
1A COMPLETENESS THEOREM FOR TLA

Preface: A Quick Introduction to TLA

Here ′s a quick and dirty informal definition and semantics for TLA.

A more precise one is given later. If you are already familiar

with the new, improved TLA (defined a little differently than in

SRC Report No. 57) you can skip to the Introduction.

Values:
I assume a set of values, big enough to contain all the constants

of interest. It includes the values 1, TRUE, NAT (the set of all

naturals), {n ∈ NAT : n a prime}, etc.

State, Variable:

A variable is something that assigns a value to every state. I let

s.x, denote the value state s assigns to variable s. Or maybe a

state s is something that assigns a value s.x to a variable x.

Take your pick.

State Function:

An expression made from variables and constants, such as x2 + 3*y.

A state function f assigns a value s.f to every state s. For
example,

s.(x2 +3*y) = (s.x)2 + 3*(s.y).

Predicate:
A boolean-valued state function--for example,

x2 < 3*y

Action:
A Boolean expression involving variables, primed variables and

constants--for example, x + 1 < 2*y ′. An action maps pairs of

states to Booleans. Letting s.A.t denote the value that action A

assigns to the pair (s,t), I define

s.(x + 1 < 2*y ′).t = (s.x) + 1 < 2*(t.y)

In other words, the unprimed variables talk about the left-hand

state, and the primed variables talk about the right-hand state.

Think of s.A.t = TRUE as meaning that an A-step can take state s to

state t. An action is valid, written |= A, iff s.A.t is true for

all states s and t.

Enabled(A):
For any action A, the predicate Enabled(A) is defined by

s.Enabled(A)
∆
= ∃ t : s.A.t

f ′=f:
For any state function f, the action f ′=f, which is sometimes

written Unchanged(f), is defined by

s.(f ′=f).t
∆
= (t.f) = (s.f)

[A]f:

The action [A]f is defined by

[A]f
∆
= A ∨ (f ′=f)

An [A]f step is either an A step or leaves f unchanged.

<A>f:
The action <A>f is defined by

<A>f
∆
= ¬[¬A]f

2It equals A ∧ (f ′ 6=f). An <A>f step is an A step that changes f.

The Raw Logic:

A Raw Logic formula is any formula made from actions using

logical operators and the unary 2 operator--for example

A ∨ 2(B ∧ 2¬2¬A)

where A and B are actions. A Raw Logic formula is a Boolean-valued

function on infinite sequences of states. An infinite sequence of

states is called a BEHAVIOR. An action A is interpreted as the

temporal formula asserting that first step of the behavior is an A

step. The formula 2A asserts that every step is an A step. In

general, let s0, s1, ... |= F denote the value that formula F

assigns to the sequence s0, s1, The semantics of Raw Logic

formulas is defined as follows, where A is any action and F and G

are any formulas:

s0, s1, s2, ... |= A
∆
= s0.A.s1

s0, s1, s2, ... |= 2F
∆
= ∀ n ≥ 0 : sn, sn+1, sn+2, ... |= F

s0, s1, s2, ... |= ¬F
∆
= ¬(s0, s1, s2, ... |= F)

s0, s1, s2, ... |= F ∨ G
∆
= etc.

A formula F is valid, written |= F, iff it is true for all
behaviors.

TLA:
The Raw Logic is wonderfully simple, but it is too expressive. It

allows you to assert that something is true of the next state,

which ruins any effort to heierarchically refine programs. We

define TLA to be the subset of Raw Logic formulas obtained by

application of 2 and logical operators starting not from arbitrary

actions, but from predicates and actions of the form [A]f. For
example:

P ⇒ ¬2¬2[A]f ∨ 2(Q ⇒ 2[B]g)

Observe that 2[A]f asserts that every step is either an A step

or else leaves f unchanged.

As is usual in temporal logic, we define 3 and ; by

3F
∆
= ¬2¬F

F ; G
∆
= 2(F ⇒ 2G)

The Raw formula 3A is a TLA formulas iff A is a predicate or an

action of the form 3<A>f.

Technical point. Since 2F ∧ 2G = 2(F ∧ G) holds for any F and

G, it ′s convenient to let TLA include formulas of the form

2(P ∧ 2[A]f) where P is a predicate.

Introduction

This is a relative completeness proof for TLA, a la Cook. It is

not a completeness result for all of TLA, just for the class of

formulas that one is interested in proving. The formulas we ′re

interested in are of the form

Program ⇒ Property

3
A Program has the form

P ∧ 2[A]f ∧ Fairness

for P a predicate. So far, all the Fairness conditions have

have been conjunctions of the form SFf(B) or WFf(B), where

B implies A and

WFf(B)
∆
= 2 3f ∨ 2 3¬Enabled(f)

SFf(B)
∆
= 2 3f ∨ 3 2¬Enabled(f)

The theorem allows the more general class of programs in which

Fairness is the conjunction of formulas of the form

2 3¬TACT ∨ 3 2TACT or 2 3¬TACT ∨ 2 3TACT,

where TACT denotes any formula of the form Q ∧ [B]g, so ¬TACT is

a formula of the form Q ∨ g. The Fairness formula must

satisfy the additional requirement that program is machine closed,

meaning that for any safety property S:

If |= (P ∧ 2[A]f ∧ Fairness) ⇒ S

then |= (P ∧ 2[A]f) ⇒ S

(The theorem requires this only when S is of the form 2TACT.)

Machine closure, which was called "feasibility" by Apt, Francez,

and Katz, is a reasonable requirement for any fairness condition.

It can be argued that a condition not satisfying it is not a

fairness condition, since it can ′t be implemented by a memory-less
scheduler.

The Property can have any of the following forms:

Predicate

2Predicate

Predicate ; Predicate

GeneralProgram

where a GeneralProgram is like a Program, except without the

machine-closure requirement on its fairness condition. The absence

of this requirement is important, for the following reason. To

prove that program Π1 implements program Π2, one proves

Π1 ⇒ Φ2, where Φ2 is obtained from Π2 by

substituting state functions for variables. This substitution

preserves the form of the formula Π2, but can destroy
machine-closure.

Proving relative completeness for safety properties in TLA is

pretty much the same as proving it for the Floyd/Hoare method. The

completeness results for Hoare ′s method assumes the expressibility

of the predicate sp(S, P) for program statements S and predicates

P, where sp is the strongest postcondition operator. Assuming such

predicates for arbitrary statements S, which include loops or

recursion, is equivalent to assuming the expressibility of sp(A, P)

and sin(A, P) for atomic actions A, where sin is the strongest

invariant operator.

Proving relative completeness for liveness is somewhat trickier.

It requires induction over well-founded sets. Taking a simple,

intuitive approach leads to a result whose practical interest is

rather doubtful. For example, Mann and Pnueli ("Completing the

Temporal Picture") use the axiom of choice to pull a well-founded

4ordering on the state space out of a hat. Such a construction

requires the assumption that every semantic predicate is

syntactically expressible.

Getting the precise expressibility assumptions, and avoiding

mistakes, required a careful formal exposition.

The Assumptions

In relative completeness results for Hoare logic, one assumes a

complete system for reasoning about predicates. In TLA, all the

serious reasoning is in the domain of actions. So, we assume a

complete system for reasoning about actions. More precisely,

letting ` denote provability, we assume a set ACT of expressible

actions such that (|= A) ⇒ (` A) for any action A in ACT. There

are various simple assumptions about ACT--such as its being closed

under boolean operations. Let PRED denote the set consisting of

all predicates in ACT (remember that a predicate is an action that

doesn ′t mention unprimed variables). The least reasonable

assumption is that for any P in PRED and A in ACT, sin(A, P) and

sp(A, P) are in PRED. Of course, this assumption is what really

puts the "relative" in "relative completeness".

The relatively complete logical system consists of the following:

1. The usual assortment of simple propositional temporal logic

rules and axioms that you ′d expect, since TLA includes

simple temporal logic (the logic that ′s the same as the Raw

Logic except starting with predicates, not arbitrary actions).

2. An induction principle, which is what you ′d expect for any

relatively complete system for proving temporal logic

liveness properties.

3. The two TLA axioms:

` (2P ≡ P ∧ 2[P ⇒ P ′]P)

` (A ⇒ B) ⇒ ` (2A ⇒ 2B)

where P is a predicate, and A and B are actions of the form

P ∧ [A]f.

The axioms of 3 are the only ones that mention actions. The axioms

of 1 only mention arbitrary formulas, and the induction principle

of 2 talks only about predicates. These axioms are actually valid

for the Raw logic, and in that logic the second axiom of 3

is a special case of the axiom

` (F ⇒ G) ⇒ ` (2F ⇒ 2G)

from 1, for arbitrary formulas F and G. However, [A]f ⇒ [B]g
isn ′t a TLA formula (it ′s a formula in the logic of actions, but

not in TLA), so the second axiom of 3 is needed if you want to do

all your reasoning completely within TLA.

The induction axiom 2 is tricky enough to be worth mentioning. To

get it right, we first have to generalize everything to include

logical variables. If you want to describe an n-process algorithm

with a TLA formula, for an arbitrary but fixed n, then n is a

logical variable of the formula. A logical variable represents an

unspecified value that is the same for all states of a behavior.

5In the semantics of actions and TLA formulas, Booleans have to be

replaced by Boolean-valued formulas involving logical variables.

(Formally, Booleans become boolean-valued functions on

interpretations, where an interpretation is an assignment of values

to all logical variables.) Logical variables pop up all the time

when you use TLA in practice. For example, if you have a

distributed algorithm with a set Node of nodes, then Node is a

logical variable. In fact, if you go really overboard in

formalism--as you must to verify things mechanically--then

everything that ′s not a program variable (the kind of variable I

first talked about) or a logical operator is a logical variable.

In the expression x + 3, the + and the 3 are logical variables. We

just happen to have a lot of axioms about the logical variables +

and 3, such as 1+1+1 = 3, while we have just a few axioms about the

logical variable n (for example n ∈ NAT, n > 0).

But, I digress. I was talking about the induction principle. An

induction principle involves induction over a well-founded ordering

on a set. Intuitively, a well-founded ordering on a set S is a

relation > such that there does not exist an infinite sequence

c1 > c2 > c3 > More precisely,

Well-Founded(>, S)
∆
= ¬ ∀ i : (i ∈ NAT) ⇒

∃ ci : (ci ∈ S) ∧ (ci > ci+1)

But, what does this formula mean? For me, the most sensible way to

interpret it as a logical formula is to rewrite it as

Well-Founded(v > w, S)
∆
= ∀ c : ¬ ∀ i : (i ∈ NAT) ⇒

(c(i) ∈ S) ∧ (c(i) > c(i+1))

where v > w is a formula with free logical variables v and w, and

(c(i) > ci+1)) is the formula obtained by substituting c(i) for v

and c(i+1) for w in the formula v > w. This is a higher-order

formula, involving quantification over a function symbol c.

The completeness result requires, as an assumption, that if the

formulas "v > w" and "v ∈ S" are expressible, then

Well-Founded(v > w, S) is provable if it ′s true. I think that if

you look closely at Manna and Pnueli ′s paper, you ′ll find that they

are implicitly assuming this for any formula "v > w"--not just for

an expressible one.

Anyway, the actual temporal induction principle looks as follows,

where P(w) denotes a formula containing w as free logical

variables, P(v) denotes the result of substituting v for w, and F

is an arbitrary temporal formula.

If ` ∃ w ∈ S

w not free in F

` Well-Founded(>, S)

` (F ∧ w ∈ S

⇒ (P(w) ; ∃ v : (v ∈ S) ∧ (w > v) ∧ P(v)))

then ` ¬F

I ′ve actually lied a bit. I assume this rule when w is a k-tuple

of distinct logical variables, and I assume the provability only of

Well-Founded(v > w, VALk), where v > w is an expressible formula

6and VALk denotes the set of k-tuples of values. I could have done

it the other way by making a few more expressibility

assumptions--such as assuming that "v ∈ VALk" is

expressible--but I think that would have been a little more
complicated.

ACTIONS

Primitives

The following are primitive notions, along with their intuitive
explanations.

VAL : A set of values, containing the values TRUE and FALSE

(among many others). The semantics of TLA is based

on this set.

ST : A set of states.

PVBL : A set of program variables. These variables appear in TLA

formulas and represent the primitive state components.

That is, a state assigns a value in VAL to every variable

in PVBL.

LVBL : An infinite set of logical variables. A logical variable

denotes a fixed, unspecified elements of VAL; it represents

a program "constant".

ACT : The set of expressible actions.

PRED : The set of expressible predicates.

SFCN : The set of expressible state functions.

Notations

VALk
∆
= The set of all k-tuples of elements in VAL.

PVBLk
∆
= The set of k-tuples of DISTINCT program variables in PVBL.

LVBLk
∆
= The set of k-tuples of DISTINCT logical variables in LVBL.

Two k-tuples v, w ∈ LVBLk are said to be DISJOINT iff they

have no components in common.

For v ∈ LVBLk, f any formula, c in LVBLk or VALk:

f[c/v]
∆
= The result of substituting each component of

c for the corresponding component variable of v.

If g(v) denotes a formula, I will let g(c) denote g(v)[c/v].

INTRPT
∆
= The set of mappings [LVBL → VAL].

INTRPT is the set of interpretations--substitutions of values

for logical variables. For any set S, an element of the set of

mappings [INTRPT → S] is an object that yields an element of S

after substituting values for all logical variables.

Expressibility and Completeness Assumptions

Below are the expressibility assumptions and the semantic

interpretations of those assumptions. These semantic

7interpretations provide a semantics for the (nontemporal) logic of

actions. In the following, I assume

s, t ∈ ST

x ∈ PVBLk

c ∈ VALk

v ∈ LVBLk

P, Q ∈ PRED

A, B ∈ ACT

f, g ∈ SFCN

Formally, the assumptions are universally quantified over these

objects. The semantic domains are defined as follows, where [[O]]

denotes the "meaning" of an object O.

[[x]] : ST → VALk

[[f]] : ST → [INTRPT → VAL]

[[P]] : ST → [INTRPT → {TRUE, FALSE}]

[[A]] : ST × ST → [INTRPT → {TRUE, FALSE}]

The following notation is used in place of the semantic brackets

[[]].

s.x
∆
= [[x]](s)

s.f
∆
= [[f]](s)

s.P
∆
= [[P]](s)

s.A.t
∆
= [[A]](s,t)

Thus, for example, s.P is an object that yields a Boolean after

substituting values for all logical variables. Validity of

an action formula is defined by

|= A
∆
= ∀ int ∈ INTRPT :

∀ s,t ∈ ST : s.A.t(int)

Thus, validity of A means that s.A.t is true for all substitutions

of values for logical variables and all states s and t.

The following are the assumptions and their meanings.

EX(-1). TRUE ∈ PRED

s.TRUE
∆
= TRUE

EX0. P, P ′ ∈ ACT

P ∈ SFCN

s.P.t
∆
= s.P

s.P ′.t
∆
= t.P

A predicate is identified with an action that does not depend on

the second [new] state. Since VAL contains the elements TRUE

and FALSE, a predicate P is a fortiori "semantically" a state

function. The assumption P ∈ SFCN states that this semantic

state function is expressible.

EX1. sin(A,P) ∈ PRED

sp(A,P) ∈ PRED,

s.sp(A,P)
∆
= ∃ t : t.P ∧ t.A.s

s.sin(A,P)
∆
= ∃ i ≥ 0 : s.spi(A,P)

8where sp0(A,P)
∆
= P

spi+1(A,P)
∆
= sp(A,spi(A,P))

The operators sp and sin are the usual strongest postcondition

and strongest invariant operators.

EX2. A ∧ B, ¬A, A ∨ B ∈ ACT

P ∧ Q, ¬P, P ∨ Q ∈ PRED

s.(A ∧ B).t
∆
= s.A.t ∧ s.B.t

s.(A ∨ B).t
∆
= s.A.t ∨ s.B.t

s.(¬A).t
∆
= ¬(s.A.t)

The corresponding semantic definitions for predicates follow

from EX2 and EX0.

EX6. x = w ∈ PRED, and ¬ |= ((∃ w : (x = w)) ≡ FALSE)

s.(x = w)
∆
= s.x = w

The assumption invalidity assumption asserts that given any

finite set of variables xi and values vi, there is a state

in which each xi has the value vi.

EX7. Only a finite number of program variables appear in A.

∃ k, x : ∀ r, s, t, u ∈ ST :

(r.x = t.x ∧ s.x = u.x) ⇒ r.A.s = t.A.u

In the semantic definition, x is any k-tuple of program

variables whose components include all the variables that appear

in A. (Since there is no quantification over program variables

in actions, any variable that appears in A is free in A.)

EX7b. Only a finite number of logical variables appear

free in A.

∃ w ∈ LVBLk :

v disjoint from w ⇒ s.A.t ≡ s.A[c/v].t

In the semantic definition, w is a k-tuple of logical variables

containing all logical variables occurring free in A.

EX8. (a) NAT ∈ SFCN

(b) If S ∈ SFCN and u ∈ LVBL then (u ∈ S) ∈ PRED

(c) If Q ∈ PRED, x ∈ PVBL, w ∈ LVBL then

Q[w/x] ∈ PRED

(d) v > w ∈ CONSTPRED, then

Well-Founded(v>w, VALk) ∈ CONSTPRED.

CONST PRED = set of all PRED ′s with no free logical

variables. So, Q ∈ CONSTPRED iff

(∃ s : s.Q) ≡ |= Q

If w ∈ LVLBk has components disjoint from v, and

w>v ∈ PRED, then Well-Founded(w>v, VALk) ∈ PRED.

s.Well-Founded(w>v, S)
∆
=

¬ ∀ i ≥ 0 : ∃ ci ∈ S : s.(ci+1 > ci)

where S ⊆ VALk

(ci+1 > ci)
∆
= ((w > v)[ci+1/w])[ci/v]

9This is the formal definition of well-founded ordering > on a

set S of k-tuples of values. Usually, w>v will be a "constant"

relation--one that is independent of the state.

EX9. If w ∈ LVBLk, then (∃ w : P) ∈ PRED.

s.(∃ w : P)
∆
= ∃ c ∈ VALk : s.P[c/w]

EX10. f ′ = f ∈ ACT

s.(f ′ = f).t
∆
= t.f = s.f

EX11. (f,g) ∈ SFCN.

s.(f,g)
∆
= (s.f, s.g)

Note that if SFCN contains any reasonably rich set of state

functions, then this assumption requires that VAL contains all

ordered pairs of elements in VAL.

Relative Completeness Assumption

A logical system consists of a set of wff ′s and a collection of

rules for proving that certain wff ′s are theorems. We usually let

` F denote that the wff F is a theorem of the system. Since we

are considering two logical systems, the logic of actions and TLA,

there are two logical systems and two "` "s. We ′ll use ` ACT
for the logic of actions.

The relative completeness assumption is:

RC1. For all A ∈ Act: (|= A) ≡ ` ACT A

This of course assumes the soundness as well as the completeness of

the proof system for actions.

TEMPORAL LOGIC

Notation

[A]f
∆
= A ∨ (f ′ = f)

<A>f
∆
= ¬[¬A]F
= A ∧ (f ′ 6= f)

STω
∆
= The set of infinite sequences of elements in ST.

For σ ∈ STω , i ≥ 0 :

σi
∆
= The ith state in σ, where the first state

is σ0.

σ+i ∆
= The sequence σi, σi+1, ...

in STω

Temporal Logic

The wffs of a simple temporal logic consist of a set of formulas

TEMPORAL defined in terms of a set ELEM of elementary formulas by

the following BNF grammar:

10
TEMPORAL

∆
= ELEM | ¬TEMPORAL | TEMPORAL ∨ TEMPORAL

| TEMPORAL ∧ TEMPORAL | 2TEMPORAL

In the following, I assume

F, G ∈ TEMPORAL

σ ∈ STω

The semantic domain for temporal formulas is defined by

[[F]] : STω → (INTRPRT → {TRUE, FALSE})

I will eliminate the semantic brackets by writing

σ |= F
∆
= [[F]](σ)

The semantics of the temporal logic is defined in terms of the

semantics of elementary formulas by:

σ |= ¬F
∆
= ¬(σ |= F)

σ |= F ∨ G
∆
= (σ |= F) ∨ (σ |= G)

σ |= F ∧ G
∆
= (σ |= F) ∧ (σ |= G)

σ |= 2F
∆
= ∀ i ≥ 0 : σ+i |= F

Validity is defined by

|= F
∆
= ∀ σ ∈ STω : σ |= F

The temporal logic RAW is defined by letting ELEM
∆
= ACT,

where, for A ∈ ACT,

σ |= A
∆
= σ0.A.σ1

Since an action A in ACT is a RAW formula, we have defined |= A

twice: once in defining the semantics of actions, and just now in

defining the semantics of RAW formulas. It is easy to check that

the two definitions are equivalent.

The temporal logic TLA is defined by letting

TACT
∆
= [ACT]SFCN | PRED ∧ [ACT]SFCN

ELEM
∆
= PRED | 2TACT

It follows from EX2, and EX10 that TACT is a subset of ACT, so EX0

implies that TLA is a subset of RAW. The semantics of TLA are then

defined by the semantics of RAW.

Note: We would get the same logic by defining ELEM just to be PRED

or [ACT]SFCN. However, that would leave us in the somewhat

embarrassing position of being able to write the formula

2P ∧ 2[A]f but not being able to write the equivalent formula

2(P ∧ 2[A]f).

The following derived operators are defined, for any F, G ∈ RAW.

3F
∆
= ¬2¬F

F ; G
∆
= 2(F ⇒ 3G)

Expressibility assumption EX2 implies 3<A>f ∈ TLA for any

A ∈ ACT and f ∈ SFCN.

AXIOMS AND DEDUCTION RULES FOR TLA

11We let ` TLA denote the provability relation for TLA.

The first deduction rule is:

STL0. For any P ∈ PRED: (` ACT P) ⇒ (` TLA P)

Assuming that all our complete logical system for TLA is sound, so

` TLA P implies |= P, it follows from the relative completeness

assumption RC that ` TLA P implies ` ACT P. Hence, STL0

implies that ` TLA and ` ACT are equivalent for predicates in

PRED. Since these predicates are the only elements of both ACT and

TLA, we will drop the subscripts and use the same provability symbol

` for both actions and TLA formulas.

In the following rules and axioms, F and G are assumed to be

arbitrary formulas in TLA.

The next part of the logical system of TLA consists of modus ponens

(` F and ` (F ⇒ G) imply ` G) and the axioms of propositional

calculus. Instead of giving these axioms explicitly, we simply

state the following rule:

PROPCALC: If F is derivable by Modus Ponens and substitution

of TLA formulas for atoms in tautologies of

propositional logic, then ` F.

A rule of the form F, G ` H means that ` H can be derived from

` F and ` G. We sometimes write this rule in the form

F, G

H

The remaining axioms and rules are:

STL1. ` 2(F ∧ G) ≡ 2F ∧ 2G

STL2. ` 2 2F = 2F

STL4. ` 3 2F ∧ 3 2G ≡ 3 2(F ∧ G)

STL6. ` 2 3 2F = 3 2F

STL7. (F ⇒ G) ` (2F ⇒ 2G)

STL8. ` (2F ⇒ F)

TLA1. For all P ∈ PRED : ` (2P ≡ P ∧ 2[P ⇒ P ′]P)

TLA2. For all A, B ∈ TACT :

` (A ⇒ B) ⇒ ` (2A ⇒ 2B)

LATTICE:

w ∈ LVBLk

∃ w ∈ S

w not free in F

Well-Founded(<, S)

(F ∧ w ∈ S) ⇒ (P(w) ; ∃ v : (v ∈ S) ∧ (v < w) ∧ P(v))

¬F

Note: All these rules and axioms are valid for formulas F and G in

RAW, not just for formulas in TLA. Extending the rules and axioms

to RAW would Make TLA2 a special case of STL7.

The following are derived rules and axioms.

INV : For P ∈ PRED, A ∈ TACT :

12(` P ∧ A ⇒ P ′) ⇒ (` P ∧ 2A ⇒ 2P)

1. (` P ∧ A ⇒ P ′) ⇒ (` 2A ⇒ 2[P ⇒ P ′]P)

Pf: ` P ∧ A ⇒ P ′

⇒ ` A ⇒ (P ⇒ P ′) (PROPCALC)

⇒ ` A ⇒ [P ⇒ P ′]P (PROPCALC)

⇒ ` 2A ⇒ 2[P ⇒ P ′]P (TLA2)

2. (` P ∧ A ⇒ P ′) ⇒ (` P ∧ 2A ⇒ P ∧ 2[P ⇒ P ′]P)

Pf: 1 and PROPCALC.

3. QED

Pf: 2, TLA1, and PROPCALC.

Lemma PRETACT: A, B ∈ TACT ⇒ A ∧ B ∈ TACT

Pf: ...

PROG: For P, Q ∈ PRED, A ∈ TLACT, B ∈ ¬TLACT:
If ` P ∧ A ⇒ P ′ and ` P ∧ A ∧ B ⇒ Q ′, then

` 2A ∧ 2 3B⇒ (P ; Q)

Assume: A. ` P ∧ A ⇒ P ′

B. ` P ∧ A ∧ B ⇒ Q ′

To Prove: ` 2A ∧ 2 3B⇒ (P ; Q)

Note: I will use PROPCALC without explicit mention.

1. ` ¬Q ∧ [¬Q ⇒ ¬Q ′]¬Q ⇒ ¬Q ′

Pf: By RC, and

¬Q ∧ [¬Q ⇒ ¬Q ′]¬Q
≡ ¬Q ∧ ((¬Q ⇒ ¬Q ′) ∨ (¬Q = ¬Q ′))
≡ ¬Q ∧ (¬Q ≡ ¬Q ′)
≡ ¬Q ′ ∧ (¬Q ≡ ¬Q ′)
⇒ ¬Q ′

2. QED

Pf: ` P ∧ A ∧ B ⇒ Q ′ (Assumption B)

⇒ ` ¬Q ′ ∧ P ∧ A ⇒ ¬B
⇒ ` ¬Q ∧ [¬Q ⇒ ¬Q ′]¬Q ∧ P ∧ A ⇒ ¬B (1)

⇒ ` 2(¬Q ∧ [¬Q ⇒ ¬Q ′]¬Q ∧ P ∧ A) ⇒ 2¬B
(TLA2 and Lemma PRETACT)

⇒ ` 2(¬Q) ∧ 2[¬Q ⇒ ¬Q ′]¬Q ∧ 2(P ∧ A) ⇒ 2¬B
(STL1)

⇒ ` 2(¬Q) ∧ 2P ∧ 2A ⇒ 2¬B (TLA1 and STL8)

⇒ ` 2P ∧ 2A ∧ 3B ⇒ 3Q (def of 3)

⇒ ` 2P ∧ 2A ∧ 2 3B ⇒ 3Q (STL8)

⇒ ` P ∧ 2A ∧ 2 3B ⇒ 3Q (Assumption B, INV)

⇒ ` 2A ∧ 2 3B ⇒ (P ⇒ 3Q)

⇒ ` 2(A ∧ 3B) ⇒ (P ⇒ 3Q) (STL1, def of ;)

STL3. F ` 2F

Pf: From STL7, with F → TRUE, G → F, STL0, and PROPCALC.

NOTE ADDED 17 Nov 93: I think this proof is wrong because we

can ′t deduce ` 2true from STL0 and PROPCALC. I think the

best fix is to change the conclusion of STL0 to 2F.

STL5. ` 2 3F ∨ 2 3G ≡ 2(3F ∨ 3G)

Pf: 2 3F ∨ 2 3G

≡ ¬(¬2 3F ∧ ¬2 3G) (PROPCALC)

≡ ¬(3 2¬F ∧ 3 2¬G) (Def of 3)

≡ ¬(3 2(¬F ∧ ¬G) (STL4)

≡ ¬(3 2¬(F ∨ G) (PROPCALC)

≡ 2(3F ∨ 3G) (Def of 3)

13STL9. ` 2F ∧ 2 3G ⇒ 3(F ∧ G)

PF: 2F ∧ 2 3G

⇒ 2 3F ∧ 2 3G STL14)

⇒ 2 3(F ∧ G) (STL5)

⇒ 3(F ∧ G) (STL8)

STL10. F ⇒ G ` 3F ⇒ 3G

Pf: Assume: ` F ⇒ G

To Prove: ` 3F ⇒ 3G

1. ` ¬G ⇒ ¬F
Pf: PROPCALC

2. ` 2¬G ⇒ 2¬F
Pf: 1 and STL7

3. ` ¬2¬F ⇒ ¬2¬G
Pf: PROPCALC

4. QED

Pf: 3 and def of 3

STL11. ((P ∧ F) ⇒ 3Q) ` 2F ⇒ (P ; Q)

Pf: ` P ∧ F ⇒ 3Q

⇒ ` F ⇒ (P ⇒ 3Q) (PROPCALC)

⇒ ` 2F ⇒ (P ; Q) (STL7 and Def of ;)

STL12. F ⇒ G ` F ; G

Pf: ` F ⇒ G

⇒ ` 2(F ⇒ G) (STL8)

⇒ ` 2(F ⇒ 3G) (STL8)

≡ ` F ; G (Def of ;)

STL13. ` (F ; G) ∧ (G ; H) ⇒ (F ; H)

Pf: ...

STL14. ` F ⇒ 3F

Pf: By STL8, with F replaced by ¬F.
STL15. ` 33F ≡ 3F

Pf: By STL2, with F replaced by ¬F,

STL16. ` 3 2¬TRUE ≡ ¬TRUE
` 2 3TRUE ≡ TRUE

STL17. ` 2FALSE ≡ FALSE

STL18. (` F ⇒ G) ⇒ ` F ; G

The following result asserts that these rules are all sound.

Proposition SOUND: ∀ F ∈ TLA : (` F) ⇒ (|= F)

Proof: Obvious (?!).

Classes of TLA Formulas

We now define some classes of formulas. We introduce the obvious

notation by which, for any sets F and G of formulas, F ⇒ G
denotes the set of all formulas F ⇒ G with F ∈ F and

G ∈ G. Thus, for example F ∨ F denotes all formulas

F ∨ G with F and G in F , which is not the same as F .

For any set F of formulas, F ∗ is defined to be the set

of finite conjunctions of formulas in F . More precisely,

F 0 ∆
= {TRUE}

F i+1 ∆
= F i ∧ F , for i ≥ 0

F ∗ ∆
= ∃ i ≥ 0 : F i

14
In TLA, a program is represented by a formula F of the form

P ∧ 2[N]x ∧ WF1 ∧ ... ∧ WFm ∧ SF1 ∧ ... ∧ SFn
where WFi = 2 3<Ai>x ∨ 2 3¬Enabled(<Ai>x)

SFi = 2 3<Bi>x ∨ 3 2¬Enabled(<Bi>x)
Ai ⇒ N

Bi ⇒ N

and x is a k-tuple of program variables. Such a formula F is

"machine closed", meaning that for any formula G that represents a

safety property, |= F ⇒ G iff |= P ∧ 2[N]x ⇒ G.

All TLA properties that we prove have the form F ⇒ G for such an

F. To prove that one program implies another, we prove a formula

F ⇒ G where F is a formula representing a program, and G is

obtained from a formula representing a program by substituting

state functions for the program variables. Because of this

substitution, G need not be machine closed.

There are thus two classes of "program formulas" of interest,

machine-closed formulas of the class defined above, and the more

general class of formulas obtainable from machine-closed formulas

by substituting state functions for variables. We abstract and

generalize these two sets of formulas by the formulas PGM and
MCPGM.

We define the class PGM by

PGM
∆
= PRED ∧ 2TACT ∧ WF∗ ∧ SF∗

where WF
∆
= 2 3¬TACT ∨ 2 3¬TACT

SF
∆
= 2 3¬TACT ∨ 3 2TACT

We define MCPGM to be the subset of PGM consisting of all

formulas F ∈ PGM satisfying the following condition

∃ G ∈ PRED ∧ 2TACT :

∧ (` F ⇒ G)

∧ ∀ A ∈ TACT : (|= F ⇒ 2A) ⇒ (|= G ⇒ 2A)

The Completeness Theorem

A logic is relatively complete for a formula set of formulas

F iff, for every formula F ∈ F , if F is valid then

it is provable. We write this as Comp(F), defined by

Comp(F)
∆
= ∀ F ∈ F : (|= F) ⇒ (` F)

The relative completeness assumption RC asserts Comp(ACT).

Our completeness result is:

THEOREM:
1. Comp(MCPGM ⇒ PRED)

2. Comp(MCPGM ⇒ 2TACT)

3. Comp(MCPGM ⇒ (PRED ; PRED))

4. Comp(MCPGM ⇒ PGM)

THE PROOF

The Relation [=

15
We define a "provable subset" relation [= among sets of formulas,

where F [= G means that every formula in F is provably

equivalent to a formula in G.

F [= G ∆
= ∀ F ∈ F :

∃ G ∈ G : ` (F ≡ G)

F [=] G ∆
= (F [= G) ∧ (G [= F)

Lemma PSUB: For any subsets F , F i, and Gi of TLA:

1. F [= F
2. (F 1 [= F 2) ∧ (F 2 [= F 3) ⇒ (F 1 [= F 3)

3. (F 1 [= G1) ∧ (F 2 [= G2)
⇒ ∧ ¬F 1 [= ¬G1
∧ (F 1 ∧ F 2) [= (G1 ∧ G2)
∧ (F 1 ⇒ F 2) [= (G1 ⇒ G2)

4. (∀ i ≥ 0 : F 1 [= Gi) ⇒ F∗ [= G∗

Pf: This follows easily from PROPCALC.

Lemma PSUBCOMP and ANDCOMP: For any subsets F and G of TLA:

0. (F [= G) ∧ Comp(G) ⇒ Comp(F).

1. Comp(F) ≡ Comp(F ∗)
2. {TRUE} [= G ⇒ (Comp(F ⇒ G∗) ≡ Comp(F ⇒ G))

Pf of 0:

(F [= G) ∧ Comp(G)
≡ ∧ ∀ F ∈ F : ∃ G ∈ G : ` F ≡ G

∧ ∀ G ∈ G : |= G ⇒ ` G

⇒ ∀ F ∈ F : ∃ G ∈ G :

(` F ≡ G) ∧ (|= G ⇒ ` G)

⇒ ∀ F ∈ F : |= F ⇒
∃ G ∈ G : (` F ≡ G) ∧ (|= G ⇒ ` G)

⇒ ∀ F ∈ F : |= F ⇒
∃ G ∈ G : (` F ≡ G) ∧ ` G (Prop SOUND)

⇒ ∀ F ∈ F : |= F ⇒ ` F (PROPCALC)

≡ Comp(F)

Pf of 1:

1.1. Comp(F ∗) ⇒ Comp(F)

Pf: By part 0, since F [= F ∗
1.2. Comp(F) ⇒ Comp(F ∗)
1.2.1. Comp({TRUE})

Pf: PROPCALC implies ` TRUE.

1.2.2. For i > 0, Comp(F) ∧ Comp(F i) ⇒ Comp(F i+1)

Assume: Comp(F), Comp(F i), F ∈ F , and G ∈ F i

To Prove: |= F ∧ G ⇒ ` F ∧ G

Pf: |= F ∧ G

⇒ |= F ∧ |= G (def of |=)

⇒ ` F ∧ ` G (assumption)

⇒ ` F ∧ G (PROPCALC)

1.2.3. QED

Pf: 1.2.1, 1.2.2, Induction, and definition of F ∗.
1.3. QED

Pf of 2:

2.1. Comp(F ⇒ G) ⇒ Comp(F ⇒ G∗)
Pf: By Part 0, since (F ⇒ G∗) [= (F ⇒ G).

2.2. ({TRUE} [= G) ∧ Comp(F ⇒ G∗) ⇒ Comp(F ⇒ G)

162.2.1. ({TRUE} [= G) ⇒
(F ⇒ G0) [= (F ⇒ G)

2.2.2. (F ⇒ Gi) [= (F ⇒ G)i
⇒ (F ⇒ Gi+1) [= (F ⇒ G)i+1

Pf: By PROPCALC, which implies

` (F ⇒ (G1 ∧ G2)) ≡ (F ⇒ G1) ∧ (F ⇒ G2)

2.2.3. ({TRUE} [= G) ⇒ ((F ⇒ G∗) [= (F ⇒ G)∗)
Pf: 2.2.1, 2.2.2, and mathematical induction.

2.2.4. ({TRUE} [= G) ∧ Comp((F ⇒ G)∗) ⇒ Comp(F ⇒ G∗)
Pf: 2.2.3 and Part 0.

2.2.5. QED

Pf: 2.2.4 and Part 1, with (F ⇒ G)
substituted for F .

Lemma TACT: TACT∗ [= TACT

Proof: Use Lemma PRETACT.

1. For any A and B in ACT and any f and g in SFCN:

(a) [(A ∨ (f ′ = f)) ∧ (B ∨ (g ′ = g)](f,g) ∈ TACT

(b) |= ([A]f ∧ [B]g
≡ [(A ∨ (f ′ = f)) ∧ (B ∨ (g ′ = g)](f,g))

Pf: Part (a) follows from EX2, EX10, and EX11. Part (b) follows,

by a simple calculation, from the definition of validity

for actions.

2. QED

Pf: Follows easily by induction from 1 and EX2.

Reduction and Completeness

Lemma REDDEF: For any subsets F and G of TLA:

∀ F ∈ F : ∃ G ∈ G : ∧ (|= F) ⇒ (|= G)

∧ (` G) ⇒ (` F)

⇒ (Comp(G) ⇒ Comp(F))

Pf: Trivial.

Lemma COMPRED:

Comp(F) ∧ Comp(G) ⇒ Comp(F ∧ G)

Pf: Trivial.

Lemma BOXRED: For any sets F and G of formulas in TLA:

Comp(2 F ⇒ G) ⇒ Comp(2 F ⇒ 2G)
Assume: A. Comp(2 F ⇒ G)

B. F ∈ F , G ∈ G, and |= 2F ⇒ 2G

To Prove: ` 2F ⇒ 2G

1. |= 2F ⇒ G

Pf: Assumption B, STL 8 and Lemma SOUND.

2. ` (2F ⇒ G) ⇒ ` (2F ⇒ 2G)

Pf: STL7 and STL2.

3. QED

Pf: 1, 2, and assumptions.

Lemma SIN: For any P ∈ PRED, A ∈ TACT, G ∈ TLA,

and F ∈ WF∗ ∧ SF∗:

171.∧ |= (P ∧ 2A ∧ F ⇒ 2G) ⇒ |= 2(sin(A, P) ∧ 2A ∧ F ⇒ 2G)

2.∧ ` 2(sin(A, P) ∧ 2A ∧ F ⇒ 2G) ⇒ ` (P ∧ 2A ∧ F ⇒ 2G)

Pf: LET I
∆
= sin(A, P)

Assume P ∈ PRED, A ∈ TACT, ...

0. For all τ ∈ STω and n ≥ 0 :

(τ |= F) ≡ (τ+n |= F)

Pf: Assume: τ ∈ STω , n ≥ 0 ,

0.1. ∀ H ∈ 2 3¬TACT ∨ 3 2TACT :

(τ |= H) ≡ (τ+n |= H)

Pf: Follows easily from definitions.

0.2. ∀ H ∈ 2 3¬TACT ∨ 2 3TACT :

(τ |= H) ≡ (τ+n |= H)

Pf: Follows easily from definitions.

0.3. QED

Pf: By 0.1 and 0.2, since σ |= H1 ∧ H2 equals

σ |= H1 ∧ σ |= H2 by def of |=.

1. ` P ∧ 2A ⇒ 2I

1.1. ` P ⇒ I

Pf: |= P ⇒ I and Relative Completeness Assumption 2.

1.2. ` I ∧ A ⇒ I ′

1.2.1. ...

1.3. QED

Rule INV

2. ∀ σ ∈ STω :

σ |= 2I ∧ 2A ∧ F

⇒ ∃ τ, n : ∧ σ = τ+n

∧ τ |= P ∧ 2A ∧ F

Assume: 3A. σ |= 2I ∧ 2A ∧ F

To Prove: ∃ τ, n : ∧ σ = τ+n

∧ τ |= P ∧ 2A ∧ F

2.1. σ0.I
Pf: by assumption, definition of |= and 2.

2.2. Choose τ0, ..., τn such that

τ0.P, τi-1.A.τi,
and τn = σ0.

Pf: 2.1, definition of sin(P, A).

2.3. Let τn+i
∆
= σi, then

τ |= P ∧ 2A

Pf: By 2.2 and assumption 3A.

2.4. τ |= F

Pf: σ |= F by assumption 3A, and

τ |= F follows by 0.

2.5. QED

Pf: 2.3, 2.4.

3. |= (P ∧ 2A ∧ F ⇒ 2G)

⇒ |= (2I ∧ 2A ∧ F ⇒ 2G)

3.1. ∀ σ :

∧ |= (P ∧ 2A ∧ F ⇒ 2G)

∧ σ |= (2I ∧ 2A ∧ F)

⇒ σ |= 2G

Assume: 4A.1. |= (P ∧ 2A ∧ F ⇒ 2G)

4A.2. σ |= (2I ∧ 2A ∧ F)

To Prove: σ |= 2G

183.1.1. Choose τ s.t.

1.∧ σ = τ+n

2.∧ τ |= P ∧ 2A ∧ F

Pf: By 2.

3.1.2. τ |= 2G

Pf: By assumption 4A.1, 3.1.1.2, and definition

of |=.

3.1.3. QED

By 3.1.2, 3.1.1.1, and definition of |= 2G.

3.2. QED

By 3.1, since

|= (2I ∧ 2A ∧ F ⇒ 2G)
∆
=

∀ σ : σ |= (2I ∧ 2A ∧ F)

⇒ σ |= 2G

4. ` (2I ∧ 2A ∧ F ⇒ 2G) ⇒ ` (P ∧ 2A ∧ F ⇒ 2G)

Pf: 1 and PROPCALC.

5. QED

3 and 4.

Lemma SINRED: For any set F of formulas in TLA:

Comp(2TACT ∧ WF* ∧ SF* ⇒ 2 F) ⇒ Comp(PGM ⇒ 2 F)

Pf: Lemma SIN and Lemma REDDEF.

Lemma R1. ∧ Comp(MCPGM ⇒ PRED)

∧ Comp(MCPGM ⇒ 2TACT)

∧ Comp(MCPGM ⇒ WF)

∧ Comp(MCPGM ⇒ SF)

⇒ Comp(MCPGM ⇒ PGM)

Pf: 1. ∧ Comp(MCPGM ⇒ PRED)

∧ Comp(MCPGM ⇒ 2TACT)

∧ Comp(MCPGM ⇒ WF∗)

∧ Comp(MCPGM ⇒ SF∗)

⇒ Comp(MCPGM ⇒ PGM)

Pf: Lemma COMPRED and definition of PGM.

2. ∧ Comp(MCPGM ⇒ WF) ⇒ Comp(MCPGM ⇒ WF∗)

∧ Comp(MCPGM ⇒ SF) ⇒ Comp(MCPGM ⇒ SF∗)

Pf: By Lemma ANDCOMP, since STL16 implies

{TRUE} [= WF and {TRUE} [= SF.

3. QED

Pf: 1 and 2.

Lemma WFRED: WF [= SF

1. F ∈ WF ≡ ∃ A, B ∈ TACT : F = 2 3¬A ∨ 2 3¬B
Pf: Def of WF.

2. ∀ A, B ∈ TACT :

` (2 3¬A ∨ 2 3¬B) ≡ (2 3¬(A ∧ B) ∨ 3 2¬TRUE)
Pf: STL5,, STL16, and PROPCALC.

3. F ∈ WF ⇒ ∃ G ∈ SF : ` F ≡ G

Pf: 1, 2, EX2, EX-1, and def of SF.

4. QED

Pf: 3 and def of [=

Lemma IORED: For any sets F , G and H of formulas in TLA:

Comp(2 F ∗ ∧ 2G ⇒ 2H) ⇒

19Comp(2 F ∗ ∧ (3 2 F)∗ ∧ 2G ⇒ 2H)

1. 2 F ∗ ∧ (3 2 F)∗ ∧ 2G ⇒ 2H
[= 2(F ∗) ∧ 2G ⇒ 2(3¬(F ∗) ∧ 2H) (STL1 and STL6)

Pf: 2 F ∗ ∧ (3 2 F)∗ ∧ 2G ⇒ 2H
[= 2(F ∗) ∧ 3 2(F ∗) ∧ 2G ⇒ 2H (STL4)

[=] 2(F ∗) ∧ 2G ⇒ (2 3¬(F ∗) ∧ 2H) (PROPCALC)

2. 2(F ∗) ∧ 2G ⇒ 3¬(F ∗) ∧ 2H
[= 2(F ∗) ∧ 2G ⇒ 2H

Pf: 2(F ∗) ∧ 2G ⇒ 3¬(F ∗) ∧ 2H
[=] 2(F ∗) ∧ 2(F ∗) ∧ 2G ⇒ 2H (PROPCALC)

[=] 2(F ∗) ∧ 2G ⇒ 2H (STL1)

3. QED

Pf: Comp(2 F ∗ ∧ 2G ⇒ 2H)

⇒ Comp(2 F ∗ ∧ (3 2 F)∗ ∧ 2G ⇒ 2H)

(2 and PSUBCOMP.0)

⇒ Comp(2(F ∗) ∧ 2G ⇒ 3¬(F ∗) ∧ 2H)

(1 and PSUBCOMP.0)

⇒ Comp(2(F ∗) ∧ 2G ⇒ 2(3¬(F ∗) ∧ 2H))

(STL1 and Lemma BOXRED)

⇒ Comp(2 F ∗ ∧ (3 2 F)∗ ∧ 2G ⇒ 2H)

1 and Lemma PSUBCOMP.0.

Lemma PGMRED: For any set F of formulas in TLA:

Comp(2TACT ∧ (2 3¬TACT)∗ ⇒ 2 F) ⇒ Comp(PGM ⇒ 2 F)

1. For any subsets F , G, H, and I of TLA:

F ∧ (G ∨ H)∗ ⇒ I
[= (F ∧ G∗ ∧ H∗ ⇒ I)∗

1.1. F ∧ (G ∨ H)0 ⇒ I
[= (F ∧ G∗ ∧ H∗)∗ ⇒ I)∗

Pf: Trivial

1.2. If F ∧ (G ∨ H)i ⇒ I
[= (F ∧ G∗ ∧ H∗ ⇒ I)∗

then F ∧ (G ∨ H)i+1 ⇒ I
[= (F ∧ G∗ ∧ H∗ ⇒ I)∗

Pf: F ∧ (G ∨ H)i+1 ⇒ I
[=] F ∧ (G ∨ H)i ∧ (G ∨ H) ⇒ I
[=] ∧ G ⇒ (F ∧ (G ∨ H)i ⇒ I)

∧ H ⇒ (F ∧ (G ∨ H)i ⇒ I)
[= ∧ G ⇒ (F ∧ G∗ ∧ H∗ ⇒ I)∗

∧ H ⇒ (F ∧ G∗ ∧ H∗ ⇒ I)∗
[= ∧ (G ⇒ (F ∧ G∗ ∧ H∗ ⇒ I))∗

∧ (H ⇒ (F ∧ G∗ ∧ H∗ ⇒ I))∗
[= ∧ (F ∧ G∗ ∧ H∗ ⇒ I)∗

∧ (F ∧ G∗ ∧ H∗ ⇒ I)∗
[=] (F ∧ G∗ ∧ H∗ ⇒ I)∗

1.3. QED

Pf: 1.1, 1.2, and mathematical induction.

2. 2TACT ∧ WF∗ ∧ SF∗ ⇒ 2 F
[= (2TACT ∧ (2 3¬TACT)∗ ⇒ 2 F)

Pf: 2TACT ∧ WF∗ ∧ SF∗ ⇒ 2 F
[= (2TACT ∧ (2 3¬TACT)∗ ∧ SF∗ ⇒ 2 F)

(By 1, with G = H = 2 3¬TACT)
[= (2TACT ∧ (2 3¬TACT)∗ ∧ (3 2TACT)∗ ⇒ 2 F)

(By 1, with G = 2 3¬TACT, H = ...)

20[= (2TACT ∧ (2 3¬TACT)∗ ⇒ 2 F)

(Lemma IORED and STL1)

3. Comp(2TACT ∧ (2 3¬TACT)∗ ⇒ 2 F)

⇒ Comp(2TACT ∧ WF∗ ∧ SF∗ ⇒ 2 F)

PF: 2 and Lemma PSUBCOMP.0.

4. Comp(2TACT ∧ WF∗ ∧ SF∗ ⇒ 2 F) ⇒ (PGM ⇒ 2 F)

Pf: Lemma SINRED.

5. QED

Pf: 3 and 4.

Lemma R2. Comp(PGM ⇒ SF) ⇒ Comp(PGM ⇒ WF)

1. (PGM ⇒ WF) [= (PGM ⇒ SF)

Pf: Lemma WFRED and Lemma PSUB.3.

2. QED

Pf: 1 and Lemma PSUBCOMP.0.

Lemma R3. Comp(¬(2TACT ∧ (2 3¬TACT)∗)) ⇒ Comp(PGM ⇒ SF)

1. Comp(¬(2TACT ∧ (2 3¬TACT)∗))
⇒ Comp(2TACT ∧ (2 3¬TACT)∗ ⇒ 3 2TACT)

Pf: By Lemma PSUBCOMP.0, since

2TACT ∧ (2 3¬TACT)∗ ⇒ 3 2TACT

[=] ¬(2TACT ∧ (2 3¬TACT)∗ ∧ 2 3¬TACT)
[= ¬(2TACT ∧ (2 3¬TACT)∗)

2. Comp(2TACT ∧ (2 3¬TACT)∗ ⇒ 3 2TACT)

⇒ Comp(2TACT ∧ (2 3¬TACT)∗ ∧ 3 2TACT ⇒ 3 2TACT)

Pf: Lemma IORED and STL6.

3. Comp(2TACT ∧ (2 3¬TACT)∗ ∧ 3 2TACT ⇒ 3 2TACT)

⇒ Comp(2TACT ∧ (2 3¬TACT)∗ ⇒ SF)

Pf: By Lemma PSUBCOMP.0, since

2TACT ∧ (2 3¬TACT)∗ ⇒ SF

[=] 2TACT ∧ (2 3¬TACT)∗ ⇒ 2 3¬TACT ∨ 3 2TACT

[=] 2TACT ∧ (2 3¬TACT)∗ ∧ 3 2TACT ⇒ 3 2TACT

4. Comp(2TACT ∧ (2 3¬TACT)∗ ⇒ SF) ⇒ Comp(PGM ⇒ SF)

Pf: By Lemma PGMRED, since STL5 and STL2 imply SF [=] 2SF.

5. QED

Pf: 1 - 4 and transitivity of ⇒.

Lemma R4. Comp(¬(2TACT ∧ (2 3¬TACT)∗)) ⇒
∧ Comp(PGM ⇒ PRED)

∧ Comp(PGM ⇒ (PRED ; PRED))

1. Comp(¬(2TACT ∧ (2 3¬TACT)∗)) ⇒ Comp(PGM ⇒ FALSE)

Pf: By Lemma PGMRED and STL17.

2. Comp(PGM ⇒ FALSE) ⇒ Comp(PGM ⇒ PRED)

Pf: By Lemma PSUBCOMP.0, since

PGM ⇒ PRED

[=] ¬PRED ∧ PGM ⇒ FALSE

[= PGM ⇒ FALSE

3. Comp(PGM ⇒ PRED) ⇒ Comp(PGM ⇒ (PRED ⇒ 3PRED)

Pf: By Lemma PSUBCOMP.0, since

PGM ⇒ (PRED ⇒ 3PRED)

[=] (PGM ∧ ¬3PRED) ⇒ ¬PRED
[=] (PGM ∧ 2PRED) ⇒ PRED

21[= PGM ⇒ PRED (By Lemma TACT)

4. Comp(PGM ⇒ (PRED ⇒ 3PRED) ⇒ Comp(PGM ⇒ (PRED ; PRED))

Pf: By Lemma SINRED, Lemma PSUBCOMP.0, and Lemma PSUB.3, since

2TACT ∧ WF∗ ∧ SF∗ [= PGM.

5. QED

Pf: 1 - 4.

Lemma R5. Comp(MCPGM ⇒ 2TACT)

1. Comp(PRED ∧ 2TACT ⇒ 2TACT) ⇒ Comp(MCPGM ⇒ 2TACT)

Pf: By definition of MCPGM.

2. Comp(2TACT ⇒ 2TACT) ⇒ Comp(PRED ∧ 2TACT ⇒ 2TACT)

Pf: By Lemma SIN and Lemma REDDEF.

3. Comp(2TACT ⇒ 2TACT)

Assume: F ∈ 2TACT ⇒ 2TACT, |= F

To Prove: ` F

3.1. For all G ∈ 2TACT there exist P ∈ PRED,

A ∈ ACT, and f ∈ SFCN such that

` G ≡ 2(P ∧ [(P = P ′) ∧ A]f,P).

Pf: It follows from TLA1, STL8, and the definition of [A]f
that

` 2(P ∧ 2[B]f) ≡
2(P ∧ [(P ′=P) ∧ (B ∨ (f ′=f)]f,P)

The result then follows from the definition of

TACT, EX(-1), and |= [TRUE]f ≡ TRUE,

which by Assumption RC implies ` [TRUE]f ≡ TRUE.

3.2. Choose P, Q ∈ PRED; A, B ∈ ACT, and

f, g ∈ SFCN such that

F = 2(P ∧ [(P ′=P) ∧ A]f) ⇒ 2B

Pf: By 3.1.

3.3. |= (P ∧ [(P ′=P) ∧ A]f) ⇒ B

Assume: s,t ∈ ST and s.(P ∧ [(P ′=P) ∧ A]f,P).t

To Prove: s.B.t

3.3.1. t.P

Pf: s.(P ∧ [(P ′=P) ∧ A]f,P).t implies

s.P and s.P = t.P.

3.3.2. t.(P ∧ [(P ′=P) ∧ A]f,P).t

Pf: By 3.3.1.

3.3.3. Define σ ∈ STω by

σ0 = s and σi = t for all i > 0.

Then σ |= 2(P ∧ [(P ′=P) ∧ A]f)

Pf: 3.3.2, assumption, and def of |=.

3.3.4. σ |= 2B

Pf: 3.3.3 and assumption |= F.

3.3.5. σ0.B.σ1
Pf: 3.3.4 and definition of |= 2B.

3.3.6. QED

Pf: 3.3.5 and 3.3.3.

3.4. ` (P ∧ [(P ′=P) ∧ A]f) ⇒ B

Pf: 3.3 and assumption RC.

3.5. QED

Pf: 3.4 and TLA2.

4. QED

Pf: 1 - 3.

22
Lemma SPSIN.

1. |= sin(A, P) ∧ A ⇒ sin(A, P) ′

2. |= P ∧ A ⇒ sp(A; P) ′

Lemma MAIN: If N, ¬A1, ..., ¬An ∈ TACT, then

|= ¬(2N ∧ 2 3A1 ∧ ... ∧ 2 3An)

⇒ ` ¬(2N ∧ 2 3A1 ∧ ... ∧ 2 3An)

Assume: |= ¬(2N ∧ 2 3A1 ∧ ... ∧ 2 3An)

To Prove: ` ¬(2N ∧ 2 3A1 ∧ ... ∧ 2 3An)

1. Let x ∈ PVBLk include all program variables free in

N and the Ai, and let w ∈ LVBLk not include an

logical variables free in N or any of the Ai.

Pf: The existence of x and w follow from EX7 and EX7b.

2. Define

P0(w)
∆
= x = w

Pi(w)
∆
= sin(N, sp(N ∧ Ai, Pi-1) for 1 ≤ i ≤ n

Then Pi ∈ PRED for 0 ≤ i ≤ n

Pf: EX6 and EX1.

3. Choose v ∈ LVBLk, disjoint from w and not containing

any logical variables free in N or the Ai.

Pf: EX7b.

4. Define w>v
∆
= Pn(w)[v/x]

Then |= Well-Founded(>, VALk).

Pf: Define a sequence s0, ... , sp to be G-LIVE iff

∧ ∀ i ∈ (0 .. p] : si-1.N.si
∧ ∀ j ∈ [1 .. n] :

∃ i ∈ (0 .. p] : si-1.Aj.si
4.0. w>v ≡ |= (x = v) ⇒ Pn(w)

4.0.1. For any Q : if u ∈ LVBLk, and u does not appear free

in Q, then Q ≡ ∀ u : (v = u) ⇒ Q[u/v]

Pf: Ordinary logic.

4.0.2. For any predicate Q,

Q[u/x] ≡ ∀ s : ((s.x = u) ⇒ s.Q)

Pf: Obvious.

4.0.3. QED

Pf: Pn(w)[v/x]

≡ ∀ u : (u = v) ∧ Pn(w)[v/x][u/v] (by 1)

≡ ∀ u : (u = v) ∧ Pn(w)[u/x] (obvious)

≡ ∀ s : (s.x = u) ⇒ s.((x = v) ∧ Pn(w)) (2)

≡ ∀ s : s.((x = v) ∧ Pn(w))

(x contains all free program variable in Pn(w))

≡ |=(x = v) ∧ Pn(w) (def of |=)

4.1. For any state s and any d ∈ VALk, if s.Pn(d)

then there exists a G-LIVE sequence s0, ... , sp
s.t. sp = s and s0.x = d

4.1.1. ∀ j ∈ [1 .. n] : t0.Pj(d) ⇒
∃ t1, ... , tq :

∧ tq.sp(N ∧ Aj; Pj-1)(d)

∧ ∀ i ∈ (0 .. q] : ti.N.ti-1
Pf: Def of sin, since sin(...)(d) = sin(...(d)).

4.1.2. ∀ j ∈ [1 .. n] : t0.sp(N ∧ A; Pj-1)(d)

23⇒ ∃ t1 : ∧ t1.(N ∧ Aj).t0
∧ t1.Pj-1(d)

Pf: Def of sp.

4.1.3. t0.P0(d) ⇒ ∃ t1, ... , tq :

∧ tq.x = d

∧ ∀ i ∈ (0 .. q] : ti.N.ti-1
Pf: Def of sin, since sin(...)(d) = sin(...(d)).

4.1.4. QED

Pf: Use 4.1.1 - 4.1.3 to construct the sequence

backwards, starting from s.

4.2. If d>c then for any state s0 s.t. s0.x = d

there exists a G-LIVE sequence s0, ... , sp s.t. sp.x = c.

Pf: Assume d>c and s0.x = d.

4.2.1. If u0, ... , up is a G-LIVE sequence s.t.

u0.x = d and up.x = c, and ti.x = ui.x for

all i, then t0, ... , tp is a G-LIVE sequence s.t.

t0.x = d and tp.x = c.

Pf: Follows from hypothesis that x includes all

the free variables: more precisely, that the

x are chosen according to EX7.

4.2.2. Choose a G-LIVE sequence t0, ..., tp s.t.

t0.x = d and tp.x = c

Pf: By 4.0, d>c implies (s.x = c) ⇒ s.Pn(d).

The assumption that VAL is nonempty (it contains

TRUE) implies that there exists a state s with

s.x = c. (The nonemptiness of VAL is implied by

the existence of c if k > 0.)

4.2.3. QED

Pf: Let si = ti for i > 0. Then s0, ... , sp is

a G-LIVE sequence by 4.2.1 and 4.2.2., and sp.x = c.

by 4.2.2.

4.3. If c1 > c2 > ... then there exists σ ∈ STω

such that

(a) ∀ i ≥ 0 : σi.N.σi+1
(b) ∀ j ∈ [1 .. n] there exist infinitely many

j ≥ 0 such that σi.Aj.σi+1
Pf: By EX6, there exists a state s0 such that

s0.x = c1. We can then apply 4.2 inductively

yp 4.2, there exist G-LIVE sequences τ(i) such

that the last state of τ(i) is the first state

of τ(i+1). Let σ be the behavior obtained

by concatenating the behaviors τ(i).

4.4. QED

Pf: Assume c1 > c2 > ... , and let σ be the sequence

obtained in 4.3. By definition of |=,

σ |= 2N ∧ 2 3A1 ∧ ... ∧ 2 3An,

contradicting the hypothesis

|= ¬(2N ∧ 2 3A1 ∧ ... ∧ 2 3An).

5. QED

5.1. ∀ j ∈ [1 .. n] :

` (2N ∧ 2 3A1 ∧ ... ∧ 2 3An) ⇒ (Pj-1 ; Pj)

Pf: Assume j ∈ [1 .. n]

24LET R
∆
= sp(N ∧ A; Pj-1)

5.1.1. |= Pj-1 ∧ N ⇒ (Pj-1)
′

Pf: Lemma SPSIN.1

5.1.2. |= Pj-1 ∧ N ∧ Aj ⇒ R ′

Pf: Lemma SPSIN.2

5.1.3. ` 2N ∧ 2 3Aj ⇒ (Pj-1 ; R)

Pf: Assumption RC and Rule PROG.

5.1.4. R ⇒ Pj
Pf: Lemma SPSIN.3

5.1.5. 2N ∧ 2 3Aj ⇒ (Pj-1 ; Pj)

Pf: STL12 and STL13.

5.1.6. QED

Pf: 5.1.5 and PROPCALC

5.2. ` (2N ∧ 2 3A1 ∧ ... ∧ 2 3An) ⇒ ((x = w); Pn(w))

Pf: 5.1 and STL13, since P0 equals x = w by definition.

5.3. ` Pn(w) ⇒ ∃ v ∈ VALk : (w > v) ∧ x = v

5.3.1. |= Pn(w) ≡ ∃ v ∈ VALk : x = v ∧ Pn(w)

Pf: Def of |=.

5.3.2. |= x = v ∧ Pn(w) ≡ (w > v)

Pf: Definition of >
5.3.3. |= Pn(w) ⇒ ∃ v ∈ VALk : (w > v) ∧ x = v

Pf: 5.3.1 and 5.3.2.

5.3.4. QED

Pf: EX9 and assumption RC.

5.4. QED

Pf: 4, 5.2, 5.3, STL18, EX8, and the LATTICE Rule, with

x = w substituted for P(w), and VALk substituted for S.

Lemma R6. Comp(¬(2TACT ∧ (2 3¬TACT)∗))
Pf: Lemma MAIN and Lemma REDDEF.

PROOF OF THEOREM:

Follows from Lemmas R1 - R6, since MCPGM ⊆ PGM.

