e

MASSACHUSETTS |
COMPUTER ASSOCIATES, INC.

@a PRINCESS STREET, ,WAKEF[ﬁLD; MASS. 01880 ° 617 [ 245-9540

On Self-stabilizing Systems

— by

Leslie Lamport

December 5, 1974
CA 7412-0511

¥

A SUBSIDIARY OF APPLIED DATA RESEARCH, INC.

-
23



~e ™

Introduction

Dijkstra. has f'écently described a typé.:of formal .system consisting of a
network of interfconneptéd machines ['1 1. The next state of each machine is a -
function of its étate and the states of its neighbors. At any instant, the state of
the system is describea by the states of all the machines. The system is ass_umed
to have a normal mode c:)f operation in which its‘sltate is always a "legitimate"
one. (This will all be defi_néd more precisely below.) Thevsystem is called &if—

stabilizing if it will eventually enter’its normal mode of operation when started in

any initial state.

These formal systems are of interest for modeling networks of independent
procéssors . (To model the delay in transmitting informa?ion between processors,
the transmission line can be represented by a machine.) Self-stabilizing systems
represent ones .which are self-correcting: even if they reach an incorrect state

through some transient malfunction, they will eventually resume correct operation.

Dijkstra described some self-stabilizing systems in which the machines
are connected in a ring and in a line. These systems had the property that in nof-
mal operation, exactly one machine could change its state at any time. This is a
useful property because it means that the network of autonomous machines has |
been synchronized so that it cycles. through a fixed sequence of states in which
only one machine at a time has a "privileged status". Several such systems could
also be combined to form a self-stabilizing system in which several machines

could have different privileges at the same time.



In this paper, we construct such a se‘lf-stabilizing system for a network
déscribed by ény arbitrary connected graph. We also consider the solution to
the mutual exclusionlproblem presented in [ 2 j, énd show that it can be imple-
mented as a ,selff-stabi’lizing system. Our definitions will also include some

useful generalizations :__of the concepts introduced by Dijkstra.

Definitions

A system consists of a set of machines which form the nodes of an un-
directed graph. If there is an arc between two machines, then they are said to be
neighborsv. The state of the systenﬁ at any time consists of the states of each
machine. Every machine has a set of privileges, each of which is a bbolean
function of the state of that machine and the states of its neighbors. The privi-
lege is said to be present in a system state if it has the value true. Associated

with each pi'ivilege is a move, which defines a next state of the machine as a

function of the current states of it and its neighbors.

The system advances to its next state by the following' sequence of op?

erations, which form a system step.

(1) Choose any non-empty subset of all the privileges which
are now present, containing at most one privilege from each

machine. (If no privileges are present, the system has halted.)



(2) For each privilege in this subset, use its associated

move to determine the next state of that machine.

- (3) -~ All of fﬁese machines are then simﬁltaneously changed

to their new states.

We assume that the system has a set of legitimate system states. The sys-

tem is said to be live if it has the fo_llowing three, properties:

,.‘4—>
£ i
s
AW
ed o

(1) From each legitimate state, any system step leaves the

system in a legitimate state.

(2) For any pair of legitimate states, there exists a possible

sequence of system steps leading from the first state to the second.

~

(3) Each privilege is present in some system state.

The system is' called self-stabilizing if it can never halt, and there exists a num-

) ber N such that if the system is started in any initial state then after N system

steps it will be in a legitimate state.

Our definitions are essentially the sarhe as Dijkstra's except for some

small generalizations.: (i) we allow infinite-state machineé, (i1) we use a ndig-

tributed daemon" instead of his "central daemon", and (iii) Dijkstra ohly 'cc‘>n-

sidered live systems. We now make two new definitions.

%



In multiprocessor systems, one usuaily assumes that no processor can
be infinitely faster than another. This assumption has its analogue in the fol-
lowing additional aséurflption about the system's -:operation: there exists a number
N such thata iarivileée cannot be present in N ':successive system states without
being chosen during sgbstep (1) of one of the intervening system steps. A system

which is self-stabilizing under this extra assumption is said to be weakly self-

staBilizing 3

r

It is sometimes desirable to Weaken property (2) of live systems in order
to ignore inessential differences between system states. Let us call two system

states equivalent if any privilege is present in one if and only if it is present in

the other. A semi-live system is then defined to be one which satisfies properties
(1) and (3) of live systems and the following property: (2') For any pair of. legiti-
mate states, there exists a possible sequerice of system steps leading from the

first to a state equivalent to the second.

~e

'Self-Stabilizing Live Systems with Arbitrary Graphs

Given an arbitrary connected, undirected graph, we now construct a self-
stabilizing live sysfem for this graph -- i.e., a system with a machine for each
node such that two machines are neighbors only if there is an arc between the
corresponding nodes. In each legitimate system state, exactly one privilege is
present. The number of states of each machine is less than or equal to twice the
number of neighbors it has. The system is a generalization of a slightly altered ‘

version of Dijkstra's "four-state machine" systems. )



—— i —

By deleting arcs, we can make the graph a connected acyclic graph. (If
the arc between two machines is deleted, then those machines are trivial neighbéfs
which do not acfuall};:_affect each other. A proéedure which .makes all directly
connected mach;ines iptb non-trivial néighbérs is described later.) Hence, we -
cén assume ’th,af the giyen graph is acyclic. | We can then make the graph into a
tree by choosing a root:'node, and defining a fafher/son relation among nodes in

the obvious way so that the root node is an ancestor of all other nodes.

T

The state of each machine has two components: a color and a pointing

&) state. The color can assume either of two values. The pointing state defines

o
e

= which of the machine's neighbors it is pointing at. An arbitrary cyclic ordering of
a machine's neighbors is assumed, so the next neighbor (next after the one it is

pointing at) is defined. The root node is assumed to have some arbitrarily chosen

son defined as its number one son.

Every machine M has one privilege for each néighbor N . The privilege
is present if and only if M and N both point at each other and either (i) N is
M's son and they have different colors, or (ii) N is M's father and they have

the same color. For each privilege, the move is the following:

(1) Make M point at its next neighbor.

y

(2) If (after step (1)) M now points at its father, or M .
is the root node and it now points at its number one son, then

change M's color.



O

Note that if M is a leaf node, or if it is the root node and has only one son,

then a move simply changes its color.

A noﬁ-réot no;ie is defined to be at rest if it and all its descendants have
the same colo-r, and thz'ey all point to their fathérs. The definition is the same for
a root nbde, except that the root node itself mu"s;t point to its number one son. A
rest state of the system is o'ne- in which the root is at rest. (There are two such

states.) The legitimate states are defined to bé those which can be reached when

the system is started in a rest state.

The fact that the system is live, and that each legitimate state has only
one privilege present, is easily proved by induction on the height of the tree. We
now sketch a proof that the system is self-stabilizing. First, observe that a
privilege must be present whenever two nodes point at one another. Since the
root node points to a son and each leaf no_de points to its father, it is clear thaf
the system can never halt. Now consider any infinite sequence of succ-essive sys-
_tem states. Some machine must move infinitely many times during that sequence
of steps. But that is possible only if each of its neighbors changes color an in-
finite number of times. Hence, all machines move infinitely often in the sequence.
This proves that starting in any initial state, each machine must eventually reach °
each of its states . Usihg this result, a straightforward induction argument proveé
that for each node and any initial state, the s'ystern must eventually reach a state

in which that n'ode is at rest -=- thus proving self-stabilization.

In constructing this system, we deleted some arcs if the original graph

was cyclic. To avoid separating neighbors, we can instead obtain an acyclic graph

-

e



by splitting nodes. After constructing the above system for this graph, we re-

combine the split nodes by merging their machines in the obvious way.

The Bakery Algorithm

In[ 2 ] we presel_'ited a “bakery algorithm" for solving the mutual exclusion

problem. We assume that the reader is familiar with this algorithm. It has the

T

following self-stabilizing property. S:L-lppose that a process cannot remain forever

in its non-critical section, and that each processor is started at any point in its
program.with any non-negative value of number[i]. " Then, the system will eventually
aésume its normal mode of operétion. To see this, observe that if process i has
entered and left the doorway at least once, then Assertions 1 and 2 of [ 2 ] will hold
for all k . If process i has the smallest value of (number[i], i) then it will even-
tually enter the doorway, choose a new value of number[i] greater than any initial
vaiue of number[j] which has not been changed, and leave the doorway. Hence, all
processors will eventually pass through the doorway. After this has happened,

Assertions 1 and 2 will hold, so the system will be operating correctly.

The above discussion was in terms of the notation and assumptions of [ 2 ].
We now consider impiementation of the bakery algorithm by our systems of inter-
connected machines. We will see that a large class of ‘f‘natural" implementations
are weakly self-stabilizing, semi-live systems. A more restricted class of imple-

mentations are self-stabilizing live systems. For the sake of brevity, the dis-

cussion will be informal, and no proofs will be given.

'S



Since interprocessor communication occurs only by one processor reading

another proceésor's memory, the algorithm is easy to implement with our systems
of machines. The Aléol program for each procezssér can be directly ﬁranslated' |
into a machine whose. s;ate is defined by thé value of a "program counter" and
the contents of certain, "memory registers” . We allow the execution of a single
statement to be represénted by several program ._s"ceps, and allow memory registers
to hold the results of ir;jcermc_gdiate calculations as well as the values of program
variables. All privileges will be boolean expressions of the form "program |
counter = x", except for pairs of pri':}-ileges of the form "program éountér =x 2{}9

f* and "program counter = x and not f" which come from an if statement whose

conditional expression f is a function of other processors' variables.

Define a proper state of the system to be one which can be reached from
the normal initial state (the one with each processor in its ngr;fcritical section,
etc.). The behavior of the algorithm is essentially unchanged if at some instant
one cha'nges' some of the non-zero elements. of the array number in a way which

does not change the numerical ordering relations among the elements. Roughly

speaking, we define a semi-proper system state to be one obtained from.a proper

state by such a change. The exact definition is complicated by considering the

intermediate result registers, and is left to the reader.

We first define the legitimate states of the system to consist of all proper

‘and sémi-proper states. This defines a semi-live system. It is not live because .

the system cannot go from a proper state to a semi-proper one. The system will

be weakly self-'sfabilizing if the implementation obeys the following two rules:

e



(1) The value of j must always lie between 1 and N (or
be interpreted as a number in that range.\ . Alternatively, we

can elirhinate‘the variable j by expandin’é the {9_; loop.

(2) ) Machine 1 does not have states in which choosing[ 1]

has the incorrect value. Equivalently, phoosing[ i] can be

eliminated and its value inferred by reading the value of i's

program counter. .

o - Such an implementation is weakly self-stabilizing, but it is not self--

stabilizing because the following types of éystem behavior must be disallowed.

(1) One machine loops forever at statement L2 or L.3 while

no other machine moves.

(i1) Some machine i remains in its critical section forever

with number[ 1 ] equal to zero.

v ) We obtain a self-stabilizing system by placing the following conditions on the

implementation.

(1) Each waiting loop at L2 or L3 is implemented by a single

privilege which is present if and only if the loop exiting condition

is true:

(1) We only include machine states in which number[i] is

zero if and only if it should be zero.



Suppose it were true that from a semi-proper.initial state the system must
eventually reach a proper state. Then these implementations would be live sys-'
tems if the legiyimaté'_states were defined to bé the proper states. We dé not,
know if this ‘is frue fcgr all of these iniplementafions , but suspect that it is not. -
However, 1f is frue‘if for each machine, the'sta'tement in the doorway which assigns
a value'of number| i ] 1s executed by a single brogram step. (The proper states
then have the property that the non-zero elemen:fé' of the arra}; number form a get

of consecutive integers.) Hence, such implementations produce live systems.’

L

These systems contain infinite-state machines, since the values of

number[ 1] can become arbitrarily large. There is a complicated modified version

"of the bakery algorithm in which the values of all variables are bounded. This

algorithm has the same self-stabilization properties as the ordinary bakery al-

gorithm.

References _

[1] Dijkstra, E.W. Self-stabilizing Systems in Spite of Distributed Control.

Comm. ACM 17, 11 (November, 1974), 643-644,

[2] Lamport, L. A New Solution of Dijkstra‘'s Concurrent Programming Problem.

Comm. ACM 17, 8 (August, 1974), 453-455,

"ill

10



