, a com- 
plete new compiler that generated direct PDP- 
1 I code would be needed to fully exploit the 
hardware potential. I n  the meantime, some- 
thing was needed to immediately improve per- 
formance and relieve the competitive pressure. 

That something was provided, not by dis- 
carding threaded code, but by extending the 
FORTRAN virtual machine architecture. The 
extension devised was based on a combination 
of systematic and ad hoc pragmatic consid- 
erations. 

The primary considerations were to: 

Focus attention on operations for in- 
teger, real, and double-precision data- 
types. Logical and complex data-types 
do not occur frequently enough to merit 
much concern [Knuth, 19711. 

pression handling and assignment state- 
ments were well modularized in the 
implementation. 

Addressing Modes 

The principal concept that formed the basis 
of the extended machine was the recognition 
that operands could be in any of a number of 
locations and that arithmetic operators should 
be able to take operands from any of them and 
deliver the result to any of them, instead of just 
the stack. The principal locations identified 
were: 

The stack. 
In memory at an address given as a pa- 
rameter. 
In  memory at an address given in RO as a 
result of an array subscripting operation. 

Other “locations” were formalized for particu- 
lar groups of operators as will be seen later. 

Conceptually, these locations became ad- 
dressing modes associated with each operator. 
However, any kind of decoding of addressing 
modes during execution would destroy the per- 
formance objective. Consequently, each com- 
bination of operator and addressing modes was 
implemented by a unique threaded service rou- 
tine. 

At this point, a new consideration came into 
play. Not only would each routine take some 
memory, but the number of global symbols that 
must be handled by the  linking loader would 
rise dramatically. (The system linking loader 
maintained its global symbol table in free main 
memory; hence, the number of symbols that 
could be handled was limited by main memory 
size. Fortunately, the minimum system main 
memory requirement had independently in- 
creased from 8 Kwords to 12 Kwords; other- 

2 .  Limit the impact on the compiler to as wise, the approach would not have been 
small a portion as possible to limit the acceptable.) The above three modes for each of 
programming effort. Fortunately, ex- three operand locations for each of the four 
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BlJl SCCX4.J.0-4 

0111 SPCX4.4.0-4 

0151 s c c x o . s + 2 o  

A151 SKAXO.2O.SA A 

0 lMlZ l l  SCCXO.M+2 
SRCX4.0-4 

basic operations for each of the three important 
data-types required 3 * 3 * 3 * 4 * 3 or 324 new 
service routines. Care would be needed to keep 
this explosive cross-product in bounds. 

The memory size increase was offset by the 
fact that in many cases the push routines of a 
variable were no longer needed. This can be ap- 
preciated better by looking at some examples. 

The Extended Machine 

Figures 6 through 11  detail most of the ex- 
tended machine and give numerous sample 
code sequences. 

There were three principal groups of ex- 
tended operations dealing with one-dimen- 
sional array subscript calculation, arithmetic 
operations, and general data movement. Once 
again, naming conventions were used for mne- 
monic aids. Generally, the first two or three let- 
ters (after the "$") designated an addressing 
mode, the next letter designated the kind of op- 
eration and the final letter designated the data- 
type. For example, the $ADR routine used in 
previous figures acquired the name $SSSAR in 
this new scheme. 

As an example, consider the FORTRAN 
statement: 

I = J + K + L  

This would be compiled to: 

$CCSAI,J,K ; Add J,K and 

$SCCAI,L,I ; Add stack,L and 
; put result on stack 

; put result in I 

The PDP-I 1 code for these service routines is: 

$CCSAI: MOV @(R4)+,-(SP) 
ADD @(R4)+,@SP 
JMP @(R4)+ 

$SCCAI: ADD @(R4)+,@SP 
MOV (SP)+,@(R4)+ 
JMP @(R4)+ 

FORM SsbXz. sarg. barg 

WHERE s = C I f  rubscropt is i n  mem- 
ory Icorel and directly 
addressable 1i.e. not a 
parsmeter or array ele- 
m s n t l  

= R If subscript i s  pomted a t  
by R O  at executmn t m e  

= s  If subscript on erecu- 
t m n  stack 

= P  If wbscr Ip t  IS a parame- 
fer 

= G I f  subscript IS contents 
of R O  11.e.. results of 
func t ion  call) 

b = C If array 8s n o t  a parame- 
ter 

If array is a parameter = A  

I = 1.2.4.8 The array elemant size 
in bytes 

rarg = Argument  address 11 5 = C 
= 
= N o t  present o therw ise  

Argument  list offset it 5 = P 

barg = Array address minus element stze 
~ f h = C  .~ 

= Address of array descriptor block 
I A D B I  01 b = A 

SPECIAL CASES 

SCCXO. address 

1s generated w h e n  the subscript i o  a con- 
stant and the  array IS not a FORTRAN 
d u m m y  argument.  The l inal  address is 
computed a t  compi le  t fme and IS the argu- 
ment .  

SKAXO. sca led~constan t .  adb-address 

IS generated w h e n  the  subscript 85 a con- 
stant and the  array IS a FORTRAN d u m m y  
argument.  the Constant subscript IS con- 
verted t o  a byte  offset a t  compi le  t ime 

Figure 6. One-dimensional array 
subscripting instructions. 

Figure 7. Example of subscripting 
operations. 



FORM S l r d o t .  larg. rarg. darg 

Where 1 = C 

r = c  

= R  

= s  

= K  

d = C  

= R  

= s  

o = A  

= s  

= M  

= o  

t = 1  

= R  

= D  

larg. rag. darg 

If argument is in memory Icorel 
and direct ly addressable 18 e.. not 
a parameter or array element)  

If  argument is pointad 10 by RO 81 

B X B C U ~ ~ O ~  t i m e  It.. .. as the result 
of a rubscr ip t ing  operation1 

If argument IS contained on the 
execution stack ISPI 

If 0 Ider t inat ian l  IS C and IS the 
same argument 

I A s  above) 

( A s  above1 

( A s  above) 

If argument IS m core. directly ad- 
dressable. and an integer constant 
(I e., OpeElal ca*e of CI  

If m g Y m m t  is integar cOnrts"1 1 
1, e ,  special case of K I  

I A r  above1 

[ A s  above) 

I f  result 1s to be placed on execu- 
t ion stack 

For add i t ion  

For subtraction 

For mul t ip l icat ion 

For division 

For integer data 

For real data 

For double-orecision data 

= Argument address i f  addressing mode = C 

= 

= Not present otherwise 

Constant value 11 addressing mode = K 

Figure 8 Arithmetic instructions. 

ASSUME 

DIMENSION Ll lOl  

FORTRAN SOURCE 

A = B + C  

A = B + C.D 

l = J + 5  

1 = 1 - 5  

J = J + 1  

LIJ + 11 = J + 2  

I = Lll l  + 2 

COMPILED CODE 

3CCCAR.B.C.A 

SCCSMR.C.0 
3CSCAR.B.A 

SCKCAI.J.5.I 

SDKCSI.5.1 

SD1CAI.J 

SC1SAI.J 
SSCX2.L-2 
SCKRAI.J.2 

SCCX2.I.L-2 
SRKCAI.2.I 

Figure 9. Example of arithmetic 
operations. 
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Move i n s t r u c t i o n s  are t w o  address  i n s t r u c t i o n s  D a t a  o f  
any  t y p e  m a y  b e  m o v e d  

FORM SsdVt, Sarg. d a r g  

Where I = C 

= s  

= G  

= K  

= 1  

d = C  

= R  

t = B  

= L  

= I  

= R  

= D  

= c  

If a r g u m e n t  i s  in m e m o r y  Icarel 
a n d  d i r e c t l y  add ressab le  

I f  a r g u m e n t  add ress  m RO a t  exe-  
cution t i m e  

I f  a r g u m e n t  on s t a c k  

I f  a r g u m e n t  c o n t a i n e d  in RO-R3 
las result o f  f u n c t i o n  ca l l )  

I f  a r g u m e n t  i s  in teger  c o n s t a n t  

If a r g u m e n t  i s  in teger  c o n s t a n t  1 

(As a b o v e )  

(As a b o v e )  

For b y t e  d a t a  

For l o g i c a l  da ta  

For i n t e g e r  da ta  

For r e a l  d a t a  

For d o u b l e - p r e c i s i o n  d a t a  

For c o m p l e x  da ta  

sarg. d a r g  = A r g u m e n t  add ress  11 address  m o d e  = C 

= C o n s t a n t  value 11 address  m o d e  = K 

= Not present  o t h e r w i s e  

Figure 10 Move instructions. 

ASSUME 

D I M E N S I O N  ARRAY 1101 

FORTRAN SOURCE COMPILED CODE I A = B  SCCVR.S.A 

S1CVI.I 

SCCX4.J.ARRAY-4 
IRCVR.B 

ARRAY111 = A R R A Y I I + l )  SClSAI.1 
SSCX4,ARRAY-4 
I G E T 3  
SCCXO.ARRAV+O 
I S R V R  

Figure 1 1 .  
Instructions. 

Example of move 
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Notice that no push routines are needed for any 
of the variables. 

All subscripting operations resulted in the ad- 
dress of the array element being left in RO at 
execution time. Only one-dimensional arrays 
were handled. Two- and three-dimensional ar- 
rays continued to be handled as in the more 
general Phase 1 implementation. 

These forms can occur on both left- and 
right-handed sides of assignment statements. 

The arithmetic instructions are three address 
instructions, taking two arguments and putting 
the result in a designated place. These instruc- 
tions are limited to +, -, *, / on integer, real, 
and double-precision data. 

Ad Hoc Special Cases 

Within this general framework, a number of 
additional ad hoc addressing modes were in- 
corporated. 

For each of the arithmetic operators and each 
of the three data-types, the first operand ad- 
dressing mode could be given as D to designate 
that it was the same as the destination core ad- 
dress and the destination parameter was elimi- 
nated. This was not done for the second oper- 
and based on the simple observation that pro- 
grammers will almost always write assignments 
as: 

A = A +  . . .  

instead of: 

A = . . . + A  

This added 12 more service routines. 
For the integer operators only, the second 

operand could be given as K to  designate that it 
was a constant given as the parameter instead of 
the address of the value. This was not done for 
the first operand for reasons similar to the case 
above. 

For integer add and subtract operators only, 
the second operand could be given as 1 to desig- 
nate that it is the constant value 1 and no pa- 
rameter is present. This is simply a frequent 
special case of the previous use of K. 

By combining the above, the FORTRAN 
statement: 

K = K + I  

is compiled to: 

$D 1 CA1,K 

where the service routine is simply: 

$DICAI: INC @(R4)+ 
JMP @(R4)+ 

This code occupies two words and requires 
five memory cycles to execute. This is not quite 
as good as the two words and three cycles 
needed for direct PDP-11 code, but far better 
than the five words and 18 cycles required by 
the earlier implementation. 

General Results 

Execution improvement varied, of course, 
with the particular programs used. Over a large 
set of programs, the following guidelines were 
obtained. 

Programs that were floating-point in- 
tensive increased in speed by factors of 1.1 
to 1.6, with 1.3 being representative. 
Programs that were integer intensive in- 
creased in speed by factors of 1.4 to 2.4, 
with 2.0 being representative. (One partic- 
ularly simple benchmark increased in 
speed by a factor of 4!) 

Moreover, because of the reduced need for push 
routines, most programs increased in size by 
less than I O  percent. 
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The improvement for integer operations was 
better than for floating-point operations for 
several reasons. Integer operations were more 
easily “optimized” because they took place in 
the basic CPU general registers. The FPI 1 has a 
separate set of floating-point registers, and 
floating-point computations must be performed 
only in those registers. Also, the FPI 1 operates 
in either single-precision or double-precision 
mode depending on a status bit; the compiler 
implementation was not suitable for tracking 
the state of this bit and, hence, each floating- 
point operation continued to bear the overhead 
of reestablishing the state as needed by that op- 
eration. (This is the purpose of the SETF in- 
struction shown in Figure 5.) 

The performance improvements of the Phase 
2 system with its extended virtual machine were 
obtained with a design, development, and test- 
ing effort of about three man-months. For that 
effort, PDP-I 1 FORTRAN regained a strong 
competitive position that held reasonably well 
until  FORTRAN IV-PLUS, an optimizing 
PDP-I 1 code-generating system, replaced it 18 
months later (in early 1975). 

REAL MICROCODE AND THE FORTRAN 
MACH IN E 

Clearly, the FORTRAN virtual machine de- 
scribed above could be implemented in “real” 
microcode instead of the PDP-I 1 instruction 
set. This was considered during the design plan- 
ning for the PDP-I 1/60 which features a writ- 

able control store microprogramming option 
[DEC, 1977al. But, while the analysis showed 
that a significant improvement could be ob- 
tained, the result, at best, would be comparable 
to t h e  performance already achieved by the 
FORTRAN IV-PLUS product. Consequently, 
it was not done. 

The analysis proceeded along the following 
lines. Execution time was considered in three 
categories: instruction fetch and decode, oper- 
and fetch and/or store, and execution time 
proper. Since the analysis is a comparison of 
different FORTRAN implementations for a 
given machine, the basic execution times are as- 
sumed to be the same and neglected. The result- 
ing comparison, thus, shows the number of 
words of memory and the number of memory 
cycles for each implementation. 

For this presentation we shall consider the 
following two FORTRAN statements as rea- 
sonably representative of FORTRAN as a 
whole. 

I = J * K + L  
A(1) = B(J) + 4 

For these statements, the size and memory 
cycles are easily determined by examination of 
the code generated by FORTRAN and FOR- 
TRAN IV-PLUS, respectively. These values are 
shown in Table 1 .  

For the hypothesized micro-thread imple- 
mentation, the code size is unchanged from 
FORTRAN, while the memory cycle count is 

Table 1. 
Different Implementation Techniques 

Comparison of Size and T ime Requirements of Sample Statements w i th  

I = J * K + L  A(I) = B(J) + 4 

Technique 
~~ 

Size Time Size Time 

PDP-1 1 threads 6 words 2 0  cycles 9 words 38 cycles 
FORTRAN IV-PLUS 8 words 12 cycles 14 words 2 0  cycles 
M icro-threads 6 words 12 cycles 9 words 22 cycles 
Model 7 words 11 cycles 9 words 17 cycles 
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reduced by eliminating the instruction fetches 
that occur in the service routines. These results 
are also shown in the table. Comparison of the 
results shows that the micro-thread implemen- 
tation is faster (as expected), but also that its 
speed is no better than that of FORTRAN IV- 
PLUS. Could this be coincidence or is there rea- 
son to believe these results should be obtained? 

To answer this, we formulated a simple in- 
tuitive model for the expected size and speed of 
code on an idealized FORTRAN machine. To 
estimate the code size: 

Count one unit for each variable that is 
referenced (e.g., A(I) counts as two). 
Count one unit for each operation per- 
formed (e.g., assignment or subscripting 
are unit operations). 

To estimate the memory cycles for execution: 

Count one unit for each variable that is 
referenced. 
Count one unit for each operation per- 
formed. 
Count one, two, or four units for each 
value fetch or store operation depending 
on the size of the data. 

This very simple model is appropriate only 
for compilers that produce code based only on 
isolated source information, which is true of the 
original FORTRAN. Optimizing compilers, 
such as FORTRAN IV-PLUS, do better than 
suggested by this model by eliminating or sim- 
plifying operations (for example, by constant 
expression elimination or moving invariant 
computations out of loops, and/or by keeping 
values in registers instead of main memory, es- 
pecially across loops). Consequently, the model 
serves primarily as a relatively implementation- 
independent frame of reference for comparing 
alternative implementations. 

The sizes and cycle counts from this model 
for the sample statements are also shown in 
Table I .  These values are quite similar to  values 
for both the micro-thread and FORTRAN IV- 
PLUS implementations. 

We interpreted these results as a clear demon- 
stration that a micro-threaded implementation 
could not significantly outperform the existing 
FORTRAN IV-PLUS implementation. Fur- 
ther, effort expended for greater performance 
would be better directed toward improved opti- 
mization in FORTRAN IV-PLUS (which 
would benefit existing hardware products) or 
toward faster hardware per  se. * 

There is also a broader interpretation of the 
results that is worth reflection. The threaded 
implementation was designed to  be a good 
FORTRAN architecture. Yet, when imple- 
mented in microcode in a manner comparable 
with the host PDP-11 architecture, the perform- 
ance is close to that achieved by the FOR- 
TRAN IV-PLUS compiler and also close to  
that of an “ideal” model. One is led to speculate 
that the PDP-I 1 with FPl 1 is also a good FOR- 
TRAN architecture. 
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A computer is not solely determined by its 
architecture; it reflects the technological, eco- 
nomic, and organizational aspects of the envi- 
ronment in which it was designed and built. In 
the introductory chapters the nonarchitectural 
design factors were discussed: the availability 
and price of the basic electronic technology, the 
various government and industry rules and 
standards, the current and future market condi- 
tions, and the manufacturing process. 

In  this chapter one can see the result of the 
interaction of these various forces in the evolu- 
tion of the PDP-11. Twelve distinct models 

11/34C, 11/40, 11/45, 11/55,l1/60,11/70,and 
VAX-I 1/780) exist in 1978. 

The PDP-11 has been successful in the mar- 
ketplace: over 50,000 were sold in the first eight 
years that it was on the market (1970-1977). It 
is not clear how rigorous a test (aside from the 
marketplace) the design has been given, since a 
large and aggressive marketing organization, 
armed with software to correct architectural in- 
consistencies and omissions, can save almost 
any design. 

(LSI-11, PDP-11/04, 11/05, 11/20, 11/34, 

The Evolution of the PDP-11 
C. GORDON BELL and J. CRAIG MUDGE 

Many ideas from the PDP-11 have migrated 
to other computers with newer designs. Al- 
though some of the features of the PDP-I l are 
patented, machines have been made with sim- 
ilar bus and instruction set processor structures. 
Many computer designers have adopted a uni- 
fied data and address bus similar to the Unibus 
as their fundamental architectural component. 
Many microprocessor designs incorporate the 
PDP-I1 Unibus notion of mapping 1 / 0  and 
control registers into the memory address 
space, eliminating the need for 1 / 0  instructions 
without complicating the 1/0 control logic. 

I t  is the nature of computer engineering to be 
goal-oriented, with pressure to produce deliv- 
erable products. It is therefore difficult to plan 
for an extensive lifetime. Nevertheless, the 
PDP-II evolved rapidly over a much wider 
range than expected. An outline of a family 
plan was set forth in a memo on April 3, 1969, 
by Roger Cady, head of the PDP-11 engineer- 
ing group at the time (Table 1). The actual evo- 
lution is shown in tree form in Figure 1 and is 
mapped onto a cost/performance representa- 
tion in Figure 2. 
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Table 1. PDP-11 Family Projection as of April 3, 1969 

Software Logic Arithmetic Speed Price 
Model Processor Power Power ($K) Configuration Paper Tape Disk --I 

I 
rn 

2-3 

2.2 

2.2 

11/10 - 0.7 

K A l l  1 

K A l l  1 

0.7 4 

5.2 

9.3 

Technologically 
cost reduced 
11/20 w i th  Mos 

Pc, 1-Kbyte ROM, 
128 byte R/W 
turnkey console 

Pc, 8-Kbyte core, 
console, T T Y  

W 
0 
P 

11/20 

11/30 Assembler, editor, 
math ut i l i ty  
FOCAL, BASIC, 
ASA BASIC 
FORTRAN)*  

Possible 16-Kbyte 
FORTRAN IV 
improved 
assembler 

8-like monitor 
(system builder 
w/ODT, DDT, PIP)+ 

11/40 KB11 2. 10-20 1.2 13 Adds , 1 ,  normal- 
ize, etc. possible 
microprogrammed 
proceswr, no  EAE 
saves $1,000 

11/45 w i th  memory 
protect/relocate 
maximum core 262 
Kbyte, maximum 
physical memory 
(using disk)222 
bytes 

Adds hardware 
f loating point  
32-bit  processor. 
16-bit  memory 
(16 Kbyte) 

With memory 
protecthelocate 

FORTRAN I V  

11/45 K811 2' 10-20 1.2 15 

disk 
+ 

Super mon i to r * *  
65-Kbyte virtual 
memoryluser fo r  
either small or 
large disk 

11/50 KC1 1 2' 50-1 00 1.2 25 

11/55 

11/65 

KC1 1 2' 

KD11 4 

50- 1 00 

100-200 

1.2 27 
+ 
disk 

45 
t 
disk 

1.2 
32-bil 

32-bit  separate 
memory bus, 32-bit  
orocessor 

NOTES 
;If microprogrammed, then logical power could be tailored t o  user and go t o  20-50, 40-100 for  11/65. 

'Possible by-product of FOCAL. 
' *Supermonitor for  11/45, 11/55. 11/65 i s  pr ior i ty  multi-user real-time system. 

Business language system under consideration. 
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Figure 1 .  The PDP-1 1 Family t r ee  

70 12 15- 

Figure 2. PDP-1 1 models price versus  t ime with lines 
of cons tan t  performance. 

EVALUATION AGAINST THE ORIGINAL 
GOALS 

In the original 1970 PDP-11 paper (Chapter 
9), a set of design goals and constraints were 
given, beginning with a discussion of the weak- 
nesses frequently found in minicomputers. The 
designers of the PDP-11 faced each of these 
known minicomputer weaknesses, and their 
goals included a solution to each one. This sec- 
tion reviews the original goals, commenting on 
the success or failure of the PDP-11 in meeting 
each of them. 

The weaknesses of prior designs that were 
noted were limited addressability, a small num- 
ber of registers, absence of hardware stack facil- 
ities, limited interrupt structures, absence of 
byte string handling and read-only memory fa- 
cilities, elementary 1 / 0  processing, absence of 
growth-path family members, and high pro- 
gramming costs. 

The first weakness of minicomputers was 
their limited addressing capability. The biggest 
(and most common) mistake that can be made 
in a computer design is that of not providing 
enough address bits for memory addressing and 
management. The PDP-I 1 followed this hal- 
lowed tradition of skimping on address bits, but 
it was saved by the principle that a good design 
can evolve through at least one major change. 

For the PDP-11, the limited address problem 
was solved for the short run, but not with 
enough finesse to support a large family of 
minicomputers. That was indeed a costly over- 
sight, resulting in both redundant development 
and lost sales. It is extremely embarassing that 
the PDP-I 1 had to be redesigned with memory 
management* only two years after writing the 
paper that outlined the goal of providing in- 
creased address space. All earlier DEC designs 
suffered from the same problem, and only the 

* T h e  memory management served two other functions besides expanding the 16-bit processor-generated addresses into 18- 
bit Unibus addresses: program relocation and protection. 
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PDP-IO evolved over a long period (15 years) 
before a change occurred to  increase its address 
space. In retrospect, it is clear that another ad- 
dress bit is required every two or three years, 
since memory prices decline about 30 percent 
yearly, and users tend to buy constant price suc- 
cessor systems. 

A second weakness of minicomputers was 
their tendency to skimp on registers. This was 
corrected for the PDP-11 by providing eight 16- 
bit registers. Later, six 64-bit registers were 
added as the accumulators for floating-point 
arithmetic. This number seems to be adequate: 
there are enough registers to allocate two or 
three registers (beyond those already dedicated 
to program counter and stack pointer) for pro- 
gram global purposes and still have registers for 
local statement computation.* More registers 
would increase the context switch time and wor- 
sen the register allocation problem for the user. 

A third weakness of minicomputers was their 
lack of hardware stack capability. In the PDP- 
11, this was solved with the autoincre- 
ment/autodecrement addressing mechanism. 
This solution is unique to the PDP-11, has pro- 
ved to be exceptionally useful, and has been 
copied by other designers. The stack limit 
check, however, has not been widely used by 
DEC operating systems. 

A fourth weakness, limited interrupt capabil- 
ity and slow context switching, was essentially 
solved by the Unibus interrupt vector design. 
The basic mechanism is very fast, requiring only 
four memory cycles from the time an interrupt 
request is issued until the first instruction of the 
interrupt routine begins execution. Implemen- 
tations could go further and save the general 
registers, for example, in memory or in special 
registers. This was not specified in the archi- 
tecture and has not been done in any of the im- 
plementations t o  date.  VAX-11 provides 

explicit load and save process context instruc- 
tions. 

A fifth weakness of earlier minicomputers, 
inadequate character handling capability, was 
met in the PDP-11 by providing direct byte ad- 
dressing capability. String instructions were not 
provided in the hardware, but the common 
string operations (move, compare, concatenate) 
could be programmed with very short loops. 
Early benchmarks showed that this mechanism 
was adequate. However, as COBOL compilers 
have improved and as more understanding of 
operating systems string handling has been ob- 
tained, a need for a string instruction set was 
felt, and in 1977 such a set was added. 

A sixth weakness, the inability to use read- 
only memories as primary memory, was 
avoided in the PDP-I 1.  Most code written for 
the PDP-I 1 tends to be reentrant without spe- 
cial effort by the programmer, allowing a read- 
only memory (ROM) to be used directly. Read- 
only memories are used extensively for boot- 
strap loaders, program debuggers, and for 
simple functions. Because large read-only mem- 
ories were not available at the time of the origi- 
nal design, t he re  a r e  n o  a rch i t ec tu ra l  
components designed specifically with large 
ROMs in mind. 

A seventh weakness, one common to many 
minicomputers, was primitive 1 / 0  capabilities. 
The PDP-II answers this to a certain extent 
with its improved interrupt structure, but the 
completely general solution of 1 / 0  computers 
has not yet been implemented. The 1 / 0  proces- 
sor concept is used extensively in display pro- 
cessors, in communication processors, and in 
signal processing. Having a single machine in- 
struction that transmits a block of data at the 
interrupt level would decrease the central pro- 
cessor overhead per character by a factor of 3; it 

*Since dedicated registers are used for each Commercial Instruction Set (CIS) instruction, this was no longer t rue when C I S  
was added. 
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should have been added to  the PDP-I 1 instruc- 
tion set for implementation on all machines. 
Provision was made in the 11/60 for invocation 
of a micro-level interrupt service routine in 
writable control store (WCS), but the family ar- 
chitecture is yet to be extended in this direction. 

Another common minicomputer weakness 
was the lack of system range. If a user had a 
system running on a minicomputer and wanted 
to expand it or produce a cheaper turnkey ver- 
sion, he frequently had no recourse, since there 
were often no larger and smaller models with 
the same architecture. The PDP-11 has been 
very successful in meeting this goal. 

A ninth weakness of minicomputers was the 
high cost of programming caused by program- 
ming in lower level languages. Many users pro- 
grammed in assembly language, without the 
comfortable environment of high-level lan- 
guages, editors, file systems, and debuggers 
available on bigger systems. The PDP-II does 
not seem to have overcome this weakness, al- 
though it appears that more complex systems 
are being successfully built with the PDP-1 I 
than with its predecessors, the PDP-8 and the 
PDP-15. Some systems programming is done 
using higher level languages; however, the opti- 
mizing compiler for BLISS-11 at first ran only 
on the PDP-IO. The use of BLISS has been 
slowly gaining acceptance. It was first used in 
implementing the FORTRAN-IV PLUS (opti- 
mizing) compiler. Its use in PDP-IO and VAX- 
1 1  systems programming has been more wide- 
spread. 

One design constraint that turned out to be 
expensive, but worth it in the long run, was the 
necessity for the word length to be a multiple of 
eight bits. Previous DEC designs were oriented 
toward 6-bit characters, and DEC had a large 
investment in 12-, 18-, and 36-bit systems, as de- 
scribed in Parts I1 and V. 

Microprogrammability was not an explicit 
design goal, partially because fast, large, and in- 
expensive read-only memories were not avail- 
able at the time of the first implementation. All 

subsequent machines have been micro- 
programmed, but with some difficulty because 
some parts of the instruction set processor, such 
as condition code setting and instruction regis- 
ter decoding, are not ideally matched to micro- 
programmed control. 

The design goal of understandability seems to 
have received little attention. The PDP-I 1 was 
initially a hard machine to understand and was 
marketable only to those with extensive com- 
puter experience. The first programmers’ hand- 
book was not very helpful. It is still unclear 
whether a user without programming expe- 
rience can learn the machine solely from the 
handbook. Fortunately, several computer sci- 
ence textbooks [Gear, 1974; Eckhouse, 1975; 
Stone and Siewiorek, 19751 and other training 
books have been written based on the PDP-I 1 .  

Structural flexibility (modularity) for hard- 
ware configurations was an important goal. 
This succeeded beyond expectations and is dis- 
cussed extensively in the Unibus Cost and Per- 
formance section. 

EVOLUTION OF THE INSTRUCTION SET 
PROCESSOR 

Designing the instruction set processor level 
of a machine - that collection of characteristics 
such as the set of data operators, addressing 
modes, trap and interrupt sequences, register 
organization, and other features visible to a 
programmer of the bare machine - is an ex- 
tremely difficult problem. One has to consider 
the performance (and price) ranges of the ma- 
chine family as well as the intended appli- 
cations, and difficult tradeoffs must be made. 
For example, a wide performance range argues 
for different encodings over the range; for small 
systems a byte-oriented approach with small 
addresses is optimal, whereas larger systems re- 
quire more operation codes, more registers, and 
larger addresses. Thus, for larger machines, in- 
struction coding efficiency can be traded for 
performance. 
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The PDP-11 was originally conceived as a 
small machine, but over time its range was 
gradually extended so that there is now a factor 
of 500 in price ($500 to $250,000) and memory 
size (8  Kbytes to 4 Mbytes*) between the small- 
est and largest models. This range compares fa- 
vorably with the range of the IBM System 360 
family (16 Kbytes to 4 Mbytes). Needless to 
say, a number of problems have arisen as the 
basic design was extended. 

Chronology of the Extensions 

A chronology of the extensions is given in 
Table 2. Two major extensions, the memory 
management and the floating point, occurred 
with the 11/45. The most recent extension is the 
Commercial Instruction Set, which was defined 
to enhance performance for the character string 
and decimal arithmetic data-types of the com- 
mercial languages (e.g., COBOL). It introduced 
the following to the PDP-11 architecture: 

1.  Data-types representing character sets, 
character strings, packed decimal 
strings, and zoned decimal strings. 

2. Strings of variable length up to 65 Kcha- 
racters. 

3. Instructions for processing character 
strings in each data-type (move, add, 
subtract, multiply, divide). 

4. Instructions for converting among 
binary integers, packed decimal strings, 
and zoned decimal strings. 
Instructions to move the descriptors for 
the variable length strings. 

5 .  

The initial design did not have enough oper- 
ation code space to accommodate instructions 
for new data-types. Ideally, the complete set of 
operation codes should have been specified at 
initial design time so that extensions would fit. 

With this approach, the uninterpreted oper- 
ation codes could have been used to call the var- 
ious operation functions, such as a floating- 
point addition. This would have avoided the 
proliferation of run-time support systems for 
the various hardware/software floating-point 
arithmetic methods (Extended Arithmetic Ele- 
ment, Extended Instruction Set, Floating In- 
struction Set, Floating-point Processor). The 
extracode technique was used in the Atlas and 
Scientific Data Systems (SDS) designs, but 
these techniques are overlooked by most com- 
puter designers. Because the complete instruc- 
tion set processor (or at least an extension 
framework) was unspecified in the initial de- 
sign, completeness and orthogonality have been 
sacrificed. 

At the time the PDP-11/45 was designed, sev- 
eral operation code extension schemes were ex- 
amined: an escape mode to add the floating- 
point operations, bringing the PDP-11 back to 
being a more conventional general register ma- 
chine by reducing the number of addressing 
modes, and finally, typing the data by adding a 
global mode that could be switched to select 
floating point instead of byte operations for the 
same operation codes. The floating-point in- 
struction set, introduced with the 11/45, is a 
version of the second alternative. 

It also became necessary to do something 
about the small address space of the processor. 
The Unibus limits the physical memory to the 
262,144 bytes addressable by 18-bits. In the 
PDP- 1 1 /70, the physical address was extended 
to 4 Mbytes by providing a Unibus map so that 
devices in a 256 Kbyte Unibus space could 
transfer into the 4-Mbyte space via mapping 
registers. While the physical address limits are 
acceptable for both the Unibus and larger sys- 
tems, the address for a single program is still 
confined to an instantaneous space of 16 bits, 
the user virtual address. The main method of 

*Although 22 bits are used, only 2 megabytes can be utilized in  the 11/70 
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Table 2. Chronology of P D P - 1 1  Instruction 
Set  Processor ( ISP)  Evolution 

Model(s) Evolution 

11/20 

11/20 

11/45 
(1 1155.1 1/70. 
1 1 /60,1 1/34) 

11/45 
(1 1155.1 1/70) 

11/45 
(1 1/55,11/70) 

1 1 /40 
(1 1/03) 

1 1/40 
(1 1/34,1 1/60) 

11/70 

11/70 
(1 1 /60) 

11/03 
(1 1 /04.1 1 /34) 

11/03 

11/60 

VAX- 1 1 /780 

11/03 

1 1 l70mP 

Base ISP (16-bit virtual address) and 
PMS (1  6-bit  processor physical 
memory address) Unibus with 18-bit 
addressing 

Extended Arithmetic Element (hard- 
ware multiply/divide) 

Floating-point instruction set with 6 
additional registers (46 instructions) 
in the Floating-point Processor 

Memory management (KT1 1 C). 3 
modes of protection (Kernel, Super- 
visor, User): 18-bit processor phys- 
ical addressing: 16-b i t  vir tual 
addressing in 8 segments for both 
instruction and data spaces 

Extensions for second set of general 
registers and program interrupt 
request 

Extended Instruction Set for multi- 
ply/divide: floating-point instruction 
set (4 instructions) 

Memory Management (KT1 1 D). 2 
modes of protection (Kernel. User); 
18-bit processor physical address- 
ing: 16-bit virtual addressing in 8 
segments 

22-bit processor physical address- 
ing: Unibus map for peripheral con- 
troller 22-bit addressing 

Error register accessibility for on-line 
diagnosis and retry (e.g.. cache parity 
error) 

Program access to processor status 
register via explicit instruction (ver- 
sus Unibus address) 

One level program interrupt 

Extended Function Code for in- 
vocation of user-written microcode 

VAX architectural extensions for 32- 
bit virtual addressing: VAX ISP 

Commercial Instruction Set (CIS) 

lnterprocessor Interrupt and System 
Timers for multiprocessor 

dealing with relatively small addresses is via 
process-oriented operating systems that handle 
many small tasks. This is a trend in operating 
systems, especially for process control and 
transaction processing. It does, however, en- 
force a structuring discipline in (user) program 
organization. The RSX-11 series of operating 
systems for the PDP-11 are organized this way, 
and the need for large addresses is lessened. 

The initial memory management proposal to 
extend the virtual memory was predicated on 
dynamic, rather than static, assignment of 
memory segment registers. In the current mem- 
ory management scheme, the address registers 
are usually considered to be static for a task (al- 
though some operating systems provide func- 
tions to get additional segments dynamically). 

With dynamic assignment, a user can address 
a number of segment names, via a table, and 
directly load the appropriate segment registers. 
The segment registers act to concatenate addi- 
tional address bits in a base address fashion. 
There have been other schemes proposed that 
extend the addresses by extending the length of 
the general registers - of course, extended ad- 
dresses propagate throughout the design and in- 
clude double length address variables. In effect, 
the extended part is loaded with a base address. 

With larger machines and process-oriented 
operating systems, the context switching time 
becomes an important performance factor. By 
providing additional registers for more pro- 
cesses, the time (overhead) to switch context 
from one process (task) to another can be re- 
duced. This option has not been used in the op- 
erating system implementations of the PDP-I 1s 
to date, although the 11/45 extensions included 
a second set of general registers. Various alter- 
natives have been suggested, and to accomplish 
this effectively requires additional operators to 
handle the many aspects of process scheduling. 
This extension appears to be relatively unim- 
portant since the range of computers coupled 
with networks tends to alleviate the need by in- 
creasing the real parallelism (as opposed to the 
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apparent parallelism) by having various inde- 
pendent processors work on the separate pro- 
cesses in parallel. The extensions of the PDP- 1 1 
for better control of 1 / 0  devices is clearly more 
important in terms of improved performance. 

Architecture Management 

In  retrospect, many of the problems associ- 
ated with PDP-11 evolution were due to the 
lack of an ongoing architecture management 
function. As can be seen from Table I ,  the no- 
tion of planned evolution was very strong at the 
beginning. However, a formal architecture con- 
trol function was not set up until early in 1974. 
In some sense this was already too late - the 
four PDP-11 models designed by that date 
(11/20,  11 /05 ,  1 1 / 4 0 ,  1 1 / 4 5 )  h a d  i n -  
compatibilities between them. The architecture 
control function since then has ensured that no 
further divergence (except in the LSI-I 1) took 
place in subsequent models, and in fact resulted 
in some convergence. At the time the Com- 
mercial Instruction Set was added, an archi- 
tecture extension framework was adopted. 
Insufficient encodings existed to provide a large 
number of additional instructions using the 
same encoding style (in the same space) as the 
basic PDP-1 I ,  Le., the operation code and oper- 
and specifier addressing mode specifiers within 
a single 16-bit word. An instruction extension 
framework was adopted which utilized a full 
word as the opcode, with operand addressing 
mode specifiers in succeeding instruction 
stream words along the lines of VAX-11. This 
architectural extension permits 5 12 additional 
opcodes, and instructions may have an unlim- 
ited number of operand addressing mode speci- 
fiers. The architecture control function also had 
to deal with the Unibus address space problem. 

With VAX- 1 I ,  architecture management has 
been in place since the beginning. A definition 

of the architecture was placed under formal 
change control well before the VAX-I 1/780 
was built, and both hardware and software en- 
gineering groups worked with the same docu- 
ment. Another significant difference is that an 
extension framework was defined in the original 
architecture. 

An Evaluation 

The criteria used to decide whether or not to  
include a particular capability in an instruction 
set are highly variable and border on the artis- 
tic.* Critics ask that the machine appear ele- 
gant, where elegance is a combined quality of 
instruction formats relating to mnemonic sig- 
nificance, operator/data-type completeness and 
orthogonality, and addressing consistency. 
Having completely general facilities (e.g., regis- 
ters) which are not context dependent assists i n  
minimizing the number of instruction types and 
in increasing understandability (and useful- 
ness). The authors feel that the PDP-11 has pro- 
vided this. 

At the time the Unibus was designed, it was 
felt that allowing 4 Kbytes of the address space 
for 1 / 0  control registers was more than enough. 
However, so many different devices have been 
interfaced to the bus over the years that it is no 
longer possible to assign unique addresses to  
every device. The architectural group has thus 
been saddled with the chore of device address 
bookkeeping. Many solutions have been pro- 
posed, but none was soon enough; as a result, 
they are all so costly that it is cheaper just to live 
with the problem and the attendant inconven- 
ience. 

Techniques for generating code by the human 
and compiler vary widely and thus affect in- 
struction set processor design. The PDP-11 pro- 
vides more addressing modes than nearly any 
other computer. The eight modes for source 

*Today one would use the S ,  M ,  and R measures and methodology defined in Appendix 3 .  
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and destination with dyadic operators provide 
what amounts to 64 possible ADD instructions. 
By associating the Program Counter and Stack 
Pointer registers with the modes, even more 
data accessing methods are provided. For ex- 
ample, 18 varieties of the MOVE instruction 
can be distinguished as the machine is used in 
two-address, general register, and stack ma- 
chine program forms. (There is a price for this 
generality - namely, fewer bits could have been 
used to encode the address modes that are ac- 
tually used most of the time.) 

How the PDP-11 Is Used 

In  general, the PDP-11 has been used mostly 
as a general register (i.e., memory to registers) 
machine. This can be seen by observing the use 
frequency from Strecker’s data (Chapter 14). In 
one case, it was observed that a user who pre- 
viously used a one-accumulator computer (e.g., 
PDP-8), continued to do so. A general register 
machine provides the greatest performance, and 
the cost (in terms of bits) is the same as when 
used as a stack machine. Some compilers, par- 
ticularly the early ones, are stack oriented since 
the code production is easier. In  principle, and 
with much care, a fast stack machine could be 
constructed. However, since most stack ma- 
chines use primary memory for the stack, there 
is a loss of performance even if the top of the 
stack is cached. While a stack is the natural 
(and necessary) structure to interpret the nested 
block structure languages, it does not neces- 
sarily follow that the interpretation of all state- 
ments should occur in the context of the stack. 
In particular, the predominance of register 
transfer statements are of the simple 2- and 3- 
address forms: 

D t S  

and 

Dl(index 1) tf(S2(index 2), S3(index 3)). 

These do not require the stack organization. 
In  effect, appropriate assignment allows a gen- 
eral register machine to be used as a stack ma- 
chine for most cases of expression evaluation. 
This has the advantage of providing temporary, 
random access to common subexpressions, a 
capability that is usually hard to exploit in  stack 
architectures. 

THE EVOLUTION OF THE PMS 
(MODULAR) STR UCTU R E  

The end product of the PDP-11 design is the 
computer itself, and in the evolution of the ar- 
chitecture one can see images of the evolution 
of ideas. In this section, the architectural evolu- 
tion is outlined, with a special emphasis on the 
Unibus. 

The Unibus is the architectural component 
that connects together all of the other major 
components. It is the vehicle over which data 
flow between pairs of components takes place. 
Its structure is described in Chapter 11. 

In general, the Unibus has met all expecta- 
tions. Several hundred types of memories and 
peripherals have been interfaced to it; it has be- 
come a standard architectural component of 
systems in the $3K to $100K price range (1975). 
The Unibus does limit the performance of the 
fastest machines and penalizes the lower per- 
formance machines with a higher cost. Recently 
it has become clear that the Unibus is adequate 
for large, high performance systems when a 
cache structure is used because the cache re- 
duces the traffic between primary memory and 
the central processor since about one-tenth of 
the memory references are outside the cache. 
For still larger systems, supplementary buses 
were added for central processor to primary 
memory and primary memory to secondary 
memory traffic. For very small systems like the 
LSI-11, a narrower bus was designed. 

The Unibus, as a standard, has provided an 
architectural component for easily configuring 
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systems. Any company, not just DEC, can eas- 
ily build components that interface to  the bus. 
Good buses make good engineering neighbors, 
since people can concentrate on structured de- 
sign. Indeed, the Unibus has created a second- 
ary industry providing alternative sources of 
supply for memories and peripherals. With the 
exception of the IBM 360 Multiplexer/Selector 
Bus, the Unibus is the most widely used com- 
puter interconnection standard. 

The Unibus has also turned out to be in- 
valuable as an “umbilical cord” for factory di- 
agnostic and checkout procedures. Although 
such a capability was not part of the original 
design, the Unibus is almost capable of con- 
trolling the system components (e.g., processor 
and memory) during factory checkout. Ideally, 
the scheme would let all registers be accessed 
during full operation. This is possible for all de- 
vices except the processor. By having all central 
processor registers available for reading and 
writing in the same way that they are available 
from the console switches, a second system can 
fully monitor the computer under test. 

I n  most recent PDP-1 I models, a serial com- 
munications line, called the ASCII Console, is 
connected to the console, so that a program 
may remotely examine or change any informa- 
tion that a human operator could examine or 
change from the front panel, even when the sys- 
tem is not running. In this way computers can 
be diagnosed from a remote site. 

Difficulties with the Design 

The Unibus design is not without problems. 
Although two of the bus bits were set aside in 
the original design as parity bits, they have not 
been widely used as such. Memory parity was 
implemented directly in the memory; this phe- 
nomenon is a good example of the sorts of 
problems encountered in engineering optimiza- 
tion. The trading of bus parity for memory par- 
ity exchanged higher hardware cost and 
decreased performance for decreased service 

cost and better data integrity. Because engineers 
are usually judged on how well they achieve 
production cost goals, parity transmission is an 
obvious choice to pare from a design, since it 
increases the cost and decreases the perform- 
ance. As logic costs decrease and pressure to in- 
clude warranty costs as part of the product 
design cost increases, the decision to transmit 
parity may be reconsidered. 

Early attempts to build tightly coupled multi- 
processor or multicomputer structures (by map- 
ping the address space of one Unibus onto the 
memory of another), called Unibus windows, 
were beset with a logic deadlock problem. The 
Unibus design does not allow more than one 
master at a time. Successful multiprocessors re- 
quired much more sophisticated sharing mecha- 
nisms such as shared primary memory. 

Unibus Cost and Performance 

Although performance is always a design 
goal, so is low cost; the two goals conflict 
directly. The Unibus has turned out to be nearly 
optimum over a wide range of products. It 
served as an adequate memory-processor inter- 
connect for six of the ten models. However, in 
the smallest system, DEC introduced the LSI- 
11 Bus, which uses about half the number of 
conductors. For the largest systems, a separate 
32-bit data path is used between processor and 
memory, although the Unibus is still used for 
communication with the majority of the 1 /0  
controllers (the slower ones). Figure 1 summa- 
rizes the evolution of memory-processor inter- 
connections in the LSI-I1 Family.  Levy 
(Chapter 11) discusses the evolution in more de- 
tail. 

The bandwidth of the Unibus is approx- 
imately 1.7 megabytes per second or 850 K 
transfers/second. Only for the largest con- 
figurations, using many 1 / 0  devices with very 
high data rates, is this capacity exceeded. For 
most configurations, the demand put on an 1 / 0  
bus is limited by the rotational delay and head 
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positioning of disks and the rate at which pro- 
grams (user and system) issue 1/0 requests. 

An experiment to further the understanding 
of Unibus capacity and the demand placed 
against it was carried out. The experiment used 
a synthetic workload; like all synthetic work- 
loads, it can be challenged as not being repre- 
sentative. However, it was generally agreed that 
it was a heavy 1 /0  load. The load simulated 
transaction processing, swapping, and back- 
ground computing in the configuration shown 
in Figure 3.  The load was run on five systems, 
each placing a different demand on the Unibus. 

Each run produced two numbers: (1) the time 
to complete 2,000 transactions, and (2) the 
number of iterations of a program called 
HANOI that were completed. 

HANOILOOP 

TRANSACTION 
PROCESSING 

NO 1 

TRANSACTION 
PROCESSNG 

NO 2 

SWAPPING 

EXEC 

Benchmark Number of 
Time HANOI 

System (minutes)* Iterations 

11 /60 cache on 15 12 
1 1 /60 cache off 15 2 
1 1 /40 15 3 
1 1 /70 MBCBUS 15 23 
1 1 /70 Unibus 26 38 

* 2,000 transactions plus swapping plus HANOI. 

The results were interpreted as follows: 

1. 1 / 0  throughput. For this workload the 
Unibus bandwidth was adequate. For 
systems 1 through 4 the 1/0 activity 
took the same amount of time. 
11/70 Unibus. The run on this system 
(no use was made of the 32-bit wide pro- 
cessor/memory bus) took longer b e  
cause of the retries caused by data lates 
(approximately 19,000) on the moving 
head disk (RP04). The extra time taken 
for the benchmark allowed more itera- 
tions of HANOI to occur. The PDP- 

2. 

- - - - ---- _- - - 
BACKGROUND COMPUTATION IHANOI 
BENCHMARK LOOPING1 

--- ---- -- - - - 
1000 TRANSACTIONS 
EACH TRANSACTION INVOLVES B 
READS AND 2 WRITES ITOTAL OF 1064 
WORDS PER TRANSACTIONIAND 12 mr 
PROCESSING 

SWAP EVERY 100 "7% (ONE 15K WRITE 
ICKII. ONE 1OK READ ICK21. ONE 16K 
READ ICK11 

4 W W O R D  

R S X l l M  
MCR TASK SHF IS  LOADED PROM 
RK05 EVERY 100 "7% 

Figure 3. 
Unibus capacity. 

The synthetic workload used t o  measure 

11/70 Unibus had a bandwidth of about 
1 megabyte. It was less than the usual 
Unibus (about 1.7 megabyte) because of 
the map delay (100 nanoseconds), the 
cache cycle (240 nanoseconds), and the 
main memory bus redriving and syn- 
chronization. 
11/60 Cache. Systems 1 and 2 clearly 
show the effectiveness of a cache. Most 
memory references for HANOI were to 
the cache and  did not  involve the 
Unibus, which was the PDP-l1/6Os 1/0 
Bus. Systems 2 and 3 were essentially 
equivalent, as expected. There are two 
reasons for the 11/40 having slightly 
more compute bandwidth than an 11/60 
with its cache off. First, the 11/40 mem- 
ory is faster than the 11/60 backing 
store, and second, the 11/40 processor 
relinquishes the Unibus for a direct 
memory access cycle; the 11/60 proces- 
sor must request the Unibus for a pro- 
cessor cycle. 

3. 
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There are several attributes of a bus that af- 
fect its cost and performance. One factor affect- 
ing performance is simply the data rate of a 
single conductor. There is a direct tradeoff in- 
volving cost, performance, and reliability. 
Shannon [1948] gives a relationship between the 
fundamental signal bandwidth of a link and the 
error rate (signal-to-noise ratio) and data rate. 
The performance and cost of a bus are also af- 
fected by its length. Longer cables cost propor- 
tionately more, since they require more 
complex circuitry to drive the bus. 

Since a single-conductor link has a fixed data 
rate, the number of conductors affects the net 
speed of a bus. However, the cost of a bus is 
directly proportional to the number of con- 
ductors. For a given number of wires, time do- 
main multiplexing and data encoding can be 
used to trade performance and logic com- 
plexity. Since logic technology is advancing fas- 
ter than wiring technology, it seems likely that 
fewer conductors will be used in all future sys- 
tems, except where the performance penalty of 
time domain multiplexing is unacceptably 
great. 

If, during the original design of the Unibus, 
DEC designers could have foreseen the wide 
range of applications to which it would be ap- 
plied, its design would have been different. Indi- 
vidual controllers might have been reduced in 
complexity by more central control. For the 
largest and smallest systems, it would have been 
useful to have a bus that could be contracted or 
expanded by multiplexing or expanding the 
number of conductors. 

The cost-effectiveness of the Unibus is due in 
large part to the high correlation between mem- 
ory size, number of address bits, 1 / 0  traffic, 
and processor speed. Gene Amdahl’s rule of 
thumb for IBM computers is that 1 byte of 
memory and 1 byte/sec of 1 /0  are required for 
each instruction/sec. For traditional DEC ap- 
plications, with emphasis in  the scientific and 
control applications, there is more computation 
required per memory word. Further, the PDP- 
1 1  instruction sets do not contain the extensive 

commercial instructions (character strings) typ- 
ical of IBM computers, so a larger number of 
instructions must be executed to accomplish the 
same task. Hence, for DEC computers, it is bet- 
ter to assume 1 byte of memory for each 2 in- 
structions/sec, and that 1 byte/sec of 1 / 0  
occurs for each instruction/sec. 

In  the PDP-11, an average instruction ac- 
cesses 3-5 bytes of memory, so assuming 1 byte 
of 1 / 0  for each instruction/sec, there are 4-6 
bytes of memory accessed on the average for 
each instruction/sec. Therefore, a bus that can 
support 2 megabytes/sec of traffic permits in- 
struction execution rates of 0.33-0.5 mega-in- 
structions/sec. This implies memory sizes of 
0.16-0.25 megabytes, which matches well with 
the maximum allowable memory of 0.064-0.256 
megabytes. By using a cache memory on the 
processor, the effective memory processor rate 
can be increased to balance the system further. 
If  fast floating-point instructions were added to 
the instruction set, the balance might approach 
that used by IBM and thereby require more 
memory (an effect seen in the PDP-11/70). 

The task of 1/0 is to provide for the transfer 
of data from peripheral to primary memory 
where it can be operated on by a program in a 
processor. The peripherals are generally slow, 
inherently asynchronous, and more error-prone 
than the processors to which they are attached. 

Historically, 1 / 0  transfer mechanisms have 
evolved through the following four stages: 

1. Direct sequential 1/0 under central pro- 
cessor control. An instruction in the pro- 
cessor causes a data transfer to take 
place with a device. The processor does 
not resume operation until the transfer is 
complete. Typically, the device control 
may share the logic of the processor. The 
first input/output transfer (IOT) instruc- 
tion in the PDP-1 is an example; the IOT 
effects transfer between the Accumula- 
tor and a selected device. Direct 1 / 0  
simplifies programming because every 
operation is sequential. 
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2. Fixed buffer, I-instruction controllers. An 
instruction in the central processor 
causes a data transfer (of a word or vec- 
tor), but in this case, it is to a buffer of 
the simple controller and thus at a speed 
matching that of the processor. After the 
high speed transfer has occurred, the 
processor continues while an asynchro- 
nous, slower transfer occurs between the 
buffer and the device. Communication 
back to the processor is via the program 
interrupt mechanism. A single instruc- 
tion to a simple controller can also cause 
a complete block (vector) of data to be 
transmitted between memory and the pe- 
ripheral. In this case, the transfer takes 
place via the direct memory access 
(DMA) link. 

Separate 1/0 processors - the channel. 
An independent 1/0 processor with a 
unique ISP controls the flow of data be- 
tween primary memory and the periph- 
eral .  The structure is that  of the 
multiprocessor, and the 1 / 0  control pro- 
gram for the device is held in primary 
memory. The central processor informs 
the 1 / 0  processor about the 1 / 0  pro- 
gram location. 

1/0 computer. This mechanism is also 
asynchronous with the central processor, 
but the 1 / 0  computer has a private 
memory which holds the 1 / 0  program. 
Recently, DEC communications options 
have been built with embedded control 
programs. The first example of an 1 /0  
computer was in the CDC 6600 (1964). 

3. 

4. 

The authors believe that the single-instruc- 
tion controller is superior to the 1 /0  processor 
as embodied in the IBM Channel mainly be- 
cause the latter concept has not gone far 
enough. Channels are costly to implement, suf- 

ficiently complex to require their own program- 
ming environment, and yet not quite powerful 
enough to  assume the processing, such as file 
management, that one would like to offload 
from the processor. Although the 1 / 0  traffic 
does require central processor resources, the ad- 
dition of a second, general purpose central pro- 
cessor is more cost-effective than using a central 
processor-1/0 processor or central processor- 
multiple 1/0 processor structure. Future 1 / 0  
systems will be message-oriented, and the vari- 
ous 1/0 control functions (including diagnos- 
tics and file management) will migrate to the 
subsystem. When the 1 / 0  computer is an exact 
duplicate of the central processor, not only is 
there an economy from the reduced number of 
part types but also the same programming envi- 
ronment can be used for 1/0 software devel- 
opment and main program development. 
Notice that the 1 /0  computer must implement 
precisely the same set of functions as the proces- 
sor doing direct I/O.* 

M U LTI PROCESS0 RS 

It is not surprising that multiprocessors are 
used only in  highly specialized applications 
such as those requiring high reliability or high 
availability. One way to extend the range of a 
family and also provide more performance al- 
ternatives with fewer basic components is to 
build multiprocessors. In this section some fac- 
tors affecting the design and implementation of 
multiprocessors, and their effect on the PDP- 
1 I ,  are examined. 

It is the nature of engineering to be conserva- 
tive. Given that there are already a number of 
risks involved in bringing a product to the mar- 
ket, it is not clear why one should build a higher 
risk structure that may require a new way of 
programming. What has resulted is a sort of 
deadlock situation: people cannot learn how to 
program multiprocessors and employ them in a 

* T h e  1 / 0  computer is yet another  example of the wheel of reincarnation of display processors (see Chapter 7) 
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single task until such machines exist, but manu- 
facturers will not build the machine until they 
are sure that there will be a demand for it, i.e., 
that the programs will be ready. 

There is little or no market for multi- 
processors even though there is a need for in- 
creased reliability and availability of machines. 
IBM has not promoted multiprocessors in the 
marketplace, and hence the market has lagged. 

One reason that there is so little demand for 
multiprocessors is the widespread acceptance of 
the philosophy that a better single-processor 
system can always be built. This approach 
achieves performance at  the considerable ex- 
pense of spare parts, training, reliability, and 
flexibility. Although a multiprocessor archi- 
tecture provides a measure of reliability, 
backup, and system tunability unreachable on a 
conventional system, the biggest and fastest ma- 
chines are uniprocessors - except in the case of 
the Bell Laboratories Safeguard Computer [Bell 
Laboratories, 19751. 

Multiprocessor systems have been built out 
of PDP-11s. Figure 4 summarizes the design 
and performance of some of these machines. 
The topmost structure was built using 11/05 
processors, but because of inadequate arbi- 
tration techniques in the processor, the ex- 
pected performance did not materialize. Table 3 
shows the expected results for multiple 11 /05 
processors sharing a single Unibus and com- 
pares them with the PDP-11/40. 

From the results of Table 3 one would expect 
to use as many as three 11/05 processors to 
achieve the performance of a model 11/40. 
More than three processors will increase the 
performance at the expense of the cost-effec- 
tiveness. This basic structure has been applied 
on a production basis in the GT40 series of 
graphics processors for the PDP-11. In this 
scheme, a second display processor is added to 
the Unibus for display picture maintenance. A 
similar structure is used for connecting special 

q q  ... ... +- ... &i!.- ... 

(a) Multi-Pc structure using a single Unibus. 

(b) Pc with P.display using a single Unibus 

(c) Multiprocessor using multiport Mp. 

(d) C.mmp CMU multi-miniprocessor computer 
structure. 

Figure 4. PDP-11 multiprocessor PMS structures 

signal-processing computers to the Unibus al- 
though these structures are technically coupled 
computers rather than multiprocessors. 

As an independent check on the validity of 
this approach, a multiprocessor system has 
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Table 3. Multiple PDP-11/05 Processors Sharing a Single Unibus 
___ 

Number and Processor 
Processor Performance Processor System 
Model (Relative) Price Price*/Performance Price Pricet/Performance 

1-1 1/05 1 .oo 1 .oo 1 .oo 
2-1 1/05 1.85 1.23 0.66 
3-1 1/05 2.4 1.47 0.61 
1-1 1/40 2.25 1.35 0.60 

3.00 1 .oo 
3.23 0.58 
3.47 0.48 
3.35 0.49 

*Processor cost only 
?Total system cost assuming one-third of system is processor cost 

been built, based on the Lockheed SUE [Orns- 
tein et al., 19721. This machine, used as a high 
speed communications processor, is a hybrid 
design: it has seven dual-processor computers 
with each pair sharing a common bus as out- 
lined above. The seven pairs share two multi- 
port memories. 

The second type of structure given in Figure 4 
is a conventional, tightly coupled multi- 
processor using multiple-port memories. A 
number of these systems have been installed, 
and they operate quite effectively. However, 
they have only been used for specialized appli- 
cations because there has been no operating sys- 
tem support for the structure. 

PDP-11 Based Multiprocessor: Carnegie- 
Mellon University Research Computers 

The PDP-I 1 architecture has been employed 
to pioneer new ideas in the area of multi- 
processors. The three multiprocessors built at 
Carnegie-Mellon University (CMU) are dis- 
cussed: C.mmp [Wulf and Bell, 19721, a 16-pro- 
cessor multiprocessor; C.vmp [Siewiorek et al., 
19761, a triplicated, voting multiprocessor com- 
puter for high reliability; and Cm* (Chapter 
20), a set of computer modules based on LSI- 
11. 

The three CMU multiprocessors are good ex- 
amples of multiprocessor development direc- 

tions because it is quite likely that technology 
will force the evolution of computing structures 
to converge into three styles of multiprocessor 
computers: (1) C.mmp style, for high perform- 
ance, incremental performance, and availability 
(maintainability); (2) C.vmp style for very high 
availability motivated by increasing mainte- 
nance costs, and (3) loosely coupled computers 
like Cm* to handle specialized processing, e.g., 
front end, file, and signal processing. This argu- 
ment is based on history, present technology, 
and resulting price extrapolations: 

MOS technology appears to be increas- 
ing in both speed and density faster than 
the technology (such as ECL) from 
which high performance machines are 
usually built. 
Standards in the semiconductor industry 
tend to form more quickly for high vol- 
ume products. For example, in the 8-bit 
microcomputer market, one type sup- 
plies about 50 percent of the market and 
three types supply over 90 percent. 
The price per chip of the single MOS 
chip processors decreases at a sub- 
stantially greater rate than for the low 
volume, high performance special de- 
signs. Chips in both designs have high 
design costs, but the single-MOS-chip 
processors have a much higher volume. 
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4. Several 16-bit processor-on-a-chip pro- 
cessors, with an address space matching 
and appropriate data-types matching the 
performance, exist in 1978. Such a com- 
modity can form the basis for nearly all 
future computer designs. 
The performance (instructions per sec- 
ond) per chip, which is already greater 
for MOS processor chips than for any 
other kind, is improving more rapidly 
than for large scale computers. This will 
pull usage more rapidly into large arrays 
of processors because of the essentially 
“free cost” of processors (especially rela- 
tive to large, low volume custom-built 
machines). 

Therefore, most subsequent computers will 
be based on standard, high volume parts. For 
high performance machines, since processing 
power is available at essentially zero cost from 
processor-on-a-chip-based processors, large 
scale computing will come from arrays of pro- 
cessors, just as memory subsystems are built 
from arrays of 64 Kbit integrated circuits. 

The multiprocessor research projects at 
C M U  have emphasized synthesis and measure- 
ment. Operating systems have been built for 
them, and the executions of user programs have 
been carefully analyzed. All the multiprocessor 
interferences, overheads, and synchronization 
problems have been faced for several appli- 
cations; the resultant performance helps to put 
their actual costs in perspective. Figure 5 shows 
the HARPY speech recognition program and 
compares the performance of C.mmp and Cm* 
with three DEC uniprocessors (PDP-IO with 
KAlO processor, PDP-10 with KLlO processor, 

C.mmp 
C.mmp (Figure 6) a 16 processor ( 1  1/40s and 

1 1  /20s) system has 2.5 million words of shared 
primary memory. It was built to investigate the 
programming (and resulting performance) 
questions associated with having a large num- 

5 .  

and PDP- 1 1 /40). 

150 

0 1 l 1 l I I 1 i l  
1 2  3 4 5 6 7 8  9 1 0 1 1  

NUMBER OF PROCESSORS 

Figure 5 A performance comparison of two multi- 
processors C mmp and Cm‘. with three uniprocessors at 
Carnegie-Mellon University The application used is 
HARPY, a speech recognition program This graph is 
based on work done by Peter Oleinick 11 9781 and Peter 
Feller at CMU 

ber of processors. Since the time that the first 
paper [Wulf and Bell, 19721 was written, 
C.mmp has been the object of some interesting 
studies, the results of which are summarized be- 
low. 

C.mmp was motivated by the need for more 
computing power to solve speech recognition 
and signal processing problems and to under- 
stand the multiprocessor software problem. 
Until C.mmp, only one large, tightly coupled 
multiprocessor had been built - the Bell Labo- 
ratories Safeguard Computer [Bell Labora- 
tories, 19751. 

The original paper [Wulf and Bell, 19721 de- 
scribes the economic and technical factors in- 
fluencing multiprocessor feasibility and argues 
for the timeliness of the research. Various prob- 
lems to  be researched and a discussion of  par- 
ticular design aspects are given. For example, 
since C.mmp is predicated on a common oper- 
ating systems, there are two sources of degrada- 
tion: memory contention and lock contention. 
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The machine’s theoretical performance as a 
function of memory-processor interference is 
based on Strecker’s [1970] work. In practice, 
because the memory was not built with low-or- 
der address interleaving, memory interference 
was greater than expected. This problem was 
solved by having several copies of the program 
seg men t s . 

As the number of memory modules and pro- 
cessors becomes very large, the theoretical per- 
formance (as measured by the number of 
accesses to the memory by the processors) ap- 
proaches half the memory bandwidth (i.e., the 
number of memory modules memory cycle 
time) [Baskett and Smith, 19761. Thus, with in- 
finite processors, there is no maximum limit on 
performance, provided all processors are not 
contending for the same memory. 

Although there is a discussion in the original 
paper outlining the design direction of the oper- 
ating system, HYDRA, later descriptions 
should be read [Wulf et al., 197.51. Since the 
small address of the PDP-11 necessitated fre- 
quent map changes, PDP-I 1/40s with writable 
control stores were used to implement the oper- 
ating systems calls which change the segment 
base registers. 

There are three basic approaches to the effec- 
tive application of multiprocessors: 

1. System level workload decomposition. I f  
a workload contains a lot of inherently 
independent activities, e.g., compilation, 
editing, file processing, and numerical 
computation, it will naturally decom- 
pose. 
Program decomposition by a program- 
mer. Intimate knowledge of the appli- 
cation is required for this time- 
consuming approach. 

3. Program decomposition by the com- 
piler. This is the ideal approach. How- 
ever, results to  date have not been 
especially noteworthy. 

C m m p  was predicated on the first two ap- 
proaches. ALGOL 68, a language with facilities 

2. 

for expressing parallelism in programs, has 
since been implemented. It has assisted greatly 
with program decomposition and looks like a 
promising general approach. I t  is imperative, 
however, to extend the standard languages to  
handle vectors and arrays. 

The contention for shared resources in a mul- 
tiprocessor system occurs at  several levels. At 
the lowest level, processors contend at the 
cross-point switch level for memory. On a 
higher level there is contention for shared data 
in the operating system kernel; processes con- 
tend for 1 / 0  devices and for software processes, 
e.g., for memory management. At the user level 
shared data implies further contention. Table 4 
points to models on experimental data at these 
different levels. 

Marathe’s data show that the shared data of 
HYDRA is organized into enough separate ob- 
jects so that a very small degradation (less than 
1 percent) results from contention for these ob- 
jects. He also built a queueing model which 
projected that the contention level would be 
about 5 percent in a 48 processor system. 

Oleinick [I9781 has used C.mmp to conduct 
an experimental, as opposed to  theoretical, 
study of the implementation of parallel al- 
gorithms on a multiprocessor. He  studied the 
operation of Rootfinder, a program that is an 

Table 4. 
Content ion  at Each of Three Levels in the 
C.mmp System 

References for Experimental Data on 

Contention 
Level 

User-program 

HYDRA kernel 
objects 

Cross- point 
switch 

Reference 

Oleinick I 19781 
Fuller and Oleinick I 19761 

Marathe and Fuller 11977) 

Baskett and Smith [ 19761 
Fuller 119761 
Strecker I 19701 
Wulf and Bell 119721 
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extension of the bisection method for finding 
the roots of an equation. 

A natural decomposition of the binary search 
for a root into n parallel processes is to evaluate 
the function simultaneously at n points. Under 
ideal conditions, all processes would finish the 
function evaluation (required at each step) at 
the same time, and then some brief book- 
keeping would take place to determine the next 
subinterval for the n processes to work on. 
However, because the time to evaluate the func- 
tion is data dependent, some processes are com- 
pleted before others.  Moreover, i f  the  
bookkeeping task is time consuming relative to 
the time to evaluate the function, the speedup 
ratio will suffer. Oleinick systematically studied 
each source of fluctuation in performance and 
found the dominant one to be the mechanism 
used for process synchronization. 

Four different locks for process synchro- 
nization, called: (1) spin lock, (2) kernel sema- 
phore, (3) PMO, and (4) PM I ,  are available to 
the C.mmp user. The spin lock, the most rudi- 
mentary, does not cause an entry to the 
HYDRA operating system. It is a short se- 
quence of instructions which continually test a 
semaphore until it can be set successfully. The 
process of testing for the availability of a re- 
source, and seizing the resource if available, 
could be called TEST-AND-LOCK. When the 
resource is no longer needed, it is released by an 
UNLOCK process. These two processes are 
called the P operation and the I/ operation re- 
spectively, as originally named by Edgar Dij- 
kstra. The P and V operations in the C.mmp 
spin lock are in fact the following PDP-I 1 code 
sequences: 

P: CMP SEMAPHORE, 
# I  ;SEMAPHORE= I ?  
BNE P 
DEC SEMAPHORE ;Decrement SEMAPHORE 
BNE P 

V: MOV # 1 ,  SEMAPHORE ;Reset SEMAPHORE to 1 

;loop until it is 1 

;If  not equal 0 go to P 

Although this repeating polling is extremely 
fast, it has two major drawbacks: first, the pro- 

cessor is not free to do useful work; second, the 
polling process consumes memory cycles of the 
memory bank that contains the semaphore. 

The kernel semaphore, implemented i n  
HYDRA, is the low level synchronization 
mechanism intended to be used by system pro- 
cesses. When a process blocks or wakes up, a 
state change for that process is made inside the 
kernel of HYDRA. If a process blocks (fails to 
obtain a needed resource) while trying to P (test 
and lock) a semaphore, the kernel swaps the 
process from the processor, and the pages be- 
longing to that process are kept in primary 
memory. The other semaphore mechanisms 
(PMO and PM1) take proportionately more 
time (> 1 millisecond). 

C.vmp 

C.vmp, is a triplicated, voting multiprocessor 
designed to understand the difficulty (or ease) 
of using standard, off-the-shelf LSI-I 1s to pro- 
vide greatly increased reliability. There is con- 
cern for increased reliability because systems 
are becoming more complex, are used for more 
critical applications, and because maintenance 
costs for all systems are increasing. Because the 
designers themselves carry out and analyze the 
work, this section provides first-hand insight 
into high reliability designs and the design pro- 
cess - especially its evaluation. 

Several design goals were set and the work 
has been carried out. The C.vmp system has op- 
erated since late 1977, when the first phase of 
work was completed. 

The goal of software and hardware trans- 
parency turned out to be easier to attain than 
expected, because of an idiosyncrasy of the 
floppy disk controller. Because the controller 
effects a word-at-a-time bus transfer from a 
one-sector buffer, voting can be carried out at a 
very low level. It is unclear how the system 
would have been designed without this type of 
controller; at a minimum, some part of the soft- 
ware transparency goal would not have been 
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met, and a significant controller modification 
would have been necessary. 

A number of models are given by which the 
design is evaluated. From the discussion of 
component reliabilities the reader should get 
some insight into the factors contributing to  re- 
liability. It should be noted that a custom-de- 
signed LSI voter is needed to get a sufficiently 
low cost for a marketable C.vmp. While the in- 
tent of C.vmp development was not a product, 
it does provide much of the insight for such a 
product. 

Crn * 
Cm* is described in Chapter 20; however, be- 

cause it is one of the three CMU machines 
pointing to  future technology-driven trends in 
multiprocessor use of LSI-11 architecture, it is 
given some mention here. The Cm* work, 
sponsored by the National Science Foundation 
(NSF) and the Advanced Research Projects 
Agency (ARPA), is an extension of earlier 
NSF-sponsored research [Bell et al., 19731 on 
register transfer level modules. As large-scale 
integration and very large-scale integration en- 
able construction of the processor-on-a-chip, it 
is apparent that low level register transfer mod- 
ules are obsolete for the construction of ?ll but 
low volume computers. Although the research 
is predicated on structures employing a hun- 
dred or so processors, Chapter 20 describes the 
culmination of the first (10-processor) phase. 

In Chapter 20 the authors base their work on 
diseconomy-of-scale arguments. To provide ad- 
ditional context for their research, computer 
modules (Cm *), multiprocessors (C.mmp), and 
computer networks are described in terms of 
performance and problem suitability. They give 
a description of the modules structure, together 
with its associated limitations and potential re- 
search problems. 

The grouping of processor and memory into 
modules and the hierarchy of bus structures - 
LSI-11 Bus, Map Bus, and Intercluster bus, 

radical departures from conventional computer 
systems - is given. The final, most important 
part of the chapter evaluates the performance of 
Cm* for five different problems. 

Since the time that Chapter 20 was written, 
construction of a 50 computer modules Cm* 
has begun and will be operational by the end of 
1978 for evaluation in 1979. The extension of 
Cm* is known as Cm*/50 and is shown in Fig- 
ure 7. It will be used to test parallel processing 
methods, fault tolerance, modularity, and the 
extensibility of the Cm* structure. 

The PDP-l1/70mP Experimental 
Multiprocessor Corn puter 

The PDP-l1/70mP aims to extend the relia- 
bility, availability, maintainability and per- 
formance range of the PDP-I 1 Family. It uses 
11/70 processor hardware and the RSX-1lM 
software as basic building blocks. 

The systems can have up to four processors 
which have access to common central memories 
as shown in Figure 8. Each MOS primary mem- 
ory contains 256 Kbyte to  1 Mbyte and a port 
(switch) by which up to four processors may ac- 
cess it. A failed memory may be isolated for re- 
pair. Usually two processors share (have access 
to) each of the 1 / 0  devices through a Unibus 
switch or dual ported disk memories. 

Failure of a high speed mass storage bus con- 
troller, a processor, or one port of a device will 
not preclude use of that device through the 
other port. These devices can also be isolated 
from their respective buses so that failure of a 
device will not preclude access to other devices. 

Each of the processor units has a write 
through cache memory. Through normal sys- 
tem operation, data within these local caches 
may become inconsistent with data elsewhere in 
the system. To eliminate this problem, the oper- 
ating system and the hardware components 
have been modified. The RSX- 11M system ei- 
ther clears the cache of inconsistent data or 
avoids using the cache for specific situations. 
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Figure 7 .  Details of the Cm*/50 system 
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Figure 8. Four-processor multiprocessor based on PDP- 1 1 /70 processors. 

The software to manipulate the cache is con- 
tained in the executive and is transparent to 
user programs. 

An Interprocessor Interrupt and Sanity 
Timer (I1 ST) provides the executive software 
with a mechanism to interrupt processors for 
rescheduling. The IIST includes a timer for each 
processor which is periodically refreshed by 
software after execution of diagnostic check 
routines. If the refresh commands do not occur 
within a prescribed interval, the IIST will issue 
an interprocessor interrupt to inform the other 
processors of faulty operation. The IIST also 
contains a mechanism for initially loading the 
multiprocessor system. 

The system design results in an extension to 
the PDP-11 that is transparent to user programs 
and yields increases in performance over a 
single processor 11/70 system. This perform- 
ance increase is due to the symmetry, such that 
nearly any resource can be accessed by any pro- 

cess with minimum overhead. Also, unlike mul- 
tiple computer systems that communicate via 
high speed links, the large primary memory can 
be combined and used by a single process. 
Moreover, dynamic assignment of processes to  
specific computer systems (Figure 9) can be 
made. 

The system has been designed to increase the 
availability by reducing the impact of failures 
on system performance through the use of mul- 
tiple redundant components. In this way, failed 
elements can be isolated for repair. The design 
is such that the system may be easily reconfi- 
gured so that system operation can be resumed 
and the failed component repaired off-line. 

Extensions to the diagnostic software and 
hardware error detection mechanisms facilitate 
quick location of faults. User-mode diagnostics 
are run concurrently with the application soft- 
ware; this permits maintenance of the disk and 
tape units to  be done on-line. 
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Figure 9. Four-processor multicomputer system based on PDP- 1 1/70 processors 

Now that the 11/70mP has implemented its 
IIST and defined an architectural extension for 
multiprocessing, another roadblock to the use 
of multiprocessors has been passed; namely, an 
extension for interprocessor signaling has been 
defined. This might have been defined much 
earlier in the life of the PDP-11. In the IBM 
computers the SIGP instruction was not avail- 
able on 360s until the 370 extensions. 

PULSAR: A Performance Range mP 
System 

PULSAR is a 16 LSI-11 multiprocessor com- 
puter for investigating the cost-effectiveness of 
multiple microprocessors. It covers a perform- 
ance range of approximately a single LSI-11 to 
better than a PDP-11/70 for simple instruc- 
tions. 

The breadboard system (Figure 10) is based 
on the PDP-11/70 processor-memory-switch 

structure, including multiple interrupt levels 
and 22-bit physical addressing. However, it 
does not implement instruction (I) and data (D) 
space or Supervisor mode, and it lacks the 
Floating-point Processors. 

The processors (P-Boards) communicate with 
each other, the Unibus Interface (UBI), and a 
Common Cache and Control via a high-band- 
width, synchronous bus. 

The Common Cache and Control contains a 
large (8 Kword), direct-mapping, shared cache 
with a 2-word block size, interfacing to the 2- or 
4-way interleaved 1 1 /70 Memory Bus. This pre- 
vents the memory subsystem from becoming a 
bottleneck, in  spite of the large reduction in 
bandwidth demand provided by the cache. The 
control provides all the mapping functions for 
both Unibus and processor accesses to memory. 
The Unibus map registers and the process map 
registers for each processor are held in a single 
bipolar memory. 
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Figure 10. PMS diagram of the breadboard version of the DEC PULSAR 

The Unibus Interface provides the Unibus 
control functions of a conventional PDP-I 1. In- 
terrupts are fielded by the first enabled proces- 
sor with preferential treatment for any 
processor in WAIT state. 

Each processor board contains two inde- 
pendent microprocessor chip sets with modified 
microcode. Internal contention for the adapter 
is eliminated by running the two processors out 
of phase with each other. Such contention as 
does exist is resolved by the mechanism for ar- 
bitration of the processor bus itself. The PUL- 
SAR has a serial line (ASCII) console 
interfacing via a microcode driven commu- 
nications controller, equipped with modified 
microcode. In addition, a debugging panel has 
displays for every stage of the processor bus and 
controller pipeline. 

Console operations are effected by the Un- 
ibus Interface interrogating or changing a save 
area for each processor, physically held in the 
mapping array, in response to ASCII console 

messages over the Unibus. Each processor 
places all appropriate status in the save area on 
every HALT, and restores from the save area 
prior to acting upon every CONTINUE or 
START. 

The PULSAR system is pipeline oriented 
with specific time slots for each processor. This 
permits a single simple arbitration mechanism, 
rather than separate complex ones for each re- 
source. 

Once the pipeline is assigned to a transaction, 
the successive intervals of time are assigned t o  
the following resources in order: 

1. The mapping array. 
2. The address translation logic. 
3. The cache. 
4. The address validation logic. 
5.  The data lines of the P-Bus. 

The memory subsystem, which is not a part of 
this resource pipeline, has an independent arbi- 
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tration mechanism. Interfacing between these 
independent mechanisms is by means of queues. 

There are some operations that require more 
than one access to the same resource in the 
pipeline. These operations are effectively han- 
dled as two transactions. Examples of such op- 
erations are memory writes and internal 1/0 
page (memory-management register) accesses. 
A memory write may need a second access to 
the cache for update, while the Internal 1/0 
Page may need another access to the map array. 

There are other operations in which the tim- 
ing does not permit the use of a particular re- 
source in the specific interval that is allocated to 
that transaction. This happens, for instance, 
when a read operation results in  a cache miss. 
The data is not available in time. In this case a 
second transaction takes place, initiated when 
backing store data becomes available. 

Cost projections indicate that a multi- 
processor will have an increase in parts count 
over each possible equivalent performance 
uniprocessor in the range. This will range from 
a 20 percent increase for a two-processor, multi- 
processor system to 0 percent at the top of the 
range. The 20 percent premium can be reduced 
if no provision is made for expansibility over 
the entire range. Clearly, a separate single pro- 
cessor structure can be cost-effective (since this 
is the LSI-11). The premium is based on parts 
count only and excludes considerations of cost 
benefits due to production learning, common 
spares and manuals, lower engineering costs, 
etc. 

A number of computer systems have been 
built based on multiple processors in systems 
ranging from independent computers (with no 
interconnection) through tightly coupled com- 
puter networks which communicate by passing 
messages, to  multiprocessor computers with 
shared memory. Table 5 gives a comparison of 
the various computers. Although n independent 
computers is a highly reliable structure, it is 
hard to give an  example where there is no inter- 
connection among the computers. The standard 

computer network interconnected via standard 
communications links is not given. 

It is interesting to  compare the multi- 
processor and the tightly coupled multi- 
computer configurations (Figure 8 and 9) where 
the configurations are drawn in exactly the 
same way and with the same peripherals. In this 
way, columns 2 and 6 of Table 5 can be more 
easily compared. The tradeoff between the two 
structures is between lower cost and potentially 
higher performance for the multiprocessor (un- 
less tasks can be statically assigned to  the vari- 
ous computers in the network) versus somewhat 
higher reliability, availability, and maintaina- 
bility for the network computer (because there 
is more independence among software and 
hardware). Varying the degree of coupling in 
the processors through the amount of shared 
memory determines which structure will result. 
The cost and the resultant reliability differen- 
tials for the two systems are determined by the 
size and the reliability of the software. 

TECHNOLOGY: COMPONENTS OF THE 
DESIGN 

In Chapter 2, it was noted that computers are 
strongly influenced by the basic electronic tech- 
nology of their components. The PDP-11 Fam- 
ily provides an extensive example of designing 
with improved technologies. Because design re- 
sources have been available to  do  concurrent 
implementations spanning a cost/performance 
range, PDP-1 1s offer a rich source of examples 
of the three different design styles: constant cost 
with increasing functionality, constant func- 
tionality with decreasing cost, and growth path. 

Memory technology has had a much greater 
impact on PDP-11 evolution than logic tech- 
nology. Except for the LSI-11, the one logic 
family (7400 series TTL) has dominated PDP- 
11  implementations since the beginning. Except 
for a small increase after the PDP-l1/20, gate 
density has not improved markedly. Speed im- 
provement has taken place in the Schottky 
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TTL, and a speed/power improvement has oc- 
curred in the low power Schottky (LS) series. 
Departures from medium-scale integrated tran- 
sistor-transistor logic, in terms of gate density, 
have been few, but effective. Examples are the 
bit-slice in the PDP-I 1/34 Floating-Point Pro- 
cessor, the use of programmable logic arrays in 
the PDP-I 1/04 and PDP-11/34 control units, 
and the use of emitter-coupled logic in some 
clock circuitry. 

Memory densities and costs have improved 
rapidly since 1969 and have thus had the most 
impact. Read-write memory chips have gone 
from 16 bits to 4,096 bits in density and read- 
only memories from 16 bits to the 8 or 16 Kbits 
widely available in 1978. Various semi- 
conductor memory size availabilities are given 
in Chapter 2 using the model of semiconductor 
density doubling each year since 1962. 

The memory technology of 1969 imposed 
several constraints. First, core memory was 
cost-effective for the primary (program) mem- 
ory, but a clear trend toward semiconductor 
primary memory was visible. Second, since the 
largest high speed read-write memories avail- 
able were just 16 words, the number of proces- 
sor registers had to  be kept small. Third, there 
were no large high speed read-only memories 
that would have permitted a microprogrammed 
approach to the processor design. 

These constraints established four design atti- 
tudes toward the PDP-I 1’s architecture. First, it 
should be asynchronous, and thereby capable 
of accepting different configurations of memory 
that operate at different speeds. Second, it 
should be expandable to  take eventual advan- 
tage of a larger number of registers, both user 
registers for new data-types and internal regis- 
ters for improved context switching, memory 
mapping, and protected multiprogramming. 
Third, it could be relatively complex, so that a 
microcode approach could eventually be used 
to advantage: new data-types could be added to 
the instruction set to increase performance, 
even though they might add complexity. 

Fourth, the Unibus width should be relatively 
large, to get as much performance as possible, 
since the amount of computation possible per 
memory cycle was relatively small. 

As semiconductor memory of varying price 
and performance became available, it was used 
to trade cost for performance across a reason- 
ably wide range of PDP-I1 models. Different 
techniques were used on different models to 
provide the range. These techniques include: 
microprogramming for all models except the 
11/20 to lower cost and enhance performance 
with more data-types (for example, faster float- 
ing point); use of faster program memories for 
brute-force speed improvements (e.g., 1 1 /45 
with MOS primary memory, 11/55 with bipolar 
primary memory, and the 11/60 with a large 
writable control store); use of caches (1  1/70, 
11/60, and 1 1/34C); and expanded use of fast 
registers inside the processor (the 11/45 and 
above). The use of semiconductors versus cores 
for primary memory is a purely economic con- 
sideration, as discussed in Chapter 2. 

Table 6 shows characteristics of each of the 
PDP-1 I models along with the techniques used 
to span a cost and performance range. Snow 
and Siewiorek (Chapter 14) give a detailed com- 
parison of the processors. 

VAX-11 

Enlarging the virtual address space of an ar- 
chitecture has far more implications than en- 
larging the physical address space. The simple 
device of relocating program-generated ad- 
dresses can solve the latter problem. The phys- 
ical address space, the amount of physical 
memory that can be addressed, has been in- 
creased in two steps in the PDP-11 Family 
(Table 2). 

The virtual address space, or name space, is a 
much more fundamental part of an archi- 
tecture. Such addresses are programmer gener- 
ated: to name data objects, their aggregates 
(whether they be vectors, matrices, lists, or 
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shared data segments) and instructions (sub- 
routine addresses, for example). Names seen by 
an individual program are part of a larger name 
space - that managed by an operating system 
and its associated language translators and ob- 
ject-time systems. An operating system provides 
program sharing and protection among pro- 
grams using the name space of the architecture. 

As the PDP-I1/70 design progressed, it was 
realized that for some large applications there 
would soon be a bad mismatch between the 64- 
Kbyte name space and 4-Mbyte memory space. 
Two trends could be clearly seen: (1) mini- 
computer users would be processing large ar- 
rays of data, particularly in FORTRAN 
programs (only 8,096 double precision floating- 
point numbers are needed to  fill a 16-bit name 
space), and (2) applications programs were 
growing rapidly in size, particularly large CO- 
BOL programs. Moreover, anticipated memory 
price declines made the problem worse. The 
need for a 32-bit integer data-type was felt, but 
this was far less important than the need for 32- 
bit addressing of a name space. 

Thus, in 1974, architectural work began on 
extending the virtual address space of the PDP- 
1 1 .  Several proposals were made. The principal 
goal was compatibility with the PDP-I 1. In the 
final proposed architecture each of the eight 
general registers was extended to 32 bits. The 
addressing modes (hence, address arithmetic) 
inherent in the PDP-11 allowed this to be a nat- 
ural, easy extension. 

The design of the structure to be placed on a 
32-bit virtual address presented the most diffi- 
culty. The most PDP-11 compatible structure 
would view a 32-bit address as 216 16-bit PDP- 
1 1  segments, each having the substructure of 
the memory management architecture presently 
being used. This segmented address space, al- 
though PDP-1 l compatible, was ill-suited to 
FORTRAN and most other languages, which 
expect a linear address space. 

A severe design constraint was that existing 
PDP-11 subroutines must be callable from pro- 

grams which ran in the Extended Address 
mode. The main problem areas were in estab- 
lishing a protocol for communicating addresses 
(between programs between the operating sys- 
tems and programs on the occurrence of inter- 
rupts). Saving state (the program counter and 
its extension) on the stack was straightforward. 
However, the accessing of linkage addresses on 
the stack after a subroutine call instruction or 
interrupt event was not straightforward. Com- 
plicated sequences were necessary to  ensure that 
the correct number of bytes (representing a 32- 
bit or 16-bit address) were popped from the 
stack. 

The solution was hampered by the fact that 
DEC customers programmed the PDP-I 1 at all 
levels - there was no clear user level, below 
which DEC had complete control, as is the case 
with the IBM System 360 or the PDP-IO using 
the TOPS-10 or TOPS-20 monitors. 

The proposed architecture was the result of 
work by engineers, architects, operating system 
designers and compiler designers. Moreover, it 
was subjected to  close scrutiny by a wider group 
of engineers and programmers. Much was 
learned about the consequences of strict PDP- 
1 1  compatibility, the notions of degree of com- 
patibility, and the software costs which would 
be incurred by an extended PDP-11 archi- 
tecture. 

Fortunately, the project was discontinued. 
There were many reservations about its via- 
bility. It was felt that the PDP-l l compatibility 
constraint caused too much compromise. Any 
new architecture would require a large software 
investment; a quantum jump over the PDP-I I 
was needed to justify the effort. 

In  April 1975, work on a 32-bit architecture 
was started on VAX-11, with the goal of build- 
ing a machine which was culturally compatible 
with PDP-1 1.  The initial group, called VAXA, 
consisted of Gordon Bell, Peter Conklin, Dave 
Cutler, Bill Demmer, Tom Hastings, Richy 
Lary, Dave Rodgers, Steve Rothman, and Bill 
Strecker as the principal architect. As a result of 
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the experience with the extended PDP-11 de- 
signs, it was decided to drop the constraint of 
the PDP-I 1 instruction format in designing the 
extended virtual address space, or Native mode, 
of the VAX-I 1 architecture. However, in order 
to run existing PDP-I 1 programs, VAX-I 1 in- 
cludes PDP-11 compatibility mode. This mode 
provides the basic PDP-I 1 instruction set with- 
out privileged instructions (as defined by the 
RSX-I 1 M operating system) and floating-point 
instructions. Nor is the former memory man- 
agement architecture (KT-I 1) preserved in this 
mode. 

Preserving the existing PDP-I 1 instruction 
formats with VAX-I 1 would have required too 
high a price in dynamic bit efficiency. Whereas 
the PDP-I I has a high level of efficiency in this 
area, adding the new operation codes for the 
anticipated data-types, access modes, and dif- 
ferent length addresses would have lowered the 
instruction stream bit efficiency. An operation 
code extension field would have been required. 
It was also felt that data stream bit efficiency 
could be improved. For example, measure- 
ments showed that 98 percent of all literals were 
6 bits or less in length. 

Besides the desire to add the data-types for 
string, 32- and 64-bit integers, and decimal 
arithmetic, there were many other extensions 
proposed. These included a common procedure 
CALL instruction, demand paging, true in- 
dexing, context-sensitive indexing, and more 
1 / 0  addressing. 

Along the way, some major perturbations to 
the PDP-I 1 style were considered and rejected, 
often because they violated the notion of com- 
patibility with PDP-I 1. Typed data and descrip- 

tor addressing were rejected on the grounds of 
dynamic bit efficiency. Although system soft- 
ware costs may be lower with such archi- 
tectures, it was not possible to quantify the gain 
convincingly. Also, such an architecture de- 
stroyed any compatibility, cultural or other- 
wise, with PDP-I I .  

The experience with PDP-I 1 (floating point, 
in particular) led the VAX designers to reject a 
soft-machine architecture, i.e., one with an in- 
struction set (and highly microprogrammed im- 
plementations) for general purpose emulation. 
Their PDP-11 experience showed that embedd- 
ing a data-type (once it is understood) in  the 
architecture gives a higher performance gain 
than embedding the higher level language con- 
trol constructs. There was also a general objec- 
tion t o  soft machines: the problem of 
controlling a proliferation of instruction sets in- 
vented by many small software groups was felt 
to be unmanageable. Moreover, higher level in- 
struction sets jeopardize the ability to commu- 
nicate between programs that are written in 
different languages. This compatibility is a ma- 
jor goal of VAX. 

A capabilities-based architecture was rejected 
because it was not fully understood and because 
there was no performance or reliability data 
available from the few experimental machines 
which had been built. 
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Large Virtual Address Space 
Minicomputers 

Perhaps the most useful definition of a mini- 
computer system is based on price: Depending 
on one’s perspective, such systems are typically 
found in the $20 K to $200 K range. The twin 
forces of market pull - as customers build in- 
creasingly complex systems on minicomputers - 
and technology push - as the semiconductor in- 
dustry provides increasingly lower cost logic 
and memory elements - have induced mini- 
computer manufacturers to produce systems of 
considerable performance and memory capac- 
ity. Such systems are typified by the DEC PDP- 
1 1  /70. From an architectural point of view, the 
characteristic that most distinguishes many of 
these systems from larger mainframe computers 
is the size of the virtual address space: the im- 
mediately available address space seen by an in- 
dividual process. For many purposes, the 65- 
Kbyte virtual address space typically provided 
on minicomputers (such as the PDP-11) has not 
been and probably will not continue to be a se- 
vere limitation. However, there are some appli- 

cations whose programming is impractical in a 
65-Kbyte virtual address space and, perhaps 
most importantly, others whose programming 
is appreciably simplified by having a large vir- 
tual address space. Given the relative trends in 
hardware and software costs, the latter point 
alone will ensure that large virtual address 
space minicomputers play an increasingly im- 
portant role in minicomputer product offerings. 

In principle, there is no great challenge in de- 
signing a large virtual address minicomputer 
system. For example, many of the large main- 
frame computers could serve as architectural 
models for such a system. The real challenge lies 
in two areas: compatibility - very tangible and 
important; and simplicity - intangible but none- 
theless important. 

The first area is preserving the customer’s 
and the computer manufacturer’s investment in 
existing systems. This investment exists at many 
levels: basic hardware (principally buses and pe- 
ripherals); systems and applications software; 
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files and data bases; and personnel familiar with 
the programming, use, and operation of the sys- 
tems. For example, to preserve this investment 
a major computer manufacturer just recently 
abandoned a major effort for new computer ar- 
chitectures in favor of evolving its current archi- 
tectures [McLean, 19771. 

The second, less tangible area is the preserva- 
tion of those attributes (other than price) that 
make minicomputer systems attractive. These 
include approachability, understandability, and 
ease of use. Preservation of these attributes sug- 
gests that simply modeling an extended virtual 
address minicomputer after a large mainframe 
computer is not wholly appropriate. I t  also sug- 
gests that during architectural design, tradeoffs 
must be made between more than just perform- 
ance, functionality, and cost. Performance or 
functionality features which are so complex that 
they appreciably compromise understanding or 
ease of use must be rejected as inappropriate for 
minicomputer systems. 

VAX-11 Overview 

VAX- 11 is the virtual address extension of 
PDP-11 architecture (Chapter 9) [Bell and 
Strecker, 19761. The most distinctive feature of 
VAX-I 1 is the extension of the virtual address 
from 16 bits as provided on the PDP-I1 to 32 
bits. With the 8-bit byte as the basic addressable 
unit, the extension provides a virtual address 
space of about 4.3 gigabytes which, even given 
rapid improvement in memory technology, 
should be adequate far into the future. 

Since maximal PDP-11 compatibility was a 
primary goal, early VAX-11 design efforts fo- 
cused on literally extending the PDP-11: pre- 
serving the existing instruction formats and 
instruction set and fitting the virtual address ex- 
tension around them. The objective was to per- 
mit, to the extent possible, the running of 
existing programs in the extended virtual ad- 
dress environment. While realizing this objec- 
tive was possible (there were three distinct 

designs), it was felt that the extended archi- 
tecture designs were overly compromised in the 
areas of efficiency, functionality, and program- 
ming ease. 

Consequently, i t  was decided to drop the con- 
straint of the PDP-1 1 instruction format in de- 
signing the extended virtual address space or 
native mode of the VAX-11 architecture. How- 
ever, in order to  run  existing PDP- l l programs, 
VAX-11 includes a PDP-11 compatibility 
mode. Compatibility mode provides the basic 
PDP-I 1 instruction set without privileged in- 
structions (such as HALT) and floating-point 
instructions (which are optional o n  most PDP- 
1 1  processors and not required by most PDP-I 1 
software). 

In  addition to compatibility mode, a number 
of other features to preserve PDP-I 1 investment 
have been provided in the VAX-11 architecture, 
the VAX-I 1 operating system VAX/VMS, and 
the VAX- 11 /780 implementation of the VAX- 
1 1  architecture. These features include the fol- 
lowing . 

1 .  The native mode data-types and formats 
are identical to those on the PDP-11. 
Also, while extended, the VAX-I 1 native 
mode instruction set and addressing 
modes are very close to those on the 
PDP-11. As a consequence, VAX-11 na- 
tive mode assembly language program- 
ming is quite similar to  PDP-11 
assembly language programming. 
The VAX- 11 /780 uses the same periph- 
eral buses (Unibus and Massbus) and 
the same peripherals as the PDP-I 1. 
The VAX/VMS operating system is an 
evolution of the PDP-11 RSX-11M and 
IAS operating systems. It offers a similar 
although extended set of system services 
and uses the same command languages. 
Additionally, VAX/VMS supports most 
of the RSX-IIM/IAS system service 
requests issued by programs executing in 
compatibility mode. 

2. 

3. 
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4. The VAX/VMS file system is the same 
as that used on the RSX-I IM/IAS oper- 
ating systems, permitting interchange of 
files and volumes. The file access meth- 
ods as implemented by the RMS record 
manager are also the same. 
VAX-11 high level language compilers 
accept the same source languages as the 
equivalent PDP-11 compilers, and exe- 
cution of compiled programs gives the 
same results. 

5 .  

The coverage of all these aspects of VAX-I 1 
is well beyond the scope of any single paper. 
The remainder of this paper discusses the design 
of the VAX-11 native mode architecture and 
gives an overview of the VAX-I 1/780 system. 

VAX-11 NATIVE ARCHITECTURE 

Processor State 

Like the PDP-11, VAX-11 is organized 
around a general register processor state. This 
organization was favored because access to op- 
erands stored in general registers is fast (be- 
cause the registers are internal to  the processor 
and register accesses do  not need to pass 
through a memory management mechanism). 
Also, only a small number of bits in an instruc- 
tion are needed to designate a register. Perhaps 
most importantly, the registers are used (as on 
the PDP-11) in conjunction with a large set of 
addressing modes which permit unusually flex- 
ible operand addressing methods. 

Some consideration was given to  a pure 
stack-based architecture. However, it was re- 
jected because real program data suggests the 
superiority of two or three operand instruction 
formats [Myers, 19771. Actually VAX-I 1 is very 
stack-oriented, and although not optimally en- 
coded for the purpose, it can easily be used as a 
pure stack architecture if desired. 

VAX-11 has 16 32-bit general registers (de- 
noted RO through R15) which are used for both 
fixed and floating-point operands. This is in 

contrast to  the PDP-I 1 which has eight 16-bit 
general registers and six 64-bit floating-point 
registers. The merged set of fixed and floating 
registers was preferred because programming is 
simplified and a more effective allocation of the 
registers is permitted. 

Four of the registers are assigned special 
meaning in the VAX-11 architecture. 

R15 is the program counter (PC) which 
contains the address of the next byte to  
be interpreted in the instruction stream. 
R14 is the stack pointer (SP) which con- 
tains the address of the top of the proces- 
sor defined stack used for procedure and 
interrupt linkage. 
R13 is the frame pointer (FP). The VAX- 
1 1  procedure calling convention builds a 
data structure on the stack called a stack 
frame. FP contains the address of this 
structure. 
R12 is the argument pointer (AP). The 
VAX-11 procedure calling convention 
uses a data structure called an argument 
list. AP contains the address of this 
structure. 

The remaining element of the user-visible 
processor state (additional processor state seen 
mainly by privileged procedures is discussed 
later) is the 16-bit processor status word (PSW). 
The PSW contains the N, Z, V, and C condition 
codes which indicate, respectively, whether a 
previous instruction had a negative result, a 
zero result, a result that overflowed, or a result 
that produced a carry (or borrow). Also in the 
PSW are the IV, DV, and FU bits which enable 
processor trapping on integer overflow, decimal 
overflow, and floating underflow conditions, 
respectively. (The trap on conditions of “float- 
ing overflow” and “divide by zero” for any 
data-type is always enabled.) 

Finally, the PSW contains the T bit which, 
when set, forces a trap at  the end of each in- 
struction. This trap is useful for program de- 
bugging and analysis purposes. 
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Data-Types and Formats 

The VAX- 11 data-types are a superset of the 
PDP-11 data-types. Where the PDP-I1 and 
VAX-I 1 have equivalent data-types, the for- 
mats (representation in memory) are identical. 
Data-type and data-format identity is one of the 
most compelling forms of compatibility. It per- 
mits free interchange of binary data between 
PDP-I 1 and VAX-I 1 programs. It facilitates 
source level compatibility between equivalent 
PDP-11 and VAX-11 languages. It also greatly 
facilitates hardware implementation and soft- 
ware support of the PDP-11 compatibility 
mode in the VAX-11 architecture. 

The VAX- 11 data-types divide into five clas- 
ses. 

1. Integer data-types are the 8-bit byte, the 
16-bit word, the 32-bit longword, and the 
64-bit quadword. Usually these data- 
types are considered signed with nega- 
tive values represented in two’s com- 
plement form. However, for most 
purposes they can be interpreted as un- 
signed, and the VAX-11 instruction set 
provides support for this interpretation. 

2. Floating data-types are the 32-bit float- 
ing and the 64-bit double floating. These 
data-types are binary normalized, have 
an 8-bit signed exponent, and have a 25- 
or 57-bit signed fraction with the redun- 
dant most significant fraction bit not 
represented. 

3. The variable bit field data-type is 0 to 32 
bits located arbitrarily with respect to 
addressable byte boundaries. A bit field 
is specified by three operands: the ad- 
dress of a byte, the starting bit position 
(P) with respect to bit 0 of that byte, and 
the size (S) of the field. The VAX-11 in- 
struction set provides for interpreting 
the field as signed or unsigned. 

4. The character string data-type is 0 t o  
65535 contiguous bytes. It is specified by 
two operands: the length and starting 
address of the string. Although the data- 
type is named “character string,” no spe- 
cial interpretation is placed on the values 
of the bytes i n  the character string. 

5 .  The decimal string data-types are 0 to 3 1 
digits. They are specified by two oper- 
ands: a length (in digits) and a starting 
address. The primary data-type is packed 
decimal with two digits stored in each 
byte (except the byte containing the least 
significant digit contains a single digit 
and the sign). Two ASCII character dec- 
imal types are supported: leading sepa- 
rate sign and trailing embedded sign. The 
leading separate type is a “+”, “-”, or 
“<blank>” (equivalent t o  “+”) ASCII 
character followed by 0 to 3 1 ASCII dec- 
imal digit characters. A trailing em- 
bedded sign decimal string is 0 to 31 
bytes which are ASCII decimal digit 
characters (except for the character con- 
taining least significant digit which is an 
arbitrary encoding of the digit and sign). 

All of the data-types except field may be 
stored on arbitrary byte boundaries - there are 
no alignment constraints. The field data-type, 
of course, can start on  an arbitrary bit bound- 
ary. 

Attributes of and symbolic representations 
for most of the data-types are given in Table 1 
and Figure 1. 

Instruction Format and Address Modes 

Most architectures provide a small number of 
relatively fixed instruction formats. Two prob- 
lems often result. First, not all operands of an 
instruction have the same specification general- 
ity. For example, one operand must come from 
memory and another from a register, or one 
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Table 1. Data-Types 

Data-Type Size Range (decimal) 

Integer 

Byte 
Word 
Longword 
Quadword 

Floating Point 

Floating 

Double Floating 

Packed Decimal 
String 

Character String 

Variable- Length 
Bit Field 

Signed Unsigned 

8 bits -128t0+127 0 to 255 
16 bits -32768 to +32767 0 to 65535 
32 bits 
64  bits 

-231 to +231- 1 
-263 to +263 - 1 

o to 232 - 1 
o to 264 - 1 

f2.9 X to 1.7 X 

32 bits 

6 4  bits 

0 to 16 bytes 
(31 digits) 

0 to 65535 bytes 

0 to 32 bits 

Approximately seven decimal digits precision 

Approximately 16 decimal digits precision 

Numeric, two digits per byte 
Sign in low half of last byte 

One character per byte 

Dependent on intrepretation 

WORD B l T E  

-1:A 

LONGWORD -. 

OUADWORD 

32 
FLOATING j:l 7,6 1:. 1 1,6 0, 

31 16 

DOUBLE FLOATING 

EXPONENT FRACTION EXPONENT FRACTION ‘A 

FRACTION :A+2 FRACTION :A+2 

FRACTION :A+4 

I FRACTION k A + 6  

63 48 

PACKED DECIMAL STRfNG 1+1231 CHARACTER STRING l X V Z l  

“ X ’  - A  

-y :A+ 1 

VARIABLE-LENGTH BIT FIELD E l : A + 2  

-231 s P c 231 - 1 D s s s 32 

I I I :A 

P+S P+S.l P P-l 0 

I I I I 
A = ADDRESS S 1  0 

Figure 1. Data formats 

must come from the stack and another from 
memory. Second, only a limited number of op- 
erands can be accommodated: typically, one or 
two. For instructions that inherently require 
more operands (such as field or string instruc- 
tions), the additional operands are specified in  
ad hoc ways: small literal fields in instructions, 
specific registers or stack positions, or packed 
in fields of a single operand. Both these prob- 
lems lead to increased programming com- 
plexity: they require superfluous move-type 
instructions to get operands to places where 
they can be used and increase competition for 
potentially scarce resources such as registers. 

To avoid these problems, two criteria were 
followed in the design of the VAX-11 instruc- 
tion format: (1) all instructions should have the 
“natural” number of operands, and (2) all oper- 
ands should have the same generality in specifi- 
cation. These criteria led to a highly variable 
instruction format. An instruction consists of a 
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one- or two-byte* opcode followed by the speci- 
fications for n operands (n > 0) where n is an 
implicit property of the opcode. An operand 
specification is one to ten bytes in  length and 
consists of a one- or two-byte operand specifier 
followed by (as required) zero to eight bytes of 
specifier extension. The operand specifier in- 
cludes the address mode and designation of any 
registers needed to locate the operand. A speci- 
tier extension consists of a displacement, an ad- 
dress, or immediate data. 

The VAX- 1 1 address modes are, with one ex- 
ception, a superset of the PDP-I 1 address 
modes. The PDP-I 1 address mode autodecre- 
ment deferred was omitted from VAX-11 be- 
cause it was rarely used. 

Most operand specifiers are one byte long 
and contain two 4-bit fields: The high-order 
field (bits 7:4) contains the address mode desig- 
nator, and the lower field (bits 3:O)  contains a 
general register designator. The address modes 
include: 

1. 

2. 

Register mode, in  which the designated 
register contains the operand. 
Register deferred mode, in which the des- 
ignated register contains the address of 
the operand. 
Autodecrement mode, in which the con- 
tents of the designated register are first 
decremented by the size (in bytes) of the 
operand and are then used as the address 
of the operand. 
Autoincrement mode, in which the con- 
tents of the designated register are first 
used as the address of the operand and 
are then incremented by the size of the 
operand. Note that if the designated reg- 
ister is PC, the operand is located in the 
instruction stream. This use of autoin- 
crement mode is called immediate mode. 
In immediate mode, the one to eight 
bytes of data are the specifier extention. 

3. 

4. 

Autoincrement mode can be used se- 
quentially to  process a vector in one di- 
rection, and autodecrement mode can be 
used to process a vector in the opposite 
direction. Autoincrement, register de- 
ferred, and autodecrement modes can be 
applied to a single register to implement 
a stack data structure: autodecrement to  
“push,” autoincrement to “pop,” and 
register deferred to access the top of the 
stack. 
Autoincrement deferred mode, in which 
the contents of the designated register 
are used as the address of a longword in 
memory which contains the address of 
the operand. After this use, the contents 
of the register are incremented by four 
(the size in bytes of the longword ad- 
dress). Note that if PC is the designated 
register, the absolute address of the op- 
erand is located in the instruction 
stream. This use of autoincrement de- 
ferred mode is termed absolute mode. I n  
absolute mode, the 4-byte address is the 
specifier extension. 

6. Displacement mode, in which a dis- 
placement is added to the contents of the 
designated register to form the operand 
address. There are three displacement 
modes depending on whether a signed 
byte, word, or longword displacement is 
the specifier extension. These modes are 
termed byte, word, and longword dis- 
placement, respectively. Note that if PC 
is the designated register, the operand is 
located relative to  PC. For this use, the 
modes are termed byte, word, and long- 
word relative mode, respectively. 
Displacement deferred mode, in which a 
displacement is added to the designated 
register to form the address of a long- 
word containing the address of the oper- 
and.  There are  three displacement 

5 .  

7. 

* N o  currently defined instructions use two-byte opcodes. 
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LITERAL 

IIMMEOIATEI 

8. 

9. 

{; ;} Y CONSTANT 

deferred modes depending on whether a 
signed byte, word, or longword dis- 
placement is the specifier extension. 
These modes are termed byte, word, and 
longword displacement, respectively. 
Note that if PC is the designated register, 
the operand address is located relative to 
PC. For this use the modes are termed 
byte, word, and longword relative de- 
ferred mode, respectively. 

Literal mode, in which the operand spec- 
ifier itself contains a 6-bit literal which is 
the operand. For integer data-types, the 
literal encodes the values 0 through 63; 
for floating data-types, the literal in- 
cludes three exponent and three fraction 
bits to give 64 common values. 

Index mode, which is not really a mode 
but rather a one-byte prefix operator for 
any other mode which evaluates a mem- 
ory address (i.e., all modes except regis- 
ter and literal). The index mode prefix is 
cascaded with the operand specifier for 
that mode (called the base operand spec- 
ifier) to form an aggregate two-byte op- 
erand specifier. The base operand speci- 
fier is used in the normal way to evaluate 
a base address. A copy of the contents of 
the register designated in the index prefix 
is multiplied by the size (in bytes) of the 
operand and added to the base address. 
The sum is the final operand address. 
There are three advantages to the VAX- 
11 form of indexing: (1) the index is 
scaled by the data size, and thus the in- 
dex register maintains a logical rather 
than a byte offset into an indexed data 
structure; ( 2 )  indexing can be applied to 
any of the address modes that generate 
memory addresses, and this results in a 
comprehensive set of indexed addressing 
methods; and (3) the space required to 
specify indexing and the index register is 
paid only when indexing is used. 

REGISTER DEFERRED 

AUTODECREMENT 

AUTOINCREMENT 

The VAX-I 1 assembler syntax for the ad- 
dress modes is given in Figure 2. The bracketed 
(( )) notation is optional, and the programmer 
rarely needs to be concerned with displacement 
sizes or whether to choose literal or immediate 
mode. The programmer writes the simple form; 
the assembler chooses the address mode which 
produces the shortest instruction length. 

In order to give a better feeling for the in- 
struction format and assembler notation, sev- 
eral examples are given in Figures 3 through 5. 
Figure 3 shows an instruction that moves a 
word from an address that is 56 plus the con- 
tents of R5 to an address that is 270 plus the 

lR"l 

~ IR" )  

IRnl + 

1 REGISTER I Rn 
I 

AUTOINCREMENT DEFERRED I IABSOLUTEI I :F:D:RESS 

I 1 -  
INDEXED 
18.1 

OOSPLACEMINT I { :! } DISPLACEMENT IRn) I I R E L A T l V l l  &DDRESS 

n = DTHROUGH 15 
x = OTHRDUGH 14 

Figure 2. Assembler syntax. 

M O V W  OPCODE 

BYTE DISPLACEMENT M O D E  
REGISTER 6 

DISPLACEMENT 

WORD DISPLACEMENT M O D E  
REGISTER 6 

DISPLACEMENT 

I 
Figure 3. MOVW 56(R5), 270(R6). 
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LITERAL M O D E  
0 1 CONSTANT 1 

5 0 REGISTER 0 
REGISTER M O D E  

3 
{ 
{ 
{ 

INDEX PREFIX 
4 2 REGISTER 2 

AUTOINCREMENT MODE 
9 REGISTER 15 IABSOLUTEI 16 

- 

- ADDRESS A 

- 

5 A !! 

contents of R4. Note that the displacement 56 
can be represented in a byte while the dis- 
placement 270 requires a word. The instruction 
occupies six bytes. Figure 4 shows an instruc- 
tion that adds 1 to  a longword in RO and stores 
the result at a memory address which is the sum 
of A and four times the contents of R2. This 
instruction occupies nine bytes. Finally, a “re- 
turn from subroutine” instruction is shown in 
Figure 5. It has no explicit operands and oc- 
cupies a single byte. 

The only significant instance where there is 
nongeneral specification of operands is in  the 
specification of targets for branch instructions. 
Since invariably the target of a branch instruc- 
tion is a small displacement from the current 
PC, most branch instructions simply take a one- 
byte PC relative displacement. This is exactly as 
if byte displacement mode were used with the 
PC used as the register, except that the operand 
specifier byte is not needed. Because of the per- 
vasiveness of branch instructions in  code, this 
one-byte saving results in  a nontrivial reduction 
in code size. An example of the branch instruc- 
tion branch on equal is given in Figure 6. 

Figure 

Instruction Set 
A major goal of the VAX-I 1 instruction set de- 
sign was to provide for effective compiler-gen- 
erated code. Four decisions helped to realize 
this goal. 

A very regular and consistent treatment 
of operators. Thus, for example, because 
there is a divide longword instruction, 
there are also divide word and divide 
byte instructions. 
An avoidance of instructions unlikely to  
be generated by a compiler. 
Inclusion of several forms of common 
operators. For example, the integer add 
instructions are included in three forms: 
( I )  one operand where the value one is 
added to a operand, (2) two operand 
where one operand is added to a second, 
and (3) three operand where one oper- 
and is added to a second and the result 
stored in a third. Because the VAX-I1 
instruction format allows general specifi- 
cations of the operands, VAX-11 pro- 
grams often have the structure (though 
not the encoding) of the canonic pro- 
gram form proposed in [Flynn, 19771. 

R S E  OPCODE 

Figure 5. RSB. 

BEOL OPCODE 

DISPLACEMENT 

TI[ 
a - P C  

Figure 6. BEQL A. 
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4. Replacement of common instruction se- 
quences with single instructions. Exam- 
ples of this include procedure calling, 
multiway branching, loop control, and 
array subscript calculation. 

The effect of these decisions is reflected 
through several observations. First, despite the 
larger virtual address and instruction set sup- 
port for more data-types, compiler (and hand) 
generated code for VAX-I 1 is typically smaller 
than the equivalent PDP-I 1 code for algorithms 
operating on data-types supported by the PDP- 
1 1 .  Second, of the 243 instructions in the in- 
struction set, about 75 percent are generated by 
the VAX-II FORTRAN compiler. Of the in- 
structions not generated, most operate on data- 
types not part of the FORTRAN language. 

A complete list of the VAX-I 1 instructions is 
given in the appendix. The following is an over- 
view of the instruction set. 

1.  Integer logic and arithmetic. Byte, word, 
and longword are the primary data- 
types. A fairly conventional group of 
arithmetic and logical instructions is 
provided. The result-generating dyadic 
arithmetic and logical instructions are 
provided in two and three operand 
forms. A number of optimizations are 
included: “clear,” which is a move of 
zero; “test,” which is a compare against 
zero; and “increment” and “decre- 
ment,” which are optimizations of add 
one and subtract one, respectively. A 
complete set of converts is provided 
which covers both the integer and the 
floating data-types. In contrast to other 
architectures, only a few shift-type in- 
structions are provided; it was felt that 
shifts are mostly used for field isolation 
which is much more conveniently done 
with the field instructions described 
later. In  order to support greater-than- 
longword precision integer operations, a 

few special instructions are provided: 
“extended multiply,” “divide,” “add 
with carry,’’ and “subtract with carry.” 
Floating-point instructions. Again a con- 
ventional group of instructions are in- 
cluded with result-producing dyadic 
operators in  two and three operand 
forms. Several specialized floating-point 
instructions are included. The “extended 
modulus” instruction multiplies two 
floating operands together and stores the 
integer and fraction parts of the product 
in separate result operands. The “poly- 
nomial” instruction computes a poly- 
nomial from a table of coefficients in 
memory. Both these instructions employ 
greater than normal precision and are 
useful in high accuracy mathematical 
routines. A “convert rounded” instruc- 
tion is provided which implements AL- 
GOL rather than FORTRAN conven- 
tions for converting from floating-point 
to integer. 

3. Address instructions. The “move ad- 
dress” instructions store in the result op- 
erand the effective address of the source 
operand. The “push address” optimiza- 
tions push on the stack (defined by SP) 
the effective address of the source oper- 
and. The latter are used extensively in 
subroutine calling. 
Field instructions. The “extract field” in- 
structions extract a 0- to 32-bit field, 
sign- or zero-extend it if  it is less than 32 
bits, and store it in a longword operand. 
The “compare field” instructions com- 
pare a (sign- or zero-extended if neces- 
sary) field against a longword operand. 
The “find first” instructions find the first 
occurrence of a set or clear bit in a field. 
Control instructions. There is a complete 
set of conditional branches supporting 
both a signed and, where appropriate, an 
unsigned interpretation of the various 

2. 

4. 

5 .  
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data-types. These branches test the con- 
dition codes and take a one-byte PC rel- 
ative branch displacement. There are 
three unconditional branch instructions: 
the first taking a one-byte PC relative 
displacement, the second taking a word 
PC relative displacement, and the third - 
called “jump” - taking a general oper- 
and specification. Paralleling these three 
instructions are three “branch to sub- 
routine” instructions. These push the cu- 
rent PC on the stack before transferring 
control. The single-byte “return from 
subroutine” instruction returns from 
subroutines called by these instructions. 
There is a set of “branch on bit” instruc- 
tions which branch on the state of a 
single bit and, depending on the instruc- 
tion, set, clear, or leave unchanged that 
bit. 

The “add compare and branch” in- 
structions are used for loop control. A 
step operand is added to the loop control 
operand and the sum is compared to a 
limit operand. Optimizations of loop 
control include the “add one and 
branch” instructions which assume a 
step of one, and the “subtract one and 
branch” instructions which assume a 
step of minus one and a limit of zero. 

The “case” instructions implement the 
computed goto in FORTRAN and case 
statements in other languages. A selector 
operand is checked to  see that it lies in 
range and is then used to select one of a 
table of PC relative branch dis- 
placements following the instruction. 
Queue instructions. The queue represen- 
tation is a double-linked circular list. In- 
structions are provided to insert an item 
into a queue or to remove an item from a 
queue. 
Character string instructions. The general 
move character instruction takes five op- 
erands specifying the lengths and start- 

6 .  

7. 

8. 

ing addresses of the source and  
destination strings and a f i l l  character to 
be used if the source string is shorter 
than the destination string. The instruc- 
tion functions correctly regardless of 
string overlap. An optimized move char- 
acter instruction assumes the string 
lengths are equal and takes three oper- 
ands. Paralleling the move instructions 
are two “compare character” instruc- 
tions. The “move translated characters” 
instruction is similar to the general move 
character instruction except that the 
source string bytes are translated by a 
translation table specified by the instruc- 
tion before being moved to destination 
string. The “move translated until es- 
cape” instruction stops if the result of a 
translation matches the escape character 
specified by one of its operands. The “lo- 
cate character” and “skip character” in- 
structions find, respectively, the first 
occurrence or non-occurrence of a char- 
acter in a string. The “scan” and “span” 
instructions find, respectively, the first 
occurrence or non-occurrence of a char- 
acter within a specified character set in a 
string. The “match characters” instruc- 
tion finds the first occurrence of a sub- 
string within a string which matches a 
specified pattern string. 
Packed decimal instructions. A conven- 
tional set of arithmetic instructions is 
provided. The “arithmetic shift and 
round” instruction provides decimal- 
point scaling and rounding. Converts are 
provided to and from longword integers, 
leading separate decimal strings, and 
trailing embedded decimal strings. A 
comprehensive “edit” instruction is in- 
cluded. 

VAX-11 Procedure Instructions 

A major goal of the VAX-11 design was to 
have a single system-wide procedure calling 
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- 
CONDITION HANDLER 

ENTRY MASK PSW 

OLD AP 

OLD FP 

RETURN PC 

convention that would apply to all intermodule 
calls in the various languages, calls for oper- 
ating system services, and calls to  the common 
run-time system. Three VAX-11 instructions 
support this convention: two “call” instructions 
(which are indistinguishable as far as the called 
procedure is concerned) and a “return” instruc- 
tion. 

The call instructions assume that the first 
word of a procedure is an entry mask which 
specifies which registers are to be used by the 
procedure and thus need to be saved. (Actually 
only RO through R11 are controlled by the en- 
try mask and bits 15: 12 of the mask are reserved 
for other purposes.) After pushing the registers 
to be saved on the stack, the call instruction 
pushes AP, FP, PC, a longword containing the 
PSW and the entry mask, and a zero-valued 
longword which is the initial value of a condi- 
tion-handler address. The call instruction then 
loads F P  with the contents of SP and AP with 
the argument list address. The appearance of 
the stack frame after the call is shown in the 
upper part of Figure 7. 

The form of the argument list is shown in the 
lower part of Figure 7. It consists of an argu- 
ment count and list of longword arguments 
which are typically addresses. The CALLG in- 
struction takes two operands: one specifying the 
procedure address and the other specifying the 
address of the argument list assumed arbitrarily 
located in memory. The CALLS instruction 
also takes two operands: one the procedure ad- 
dress and the other an argument count. CALLS 
assumes that the arguments have been pushed 
on the stack and pushes the argument count im- 
mediately prior to saving the registers con- 
trolled by the entry mask. It also sets bit 13 of 
the saved entry mask to indicate that a CALLS 
instruction is used to  make the call. 

The return instruction uses F P  to locate the 
stack frame. It loads SP with the contents of F P  
and restores PSW through PC by popping the 
stack. The saved entry mask controls the pop- 

- FP SP 

Ti 

AP 

OLD RO ..e R11 

9. 

Figure 7. Stack frame. 

ping and restoring of R 11 through RO. Finally, 
if the bit indicating CALLS is set, the argument 
list is removed from the stack. 

Memory Management Design Alternatives 

Memory management is comprised of the 
mechanisms used: ( I )  to map the virtual ad- 
dresses generated by processes to physical mem- 
ory addresses; (2) to control access to memory 
(i.e., to  control whether a process has read, 
write, or no access to various areas of memory); 
and (3) to allow a process to execute even if all 
of its virtual address space is not simultaneously 
mapped to physical memory (i.e., to provide so- 
called virtual memory facilities). The memory 
management was the most difficult part of the 
architecture to design. Three alternatives were 
pursued, and full designs were completed for 
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the first two alternatives and nearly completed 
for the third. The three alternatives were:* 

A paged form of memory management 
with access control at the page level and 
a small number (four) of hierarchical ac- 
cess modes whose use would be dedica- 
t ed  t o  spec i f i c  p u r p o s e s .  T h i s  
represented an evolution of the PDP- 
1 1 /70 memory management. 
A paged and segmented form with access 
control at the segment level and a larger 
number (eight) of hierarchical access 
modes which would be used quite gener- 
ally. Although it differed in a number of 
ways, the design was motivated by the 
Multics [Organick, 1972; Schroeder and 
Saltzer, 19711 architecture and the Hon- 
eywell 6180 implementation. 
A capabilities [Needham, 1972; Need- 
ham and Walker, 19771 form with access 
control provided by the capabilities and 
the ability to page larger objects de- 
scribed by the capabilities. 

The first alternative was finally selected. The 
second alternative was rejected because it was 
felt that the real increase in functionality in- 
adequately offset the increased architectural 
complexity. The third alternative appeared to 
offer functionality advantages that could be 
useful over the long term. However, it was un- 
likely that these advantages could be exploited 
in the near term. Further, it appeared that the 
complexity of the capabilities design was in- 
appropriate for a minicomputer system. 

1. 

2. 

3. 

Memory Mapping 

The 4.3-gigabyte virtual address space is di- 
vided into four regions as shown in Figure 8. 

PROGRAM 

REGION PER-PROCESS SPACE 
[ONE FOR EACH 
EXECUTABLE PROCESS) 

CONTROL 
REGION 

SYSTEM 
REGION 

SYSTEM 
SPACE 

-3GB 

- 4 0 0  

Figure 8. Virtual address space. 
% 

The first two regions - the program and control 
regions - comprise the per-process virtual ad- 
dress space which is uniquely mapped for each 
process. The second two regions - the system 
region and a region reserved for future use - 
comprise the system virtual address space which 
is singly mapped for all processes. 

Each of the regions serves different purposes. 
The program region contains user programs 
and data, and the top of the region is a dynamic 
memory allocation point. The control region 
contains operating system data structures spe- 
cific to the process and the user stack. The sys- 
tem region contains procedures tha t  are  
common to all processes (such as those that 
comprise the operating system and RMS) and 
(as will be seen later) page tables. 

A virtual address has the structure shown in 
the upper part of Figure 9. Bits 8:0 specify a 
byte within a 512-byte page which is the basic 
unit of mapping. Bits 29:9 specify a virtual page 
number (VPN). Bits 31:30 select the virtual ad- 
dress region. The mechanism of mapping con- 
sists of using the region select bits to  select a 
page table which consists of page table entries 
(PTEs). After a check to  see that it is not too 
large, the VPN is used to  index into the page 

*It should not be construed that memory management is independent of the rest of the architecture. The various memory 
management alternatives required different definitions of the addressing modes and different instruction level support for 
addressing. 
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Figure 9. Virtual and physical addresses 

table to select a PTE. The PTE contains either: 
(1) 21-bit physical page frame number which is 
concatenated with the nine low order bytes in  
page bits to form a 30-bit physical address as 
shown in the lower part of Figure 9, or ( 2 )  an 
indication that the virtual page accessed is not 
in physical memory. The latter case is called a 
page fault. Instruction execution in the current 
procedure is suspended and control is trans- 
ferred to an operating system procedure which 
causes the missing virtual page to be brought 
into physical memory. At this point, instruction 
execution in the suspended procedure can re- 
sume transparently. 

The page table for the system region is de- 
fined by the system base register which contains 
the physical address of the start of the system 
region page table and the system length register 
which contains the length of the table. Thus, the 
system region page table is contiguous in phys- 
ical memory. 

The per-process space page tables are defined 
similarly by the program and control region 
base registers and length registers. However, the 
base registers do not contain physical addresses; 
rather, they contain system region virtual ad- 
dresses. Thus, the per-process page tables are 
contiguous in the system region virtual address 

space and are not necessarily contiguous in 
physical memory. This placement of the per- 
process page tables permits them to be paged 
and avoids what would otherwise be a serious 
physical memory allocation problem. 

Access Control 

At a given point in time, a process executes in 
one of four access modes. The modes from most 
to least privileged are called Kernel, Executive, 
Supervisor and User. The use of these modes by 
VAX/VMS is as follows. 

1 .  Kernel. Interrupt and exception han- 
dling, scheduling, paging, physical I/O, 
etc. 

2. Executive. Logical 1 / 0  as provided by 
RMS. 

3.  Supervisor. The command interpreter. 
4. User. User procedures and data. 

The accessability of each page (read, write, or 
no access) from each access mode is specified in 
the PTE for that page. Any attempt to improp- 
erly access a page is suppressed and control is 
transferred to an operating system procedure. 
The accessibility is assumed hierarchically or- 
dered: If a page is writable from any given 
mode, it is also readable; and if a page is acces- 
sible from a less-privileged mode, it is accessible 
from a more privileged mode. Thus, for ex- 
ample, a page can be readable and writable 
from Kernel mode, only readable from Execu- 
tive mode, and inaccessible from Supervisor 
and User modes. 

A procedure executing in a less-privileged 
mode often needs to  call a procedure that exe- 
cutes in a more privileged mode; e.g., a user 
program needs an operating system service per- 
formed. The access mode is changed to a more 
privileged mode by executing a “change mode” 
instruction that transfers control to a routine 
executing at the new access mode. A return is 
made to original access mode by executing a 
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“return from exception or interrupt” instruc- 
tion (REI). 

The current access mode is stored in the pro- 
cessor status longword (PSL) whose low-order 
16 bits comprise the PSW. Also stored in the 
PSL is the previous access mode, i.e., the access 
mode from which the current access mode was 
called. The previous mode information is used 
by the special “probe” instructions which vali- 
date arguments passed in cross-access mode 
calls. 

Procedures running at each of the access 
modes require separate stacks with appropriate 
accessibility. To facilitate this, each process has 
four copies of SP which are selected according 
to the current access mode field in the PSL. A 
procedure always accesses the correct stack by 
using R14. 

In an earlier section it was stated that the 
VAX- 1 1 standard CALL instruction is used for 
all calls including those for operating system 
services. Indeed, procedures do  call the oper- 
ating system using the CALL instruction. The 
target of the CALL instruction is the minimal 
procedure consisting of an entry mask, a change 
mode instruction and a return instruction. 
Thus, access mode changing is transparent to 
the calling procedure. 

Interrupts and Exceptions 

Interrupts and exceptions are forced changes 
in control flow other than those explicitly in- 
dicated by the executing program. The dis- 
tinction between them is that interrupts are 
normally unrelated to the currently executing 
program while exceptions are a direct con- 
sequence of program execution. Examples of in- 
terrupt conditions are status changes in 1 / 0  
devices: examples of exception conditions are 
arithmetic overflow or a memory management 
access control violation. 

VAX- 1 1 provides a 3 1 -priority-level interrupt 
system. Sixteen levels (16 through 31) are pro- 
vided for hardware while 15 levels (1 through 

15) are provided for software. (Level 0 is used 
for normal program execution.) The current in- 
terrupt priority level (IPL) is stored in a field in 
the PSL. When an interrupt request is made at a 
level higher than IPL, the current PC and PSL 
are pushed on the stack and new PC is obtained 
from a vector selected by the interrupt requester 
(a new PSL is generated by the CPU). Inter- 
rupts are serviced by routines executing with 
Kernel mode access control. Since interrupts 
are appropriately serviced in a system-wide con- 
text rather than a specific process context, the 
stack used for interrupts is defined by another 
stack pointer called the interrupt stack pointer. 
(Just as for the multiple stack pointers used in 
process context, an interrupt routine accesses 
the interrupt stack using R14.) An interrupt ser- 
vice is terminated by execution of an REI in- 
struction which loads PC and PSL from the top 
two longwords on the stack. 

Exceptions are handled like interrupts except 
for the following: (1) because exceptions arise in 
a specific process context, the Kernel mode 
stack for that process is used to store PC and 
PSL, and (2) additional parameters (such as the 
virtual address causing a page fault) may be 
pushed on the stack. 

Process Context Switching 

tecture, the process state or context consists of: 
From the standpoint of the VAX-I1 archi- 

1 .  

2. 

The 15 general registers RO through R13 
and R15. 
Four copies of R14 (SP): one for each of 
Kernel, Executive, Supervisor, and User 
access modes. 

Two base and two limit registers for the 
program and control region page tables. 

This context is gathered together in a data 
structure called a process control block (PCB) 
which normally resides in memory. While a 

3. The PSL. 
4. 
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process is executing, the process context can be 
considered to reside in processor registers. To 
switch from one process to another, it is neces- 
sary that the process context from the pre- 
viously executing process be saved in its PCB in 
memory, and that the process context for the 
process about to be executed be loaded from its 
PCB in memory. Two VAX-11 instructions 
support context switching. The “save process 
context” instruction saves the complete process 
context in memory while the “load process con- 
text” instruction loads the complete process 
context from memory. 

I/O 
Much like the PDP-11, VAX-I 1 has no spe- 

cific 1 / 0  instructions. Rather, 1/0 devices and 
device controllers are implemented with a set of 
registers that have addresses in the physical 
memory address space. The CPU controls 1 /0  
devices by writing these registers, the devices re- 
turn status by writing these registers, and the 
CPU subsequently reading them. The normal 
memory management mechanism controls ac- 
cess to 1 / 0  device registers, and a process hav- 
ing a particular device’s registers mapped into 
its address space can control that device using 
the regular instruction set. 

Compatibility Mode 

As mentioned in the VAX-11 overview, com- 
patibility mode in the VAX-11 architecture pro- 
vides the basic PDP-I 1 instruction set less- 
privileged and floating-point instructions. 
Compatibility mode is intended to support a 
user as opposed to an operating system environ- 
ment. Normally a Compatibility mode program 
is combined with a set of Native mode pro- 
cedures whose purpose it is to map service 
requests from some particular PDP- 1 1 oper- 
ating system environment into VAX/VMS ser- 
vices. 

In Compatibility mode, the 16-bit PDP-11 
addresses are zero-extended to  32 bits where 

standard native mode mapping and access con- 
trol apply. The eight 16-bit PDP-11 general reg- 
isters overmap the Native mode general 
registers RO through R6 and R15; thus, the 
PDP-11 processor state is contained wholly 
within the native mode processor state. 

Compatibility mode is entered by setting the 
compatibility mode bit in the PSL. Com- 
patibility mode is left by executing a PDP-I1 
“trap” instruction (such as that used to make 
operating system service requests), and on inter- 
rupts and exceptions. 

VAX-11/780 IMPLEMENTATION 

VAX- 1 1 /780 
The VAX- 1 1 /780 computer system is the first 

implementation of the VAX-11 architecture. 
For instructions executed in Compatibility 
mode, the VAX-I I /780 has a performance 
comparable to that of the PDP-I 1/70. For in- 
structions executed in Native mode, the VAX- 
11/780 has a performance in excess of that of 
the PDP-11/70 and, thus, represents the new 
high end of the I 1  family (LSI-11, PDP-11, 

A block diagram of the VAX-11/780 system 
is given in Figure 10. The system consists of a 
central processing unit (CPU), the console sub- 
system, the memory subsystem, and the 1/0 
subsystem. The CPU and the memory and 1 / 0  
subsystems are joined by a high-speed synchro- 
nous bus called the synchronous backplane in- 
terconnect (SBI). 

VAX-I 1). 

CPU 
The CPU is a microprogrammed processor 

that implements the Native and Compatibility 
mode instruction sets, the memory manage- 
ment, and the interrupt and exception mecha- 
nisms. The CPU has 32-bit main data paths and 
is built almost entirely of conventional Shottky 
TTL components. 

To reduce effective memory access time, the 
CPU includes an 8-Kbyte write-through cache 
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Figure I O .  VAX- 1 1 /780 system 

or buffer memory. The cache organization is 
two-way associative with an eight-byte block 
size. To reduce delays due to writes, the CPU 
includes a write buffer. The CPU issues the 
write to the buffer and the actual memory write 
takes place in parallel with other CPU activity. 

The CPU contains a 128-entry address trans- 
lation buffer which is a cache of recent virtual- 
to-physical translations. The buffer is divided 
into two 64-entry sections: one for the per-pro- 
cess regions and one for the system region. This 
division permits the system region translations 
to remain unaffected by a process context 
switch. 

A fourth buffer in the CPU is the eight-byte 
instruction buffer. It serves two purposes. First, 
it decomposes the highly variable instruction 
format into its basic components and, second, it 
constantly fetches ahead to reduce delays in ob- 
taining the instruction components. 

The CPU includes two standard clocks. The 
programmable real-time clock is used by the 
operating system for local timing purposes. The 
time-of-year clock with its own battery backup 
is the long-term reference for the operating sys- 
tem. It is automatically read on system startup 
to eliminate the need for manual entry of date 
and time. 

The CPU includes 12 Kbytes of writable di- 
agnostic control store (WDCS) which is used 
for diagnostic purposes, implementation of cer- 
tain instructions, and for future microcode 
changes. As an option for very sophisticated 
users, another 12 Kbytes of writable control 
store is available. 

A second option is the Floating-Point Accel- 
erator (FPA). Although the basic CPU imple- 
ments the full floating-point instruction set, the 
FPA provides high speed floating-point hard- 
ware. It is logically invisible to programs and 
affects only their running time. 

Console Subsystem 

The console subsystem is centered around an 
LSI-I 1 computer with 16 Kbytes of RAM and 8 
Kbytes of ROM (used to store the LSI-11 boot- 
strap, LSI-11 diagnostics, and console rou- 
tines). Also included are a floppy disk, an 
interface to the console terminal, and a port for 
remote diagnostic purposes. 

The floppy disk in the console subsystem 
serves multiple purposes. It stores the main sys- 
tem bootstrap and diagnostics and serves as a 
medium for distribution of software updates. 

SBI 

The SBI is the primary control and data 
transfer path in the VAX-11/780 system. Be- 
cause the cache and write buffer largely de- 
couple the CPU performance from the memory 
access time, the SBI design was optimized for 
bandwidth and reliability rather than the lowest 
possible access time. 

The SBI is a synchronous bus with a cycle 
time of 200 nanoseconds. The data path width 
of the SBI is 32 bits. During each 200-nano- 
second cycle, either 32 bits of data or a 30-bit 
physical address can be transferred. Because 
each 32-bit read or write requires transmission 
of both address and data, two SBI cycles are 
used for a complete transaction. The SBI pro- 
tocol permits 64-bit reads or writes using one 
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address cycle and two data transfer cycles; the 
CPU and 1/0 subsystem use this mode when- 
ever possible. For read transactions the bus is 
reacquired by the memory in order to send the 
data; thus, the bus is not held during the mem- 
ory access time. 

Arbitration of the SBI is distributed: each in- 
terface to the SBI has a specific priority and its 
own bus request line. When an interface wishes 
to use the bus, it asserts its bus request line. If, 
at the end of a 200-nanosecond cycle, there are 
no interfaces of higher priority requesting the 
bus, the interface takes control of the bus. 

Extensive checking is done on the SBI. Each 
transfer is parity-checked and confirmed by the 
receiver. The arbitration process and general 
observance of the SBI protocol are checked by 
each SBI interface during each SBI cycle. The 
processor maintains a running 16-cycle history 
of the SBI; any SBI error condition causes this 
history to be locked and preserved for diagnos- 
tic purposes. 

Memory Subsystem 

The memory subsystem consists of one or 
two memory controllers with up to 1 Mbytes of 
memory on each. The memory is organized in 
64-bit quadwords with an 8-bit ECC which pro- 
vides single-bit error correction and double-bit 
error detection. The memory is built of 4 Kbit 
MOS RAM components. 

The memory controllers have buffers that 
hold up to four memory requests. These buffers 
substantially increase the utilization of the SBI 
and memory by permitting the pipelining of 
multiple memory requests. If desired, quad- 
word physical addresses can be interleaved 
across the memory controllers. 

As an option, battery backup is available 
which preserves the contents of memory across 
short-term power failures. 

I/O Subsystem 

The 1 / 0  subsystem consists of buffered inter- 
faces or adapters between the SBI and the two 

types of peripheral buses used on PDP-I 1 sys- 
tems: the Unibus and the Massbus. One Unibus 
adapter and up to four Massbus adapters can 
be configured on a VAX-I 1/780 system. 

The Unibus is a medium speed multiplexer 
bus that is used as a primary memory as well as 
peripheral bus in many PDP-11 systems. It has 
an 18-bit physical address space and supports 
byte and word transfers. In addition to imple- 
menting the Unibus protocol and transmitting 
interrupts to the CPU, the Unibus adapter pro- 
vides two other functions. The first is mapping 
18-bit Unibus addresses to 30-bit SBI physical 
addresses. This is accomplished in a manner 
substantially identical to the virtual-to-physical 
mapping implemented by the CPU. The Unibus 
address space is divided into 512 512-byte 
pages. Each Unibus page has a page table entry 
(residing in the Unibus adapter) which maps 
addresses in that page to physical memory ad- 
dresses. In addition to providing address trans- 
la t ion,  the mapping permits contiguous 
transfers on the Unibus which cross page 
boundaries to be mapped to discontiguous 
physical memory page frames. 

The second function performed by the 
Unibus adapter is assembling 16-bit Unibus 
transfers (both reads and writes) into 64-bit SBI 
transfers. This operation (which is applicable 
only to block transfers such as from disks) ap- 
preciably reduces SBI traffic due to  Unibus op- 
erations. There are 15 8-byte buffers in the 
Unibus adapter permitting 15 simultaneous 
buffered transactions. Additionally, there is an 
unbuffered path through the Unibus adapter 
permitting an arbitrary number of simultaneous 
unbuffered transfers. 

The Massbus is a high speed block transfer 
bus used primarily for disks and tapes. The 
Massbus adapter provides much the same func- 
tionality as the Unibus adapter. The physical 
addresses into which transfers are made are de- 
fined by a page table; again, this permits con- 
tiguous device transfers into discontiguous 
physical memory. 
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Buffering is provided in the Massbus adapter 
which minimizes the probability of device over- 
runs and assembles data into 64-bit units for 
transfer over the SBI. 
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APPENDIX - VAX-11 INSTRUCTION SET 

Integer and Floating-point Logical 
Instructions 

MOV- 
MNEG- 
MCOM- 
MOVZ- 

CLR- 
CVT- 

CVTR-L 

CMP- 
TST- 
BIS-2 
BIS-3 
BIC-2 
BIC-3 
BIT- 
XOR-2 

XOR-3 

ROTL 
PUSHL 

Move (B, W, L, F, D, Q)* 
Move Negated (B, W, L, F, D) 
Move Complemented (B, W, L) 
Move Zero-Extended (BW, BL, 

Clear (B, W, L = F, Q = D) 
Convert (B, W, L, F, D) (B, W, L, 
F, D) 
Convert  Rounded (F ,  D) t o  
Longword 
Compare (B, W, L, F,  D) 
Test (B, W, L, F, D) 
Bit Set (B, W, L) 2-Operand 
Bit Set (B, W, L) 3-Operand 
Bit Clear (B, W, L) 2-Operand 
Bit Clear (B, W, L) 3-Operand 
Bit Test (B, W, L) 
Exclusive OR (B, W, L) 2-Oper- 
and 
Exclusive OR (B, W, L) 3-Oper- 
and 
Rotate Longword 
Push Longword 

WL) 

Integer and Floating-point Arithmetic 
Instructions 

INC- 
DEC- 
ASH- 
ADD-2 
ADD-3 
ADWC 
ADAWI 
SUB-2 

SUB-3 

SBWC 
MUL-2 

MUL-3 

EMUL 
DIV-2 

DIV-3 

EDIV 
EMOD- 
POLY- 

Incremeent (B, W, L) 
Decrement (B, W, L) 
Arithmetic Shift (L, Q) 
Add (B, W, L, F, D) 2-Operand 
Add (B, W, L, F, D) 3-Operand 
Add with Carry 
Add Aligned Word Interlocked 
Subtract (B, W, L, F, D) 2-Oper- 
and 
Subtract (B, W, L, F, D) 3-Oper- 
and 
Subtract with Carry 
Multiply (B, W, L, F, D) 2-Oper- 
and 
Multiply (B, W, L, F, D) 3-Oper- 
and 
Extended Multiply 
Divide (B, W, L, F,  D) 2-Oper- 
and 
Divide (B, W, L, F, D) 3-Oper- 
and 
Extended Divide 
Extended Modulus (F, D) 
Polynomial Evaluation (F, D) 

* B = byte, W = word, L = longword, F = floating, D = double floating. Q = quadword.  S = set, C = clear 
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Packed Decimal Instructions 

MOVP 
CMPP3 
CMPP4 
ASHP 

ADDP4 
ADDP6 
SUBP4 
SUBP6 
MULP 
DIVP 
CVTLP 
CVTPL 
CVTPT 
CVTTP 
CVTPS 
CVTSP 
EDITPC 

Move Packed 
Compare Packed 3-Operand 
Compare Packed 4-Operand 
Arithmetic Shift and Round  
Packed 
Add Packed 4-Operand 
Add Packed 6-Operand 
Subtract Packed 4-Operand 
Subtract Packed 6-Operand 
Multiply Packed 
Divide Packed 
Convert Long to Packed 
Convert Packed to Long 
Convert Packed to Trailing 
Convert Trailing to Packed 
Convert Packed to Separate 
Convert Separate to Packed 
Edit Packed to Character String 

Character String Instructions 

MOVC3 
MOVCS 
MOVTC 
MOVTUC 
CMPC3 
CMPCS 
LOCC 
SKPC 
SCANC 
SPANC 
MATCHC 

Move Character 3-Operand 
Move Character 5-Operand 
Move Translated Characters 
Move Translated Until Character 
Compare Characters 3-Operand 
Compare Characters 5-Operand 
Locate Character 
Skip Character 
Scan Characters 
Span Characters 
Match Characters 

Variable-Length Bit Field Instructions 

EXTV Extract Field 
EXTZV Extract Zero-Extended Field 
INSV Insert Field 
CMPV Compare Field 
CMPZV Compare Zero-Extended Field 
FFS Find First Set 
FFC Find First Clear 

Index Instruction 

INDEX Compute Index 

Queue Instructions 

INSQUE Insert Entry in Queue 
REMQUE Remove Entry from Queue 

Address Manipulation Instructions 

MOVA- 

PUSHA- 

Move Address (B, W, L = F, Q = 
D) 
Push Address (B, W, L = F, Q = 
D) on Stack 

Processor State Instructions 

PUSHR Push Registers on Stack 
POPR Pop Registers from Stack 
MOVPSL Move from Processor Status 

Longword 
BISPSW Bit Set Processor Status Word 
BICPSW Bit Clear Processor Status Word 

Unconditional Branch and Jump 
Instructions 

B R- 
JMP Jump 

Branch on Bit Instructions 

BLB- 
BB- 
BBS- 
BBC- 

BBSSI 

BBCCI 

Branch with (B, W) Displacement 

Branch on Low Bit (S, C) 
Branch on Bit (S, C) 
Branch on Bit Set and (S, C) Bit 
Branch on Bit Clear and (S, C) 
Bit 
Branch on Bit Set and Set Bit In- 
terlocked 
Branch on Bit Clear and Clear Bit 
Interlocked 

Loop and Case Branch 

ACB- 

AOBLEQ 

AOBLSS 
SOBGEQ 

SOBGTR 

CASE- 

Add, Compare and Branch (B, 

Add One and Branch Less Than 
or Equal 
Add One and Branch Less Than 
Subtract One and Branch Greater 
Than or Equal 
Subtract One and Branch Greater 
Than 
Case on (B, W, L) 

w ,  L, F, D) 
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Subroutine Call and Return Instructions 

BSB- 

JSB Jump to Subroutine 
RSB Return from Subroutine 

Procedure Call and Return Instructions 

CALLG Call Procedure with General Ar- 
gument List 

CALLS Call Procedure with Stack Argu- 
ment List 

RET Return from Procedure 

Access Mode Instructions 

CHM- 

REI 

PROBER Probe Read 
PROBEW Probe Write 

Branch on Condition Code 

BLSS Less Than 
BLSSU Less Than Unsigned 
(BCS) (Carry Set) 
BLEQ Less Than or Equal 

Branch to Subroutine with (B, W) 
Displacement 

Change Mode to  (Kernel, Execu- 
tive, Supervisor, User) 
Return from Exception or Inter- 
rupt 

BLEQU 
BEQL 

BNEQ 

BGTR 
BGTRU 
BGEQ 
BGEQU 
(BCC) 
BVS 
BVC 

(B EQ L U) 

(BNEQU) 

Less Than or  Equal Unsigned 
Equal 
(Equal Unsigned) 
Not Equal 
(Not Equal Unsigned) 
Greater Than 
Greater Than Unsigned 
Greater Than or Equal 
Greater Than or Equal Unsigned 
(Carry Clear) 
Overflow Set 
Overflow Clear 

Privileged Processor Register Control 
Instructions 

SVPCTX Save Process Context 
LDPCTX Load Process Context 
MTPR Move to Process Register 
MFPR Move from Processor Register 

Special Function Instructions 

CRC Cyclic Redundancy Check 
BPT Breakpoint Fault 
X FC Extended Function Call 
NOP No Operation 
HALT Halt 

Opposite: 

A small Register Transfer Module (RTM) system 





I: 





Evolution of Computer Building Blocks 

As discussed in Chapter 1, a computer system can be viewed as a hierarchy of 
structural levels, each level consisting of a set of elements that are aggregates of 
those at the next lower level. From that point of view, the PDP-1 was constructed 
from elements or building blocks that were DEC Systems Modules, each contain- 
ing elements from the switching circuit level of the structural hierarchy (AND 
gates, O R  gates, etc.). When the integrated circuit was introduced, the number of 
components in one indivisible package became an order of magnitude larger than 
it had been with discrete components. The functionality contained in a single 
DEC module increased accordingly, and it was not long before computers were 
constructed using building blocks from the next higher level in the structural hier- 
archy. At that level, the register transfer (RT) level, modules each contained regis- 
ter files, multiplexers, arithmetic logic units, and so on. The functions available in 
a single integrated circuit, and the functionality available in a single module, have 
been dictated by the search for universal functions discussed in the section “LSI 
dilemma,” in Chapter 2. 

While Chapters 4 and 5 are devoted to the history of DEC modules and the 
circuit and logic level characteristics that developed in the various module fami- 
lies as a result of the advances in semiconductor technology, the chapters in Part 
IV emphasize the role of modules as digital systems and computer building 
blocks. Thus, the emphasis is on the use of modules at  the register transfer and 
processor-memory-switch (PMS) levels of the structural hierarchy. 

Two types of building block are discussed: 

1 .  Module sets are building blocks used to  construct digital systems, often 
specialized computers, where short design time is the primary goal. For 
example, they are used in constructing low volume special purpose equip- 
ment, or in teaching. 
Computer elements are mainstream building blocks used to  construct 
computers when the primary goal is cost/performance of the design and 
design time is secondary. 

2. 

REGISTER TRANSFER MODULES (RTMs) 

The most complete examples of the module set building blocks are the Register 
Transfer Modules (RTMs) produced by DEC in the late 1960s and the Macromo- 
dules proposed by Wes Clark in 1967 [Clark, 1967; Ornstein et al., 19671. The 
Register Transfer Modules are of interest because they were building blocks of a 
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Figure 1 Progresslon of packaging of computer elements showing four levels treated in Part IV. 
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high level of functionality which were produced and marketed commercially. 
Moreover, they offer an opportunity to  assess design at the register transfer level 
and to assess the use of design languages. The Macromodules are of interest be- 
cause they preceded the Register Transfer Modules and differed from RTMs in 
several important ways. Macromodules were five times as expensive as RTMs but 
twice as fast. Macromodule systems were less permanent when constructed than 
RTMs but were easier to wire. The two building block types also differed in 
design style. The data memory system with general purpose arithmetic capability 
available in Register Transfer Modules led to a central accumulator style of de- 
sign, whereas Macromodules used a distributed data and memory style. 

Table 1. Register Transfer Module Types 

2-way Branch 
8-way Branch 
Bus Sense and Termination 

Clock 
Delay 
Integrating Delay 
Diverge (null) 
Evoke 
No Operation 
Parallel Merge 
2-way Serial Merge 
4-way Serial Merge 
Subroutine Call 
Program Controlled 
Sequencer 

Data Operator 

2-input AND, OR 
4-input AND, OR 
4-input Decoder 
2-input EXCLUSIVE-OR 
NOT 
Flags (Boolean) 
General Purpose Aritmetic 

Transducers 

Analog-to- Digital 
Digital-to-Analog 
General Purpose Interface 
Input Interface 
Lights and Switches 
Output Interface 
Serial Interface 

Memory 

Byte 
Word Transfer 
4-word Constants 
24-word Constants 
16-word Scratchpad 
256-word Array 
1,024-word Array 
1,024-word Read-only 

The RTM paper (Chapter 18) describes the module set and the design decisions 
leading to it. Two design examples are given, the second being a small stored 
program computer, a nontrivial test of the completeness of the set. The module 
set consisted of 36 modules, of which 10 came from the standard DEC catalog. 
Table 1 gives a list of the modules available. 

Additional studies on Register Transfer Modules documented user experience 
with RTMs. A 1973 workshop on the architecture and application of digital mod- 
ules is reported by Fuller and Siewiorek [1973], who compare the cost, perform- 
ance, and design time of the modular systems to standard small- and medium- 
scale integration systems. They note that modular systems were more expensive 
because a substantial portion of their cost was a result of those features that made 
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them modular. These included features to establish module protocol, to allow 
word extendability, and to ensure electrical compatibility. It was estimated that 
this cost was 50-70 percent of the total cost of Macromodules and 30 percent of 
the total cost of RTMs. Systems built with modules cost between two and ten 
times that of comparable systems built from small- and medium-scale integrated 
circuits. Performance comparisons were also reported and included: 

1. 

2. 

A PDP-8 designed with Register Transfer Modules performed at 40 per- 
cent of the speed of the DEC-built PDP-8 and cost twice as much. 
Matrix multiply programmed on a small machine built with RTMs took 
400 microseconds, 5 microseconds on a CDC 7600, and 35 microseconds 
in Macromodules. 
The Fast Fourier Transform butterfly multiply implemented in Macromo- 
dules was comparable in execution time to one programmed on a CDC 
6600. 
A program for the major path of an electrocardiogram preprocessor exe- 
cuted in 7 microseconds on a CDC 6600 and 37 microseconds on a PDP-9. 
A Macromodule system took 3 microseconds and a TTL design took a 
projected 1.5 microseconds. 

Register Transfer Modules clearly met their educational goal. Their use in Car- 
negie-Mellon’s Digital Systems Laboratory is reported in [Grason and Siewiorek, 
19751. Four student projects are described: a system to simulate the soft landing 
of a rocket under computer control, real-time monitoring of an instrument flight 
trainer, a computer-controlled transit system, and a computer-guided vehicle with 
ultrasonic obstacle detection. 

Module sets have been used in research on design automation at the register 
transfer level. The work with the Carnegie-Mellon RT-CAD system, reported in 
[Siewiorek and Barbacci, 19761, attempted to go beyond the conventional work 
(register transfer level simulation and synthesis of designs from register transfer 
level descriptions) into the realm of automated design space exploration. 

While Register Transfer Modules were used in educational projects and in re- 
search projects, the DEC-built computer using Register Transfer Modules, the 
PDP-16, was not as commercially successful as had been hoped. Until 1965, the 
DEC Modules sector of DEC’s business had been as profitable as any other and 
had been growing as fast. However, once integrated circuits became widely used 
in 1966, the revenues from DEC Modules ceased to grow. Register Transfer Mod- 
ules were an attempt to revive growth in modules by offering building blocks at 
the right level, i.e., the one suggested by the underlying circuit technology. There 
appear to have been two reasons for their lack of success. The first, as described in 
[Grason, et al., 19731, was designer resistance to designing at the higher level; the 
second was that Register Transfer Modules were introduced too late. The avail- 
ability of complex functions in a single chip, particularly microprocessors such as 
the Intel 8008 introduced in the early 1970s, cut short the life of the RTM. 

3. 

4. 
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History might have been different if the module for microprogrammed control 
had been available at the outset, but because low cost semiconductor read-only 
memories were not available, it was not. A second reason for not using micro- 
programming at the outset was that the parallelism inherent in the data-memory 
part of a system could not be fully exploited unless an arbitrarily wide control 
store could be built. Indeed, this limitation is experienced in the use of today’s bit- 
slice sequencers. 

Perhaps the highest payoff from Register Transfer Modules, both an indirect 
and intangible benefit, has been their influence on the bit-slice and other building 
blocks such as the Fairchild MACROLOGIC and AMD 2900-series devices. 
RTMs have provided experience in thinking about the process of design and have 
stimulated thinking about the choices of primitives, notations, and levels. They 
have influenced the choice of data-memory and processor elements and the use of 
microprogrammed controls. 

BIT-SLICES (FRACTIONAL REGISTER TRANSFER LEVEL MODULES) 
AS BUILDING BLOCKS 

Chapter 19 on the CMU-11 is important because it documents the experience 
of testing a set of building blocks in a real design. Only by carrying out a complete 
design (whether on paper or to the breadboard stage) can the suitability be mea- 
sured. The paper is a strong case study; it provides good engineering data, such as 
the breakdown of the package count for each of the three major parts of the 
design: data, control, and Unibus. 

The CMU-I 1 was built using Intel 3000-series bit-slices. Since the time that the 
CMU-I 1 project was started, newer series of bit-slice components have become 
available, most notably the AMD 2900-series. Today, these components are the 
dominant mainstream building blocks and have been used in a variety of appli- 
cations. For example, the 4 bit wide AM2901 slice was used in 1976 to implement 
the 64 bit wide data path of the Floating-Point Processor for the PDP-11/34, and 
bit-slices are now the technology of choice for mid-range PDP-I1 processors 
(Chapter 13). 

The building blocks available in 1978 are reasonably represented by the follow- 
ing: 

1. Datapath slice. A 4-bit-wide slice containing an arithmetic and logic unit, 
16 registers in a two-port file, data buses, shifter, and multiplexers (the 
AM 290 1). 
Microprogram control unit. A circuit which generates control store ad- 
dresses; it contains the micro-level program counter, incrementer, a stack, 
and the circuitry to select the machine state inputs (AM2909: 4 bits wide, 
or AM2911: 12 bits wide). 
Interrupt processing unit. (AM29 14). 
Interface circuits. The AM2917 is a typical circuit and contains bus trans- 
ceivers for 4 lines, a data register, latch, and parity tree. 

2. 

3 .  
4. 
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Design aids include a microprogram assembler, an evaluation kit, and a micro- 
program debugging and editing facility. 

In late 1977, two new circuits with higher functionality were introduced. The 
AM2903, a successor to the AM2901, has added multiplication and division 
primitives, extended shifting, and an expandable register file [Coleman et al., 
19771; and the AM2904 to control shift register linkages, a micro-level status 
register, and carry control. Given this wider range for the designer to  choose 
from, the proportion of a processor that can cost-effectively use bit-slices should 
be higher than the 20 percent in CMU-11. However, it probably would not exceed 
40 percent. For example, 29 percent of the CMU-I 1 cost (board area) is due to the 
circuits for a Unibus interface which could not be implemented with acceptable 
performance by the bit-slice components; even the newly available bit-slices 
would not impact this area. Moreover, as more PDP-11 specific functions are 
added, the area would decrease. 

The bit-slices discussed above use Schottky TTL logic and result in a micro- 
instruction cycle time of between 100 and 300 nanoseconds (200 is average). Bit- 
slices in other logic families exist, for example, the Motorola 10800, an ECL slice, 
which has a microinstruction cycle time of 55 nanoseconds. 

COMPUTER MODULES 

As the underlying circuit technology moves to higher and higher levels of com- 
plexity per chip, competition from modules at the next higher level of design 
becomes viable. An example is the substitution of PMS level modules for RT level 
modules (RTMs). Register transfer level module sets are then either abandoned 
or  applied in a different application area - the higher speed area. 

The proposal for a set of PMS level system-building modules of about mini- 
computer complexity was first made in [Bell et al., 19731, where they were called 
“Computer Modules” (CMs). A CM consists of a processor and memory, to- 
gether with several carefully designed ports, as shown in Figure 2. Given that the 

I 

------- 
P O R T  CONTROLLERS 

Figure 2 PMS diagram of Computer Module 
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1/0 and interrupt structure of conventional computers makes it difficult to con- 
struct closely coupled networks, the port architecture was proposed. It was de- 
signed to handle operations such as handshaking and buffering, executing 
concurrently with the processor of the CM. The port was intended to allow con- 
struction of CM systems covering a wide range of cost and performance. 

The paper argued strongly, based on the increasing complexity and decreasing 
cost of large-scale integrated circuits, for the investigation of large digital mod- 
ules. The then current microprocessors of Intel, National Semiconductor, and 
AMD were seen as precursors of computer modules. The Computer Module was 
also viewed as part of the evolution of centralized computer structures into highly 
distributed, intelligent networks. 

The set of applications investigated included array processing (Fast Fourier 
Transform processing, generalized array processing, and radar signal processing), 
sorting, language processing (compilation and machine language interpretations), 
and process control. In each case, the intermodule communications requirements 
were emphasized, as was the range of performance that could be achieved by 
varying the CM system structure. The following table gives some of the expected 
characteristics of CM systems together with the actual values Cm*, the CMU 
multiprocessor that is the subject of Chapter 20. 

Attribute 1973 Paper Cm* (1977) 

Processors 1 1 
Memory Size 1 Kwords and over 28 Kwords 
Word Size 8 to 16 bits 16 
Ports 2 to 5 2 
CMs per system A few to IO 

several 
thousand 

By late 1973, much of the design of CMs had been solidified. Bus structures 
were postulated, and the inter-CM communication was to be based on mappings 
between address spaces. A system of four CMs is shown in Figure 3. 

In  1975, a second design was started. It used an LSI-11 as the basic CM. A 10 
processor, 5 12-Kbyte primary memory prototype was completed and made avail- 
able for experimentation in the spring of 1977. The detailed design and implemen- 
tation of Cm* are discussed in a set of papers [Jones et al., 1977; Swan et al., 1977; 
and Swan et al., 1977al. Chapter 20 postdates these papers and is included be- 
cause of the real performance data it contains. 

The Chapter 20 Cm* work, sponsored by the National Science Foundation and 
the Advanced Research Projects Agency (ARPA) of the Department of Defense is 
an extension of earlier NSF-sponsored research [Bell et al., 19731 on register 
transfer level modules. As large- and very large-scale integration enable construc- 
tion of the processor-on-a-chip, it is apparent that low level Register Transfer 
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INTER C M  
BUS L 

I 

INTER C M  
BUS M 

Figure 3. PMS diagram of four Computer Modules. 

Modules are obsolete for the construction of all but low volume computers. Al- 
though the research is predicated on structures employing a hundred or so proces- 
sors, this chapter describes the culmination of the first (10 processor) phase. 

The authors motivate their work by appealing to diseconomy-of-scale argu- 
ments. To provide additional context for their research, computer modules 
(Cm*), multiprocessors (C.mmp), and computer networks are described in terms 
of performance and problem suitability. The chapter gives a description of the 
modules structure, together with associated limitations and potential research 
problems. The final, most important part of the chapter evaluates the perform- 
ance of Cm* for five different problems. 

It is interesting to note how the major focus has shifted from computer modules 
per se to multiprocessors. Three separate efforts in the Cm* project can be identi- 
fied: 

1. Multiprocessor architecture research. 
2. 
3. 

Solving the 16-bit addressing limitation of the PDP-11. 
Operating systems primitives - capabilities. 
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Table 2. Comparison of Computer Building Blocks 

DEC Modules 
1000 Series RTMs Bit-Slices CMs 

Design level Combinationa I 
and sequential 
circuit level 

Register transfer 
level 

Algorithm for 
interpreting 
ISP 

PMS level 
(algorithm of 
application) 

Number of 
module types 

35 35 22 plus 
standard 
logic 

40-pin DIP 

40 

1 /2 x 2 x  1 /2 

2 (CM. port 
controller) plus LSI- 
11 options 

Package 

Number of pins 

Plug-in 

22 

1 /2 X4-  1 /2 X7  

PI ug- i n 

72 

1 /2 X8- 1 /2 X5  

Plug-in 

1 44 

Dimensions 
(inches) 

1 /2 X8-  1 /2X  1 0  

Volume (in31 16 

10 

21 

200 

5 

500 

42 

Number of 
transistors 

2,000 + 64 Kbits 

Delay cycle 
time 

200 ns 500 ns 200 ns 2-4 HS 

Logical inter- 
connect be- 
tween modules 

Data Anything Data bus Several data buses; 
map bus and 
intercluster buses 

Control Anything Sequence of 
K.evoke activate 
and timing 
interlock (later 
K(PCS)) 

Micro- 
program 
generated 
module 
control 
signals and 
clock ticks 

Control messages 
via map bus 
intercluster bus 

Design tools Chartware; book 
("how to") 

Micro- 
program- 
ming tools 

Languages 
and ISP 
notation 
operating 
system 

Computer 
example 

PDP-1 

100 Kips 

PDP-S/RTM CMU-11 Crn * 

Speed 120 Kips 240 Kips 640 Kips (Descal) 
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A companion paper to the chapter on Cm* discusses the programming issues 
raised by a computer module structure [Jones et al.,  19781. An operating system, 
called “Star OS,” manages a single Cm* cluster. It provides capability address- 
ing, memory allocation, software module declaration, process management, mes- 
sage transmission, processor multiplexing, and trap and interrupt handling. Star 
OS is distributed in such a fashion that any kernel function can be executed in any 
CM. To decrease average memory reference time, 8 Kbytes of what the designers 
believe to be the most frequently executed Star OS software (interrupt handling, 
process switching, and message communication) is duplicated in each CM. 

Since the time that the article was written, construction of a 50 computer mod- 
ules Cm* has begun and is planned to be operational by the end of 1978 for 
evaluation in 1979. The extension of Cm* is known as “Cm*/50” and is de- 
scribed in Chapter 16. It will be used to test ideas on parallel processing methods, 
fault tolerance, modularity, and the extendability of the Cm* structure. 

CONCLUSIONS 

The four design methods presented in this part are compared in Table 2. As 
stated in Chapter 2, the predominant design level in the future will be the PMS 
level, using fifth generation components (microcomputers) as building blocks. 
The challenge to designers and researchers is therefore to  understand what com- 
munication structures are needed to interconnect these building blocks. 



The Description and Use of 
Register Transfer Modules (RTMs) 

C. GORDON BELL, JOHN EGGERT, 
JOHN GRASON, and PETER WILLIAMS 

INTRODUCTION 

In  the design of digital systems (e.g., com- 
puters) the problem formulation and the design 
solution are most likely carried out at a register 
transfer concept level. Early and recent texts on 
logical and computer design discuss the register 
transfers as primitive components [Bartee et al., 
1962; Chu, 19701. Logical design simulators 
that use a register transfer language have been 
written, and there have been several attempts to 
carry out detailed sequential and combinational 
logic designs from register transfer descriptions 
[Friedman and Yang, 19691. Despite the ac- 
knowledgment that there are primitives based 
on register transfers, there is yet to emerge a 
common set of modules that are taken as primi- 
tive in the same way we think of various flip- 
flop types and NAND and NOR gates. How- 
ever, Clark at Washington University, St. 
Louis, Mo. [Clark, 19671, has been developing 
and evaluating such a basic set of modules, 
called Macromodules. 

Register Transfer Modules are our first at- 
tempt at providing a basic set of modules for 
high level digital systems design. These modules 
have been implemented by the Digital Equip- 
ment Corporation (DEC). The design of RTMs 

has been influenced by many of the above ap- 
proaches and disciplines, and by programming 
methods. This note presents the general prob- 
lem RTMs are trying to solve, the factors con- 
straining their design, a brief description of the 
more important modules from a user’s point of 
view, and two examples of their use. 

Several aspects of the RTM system are im- 
portan t . 

Digital system design is carried out en- 
tirely in terms of the modules; com- 
binational and sequential switching 
circuit design are not used. (The process 
is akin to programming a sequential 
computer.) Design time is significantly 
less than with conventional logical de- 
sign. 
The most abstract representation, and 
usually the only representation of a 
given design, has enough information 
for constructing the system. This repre- 
sentation is a standard flowchart to  spec- 
ify the control flow, coupled to a data 
part that holds the data and carries out 
data operations. 

44 1 
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3. The Register Transfer Modules make ex- 
tensive use of MSI circuitry and can use 
LSI circuitry to provide even lower cost 
modules. 

M O  DU LE DES I G N CONS1 D E  RAT1 0 N S 

The three problem classes for which the mod- 
ules were designed are: special purpose, 
computer-related, and educational digital sys- 
tems. Although the initial motivation for the 
modules was for education, they were not de- 
signed solely for this purpose. The goals for 
educational use place too many constraints on 
the design. The main influence of the educa- 
tional market has been to clarify the peda- 
gogical nature; hence, the description of 
systems is made easy. The special purpose 
digital systems are larger than 20 MSI circuits, 
but smaller than a stored program computer (a 
typical RTM system would have 4- 100 control 
states, 1-4 arithmetic units, and a small mem- 
ory of 16- 1000 words). Computer-related ap- 
plications range from computer peripherals to 
the emulation of computers. 

We make no attempt to show that the mod- 
ules are an optimum set, according to an objec- 
tive function. Because of the elementary nature 
of the control and data operations, the set is 
sufficient to construct digital systems. Table 1 
shows the important design variables for 
RTMs, together with many of the constraints. 
Their design is described in Bell and Grason, 
[1971]. 

THE RTM SYSTEM 

The RTM system consists of about 20 differ- 
ent modules and a method of interconnecting 
modules via a common bus that carries data 
and timing interlock signals for the register 
transfers. Some of the modules (DM, T, and M 
types) connect to the bus in order to transfer 
data, and the remaining modules (K type) “con- 
trol” when data are to be transferred. The mod- 
ule name types are based on the structure 
primitive types of Bell and Newell [1966; 19711. 

A register transfer language, ISP (instruction 
set processor) [Bell, Newell, 1966; Bell, Newell, 
19711, is used to define the register transfer op- 
erations of the RTMs. Here we use only the 
parts of ISP that are commonly known by the 
digital systems engineer and are similar to a 
programming language (e.g., FORTRAN). The 
four main module types are as follows. 

DM-Type (Data Operation Combined with 
Memory) 

These modules are what we commonly think 
of as being a digital system (or at least the arith- 
metic unit). They are the register transfer gating 
paths and combinational circuits for the simple 
arithmetic and logical functions - hence the D 
part (for data operations). The D part carries 
out the evaluation of the right-hand side of an 
arithmetic expression as in a programming lan- 
guage in which an integer value is computed 
prior to storing, e.g., t A + B ,  tA-B, t A O B ,  
t A +  1 .  Thus, an  expression “left-hand- 
sidetright-hand side” (e.g., H t C + D )  is used to  
indicate the integer value of the right-hand side 
being read and placed in the register on the left- 
hand side. 

M-Type (Memory) 

The memory (M) part is just the registers 
(e.g., A, B) that hold data between statements; 
these essentially correspond to the variables 
that are declared in a program. The operations 
on memory are usually reading ( t M )  and writ- 
ing ( M t ) .  Types of DM and M modules are the 
general purpose arithmetic unit, a single-trans- 
fer register, Boolean flags (I-bit registers), read- 
write memories, and read-only memories. The 
memories hold two’s complement 8-, 12-, or 16- 
bit integers. 

K-Type (Control) 

The K modules are responsible for con- 
trolling the transfer of data among the various 
registers by appropriately evoking operations 
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Table 1. Basic R T  Design Decisions 

1. Logic: TTL (acceptable for speed and noise immunity: low cost) 

2.  Packaging: Printed circuit boards of 5 X 8-112 inches or 2-1/2 X 8-112 inches with 72 or 
36  pins (DEC compatible). 

3. Intermediate connection: Pre-wired buses; wirewrap and push-on connections over wire- 
wrap pins. 

4. Logic interconnection rules: One kind of control signal and data bus. Very small number of 
rules compared to IC use. 

5. Problem size: 4- 100 control steps: 1 -4  arithmetic registers: 16- 100 variables; possibly 
read-only memory. 

6. Word length: 8-, 12-, and 16-bit (present de facto standard - can be extended). 

7. Universality and extendability: The modules are not a panacea. There are provisions for 
escape to regular integrated circuits, standard DEC modules, and DEC computers (and their 
components). 

8. Selection of primitives: Basic register, bus interconnection structure, and data representation 
were first determined. The operations that formed a complete set for the data representation 
were then specified. With this basic module set, designs were carried out for benchmark 
problems and design iteration occurred. 

9 .  Notations: PMS and ISP of Bell and Newell [ 1971 1. 

10. Automatic (algorithmic) mapping of algorithm into hardware: The basic RT design archetype 
representation is a flowchart. The register transfer operations are expressed in the ISP lan- 
guage. 

1 1. Parallelism and speed: Provision for multiple buses; the modules are asynchronous. (The 
application classes put relatively low weight on speed.) For teaching purposes parallelism is 
an important principle. (A decision to use a bus, and thereby limit parallelism to the number 
of buses, was made for both cost and simplicity reasons.) 

by DM and M types. The K modules are analo- 
gous to the control structure of a program. The 
K modules called K.evoke control the times 
when the various operations of the DMs and 
Ms are evoked (executed). The K.branch mod- 
ules are used to make decisions about which op- 
e r a t i o n s  a r e  t o  b e  e v o k e d  nex t .  T h e  
Ksubroutine modules are used to connect a se- 
quence of operations together as a subroutine. 
Kserial-merge allows control flow to merge 
into a single control flow when any flow input is 
present. K.paralle1-branch and K.parallel- 

merge modules synchronize control where there 
is more than one operation taking place at a 
time. Other control modules include clocks, de- 
lays, and manual start keys. 

T-Type (Transducers) 
These modules provide an interface to the en- 

vironment outside RTM. These include the 
Teletype interface, analog/digital converters, 
lights, switches, and interfaces to computers. 
These modules also connect to the common 
data bus. 
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The details of the modules will be introduced 
by giving the four modules that are necessary 
for nontrivial digital systems: K.evoke, 
DM.gpa, K.branch, and K.bus. 

K (Evoke) 

K.evoke (Ke) is the basic module that evokes 
a function consisting of a data operation and a 
register transfer - in essence an arithmetic ex- 
pression. When a Ke is evoked, it in turn evokes 
the function, consisting of the data operation 
followed by a register transfer, and when the 
function is complete, Ke evokes the next K in 
the control sequence. The diagram for Ke with 
its two inputs and two outputs is shown in Fig- 
ure 1.  In  terms of a finite state machine, Ke is a 
state with the ability to evoke an output action 
and then make a transition to  another state. 
K.evoke is as follows. 

STATE IMPLIED BY A K.evOke 
J 

- / O U T P U T  ACTION &---$;~ 

DM (General Purpose Arithmetidgpa) 

The DM.gpa allows arithmetic function re- 
sults (data operations) that have been per- 
formed on its two registers A and B to be 
written into other registers (using the bus). Re- 
sults can also be transferred (written) into A 
and B ( A t ;  Be). The data operations are: t A ,  

t A X 2 ,  t A A B ,  t A V B ,  and t A O B .  An input 
that evokes the function t(Result)/2 can be 
combined with the previous function outputs to  
give t A / 2 ,  t B / 2 ,  t(A+B)/2, etc. Two Boolean 
inputs, shift in <16, - I > ,  allow data to be 
shifted into the left- and right-hand bits on /2 
and X2 operations, respectively. Bits of regis- 
ters A and B are available as Boolean outputs. 

t B ,  t T A ,  t l B ,  +-A+B, +A-B, +A-1, +A+ I ,  

EVOKE THE NEXT CONTROL FVNCTION/BYII 

N E X T  STATE 
Figure 1. Diagram for the control module K.evoke 

K (Branch) 

K.branch (Kb) provides for the routing of 
control flow based on the condition of a Boo- 
lean input. The diagram for Kb with its two in- 
puts and two outputs is shown in Figure 2. Each 
time a branch control is evoked, i t  in turn 
evokes either of the controls following it, 
depending on whether the Boolean input is true 
(a I )  or false (a 0). In terms of a finite state ma- 
chine, Kb is a state with the capability of going 
to either of two next states, depending on a 
Boolean input. K.branch is as follows. 

NEXT STATE IF - ,b 

STATE I M P L I E D  BY K .branch  

K (Bus Sense and Control Module/Bus) 

Each independent data bus in the system re- 
quires a centralized control module. It has a 
register, Bus, that always contains the result of 
the last register transfer that took place via the 
bus. K.bus carries out of several functions: 
monitoring register transfer operations; provid- 
ing for single-step manual control for algorithm 

BOOLEAN INPUT 

BOOLEAN TO 

evnO/lEVOKE NEXT IF 
BOOLEAN IS 
FALSE/O/NOI 

eVnl/lEVOKE NEXT IF 
BOOLEAN IS 

TRUE/I/VES) 

NEXT STATE IF b Figure 2. Diagram for the control module K.branch 
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flow checkout by the user; providing for sense 
lights (indicators); providing for a word source 
of zero, Le., e0; forming Boolean functions of 
the Bus register; power-on initialization; man- 
ual startup; and bus termination. 

DESIGN WITH RTMs 

Digital systems engineers are concerned with 
formulating algorithms that, when executed by 
hardware, behave according to the solution of 
the original design problem. The solutions of 
digital systems design problems using program- 
ming, conventional logical design, and RTM 
design are all similar. The three design and im- 
plementation processes have the same goal: to 
construct a program for a machine, or a hard- 
wired machine to execute the algorithm stated 
(or implied) in the problem. Thus, program- 
ming and digital systems engineering are con- 
cerned with interconnecting basic components 
or building blocks for executing algorithms; the 
building blocks are machine operations and 
logical design components, respectively. RTMs 
are a basic set of components for constructing 
hardware algorithms. That is, they are the com- 
ponents for digital systems design. 

The design protocol using RTMs is very 
much akin to that of designing a program. The 
designer takes a natural language statement of 
the problem and carries out the conversion to a 
process description that acts on a set of data 
variables (and any temporary data variables). 
An RTM design has two parts: (1) the explicitly 
declared data variables and the implied data op- 
erations that are attached to these variables; 
and (2) the control part, a finite state machine, 
that accepts inputs and evokes the various oper- 
ations on the data part. The control part is 
shown as a combined flowchart-wiring dia- 
gram. 

Two examples show how this design is car- 
ried out. The schematic for the first example, an 
algorithm to sum integers, shows all wires and 
modules and the schematic for the second ex- 

ample, a small stored program computer, shows 
the control flow and the data part but excludes 
the connections between the control and data 
parts. 

Example: Sum of Integers to N 

A small system to sum the integers to 
N ( S 4 + 1 + 2 +  . . . +N) can be built that uses 
the four aforementioned modules: DM.gpa, 
K.bus, K.evoke, and K.branch together with a 
switch register to enter N and a manual start 
control module to start the system. The data 
and control parts together are given in the 
RTM wiring diagram (Figure 3); the data part 
is shown on the right and the control part on 
the left. The final result S and the variable N are 
held in a general purpose arithmetic module 
DM.gpa. N is held in the switch register T in- 
itially. The control sequence is initiated by a 
K.manua1-start (a human presses a key). In- 
stead of counting to N, we start with N and 
count down to zero while tallying the sum S .  

END 

I(. = KNO~. MODULE 
Kb = K branch MODULE 

- CONTROL FLOW AND EVOKE WIRES 

BUS FOR OATA WIRES 

--cC 800LEAN VARIABLE WIRES 

I 

Figure 3. RTM digital system to take a value from a 
switch register input and to sum the integers to the input 
value. 
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The first control step reads T to register N 
(NtT) .  The second step initializes the sum S 
( S 4 ) .  The inner loop consists of the three func- 
tions: ScS+N; NtN-1;  and a test for N=O. 

Example: A Small Stored Program 
Computer Design Using RTMs 

Figure 4 shows an RTM diagram for a small 
stored program computer that was initially con- 

CONTROL PART 

P c P f l  

M A  - 1 < 1 0  O >  

I 

w Y 

0 1-1 
z 0 

) F  
3 c 
t? 

K branch 8 way DECODE e-- OP = t < 1 5 1 3 >  

IOP = 01 

A c A A B  I- K s e n d  merge 

1 
P - 0  

I 

IDD IS2 OCI 
OP = 11 lop= 21 IOP = 3 

ro BUS = 0 

+ NO 
P C P + l  

c ’  

structed as an application experiment to dem- 
onstrate the feasibility of the modules and to 
investigate systems problems. The process of 
specifying the machine took approximately two 
hours (with three people). The computer was 
wired and, aside from minor system/circuit 
problems (for which the experiment was de- 
signed), the computer operated essentially when 
power was applied because there were no logic 

DATA PART 

-l 

REGISTER 

M E M O R Y  M A .  M B  1 “ , E O L E  

IOP = 41 

A I coE%krl 

15 13 1 0  0 

1 

2 
Control modules wi thout  types  are assumed 10 be K w o k e  
K conditional execute shown in 

the form 
Kcs BOOLEAN EXPRESION 

EXPRESSION 

Figure 4. RTM design of a small stored program digital computer. 
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errors. The computer was designed for an ac- 
tual application that had about 300 constants, 
600 control steps, and about 16 variables. (An 
alternative approach would have been to hard- 
wire the 600 control steps directly, thereby op- 
erating faster, but being more expensive and 
less flexible.) The computer has only 24 evoke 
and 16 branch controls. (By way of comparison, 
RTM interpreters to emulate the PDP-8 and the 
Data General NOVA computers require about 
90 evoke and branch control modules, 2 
DM.gpa’s, and core memory.) Since the price 
ratio of a single hardwired control to a single 
read-only memory control word is approx- 
imately 10: 1, and since the overhead price of a 
1000-word read-only memory is about 100 con- 
trols, it was cheaper in the above application to 
use RTMs to first build an interpreter, com- 
monly called a stored program digital com- 
puter, and then let the computer program 
execute the control steps. 

The data part of the machine is shown in the 
upper right of Figure 4. Three DM-type RTMs 
hold the processor state and temporary regis- 
ters. The processor state, that part of memory 
accessible and controlled by the program, in- 
cludes: A, the accumulator; P, the program 
counter; and L, a register used to hold sub- 
routine return addresses (links). The temporary 
registers needed in the interpretation of the in- 
structions are: i, instruction holding register; 
and B, used for binary operations on A (e.g., 
Add, And). Also connected to the RTM bus are 
the read-only and read-write memories and the 
Teletype, as well as a special input/output regis- 
ter interface to the remainder of the system. 

The method of defining the interpreter can be 
seen from the RTM diagram (Figure 4). The 
control part consists of three subparts: the Start 
and Continue keys that are used to initialize the 
processor to start at location 0 and to restart the 
processor, the instruction fetch, and the instruc- 
tion execution. The instruction fetch consists of 
picking up the instruction from the memory 
word addressed by the program counter P and 

incrementing P to point to the next instruction. 
The instruction is placed in the i register, which 
has been specially wired to allow decoding of 
the three most significant bits. Individual bits of 
i can be tested for the Operate (OPR) instruc- 
tion, and the address field i<  10:0> can be read. 

After the instruction is fetched and placed in 
i, Ke(MAti< 10:0>) is evoked to address data 
referenced by the instruction. Immediately fol- 
lowing this evoke operation, an eight-way 
K.branch allows control to move to the one 
path corresponding to the operation code of the 
instruction being interpreted; that is, the in- 
struction is decoded, and control is transferred 
to execute it. After the execution of the appro- 
priate instruction, control returns to fetch the 
next instruction. For example, executing the 
Add (two’s complement add) instruction con- 
sists of loading the data from memory into the 
temporary register B (Le., &MB) and then 
adding B to the accumulator A (Le., AtA+B) .  

For the Operate instruction, which does not 
reference memory, each bit of the address part 
of the instruction specifies an operation to be 
carried out on the accumulator (“test for - or 
0,” “clear,” “complement,” “add one,” “shift 
right or left,” or “return from the subroutine”). 
Each bit is tested in sequence, and if a one, the 
corresponding operation is carried out. If the 
instruction code with OP=6 is given, the com- 
puter halts; pressing Continue restarts it. 

The instruction set is shown to be straight- 
forward and simple. Subroutine return ad- 
dresses are stored in a link register L. Thus to 
call subroutines at a depth of more than one 
level requires the called subroutine to save the 
link register in a temporary location. But there 
is no way of storing this register; thus it is diffi- 
cult to call a subroutine and pass parameter in- 
formation (e.g., the location of tables). Since 
the computer requires a few minor changes to 
allow nested subroutines and parameter pass- 
ing, the reader is invited to make the appropri- 
ate incremental changes. 
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CONCLUSIONS 

The concept of using high level building 
blocks is not new, but we think this particular 
implementation of a set of simple blocks is quite 
useful to many digital systems engineers. The 
design time using this approach is significantly 
less than with conventional logical design. The 
modules are especially useful for teaching 
digital system design. We have solved many 
benchmark designs with reasonably consistent 
results. The modules can be applied quickly and 
economically where there are between 4 and 100 
control steps, a small read-write memory (100 
words), and perhaps some read-only memory. 
Larger system problems are usually solved bet- 
ter with a stored program computer, although 
such a computer can be designed using RTMs. 
The user need only be familiar with the concept 

of registers and register operations on data, and 
have a fundamental understanding of a flow- 
chart. 
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I NTR OD U CTI ON 

Several semiconductor manufacturers 

Using LSI Processor Bit-Slices 
Build a PDP-11 - A  Case Study 

have 
recently developed high speed LSI circuits that 
are designed to simplify the construction of 
microprogrammed processors and device con- 
trollers. These integrated circuits are called 
“bit-slices’’ because they implement 2 or 4 bits 
of the registers, arithmetic units, and primary 
data paths of a processor. This article presents 
the design and evaluation of the processor built 
at Carnegie-Mellon University [Fuller et al., 
19761 that uses the Intel 3000 bit-slices [Intel, 
1975; Signetics, 19751 and that is micro- 
programmed to emulate the PDP-I 1 computer 
architecture [DEC, 1973].* The purpose of this 
project was to investigate the assertions of semi- 
conductor manufacturers that their LSI bit- 
slices would in fact simplify the design and con- 
struction of processors. 

Rather than specify a new architecture (i.e., 
instruction set) for this experiment in processor 
design, we decided to reimplement an estab- 
lished computer architecture: the PDP-I I .  We 

in Microcomputer Design 
THOMAS M. McWILLIAMS, SAMUEL H. FULLER, 

and WILLIAM H. SHERWOOD 

chose the PDP-I 1 architecture for several rea- 
sons. Using an existing and well-known archi- 
tecture allowed others to more easily evaluate 
the results of our experiment and kept us from 
consciously or unconsciously tailoring the pro- 
cessor architecture to fit the capabilities and idi- 
osyncrasies of the LSI bit-slices. PDP-1 Is are in 
extensive use at Carnegie-Mellon University in 
a wide variety of applications and, if our experi- 
ment was successful, the processor could be put 
to work on any one of several practical tasks. It 
was this second reason that helped establish a 
criterion that proved to be critical: we de- 
manded that the processor we constructed sup- 
port the standard DEC Unibus [DEC, 19731 
that is common to all PDP-I Is except the LSI- 
1 1  [DEC, 19751. Finally, the PDP-11 archi- 
tecture is an unusually good test of the 
capabilities of a bit-slice circuit family because 
it is a relatively complete architecture with nu- 
merous addressing modes and instruction for- 
mats. 

*We gratefully acknowledge the donation of 3000 microcomputer sets by both Intel and Signetics Corporations. 
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I n  the next section we begin with a descrip- 
tion of the design of the CMU- 1 1 processor. We 
then discuss the performance, cost, and imple- 
mentation difficulties uncovered during the de- 
sign and testing of the machine. In addition to  
the evalution of the LSI bit-slice circuits for 
general purpose processors, we are interested in 
the problems of computer design in  general. 
For this reason, a fairly complete set of digital 
design automation aids are available at Car- 
negie-Mellon University: an interactive drawing 
package that generates engineering drawings, 

wire-lists, and aids in engineering changes; a 
digital simulation system that is interfaced to  
the drawing system; and microprogram assem- 
blers. Later sections review our  experiences 
with these design aids and we draw some con- 
clusions concerning the process of designing 
and debugging prototypes of digital systems 
built with LSI circuits. 

ORGANIZATION OF THE CMU-11 
Figure 1 is a register transfer level diagram of 

the CMU-11 microprogrammable processor. 
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Figure 1. Register transfer level diagram 
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The processor’s components are arranged in the 
diagram into three sections: the data part,  con- 
trol par t ,  and Unibus interface. We were able to 
build the entire processor on a single board and 
Figure 2 is a top view of the CMU-I 1. 

The Data Paths and Working Registers 

The data part of the processor is designed 
around the 3002 (central processing element) 
bit-slice. A single 3002 circuit implements a 2- 
bit slice of the data paths and, hence, eight 
3002s have been used in the CMU-11. Although 
not explicitly shown in Figure 1, the 3003 carry- 
lookahead circuit is also used. With the 3003, 
the 3002 array is capable of cycling through 
operations every 150 nanoseconds. However, 
other delays in  the clock and control part dic- 
tate that the CMU-11 has a 200-nanosecond 
microcycle time. The eight general purpose 
working registers of the PDP-I 1 architecture 
can be kept i n  the register scratchpad on the 
3002s, and the three remaining internal regis- 
ters, R8, R9, and T are sufficient for source and 
destination operand computations as well as 
other intermediate results. It was not possible to 
locate the program status (PS) and instruction 

register (IR) within the 3002s without a severe 
loss in performance. 

The relatively generous number of input and 
output lines of the 3002s are used to good ad- 
vantage. The D<15:0> and A<15:0> buses 
feed the Unibus data and address lines respec- 
tively. I n  addition, the D bus allows access to 
the extra data paths necessary to include the PS 
register and to facilitate the byte swap oper- 
ation needed by many of the PDP-1 1’s instruc- 
tions. The  M<15:0>  bus is used as the 
principal data input bus. The function bus, 
F<6:0>, specifies both the operation to be per- 
formed by the arithmetic/logic unit as well as 
the selection of the register in the scratchpad to 
be involved in the operation. The K <  15:0> bus 
is used to input masks or constants from the 
microinstruction. The 3000 circuit set makes 
frequent use of the K lines to specify masks 
(usually all zeros or all ones) that effectively ex- 
tend the operation code on the function bus. 

Figure 2. CMU-1 1 processor board. Figure 3. CMU-1 1 system with associated PDP-1 1 
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The processor's components are arranged in 
diagram into three sections: the datu p a w  con- 
trol part, and Unibus inledace. We were able to 
build the entire processor on a single board and 
Figure 2 is a top view of the CMU-11. 

The Data Paths and Working Registers 

The data part of the processor is designed 
around the 3002 (central processing element) 
bit-slice. A single 3002 circuit implements a 2- 
bit slice of the data paths and, hence, eight 
3002s have been used in the CMU- 1 1 .  Although 
not explicitly shown in Figure 1, the 3003 carry- 
lookahead circuit is also used, With the 3003, 
the 3002 array is capable of cycling through 
operations every 150 nanoseconds. However, 
other delays in the clock and control part dic- 
tate that the CMU-11 has a 200-nanosecond 
microcycle time. The eight general purpose 
working registers of the PDP-11 architecture 
can be kept in the register scratchpad on the 
3002s, and the three remaining internal regis- 
ters, R8, R9, and T are sufficient for source and 
destination operand computations as well as 
other intermediate results. It was not possible to 
locate the program status (PS) and instruction 

loss in performance. 
The relatively generous number of input and 

output lines of the 3002s are used to good ad- 
vantage. The D<15:0> and A<15:0> buses 
feed the Unibus data and address Iinw respec- 
tively. In addition, the D bus allows access to 
the extra data paths necessary to include the PS 
register and to facilitate the byte swap oper- 
ation needed by many of the PDP-1 1's instruc- 
tions. The M<15:0> bus is used as the 
principal data input bus. The function bus, 
F<6:0>, specifies both the operation to be per- 
formed by the arithrnetic/logic unit as well as 
the selection of the register in the scratchpad to 
be involved in the operation. The K <  15:0> bus 
is used to input masks or constants from the 
microinstruction. The 3000 circuit set makes 
frequent use of the K lines to specify masks 
(usually a11 zeros or all ones) that effectively ex- 
tend the operation code on the function bus. 
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A C < 6 0 >  

JUMPCONTROL 

Control Part 

The control part of the CMU-11 uses the 
Microprogram Control Unit and a 512-word 
control store* with 32-bit microinstructions. 
Figure 4 shows the format of the micro- 
instruction and Table 1 briefly describes the 
function of each of the fields. A micro- 
instruction buffer register was included in the 
design to allow the overlap of the fetch of the 
next microinstruction with the execution of the 
current microinstruction, which is a common 
technique to improve the performance of 
microprogrammed processors. 

The "next-address logic" of the 3001 has 
been augmented by additional microbranch 
control logic external to  the 3001. This external 
logic uses the contents of the instruction regis- 
ter, the condition codes in the PS, and the PLA 
field from the microinstruction register to deter- 
mine the AC<6:0> lines to input to the 3001. 

F<BO> F C < l O >  P L A < 2 0 >  K < 8 >  K < 7  o> M W S < l  O >  

CPE CONTROL CARRY CONTROL s P E C I A L B R A N C H  ~~~~T~~~ 8 BIT CONSTANT FOR CPES MICRoWoRo 
CONTROL SELECTOR 

The other major section of control logic that 
had to  be added to the design was the processor 
status logic to  control the setting of the 4-bit 
condition code in the PS register and control 
access to  the PS. In  fact, the PS register is de- 
fined as primary memory location 177776 in the 
PDP-11 architecture and requires special logic 
to load and store the PS. 

R A < l  O> 

REGISTER 
AOORESS 

UC<7 O >  UNIBUSCONTROL 

Interface to the Unibus 

A significant fraction of the components of 
the CMU-I 1 are devoted to the support of the 
Unibus. Given the demanding electrical re- 
quirements of the Unibus, the tri-state A, D, 
and M lines of the 3002 array could not be 
directly attached to the Unibus. Instead, sepa- 
rate transceiver packages had to be used to pro- 
vide this buffering. 

Due to the asynchronous operation of the 
Unibus and interrupt and nonprocessor 

c < 1  o> 
EXTENDED 

MICROINSTR GET B U S  PAUSE CnECK C:AgOL 

O' P S L o G ' C  
sss SDS CCTR<1 0) S C C T R < 2  0) 

SIGN SIGN CONTROL REG'sTER 
S E T S O U R C E  SET DESTINATION CONTROL S ~ I F T  l E T P S  

Figure 4. Microinstruction format. 

*In order to expedite the debugging of the microprogram for the CMU-11, we built a fast, simple writable control store for 
the CMU. We used 45-nanosecond access time, 1024-bit random-access memory (RAM) packages to ensure a writable 
control store as fast as the final read-only memory (ROM) control store. The writable control store is interfaced to a Unibus 
(of a PDP-11 other than the CMU-11) for initial loading of microprograms. Figure 3 shows the CMU-1 I interfaced to the 
supporting PDP-I 1 and writable control store. 
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requests (i.e., Direct Memory Access request 
via the Unibus), it was not practical to drive the 
Unibus directly from fields in the micro-instruc- 
t iop.  Instead, a bus control and timing console Functions 
section was added t o  the processor. The rest of 
the processor interfaces to this control unit via 
the UC<7:0> field in the microinstruction. See 

Table 1 for a description of the functions of the 
subfields within UC<7:0>. 

I n  place of a standard front panel, the CMU- 
11 has front panel functions accessible from a 

Table 1. Description of Microinstruction Fields 

MWS<l:O> : = M1<1:0> 

K<8:0> : = MI< 10:2> 

UC<7:0> : = M1<9:2> 

uc< 1 :o> 
u c < 2 >  

u c < 3 >  

uc<4> 
u c < 5 >  

UC<7:6> 

PS<7:0> : = M1<9:2> 

PS<O> 

PS<3: 1 > 
PS< 5:4> 

PS<6> 

PS<7> 

PLA<2:0> : = M1<13 : l l >  

FC<3:0> : = MI< 17: 14> 

F<6:0> : = M1<24:18> 

AC<6:0> : = M1<31:25> 

Microinstruction Selector. Specifies if M1<9:2> should define a 
constant, Unibus control. or PS control. 

Literal. K<7:0> is a byte constant used by the least-significant byte 
of the K input lines of the 3002 array. K<8> is extended to feed the 
most significant byte of the K input lines. 

Unibus Control. 

C1, CO Control. Specified the C1 and CO lines on the Unibus. 

Check Word. Tests whether a word address is specified in Unibus 
operation . 

Pause. Halt processor clock until completion of Unibus operation. 

Get Bus. Request access of Unibus for a data transfer. 

Extended Microinstruction Code. If set, defines alternate meaning 
for PLA<2:0>. 

Register Address. Specifies which input register address multi- 
plexer should be used. 

Processor Status Control. 

Set PS Register. Controls loading of PS. 

Shift Control. 

Carry Control. 

Set Destination Sign. Controls latching of sign of destination oper- 
and in flag external to  3002s. 

Set Source Sign. Analogous to PS<6>. 

Special Branch Control. Used by microbranch logic to  tell which 
fields of IR  and PS to examine for branch conditions. 

M C U  Flag Control. Controls testing and setting of flags in 3001 
(MCU). 

CPE Control. Drives function bus of 3002 (CPE) array. 

Address Control. Connected directly to the AC<6:0> bus of the 
3001 (MCU). This is the one field of the microinstruction not buf- 
fered in the microinstruction register. (The microprogram address 
register internal t o  the MCU performs the buffering function.) 
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standard Teletype attached to the Unibus. 
Memory locations can be examined and loaded 
by typing the octal address followed by a slash. 
The current value is displayed and a new value 
may be entered, if desired, followed by a car- 
riage return. The processor may also be started 
and continued from the Teletype, and there is a 
halt switch on the front panel that causes the 
machine to return to  the console micro- 
program. 

This use of a Teletype for a console is similar 
to the console Teletype used by the LSI-I 1 
[DEC, 1975~1. In  order to make it easier to 
maintain the processor, we have added a micro- 
processor console that displays the micro- 
program address and allows the microprocessor 
to be single-stepped. The microconsole proved 
invaluable for debugging the prototype proces- 
sor. 

EVALUATION OF CMU-11 DESIGN 

The critical questions to be asked about this 
design concern cost and performance. It has 
been fairly easy to  evaluate the performance of 
the CMU-11 by looking at several representa- 
tive instruction times and by running a set of 
benchmarks on the machine. Evaluating the 
cost of the CMU-11 has been more difficult. 
Rather than try to compare the price of existing 
PDP-I1 implementations with the cost of the 
CMU-11, we chose instead to compare it with 
other PDP-11s with respect to circuit com- 
plexity. The other significant costs, i.e., devel- 
opment costs, are discussed in a later section. 

Performance of the CMU-11 

The CMU-11 runs at a microinstruction cycle 
time of 200 nanoseconds. The specifications for 
the Intel 3000 microcomputer family state that 
it is possible to build a 16-bit minicomputer 

with a 150-nanosecond cycle time. However, 
given our objective to design as cost-effective an 
implementation as possible, we avoided the sen- 
sitive and complex timing circuits that would be 
required to approach a 150-nanosecond cycle 
time. 

If we had used clocks with sufficient buffer- 
ing and pulse shaping, a worst-case analysis 
shows that with the particular IC packages used 
in the CMU- 11, we could approach a 149-nano- 
second cycle time with Intel 3000 packages and 
a 126-nanoseond cycle time with Signetics’ ver- 
sion of the 3000 set. We have, in fact, replaced 
the Intel 3000 circuits with the Signetics circuits 
and although the CMU-11 continues to run re- 
liably at 200 nanoseconds, we cannot reduce the 
cycle time below 200 nanoseonds. The critical 
path is in the control part and not the 3002 ar- 
ray. 

Tables 2 and 3 show the execution time for 
six of the most frequently executed instructions 
and the eight addressing modes of the PDP-11. 
The instructions in Table 2 assume a register-to- 
register operation (i.e., a source and destination 
mode of 0). Table 3 shows the additional time 
that is added to the instruction execution time 
for the various source addressing modes.* The 

Table 2. 
Instructions 

Execution Times of Common 

Basic Execution Time (in ps) 

Instruction LSI-11 CMU-11 

MOV 3.50 2.06 
CMP 3.50 2.1 9 
ASL 3.85 2.46 
ADD 2.46 3.85 
8Rx (branch) 3.50 2.82 

(no branch) 3.50 1.48 
JSR 6.40 4.39 

PDP- 1 1 /40 

0.90 
0.99 
0.99 
0.99 
1.76 
1.40 
2.94 

*In  particular, the times in Table 3 a re  the source addressing mode  times for the C M U - I  1 as  measured on  the BIS instruc- 
tion. Addressing times o n  the other instructions are similar to the BIS times. 
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destination mode times are about the same as 
the given source mode times. 

In order to measure the performance of the 
CMU-11 for various instruction mixes, several 
benchmarks were collected and run on the 
CMU-11, an LSI-11, and a PDP-11/40. Four 
benchmarks were collected that attempt to span 
a reasonable range of applications common to 
minicomputers. 

1. Quicksort. This is a program that uses 
Hoare’s quicksort procedure to sort a set 
of 16-bit integers. The benchmark also 
includes a pseudo-random number gen- 
erator to provide the initial data. 

Trigonometric functions. This is a set of 
trigonometric, floating-point routines. 
We do not assume the existence of a 
floating-point option on any of the pro- 
cessors and hence this benchmark heav- 
ily exercises software floating-point 
emulation routines. 

2. 

Table 3. 
Addressing Modes 

Execution Times for the Source 

LSI-11 CMU-11 PDP-11/40 
Addressing Mode ( I S )  ( IS )  ( I S )  

0: Register 0.00 0.00 0.00 

1 :  Register 1.40 1.21 0.78 
Deferred 

2: Autoincrement 1.40 0 .64  0.84 

3: Autoincrement 3.50 1.91 1.74 
Deferred 

4: Autodecrement 2.10 1.00 0.84 

5: Autodecrement 4.20 2.28 1.74 
Deferred 

6: Indexed 4.20 1.78 1.46 

7: Indexed 6.30 2.99 2.36 
Deferred 

3. Partial differential equations. This pro- 
gram uses a straightforward iterative re- 
laxation technique to solve a partial 
differential equation over a two-dimen- 
sional space. Fixed-point values are 
used. 

4. Text searching. This searches an input 
string for names in a symbol table. This 
benchmark makes extensive use of the 
byte and compare features in the instruc- 
tion set. 

Table 4 shows the execution times on the 
LSI-11, CMU-11, and PDP-I1/40 for each of 
the four benchmarks. From these results we see 
that the CMU-11 is approximately twice as fast 
as the LSI-11 and 63 percent of the speed of the 
PDP-I 1/40. As expected, there is a moderate 
amount of variation in the relative performance 
of the three machines for the different bench- 
marks. The two dominant effects that can be 
seen in Table 4 are that the PDP-I 1/40 design 
has optimized register-to-register operations 
more than either the LSI-11 or the CMU-11 (as 
demonstrated in the partial differential equa- 
tion benchmark). Byte operations are more ef- 
ficiently performed in the CMU-11 because of 
its byte-swap data path provided by the D and I 
buses. The last line in Table 4 is the data pub- 
lished by O’Loughlin [1975] in an article com- 
paring the different DEC PDP-11 imple- 
mentations. 

It is mildly disappointing that the CMU-11, 
built with Schottky TTL bit-slices, could not 
equal the performance of the PDP-11/40, built 
with standard TTL circuits. The next two sec- 
tions will examine in detail where performance 
was lost (and gained) in the CMU-11 design. 
Before continuing with this review of the de- 
sign, we turn to a brief discussion of the cost of 
the CMU-11. 

A principal objective of the 3000 micro- 
computer bit-slice packages is to simplify the 
design of processors like the CMU-11. Table 5 
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Table 4. Performance of CMU-11 Relative t o  Other P D P - 1  Is 

Execution Times Relative to PDP-11/40" 

Benchmarks LSI-11 11/10 1 1 /20 CMU-11 11/40 11/45 

Quicksort 2.88 (366) 
Partial differential equation 3.48 (268) 
Trigonometric functions 3.36 (1 11) 
Text searching 2.76 (204) 

1.48 (1 88) 
1.75 (135) 1.0 (77) 
1.57 (52) 1 .o (33) 
1.45 (107) 1 .O (74) 

1 .O (127) 

- - Average 3.1 1.6 1 .o - 
~~ 

O'Loughlin's Data - 2.32 1.85 - 1 .o 0.91 

*Numbers in parentheses are the absolute run times in seconds for the benchmarks. 

Table 5. Integrated Circuit Statistics 

No. 1 6  Pin 
Processor No. IC Equivalent 
Component Packages Packages 

~~ 

Data Part 

PS and Instruction 6 6 

Miscellaneous 4 5 

Subtotal 18 31 (19%) 

3002 (CPE) Array 8 20 

Registers 

- - 

Control Part 
Control Store 

ROMs 
Microinstruction 

Register 
3001 (MCU) 
Microbranch Logic 
PS Control 
Miscellaneous 

Subtotal 

8 8 

10 10 

1 3 
26 27 
16 16 
18 18 

79 82 (52%) 
- - 

Unibus Interface 
Bus Transceivers 19 19 

and Inverters 
Unibus Control 28 28 

Subtotal 
__ - 

47 47 (29%) 

Total 144 160 
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is a summary of the complexity (measured in 
integrated circuits) of the CMU-I 1 .  There are 
two columns in Table 5: a simple count of the 
number of integrated circuit packages used in 
the CMU-II,  and a column that converts the 
design to “ 1  6-pin equivalent” packages (a mea- 
sure of the size of the design in a standard unit). 
Table 6 gives a breakdown of the actual cost of 
the CMU-I 1 at January 1976 prices. 

It is surprising that less than 20 percent of the 
design is now in the data part of the processor: 
the part of the processor largely implemented 
with the LSI bit-slices. A larger part of the de- 
sign, 29 percent, is needed just to interface to 
the PDP-II Unibus. 

In  order to  put the 144-package complexity 
of the CMU-I 1 in perspective, the IC package 

counts for other PDP-I Is are: PDP-I 1/10 - 203 
packages; PDP-l1/40 - 417 packages; and 
PDP-I 1/45 - 696 packages. The LSI-I 1 is able 
to implement the basic processor in 42 packages 
but does not interface to a Unibus. I t  is clear 
that the bit-slices do not approach the economy 
of the Western Digital NMOS microcomputer 
circuits which were specifically designed to 
emulate the PDP- 1 1 .  

Another measure of the degree to which the 
CMU-I I processor can efficiently emulate the 
PDP-I 1 architecture is given by the size of the 
microprograms. Table 7 gives the size of micro- 
programs for several PDP-I1 processors. It is 
somewhat surprising that the CMU-I 1 uses 
fewer bits in its control store than any of the 
other processors except the LSI- 11. This is in 

Table 6. Cost Breakdown for CMU-11 

Prices* 

Components Single Units Quantities of 100+ 
_____ ~~ 

LSI Microcomputer Parts 

PROMS 

SSVMSI Parts 

Integrated Circuit Subtotal 
Augat Wire-Wrap Board 
Wire-Wrapping 

(Intel 3001,3002s. 3003) 

(3601 ,3602 ,3604 ,7451  68) 

Total 

$207 
(1 84) 

204 
179 

$590 
379 
107 

$1 076 

- 

$1 25 

136 
158 

$41 9 
- 

(Use printed circuit) 

*Signetics prices. 

Table 7. PDP-11 Control Store Sizes 

LSI-11 PDP-11/10* CMU-11 PDP- 1 1 /40 * PDP-11/45* 

22 bits X 51 2 words 
(includes console) words (without console) words words 

4 0  bits X 239 32 bits X 287 words 

414 words (with console) 

56 bits X 251 64 bits X 256 

* [O’Loughhn. 19751. 
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large part due to  the fact the 11/10, 11/40, and 
11/45 use MSI arithmetic/logic packages that 
did not have as useful a set of primitive oper- 
ations as the 3002 arithmetic logic unit (ALU). 

SOME PITFALLS FOUND IN 
IMPLEMENTING THE PDP-11 WITH THE 
3000 BIT-SLICES 

Since the CMU-11 project was started, a 
number of different bit-slice chips have become 
available whose organizations are significantly 
different from the 3000 circuits and which pro- 
vide an interesting contrast. Two of the more 
interesting bit-slice chips are the Advanced Mi- 
cro Devices AM2901 [AMD, 19751 and the 
Monolithic Memories Inc. MM16701. These 
bit-slice chips have a very similar data path or- 
ganization with only minor differences, the 
AM2901 being the faster device. Because of the 
similarity of these devices, we will limit the dis- 
cussion here to the AM2901, but all of the mi- 
croinstruction sequences discussed will work on 
both bit-slice sets. 

The basic data path of the AM2901 is shown 
in Figure 5 .  The chip contains a register file of 
16 4-bit accumulators and an accumulator ex- 
tension register, the Q register. In one micro- 
instruction, two operands can be read out of the 
register file, passed through the ALU, the result 
can be written shifted left or right, and written 
back into the register file. In parallel with this, 
there is an addressing mode which controls the 
RAM and Q shifters, allowing the output of the 
ALU and the Q register to be right shifted 
simultaneously, which is well suited for the 
inner loop of multiply or divide instructions. 

I/O Buses 

The main advantage of the 3000 bit-slice over 
the AM2901 is its five fully parallel data buses 
for transferring data in and out of the chip. It 
has two tri-state output buses (the A and D 
buses) and three input buses (M, I, and K). If 

DATA 
OUTPUT- 
< 1 5 0 >  

INPUT <15 O> 

I). SHIFT 
CONTROL 

SHIFTER 

A ADDR 

REGISTERS B ADOR 
SCRATCHPAD 

I 

I l -  
A M U X  

1 I t"F ARlTHMETlClLOGlC 

I 
. I .  

3 
I I  MULTIPLEXER 

-- - 'i - 

Figure 5. 
microprocessor slice. 

The AM2901 - a 4-bit bipolar 

the minicomputer to be emulated has fairly 
short 1 / 0  and memory buses, the 3000 buses 
can directly drive them, resulting in a sub- 
stantial savings in bus driver packages. In the 
CMU-I 1,  we needed to drive a DEC Unibus, so 
we had to use separate bus drivers and re- 
ceivers. Once external bus drivers are added, the 
advantage of the two output buses for the 
address and data is minimal, because an equiva- 
lent external address register can be loaded as 
fast as the existing internal address register and 
combination bus drivers/latches are available 
(e.g., AM2905). The savings realized by having 
three input buses is the cost of adding eight dual 
4-to-1 line multiplexer chips at the input to the 
bit-slice chips. The savings achieved with the 
five buses in the 3000 bit-slices over the 
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AM2901’s single-input and single-output bus is 
twelve 16-pin circuits, plus 3 bits in the control 
store (2 for the select lines on the input multi- 
plexer, and 1 to control loading of the address 
register). 

Arithmetic Overflow with the 3000 

One of the biggest problems encountered 
with the PDP-I 1 implementation using the 3000 
bit-slice was detection of arithmetic overflow. 
The 3000 bit-slice has no overflow output, and 
the signals needed to directly detect overflow 
are not available at the external pin con- 
nections. This results in considerable overhead 
in emulating instructions that must detect over- 
flow (e.g., instructions that set the V bit in the 
PS register of the PDP-11). The C M U - I  1 over- 
flow handling was implemented with two exter- 
nal flip-flops that contain the signs of the source 
and destination operands. After an instruction 
is fetched, its operands are first fetched either 
from memory or the register stack and are put 
in the source and destination registers within 
the 3002. As the operands are fetched, the 
source and destination flip-flops are set to the 
signs of the operands. When an instruction is 
executed, the overflow logic can use the signs of 
the operands and result to detect overflow. This 
technique works well when the operands are 
from memory, but really slows down the regis- 
ter-to-register operations because the operands 
have to be moved to the AC so their signs can 
be latched in the external source and destina- 
tion sign flip-flops. 

The sequence of instructions needed to emu- 
late a register-to-register A D D  is shown in Fig- 
ure 6 .  The first instruction in the sequence loads 
the source operand into register AC, in order to 
get its sign out of the chip. The next instruction 
specifies for the source sign flip-flop to be set to 
the sign of the AC, and to  store the AC into the 
T register. The following two instructions load 
the destination operand into the AC and set the 
destination sign flip-flop. The last two instruc- 

,ACtSource Register 

:AC+Destinatian Register 
~ SDR T. 1. SETSS .T-AC and SET Source Sign 

NOR SETDS S E T  Destination Sign 
T. SETCC :AC+AC+T 

:And Set Condition Codes 
SDR DR. 1 ,Destination RegistercAC 

Figure 6. Microsequence example: 
register-to-register ADD with overflow detect 

tions do the add and store the result back in the 
destination register. Because of the multiple use 
of fields in the microinstruction, it is not pos- 
sible to specify that a register address comes 
from the instruction register in the same micro- 
instruction that sets the source sign, the destina- 
tion sign flip-flops, or the condition codes. If 
the microprocessor were to be redesigned to al- 
low this, the register-to-register add could be 
done in three rather than six microinstructions 
with the 3000 chips. However, we would pay for 
this performance improvement by having to use 
a wider microinstruction. The AM2901 pro- 
vides external access to the overflow detect out- 
put on the chip and the register-to-register add 
can be done with only one microinstruction, re- 
sulting in a considerable speed increase over the 
3000 chips. 

Example of a Multiply Instruction 

The inner loop of a 16-bit integer multiply in- 
struction on the 3000 chips requires either three 
or six microinstructions, depending on whether 
that cycle is a double register shift and add, or 
just a shift. The high order word of the product 
is stored in the AC register, and the low order 
word is stored in the T register. Initially, AC is 
zero, and T holds the multiplicand. For each 
iteration of the multiply, the loop count is dec- 
remented and if the low order bit of the T regis- 
ter is a 1, then the multiplier is added into the 
AC, and the AC and T registers are shifted 
right. Because the 3000 cannot add a register to 
the AC without also putting the result in the 
register, it takes three microinstructions to per- 
form the inner loop addition. 
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For the AM2901, the inner loop of the multi- 
ply can be done in two microinstructions with 
no external loop counter, and in one with an 
external counter. This is possible because the 
AM2901 in one microinstruction can add two 
general registers together, shifting the result and 
the accumulator extension register right 1 bit. A 
similar speedup also occurs for division. 

ADDITIONAL COMMENTS ON THE 
CMU-11 DESIGN 

The 3000 microcomputer circuits are not the 
only area in which to look for improvements in 
the CMU-11 design. A major source of com- 
plexity was the Unibus interface (29 percent of 
processor’s packages). The 3002 bit-slices pro- 
vide tri-state drivers for their A and D lines and 
if Unibus compatibility is not essential, the out- 
puts from the 3002 circuits could directly drive 
a memory and 1/0 bus of moderate size. If syn- 
chronous operation of the memory bus is ade- 
quate, further simplification of the bus interface 
section of the processor is possible. 

A number of integrated circuit packages are 
now available that could help simplify the de- 
sign of the control part of the processor. Most 
significantly, 4 Kbit programmable read-only 
memories (PROMS) appropriate for use in the 
control store are now available with internal 
latches for use as a microinstruction buffer. 
This would eliminate the need for the separate 
latches used in the CMU-1 1’s microinstruction 
register. A related optimization to the CMU-11 
would be to move from the partly encoded mi- 
croinstruction format of the CMU- l l  to  a 
wider, fully horizontal format. The random 
logic needed to decode an encoded micro- 
instruction is simply more expensive than the 
extra bits in the control store needed for the 
horizontal format. 

We attempted to use programmable logic 
arrays (PLAs) in our initial design, but con- 
verted to ROMs when the PLAs we were de- 
signing with were discontinued. By now, 

however, several useful PLAs are readily avail- 
able. For example, the Signetics FPLA, with its 
16 inputs, is well suited to the decoding of PDP- 
1 1  instructions. 

The cumulative reduction in package counts 
that might be expected in a second iteration of 
the CMU-I 1 design are as follows: 

CMU-1 I 160 IC packages 
Non-Unibus Design 128 
Integrated ROM/MIR 113 

and horizontal 
microinstruction format 

Convert to AM2900 circuits 95 

COMPUTER-AIDED DESIGN TOOLS 

Aside from freeing the designer of book- 
keeping and clerical tasks, the main advantage 
of any design automation system is its inherent 
ability to maintain correct and consistent docu- 
mentation (schematic prints and wire-lists) and 
the reduced turnaround time for design itera- 
tions. The fact that the total prototype devel- 
opment time for the CMU-11 was 39 (40-hour) 
man-weeks is an example of the savings possible 
with even modest design automation aids. 

Description of Facilities Used at C M U  

The Stanford University Drawing System 
(SUDS) was used to enter the schematic print 
set with a graphics display terminal. The draw- 
ing package includes a set of satellite programs 
to extract information for wire-lists and cross- 
reference tables from its da t a  base. I n -  
corporated in the system are libraries of in- 
tegrated circuit definitions which contain not 
only the pictorial representation of the gates but 
also pin section information and some loading 
data. Hard copy prints were conveniently gen- 
erated by a digitally controlled Xerox Graphic 
Printer (XGP). The wire-list program can 
search the data base interactively for specific in- 
formation or produce complete tables of run 
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lists, stuff lists, error reports (wire-ANDing vio- 
lations, etc.), and loading analyses, which all 
proved extremely helpful. 

The logic simulator used was Simulation of 
Asynchronous Gate Elements (SAGE), which is 
a 4-state (0, 1, high impedance for tri-state 
buses, and undefined for initialization and 
uncertainty in delay parameters) gate-level sim- 
ulator. It reads the data base directly from the 
output of the SUDS for utmost convenience, 
since it allowed a turnaround time in the order 
of five minutes for print set corrections. SAGE 
has models in its libraries for the TTL and 
Schottky families, and special routines were 
written by us to emulate the 3000 micro- 
computer set. This allowed improvements in the 
efficiency of the simulation execution. Macro 
facilities are also available for quickly defining 
MSI circuits from more basic logic gates. The 
results of the simulations are in the form of reg- 
ister and signal reports and timing/trace dia- 
grams. 

Debugging with the Simulator 

About 95 percent of the original design errors 
were eliminated through the use of the simula- 
tion program. Naturally, not all combinations 
and sequences of instructions can be simulated, 
but a standard PDP-11 diagnostic program was 
run in addition to a number of other programs. 
A total of about 100 milliseconds of CMU-11 
compute time was simulated before debugging 
on the actual hardware began. 

The limitation here was that the SAGE simu- 
lation of the CMU-11 required about IO6 sec- 
onds of CPU time on a PDP-10 to simulate 1 
second of CMU-11 execution. We simply could 
not afford to consume more than about 30 
hours of CPU time for this project. 

Whatever amount of time is spent on simula- 
tion, the simulations cannot be exhaustive and 
the final set of errors must be tracked down 
with more extensive tests on the real machine. 

We discovered eight to ten errors in the actual 
CMU-I 1. However, when an error was found in 
the physical machine, the simulations were 
again run to help track down the bug through 
the use of timing traces and other results. The 
correction was then entered into the machine 
print set and the simulator was rerun before im- 
plementing the change on the processor wire- 
wrap board or in the microprogram. 

An example of the worth of the computer- 
aided design system came to light when a major 
implementation change was made; several 
ROMs were incorporated into the design to re- 
place a discontinued programmable logic array 
(PLA). Our design aids were essential in effec- 
ting this change within four man-days. In order 
to recover so quickly from such a massive wir- 
ing change, an engineering change order (ECO) 
wrap/unwrap program was run to compare the 
old and new wire-lists produced by the drawing 
package. Thus, at all times during development, 
the processor reflected the exact connectivity of 
the print set. 

Several of the errors discovered on the real 
machine were timing errors that were not re- 
vealed in the simulation debugging. These 
errors were not detected because the simulation 
models did not consider the effects of loading 
on the propagation delays and only maximum 
delays in all gates were used as an approx- 
imation to worst case conditions. In fact, if time 
had permitted, minimum and “typical” (Gaus- 
sian-distributed) parameters should also have 
been tested. However, we again face a funda- 
mental problem with simulation in that the 
computation time becomes excessive as differ- 
ent sets of delays are simulated to find worst- 
case conditions. 

CONCLUDING COMMENTS 

The CMU-11 project was initiated as an ex- 
periment in constructing general purpose (mini) 
processors with LSI bit-slice components. Table 
8 is a summary of the results. As the table 



462 EVOLUTION OF COMPUTER BUILDING BLOCKS 

Table 8. 
Implementations 

Summary of Comparison between C M U - 1 1  and Other P D P - 1 1  

Parameter LSI-11 P D P - 1 1 / 1 0  C M U - 1 1  P D P - l 1 / 4 0  

Microcycle time (ns) 400 200 140,200,300 
Relative Execution Times 3.2 2.32 1.6 1 .o 
IC Packages 42 203 144 41 7 
Control Store Size (bits) 11.264 9.960 9.184 14.056 

INTERACTIVE COMMANDS 
TO SIMULATOR 

TIMING 

INPUT LOGIC 
DESIGN 

DRAWING -----+ 

LOGIC PRINTS 

LOADING ANALYSES 

ENGINEERING 
CHANGE 
ORDERS - 'fi WRAPIUNWRAP 

Figure 7. CAD system at CMU. 

shows, the CMU-11 was implemented with sig- 
nificantly less components (IC packages) than 
either the PDP-11/10 or the PDP-11/40, which 
are processors built with MSI components, and 
the performance of the CMU-I 1 falls between 
these two MSI processors. However, the econ- 
omy of implementation is not nearly as signifi- 
cant as was realized with the LSI-11 although 
the CMU-11 is able to perform at twice the 
speed of the LSI-I I .  The LSI-11 is a processor 
implemented with NMOS LSI microcomputer 
packages in which the entire data path (with 8- 
bit data paths) was put in a single package and 
both the control and data packages for the LSI- 

MICRO 
ASSEMILER 

MICROPROGRAM 

AND SIGNAL 
TRACES 

1 1  have been specialized to efficiently emulate 
the PDP- 1 1 architecture. 

Earlier we discussed improvements that are 
possible in the CMU-11 design and argued that 
a second iteration on the design could boost the 
performance to that of the PDP-11/40 and 
could be implemented in about 95 rather than 
144 packages. To achieve a more cost-effective 
design than this will require either the devel- 
opment of some LSI control circuits specific to 
the processor's instruction set or the specifica- 
tion of a new computer architecture tailored to 
make the most efficient use of the functions 
provided in the LSI circuits. 
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M ul t i-M icro processors: 
An Overview and Working Example 

SAMUEL H. FULLER, JOHN K. OUSTERHOUT, LEVY RASKIN, 
PAUL I .  RUBINFELD, PRADEEP S. SINDHU, 

and RICHARD J. SWAN 

INTRODUCTION 

An interesting phenomenon over the past 
several years has been the spontaneous growth 
of interest in multiple-microprocessor computer 
systems in many universities and research labo- 
ratories. This interest is not hard to understand 
given the inexpensive computational power of- 
fered by microprocessors today and the cost- 
performance improvements promised by those 
to be delivered in the near hture .  Micro- 
processors have had a dramatic impact on ap- 
plications that require a small amount of 
computing. They have been used in in-  
struments, industrial controllers, intelligent ter- 
minals, communications systems as special 
function processors in large computers, and, 
more recently, in consumer goods and games. 

The question naturally arises as to whether 
the microprocessor, which has proved so suc- 
cessful in these diverse applications, can be used 
as a building block for large general purpose 
computer systems. In other words, can a suit- 
ably interconnected set of microprocessors be 

used for tasks that currently require large 
uniprocessors capable of executing millions of 
instructions per second? At present, there is no 
definitive answer to this question, but there are 
several reasons to believe that multiple-micro- 
processor systems might indeed be viable. 

A strong argument for a microprocessor- 
based system is its potential cost-effectiveness. 
This point is graphically demonstrated in Fig- 
ure 1 which shows cost/performance as a func- 
tion of computer system size.* Each point in 
this figure represents a (uniprocessor) system 
currently available and introduced between 
1975 and 1977 [GML Corp., 19771. For ex- 
ample, the computer represented by the point 
labelled A has a purchase price of about 
$10,000. It is capable of transferring data be- 
tween memory and the central processor at 
about 200 Mbits/second, yielding a figure of 
merit of 2 X 104 bits/second/dollar. The figure 
shows that with conventional methods of or- 
ganizing computers, the cost/performance of a 

* T h e  measure of system size used here is i t s  purchase price. 
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system degrades as its size increases. If systems 
were, instead, configured using micro- 
processors, and if there was no additional cost 
in interconnecting the microprocessors, then 
the points would fall along an ideal multi- 
processors line such as shown in the figure. In 
reality, both costs associated with the physical 
interconnect and performance degradation due 
to synchronization overhead will cause the 
price/performance curve to have a negative 
slope (the realistic multiprocessors line in the 
figure). In terms of Figure 1, the critical ques- 
tion facing multiprocessors is whether the rea- 
listic multiprocessors price/performance line 
falls above or below the line for conventional 
uniprocessor systems. 

Another important attribute of a multiple- 
processor computer system is its potential for 
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Figure 1 Cost per formance  a s  a function of s y s t e m  
cos t  

reliability. Computers are being applied in- 
creasingly in situations where a failure might 
have serious economic and even life-endan- 
gering consequences. Since the basic ingredient 
in the design of a reliable system using real com- 
ponents is redundancy in one form or another, 
a structure consisting of large numbers of iden- 
tical processors represents the natural frame- 
work in which to design reliable computers. 
Prior to the advent of the microprocessor, it 
was unrealistic to consider multiprocessor 
structures involving more than a few processors 
because the cost of building the individual pro- 
cessors themselves was high. 

Yet another factor that favors the use of mul- 
tiple processors is the resulting modularity of 
the system. There has always been a motivation 
for making computer systems modular for rea- 
sons of incremental expandability, ease of 
maintenance, and enhanced production. A 
computer system that is built using identical 
processors, and a small set of interconnection 
elements that have clean, well-defined interfaces 
would benefit fully from a modularity in pro- 
cessing power that is currently seen only in 
memory units of computer systems. 

In  spite of the advantages offered by multi- 
processor organizations, there have been few 
commercially viable systems constructed to 
date.* The reason for this is that a number of 
problems and open issues remain to be resolved 
before such systems are a practical alternative 
to more conventional organizations. The major 
problems currently facing such systems are as 
follows. 

1. Task decomposition. How should tasks 
now executed on uniprocessors be de- 
composed so that they can be run on a 
set of smaller processors? Can compilers 

*While the authors know of no  commercially available multi-microprocessor systems, Pluribus [Hear t  et at.. 19731 a n d  
Tandem [I9771 are two multiple-processor systems based on  a processor of minicomputer size that  are  commercially avail- 
able. 
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2. 

3. 

4. 

5 .  

6 .  

7. 

or specialized run-time systems be devel- 
oped to do this decomposition automat- 
ically or  must the programmer do the 
decomposition explicitly? 
Interconnection structures. What are the 
m o s t  e f f ec t ive  types  o f  p roces -  
sor/memory and processor/processor 
interconnection structures, and what are 
the related communication protocols? 
Address mapping mechanisms. What 
mechanisms are appropriate for per- 
forming the virtual-to-physical address 
translation? These mechanisms should 
allow processors to share code and data 
while ensuring adequate levels of pro- 
tection and performance. 
Software system structure. What soft- 
ware structures are suitable for large sys- 
tems containing hundreds of processors? 
Among the important problems in this 
area are resource management, software 
distribution, protection, and reliability. 
Interprocessor interference. Even after 
tasks have been decomposed to run on 
multiple processors, how should inter- 
processor interference and contention 
for memory and 1/0 resources be min- 
imized? 
Deadlock avoidance. With multiple pro- 
cessors contending for resources, the po- 
tential exists for a situation where each 
of a group of processors is waiting for 
resources assigned to other processors in 
the group, and none of the processors in 
the group is able to proceed until its de- 
mands are satisfied. This situation, 
known as deadlock, effectively disables 
all the processors involved, and special 
care must be taken in the design to avoid 
it. 
Fault tolerance. What hardware and 
software structures will allow a multi- 
processor system to realize its potential 
for surviving the failure of components 
in the system? 

8. Input/output. How should input/output 
devices in general, and secondary stor- 
age devices in particular, be integrated 
into a multi-microprocessor system? 

The next section in this article surveys the 
spectrum of multiple-processor systems that are 
under active consideration and that hold some 
promise for becoming viable organizations for 
future computer systems. Given the relatively 
ill-defined nature of many of the unresolved 
questions listed above, the real potential and 
limitations of a multi-microprocessor archi- 
tecture can only be understood by considering a 
specific system in depth. The section summariz- 
ing the architecture of the Cm* system, which 
has recently been developed at Carnegie-Mellon 
University (CMU), is presented to highlight 
some of the important considerations in imple- 
menting and programming a real multi- 
processor system. The detailed design and 
implementation of Cm* are discussed in a re- 
cent set of papers [Jones ef al., 1977; Swan ef 
al., 1977; Swan et al., 1977a[. The principal con- 
clusions of the performance studies of Cm* are 
presented in the fourth section of this paper. 
The structure of the virtual addressing mecha- 
nism and the kernel operating system now run- 
ning on Cm* are the subject of a paper by 
[Jones et al., 19781. 

OVERVIEW OF MULTIPLE PROCESSOR 
STR U CTU RES 

There is currently no established method- 
ology for interconnecting sets of processors for 
the purpose of building large, general purpose 
or even special purpose computer systems. 
However, there does exist an interesting range 
of possibilities and Figures 2 through 4 show 
three generic organizations that span this range: 
computer networks, multiprocessors, and mul- 
tiple arithmetic unit processors. Other tax- 
onomies of multiple-processor systems have 
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been proposed [Flynn, 1966; Jensen and Ander- 
son, 19771, but this relatively straightforward 
grouping into three organizations is most suit- 
able for the following discussion. 

All of these organizations existed prior to the 
advent of the microprocessor. The economics of 
the microprocessor, however, open up the pos- 
sibilities of using these structures in many new 
application areas. In our review of these alter- 
native computer organizations, we will refer- 
ence some older computer systems built with 
conventional components to help make the dis- 
cussion more concrete. 

Computer Networks 

Figure 2 shows a computer network. In this 
type of multiple-processor organization, each 
processor is embedded in a conventional com- 
puter system, and the computers are then inter- 
connected via communication links. The inter- 
computer communication links are often serial, 
but in some cases, such as the channel-to-chan- 
ne1 adapter of multicomputer IBM S/370 sys- 
tems, high-bandwidth parallel buses are used. 

COMPUTER 

COMPUTER 2 E-, 
j-W Mp I 

CONTROLLER 

COMPUTER H 
PMS KEY 

CENTRAL PROCESSOR 

Mp PRIMARIMEMORY 

Figure 2. A network 

IEETI CONTROLLER 

COMPUTER 1 

of computers. 

Perhaps the most widely known computer 
network is the ARPA network [Kahn, 19721, 
but other computer networks have also been 
implemented and are now in use. These include 
the Ethernet [Metcalfe and Boggs, 19761, DCS 
[Farber, 19751, and the Spider network [Fraser, 
19751. Furthermore, most large computer in- 
stallations are really computer networks. Com- 
puter manufacturers are establishing standard 
network protocols, for example, IBM’s system 
network architecture (SNA) and Digital Equip- 
ment Corporation’s DECnet protocol, to  facil- 
itate the construction of computer networks 
tailored to individual user needs. 

An important attribute of a computer net- 
work is the data transmission bandwidth be- 
tween computers. This bandwidth ranges from 
a few thousand bits per second up to about IO 
Mbits/second. The other important attribute of 
the inter-computer links is the access or latency 
time for each unit of information sent between 
computers. In describing interprocessor com- 
munication capability it is common to refer to 
the degree of coupling between processors in 
the system. The ARPA network is an example 
of a loosely coupled (and geographically dis- 
tributed) computer network because of the 50 
Kbit/second links between computers in the 
network and the 100-250 ms latency times asso- 
ciated with cross-network transmissions of 
packets of information. A more tightly coupled 
(and geographically centralized) network is the 
Ethernet with 3 Mbit/second inter-computer 
bandwidth and latency times of the order of a 
small number of milliseconds. As more and 
more closely coupled computer networks are 
considered, however, another type of multiple 
processor structure, the multiprocessor, be- 
comes an increasingly competitive alternative. 
Multiprocessors will be discussed shortly. 

As microprocessors are incorporated into 
computer terminals, point-of-sale terminals, 
data acquisition transducers, and other such ap- 
plications, the natural form of organization will 
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be a loosely coupled computer network. Closely 
coupled microcomputer networks might pro- 
vide an attractive organization for reliable sys- 
tems,* systems that must manage a large data 
base on many disks or other secondary storage, 
or even as a computational structure tailored to 
the data flow of a specialized application. It is 
questionable, however, whether a multiple mi- 
croprocessor organized in the form of a net- 
work could replace a large conventional 
uniprocessor. 

Multiprocessor System 

Figure 3 shows the basic structure of a multi- 
processor. Its distinguishing characteristic is 
that, unlike the processors in computer net- 
works, the processors in a multiprocessor share 
primary memory. Note that in the computer 
network of Figure 2, each processor has its 
own, private primary memory. Data is shared 
in a computer network by passing inter- 
processor messages, whereas in a multi- 
processor, the central processors can directly 
share data in primary memory. The concept of 
a multiprocessor is not new; the Burroughs 

I.II gg . . .  
I I I I 

PROCESSORIMEMORV SWITCH 

1 I I I 

Figure 3. The basic s t ructure  of a multiprocessor.  

D825 (1962), Bendix G-21 (1963), G E  645 
(1969), and IBM 360/65 (1969) provide early 
examples. In these multiprocessors, conven- 
tional, relatively expensive central processors 
were used, making it uneconomical to  have 
more than a few processors. With small num- 
bers of processors, it is not mandatory to  de- 
compose a single job into a set of concurrent, 
cooperating processes to  use all the central pro- 
cessors at once; enough independent programs 
are usually resident in the primary memory of a 
conventional multiprogramming system to keep 
a few processors busy. More recently, multi- 
processors using minicomputers have been im- 
plemented, and configurations now exist with 
as many as 14 to 16 processors in a single com- 
puter system [Wulf and Bell, 1972; Heart et af., 
19731. To  effectively utilize the processors in 
such a system, a task must be explicitly decom- 
posed to run  concurrently on different proces- 
sors. 

One of the most challenging problems in de- 
signing and implementing the hardware of mul- 
tiprocessor systems, especially for large number 
of processors, is the processor/memory switch- 
ing structure. Many techniques have been tried 
and used successfully in particular systems: 
multiple ports per memory unit, electronic 
crossbar switches, time-multiplexed common 
buses, and combinations and hierarchies of sim- 
pler switches. 

Multiple Arithmetic Unit Processors 

The third form of computer organization that 
incorporates multiple processing elements is the 
multi-arithmetic logic unit (ALU) processor. 
The fundamental difference between this type 

* Examples of closely coupled computer networks built with minicomputers and designed for ultra-reliable applications 
include the Tandem computer [I9771 and the five processor system for NASA’s space shuttle [Sklaroff, 1976; Cooper,  
Chow,  19761. 
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of structure and multiprocessors is that all the 
ALUs in the multi-ALU processor support a 
single instruction stream, as shown in Figure 4, 
while each of the processors in the multi- 
processor supports its own instruction stream. 

CENTRAL PROCESSOR (PCI 

f .yo 
.. 

L 
PRIMARY 
MEMORY 

Figure 4. Multi-ALU processor 

I f  we define a processor to  be a unit capable 
of both decoding and executing instructions, 
then the multi-ALU processor is not really a 
multiple processor system. However, multi- 
ALU organizations are often considered as  al- 
ternatives to multiprocessors and derive the 
same benefits from advances in LSI technology 
as multiprocessors. 

A number of well-known computer systems 
fall into the multi-ALU category. Classical ex- 
amples include the CDC 6600, with its ten func- 
tional units (specialized ALUs), the IBM 
360/91 with independent and pipelined float- 
ing-point add/subtract and multiply/divide 
units. Array or vector processors such as 1L- 
LIAC IV and CRAY I also fall into this cate- 
gory, but use a specialized vector instruction 
stream to direct the execution of an array of 

arithmetic units or a highly pipelined arithmetic 
unit. 

Comparing Alternative Multiple Processor 
Structures 

Networks, multiprocessors, and multi-ALU 
computers have been presented as three generic 
methods of organizing processors t o  build 
highly parallel computer systems. The three 
classes can be thought of as varying along a 
single dimension - the degree of coupling be- 
tween processors in the system. This term is of- 
ten used in a general way, but let us define it to  
be the worst case processor’s minimum access 
time to a global data structure i n  the system. 
For example, in the computer network of Fig- 
ure 3, the minimum data access time for a pro- 
cessor is the access time to  local memory. 
Assuming that the global data structure in this 
particular network resides in the primary mem- 
ory of computer I ,  an access to global data by 
computer 1 would take a single memory fetch 
(on the order of 1 microsecond), while com- 
puter 5 will have to send a message to  computer 
1 requesting the necessary information (on the 
order of 50 milliseconds). However, the worst 
case access time is seen by computer 4, which 
must access the data in computer 1 via a three- 
hop sequence involving computers 3 and 2, and 
this might take more than 100 milliseconds. 

In a multiprocessor, each processor has direct 
access to global data stored in primary memory. 
Since interprocessor communication occurs by 
sharing primary memory, the interaction times 
are on the order of 1 to 50 microseconds. In a 
multi-ALU computer, the analog of inter- 
processor communication is the transfer of con- 
trol information that occurs between the 
control unit and its associated processing ele- 
ments. Typically, this information is transferred 
over direct control lines and does not involve 
memory fetches, making it considerably faster 
than interprocessor communication in a multi- 
processor. 
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Figure 5 illustrates the range of the degree of 
coupling for the three types of multiple proces- 
sor organizations considered here. The position 
of an organization in this range has a strong in- 
fluence on its suitability to a particular appli- 
cation. An application consisting of a set of 

NETWORKS 

MULTIPROCESSORS 

I Cm’ I t -1 
WORST CASE ACCESS TO SHARED DATA (SECONDS) 

Figure 5. 
organizations. 

Degree of coupling of multiple-processor 

parallel processes that need to interact or share 
data only every 10 to 100 seconds can clearly 
run on a loosely coupled computer network. At 
the other extreme, algorithms that require the 
parallel execution of arithmetic operations 
within single expressions force the interaction 
times between processing elements to occur al- 
most every instruction cycle. The large inter- 
processor communication times in a computer 
network, and probably even in a multi- 
processor, make these organizations imprac- 
tical for such applications. Hence, the average 
time between interprocess interaction becomes 
a critical “time constant” of an application and 
provides a good indication of the type of mul- 
tiple processor organization that will be most 
suitable. 

The Cm* multiple microprocessor computer 
system described in the remainder of this article 
supports time constants in the range of 5 to 50 
microseconds. A motivating factor in the con- 
struction of Cm* was to  have an experimental 

multiple processor structure that could be used 
as a vehicle to investigate a range of multi- 
processor and closely coupled network organi- 
zations. Microprogrammed interprocessor 
communication controllers provide the flex- 
ibility needed for this experimentation. 

THE ARCHITECTURE OF Cm* 

The structure of the Cm* system grew from a 
consideration of system organizations like those 
mentioned in the previous section, and from 
several other notions. First, we wanted a system 
that potentially could contain several hundreds 
of processing elements since we wished to ex- 
plore greater degrees of parallelism than had 
previously been available. This required a dra- 
matic change in the processor/memory inter- 
connec t ion  s t ruc tu re .  Tight ly  coupled  
multiprocessors, with uniform access by all pro- 
cessing elements to  all of main memory, have a 
switching structure whose cost grows as the 
product of the number of processors and the 
number of memory units. Thus, the proces- 
sor/memory interconnect becomes prohibi- 
tively expensive as the number of processing 
elements and memory modules grows beyond 
10 or 20. 

A requirement, set early in  the design, was 
that each processor be able to address directly 
all of main memory, rather than require a mes- 
sage transmission for access to remote units as 
in a network. We considered this important in 
order to allow for experimentation with a vari- 
ety of interprocess communication mecha- 
nisms, both message-based and shared- 
memory-based. 

Uniformly fast access to all of memory by 
each processor was not, however, considered 
necessary, either for system performance or for 
generality of experimentation. The success of 
cache memories has shown that a processor’s 
memory references tend to cluster in  a small 
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portion of its address space [Gibson, 1974; Lip- 
tay, 19781. Results presented later in this article 
indicate that for the processors used in Cm*, 
instructions and temporary data usually ac- 
count for between 90 and 99 percent of the 
memory references. When a task is subdivided 
so that several processors may perform differ- 
ent parts of it in parallel, the shared global data 
accessed by many or all of the processors often 
accounts for most of the total main memory re- 
quired by the task. However, our results in- 
dicate that these global locations are accessed 
so infrequently that it makes little difference if 
their access times are substantially longer than 
those for code and temporary data. 

The structure of Cm* is depicted in Figure 6 
and has been described in detail in [Swan et al., 
1977; Swan et af., 1977al. The fundamental unit 
of Cm* is a computer module (CM). Each CM 
consists of a processing element, local memory, 
input/output devices, and a local switch 
(S.local) which provides a simple interface be- 
tween the CM and the rest of the system. The 
primary memory of the system consists exclu- 
sively of the local memory of the CMs. 

INTERCLUSTER 

4 
DETAILS OF A COMPUTER MODULE 

Figure 6. The basic structure of Crn’ 

A processor may directly reference any loca- 
tion in main memory. The S.local uses simple 
mapping tables to decide on a reference-by-ref- 
erence basis whether the physical address being 
referred to is in  the local memory. I f  it is, the 
S.local performs a simple mapping function and 
the reference proceeds very quickly. If  it is not, 
the S.local passes the reference to  a mapping 
controller (K.map). The K.maps, which com- 
prise a distributed processor/memory switch, 
communicate with each other and the S.locals 
of the system to perform non-local references 
for processors. The fact that a memory refer- 
ence is nonlocal is completely transparent to the 
processor. While the reference is being per- 
formed by the K.maps and S.locals, the proces- 
sor waits just as if the reference were local. The 
duration of this wait varies strongly with the 
“distance” the reference must travel to reach 
the addressed memory, but it is fundamental to 
Cm* that the addressing mechanism at the pro- 
cessor level be exactly the same no matter where 
the physical memory being addressed is located. 

Two levels of locality are present in Cm*, the 
first being the computer module level discussed 
previously. A second level of locality, that of a 
cluster, is also present. With the expectation 
that most references fall into local memory (and 
thus do not require use of the global switching 
mechanism) came the assumption that a given 
processor would not, by itself, make heavy use 
of the intermodule communication paths. It 
was decided to share a communication path, 
consisting of a K.map and a parallel Map Bus, 
between several CMs. However, a single Map 
Bus would not have sufficient bandwidth to ser- 
vice 100 or more CMs; furthermore, the pres- 
ence of a single intercommunication channel 
would pose a reliability hazard. Thus, the CMs 
are grouped in clusters containing I to 14 mod- 
ules. References between a processor in a clus- 
ter and a nonlocal memory in the same cluster 
involve only the K.map and Map Bus of the 
cluster; performance of a large system is de- 
pendent on most nonlocal references being clus- 
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ter-local in order to avoid saturation of the 
intercluster buses. 

An Example Program 

The structure of Cm* suggests a complexity 
in the processor/memory interconnection not 
seen in more conventional machines. Although 
we believe this type of switching structure is jus- 
tified based on economic, performance, reliabil- 
ity, and  modularity considerations, it is 
important that Cm* also be programmable. 
Given the cost and difficulty of writing good 
software systems for even the simplest of archi- 
tectures, a structure that adds to the program- 
mer’s problems is highly suspect. Numerous 
proposals have been made in recent years for 
various multiple processor structures, and there 
is no doubt that many of them could be con- 
structed.  However, a critical question is 
whether they could be programmed in any prac- 
tical sense. Much of the effort on Cm* has been 
directed toward evaluating how effectively it 
can be programmed. This issue is dealt with in 
depth by Jones et al., [1978], in which the oper- 
ating system for Cm* and a large application 
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M A I N  

PROCEDURE A 

ROW 0 
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ARRAY 2 

R O W  1 6  

TEMPORARY 
VARIABLES 

STACK 
AREA 

Figure 7. Example organization 
of a user program. 

program are described. Here, we use an ex- 
ample to point out that although the memory is 
physically nonhomogeneous, it appears com- 
pletely uniform to a programmer. 

Figure 7 shows an example of how a pro- 
grammer might organize a program and its as- 
sociated data structures in his virtual address 
space; Figure 8 indicates how these program 
segments might be mapped into the physical 

---- I- r 

S.lOCd =H-& 
I +I 
I 

R O W 0  I i I  I 

i 
I C M 2  

r----- 

ARRAV 2 . 

I 
I C M 3  

Figure 8. 
in memory. 

Physical layout of the program 
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memory of a Cm* system. When writing pro- 
grams, the programmer thinks of a process’ ad- 
dress space as a large uniform piece of memory 
exactly as if he were working on a conventional 
uniprocessor. When the program is loaded onto 
the Cm* machine, its component segments may 
be placed anywhere in the physical memory of 
the system; the relocation tables associated with 
the processor that will execute the program are 

r----- 

Figure 9 
duplication of code 

Physical layout of program showing 

then initialized to make these segments address- 
able. 

Figure 8 shows the case where the segments 
of the example program have been distributed 
in the memory modules of several different 
CMs, and the relocation tables in the S.loca1 
and K.map set up to  make the segments appear 
in Pcl’s virtual address space a s  in Figure 7. 
The S.local will recognize that instruction fet- 
ches by Pcl map to  procedure MAIN which is 
in local memory; these references will proceed 
at full speed without involving the K.map or 
Map Bus. As the process needs to  pop and push 
words from its working stack, the S.loca1 again 
will direct the reads and writes to  local memory. 
However, procedure MAIN will eventually call 
procedure A which will need to access words in 
the array Z. When such an access is made, the 
S.local will recognize it as an external reference 
and pass the virtual address to  the K.map; the 
K.map will translate it t o  the correct physical 
address and initiate a memory request to the 
S.local of either CM2 or CM3, depending on 
which row of array Z is being accessed. The 
programmer, and in fact Pcl, are unaware that 
reading a word of array Z has resulted in a non- 
local reference. The only difference that Pcl 
sees is that it takes about 9 microseconds 
(rather than 3 microseconds for local refer- 
ences) to  access the array. During this time, Pc2 
and Pc3 are unaffected and may be executing 
other programs. 

There is n o  reason that Pcl must execute pro- 
cedure MAIN. Pc2 or Pc3 could also execute 
this procedure out of C M  1’s memory if the ap- 
propriate relocation tables were initialized 
properly. Pc2 would run this program about 
three times as slowly as Pcl since each instruc- 
tion fetch would now be handled as an inter- 
C M  read from Pc2 to C M  1. Because of this per- 
formance degradation, current Cm* programs 
are almost always executed on the processor for 
which the code is local. 

Figure 9 shows how several additional pro- 
cessors can be used to  advantage. Now when 
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MAIN calls procedure A, it sends inter- 
processor messages to  Pc2 and Pc3 to  initiate 
concurrent execution of copies of procedure A 
on both of these processors. By passing the ap- 
propriate parameters to Pc2 and Pc3, they can 
each concentrate on a different part of array Z. 
In this way, operations being repeated on the 
whole array may be completed in substantially 
less time than if  a single processor were in- 
volved. If array Z is sufficiently large, it may 
make sense to initiate many more than two 
other processors in parallel to operate on array 
Z. 

Although the identity of the processor that is 
dispatched to execute a process and the physical 
location of segments of memory can be made 
transparent to  the programmer, the decomposi- 
tion of the program into parallel cooperating 
tasks cannot. In fact, the whole problem of how 
to decompose application programs into sets of 
parallel cooperating processes is an active and 
interesting area of research. Programming lan- 
guages such as CONCURRENT PASCAL and 
MODULA support constructs to express al- 
gorithms with explicit parallelism [Hansen, 
1975; Wirth, 19771. In addition, there are some 
efforts on Cm* [Hibbard, et al., 19781 and else- 
where [Kuck et al., 19721 concerning ideas re- 
lated to automatically decomposing algorithms 
slated in higher level languages such as ALGOL 
and FORTRAN. 

Cm * Implementation Overview 

The implementation of Cm* has been pre- 
sented in detail in [Swan et al., 1977al and will 
only be summarized here. Figure 10 depicts a 
computer module. The processing element is 
Digital Equipment Corporation's LSI-11; both 
it and the memory and 1 / 0  devices on its local 
bus are standard commercial components. 
However, the processor has been modified to 
allow the logical insertion of an S.loca1, which 
was designed and built at CMU, between the 
processor and its LSI-11 bus. The S.local uses 

information in its relocation tables to direct 
memory references from the processor either to 
the local bus, providing simple address reloca- 
tion while doing so, or out to the K.map for 
external references. This address translation 
performed by the S.local is illustrated in Figure 
1 I .  I n  addition, the S.local is capable of access- 
ing the module's memory on behalf of the 
K.map without intervention from the local pro- 
cessor. Figure 12 is a photograph of one of the 
CMs in  the current system. 

INTERMODULE SWITCHING 
STRUCTURE 

EXTERNAL REFERENCES 

EXTERNAL 
REFERENCES 

LOCAL BUS 

I II , , II , 
PROCESSING 7 I MEMORY I ~ i / o  DEVICES1 

ELEMENT 
LOCAL 

REFERENCES 

Figurelo. Structure of a computer module 

MAP 

REA0 ONLY I ";fZL 

EXTERNAL PROCESSOR 

PROCESSOR PHYSICAL ADDRESS 
G E N E R A T E D  
ADDRESS 

OF LSI-11 BUS 

Figure 1 1. 
local memory reference. 

Virtual-to-physical address translation for a 
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Figure 12.  
mounted  on a n  extender .  

A computer  module  with its S.local 

We feel that this notion of a computer mod- 
ule building block is appropriate for LSI imple- 
mentation. Considering either the processor 
S.loca1 combination as a single chip (possible 
using 1977 technology) or the processor, its 
S.loca1, and the local memory as a single chip 
(likely to be possible in 1980) is reasonable be- 
cause of the small number of external con- 
nections required. Although more than 100 
wires are currently required in the LSI-11 Bus 
and Map Bus combined, this number could be 
reduced enough to  allow integration on a single 
chip. 

This new kind of building block requires a 
minor change in perspective among integrated 

circuit manufacturers. Current microprocessors 
are being built with some memory on the micro- 
processor chip and the capability to access off- 
chip memory and 1 / 0  devices. However, apart 
from a few notable exceptions [Forbes, 1977; 
Intel Corp., 19771, it is either difficult or impos- 
sible for off-chip units to access the on-chip 
memory without direct processor intervention, 
introducing unnecessary complications in the 
design of the switching structure. Given com- 
plete freedom, there are other characteristics of 
the LSI-11 microprocessor that we would like 
to change.* However, the purpose of the Cm* 
project has been to investigate alternate mul- 
tiple microprocessor structures, not to design a 
better microprocessor per se. The LSI- 1 1 was 
chosen since it had an adequate architecture,? 
and had no problems that could not be circum- 
vented via logic in the S.loca1. Thus, we avoided 
what may have been a two-year delay had we 
decided to design and implement our own 
microprocessor. 

The K.maps of Cm* are microprogrammed 
processors built at CMU which together form a 
distributed and intelligent processor/memory 
switching structure. Each K.map presides over 
a single cluster and has complete control over 
the processors and memory of that cluster. A 
K.map’s primary function is to process the ex- 
ternal memory references of the modules in its 
cluster, and in so doing to  communicate with 
the S.locals of the cluster and the K.maps of 
other clusters. 

Because the K.maps are responsible for the 
mapping of external processor addresses to  
physical memory, their microprograms define 
the address translation mechanism and thus the 
virtual memory architecture of the Cm* system. 
The use of 2048-word writable control stores 

* T h e  principal deficiency in the LSI-I 1’s architecture from the standpoint of Cm* is the limited processor address space of 64 

t l n  1973, during discussions of initiating a Cm*-like project at CMU, it was decided that  none  of the existing micro- 
Kbytes. However, in 1975 there were no  other microprocessors that had a larger address space. 

processors, e.g., the Intel 8080, had an  architecture that  could support  a programmable multiple processor system. 
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within the K.maps has allowed us to implement 
and measure two different architectures. We ex- 
pect to experiment with several others in the 
near future. 

Figure 13 shows the sequence of transactions 
that occur on the Map Bus during the process- 
ing of an external memory reference. The first 
transaction on the Map Bus is initiated by the 
S.local of the source C M  when it recognizes 
that the processor has made an external mem- 
ory reference. The K.map accepts the processor 
address from the S.loca1, performs the virtual- 
to-physical address translation, and sends the 
physical address, which includes the number of 
the destination CM, out on the Map Bus. As- 
suming that the reference is a simple read, the 
destination CM accepts the address, reads the 
indicated word from its local memory, and 
then, in the third and final Map Bus transac- 
tion, returns the data directly to the source CM. 

In addition to the concurrency afforded in 
the mapping mechanism by having multiple 
clusters, the K.map is partitioned into three 
units that allow pipelining of the commu- 
nication mechanism within a cluster. Figure 14 
shows the components of the K.map: a map- 
ping processor (P.map) is responsible for ad- 
dress translation and directs the actions of the 
other two components; a Map Bus controller 
(K.bus) is master of all transactions on the syn- 
chronous Map Bus and schedules activities for 
execution in the P.map; the third component 
(Linc) is responsible for shipping and receiving 
intercluster messages on the two intercluster 
buses to which each K.map may connect. The 
three components are relatively independent 
and communicate via shared memory and a set 
of hardware queues. The K.map contains a to- 
tal of about 750 MSI integrated circuit pack- 
ages on six cards.* 

INTERCLUSTER 
BUSSES -1 (= x- 

READIWRITE 

Cm PHYSICAL ADDRESS 

18 

I 
I J I  I 

SOURCE C m  DESTINATION C m  

Figure 13. The mechanism for external references 

INTERCLUSTER BUS 1 , I 

MAP BUS 

Figure 14. The components of a K.map. 

*Much of the complexity of the K.map is a direct result of our desire to ensure that the K m a p  was a flexible micro- 
programmable unit that would allow maximum opportunity for experimentation. Over one third of the K m a p  is devoted to 
the writable control store. 
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Current Configuration 

The current operating configuration of Cm* 
is depicted in Figure 15. Ten LSI-lls, with 28 
Kwords of memory each, are configured into 
three clusters of sizes 4, 2, and 4. Figure 16 
shows one of the four-CM clusters, with the 
four CMs visible in the top rack and the K.map 
and Hooks processor visible in the bottom rack. 
For several of the benchmark programs, the 
system was reconfigured into clusters of differ- 
ent sizes. Two more LSI-I Is, called Hooks Pro- 
cessors, have special control over the K.maps 
and are used for microprogram loading and de- 
bugging and hardware diagnosis; they are not 
part of the Cm* system, but rather provide sup- 
port processing. Each LSI-11 is connected to a 
PDP-I 1/10 Host via a serial line; the Host runs 
a simple operating system built at CMU 
[Scelza, 19771 to allow users at remote terminals 
to load programs into LSI-11’s from the Host’s 

I 

CONTROL LlNES 

I w POP-IO8 

r HOST FRONT END JLRI&L LINK 

I 4 PRoCESSoR FRONT END e FRONT-END TERMINALS 
OTHER CMU 
COMPUTERS . p0p-”/40 

Figure 15 The current configuration of Cm* 

DECtape drives, to start and stop processors, 
and to  communicate directly with the proces- 
sors via their serial lines. A front-end terminal 
processor permits terminals anywhere within 
the CMU computing environment to access the 

Figure 16. A four-CM cluster. 
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Host, and thus Cm*, as well as the other CMU 
computers. 

Two versions of K.map microcode have been 
written and evaluated to date. The first is a 
simple version written to  provide the bare min- 
imum facilities needed for interprocessor com- 
munication and memory sharing. Although 
primarily written to enable system diagnostics 
to be run, this version was also used for the 
benchmarks described in the next section as it 
was available eight months before the more 
powerful second version. The second version of 
K.map microcode provides a complete virtual 
addressing system including protected execu- 
tion environments and capability-based ad- 
dressing. The facilities provided by this version 
are presented in detail in Jones et al., [1978] and 
Swan et al., [1977]. 

Under the simple microcode, each processor 
is permitted to map any of its 16 virtual pages 
onto any 2048-word physical page in the multi- 
cluster system. A processor may specify 
whether pages residing in its local memory are 
to be referenced locally or externally (for test 
and measurement purposes it was convenient to 
be able to force references to local memory to 
pass through the K.maps and then come back 
to the local memory rather than being made 
directly). Since control operations, e.g., inter- 
processor interrupts, are invoked by referencing 
special physical memory locations, this micro- 
code provides completely general inter- 
c o m m u n i c a t i o n ,  a l t h o u g h  i t  d o e s  n o t  
implement any protection. The total size of the 
simple microcode is 505 80-bit micro- 
instructions. 

MEASUREMENT A N D  EVALUATION 
OF Cm* 

Multi-microprocessor computer structures 
are sufficiently unconventional that standard 
metrics of computer system performance are 
hard to apply effectively. For example, a com- 
mon measure of the performance of a computer 

is the number of instructions per second that 
the processor can execute. A single LSI-11 pro- 
cessor in Cm* is capable of executing about 
170K instructions/second; a IO-CM con- 
figuration will, therefore, have the potential of 
1700K instructions/second and a 100-processor 
configuration a potential of 17M instruc- 
tions/second. However, such linear scale-up in 
performance is difficult to achieve when proces- 
sors have to cooperate in performing a given 
task. Overheads associated with ensuring coop- 
eration usually cause the increase in perform- 
ance to be less than linear. 

Measurements on other multiprocessors 
show that these overheads can become large 
enough so that the performance of the system 
actually degrades as more processors are added. 
Anyone who has suffered through the deliber- 
ations of a committee of more than two or three 
people trying to make a decision should have an 
intuitive appreciation for the fact that coordina- 
tion can be expensive. 

Initial performance measurements were made 
on Cm* to quantify this overhead and to deter- 
mine how it varies with the number of active 
processors for various configurations. The eval- 
uation was done using what is perhaps the only 
practical method at the present time: writing a 
set of benchmark programs and running them 
on the bare machine. The programs used in the 
evaluation are outlined below, and are dis- 
cussed in greater detail in the appendix. 

Partial differential equations - a numer- 
ical application. This program solves 
Laplace’s partial differential equation 
over a rectangular grid. The method of 
finite differences is used and is relatively 
easily decomposed with each available 
processor iterating over a separate re- 
gion of the grid. 
Sorting. This benchmark program is a 
decomposition of the well known Quick- 
sort algorithm into a set of asynchro- 
nous parallel processes. Each sorting 
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pass consists of dividing the current list 
of elements into two and placing the 
smaller sublist in a stack. Whenever a 
processor is free, it removes a sublist 
from the top of the stack and executes a 
sorting pass over this sublist. 
Integer programming - the set partition- 
ing problem. Set partitioning is typically 
solved by an enumeration algorithm that 
searches a large, relatively sparse binary 
matrix for a feasible solution. While it is 
easy to initiate parallel searches in paths, 
it is critical to retain the effectiveness of 
pruning rules to  limit the extent of the 
search. 
The HARPY speech recognition system. 
This is a relatively large program that 
searches a Markovian network to find 
the most probable utterance given the 
digitized input of a speech signal. The 
HARPY algorithm has been studied ex- 
tensively on uniprocessors [Lowerre, 
19761 and is discussed in depth in the pa- 
per by Jones et d., [1978]. 

5.  ALGOL 68 run-time system. Another 
large programming system that now ex- 
ists on Cm* is the run-time system for a 
useful subset of ALGOL 68 [Hibbard, et 
al., 19781. It allows low level activity 
such as calls to standard functions, array 
manipulations, and copying of large val- 
ues to be performed automatically in 
parallel without requiring the program- 
mer to specify the parallel activity explic- 
itly. 

3. 

4. 

Measurement Techniques 

Measurements on the stand-alone Cm* sys- 
tem were made using both specially designed 
hardware and standard measuring equipment. 
Each K.map in the system was provided with a 
hardware device called a Map Bus Monitor 

(Figure 17), which allowed signals on the Map 
Bus to  be displayed selectively and counted. 
Particular data or address values passing to and 
from a given CM in the cluster could thus be 
monitored. For example, the hit ratio to local 
memory for a given processor was determined 
by comparing the overall memory reference rate 
of the processor to the nonlocal memory refer- 
ence rate indicated by the Map Bus Monitor. 

A standard logic analyzer was used to deter- 
mine what fraction of the K.map’s time was 
being spent in each of its different operations. 
This was done by connecting the logic analyzer 
to the microinstruction address lines in the 
K.map, and counting the rates a t  which the mi- 
croroutines corresponding to the K.map’s oper- 
ations were being invoked. 

Memory Reference Times and Hit Ratios 

To determine the cost of various types of ref- 
erences, benchmark programs have been mea- 
sured running in three configurations: (1) with 
all references local, (2) with all references non- 
local but within the same cluster, and (3) with 
all references proceeding across cluster bound- 
aries. The times between successive memory ref- 
erences measured under these conditions were 

Figure 17. The Map Bus Monitor 
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3.5 microseconds for the local case (this was de- 
termined by the LSI-1 l used as processing ele- 
ment and was in no way affected by the Cm* 
switching structure), 9.3 microseconds for the 
intracluster case, and 26 microseconds for the 
intercluster case. 

Table 1 shows the results of our measure- 
ments of memory reference patterns for three of 

Table 1. Memory Reference Distribution for 
Several Programs 

Local Global 
Program Code Stack Variables Variables 

PDE 82% 11.5% 4% 2.5% 

Sorting 71% 12.5% 6.5% 9.5% 

Partitioning 7 1.5% 23.5% 4% 1% 
Set 

the five programs measured on Cm*. Code re- 
fers to all the primary memory access resulting 
from fetching instructions from memory. Stack 
refers to all the accesses related to the pushing 
and popping of operands from the processor's 
primary stack. This stack is commonly used for 
temporary variables as well as subroutine call 
and return information. Local variables are op- 
erands referenced only by a single copy of a 
procedure and global variables are the basic, 
shared data structures related to the problem or 
flags and semaphores used by cooperating pro- 
cesses to coordinate their activities. 

For the remaining two programs, HARPY 
and ALGOL 68, the fraction of references to 
global data were 14 and 18 percent, respec- 
tively. The somewhat surprising fact that can be 
seen is that even if all accesses to the shared, 
global variables are nonlocal memory accesses, 
we can still achieve between 82 and 99 percent 
references to local memory. Ignoring, for the 
moment, interference on the Map Bus, and con- 

tention for the local memory of the CMs, a hit 
ratio of 90 percent to local memory yields an 
average access time of 4.1 microseconds. These 
hit ratios illustrate the value of developing 
memory management and processor scheduling 
strategies that attempt to keep code (and the 
stack) local to the processor executing the pro- 
gram. 

Execution Speedup and Bus Contention 

Figure 18 shows the average measured execu- 
tion speedup as a function of the number of 
processors allocated to the task for the five ap- 
plication programs just discussed. For these 
measurements the code, stack, and local vari- 
able segments were local to each processor, and 
only the access to global data structures re- 
quired external references. The nearly linear 
speedup experience by the PDE and Integer 
Programming programs is very encouraging. 
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Figure 18. Average speedup of five algorithms of Crn" 
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The curves for HARPY, ALGOL 68, and 
QUICKSORT, however, do not show a linear 
speedup. The reason for this, in each case, is 
that the problem does not have enough inherent 
parallelism to keep more than a few processors 
busy all the time, so that adding more proces- 
sors does not result in proportionally large 
speedups. To understand how many processors 
might effectively be used in larger systems, a 
number of experiments were conducted. These 
experiments, which are summarized in the 
graphs of Figures 19 and 20 were done for the 
following memory reference patterns. 

- 

- 

- 

- 

- 

- 

- 

- 
I .  All processors share code, stack, and all 

data from the memory in a single CM. In 
other words, the memory bandwidth of 
an individual CM is the performance 
bottleneck. This curve indicates that per- 
formance cannot be improved by using 
more than three or four processors. The 
saturation reference rate of a single 
CM’s memory was measured to be 270K 
references/second. Now consider more 
practical cases in which most of the code 
and local variables are in the local mem- 
ory of each CM, and only the global 
data structures are shared. Even if 10 
percent of all memory references of the 
active processors were to global data in 
the memory of a single CM, the system 
would saturate between 30 and 40 CMs. 
To date, we have had no difficulty in dis- 
tributing shared data structures over the 
memory of several CMs so that the 
memory bandwidth of a CM is not a 
serious constraint. 
All processors make external references 
that are mapped back to their own local 
memory. This case was used to  study sat- 
uration of the Map Bus and K.map. The 
curve indicates that the K.map (and 
Map Bus) saturated when six or seven 
processors were simultaneously active in 
this mode; the saturation rate of the 
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Figure 19. PDE execution time 
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Figure 20. PDE speedup. 
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M a p  B u s  is  a b o u t  550K re fe r -  
ences/second. Assuming that the mea- 
sured benchmarks represent typical 
situations, and that a 90 percent hit ratio 
to local memory can be achieved, we see 
that a Map Bus and K.map can support 
a cluster of about 60 CMs. The band- 
width of the Map Bus is an important 
limiting factor that constrains the num- 
ber of CMs in a cluster, so that there is a 
need t o  consider multicluster con- 
figurations independent of reliability or 
availability considerations. 
All processors access their local memory 
for the code, stack, and local variables, 
and use the K.map only for mapping to 
shared global data. This is the case al- 
ready considered, and for up to eight 
processors, negligible contention is expe- 
rienced (Figure 18). 

3. 

''1 0 LOCAL. CASE 1 P I 

0 1 2 3 4 5 6 7 B  

NUMBER OF PROCESSORS 

Figure 2 1. Integer programming speedup. 

From additional measurements, we estimate 
the intercluster saturation rate to be about 
287K references/second, with the source 
K.map being the bottleneck component in the 
system. 

Figure 2 1 shows another interesting measure- 
ment on Cm*. Here, a number of different 
cases of the Integer Programming program are 
shown as a plot of execution speedup versus the 
number of available processors. Most of the 
time, almost linear speedups were observed. 
This is a consequence not of a breakthrough in 
algorithmic design, but rather of the fact that 
the time to find the optimal solution in a search 
tree is dependent on the order in which the tree 
is searched. In other words, some search orders 
allow quicker, more radical prunes of the tree 
than other search orders. Therefore, the chance 
will always exist that one of the parallel paths 
initiated will fortuitously find a good solution 
and allow early pruning of the search tree. 

Fundamentally, the multiprocessor cannot 
expect speedups greater than linear in the num- 
ber of available processors. If, for example, the 
speedup of the Integer Programming problem 
was observed to increase as the square of the 
number of processors, then a new program 
could be written for a uniprocessor that, in ef- 
fect, emulated the operation of a set of parallel 
processors by round-robin sharing of the 
uniprocessor among the parallel processes. In 
special instances, parallel processes may allow 
the elimination of some overhead, but linear 
speedup in the number of available processors 
is the ideal situation. 

Performance of Multiple Cluster 
Configurations 

The results of Figure 18 imply that many 
more than ten CMs could be managed in a 
single cluster before the Map Bus becomes a 
performance bottleneck. However, since we are 
interested in the potential of the Cm* structure 
for much larger systems, we also examined the 
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performance of multi-cluster Cm* con-  
figurations to predict the performance degrada- 
tions associated with intercluster references. 
Figure 22 shows the performance of Cm* on 
two different versions of the PDE program for 
both single-cluster and multi-cluster con- 
figurations. Note that nearly negligible degra- 
dation was achievable, particularly in method 4, 
which is an asynchronous version of the PDE 
specifically designed to cope with processors of 
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Figure 22. Single- and multiple-cluster execution time. 

varying run times. The small degradation in go- 
ing from the one cluster configuration to the 
multi-cluster configuration gives considerable 
hope that hierarchical switching structures like 
the one used in Cm* can provide very nearly 
the performance of much more expensive 
switching structures that give uniformly fast ac- 
cess to all of physical memory. 

CONCLUDING REMARKS 

The major accomplishment of the Cm* proj- 
ect has been to bring an experimental multi-mi- 
croprocessor system to an operational state, 

and to demonstrate that almost-linear speedup 
can be achieved with several applications. 
Moreover, there have been no  serious bot- 
tlenecks or  deficiencies in the proces- 
sor /memory  bus structure tha t  preclude 
configurations with 100 or more processors. 

Many aspects of Cm*, and multi-micro- 
processors in general, require further invest- 
igation. Our own plans call for considering 
alternative memory mapping and interprocess 
control architectures, developing a large appli- 
cation system on Cm* to test larger con- 
figurations, and integrating a practical 1 / 0  
system into the Cm* structure. 

As other multi-microprocessors become op- 
erational and competing solutions are found to 
some of the problems currently facing multi- 
processors, the relative merit of the Cm* organ- 
ization will be put into much better perspective. 
A comparison of alternate multiprocessor or- 
ganizations is especially important in the initial 
stages when most investigations are necessarily 
empirical, and no one solution may claim opti- 
mality. 

APPENDIX: DESCRIPTION OF THE 
BENCHMARK PROGRAMS 

Five programs from different application 
areas were used in the initial performance eval- 
uation of the Cm* system. Four of these pro- 
grams are described here, and the HARPY 
speech recognition program is described in 
Jones et al., [1978]. More detailed descriptions 
of these programs may be found in Fuller et al., 
[ 19771. 

Partial Differential Equations, a Numerical 
Application 

This is the solution to Dirichlet’s problem of 
Laplace’s partial differential equation (PDE) by 
the method of finite difference. This program 
solves the PDE: 



MULTI-MICROPROCESSORS: AN OVERVIEW AND WORKING EXAMPLE 483 

on a rectangular grid of size M X N ,  where only 
the values at the outer edges of the grid are 
given. 

A finite difference method [Baudet, 19761 
that transforms the problem into a set of linear 
equations A x  = b is used. Here, x is an MN 
vector of all the points in the grid, A is an M N  
X M N  sparse matrix, and b is an M N  vector 
derived from the boundary conditions. This set 
of linear equations is derived from the new ap- 
proximate values of the points (in each itera- 
tion) by averaging the values of the four 
adjacent neighbors of each point. The solution 
of this PDE is required in many application 
areas (e.g., in electromagnetic fields, hydro- 
dynamics). Other PDE problems can be sim- 
ilarly solved using this method. 

The computation is initially decomposed into 
P processes, where P is equal to the number of 
processors available. Each process (and proces- 
sor) iterates on a fixed subset of M N / P  com- 
ponents out of the total M N  components. One 
processor, the “master” processor, initializes 
and starts the other “slave” processors, and 
prints the results when all have finished. Note 
that the master participates in the computation 
just like the slave processors. 

Sorting 

This problem concerns the decomposition of 
the well-known QUICKSORT algorithm [Sin- 
gleton, 19691 into asynchronous parallel pro- 
cesses. The median for each sort pass was 
chosen as the median of the first, middle, and 
last elements in the sublist. During a sorting 
pass, a processor partitions its list of elements 
into two sublists: elements larger than the me- 
dian of the original set and elements smaller 
than the median. The processor then pushes the 
address and size of the smaller of the two sub- 
sets onto a stack shared by all the processors. 
Making the smaller subset available to the other 
processors tends to put more work onto the 
shared stack in order to keep as many proces- 
sors as possible busy. The processor proceeds to 

further partition the remaining (larger) subset. 
When the remaining subset cannot be parti- 
tioned further, the processor selects the next 
available subset from the shared stack. 

Simple assumptions about the algorithm give 
a theoretical sorting time of: 

cN [ ( K -  M ) / P  + 2 (1 - ( 1 / 2 ) M ) ]  

where N is the number of elements tc sort, K is 
Log2 N ,  cis constant, P i s  the number of proces- 
sors, and M is Log2 P. 

When the number of processors is much 
smaller than the number of items to be sorted, 
almost linear speedup can be achieved. The per- 
formance degrades considerably when the num- 
ber of processors is large and asymptotically 
approaches a speed of T = c Log N / 2 .  See 
Stone [1971] for a description of sorting meth- 
ods that speed up as NILog N for large num- 
bers of processors. 

Integer Programming -The Set Partitioning 
Problem 

The particular integer programming consid- 
ered here is one of the most practical and appli- 
cable methods. It is used, for example, in airline 
crew scheduling [Bales and Padberg, 19761. 

The set-partitioning problem is to solve: 

min (c.x [ A x  = 0, xj = 0 or 1 for 0 < j Q N )  

where A is an A4 X N binary matrix, c is an N 
vector, and c = (1 . . . 1)  M vector. 

This problem typically is solved by per- 
forming an N-ary tree search on a large rela- 
tively sparse binary matrix. As an example of 
this method, consider the airline crew sched- 
uling problem. The rows of the A matrix corre- 
spond to a set of flight legs from city A to  city B ,  
in time T to be covered during a specified pe- 
riod, and the columns of A correspond to a pos- 
sible sequence of tours of flight legs done by one 
crew; c is the vector of the associated cost of 
each tour. A possible solution includes a set of 
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tours that satisfies all the flight legs (one and 
only one crew makes a flight leg). We are look- 
ing for the solution with the lowest cost. 

As in the previous applications, the master 
processor initializes the computation, creates 
the array according to user’s specification, and 
puts enough initial possible search-path solu- 
tions in a global stack from which all the pro- 
cessors pick their work. We arbitrarily choose 
to put more than IO X P path solutions into the 
stack where P equals the number of processors 
so the work is more evenly distributed between 
the processors, and all are occupied for a large 
percentage of the time. 

To enhance pruning in the search, a global 
variable contains the cost of the best solution 
found so far by any of the processors, and all 
compare their current cost value to it and begin 
to backtrack in the search when that global cost 
is lower. 

ALGOL 68 System 

A semantically rich subset of the program- 
ming language ALGOL 68 was implemented on 
Cm* [Hibbard, et af., 19781. In order to take 
advantage of the parallel architecture of Cm*, 
the language has been extended by including 
several methods of specifying concurrent execu- 
tion and synchronization of subtasks. 

The run-time system measured runs upon a 
small, special purpose kernel which provides 

basic support for interrupt and 1 / 0  handling, 
segment allocation and swapping, bootstrap- 
ping, and the collection of performance statis- 
tics. To facilitate locality of memory references, 
the run-time system is loaded into the local 
memory of each processor. 

Modifications are being studied to provide 
automatic decomposition of tasks into small- 
grain subtasks. These modifications comprise a 
software implementation of multiple parallel- 
instruction pipelines, in which the instructions 
are the primitive actions of the ALGOL 68 run- 
time system, e.g., floating-point operations, ar- 
ray indexing and other vector operations, and 
assignments of large values. These actions are 
executed by slave processors on behalf of the 
master processors which are placing the actions 
in the pipelines. 
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The PDP-10 Family 

This final part of Computer Engineering contains only a single chapter, “The 
Evolution of the DECsystem 10.” It is a fitting conclusion because it summarizes 
many of the aspects of computer engineering discussed in the rest of this book. 
The introduction and historical setting with which the chapter begins are con- 
densations of the historical information included in Parts I and I1 of this book; 
the goals, constraints, and design decisions elaborated on in the remainder of the 
chapter are specific examples of the concepts discussed throughout the book. The 
paragraph headings, such as “logic,” “fabrication,” “packaging,” and 
“price/performance,” have counterparts in earlier chapters. 

The authors of this chapter, which first appeared as a paper in the January 1978 
issue of Communications of the A C M ,  have been key figures in the evolution that 
they describe. Thus, when they talk about design decisions and tradeoffs, they are 
talking from first-hand experience. 

The  36-bit Family has been important to DEC for a number of reasons. The 
designers of these machines have realized that software development is very 
costly, and have put a great deal of emphasis on making their systems easy to 
program, even if additional hardware expense is involved. Furthermore, their 
hardware has been very conservatively designed, with rigid design rules to assure 
that the vast number of circuits required to implement each function operate 
correctly under all conditions. Although the chapter conclusion suggests that the 
PDP-10 engineers have transferred hardware technology to minicomputer engi- 
neering, the technology transfer has been principally in the area of automated 
design aids, as it has only been with the ECL logic of the KLlO that PDP-10 
designs have used logic families or module technology not previously used in the 
minicomputer segment of DEC. The paragraphs on “logic” and “packaging” 
within the main body of the chapter elaborate on this. 

The role of the PDP-6 in PDP-10 history is described in detail in the chapter, 
but it has interesting aspects in addition to those mentioned. Because the PDP-6 
was the first computer to offer elegant, powerful capabilities at a low price, a great 
many of the PDP-6s built found their way into university and scientific environ- 
ments, giving DEC a strong foothold in that market and providing both educated 
customer input for future models and a source of bright young future employees 
to assist in the hardware and software development for those future models. The 
impact of the PDP-6 was particularly noteworthy because fewer PDP-6s were 
built than any other DEC machine: only 23. The sales were sufficiently dis- 
appointing to  management, in fact, that a decision was made (but fcrtunately 
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reversed) not to build any more 36-bit machines. Since then, however, with the 
possible exception of the KI 10 processor, each processor has been more successful 
than the last, and the contributions of “large computer thinking” (design rules, 
strict program compatibility, etc.) to the company as a whole have been extremely 
useful. This final chapter is an excellent summary of computer engineering. 



The Evolution of the DECsystem-IO 
C. GORDON BELL, ALAN KOTOK, 

THOMAS N. HASTINGS, and RICHARD HILL 

I NTR 0 D U CTI 0 N 

The project from which the PDP-6, DECsys- 
tem-10, and DECSYSTEM-20 series of scien- 
tific, timeshared computers evolved began in 
the spring of 1963 and continued with the deliv- 
ery of a PDP-6 in the summer of 1964. Initially, 
the PDP-6 was designed to extend DEC’s line of 
18-bit computers by providing more perform- 
ance at increased price. Although the PDP-6 
was not designed to be a member in a family of 
compatible computers, the series evolved into 
five basic designs (PDP-6, KAlO, KIlO, KLIO, 
and KL20) with over 700 systems installed by 
January 1978. During the initial design period, 
we neither understood the notions and need for 
compatibility nor did we have adequate tech- 
nology to undertake such a task. Each succes- 
sive implementation in the series has generally 
offered increased performance for only slightly 
increased cost. The KLlO and KL20 systems 
span a five to one price range. 

TOPS- 10, the major user software interface, 
developed from a 6-Kword monitor for the 
PDP-6. A second user interface, TOPS-20, in- 
troduced in 1976 with upgraded facilities, is 
based on multiprocess operating systems ad- 
vances. 

This paper is divided into seven sections. Sec- 
tion 2 provides a brief historical setting fol- 
lowed by a discussion of the initial project 
goals, constraints, and basic design decisions. 
The instruction set and system organization are 
given in Sections 4 and 5, respectively. Section 6 
discusses the operating system, while Section 7 
presents the technological influences on the de- 
signs. Sections 4 through 7 begin with a presen- 
tation of the goals and constraints, proceed to 
the basic PDP-6 design, and conclude with the 
evolution (and current state). We try to  answer 
the often-asked questions, “Why did you do . . 
.?”, by giving the contextual environment. Fig- 
ure 1 helps summarize this context in the form 
of a timeline that depicts the various hard- 
ware/software technologies (above line) and 
when they were applied (below line) to the 
DECsystem- 10. 

HISTORICAL SETTl NG 
The PDP-6 was designed for both a time- 

shared computational environment and real- 
time laboratory use with straightforward inter- 
facing capability. At the initiation of the proj- 
ect ,  three t imeshared  compute r s  were 
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Figure 1. Timeline of DECsystem-10 evolution 

operational: a PDP-1 at Bolt, Beranek, and 
Newman (BBN) which used a high-speed drum 
that could swap a 4 Kword core image in one 34 
ms revolution; an IBM 7090 system at MIT 
called CTSS, which provided each of 32 users a 
32 Kword environment; and an AN/FSQ-32V 
at SDC, which could serve 40 simultaneous 
users. 

The Bell Laboratory's IBM 7094 Operating 
System was a model operating system for batch 
users. Burroughs had implemented a multi- 
programmed system on the B5000. Dartmouth 
was considering the design of a single language, 
timesharing system which subsequently became 
BASIC. The MIT Multics system, the Berkeley 
SDS 940, the Stanford PDP-1 based timeshared 
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system for computer-aided instruction, and the 
BBN Tenex system all contributed concepts to 
the DECsystem-IO evolution in the 1960s. 

In architecture, the Manchester Atlas [Bell, 
Newell, 1971:Ch. 231 was exemplary, not be- 
cause it was a large machine that we would 
build, but because it illustrated a number of 
good design principles. Atlas was multi- 
programmed with a well defined interface be- 
tween the user and operating system, had a very 
large address space, and introduced the notion 
of extra codes to extend the functionality of its 
instruction set. Paging was a concept we just 
could not afford to implement without a fast, 
small memory. The IBM Channel concept was 
in use on their 7094; it was one we wanted to 
avoid since our minicomputers (e.g., PDP-I) 
were generally smaller than a single channel and 
could outperform the 7094 in terms of 1 /0  con- 
currency and 1 / 0  programmability by a clean, 
simple interrupt mechanism. 

The DEC product line in 1964 is summarized 
in Table 1 .  Sales totaled $1 1 million then, and it 
was felt that computers had to be offered in the 
$20,000 to $300,000 range. We were sensitive to 
the problems encountered by not having 
enough address bits, having watched DEC and 
IBM machines exceed their addressing capaci- 
ties. 

On the software side, most programmers at 
DEC had been large-machine (16 Kword to 32 
Kword) users, although they had most recently 
programmed minicomputers where program 
size of 4 Kwords to 8 Kwords was the main 
constraint. There was not a good understanding 
of operating systems structure and design in ei- 
ther academia or industry. MIT’s Multics proj- 
ect was just being formed and IBM’s 360/TSS 
project did not start until 1965. Generally, there 
were no people who directly represented the 
users within the company, although all the de- 
signers were computer users. A number of users 
in the Cambridge (Mass.) community advised 
on the design (especially John McCarthy, Mar- 

Table l .  DEC‘s 1964 Computer Products 

Word 
Year In- Size Price 

Name troduced (Bits) ($K) Status 

PDP-1 1960 18 120 Marketed 

PDP-2 1960 24  - Reserved 
for future 
implementation 

PDP-3 1961 36 - Paper machine 

PDP-4 1962 18 60  Marketed 

PDP-5 1964 12 27 Introduced 

PDP-6 1964 36 300 Introduced 

vin Minsky, and Peter Sampson at the MIT 
Artificial Intelligence Laboratory). 

Although there was little consensus that 
FORTRAN would be so important, it was clear 
that our machine would be used extensively to 
execute FORTRAN. The macroassemblers, 
basically unchanged even today, were used in 
various laboratories; our first one for the PDP- 
1 was done by MIT in 1961. We also felt that 
the list languages, especially LISP for symbolic 
processing, were important. There was virtually 
no interest in business data processing although 
we had all looked at COBOL. 

We did not understand the concept of tech- 
nology evolution very well, even though in- 
tegrated circuits were both forecast and in 
development. Germanium transistors were 
available, and silicon transistors were just on 
the market. IBM was using machine wirewrap 
technology, while DEC back panels were hand- 
wired and soldered. The basic DEC logic cir- 
cuits were saturating transistors as distinct from 
the more expensive current mode used by IBM 
in the 7094 and Stretch computers. Production 
core memories of 2 microseconds were begin- 
ning to appear, and their speed was improving. 
The PDP-1 used a 5 microseconds core. Hence, 



492 THE PDP-10 FAMILY 

it was unclear what memory speed a processor 
should support. 

The notions of compatibility and family 
range were not appreciated even though SDS 
(which eventually became XDS and is now non- 
existent) had built a range of 24-bit computers. 
We adhered to the then-imposed convention of 
the word length being a multiple of six bits (the 
number of bits in the standard character code), 
but designed the machine to handle arbitrary 
length characters. 

OVERALL GOALS, CONSTRAINTS, AND 
BASIC DESIGN DECISIONS 

Table 2 lists the initial goals, constraints, and 
some basic design decisions. Presenting this list 
separately from the design is difficult because 
the goals and constraints were not formally re- 
corded as such and have to be extracted from 
design descriptions and our unreliable, self-jus- 
tifying memories. Table 2 will be used in dis- 
cussing the design. 

The initial design theme was to provide a 
powerful, timeshared machine oriented to sci- 
entific use, although it subsequently evolved to 
commercial use. John McCarthy’s definition 
[McCarthy and Maughly, 19621 of timesharing, 
to which we subscribed, included providing 
each user with the illusion of having his own 
large computer. Thus, our base design provided 
protection between the users and a mechanism 
for allocating and controlling the common re- 
sources. The machine also had to support a va- 
riety of compiled and interpreted languages. 
The construction was to be modular so that it 
could evolve and users could build large sys- 
tems including multiprocessors. It was intended 
to enhance the top of DEC’s existing line of 12- 
and 18-bit computers. It was designed to be 
simple, buildable, and supportable by a small 
organization. Thus i t  should use as much DEC 
hardware technology as possible. 

THE INSTRUCTION SET 
PROCESSOR 

Our goals for an ISP were: to efficiently en- 
code the various programs using both compiled 
and interpreted languages; t o  be under- 
standable and remembered by its users; to be 
buildable in current technology at  a competitive 
price; and to permit a compiler to provide ef- 
ficient program production. 

Data-Types and Operators 

Earlier DEC designs and the then-current six- 
bit character standard forced a word length that 
was a multiple of 6, 12, and 18 bits. Thus, a 36- 
bit word was selected. 

The language goals and constraints forced 
the inclusion of integer and real (floating-point) 
variables. We chose two’s complement integer 
representation rather than the sign-magnitude 
representation used on the 7090 or the one’s 
complement representation on PDP-1. The 
floating-point format was chosen to be the same 
as the 7090, but with a format that permitted 
comparison to be made on the number as an 
integer in order to speed up comparisons and 
require only a single set of compare instruc- 
tions. 

Special (common) case operators (e.g., V = 0, 
V = V + 1, V = V - 1) were included t o  support 
compiled code. Our desire to execute LISP 
directly resulted in good address arithmetic. As 
a result, both LISP and FORTRAN on DEC- 
system-10 are encoded efficiently. 

Since the computer spends a significant por- 
tion of its time executing the operating system, 
the efficient support of operating system data- 
types is essential. A number of instructions 
should be provided for manipulating and test- 
ing the following data-types: 

I .  Boolean variables (bits). 
2. Boolean vectors. 



THE EVOLUTION OF THE DECsystem-10 493 

Table 2. Initial Goals, Constraints, and Basic Design Decisions 

User/Language/Operating System 
Cheap cost/user via timesharing without inconvenience of batch processing 
Timeshared use via terminals with protection between users 
Independent user machines to execute from any location in physical memory 
Unrestricted use of devices, e g , full-duplex use of terminals 
Support for wide range of compiled and interpreted languages 
No special batch mode. batch must appear like terminal via a command file 
Device-independent I/O so that programs would run on different configurations and I/O 
could be shared among the user community 
Direct 1/0 for real-time users 
Primitive command language to avoid need for large internal state 
Minimum usable system 4 16 Kwords 
Modular software to correspond to modular hardware configurations 

Instruction-Set Processor (ISP) 
Support user languages by data-types and special operations 

Scientific (i.e.. FORTRAN) * integers, reals, Boolean 
List processing (i.e.. LISP) =+ addresses, characters 
Support recursive and reentrant programming 3. stack mechanism 

Effective as machine language * Booleans. addresses, characters, I10 
Operating system is an extension of hardware via defined operating codes 

Support operating systems 

Word length would be 36 bits (compatible with DEC's computers) 
Large (1/4 million 36-bit words = 1 million 9-bit bytes) address 
Require minimal hardware 3 simple 
General-register based (design decision) with completely general use 
Easy to use and remember machine language 

Orthogonality of addressing (accessing) and operators 
Completeness of operators 
Direct (not base 4- displacement) addressing 
Few exceptional instructions 

2's complement arithmetic (multiple precision arithmetic) 

PMS Structure 

Easy to interface 
Maximum modularity so that users could easily configure any system 

Asynchronous operation - system must handle evolving technology 
Multiprocessors for incremental and increased performance (2-4 in design) 
No Pios (IBM channels). use simple programmed I10 with interrupts and direct-memory 
access for high-speed data transmission 

Implementation 
Simple; reliable 
Asynchronous logic and buses for speed in light of uncertain logic and memory speed 
All state accessible to field service personnel via lights 
Use DEC (10 MHz versus 5 MHz) circuit/logic technology (manpower constraint) 
Buildable without microprogramming (no fast, read-only memories in 1963) 

Add to high end of DEC's computers 
Use minimal resources, while supporting DEC's minicomputer efforts 

OrganizationaVMarketplace 
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3. Arbitrary length field access (load/store 
only). 

4. Addresses. 
5. Programs (loops, branching, and sub- 

programs). 
6. Ordinary integers. 
7. The control of I/O. 

A significant number of control instructions 
were included to test addresses and other data- 
types. These tests controlled flow by either a 
jump or skip of the next instruction (which is 
usually a jump). Loop control was a most im- 
portant design consideration. 

Table 3 gives the data-types and instructions 
present in the various implementations. The 
KA I O  and PDP-6 processor instruction sets 
were essentially the same, but differed in the im- 
plementation. The PDP-6 had 365 instructions. 
A double-precision negate instruction in the 
KA 10 improved the subroutine performance 
for double-precision reals. The instruction, 
“find first one in a bit vector,” was also added 
to assist operating system resource allocation 
and to help in a specific application sale (that 
did not materialize). Finally, double-precision 
real-arithmetic instructions were added to the 
KIlO using the original PDP-6 programmed 
scheme. A few minor incompatibilities were in- 
troduced in the KI to improve performance. 

With the decision to offer COBOL in 1970, 
better character and decimal string processing 
support was required from the intruction set. 
The initial COBOL performance was poor for 
character and decimal arithmetic because each 
operation required: (1) software character by 
character conversion to an integer, (2) the oper- 
ation (in binary or double-precision binary), 
and (3) software reconversion to a character or 
a decimal number. The KLlO provided much 
higher performance for COBOL by having the 
basic instructions for comparing character and 
decimal strings - where a character can be a 
variable size. For arithmetic operations, in- 
structions were added to convert between string 

and double-precision binary. The actual oper- 
ations are still carried out in binary. For add 
and subtract, the time is slightly longer than a 
pure string-based instruction, but for multi- 
plying and dividing, the conversion approach is 
faster. 

Stack Versus General Registers 
Organization 

A stack machine was considered, based on 
the B5000 and George Interpreter (which later 
became the English Electric KDF9). A stack 
with index register machine was proposed for 
executing the operating system, LISP, and 
FORTRAN; it was rejected on the basis of high 
cost and fear of poor performance. The com- 
promise we made was to provide a number of 
instructions to operate on a stack, yet to use the 
general registers as stack pointers. 

An interesting result of our experience was 
that one of us (Bell) discovered a more general 
structure whereby either a stack or general reg- 
ister machine could be implemented by extend- 
ing addressing modes and using the general 
registers for stack pointers. This scheme was the 
basis of the PDP-11 ISP (Chapter 9). 

We currently believe that stack and general 
register structures are quite similar and tend to 
offer a tradeoff between control (either in a pro- 
gram or in the interpretation of the ISP) and 
performance. Compilers for general register 
machines often allocate registers as though they 
were a stack. Table 4 compares the stack and 
general register approaches. 

A general register architecture was selected 
with the registers in the memory address space. 
The general registers (multiple accumulators) 
should permit a wide (general) range of use. 
Both 8 and 16 were considered. By the time the 
uses were enumerated, especially to store inner 
loops, we believed 16 were needed. They could 
be used as: base and index, set of Booleans 
(flags), ordinary accumulator and multiplier- 
quotient (from 7090), subroutine linkage, fast 
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Table 3. Data-Types of DECsystem- I  O /DECSYSTEM-20  

Length Operators and 
Data-Type (bits) Machine [Number of Instructions] Operator Location 

Boolean 

Boolean-vector 

Characters 

Character-string 

Digit-string 

Half word, 2’s com- 
plement integers = 
addresses 

1 All 0. 1. 11, test by skip 1641 

36  All All 16 1641 

0-36 = v All Load, store (51 

v X n  KL Compare 181: move 141 

v X n  KL Convert to double integer 

18 All Load, store 1641; index loop 
control 

Full word, 2’s com- 36  
plement integers 
(and fractions) 

Double word, 2’s 72 
c o m p l e m e n t  i n -  
tegers (and frac- 
tions) 

Real 9 (exponent) 
+ 2 7  (man- 
tissa) 

Double real 9 + 5 4  
9 + 63  

Word stack 36  

Word vector 3 6  X k 

I/O program 36  

All 

KL 

Load, store, abs.. -(negate) 
1161 +,-, X .  +l,- l .X.rotate.test 
(by skip & jumps) 

Load, store, -(negate) [4]:  +. 
-, x. 141 

AC c f (AC) 

AC and/or mem c f  (AC, mem) 

AC u h e m )  

f (mern) = g (mem); mem 
f (mem) 

f (AC) tt f (mem) 

AC u f (rnem); AC c f (AC) 

AC and/or mem c f (AC, mem) 

AC tt f (rnem); AC t f (AC. 
mem) 

All Load, store. abs.. -(negate). AC and/or mem t f (AC. mem) 
immediate mode was added in +. -, X. /, X (351; test (by 

skip, jump) [ 161 KA 

Load, store, abs., negate, +, KI. KL KA provided negate instruction 
KI. KL -, X. 1 [8 ]  

All Load, store, call, return [4] Stack tt Memory 

All Move [l] Mem[a:a+k] t mem[b:b+k] 

All Short call/return: UUO AC. memory 

access for temporary and  common sub- isters to reduce the minimal machine price. In 
expressions, top of stack when accessed explic- reality, nearly all users bought fast registers. 
itly, pointer-to-control stacks, and fast registers Eight registers may have been enough. A small 
to hold small programs. number would have provided more rapid con- 

Since the ACs were in the address space, or- text switching and assisted the assembly lan- 
dinary memory could be used in lieu of fast reg- guage programmer who tried to optimize (and 
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Table 4. 
General Register Architectures 

Comparison of Stack and 

Stack General Register 

Number of Approximately the same 
Registers 

Register use Fixed to 
stack oper- 
ation 

Control Built-in hard- 
ware (impli- 
cit) 

Access to lo- 1 or 2 ele- 
cal variables ments at top 

of stack 

Compiler Easy (no 
choice) 

Program en- Fewer bits 
coding 

Performance High if ele- 
ment on 
stack top 

Can be arbitrary 

Simple, explicit in pro- 
gram when used as a 
stack 

Full set in general reg- 
isters 

An assignment (use) 
problem 

More bits give access 
to registers for inter- 
mediate and index val- 
ues 

High if in general regis- 
ters (performs rela- 
tively better than stack) 

keep track of) their use. In fact, Lunde [I9771 
has shown that eight working registers would be 
sufficient to support the higher level language 
usage. Multiple register sets were introduced in 
the KI 10 to reduce context-switching time. 

Instruction-Set Encoding and Layout 

The ease-of-implementation goal forced an 
instruction set design style that later turned out 
to be easy to fabricate with the KLlO micro- 
program implementation. This also simplified 
the fabrication of compilers. I n  fact, of the 222 
instructions useful for FORTRAN data-types, 
the earliest compiler used 180 of them and the 

current compiler uses 212. We used three prin- 
ciples, we now understand, for the ISP design: 

1. Orthogonality. An address (with index 
and indirect control fields) is always 
computed in the same way, independent 
of the data-type it references. Indirect 
addressing occurs as long as the instruc- 
tion addressed has an indirect bit. 

Completeness and symmetry. Where pos- 
sible, each arithmetic data-type should 
have a complete and identical set of op- 
erations. 

2. 

3. Mapping among data-types. Instructions 
should exist to convert among all data- 
types. Several data-types were in -  
complete (characters, half-words), and 
these should be converted to data-types 
with a complete operator set. 

The instruction is mapped into the 36-bit word 
as follows: 

ACCUMULATOR INDIRECT BIT INDEXREGISTER 

AOORESS \ I  ADDRESS 

MEMORY ADDRESS INSTRUCTION CODE I 
0 8 9 1 2 1 3 1 4  I I l 8  35 

8AS1C lNSTRUCTlON I O R M h T  

ACCUMULATOR ADDRESS IS 1 OF 16 ACCUMULATORS IGENERAL REGISTERS1 
lNDEX REGISTER AODRESS IS INDEX DESIGNATOR TO 1 OF 15 ACs 
817 13 I S  INDIRECT & O 0 R I S S  B I T  
M E M O R Y  AIDDRESS IS a D O R 1 S S  OR LITERAL 

The entire instruction set fits easily within a 
single figure (Figure 2). The boldface letters de- 
note instruction mnemonics. The data-types 
and operations are generally deducible by the 
instruction names: operator names (e.g., ADD) 
for word (or integer); D double integers; H half- 
world: BL vector: 16-operator names (e.g., 
AND) for Boolean vectors, Test-Boolean (bits); 
J jump/skip for program control; F floating; 
D F  double floating. The 1 / 0  and interrupt in- 
structions are described in the PMS section. 



THE EVOLUTION OF THE DECsystem-10 497 

BLock Tranrlrr 

EXCHmrc AC and mrmon (Vector) 

EXTEND 

CoMPare S m n g  and S a p  if 

new 
Less 
Eqd 
Less 0I Equal 
Greater 01 Equal 
Not equal 
Greater 

EDIT 

[Translation Offset 

Left Jushfication 
Rght Justlficabon 

w t h  byte 
M i d  w t h  - m v e s m n g  

and Jump 
ADJlst Stack Pomter (Stack) 

4, lmmedidc 
with Complrmcnl of A< Memory 

Cumplcmcnlr o i  &,111 

(Boolean Vector) 
" W C ,  

Inclusive OR 
eXclurive OR 
EQuValmcc 

SKIP If memory 
JUMP if A( 

Add O n e  10 Equal 
Suhlrarl O n e  from A( and Jump Always 

(Integer. Fraction, 
Real) 

ADD I 

Integer MULliply 
DlVidr 
Integer DlVidc 

Floating MulliPly 
Floating LhVidc 

Floaling K a l e  

h i u h l e  Floating Negate 

Unnormilized Floating Add 

F I X  
F IX  and Round 

F l m T a n d  Round 

Double lntega 

DIVnie 

MultiRy I DiVide 

Double Floating 

'OV { 5 Ncgal ivc ) { Memory 

'IC) SuhRoutme 
rnd Save Pc 
2nd Save A<, 
and Rcrlore Ac 
11 Find First One 
on Flag and C h a r  II 
on OVerllow (JFCL IO.) 
on CaRrY 0 (JFCL 4.) 
on CaRrY I (JFCL ?.) 
on C a k Y  (JFCL 6.) 
on Floaling Overflow (JFCL 1.) 
and RcSTorc 
and RcSTorc Flags (JRST 2 . )  

Jump ' 

.and ENab lc  YI channel (JRST 12 , )  

H A L T  (JRST 4.) 

PORTAL (JRST I ,) 

eXeCuTe 
MAP 

Figure 2. Instruction set 
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Multiprogramming/Monitor Facilities 

The initial constraint (circa 1963) of a time- 
shared computer with a common operating sys- 
tem led to several hardware facilities: 

1. Two basic machine modes. User and Ex- 
ecutive (each with different privileges). 

2. Protection. Protection against oper- 
ations to halt the computer or oper- 
ations that affect the common 1/0 when 
in User mode. 

3. Communication. Communication be- 
tween the user and operating system for 
calling 1 / 0  and other shared functions. 

4. Memory mapping. Separation of user 
programs into different parts of physical 
memory with protection among the 
parts and program relocation beyond 
the control of user. 

An Executive/User mode was necessary for 
protection facilities in a shared operating sys- 
tem while providing each user with his own en- 
vironment. Although there was a temptation 
(due to having a single operating system) to 
eliminate or make optional the Executive mode 
and the general registers, we persevered in the 
design and now believe this to  be an essential 
part of virtually every computer! (The only 
other necessary ingredient in every computer is 
adequate error detection, such as parity.) Sepa- 
ration into at least two separate operating re- 
gions (user and executive) also permits the more 
difficult, time-constrained 1/0 programs to be 
written once and to have a more formal inter- 
face between system utilities and user. 

The Unimplemented User Operation (UUO) 
is an instruction like the Atlas Extracode and 
IBM 360 SVC to call operating system func- 
tions and common user-defined functions. It 
also calls functions not present in earlier ma- 
chines. Thus, a single operating system could be 
used (by selecting the appropriate options) over 
several models. This use appears to be more ex- 
tensive than it is in the IBM System 360/370. 

The goals of low cost hardware and minimal 
performance degradation constrained the pro- 
tection facilities to a single pair of registers to  
relocate programs in increments of 1 Kwords. 
Two 8-bit registers (base and limit registers) 
with two 8-bit adders were required for this so- 
lution. Thus, each user area was protected while 
running, and a program could be moved within 
primary or secondary memory (and saved) be- 
cause user programs were written beginning at  
location 0. This is identical to the CDC 6600- 
7600 protection/relocation scheme. 

In the KAlO, a second pair of registers were 
added so that the common read-only segment 
of a user’s space could be shared. For example, 
this enabled one copy of an editor, compiler, or 
run-time system to be shared among multiple 
users. Programs were divided into a 128 Kword 
read-write segment and a 128 Kword read-only 
segment. Since each user’s shared segment had 
to occupy contiguous memory, holes would de- 
velop as users with different shared segment re- 
quirements were swapped. This led to  “core 
shuffling,” and, in a busy system, up to  2 per- 
cent of the time might be spent in this activity. 
The operating system was modified in the early 
70s at the Stanford Artificial Intelligence Labo- 
ratory so that the high, read-only segment could 
share common, global data. In this way, a num- 
ber of separate user programs could commu- 
nicate to effectively extend the program size 
beyond the 256 Kword limit. In retrospect, in- 
structions to move data more easily between a 
particular user region and the operating system 
would have been useful; this was corrected in 
KIlO and is described below. 

With the availability of medium-scale in- 
tegrated circuits, small (32 word) associative 
memories could be built. This enabled the in- 
troduction of a paging scheme in the KI10. 
Each 5 12-word page could be declared sharable 
or private with read-only or read-write access. 
The basic two-mode protection facility was ex- 
panded to four modes: Supervisor, Kernel, 
Public, and Concealed. There are two monitor 



THE EVOLUTION OF THE DECsystem-10 499 

modes: Kernel mode provides protection for 
1 / 0  and system functions common to all users, 
and Supervisor mode is specialized for a single 
user. The two user modes are: Concealed for 
proprietary programs, and Public for shared 
programs. For protection purposes, the modes 
are only changed at selected entry portals. The 
page table was more elaborate than that of the 
Atlas (circa 1960) whose main goal was to pro- 
vide a one-level store whereby large programs 
could run on small physical memories. In fact, 
the first use of KIlO paging required all pro- 
grams to be resident rather than having pages 
being demand driven. A gain over the KAlO 
was realized by not requiring programs to be in 
a single contiguous address space. The KIlO de- 
sign provided more sharing and increased effi- 
ciency over the KA10. The KLlO extended 
KIlO paging for use in the TOPS-20 operating 
system to be described later. 

PMS" STRUCTURE 

Table 2 gives the major goals and constraints 
in the PMS structure design. This section de- 
scribes system configurations, the 1 / 0  system, 
the memory system, and computer-computer 
communication structures. 

System Configurations 

We wanted to give the user considerable free- 
dom in specifying a system configuration with 
the ability to increase (or decrease) memory 
size, processing power, and external interfaces 
to people, other computers, and real-time 
equipment. Overall, the PMS structure has re- 
mained essentially the same as in the PDP-6 de- 
sign, with periodic enhancements to provide 
more performance and better real-time capabil- 
ity. (A PDP-6 memory or 1 / 0  device could be 

used on a KI 10 processor, and a PDP-6 1 / 0  de- 
vice can be used on today's KLlO systems.) A 
radical change occurred with the KL20 to a 
more integrated, less costly design for the pro- 
cessor, memory, and minicomputer 1 / 0  pre- 
processors. 

The PMS block diagram of a two-processor 
PDP-6 is given in Figure 3. But for simple 
uniprocessor systems, the PMS structure was 
quite like that of our small computers with up 
to 16 modules on both the 1 / 0  and Memory 
Buses (Figure 4). 

Interestingly, a unified 1 / 0  memory bus like 
the PDP-11 Unibus was considered. The con- 
cept was rejected because a unified bus designed 
to operate at memory speed would have been 
more costly. 

The goal to provide arbitrary, modular com- 
puting resources led to a multiprocessor struc- 
ture with shared memory. The interconnection 
between processors and memory modules was 
chosen to be a cross-point switch with each pro- 
cessor broadcasting to all memory modules. 

An alternative interconnection scheme could 
have been a more complex, synchronous, mes- 
sage-oriented protocol on a single bus. More ef- 
ficient cable utilization and higher bandwidth 
would have resulted, but physical partitioning 
into multiple processor/memory subsystems for 
on-line maintenance would have been pre- 
cluded. All in all, the cross-point switch deci- 
sion was basically sound although more 
expensive. 

Figure 5 shows a PMS block diagram for the 
KAlO and KIIO. There can be up to 16, 
65 Kword, 4-port memory modules, giving a to- 
tal of one Mword of memory. (Each processor 
addressed four Mwords.) With high speed disk 
and tape units (e.g., 250 Kwords/second) a pro- 
gram-controlled 1/0 scheme would place too 
much of a burden on the central processor. 

*See Appendix 2. 
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Figure 3. PMS diagram for PDP-6 system. 
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Figure 4. PDP-6 Memory Bus and I10 Bus. 
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I I O B U S  
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165 Kwords l  
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MULTIPLEX 
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Figure 5. PMS diagram for KAlO and K l lO  processor-based system. 

Therefore, a direct port to memory was pro- 
vided as in the PDP-6. In the KAIO/KIIO sys- 
tems, a switch (called a multiplexer) was 
introduced to expand the number of ports into 
memory to four for each Memory Bus used. 
The communications controllers were also ex- 
panded to handle more asynchronous and syn- 
chronous lines. 

The KLlO was, by comparison, a radical de- 
parture from previous PMS structures (Figure 
6). In order to gain more performance, four 
words from four low-order interleaved memory 
modules were accessed i n  each cycle. The effec- 
tive processor-memory bandwidth was thus 
over four Mwords/second. The processor also 
connects to as many as four PDP-II mini- 
computers [shown as C (1 1) in the figure]. Most 

of the 1/0 is handled by these front-end com- 
puters. 

Each PDP-I1 can access the KLlO memory 
via indirect address pointers and transfer data 
in much the same manner as the peripheral pro- 
cessing units of a CDC 6600. Notice also that 
the KLlO’s console is tied to a PDP-11. This 
PDP-I1 can load the KLlO microprogram 
memory, run microdiagnostics, and provide a 
potential remotely operated console. Each of 
the PDP-lls can achieve a word rate of 70 
Kchar/second. 

Up to eight DEC Massbus controllers are in- 
tegrated into the processor. The Massbus is an 
18-bit data width bus for block-transfer-orien- 
ted mass-storage devices such as disks and mag- 
netic tapes. Each Massbus can transfer 1.6 
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PC 
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Figure 6. PMS diagram for K L l O  processor-based system. 

Mwords/second yielding a maximum 12.8 
Mwords/second transfer rate for all channels. 
However, contemporary disks need about 250 
Kwords/second so that all eight channels only 
r e q u i r e  2 .0  M w o r d s / s e c o n d  of t h e  4 
Mword/second memory bandwidth of four 
modules. Individual disks and tapes can be con- 
nected to a second port for increased con- 
currency. For larger memory configurations, a 
memory bandwidth of 16 Mwords/second is 
not uncommon. A 2 Kword processor cache 
provides roughly a 90 percent hit rate and re- 
duces memory bandwidth demand by nearly a 
factor of ten. 

The cost-reduced KL20 evolved by in- 
tegrating the Massbus controllers and PDP-11 
interfaces onto a single high-speed, synchro- 
nous bus. The model 2040 and 2050 computers 
are based on the KLlO processor and integrate 

256 Kwords of memory in a single cabinet with 
the processor (thereby eliminating the external 
Memory Bus). The 1 / 0  Bus is also eliminated, 
and all 1 / 0  transfers are either via the Mass- 
buses or the PDP-11 1 / 0  computers. (It must be 
noted that the 2040 structure is possible only 
because of the drastic increase in logic and 
memory density!) 

I/O System 

Relatively, low speed 1 / 0  (200 Kwords/ 
second) in the PDP-6 was designed to be under 
central processor programmed control rather 
than via specialized 1 / 0  processors (IBM Sys- 
tem 360/370 Channels). This method had pro- 
ven effective in our minicomputers and was 
extended to handle higher data rates with lower 
overhead than specialized 1 / 0  processors. 
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The decision not to use the IBM-type channel 
structure was based on high overhead (cost) in 
both programming and hardware. Because 1 / 0  
record transmission usually caused a central 
processor action, we felt the processor might as 
well transfer the data while it had access to it. 
This merely required a good interrupt and con- 
text switching mechanism, not another special- 
ized processing entity. However, when an 
inordinately high fraction of the processor’s 
time went to 1 / 0  processing, a second, fully 
general processor was added - not a processor 
that was fundamentally only capable of data 
transmission. 

The PDP-6 interrupt scheme was based on 
our previous experience with a 16-level and 256- 
level interrupt mechanism for PDP-1. The 
PDP-1 scheme was an extension of the Lincoln 
Laboratory TX-2 [Clark, 19571. The PDP-6 had 
a 7-channel interrupt system, and each device 
on the 1 / 0  Bus could be programmed to a par- 
ticular level. Hence, a programmer could 
change the priority of a particular device that 
caused interrupts on the basis of need or ur- 
gency. The PDP-6 also had an 1/0 instruction 
(“block input” or “block output”) to transfer a 
single data item between a block (vector) in 
primary memory and an 1 / 0  device. Thus, as 
each word was assembled by a controller, an in- 
terrupt occurred; the block transfer was exe- 
cuted for one word, taking only three memory 
references (to the instruction, to increment the 
address pointer and block counter, and to 
transfer data). Most of the hardware to control 
the count and address pointer was already part 
of the processor logic. 

In  applications requiring higher data trans- 
mission (e.g., swapping drums, disks, TV cam- 
eras), a controller with a data  buffer 
(erroneously called an 1 / 0  Processor) and link 
to memory was provided. This controller re- 
quired only a single memory reference per data 
transfer with the address pointer and block 
counter in hardware. In the KAlO, the name 
was changed to Channel, and parameters for 

transferring contiguous records into various 
parts of memory were part of the channel’s con- 
trol. The device control was via the 1 / 0  Bus; 
hence, we ended up with a structure for high 
speed device control not unlike the IBM chan- 
nels we originally wanted to avoid. 

Competitive pressure from the Xerox Sigma 
series caused a change in the way interrupts 
were handled beginning with the KIlO. Al- 
though the Xerox scheme had many priority 
levels, its main utility was derived from rapid 
dispatch to attend to a particular interrupt sig- 
nal. We kept compatibility with the 7-channel 
interrupt by using a spare wire in the bus and 
adding the ability to directly dispatch to  a par- 
ticular program when a request occurred. At 
the interruption, the processor sent a signal to 
requesting devices and the highest priority de- 
vice responded with a 33-bit command (3-bit 
function, 18-bit address, 12-bit data). The func- 
tions were: (1) execute the instruction found at 
addressed location, (2) transfer a word to/from 
addressed location, (3) trap to addressed loca- 
tion, and (4) add data to addressed location. 
Little use was made of these functions (espe- 
cially number 4), since only a small number of 
devices were typically connected to a large sys- 
tem, thus relaxing the requirement of rapid dis- 
patch. Summarily, the problem of competition 
was resolved when Xerox left the competitive 
scene. In  systems that had a large number of 
devices, a front-end 1 / 0  processing mini- 
computer was more cost-effective than central 
processor controlled I/O. 

Memory System 

Because it was unclear how memory tech- 
nology would affect memory speed, a com- 
pletely asynchronous, interlocked Memory Bus 
was designed. Thus, the 16 fast general regis- 
ters, the initial 5-microsecond memory, and the 
next generation 2 microsecond memory could 
all operate on a single system. (Most memories 
are now less than 1-microsecond cycle time.) 
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The asynchronous bus avoided the problem of 
distributing a single high-speed clock and al- 
lowed interleaved memory operation. 

Modularity was also introduced to clarify or- 
ganizational boundaries within the company 
and to make possible low cost, special purpose 
production and engineering testers for the 
memory and 1 / 0  equipment. We believe that 
the concept of well defined modules was rela- 
tively unique, especially for memory, and was 
the basis for the formation of third party add- 
on memory vendors. MIT and Stanford Uni- 
versity purchased memories from Fabritek and 
AMPEX, respectively, in the mid-1960s to start 
this trend. (Note that this design style differed 
from the IBM System/360 design with its rela- 
tively bounded configurations and integrated 
memory. Add-on memory did not appear until 
the early 70s for the IBM machines because, we 
believe, of the difficulty of the interface defini- 
tion.) 

The KIlO memory system was improved by 
assigning signals to request multiple, over- 

Table 5. Computer Interconnection Structures 

lapped memory accesses and to increase the ad- 
dress size from 18 bits to 24 bits. The additional 
physical memory addresses are mapped into a 
program’s 18-bit addresses via the core-held 
page table. 

The KLlO processor-memory organization 
was a significant departure from the KIlO as 
previously discussed. The KL20 eliminated the 
original Memory Bus to provide an integrated 
system. It should be noted that this evolution 
was based on the drastic size reduction (a factor 
of about 300) from a single cabinet (6 ft X 19 in 
X 25 in or about 34,000 in3) for 16 Kwords to a 
single logic module for 16 Kwords ( 1  5 in X 8 in 
X 1 in or about 120 in3). 

PMS Structures for Computer-Computer 
intercommunication 

Throughout the evolution, a number of 
schemes have been used to interconnect with 
other (usually smaller) computers. The schemes 
are given in Table 5.  Note that the first four 

Scheme Data Rate Structure Models Examples 

Standard communication 110, 300 Network All 
link 1200, 4800, 

9600, 5 0  
Kbitslsec 

Special parallel, block 100 Kwords- Tightly coupled All 
transfer via hardware or 1 Mworddsec 
software 

Multiprocessors At memory ac- Multiprocessor All 2 Pc 
cess rate 16 Pc, proposed 

Access into mini address At memory ac- Multiprocessor PDP-6 The large computer accesses 
space with interruption cess rate shared memory data in the small computer 

The mini can transfer data At memory ac- Tightly coupled KA10-KL10 Scheme used to interconnect 
into large machine via spe- 
cia1 control 

cess rate minis to do I/O 

Multiple logical channels are 
provided 
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schemes were conventional, while the last 
scheme was used in the KL10/20 structure so 
that an attached PDP- 1 1 minicomputer could 
transmit data directly into the memory of the 
KLIO. This scheme was first used in the early 
1970s for handling multiple communication 
lines. 

OPERATING SYSTEM 

PDP-6 Monitor Design Goals and 
Philosophy 

The initial goals and constraints for the user 
environment are summarized in Table 2 .  The 
most important goal was to provide a general- 
purpose timesharing system. The Monitor was 
to allow the user to run in the mode most suited 
to his requirements, including interactive time- 
sharing, real-time, and batch. In timesharing, 
there was no requirement for a human operator 
per se. Instead, the operator’s console was a 
user terminal with special privileges. Real-time 
programs had to be able to operate 1 /0  
directly, locked in core, and batch was to be 
provided as a special case of a terminal job. 

Because of the modular expandability of the 
hardware structure, the software system had to 
be equally modular to facilitate varying system 
configurations and growth. The core resident 
timesharing monitor was only fixed at system 
generation (Le., IBM’s SYSGEN) time when 
software modules could be added to meet the 
system requirements. The core space required 
for monitor overhead had to be minimized. 
Thus, job-specific functions were placed in the 
user area instead of in the Monitor. The first 96 
locations of each user job contained pertinent 
information concerning that job. A temporary 
area (stack) for monitor operations was also in- 
cluded. In  this way, the Monitor was not bur- 
dened with information for the inactive jobs. 
This structure permitted the entire job state to 
be moved easily. 

Adequate protection was to be given to each 
user from other nonmalicious users. However, 

the user was not protected against himself be- 
cause various user status information in the job 
area could be changed to affect his own job. Be- 
cause common system resources were allocated 
upon demand and deadlocks could occur, the 
term “Gentlemen’s Timesharing” was coined 
for the first monitor. 

The UUO or “system call” instruction, pro- 
vided both Monitor-user communication and 
upward hardware compatibility. In the latter 
case, the instruction would use the hardware if 
available; otherwise, the instruction would trap 
to the Monitor for execution. For example, 
double-precision hardware was available o b  
later CPU models. The number of UUOs im- 
plemented in the Monitor for Monitor-user 
communication has been significant. The initial 
use of UUOs included requests for: core, 1 / 0  
assignment, 1 / 0  transmission, file control, data 
and time, etc. 

PDP-6 Monitor 

Monitor was the name given to a collection of 
programs that were initially core resident and 
provided overall coordination and control of 
the operating environment. A nonresident part 
was later added with the advent of secondary 
program swapping and file memories (i.e., 
drum and disk). The Monitor did not include 
utilities, languages, and their run-time support. 

The PDP-6 Monitor was constrained to run 
in a 16 Kword (minimum) macfiine with con- 
sole printer, paper tape reader (for mainte- 
nance) and two DECtape units. DECtape was a 
128-word/block, block-addressable medium of 
450 Kcharacters for which a file system was de- 
veloped. Memory minimizing led to very spar- 
ing use of shared tables. The key global variable 
data was restricted to: core allocation table, 
clock queue, job table, linked buffers for Tele- 
type and other buffered 1 / 0  devices (e.g., DEC- 
tape directory), and a directory of system 
programs and Monitor facilities. 
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The original PDP-6 Monitor was less than 6 
Kwords. The Monitor has increased at about 25 
percent per year with the KAIO at 30 Kwords, 
K I l O  at 50 Kwords, and KLlO at 90 Kwords 
(Figure 7). This increase provided increased 
functionality ( e g ,  better files, batch, automatic 
spooling), larger system configuration size, 
more 1 / 0  options, increased number of jobs, 
easier system generation, and increased reliabil- 
ity (e.g., checking, retries, file backup). 

1 6 0  - 

Y N - 
0 96 - 

R E S I D E N T  O P E R A T I N G  S Y S T E M  

1966 67 69 7 1  73 7 6  77 

T I M E  WEAR1 

Figure 7. 
size versus time. 

Monitor and main utilities program 

Note that with a 16 Kword memory, a 9 
Kword FORTRAN compiler with 5 Kword 
run-time package, and 1 Kword utility pro- 
grams, two users could simultaneously reside in 
PDP-6 memory and use the machine for pro- 
gram creation and checkout. By keeping the 
Monitor program size small, subsequent func- 
tionality increases kept the Monitor module 
sizes in bounds such that program swapping 
was reduced. This provided high performance 
for a given configuration with little Monitor 
overhead. 

Monitor Structure 

are arranged beginning with basics. The follow- 
ing sections deal with the various facilities, in  
turn. 

Memory Protection Swapping. The basic 
environment was discussed in the ISP section 
on Multiprogramming/Monitor Facilities. 

Facilities Allocator. The Facilities Alloca- 
tor was a module called from a console or pro- 
gram for an 1/0 device or memory space 
request. This module would attach (or assign) a 
given peripheral or contiguous physical mem- 
ory area to a given job. Although this module 
was relatively trivial initially, it evolved to a 
more complex module because improper re- 
sources allocation caused deadlocks. 

The KA I O  generation software introduced 
queued operation. A line printer (output), pa- 
per tape (input/output), and a card reader (in- 
put) spooler were implemented. These spoolers 
ran as timeshared jobs, accepted requests from 
other user jobs, and managed the input/output 
operation. 

Program Scheduler. The scheduler was in- 
voked by tine frequency (50 or 60 Hz) interrupts 
to examine run queues and to determine the 
next action. The first Monitor employed a 
round-robin scheduling algorithm. At the end 
of a given time quantum of 500 milliseconds, 
the next job was run. A job was runnable if it 
was not stopped by the console and was not 
waiting for I/O. 

Because terminal response time is the user’s 
measure of system effectiveness, subsequent 
scheduler improvements have favored inter- 
active jobs. With the KAIO, separate priority 
queues were added so that jobs with substantial 
computation were placed in the lowest priority 
and then run the longest without interruption. 
This, in effect, approximated batched oper- 
ation; for example, jobs from a card reader 
would operate as a batch stream. Later, batch 
operation was added for interactive users. 

The introduction of disk/drum swapping 
Table 6 summarizes the development of the 

Monitor with the various systems. The facilities 
caused additional complexities since runnable 
jobs might be located in secondary memory. 
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Table 6. Monitor Functions Evolution 
~ _____ 

Facility PDP-6 (1964) KAlO (1967) KllO(1972) KLlOTl975) 

Protection One segment 
Der user 

Two segments with 
shared program seg- 
ment (required for re- 
entrant programs) 

Four modes for shared 
segments shared segments 

Virtual machine with 

Program swap- 
P W  

Core shuffling Core shuffling; with 
swapping (via drum 
disk) 

Paging used for core 
management 

Demand paging (job 
need not be wholly resi- 
dent to run) 

Facilities alloca- 
tor 

Devices as- 
signed t o  users 
upon request 
(deadlocks pos- 
sible +gentle- 
men’s t i  me - 
sharing) 

Spooling of line printer 
and card reader 

Spooling of all devices 

Round-robin 
scheduler 

Scheduler Scheduler to favor in- 
teractive jobs using 
multiple queues 

Fairness and swapping 
efficiency consid- 
erations 

Parameters for sched- 
uling set by system man- 
ager; priority job classes 
and “pie-slice‘‘ schedule 

User files User files on 
DECtape, cards, 
and magnetic 
tape 

Significant enhance- 
ment of file function; 
on-line. random-access 
disk-based files 

Improved file structure 
reliability. error recov- 
ery. protection and 
sharing; mountable 
structures 

Disk head movement op- 
timization 

Command con- 
trol program 

Simple (to im- 
plement) requir- 
ing little state 

Evolution to more pow- 
erful, easier to use 
command language 

Remote and local 
single-stream batch 

Common Command 
Language (CCL) 

Extensions to CCL 

Batch No real batch Multiprogramming 
batch 

Improved multi- 
programming batch 

Terminal han- 
dling and com- 
munications 

Asynchronous 
task-to-task 
communications 
(for interactive 
terminals) as 
monitor module 

Synchronous commu- 
nications for remote 
job and concentrator 
stations; ”birth” of 
networks with simple 
topologies; ARPA 
network 

Synchronous commu- 
nications in complex 
topologies; new pro- 
tocol; IBM BISYNC for 
2780 emula- 
tiordtermination 

DECnet commu- 
nications* 

Multiprocessing Dual processor support 
(master/slave) 

High availability 
through bus switching 
hardware 

Symmetric multi. 
processing 

*DECnet is DEC’s computer network protocols and functions 
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The concept of “look-ahead” scheduling was 
required, and a more complex queuing mecha- 
nism was implemented. As the Monitor selected 
the next job to be run, it would “look ahead” to 
determine future queues and invoke the swap- 
ping module if required to move a runnable job 
into core. Because of the higher swapping over- 
head, it was essential to run large jobs longer 
and less often. A “fairness” consideration also 
assured that each job, whatever its size, received 
enough run time to maintain responsiveness. 

Recent enhancements permitted a Systems 
Manager to set scheduling parameters including 
established priorities of job classes. A “pie- 
slice” scheduler is used where classes of users 
are guaranteed fixed parts of the machine time 
and resources. 

User Files and I/O Device Independence. 
In the initial PDP-6 design, resources such as 
magnetic tapes, unit record devices (e.g., card 
readers, line printer, paper tape reader/punch) 
and DECtapes (which were file structured) were 
requested by each user as they were required. 
The Monitor allocated the device to a request- 
ing given job until released. 

1/0 calls were evoked by the UUO call in- 
structions. A particular device program call 
could specify the number of 1 / 0  buffers to be 
provided so that arbitrary amounts of over- 
lapped 1 / 0  and computing could be realized. 

I n  order to realize the goal of modularity, 
each 1 / 0  device handler was implemented as a 
separate module. These modules used a com- 
mon set of subroutines. The device tables were 
made as identical as possible to help achieve the 
device independent goal. Thus, a user specified 
an 1 / 0  channel, not a specific 1/0 device. The 
channel-to-name assignment could take place at 
various times from log-on to program run time. 

In the original Monitor, a user was allowed 
to assign file devices to his job and read and 
write named files with the devices. Permanent, 
on-line user files with automatic backup were 

not implemented until the K A  IO-generation 
Monitors. The concept of project/programmer 
number was adopted (after MIT’s CTSS) in or- 
der to provide increased file security and shar- 
i ng .  A use r  was  r e q u i r e d  t o  e n t e r  a 
project/programmer number with his associ- 
ated password. This not only established a job, 
but identified the user to the Monitor. In  addi- 
tion to having resource privileges associated 
with better ID numbers, the user received a log- 
ical disk area for files. File access can be al- 
lowed (by the creator of the file) to any of the 
following levels with decreasing protection (in- 
creasing privileges): no access, execute only, 
plus read, plus append, plus update, plus write, 
plus rename, and plus alter protection. 

Significant evolution occurred in the user file 
facility. Improved file structure reliability and 
error recovery (such as writing pointer blocks 
twice) were achieved. With moving head disk 
availability, disk head movement optimization 
for file transfers on single or multiple drives was 
added. The concept of “mountable” structures 
was implemented to allow disk packs to be 
mounted and dismounted during a timesharing 
operation as well as allowing a user to have a 
“private” pack mounted. As the number of 
users supported on the system and the diversity 
of their applications grew to include “business 
data processing,” both hardware and software 
allowed expansion of the number and capacity 
of on-line disks. 

Command Control Program. This pro- 
gram processes all commands addressed to the 
system from user terminals. Thus, terminals 
served to communicate Monitor commands to  
the system and to the user programs, and served 
as an 1 / 0  device for user programs. Terminal 
handling routines were an integral part of the 
PDP-6 Monitor. The original commands were 
designed to minimize the amount of state in the 
Monitor. As a result, users had to type several 
commands to control programs. A much more 
powerful command language evolved. 
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Batch Processing 

Batch processing has evolved from the origi- 
nal, fully interactive PDP-6, where a user was 
expected to interactively provide commands for 
each step in the generation/execution of a pro- 
gram. The first batch on the KAlO was based 
on a user-built command file that mimicked his 
terminal actions. The user invoked this com- 
mand file to execute his programs. Later, a mul- 
tiprogrammed batch system was added, and the 
job control syntax evolved to provide more 
functions per command. However, batch/ 
interactive command commonality has been 
preserved through the current Monitor ver- 
sions. Still, batch control ran as a timeshared 
job using queued batch control files. Thus, the 
ability to log in a job, run to completion, and 
log off is accomplished from a card reader or 
any other storage or file device. Symbiant 
(queued) operation allowed control of card 
readers, line printers, etc., by the batch control 
program so that the machine could be sched- 
uled more effectively. During this batch evolu- 
tion, little Monitor enhancement was necessary 
to specifically address the batch environment. 
Modules to improve efficiency (by multiple 
strands and better scheduling) and increase 
functionality were implemented as “user” jobs 
and interprocess queuing allowed commu- 
nication between the “user” modules. 

A line printer spooler, for example, was run 
as one of many jobs by the operator - a notion 
that evolved beginning with the KAlO. If a spe- 
cial form was required for a print job, the oper- 
ator would be notified and act accordingly. The 
user was relieved of this responsibility. Oper- 
ator allocation, control, and media loading of 
the card reader, magnetic tape, private disk 
pack, DECtape, and plotter were provided in 
the KIlO. 

Terminal Handling and Communications. 
We believe the users’ perception of system effec- 
tiveness related directly to his feeling that he 

was interacting and was in control. The require- 
ment to communicate effectively with the user 
via the terminal was one of the most difficult 
design constraints. The very first version of the 
Monitor used half-duplex communication for 
simplicity. But finally we decided to pay the ad- 
ditional price to gain the benefit of full-duplex 
communication, Le., being able to continuously 
input and output independently of system load. 
These philosophies have guided subsequent 
Monitor generations. 

A hardware module was constructed to facil- 
itate terminal communication. This hardware 
was called the scanner because it looked at all 
the interface lines connected to Teletypes and 
interrupted the software when a character was 
received or needed to be transmitted. These line 
units, which we built on a single card, formed 
the basis of the Universal Asynchronous Re- 
ceiver/Transmitter (UART) LSI chip. A soft- 
ware  mon i to r ,  called Scanner  Service 
(SCNSER) handled interrupts from the hard- 
ware. SCNSER provided the important func- 
tion of logically coupling a physical terminal 
with a job running under timesharing. The user 
was never burdened with attempting to relate 
his terminal with his job. This software module, 
by far the most logical complex part of the 
Monitor, has been rewritten twice to increase 
terminal functionality. 

Later, the KAlO terminal interface was im- 
plemented via a “front-end’’ concentrator PDP- 
8 computer for large numbers of terminals - 
particularly where variable line speeds were in- 
volved (up to 300 baud). This implementation 
allowed some off-loading of the processor. 
Characters were assembled (serial parallel con- 
version) in the front-end PDP-8 and commu- 
nicated with the KAlO via the 1 /0  Bus on an 
interrupt basis. 

In 1971, a front-end PDP-11 provided direct- 
memory access over the 1 / 0  Bus. This con- 
nection provided high speed, full-duplex, syn- 
chronous communications and  was the 
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prototype for the current KLlO/PDP-I 1 front- 
end computer. Software modules were added to 
the Monitor to allow these synchronous lines to 
terminate remote PDP-8 and communication 
concentrator stations in simple point-to-point 
topologies. A remote station (e.g., line printer) 
is viewed by the user in the same manner as is a 
local printer. 

With the KIlO, a second front-end was pro- 
duced which allowed BISYNC protocol of the 
IBM 2780 terminal to be used. However, most 
of our users were laboratory-oriented and 
wanted greater performance and functionality. 
Thus, concentrator/remote station capability 
including route-through (Le., communication 
via multiple concentrators), and multiple hosts 
were added. These formed the basis of some of 
our understanding for subsequent DECnet pro- 
tocol standards and functions. The use of DEC- 
system- I O  in the Advanced Research Projects 
Agency (ARPA) funded projects formed an- 
other key base for our DECnet protocols and 
functions [Roberts, 19701. 

DECnet-10 now provides the capability of 
having processes in different computers (includ- 
ing PDP-8s and PDP-I Is) communicate with 
each other. These jobs appear to each other as 
1 / 0  devices in the simplest applications. 

Throughout all of this communication func- 
tionality evolution, the goal has been to free the 
user from concern with the link, commu- 
nication mode, hardware location, and pro- 
tocol. 

Multiprocessing 

Although we predicated the original PDP-6 
hardware on multiprocessing, the Monitor was 
not designed explicitly for it. Lawrence Liver- 
more Laboratory did build a two-processor sys- 
tem with their own operating system and special 
segmentation hardware. To meet the needs of 
the predominately scientific/computation mar- 
ketplace in achieving higher processor through- 
put, a dual-processor KA 10 was implemented 

using a master/slave scheme with wholly shared 
memory and one Monitor. The slave CPU 
scanned the queue of runnable jobs, selected 
one, and ran it. If a Monitor call was encoun- 
tered, the job was placed in the appropriate 
queue and the Monitor located another run- 
nable job. The “master” handled all 1/0 and 
privileged operations. In a CPU-bound envi- 
ronment, the dual processor provided approx- 
imately a 70 percent increase i n  system 
throughput. 

An offshoot (and evolved design goal) of the 
dual-processor implementation was high avail- 
ability. Monitor reconfigurability and bus- 
switching hardware allowed redundant com- 
ponents to be fully utilized during normal oper- 
ation and,  in the case of a hardware 
malfunction, to be separated into an operating 
configuration (with all available I/O) and a 
maintenance configuration (consisting of CPU, 
memory, and the faulty component). 

At Carnegie-Mellon University (CMU), we 
proposed to build a 16 to 32 PDP-10 structure 
[Bell et al., 19711. It would have 16 Mwords of 
primary memory available via 16 ports at a 
bandwidth of 2.1 to  8.6 gigabits/second. With 
the use of processors larger than those of the 
KLIO, performance would have been over 50 
million instructions per second (MIPS). The 16 
processor, C.mmp [Wulf and Bell, 19721, based 
on PDP-I 1s at  CMU, is a prototype of such a 
system. 

Languages and Utilities 

Monitor commands called the utilities and 
languages. The utilities, called CUSP (for Com- 
mon User System Program), and languages in- 
cluded: EDIT, an editor for creating and editing 
a file from a user console; PIP, the peripheral 
interchange program to convert information 
among the 1/0 media and files; LOADER to 
load object modules; DESK, an interactive cal- 
culator; MACRO, an assembler; and FOR- 
TRAN 11. Figure 1 shows these programs at 
various times, together with their origins. 
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Utilities and languages have taken advantage 
of the interactive, terminal-oriented environ- 
ment. Thus,  highly interactive editing/ 
debugging facilities have evolved in terms of the 
program’s own symbols. The file/data transfer 
utility, PIP (for Peripheral Interchange Pro- 
gram) is still in existence today, although in a 
much enhanced form. It has since been ex- 
panded to support the peripheral devices and 
the data formats encountered in the DECsys- 
tem-I0 memory and 1 / 0  devices. Such a utility 
eliminated the need for a “library” of utilities 
and conversion programs to transfer data be- 
tween devices. Such tasks as a card-to-disk, 
card-to-tape, tape-to-disk, etc., conversion are 
controlled by a terminal using common PIP 
commands. PIP evolved in a somewhat ad hoc 
fashion from a 1 Kword or 2 Kword size in 
1965 to 10 Kwords with substantial generality. 

A powerful and sophisticated text editor, 
TECO (Text Editor and Corrector) was initially 
implemented at MIT using a graphics display. 
TECO is character-string oriented and requires 
a minimal number of keystrokes to execute 
commands. It included the ability to define pro- 
grams to do general string substitution. As the 
sophistication of users was later perceived to 
decline, the powerful editor created training 
and use problems. Thus, a family of line- and 
character-oriented editors evolved which was 
easier to learn and remember. These were based 
on other line-oriented editors, but especially 
Stanford’s SOS, which replaced the initial 
DECline editor in 1970. 

Many of the higher level languages were in- 
itially produced  by non-DEC groups  and m a d e  
available through the DEC User Society 
(DECUS). For example, APL, BASIC, DBMS, 
and IQL (an interactive query language) were 
purchased from outside sources and are now 
standard, supported products. 

BLISS (Basic Language for Implementing 
System Software), developed at Carnegie-Mel- 
Ion University, became DEC’s systems pro- 
gramming language [Wulf et al.,  1971bl. A 

cross-compiler was subsequently developed for 
the PDP-I 1 .  Its use as a systems programming 
language has been due to the close coupling it 
provides to the machine, its general syntactic 
and block structures, and its high-quality code 
generator. BLISS has been used for various di- 
agnostic programs, the BLISS Compilers, the 
PDP-IO APL Interpreter, recent FORTRAN- 
IV compilers for both PDP-IO and PDP-11, and 
the BASIC PLUS TWO system. BLISS has also 
been used extensively within DEC for com- 
puter-aided design programs. 

Tenex and the TOPS-20 Operating System 

Bolt, Beranek, and Newman started a project 
in 1969 to build an advanced operating system 
called Tenex which was based on a modified 
KA I O  (including rather elaborate paging hard- 
ware). This work was influenced by both the 
Berkeley SDS 940 and the MIT Multics sys- 
tems. Subsequently, Tenex influenced and im- 
proved the KI 10 design which became the base 
of TOPS-20. The system was described by 
Bobrow et al. [ 19721, and the three major goals 
stated in the reference were: 

I .  State-of-the-Art Virtual Machine 

a. 

b. 

C. 

d .  

Paged virtual address space  
equal to or greater than the ad- 
dressing capability of the proces- 
sor  with full provision fo r  
protection and sharing. 
Multiple process capability in 
virtual machine with appropri- 
ate communication facilities. 
File system integrated into vir- 
tual address space, built on mul- 
t i level  s y m b o l i c  d i r e c t o r y  
structure with protection, and 
providing consistent access to all 
external 1/0 devices and data 
streams. 
Extended instruction repertoire 
making available many common 
operations as single instructions. 
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11. Good Human Engineering 
Throughout Systems 
a. An executive command lan- 

guage interpreter which provides 
direct access to a large variety of 
small, commonly used system 
functions, and access to and con- 
trol over all other subsystems 
and user programs. Command 
language forms should be ex- 
tremely versatile, adapting to the 
skill and experience of the user. 

b. Terminal interface design should 
facilitate intimate interaction be- 
tween program and user, pro- 
vide extensive in t e r rup t  
capability, and full ASCII char- 
acter set. 

c. Virtual machine functions 
should provide all necessary op- 
tions, with reasonable default 
values simplifying common 
cases, and require no system-cre- 
ated objects to be placed in the 
user address space. 

d. The system should encourage 
and facilitate cooperation 
among users as well as provide 
protection against undesired in- 
teraction. 

111. The System must be 
Implementable, Maintainable, 
and Modifiable 
a. Software must be modular with 

well defined interfaces and with 
provision for adding or changing 
modules clearly considered. 

b. Software must be debuggable 
and reliable, allowing use of 
available debugging aids and in- 
cluding internal redundancy 
checks. 

c. System should run efficiently, al- 
low dynamic manual adjustment 
of service if desired, and allow 
extensive reconfiguration with- 
out reassembly. 

d. System should contain instru- 
mentation to clearly indicate 
performance. 

Dan Murphy (one of Tenex’s designers/ 
implementers) came to  DEC and led the archi- 
tecture and development effort that produced 
TOPS-20. The effort at DEC has been to in- 
crease the performance of TOPS-20 to be com- 
petitive with the highly tuned Monitor while 
not losing its generality. The TOPS-20 structure 
does provide increased reliability and modi- 
fiability. 

HARDWARE IMPLEMENTATION 

While logic and memory technology are often 
considered the prime determinant of the per- 
formance and cost of a computer system, fabri- 
cation and packaging technology are equally 
important. This section surveys logic, manufac- 
turing, and packaging technology as it affected 
the various DECsystem-IO models. Table 7 
summarizes those various logic and packaging 
technologies. 

Logic 

The PDP-6 used a set of logic modules that 
evolved from the earlier PDP-I, which in turn 
were derived from the Lincoln Laboratory cir- 
cuits developed for the TX-0 [Mitchell, Olsen, 
19561 and TX-2 [Clark, 19571 (Chapter 4) com- 
puters as part of the air defense program. These 
circuits were direct-coupled transistor logic and 
included both series and parallel transistor cir- 
cuits to give great flexibility in designs. The 
PDP-I circuits operated at  a 5 MHz clock, and 
new transistors enabled the PDP-6 circuits to 
operate at IO MHz. The computer’s clock was 
based on a delay line which carried pulses gen- 
erated by a pulse amplifier using pulse trans- 
f o r m e r s  ( t h i s  t o o  c a m e  f r o m  L i n c o l n  
Laboratory via the early work at  MIT on  radar 
and pulse transformers) The pulses were used 
for register transfer operations (i.e., moving 
data among the registers) and some logic gat- 
ing. 
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Instead of using a small number of lines in a 
fixed, synchronous clock, many delay lines were 
used. The route through the control path deter- 
mined the state of the machine. At each deci- 
sion point, the next line or chain (set of lines) 
was selected. Hardware subroutines were also 
unique with this implementation. A control 
sequence consisting of a set of delay lines was 
defined as a subroutine, and a calling module 
marked the calling site (e.g., add, subtract, and 
complement are at the lowest level). The basic 
multiply subroutine used add or subtract; fi- 
nally, floating multiply used the normalize and 
multiply subroutines. In this way, the imple- 
mentation was kept structured and turned out 
to be quite straightforward. The flowcharts for 
the PDP-6 were only 11 pages, where each page 
has about 25 unique statements (actions), yield- 
ing a total of only 250 microsteps (each step 
causes 1 to 6 operations and corresponds 
roughly to current microprogram statements). 
The asynchronous adder was designed so that 
on completion of all the carries, the sequence 
would restart. Thus, we took advantage of the 
observation made by von Neumann et al. in 
1946, [Bell and Newell, 1971, ch. 41 that the av- 
erage number of carries is log1 36 or slightly 
over 5 ,  versus the worst case of 36. An average 
delay time of about 20 nanoseconds per carry 
reduced the average add time to only 100 na- 
noseconds versus 720 nanoseconds, yielding a 
very simple and fast circuit. 

Ironically, the TTL/Schottky (TTL/S) series 
was first available in production quantities at 
about the time of the KIIO. The KIlO design 
was started earlier and design options chosen so 
as to preclude the subsequent advances in 
speed, power, and density that the TTL/S gave. 

The other important logic advances em- 
ployed in the KIlO were the MSI register file 
and associative memory packages. The register 
file provided four sets of accumulators and thus 
decreased the context switching time. (This 
probably had a higher psychological than real 
value but was useful where special devices were 
operated on a high speed, real-time basis.) The 
associative memory package permitted the con- 
struction of a 32-word associative memory to 
support a paged environment. 

The KLlO provides almost a factor of 5 per- 
formance improvement over the KAlO for pro- 
grams using the basic instruction set. An even 
larger performance improvement is realized for 
COBOL or extended precision scientific pro- 
grams. The organization and much of the base 
work for the KLlO was done by Dave Poole, 
Phil Petit, John Holloway, and Jack Wright at 
the Stanford Artificial Intelligence Laboratory. 

The KLlO is microprogrammed using a 
memory based on the 1 Kbit bipolar RAM. A 
cache memory is also constructed from the 1 
Kbit chips. The KLlO is implemented in the 
emitter coupled logic (ECL) 10K series rather 
than in the TTL/Schottky of the original Stan- 

The KAIO used essentially the Same circuitry ford design. It was that the ECL 'peed ad- 
vantage with 3 nanoseconds gate delay versus 7 but with significantly better packaging so that 

design effort especially because the ECL re- Note that in Table 7, the existence of certain 
semiconductors was the basis of new machines. Wired more power and care to lay Out the 

The TTL/H series logic appeared about 1969 board and 
and formed the basis of a machine (the KIIO) 
with roughly the same power dissipation and Fabrication 

physical size as a KA10, but with a factor of 2.2 The Gardner-Denver automatic Wire-wrap 
more performance. In scientific applications re- machine represented a significant advance in 
quiring double-precision computation, this per- the manufacture of machines. Automatic Wire- 
formance differential is much greater. wrap economically provided accurately wired 

automatic wire-wrap backpanels could be used. nanoseconds for Schottky was worth the extra 
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P Table 7. Implementations for DECsystem-IO ardware 

--I 
Processor PDP-6 K A l O  K i l o  KL10 I 

m 

Design start 

First ship 

Logic 

3/63 1/66 

9/67 

-0 
12/69 1 /72 0 

P 
5/72 6/75 0 

TTL/H (MSI) registers; as- ECL 10K; fast, 1 Kbit memories 
sociative memory 

0.72 1.8 

4 

3 
5 
I- 
4 

6/64 

Germanium, silicon tran- 
sistors 

Discrete silicon transistors 
and diodes 

MIPS (avg.) 0.25 0.38 

1 bit of AR. MB, MQ. 
AD:88 transistors, 2-sided 
PC etch; 2-18-pin and 2- 
22-pin connectors (1  1 X 
9 inch boards) 

Implemented in R, S, W 
series flip-chip (discrete) 
modules (5-1/2 X 5-1/4 
boards) 

Implemented in R, S, W, 
M series flip-chip (discrete + MSI) modules 5-112 X 
5-114 boards inch boards) 

6 bits of AR. ARX. MQ, BR. BRX. 
AD, ADX:70 MSI ECL per mod- 
ule: 21 6 pin connector: (8  X 16 

Packaging (slice 
of processor) 

Processor size 2 bays 2 bays 2+  bays 1/2 bay (including internal chan- 
nels) 

$120K $1 50K 

Same as PDP-6 

$200K $250K Processor price 

Control design Clocked synchronous KL20 is clocked synchronous; 
microprogrammed 

Asynchronous and sub- 
routine logic 

Module size Large modules Small modules wire-wrap Same Large modules (1 6 Kword core 
memory module) 

Registers 

I/O calls 

16 16 

Same 

4 X  16 8 X  16 

Prog. interrupts UUO traps Vectored interrupts Integrated controller for Mass- 
bus; I10 via PDP-1 1 computers 

I/O transmission I/O and Memory Bus Added channels 

18-bit phys. addr. pro- 
tection and relocation reg- 
isters 

2 protection and reloca- 
tion registers for shared 
program segments 

22-bit phys. addr: paged 
using 32-word associative 
memory 

22-bit phys. addr. paged, using 
associative memory via cache 

Memory 
management 



Table 7. Implementations for DECsystem-10 Hardware (Cont) 

Processor PDP-6 KAlO K110 KLlO 

ISP See Table 3 (integers. 
floating) float tegers 

Conversion to assist d.p. Hardware d.p. float String and conversion for d.p. in- 

Parallelism - Simpler (faster) data path Instruction look-ahead (4- 
word) fetch 

Instruction look-ahead: 2 Kword 
cache memory 

Fabrication (Too) large modules Gardner-Denver automatic Semiautomatic wire-wrap Large (hex) (KL20) in- 
Wire-wrap for backpanel for twisted pair modules with tegrating Pc 
interconnection many pins: and Mp to- 

low-cost minis gether - 
front-end eliminating 

Memory 
Bus3h igh -  
density core 
memory 
modules 

Consequences Served as PDP-10 produc- Buildable in production More performance (scien- More perform- Lower cost 
tion prototype tific and real-time); ance via 

and paging for cache; micro- 
operating systems progra m mi ng 

for better CO- 
BOL ISP: 1/0 
computers 

-1 
I 
rn 

54 
-1 
I 
rn 
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backpanels. As a more important side effect, it 
made the high-volume, low-cost fabrication of 
minicomputers possible! Some backpanel wir- 
ing on the KIlO and KLlO processors using 
twisted pairs cannot be done using the Gardner- 
Denver machinery. For this, DEC developed a 
semiautomatic wire-wrap machine which lo- 
cates the pins and selects the wire length for an 
operator. 

Computer design aids have evolved to sup- 
port computer implementations on an “as- 
needed” basis, barely keeping ahead of the im- 
plementations. These have included printed cir- 
cuit board layout/routing, backplane layout/ 
rout ing,  c i rcui t / logic  s imula t ion ,  wire 
length/logic delay checking, and various manu- 
facturing aids. One notable exception to this 
trend has been the Stanford University Draw- 
ing System (SUDS) developed by the Standard 
Artificial Intelligence Laboratory. SUDS was 
used for drawing the entire KLlO design. The 
design time and cost would have been signifi- 
cantly greater if SUDS had not been available. 

Packaging 

Semiconductor density is a major determi- 
nant of the system size, and size in turn is a ma- 
j o r  determinant of speed (e.g., shorter 
interconnection paths). Seymour Cray stated in 
a lecture given at Lawrence Livermore Labora- 
tory (December 1974) that for each generation 
of his large computers, the density has im- 
proved by a factor of 5. 

The packaging for the PDP-6 was identical to 
that of the PDP-1, 4, and 5 and used a board 
area of about 40 in* with a 22-pin connector. A 
logic density improvement of 2 was achieved 
over the previous designs by using 6 special 
function modules. However, this density turned 
out to be too high for the number of pins. A 
natural extension was a board twice as large 
with 44 pins. The most interesting module was 
the bit-slice of the working registers: Accumula- 
tors, Multiplier-Quotient, and Memory Buffer. 
This module required more than 44 pins, so the 

extra signals were bused across the back of the 
module. This busing increased module swap 
time, and the mechanical coupling increased the 
probability that fixing one fault would cause 
another. Because of this, the designers of the 
KA 10 and KIlO became fearful of large boards. 
Only with the KLlO in 1972 were large boards 
reintroduced into the DECsystem-10. On the 
other hand, large boards had been used in DEC 
minicomputers since 1969. Multilayered boards 
were required for the KLlO ECL logic. These 
boards were adapted from the multilayered 
boards developed for the TTL/S PDP-11/45 
( 1972). 

Price/Performance 

Surprisingly, over time, the various models of 
the DECsystem-IO have been implemented at 
an essentially constant cost. The option to ap- 
ply technology at constant performance with re- 
duced price was never examined as an 
alternative strategy. In the minicomputer part 
of the company, both alternatives were vigor- 
ously pursued in order to  provide a growing 
business and stimulate design alternatives. The 
relatively static DECsystem-IO strategy with 
constant price stems, no doubt, from the highly 
coupled interaction of builders (wanting to go 
on to provide the next highest level of perform- 
ance which was the founding principle of the 
group); the salespeople (many of whom came 
from other companies and are only used to 
working with a particular user class), users 
(who want more performance so as to reduce 
their overall cost/performance ratio), and mar- 
keting (which integrates needs and alternatives). 
This is illustrated in Figure 8. Here we give the 
performance in terms of the number of general- 
purpose users versus the system price. 

Figure 9 gives a single price of the system for 
each generation, together with the percentages 
going of each for the system components. The 
best cost/performance systems are shown (ex- 
cept, in the case of the minimal PDP-6). Figure 
I O  gives the price of the various processors ver- 
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Figure 10. DECsystem-10 processor price versus time. 

sus time for the family; note that the processor 
price has been increasing roughly at the in- 
flation rate, suggesting a manpower intensive 
(or service-type) market structure. Note that 
since the performance (Table 7) has improved 
at roughly a factor of I O  in 10 years, the in- 
crease in performance/cost is nearly 20 percent 
per year. In contrast, a minicomputer line (con- 
stant performance) is plotted which shows the 
price decreasing at 21 percent per year, with a 
factor of 10 price decline in ten years. We 
should ask: “Could a PDP-6 level processor be 
built in  1975 to sell for $10K?” 

Clearly it could, and such a system has been 
built as an advanced development project. This 
small 10 has a unified bus structure like the 
PDP-11 with a connection to use the Unibus 
family 1/0 devices. A system with 512 Kwords 
and the performance of greater than that of a 
KA 10 occupies a cabinet somewhat smaller 
than a PDP-I 1/70 minicomputer.* 

Figure 11 shows how the price of memory has 
decreased with time. Note that even though 
there was growth in the memory size of the 

*The computer called the 2020 was introduced in May 1978. 
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Figure 11. DECsystem-10 primary 
memory price per word versus time. 

monitor of 25 percent per year, there was a pos- 
itive improvement in the memory price per- 
formance. In reality, many functions for which 
the user was explicitly responsible were moved 
to the Monitor as basic operations. A similar 
plot for secondary memory prices is given in 
Figure 12. 

CONCLUSIONS 
We believe the existence of the DECsystem- 

10 has been beneficial to the many environ- 
ments for which it has provided real-time and 
interactive computation, including the com- 
puter science and computer engineering com- 

10K 

H 8K 

a 

- 
u) 
n 

5K 

U 4K 

a 3K 
n 

L! 2K 
n 

5 
2 

Y 

z=8.000 x 0 8f -1969  
120% PRICE DECLINE 

1 9 6 8  1 9 7 0  1 9 7 2  1 9 7 4  1 9 7 6  1 9 7 8  

T I M E  IVEARl 

Figure 1 2 
Mwords versus time. 

DECsystem- 10 secondary memory price per 

munities. In turn, we have tried to respond to 
the needs of these users. Its existence has also 
been a positive force in encouraging alternative, 
competitive products in what otherwise might 
have been a dull, batch environment. The sys- 
tem has also been used by and influenced mini- 
c o m p u t e r  ( a n d  now m i c r o c o m p u t e r )  
development, including: hardware technology 
(e.g., wire-wrap), support for machine devel- 
opment (including simulation), and exemplary 
design leading to timesharing systems (e.g., 
DEC's TSS/8, RSTS) and user environments 
(e.g., RT- 1 1 and microcomputer systems). 

We believe the key to the lo's longevity is its 
basically simple, clean structure with ade- 
quately large (one Mbyte) address space. In this 
way, it has evolved easily with use and with 
technology. An equally significant factor in its 
success is a single operating system environ- 
ment enabling user program sharing among all 
machines. The machine has thus attracted users 
who have built significant languages and appli- 
cations in a variety of environments. These 
user-developers are, therefore, the dominant 
system architects-implementors. 

In retrospect, the machine turned out to be 
larger and further from a minicomputer than 
we had expected. As such, it could easily have 
died or destroyed the tiny DEC organization 
that started it. We hope that this paper has pro- 
vided insight into the interactions of its devel- 
opment. 

ACKNOWLEDGEMENTS 

Dan Siewiorek deserves our greatest thanks for 
helping with a complete editing of the text. The 
referees and editors have been especially help- 
ful.  The important program contributions by 
users are too numerous for us to  give by name 
but here are most of them: APL, BASIC, 
BLISS, DDT, LISP, Pascal, Simula, SOS, 
TECO, and Tenex. Likewise, there have been so 
many contributions to the lo's architecture and 
implementations within DEC and throughout 
the user community that we dare not give what 
would be a partial list. 



An ISPS Primer for the 
Instruction Set Processor Notation 

MARIO BARBACCI 

This appendix introduces the reader to the ISPS notation. Although some de- 
tails have been excluded, it covers enough of the language to provide a “reading” 
capability. Thus, although the primer by itself might not be sufficient to allow 
writing ISPS descriptions, it should be detailed enough to  permit the reading and 
study of complex descriptions. We use the PDP-8 ISPS description as a source of 
examples. 

In the presentation of the PDP-8 registers and data-types the following conven- 
tions are used: (1) names in upper case correspond to physical components on the 
PDP-8 (e.g., program counter, interrupt lines, etc.); (2) names in lower case do not 
have correspondent physical components (e.g., instruction mnemonics, instruc- 
tion fields, etc.). 

INSTRUCTION SET PROCESSOR DESCRIPTIONS 

To describe the instruction set processor (ISP) of a computer, or any machine, 
the operations, instructions, data-types, and interpretation rules used in the ma- 
chine need to be defined. These are introduced gradually as the primary memory 
state, the processor state, and the interpretation cycle are described. Primary 
memory is not, in a strict sense, part of the ISP, but it plays such an important 
role in its operation that it is typically included in the description. In general, 
data-types (integers, floating-point numbers, characters, addresses, etc.) are ab- 
stractions of the contents of the machine registers and memories. One data-type 
that requires explicit treatment is the instruction, and the interpretation of in- 
structions are explored in great detail. 

51 9 
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Memory State 

The description of the PDP-8 begins by specifying the primary memory that is 
used to store data and instructions: 

M\Memory[0:4095]<0:11>, 

The primary memory is declared as an array of 4,096 words, each 12 bits wide. 
The memory has a name (M) and an alias (Memory). These aliases are a special 
form of a comment and are useful for indicating the meaning or usage of a regis- 
ter’s name. As in most programming languages, ISPS identifiers consist of letters 
and digits, beginning with a letter. The period character (.) is also allowed, to 
increase the readability. The expression [0:4095] describes the structure of the 
array. It declares the size (4,096 words) and the names of the words (O,l ,  ..., 
4094,4095). 

The expression <0:11> describes the structure of each individual word. It de- 
clares the size (12 bits) and the names of the bits (O,l, ..., lO,ll).* 

Memory is divided into 128-word pages. Page zero is used for holding global 
variables and can be accessed directly by each instruction. Locations 8 through 15 
of page zero have the special property called auto indexing: when accessed in- 
directly, the content of the location is incremented by 1. These regions of mem- 
ory can be described as part of M as follows: 

P.O\Page.Zero[O: 127]<0: 11 > 
A.I\Auto.Index[O:7]<0:11> 

:= M[O:127]<0:ll>, 
:= M[8: 151 <0: 11 >, 

The word (and bit) naming conventions on the left-hand side of a field declara- 
tion are independent from the word (bit) names used on the right-hand side. 
A.I[O] corresponds to M[8], A.I[1] corresponds to M[9], and so on. 

Processor State 

The processor state is defined by a collection of registers used to store data, 
instructions, condition codes, and so on during the instruction interpretation 
cycle. 

The PDP-8 has a 1-bit register (L) which contains the overflow or carry gener- 
ated by the arithmetic operations, and a 12-bit register (AC) which contains the 
result of the arithmetic and logic operations. The concatenation of L and AC 

*I t  should be  noted that  bit and word “names” a re  precisely that ,  i.e., identifiers for the sub- 
components of a memory structure. These “names’’ do not necessarily indicate the relative position 
of the subcomponents.  Thus,  R<7:3> is a valid definition of a 5-bit register. T h e  fact that  the five 
bits are “named” 7,6,5,4, and 3 should not be confused with the 7th, 6th, etc., positions inside the 
register. Thus,  bit 7 is the leftmost bit, bit 6 is located in the next position toward its right, etc.,  while 
bit 3 is the rightmost bit. 
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constitutes an extended accumulator LAC. The structure of the extended accu- 
mulator is shown below: 

LAC<0:12>, 
L\Link<> := LAC<O>, 
AC\Accumulator<O:ll> := LAC<l:12>, 

The expression < > indicates a single, unnamed bit (L is only one bit long and 

The Program Counter (PC) is used to store the address of the current instruc- 
there is no need to specify a name for it.) 

tion being executed as the machine steps through a program: 

PC\Program.Counter<O:l 1 >, 
Twelve bits are needed in the PC to address all 4,096 locations of primary mem- 
ory. 

In the PDP-8, 1 / 0  devices are allowed to interrupt the central processor. When 
a device requires service from the central processor, it emulates a subroutine call, 
forcing the processor to execute an appropriate 1/0 subroutine. The presence of 
an interrupt request is indicated by setting the 1NTERRUPT.REQUEST flag. 
The processor can honor these requests or not, depending on the setting of the 
1NTERRUPT.ENABLE bit: 

INTERRUPT.ENABLE< >, 
INTERRUPT.REQUEST< >, 

There are 12 console switches which can be read by the processor. These 
switches are treated as a 12-bit register by the central processor: 

SWITCHES<O:ll>, 

Instruction Format 

As is the case with most data-types and registers on the PDP-8, instructions are 
12 bits long: 

i\instruction<O: 11 >, 
An instruction is a special kind of data-type. It is really an aggregate of smaller 

information units (operation codes, address modes, operand addresses, etc.). The 
structure of the instructions must be exposed by describing the format. Most 
PDP-8 instructions contain an operation code and an operand address: 

op\operation.code<0:2> := i<0:2>, 
ib\indirect.bit< > := i<3>, 
pb\page.O.bit< > := i<4>, 
pa\page.address <0:6 > := i<5:11>, 
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The abstractions op, ib, pb, and pa allow the treatment of selected fields of the 
PDP-8 instructions as individual entities. 

PARTI TI ON I N G TH E DESCR I PTI 0 N 

In ISPS, a description can be divided into sections of the form: 

** section.name ** 
<declaration>, 
<declaration>, 
. . .  

** sectionname ** 
<declaration>, 
<declaration>, 

Each section begins with a header, an identifier enclosed between ** and **. A 
section consists of a list of declarations separated by commas. Section names are 
not reserved keywords in the language; they are used to convey to the users of the 
description some information about the entities declared inside the section. The 
register and memory declarations presented so far could be grouped into the fol- 
lowing sections: 

** Memory.State ** 

M\Memory[0:4095]<0: 11>, 
P.O\Page.Zero[O: 127]<0: 11  > 
A.I\Auto.Index[O:7]<0:11> 

** Processor.State ** 

LAC<O:12>, 
L\Link<> := LAC<O>, 
AC\Accumulator<O: 1 1 > 

PC\Program.Counter<O:l 1 >, 
RUN< >, 
INTERRUPT.ENABLE< >, 
INTERRUPT.REQUEST< >, 
SWITCHES<O:ll>. 

: = LAC < 1 : 12>, 

= M[O: 127]<0: 11 >, 
= M[8:15]<0:11>, 
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** 1nstruction.Format ** 

i\instruction<O:ll>, 
op\operation .code<0:2> 
ib\indirect.bit<> 
pb\page.O.bit< > 
pa\page.address <0:6 > 
IO.SELECT<O:5> 
io.control<0:2> 

IO.PULSE.Pl< > 
IO.PULSE.P2< > 
IO.PULSE.P4< > 

sma< > 
spa< > 
sza< > 
sna< > 
snl< > 
szl< > 
is< > 
group< > 
cla< > 
cll< > 
cma< > 
cml< > 
rar< > 
ral< > 
rt< > 
iac< > 
osr< > 

hlt< > 

:= i<0:2>, 
:= i<3>, 
:= i<4>, 
:= i<5:11>, 
:= i<3:8>, ! device select 
:= i<9 : l l> ,  ! device operation 
:= io.control<O>, 
:= io.control<l>, 
:= io.control<2>, 

:= i<5>, 
:= i<5>, 
:= i<6>, 
:= i<6>, 
:= i<7>, 
:= i<7>, 
:= i<8>, 
:= i<3>, 
:= i<4>, 
:= i<5>, 
:= i<6>, 
:= i<7>, 
:= i<8>, 

! skip on minus AC 
! skip on positive AC 
! skip on zero AC 
! skip on AC not zero 
! skip on L not zero 
! skip on L zero 
! invert skip sense 
! microinstruction group 
! clear AC 
! clear L 
! complement AC 
! complement L 
! rotate right 

< lo> ,  
<11>, 
<9>, 

< l o > ,  

<9>, ! rotate left 
rotate twice 
increment AC 
logical or AC with 
SWITCHES 
halt the processor 

A few more field declarations have been added. These are used to interpret the 
1 /0  and Operate instructions. The PDP-8 1 /0  instruction uses the 9 bits of ad- 
dressing information to specify operations for the 1 / 0  devices. These 9 bits are 
divided into a device selector field (6 bits, IO.SELECT<O:5>) and a device oper- 
ation field (3 bits, io.control<0:2>). Note that several alternate field declarations 
may be associated with the same portion of a register or data-type, thus adding 
flexibility to the description. Comments can be used to provide additional infor- 
mation to the reader. A comment is indicated by an exclamation point (!), and all 
characters following (!) to the end of the line are treated as commentary and not 
as part of the description. The PDP-8 Operate instruction’s address field is not 
interpreted as an address but as a list of suboperations. (Additional details can be 
found in the DEC PDP-8 processor manuals.) 
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EFFECTIVE ADDRESS 

The effective address computation is an algorithm that computes addresses of 
data and instructions: 

** Effective.Address ** 

last.pc<O: 1 1  >, 

eadd\effective.address<O: 1 1 > : = Begin 

0 :=Begin 
Decode pb 3 Begin 

eadd = ‘00000 @ pa, 
End 

eadd = last.pc<0:4> @ pa 
End 

End Next 

1 :=Begin 

If Not ib 3 Leave eadd Next 
I f  eadd<0:8> Eqv #OOl =3 Begin 

M[eadd] = M[eadd] + 1 Next 
End 

eadd = M[eadd] 
End, 

! Page Zero 

! Current Page 

! Auto Index 

Since the memory of the machine is 4096 words long, addresses have to be 12 
bits long. Of the 12 bits in an instruction, 3 bits have been allocated for the oper- 
ation code (op), and there are only 9 bits (ib, pb, and pa) in the instruction register 
left for addressing information. These bits, together with some other portions of 
the processor state, are interpreted by the algorithm to yield the necessary 12 bits 
of addressing. 

Address Computation 

Instructions and data tend to be accessed sequentially or within address clus- 
ters. This property is called locality. The PDP-8 memory is logically divided into 
32 pages of 128 words each. The concept of locality of memory references is used 
to reduce the addressing information by assuming that data are usually in the 
same page as the instructions that reference them. The pa portion of an instruc- 
tion is the address within the current page. The pb portion on an instruction is 
used as an escape mechanism to indicate when pa is to be used as an address 
within page 0 (M[O:127]) instead of the current page. The address of the current 
instruction is contained in last.pc and is used to compute the current page num- 
ber. 
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The first step of the algorithm, 

Decode pb 3 Begin 
0 : =Begin 

eadd = ‘00000 @ pa, * 
End 

eadd = last.pc<0:4> @ pa 
End 

End Next 

1 : =Begin 

Page Zero 

Current Page 

indicates a group of alternative actions, to be selected according to the value of 
the expression following the Decode operator. The alternatives appear enclosed 
between Begin and End and are separated by the comma character (,). The expres- 
sions (0 :=) and (1  :=) are used to label the statements with the corresponding 
value of pb. The alternative statements can be left unnumbered, in which case 
they are treated as if they were labelled (O:=), ( I : = ) ,  (2:=), ..., etc. 

The effective address (eadd) is built by concatenating a page number with the 
page address (pa). The at sign character (@) of the operator is used to indicate 
concatenation of operands. If pb is equal to 0, page 0 is used in the computation. 
I f  pb is equal to  I ,  the current page number is used instead. 

Constants prefixed with the single quote character (‘) represent binary num- 
bers. For example, ‘00000 represents a 5-bit string which is concatenated with the 
7 bits of pa to yield the 12 bits needed. 

The expression <0:4> is used to select bits 0,..,4 of last.pc. These 5 bits contain 
the current page number, and, together with the 7 bits of pa, yield the necessary 12 
bits. 

Indirect Addresses 

A full 12-bit target address can be stored in a memory location used as a 
pointer, and the instruction only needs to specify the address of this pointer loca- 
tion. Indirect addresses are specified via a bit in the instruction register (ib) that 
indicates whether the address is direct (ib=O) or indirect ( ib=l).  

The second step of the algorithm, 

If Not ib 3 Leave eadd Next 

is separated from the previous by the operator Next. The statement(s) preceding 
Next must be completed before the statement following it can be executed. The 

* T h e  transfer operator (=) modifies the memory or register specified on its left-hand side. I f  the right- 
hand side has more bits than the left-hand side, the right-hand side is truncated to the proper size by 
dropping the leftmost extra bits. I f  the right-hand side is shorter, enough 0 bits are  added o n  its left 
until the  length of the left-hand side is matched. Thus,  the first conditional statement can be written 
as  0 := eadd = pa. 
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first step computed a preliminary effective address. The second step tests the value 
of ib and if it is equal to  0, then the preliminary effective address is used as the real 
effective address. If ib is equal to 1, the preliminary effective address is used to 
access a memory location which contains the real effective address. In the former 
case, the expression Leave eadd is used to indicate the termination of the pro- 
cedure (this is similar to a RETURN statement in many programming lan- 
guages). 

Auto Indexing 

the memory 
address: 

Constants prefixed with the number sign (#) represent octal numbers. For ex- 
ample, #OOl represents the following 9-bit string: '000000001. The procedure 
treats indirect addresses as special cases. If a preliminary effective address in the 
range #0010:#0017 (8:15) is used as an indirect address (ib = l), 
location is first incremented and the new value used as the indirect 

If eadd<0:8> Eqv #OOl + Begin 
M[eadd] = M[eadd] + 1 Next 
End 

! Auto Index 

eadd = M[eadd] 

By comparing the high order bits of eadd with #OOl and ignoring the lower 3 
bits, we are in fact specifying a range of addresses (#0010, #OOll, #OO12, ..., #0017). 
Memory locations #0010:#0017 constitute the auto indexing registers. 

Regardless of whether auto indexing takes place or not, the last step of the 
algorithm uses the preliminary effective address (which could have been modified 
by auto indexing) as the address of a memory location which contains the real 
effective address: eadd = M[eadd]. 

INSTRUCTION INTERPRETATION 

fetching, decoding, and executing of instructions. 

** 1nstruction.Interpretation ** 
interpret := Begin 

Repeat Begin 
i = M[PC]; last.pc = PC Next 
PC = PC + 1 Next 
execute( ) Next 
If  1NTERRUPT.ENABLE And 1NTERRUPT.REQUEST =3 Begin 

The instruction interpretation section describes the instruction cycle, Le., the 

M[O] = PC Next 
PC = 1 
End 

End 
End. 
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The instruction cycle is described by a loop. The Repeat operator precedes a 
block of statements that are to be continuously executed. The instruction cycle of 
the machine consists of four steps: 

1. 
2. 

A new instruction is fetched (i = M[PC]). 
The program counter is incremented (PC = PC + 1). It now points to the 
next instruction. Under normal circumstances (i.e. unless a Jump takes 
place), this will be the instruction to be executed next. 
The instruction is executed (execute( )). 
Interrupt requests, if allowed, are honored. The cycle is then repeated. 

3.  
4. 

The semicolon (;) separator is used to indicate concurrency, i.e., two statements 
separated by (;) are executed concurrently: 

i = M[PC]; 1ast.pc = PCNext 

Notice how the value of the program counter is saved in last.pc before it is 
incremented. The effective address procedure relies on the fact that last.pc con- 
tains the address of the current instruction. 

The execute procedure describes the individual instructions: 

execute := Begin 
Decode op 3 Begin 

@\and 
# 1  \tad 
#2\isz := Begin 

M[eadd] = M[eadd( )] + 1 Next 
If M[eadd] Eql 0 3 PC = PC + 1 
End, 

#3 \dca := Begin 
M[eadd( )] = AC Next 
A C = O  
End, 

M[eadd( )] = PC Next 
PC = EADD + 1 
End, 

#5\imp 
#6\iot : = input.output( ), 
#7\opr := operate( ) 
End 

:= AC = AC And M[eadd( )I, 
: = LAC = LAC + M [eadd( )], 

f i \ ims  := Begin 

:= PC = eadd( ), 

End. 
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Instruction mnemonics can be specified as aliases for the constants used to 
specify the operation codes: 

#3\dca := Begin 
M[eadd( )] = AC Next 
A C = O  
End, 

Operation Code O\and: Logical And 

If the operation code is equal to 0, the contents of the Accumulator (excluding 
the L bit) are replaced by the logical product of the Accumulator and a memory 
location. To  indicate that the effective address computation must be executed in 
order to obtain the memory address, eadd( ) is used. 

Operation Code 1 \tad: Two's Complement Add 

The tad instruction follows the pattern of the previous instruction. Notice, 
however, that the complete Accumulator (including the L bit) is involved in the 
operation. The L bit contains the overflow or carry out of the sign position of AC. 

Operation Code 2\isz: Increment and Skip if Zero 

This instruction is described in two consecutive steps. The first step indicates 
that some memory location, specified by the effective address computation, will 
be incremented by 1. Notice the different uses of eadd in the statement: 

M [eadd] = M [eadd( )] + 1 Next 

The effective address is computed once, eadd( ), and is used to fetch the mem- 
ory location, M[eadd( )]. The result of the addition must be stored back in the 
same memory location. This is indicated by using the effective address register, 
eadd, on the left-hand side, M[eadd]. The eadd already contains the correct ad- 
dress, and there is no need to recompute it. In fact, because of the auto indexing 
operations performed during the effective address computation, the effective ad- 
dress must be computed precisely once. 

The second step of the instruction, 

IfM[eadd]EqlO=> PC= PC+ 1 

tests the result of the addition. If the result is equal to 0, the program counter is 
incremented by one, thus in effect, skipping over the next instruction in sequence. 
Once again, eadd is used instead of eadd( ) to  avoid undesirable side-effects. 
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Operation Code 3\dca: Deposit and Clear Accumulator 

This instruction deposits the Accumulator in a memory location and then 
clears the Accumulator (excluding the L bit). 

Operation Code 4\jms: Jump to Subroutine 

This instruction alters the normal sequence of instructions by modifying the 
Program Counter so that the next instruction will not be the one following the 
current instruction, but the one located at a memory location specified by the 
effective address. The Program Counter is stored into the location preceding the 
subroutine code (the result of eadd( )). The Program Counter is then modified to 
point to  the first instruction of the subroutine (eadd + 1). 

Operation Code 5\jmp: Jump 

This instruction also modifies the normal sequence of instructions. It can be 
used to  jump to disjoint pieces of code. If we use ib= 1 and specify the address of 
the location preceding the subroutine, the result of the effective address com- 
putation yields the return address that was stored by the subroutine call. 

Operation Code 6\iot: Input/Output 

The input.output procedure describes two specific cases of 1/0 instruction, 
namely, those used to control the interrupt mechanism: 

input.output := Begin 
Decode i<3: 1 1  > =3 Begin 

#00 1 \ion := Begin ! turn Interrupt ON 
1NTERRUPT.ENABLE = 1 Next 
Restart interpret 
End, 

1NTERRUPT.ENABLE = 0 
End, 

#002\iof := Begin ! turn Interrupt OFF 

Otherwise := No.Op( ) ! not implemented 
End 

End. 

The Otherwise operation can be specified in a Decode operation to indicate a 
default action to be executed if none of the explicitly named cases (801  or #002) 
apply. All other 1/0 operations default to a predefined ISPS procedure 
(No.Op( )). This is done simply to keep the examples within the space limitations 
of this appendix. 
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1 / 0  operation #002 disables interrupts. It typically occurs as the first instruc- 
tion of an interrupt handling routine. 1 /0  operation #OOl enables interrupts. It 
typically occurs at  the end of an interrupt handling subroutine. Its effect is de- 
layed for one instruction (the return from the subroutine) to avoid losing the 
return address if an interrupt were to occur immediately. This is achieved by 
skipping over the last portion of the instruction interpretation cycle: 

If 1NTERRUPT.ENABLE And 1NTERRUPT.REQUEST 3 .... 

The Restart interpret operation is used to indicate a return from the in- 
put.output procedure, not to the place from were it was invoked (inside execute), 
but to the beginning of the interpret procedure, thus bypassing the interrupt 
trapping for one instruction. 

Operation Code 7\opr: Operate 

The Operate instruction encodes a large number of primitive micro-operations 
in  the address bits of an instruction. Some bits (e.g., cla) represent a micro-oper- 
ation by themselves. Others (e.g., rt and ral) jointly represent a micro-operation. 
There are several conditional skip micro-operations. These are grouped in a sepa- 
rate procedure for readability: 

skip< >, 

skip.group := Begin 
skip = 0 Next 
Decode is 3 Begin ! invert skip condition 

0 := Begin 
If snl And (L Eql 1) 3 skip = 1; 
If sza And (AC Eql 0) 3 skip = 1; 
I f  sma And (AC Lss 0) 3 skip = 1 
End, 

1 := Begin 
IF szl@sna@spa Eql 0 3 skip = 1; 
If szl And (L Eql 0) 3 skip = 1; 
If sna And (AC Neq 0) 3 skip = 1; 
If spa And (AC Geq 0) 3 skip = 1 
End 

End Next 
If skip 3 PC = PC + 1 
End, 

! Skip 
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operate := Begin 
Decode group 3 Begin 

0 := Begin ! group 1 
If cia 3 AC = 0; 
If cll 3 L = 0 Next 
If cma 3 AC = Not AC; 
If cml 3 L = Not L Next 
If iac 3 LAC = LAC + 1 Next 
Decode rt 3 Begin 

0 := Begin 
If ral 3 LAC = LAC Slr 1; 
If  rar 3 LAC = LAC Srr 1 
End, 

1 := Begin 
If ral 3 LAC = LAC Sir 2; 
If rar 3 LAC = LAC Srr 2 
End 

End 
End, 

Decode i<  1 I > 3 Begin 

skip.group( ) Next 
If cia 3 AC = 0 Next 
If  osr 3 AC = AC Or SWITCHES; 
If  hlt 3 RUN = 0 
End, 

If cia 3 AC = 0 Next 

End 

1 := Begin 

0 := Begin 

1 := Begin 

NO.OP( 1 

End 
End 

End 
End 

! rotate once or twice 
! once 

! twice 

! groups 2 and 3 

! group 2 

! group 3 

! eae group 

Several micro-operations can appear in the same instruction. Not all com- 
binations are legal or useful. Micro-operations are executed at different points in 
time thus allowing sequences of transformations applied to the Accumulator 
and/or link bit. For instance, in the group 1 micro-operations, clearing AC/L is 
done before complementing them; this is done before incrementing the combined 
L@AC (LAC) register; and this in turn precedes the rotation of L@AC. 
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OTHER FEATURES OF ISPS 

Not all the features of the notation have been presented in the example. This 
section attempts to provide a list of the missing operations to aid understanding 
of the larger descriptions in the book. A detailed explanation of the complete 
language is in the reference manual [Barbacci et al., 19771. 

Constants 

In  general, a constant is a sequence of characters drawn from some alphabet 
determined by the base of the constant. The base of a nondecimal constant is 
given by a prefix character. The alphabets for the predefined bases in ISPS are: 

Base Prefix Alphabet 
2 0,1,? 
8 # 0,1,2,3,4,5,6,7,? 
I O  0,1,2,3,4,5,6,7,8,9,? 
16 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,? " 

The question mark character (?) can be used to specify a "don't care" digit. Its 
presence stands for any digit in the corresponding alphabet. 

The length of a constant is measured in bits. Decimal constants are one bit 
longer than the smallest number of bits needed to represent its value (beware that 
the use of "don't care" (?) decimal digits results in constants of unspecified 
length). Binary constants have one bit for each digit explicitly written. Octal con- 
stants have three bits for each digit explicitly written. Hexadecimal constants have 
four bits for each digit explicitly written: 

Example Length Bit Pattern 

" 1000 16 000 1000000000000 
15 5 01111 
#17 6 001111 
0 2 00 
'0?101 5 0?101 
#?2 6 ???O 10 

Arithmetic Representation 

ISPS allows the user to specify arithmetic operations in four different represen- 
tations: two's complement, one's complement, sign magnitude, and unsigned 
magnitude (the default is two's complement). To specify a different representa- 
tion, the following modifiers can be used: 

(TC I two's complement 
(OCI one's complement 
{SMI sign magnitude 
{US) unsigned magnitude 
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In all the signed representations, the sign bit is the leftmost position of the 
operand (1 for negative numbers, 0 for positive numbers). The above modifiers 
can be attached to any arithmetic or relational operator to override a default. 
They can also be attached to a procedure declaration to set a default throughout 
the body. When attached to a section name the default applies to all the declara- 
tions in the section: 

test := Begin (OCJ 
..... 
End, 

** Section.1 ** (TC) 

! Default for the body 

! Default for the section 

X = Y + ( S M ) Z  ! Instance 

Always remember that the arithmetic representation is a property of the oper- 
ator, not the operand. Thus, the same bit pattern can be treated as a two’s com- 
plement or an unsigned integer depending on the arithmetic context in which it is 
used. 

Sign Extension 

All ISPS data operators define results whose length is determined by both the 
lengths of the operands and the specific operator. Some operations require that 
their operands be of the same length. This is usually accomplished by sign-extend- 
ing the operands. In the context of unsigned magnitude arithmetic, sign-extension 
is interpreted as zero-extension (i.e., padding with 0’s on the left). In one’s and 
two’s complement arithmetic, the expansion is done by replication of the sign bit. 
In sign magnitude arithmetic, the expansion is done by inserting Os between the 
sign bit and the most significant bit of the operand. 

Data Operators (in order of precedence) 

Negation and Complement: -, NOT 

Unary - generates the arithmetic complement of the operand (the operation is 
invalid in unsigned arithmetic). The result is one bit longer than the oper- 
and. The NOT operator generates the logical complement of the operand. 
The result has the same length as the operand. 

Concatenation: @ 

The @ operator concatenates the two operands. The length of the result is 
the sum of the lengths of the operands. 
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Shift and Rotate: S10, S11, Sld, Slr, SrO, Srl,  Srd, Srr 

These operators shift or rotate the left operand the number of places speci- 
fied by the right operand. The result has the same length as the left operand. 

The operators have the format Sxy where x is either l(eft) or r(ight) to in- 
dicate the direction of movement. The y is either 0, 1, d(uplicate), or 
r(otate), to indicate the source of bits to be shifted in. Sxl shifts its left 
operand, inserting 1 s  in the vacant positions. SxO is similar to Sxl, but in- 
serts Os. Sxd inserts copies of the bit leaving the position to  be vacated (not 
the bit being shifted out). Sxr inserts copies of the bit being shifted out (i.e., 
rotates the left operand). 

Multiplication, Division, and Remainder: *, /, MOD 

These operators compute the arithmetic product, quotient, and remainder 
of the two operands, respectively. The lengths of the results are: 

Operation Length of Result 

* Sum of lengths 

/ Left Operand (dividend) 
Right Operand (divisor) MOD 

Addition and Subtraction: +, - 
The + and - operators compute the arithmetic sum and difference of the 
two operands, respectively. The shortest operand is sign-extended, and the 
result is one bit longer than the largest operand. 

Relational Operations: Eql, Neq, Lss, Leq, Gtr, Geq, Tst 

These operations perform an arithmetic comparison between the two oper- 
ands. The shortest operand is sign-extended, and the result is either 1 or 2 
bits long. The first six operators (Le., all except Tst) produce a 1-bit result 
indicating whether the relation is True (1) or False (0). The Tst operator 
produces a 2-bit result indicating whether the relation between the left and 
right operands is Lss (0), Eql ( l ) ,  or Gtr  (2). 

Conjunction and Equivalence: And, Eqv 

These operators produce the logical product and coincidence operations of 
the two operands, The shortest operand is zero-extended, and the result is as 
long as the largest operand. 
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Disjunction and Nonequivalence: Or, Xor 

These operators produce the logical sum and difference operations of the 
two operands. The shortest operand is zero-extended, and the result is as 
long as the largest operand. 

Logical and Arithmetic Assignment: =, t 

The logical assignment operator (=) truncates or zero-extends the source 
(right operand) to match the length of the destination (left operand). The 
arithmetic assignment operator (+) truncates or sign-extends the source to 
match the length of the destination. 





The PMS Notation 
J. CRAIG MUDGE 

The PMS notation provides a structural representation of a digital computer 
system as a graph which has the system’s components as the nodes and informa- 
tion flows along the branches. These aspects of a digital computer system level 
provide a description of the gross structure, including the amounts of information 
held in various componenls, the distribution of control that accomplishes these 
flows, and other interesting parameters (e.g., technology, function, cost, reliabil- 
ity). Only those aspects of the notation that are used in this book are described; a 
complete description is given in Bell and Newell [1971]. 

PMS PRIMITIVES 

I n  PMS there are seven basic component types, each distinguished by the kinds 
of operations it performs: 

Memory, M. A component that holds or stores information (i.e., i-units) over 
time. Its operations are reading i-units out of the memory and writing i-units into 
the memory. Each memory that holds more than a single i-unit has associated 
with it an addressing system by means of which particular i-units can be desig- 
nated or selected. A memory can also be considered as a switch to a number of 
submemories. The i-units are not changed in any way by being stored in a mem- 
ory. 

Link, L. A component that transfers information (Le., i-units) from one place 
to  another in a computer system. It has fixed ports. The operation is that of 
transmitting an i-unit (or a sequence of them) from the component a t  one port to 
the component at the other. Again, except for the change in spatial position, there 
is no change of any sort in the i-units. 

537 
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Control, K. A component that evokes the operations of other components in 
the system. All other components are taken to consist of a set of discrete oper- 
ations, each of which, when evoked, accomplishes some discrete transformation 
of state. 

With the exception of a processor, P, all other components are essentially pas- 
sive and require some other active agent (a K) to set them into small episodes of 
activity. 

Switch, S. A component that constructs a link between other components. 
Each switch has associated with it a set of possible links, and its operations consist 
of setting some of these links and breaking others. 

Transducer, T. A component that changes the i-unit used to encode a given 
meaning (i.e., a given referent). The change may involve the medium used to 
encode the basic bits (e.g., voltage levels to magnetic flux, or voltage levels to 
holes in a paper card), or it may involve the structure of the i-unit (e.g., bit-serial 
to bit-parallel). Note that T’s are meaning-preserving (in number of bits), since 
the encodings of the (invariant) meaning need not be equally optimal. 

Data-operation, D. A component that produces i-units with new meanings. It 
is this component that accomplishes all the data-operations, e.g., arithmetic, 
logic, shifting, etc. 

Processor, P. A component that is capable of interpreting a program in order 
IO execute a sequence of operations. It consists of a set of operations of the types 
already mentioned (M, L, K, S, T, and D) with the control necessary to obtain 
instructions from a memory and interpret them as operations to be carried out. 

Each component has a set of attributes and associated values and takes on the 
form: 

X( a1 :VI ;a5 v2;. . .). 

There are alternative, shorthand ways of saying the same thing when the attri- 
bute names are clear. For example: 

M( functi0n:primary) Complete specification. 

M(primary) 

M.primary 

Drop the attribute name function, since it can be inferred 
from the value. 

A value can be concatenated with a component name us- 
ing a dot convention. 

Use an explicitly given abbreviation, namely, primary\p 
(only if it is not ambiguous). 
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w 

lel 

WHERE 

L Link l e g  Umbus) 
Kea I/O Controller 
M C  M  cache  cache  m e m o r y  
M ~ \ M  pr imary pr imary or program m e m o r y  l e g  core) 
M s \ M  racondary secondary m e m o r y  l e g  disk) 
M t \ M  tert iary 
PC\P central  central  procersor  
s S w i t c h  l e g  mult iplexer)  
T Transducer (e g t y p e w r l t e r l  

Figure 1. An example of a PMS diagram of a computer, C 

Drop the concatenation if it is not needed to recover the 
component name. 

Components of the seven types can be connected to make stored program com- 
puters, abbreviated by C ,  as shown in Figure 1. 





Performance 
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and JOHN E. McNAMARA 

Performance parameters are a combination of architecture (the ISP), hardware 
implementation, and resources (the PMS structure) being acted on by programs 
(the use). Simplistic hardware measures, such as instruction times, can be used to 
characterize machine performance for many cases. However, the ultimate per- 
formance parameters have to be based on actual use parameters, otherwise there 
is no way to correlate the primitive hardware measures to real performance. 
Benchmarks of synthetic or real workload provide the only real test by which 
performance can be compared. These might include standardized benchmarks 
such as Whetstones for the algorithmic scientific languages and COBOL bench- 
marks for commercial applications. 

When one measures performance, there is a tacit assumption that sufficient 
software exists to exploit a hardware structure, and that the transformation from 
the basic hardware machine (the macromachine) to  the user machine (as provided 
by a language such as COBOL or FORTRAN) is relatively constant across vari- 
ous architectures. As each level is crossed, a transformation requiring com- 
putational work takes place. The form of the work with compiled languages is 
direct execution via the processor and run-time support program. With inter- 
preted languages, the processor executes an interpretation program which in- 
directly interprets the data (Le., final program). 

At the lowest level, the internal micromachine provides the architectural fa- 
cade, the ISP, operating at roughly 10 times the speed of the macromachine. 
Thus, a macromachine executing 1 million instructions per second may have an 
effective microcycle time of 100 nanoseconds for executing I O  million micro- 
instructions per second. At the next level, a macromachine (ISP) executing 1 mil- 
lion instructions per second is capable of perhaps 0. l to 0.25 million higher level 
FORTRAN language statements (instructions) per second depending on the mix 
of built-in functions and external functions called. 

54 1 
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It is difficult to use the simplistic constant ratio measures across each level-of- 
interpretation when comparing machines of differing classes (e.g., micro to super) 
because there is no consistency of data-types (e.g., micros started out with no 
built-in real arithmetic at a time when minis included them). However, for ma- 
chines within a class (e.g., mini) where the data-types are implied by the class 
name, simplistic comparison is probably all right, since the two machines most 
likely have about the same data-types. Hence a count of the number of data-types 
reflecting the built-in operations is one of the more significant architectural per- 
formance indicators, whether it be for a micromachine, macromachine, or a lan- 
guage machine. 

PMS (RESOURCES) PERFORMANCE PARAMETERS 

The PMS structure, with the corresponding attributes determining perform- 
ance (memory cycle time, processor execution rate), provides the basis for under- 
standing machines and comparing them with each other. Figure 1 gives a PMS 
diagram of a basic computer, with the parameters that, to a first approximation, 
characterize performance. Alternatively, one might use a more descriptive, or 
tabular, form; but the goal is to provide a structural/performance basis for defin- 
ing parameters and comparing and specifying the finite resources of the computer 
so that performance can be determined against actual workload. 

It is imperative to consider the resource constraints and the effect of their inter- 
action as each layer of a machine is designed. For example, a certain line printer 
requires buffer space (memory size) and central processing time which is then 
unavailable at the next machine level (e.g., FORTRAN). 

Bell and Newel1 [I971521 argued that a machine (at any level) can be described 
with any number of parameters, and carried out the exercise for up to five param- 
eters (Table 1). 

Information rate between the processor and memory is used as the processor 
speed indicator instead of the more conventional instructions per second. Com- 
pound indicators such as the product of processor speed times memory size to 
indicate basic computational performance were not allowed. 

The example in Table 2 shows three different architectures with two implemen- 
tations of a stack architecture. One has the stack in the primary memory (Mp), 
and the other assumes the stack is in the processor (Pc), using fast registers. The 
hardware implementations are held roughly constant (the processor to  primary 
memory data rate) and the architecture is varied in order to  compare the effect on 
performance. Note the difference in the various measures in what should funda- 
mentally be about the same performance for a simple benchmark problem. 

The statement execution rate (the actual performance) is the highest for the 3- 
address machine. In contrast, the conventional instructions per second measure 
shows the 3-address machine to  have the lowest performance (by a factor of 4). A 
more subtle measure, operation rate, is correlated with the true benchmark state- 
ment execution rate. It should be noted (ignoring the first machine, a stack ma- 
chine with stack top in primary memory) that the information rate is a good 
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performance indicator compared to the conventional, but poor, instruction rate 
measure. For more unconventional machines, instructions per second tends to 
become a significantly poorer measure. The various vector/array machines (e.g., 
ILLIAC IV, CDC STAR, CRAY-1) have single instructions to operate on at least 
64 operands per instruction; hence instructions per second would be a poor mea- 
sure. Hand-held calculators have single instructions such as Sin, Polar-to-Carte- 
sian coordinate conversion; using anything but a final benchmark problem would 
be unfair. Accesses per second used here are as a processor performance measure. 

M p l S i i e .  Iby ter l ,  
r p e e d : * l b v / s l  

LINKS FOR 
INFORMATIOI  
FLOW 

c(rpewd'1accesseshl  
d a t a - t v p e s * : ( # l ,  
c o n t e x t - s w - r a t e '  * 

C O M M U N I C A T I O N  
wiTn 

T.human 

direct ion'  
Ihd I I d  I s x l l  

L 

'SECONDARY M E A S U R E S  

,EXTERNAL 
C O M M U N I C A T I O N  1 

Figure 1. 
six relevant performance/structure dimensions. 

Basic PMS computer structure model with 



544 PERFORMANCE 

Table 1. Characterizing Computer Systems With 1, 2, 3, 4. or 5 Parameters 

Number of 
Parameters 
Allowed 1 2 3 4 5 

1 

4 

5 

Processor - 

information 
rate 

Primary 
memory 
size 

- 

Processor - 
operation 
rate 

- 

Secondary - 

memory 
size 

- Processor - 

word length 

- - Number 

of terminals 

THE MULTIPROCESSOR CASE 

For multiprocessors the number of processors times the memory accesses per 
second gives an approximate total. Processor speed can be computed more pre- 
cisely by using the number of primary memory (Mp) modules and their data rate. 
For a system where the memory access time and the memory rewrite time equal 
the time for a processor to operate on a word, the performance is roughly [Stre- 
cker, 19701: 

Processor speed (in accesses per second) = (rn/t)  X (1 - (1 - l / r n ) P )  

where m = number of memory modules, p = number of processors, and t = the 
access time of a memory module. 

Note that when p = m = large, the performance reaches an asymptote: 

= m/tc  x ( l /e)  

In the case of multiprogramming systems (e.g., real-time, transaction, and time- 
sharing), the time to switch from job to  job is important if there is a high context 
switching rate. 

The memory sizes (in bytes) for both primary and secondary memory give the 
memory capability. The memory transfer rates are needed as secondary measures, 
especially to  compute memory interference when multiple processors are used. 
This measure also permits system performance to be computed by subtracting the 



Table 2. Performance Metr ics for Various Machines Interpreting the  Expression, A +- B 4- C 

Stack 
(top in Mp) 

Stack 
(top in Pc) 

1 -Address or 
General Registers 3-Address 

Program 

Number of 
Instructions 

Accesses 

Program size 
(bits*) 

Bits accessed* 

Time to 
execute7 
(microseconds) 

Statement 
execution 
rate (actual 
performance) 

Operation 
rate 

Instruction 
rate 

Processor 
instruction 
ratelword 
length 

PUSH B 
PUSH C 
ADD 
POP A 

4 

40p + 3a + 6d 

6 4  

1 6  + 48 + 192 = 266 

0.5 + 1.5 + 6 = 8 

1/8 = 0.125M 

218 = 0.25M 

418 = 0.5M 

3 2 M  = 1M 

PUSH B 
PUSH C 
ADD 
POP A 

4 

4op + 3a +3d 

6 4  

1 6 + 4 8 + 9 6 =  160 

0.5 + 1.5 + 3 = 5 

1/5 = 0.2M 

215 = 0 .4M 

415 = 0.8M 

32M = 1M 

LOAD B ADD B.C,A 
ADD C 
STORE A 

3 1 

3op + 3a + 3d 

72 6 0  

l o p  + 3a + 3d 

2 4 + 4 8 + 9 6 =  168 1 2 + 4 8 + 9 6 =  156 

0.75 + 1.5 + 3 = 5.25 0.37 + 1.5 + 3 = 4.87 

1/5.25 = 0.19M 1/4.87 = 0.21 M 

2/5.25 = 0.38M 

3/5.25 = 0.57M 

32M = 1M 

2/4.87 = 0.42M 

1/4.87 = 0.21M 

32M = 1M 

*Assumes address (a) = 16 bits; data (d) = 32 bits; operation code (op) = 4.4,8,  and 12 bits 
tAssumes a memory limited processor which can access 32 bits per microsecond. 

VI 

VI 
P 
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secondary memory transfers and external interface transfers. For file systems 
which require multiple accesses to secondary memory for single items, the file 
access rate capability is needed in order to compute performance. Similarly, for 
multiprogrammed systems which use secondary memory to hold programs, the 
access rate is needed. 

Communications capability with humans, other computers, and other electron- 
ically encoded processes are equally important structure and performance attri- 
butes. Each channel (e.g., a typewriter) has a certain data rate and direction (full 
duplex for simultaneous two-way communication). Collectively, the data rates 
and the number of channels connected to each of the three different environments 
(people, computers, electronically encoded processes) signify quite different styles 
of computing capability, structure, and, ultimately, use. 

ISP (ARCH ITECTU RE) PAR A M  ETE RS 

While the hardware structure and operation rates are the principal performance 
determinants, the architecture is also important. Within a given machine class 
(say minis), architecture has little effect on performance if the data-types are em- 
bedded. The values for the data-types dimension in order of increasing complexity 
are roughly: 

word 
integer 
bit vector 
instruction 
character 
floating or character string (depending upon scientific or commercial use) 
program (including lists, stacks) 
word vector 
arrays 

However, it is difficult to order the dimensions, except by complexity, because 
performance is determined by whether a given problem requires the embedded 
data-type. 

In the U. S. Defense Department’s Computer Family Architecture (CFA) study 
[Barbacci et al., 1977a; Burr e? al., 1977; Fuller e? al., 1977a; Fuller et al., 1977bl 
which leads to the selection of the PDP-11 as the standard architecture, bench- 
marking was used to compare several architectures. 

The measures were the number of bits statically required to  encode the al- 
gorithm ( S  measure) and the number of bits that dynamically flow between the 
processor and primary memory ( M  measure). A third measure gave the activity of 
the internal register processor ( R  measure). 

The benchmarks (see Table 3;  from Fuller et al. [ 1977b: 149]), oriented to real- 
time use were each programmed with assembly languages. The resultant pro- 
grams were run on a simulator (instrumented to provide the s, M ,  and R mea- 
sures) that interpreted the formal ISPS descriptions of the machines. 
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Table 3. Test Programs 

1. I/O kernel, four priority levels. Requires the processor to field interrupts from four devices, 
each of which has its own priority level. While one device is being processed, interrupts from 
higher priority devices are allowed. 

2. 1/0 kernel, FIFO processing. Also fields interrupts from four devices, but without consid- 
eration of priority level. Instead, each interrupt causes a request for processing to be queued; 
requests are processed in FIFO order. While a request is being processed, interrupts from 
other devices are allowed. 

3. I/O device handler. Processes application programs' requests for I/O block transfers on a 
typical tape drive, and returns the status of the transfer upon completion. 

4. Large FFT. Computes the Fast Fourier Transform of a large vector of 32-bit floating-point 
numbers. This benchmark exercises the machine's floating point instructions, but principally 
tests its ability to manage a large address space. 

5. Character search. Searches a potentially large character string for the first occurrence of a 
potentially large argument string. It exercises the ability to move through character strings 
sequentially. 

6. Bit test, set, or reset. Tests the initial value of a bit within a bit string, then optionally sets or 
resets the bit. It tests one kind of bit manipulation. 

7. Runge-Kutta integration. Numerically integrates a simple differential equation using third- 
order Runge-Kutta integration. It tests floating-point arithmetic. 

8. Linked list insertion. Inserts a new entry in a doubly linked list. It tests pointer manipulation. 
9. Quicksort. Sorts a potentially large vector of fixed-length strings using the Quicksort al- 

gorithm. Like FFT. it tests the ability to manipulate a large address space, but it also tests the 
ability of the machine to support recursive routines. 

10. ASCII to floating point. Converts to ASCII string to  a floating-point number. I t  exercises 
character-to-numeric conversion. 

1 1. Boolean matrix transpose. Transposes a square, tightly packed bit matrix. I t  tests the ability 
to sequence through bit vectors by arbitrary increments. 

12. Virtual memory space exchange. Changes the virtual memory mapping context of the 
processor. 

The CFA project also developed a single architectural measure based on a 
weighted average of various ISP parameters. The weightings were determined by 
the CFA user community, and each parameter was evaluated in comparison with 
several competitive architectures. The parameters and their weights are given in 
Table 4 from [Fuller et al., 1977a:140-144]. 

The measures are defined so that computer architectures maximize some and 
minimize others. The measures that an architecture should maximize are Vi,  V2, 
P I ,  P2, U,  K ,  B1, B2, and D; the measures that should be kept to a minimum are 
CSl, CS2, CMI, CM2, I ,  L, J1, and J2. In the composite measures, a maximal 
measure, the inverses of those measures to be minimized were used. 

Lloyd Dickman, of DEC, calculated the measures for four DEC computers as 
follows: 

VAX-11 
PDP-8 

1.23 PDP-11 1.03 
1.09 PDP-IO 0.66 
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Table 4. Criteria for CFA Evaluation 

Absolute Criteria 

1. 

2. 

Virtual memory support. The architecture must support a virtual-to-physical translation 
mechanism. 
Protection. The architecture must have the capability to add new, experimental (Le., not 
fully debugged) programs that may include I/O without endangering reliable operation of 
existing programs. 
Floating-point support. The architecture must explicitly support one or more floating- 
point data-types with at least one of the formats yielding more than 10  decimal digits of 
significance in the mantissa. 
Interrupts and traps. It must be possible to  write a trap handler that is capable of 
executing a procedure to respond to  any trap condition and then resume operation of the 
program. The architecture must be defined such that it is capable of resuming execution 
after any interrupt. 
Subsetability. At  least the following components of an architecture must be able to be 
factored out of the full architecture: 
Virtual-to-physical address translation mechanism 
Floating-point instructions and registers (if separate from general-purpose registers) 
Decimal instructions set (if present in full architecture) 
Protection mechanism 

3. 

4. 

5. 

6. Multiprocessor support. The architecture must allow for multiprocessor configurations. 
Specifically, it must support some form of "test-and-set" instruction to  allow the imple- 
mentation of synchronization functions such as P and V.  
Controllability of I/O. A processor must be able to exercise control over any I10 proces- 
sor and/or I10 controller. 
Extendability. The architecture must have some method for adding instructions to  the 
architecture consistent with existing formats. There must be at least one undefined code 
point in the existing operation code space of the instruction formats. 
Read-only code. The architecture must allow programs to be kept in a read-only section 
of primary memory. 

7. 

8. 

9. 

Quantitative Criteria Weight (%I 

1. Virtual address space. 
V i :  The size of the virtual address space in bits. 
V2: Number of addressable units in the virtual address space. 

4.3 
5.3 

6.1 
5.1 

3. Fraction of instruction space unassigned. 6.0 
4. 

4.9 
3.7 

2. Physical address space. 
Pi : The size of physical address space in bits. 
P2: The number of addressable units in the physical address space. 

Size of central processor state. 
CS1: The number of bits in the processor state of the full architecture. 
CSp: The number of bits in the processor state of the minimum subset 
of the architecture (i.e., without Floating-point, Decimal, Protection. or 
Address Translation Registers) 
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Table 4. Criteria for C F A  Evaluation (Cont) 

Quantitative Criteria 

5. 

6. 

7. 

8. 

9. 

10. 

CM1: The number of bits that must be transferred between the pro- 
cessor and primary memory to first save the processor state of the full 
architecture upon interruption and then restore the processor state 
prior to resumption. 
CM2: The measure analogous to CM1 for the minimum subset of the 
architecture. 

K is unity if the architecture is virtualizable as defined in Popek and 
Goldberg [ 19741: otherwise K is zero. 

81:  Number of computers delivered as of the latest date for which 
data exists prior to 1 June 1976. 
82:  Total dollar value of the installed computer base as of the latest 
date for which data exists prior to 1 June 1976. 

I :  The minimum number of bits which must be transferred between 
main memory and any processor (central or 110) in order to output one 
8-bit to a standard peripheral device. 

D:  The maximum number of bits of primary memory which one in- 
struction can directly address given a single base register which may 
be used but not modified. 

Let L be the maximum number of bits that may need to be transferred 
between memory and any processor (CP. IOC. etc.) between the time 
an interrupt is requested and the time that the computer starts pro- 
cessing that interrupt (given that interrupts are enabled). 

J1:  The number of bits that must be transferred between the processor 
and memory to save the user state. transfer to the called routine, re- 
store the user state, and return to the calling routine. for the full archi- 
tecture. No parameters are passed. 
4 :  The analogous measure to CS1 above for the minimum archi- 
tecture (e.g., without Floating-point registers). 

Virtualizability. 

Usage base. 

I/O initiation. 

Direct instruction addressability. 

Maximum interrupt latency. 

Subroutine linkage. 

Weight (%I 

6.0 

4.5 

5.6 

3.1 

2.5 

12.4 

10.2 

9.2 

6.3 

4.5 

ACTUAL (COMPOUND PMS/ISP) PERFORMANCE MEASURE 

In order to measure the performance of a specific computer (e.g., a PDP- 
11/55), it is necessary to know the ISP, the hardware performance, and the fre- 
quency of use for the various instructions. The execution time Tis the dot product 
of the fractional utilization of each instruction Ui times the time to execute each 
instruction Ti. 
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There are three ways to estimate the instruction utilization U and, hence, ob- 
tain T - each providing increasingly better answers. The first defines either a 
typical or average instruction. The second uses standard benchmarks to charac- 
terize a machine’s performance precisely. In this way, machines can be compared 
with an absolute measure. Finally, since the actual use has not been characterized 
in terms of the standard benchmark (and may even be difficult to  characterize in 
terms of it), a specific unique benchmark may be necessary. Such a character- 
ization is quite possibly needed for real-time and transaction processing where 
computer selection and installation is predicated on the job. 

TYPICAL I N ST R U CTI 0 N S 
The simplest, single parameter of performance is the instruction time for some 

simple operation (e.g., add). These were used in the first two computer gener- 
ations when high level languages were less used. Such a metric is an approx- 
imation to the average instruction time and assumes that all machines have about 
the same ISP and thus there is little difference among instructions, or that a spe- 
cific data-type is used more heavily than another, or that a typical add time will be 
given (e.g., the operand is in a random location in primary memory call rather 
than being cached or in a fast register). 

Although it is possible to take the average instruction time by executing one of 
every possible instruction, since the instruction use depends so much on the data 
interpreted, this average is relatively meaningless. A better measure is to keep 
statistics about the use of all programs and to give the average instruction time 
based on use on all programs. Again, such a measure, while useful for comparing 
two machines’ implementations of models of the same architecture, is relatively 
useless for particular practices. 

Many years ago, there were attempts to  make better characterizations by 
weighting instruction use (i.e., forming a typical U) as to what each one did (e.g., 
floating point versus indexing and character handling) to give a better perform- 
ance measure. Instruction mixes were developed that began to better evaluate 
performance. These mixes, from Bell and Newel1 [1971:50], are given in Table 5. 

The Gibson mix, best known, is still used even today. It has a decidedly com- 
mercial flavor and quite possibly reflects the proportion of machines executing 
commercial, as opposed to scientific, mixes with character operations, switching, 
and control, where proportionally more integer and floating-point data-types are 
used. Such mixes are still better approximations than a single instruction average, 
because use enters in. Note that if the data-type operation is not present in the 
machine, the programmed subroutine time must be given - typically a factor of 
10-20 times greater than for built-in operations. 

STANDARD BENCHMARKS 
The best estimate of real use comes from carefully designed standard bench- 

marks that are understood and that are used by other machines. Several organiza- 



PERFORMANCE 551 

tions, particularly those that purchase or use many machines extensively, have 
one or more programs that they believe characterize their own workload. 
Whether a standard benchmark can be of value in characterizing performance 
depends on the degree that it is typical of the actual use of the computer. A further 
advantage of benchmarks is that they are the language that the computer is to use, 
and, hence, reflect the application and characterize the language machine archi- 
tecture. To illustrate the variability in the scientific FORTRAN benchmark met- 
rics, the performance of a number of machines (VAX-l1/780 with floating-point 
accelerator option, PDP-11/70, and DECSYSTEM 2060), executing about a 
dozen such benchmarks, is compared in Figure 2. Two scientific benchmarks of 
the National Physical Laboratory in the United Kingdom [Curnow and Wich- 

Table 5. Instruction-Mix Weights for Evaluating Computer Power 

Arbuckle[lSSS] Gibson* Knight (scientific) Knight 
(commercial) 

Fixed +/- 
Multiply 
Divide 
Floating +/- 
Floating multiply 
Floating divide 
Loadlstore 
Indexing 
Conditional branch 
Compare 
Branch on character 
Edit 
1/0 initiate 
Other 

- 
- 
9.5 
5.6 
2.0 
28.5 
22.5 
13.2 

- 
18.7 

6 
3 
1 

25 (move) 

20 
2 4  
10 
4 
7 

- 

- 72 

*Published reference unknown 
+Extra weight for either indirect addressing or index registers 

mann, 19761 are often singled out as being the most useful benchmarks because of 
the extensive effort that was put into designing them as typical scientific pro- 
grams. Several factors, such as the frequencies of the trigonometric functions, 
frequencies of subroutine calls, and characteristics of the I/O, were considered. 
The performance of computers executing these benchmarks is expressed in 
Whetstones per second. 

There are similar benchmarks for commercial processors that generally use the 
COBOL language. 
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EXACT US E CHARACTER IZATl ON 

If a machine has to be fully characterized before installation, there is no alter- 
native to running the exact problem which will be run on the final system. This is 
the most expensive alternative to  characterize performance and should be avoided 
because of the dynamic nature of use. Showing that an application yields a given 
performance on a particular machine is a weak guarantee of performance if any 
part of the problem changes. 

4.0 1 

L lEGENO 

1 3.0 

1 .o 

2 ' : ~  

INTEGER ONLY 
FLOATING INTENSIVE 
DOUBLE FLOATING INTENSIVE 
S.P. WHETSTONES 
D.P WHETSTONES 

d 

- 

Figure 2. Relative performance for various FORTRAN 
benchmarks run on VAX-l1/780 and DECSYSTEM 
2060. 
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