
a c m
forum
C o m m e n t s o n Soc ia l P r o c e s s e s
a n d P r o o f s

T h e r e f o l l o w a n u m b e r o f l e t t e r s
c o m m e n t i n g on the recent paper "Social

Processes and Proofs of Theorems and
Programs" by De Millo, Lipton and Perils.
Some related letters arising out of com-
mentary on a previous paper by Geller ap-
pear also in this issue, in the Technical Cor-
respondence section. It has been brought to
the attention of the editors that the dates
published on tire De Millo, Lipton and
Perlis paper are incomplete; the paper was
first actually submitted to the Programming
Languages editor in April 1977, as one
of the set of papers derived from the 1977
A C M Symposium on the Principles of
Programming Languages. When it was
later decided that the paper should appear
under the Reports and Articles heading,
the earlier dates were not included, for
which omission the editors apologize.

[] My heartiest congratulations for
a job well done in the article on Proof
of Theorems [1].

As a practitioner (MBA) and man-
ager in the field of computers in busi-
ness, I have found C o m m u n i c a t i o n s

o f the A C M to be arcane, difficult to
follow, and above all, of no practical
use. Despite the theoretical nature of
this subject, the writing was clear,
interesting, and devoid of mathemat-
ical symbolism. In addition, its prac-
tical value to me was to explain to
me why I should not look for devel-
opment of formal proof of the "cor-
rectness" of our programs.

Again, thanks for giving me the
first article in C o m m u n i c a t i o n s that
I have enjoyed since I joined ACM in
1973. May it signal the beginning of
a new trend for at least some of the
future articles.

A L L A N G. POMERANTZ

ARA Services, Inc.
Philadelphia, PA 19106

1. De Millo, R.A., Lipton, R.J., and Perlis, A.J.
Social processes and proofs of theorems and pro-
grams. Comm. ACM 22, 5 (May 1979), 271-280.

[] "Social Processes and Proofs of
T h e o r e m s and P r o g r a m s " by De
Millo, Lipton and Perlis in the May
1979 C o m m u n i c a t i o n s is the best

article I have read in a computer
publication and one of the best arti-
cles I have read anywhere. Thank
you for publishifig it, and thanks to
the authors for their wisdom, fair-
ness, style, rigor, and wit. Such an
article makes me delight in being an
ACM member, and, indeed, in being
a member of the human race.

DANIEL GLAZER

2147 "O" St. N.W. #402
Washington, DC 20037

[] I read with amusement De Millo,
Lipton and Perlis's fine article, "So-
cial P roces se s . . . " whose title I think
could easily have been "Formal Veri-
fication Considered Harmful ." What
I found particularly interesting was
the authors' admonition to "make a
sharp distinction between program
reliability and program perfection."
While I agree with the spirit of most
everything in the paper, I feel it is
important to consider both reliability
and validity. It is not always enough
to demonstrate reliabil i ty-there are
cases where a convincing demonstra-
tion of validity is also important. I
remember my statistics professor's
analogy of the important relation be-
tween reliability and validity. "Pic-
ture," he said, "the following cartoon,
which I actually saw in a magazine: A
small boy is standing on a scale and
with a large smile is saying, 'I am
thirty pounds tall '." That scale was
very reliable, h o w e v e r . . .

STEWART A . D E N E N B E R G

SUNY at Plattsburgh
Plattsburgh, NY 12901

[] Marvelous, marvelous, marvel-
ousI I refer of course to "Social Proc-
esses and Proofs of Theorems and
Programs" by De Millo, Lipton and
Perlis in the May 1979 C o m m u n i c a -

t ions . This is exactly the kind of
article that belongs in the flagship
publication and nowhere else. It ad-
dresses a broad issue of importance
to the computing community. It puts
forth powerful and convincing argu-
ments. To have on top of that an
article that is literate, readable, and
stimulating is almost too much. I
want more! I realize that won't be
easy, dear editor, I can only urge you
to try. Meantime, a drink like that

will set me up for a long dry spell.
Another one like that will be worth
more than a little patience.

I have only two general thoughts
to suggest as addenda to what was
said. First, I think it would be an im-
mense contribution to the health of
mathematics if the authors would
take the parts of the paper about the
nature of mathematics, expand them,
round them off a bit, and submit the
resulting article to H a r p e r ' s or the
A t l a n t i c or other such general maga-
zine. Those insights should be disem-
minated as widely as possible.

Second, though a couple of bows
were made in that direction, I think
more could have been made of the
whole "programming style" move-
ment. In the terms of the paper, these
are nothing more or less than at-
tempts to construct programs that
will be elegant proofs of the specifi-
cations that are the theorem state-
ments. The programs of a book like
Kernighan and Plauger [1] can be
read, and the reading gave me a
much better handle on the whole
programming process. If the discon-
tinuities mentioned in the paper can
be bridged, this is the approach that
will bridge them.

LEONARD F. ZETTEL, JR.
3820 Brookshire Drive
Trenton, M148183

1. Kernighan B.W., and Plauger, P.J. The Ele-
ments o/ Programming Style. McGraw-Hill, New
York, 1974.

[] On the basis of ten years experi-
ence in the design, implementation
and use of software for numerical
applications (statistics and econo-
metrics), I agree completely with the
views of De Millo, Lipton and Perlis.

I cannot recall a single instance
in which a proof of a program's cor-
rec tness would have been useful .
That is not to say that I have been
involved in the production and use
of error-free software; rather, I find
that there are mainly two kinds of
software errors:
(1) Actual errors in the implementa-
tion of a program (bugs).
(2) Errors in the specification of a
program, or, more commonly, of a
system which comprises many pro-
grams.

621 Communications
of
the ACM

November 1979
Volume 22
Number 11

The first kind of error can be
quite serious, but it is typically easy
to fix when identified. In my experi-
ence, serious errors of the first kind
can always be found by adequate
testing. It is unfortunately true that
some programmers (including, some-
times, myself) do not test adequately,
so the user winds up discovering
many bugs. This is regrettable and
can be avoided by setting up a testing
function or department. (See Huang
[1] for a review of testing and Myers
[2] for the results of controlled ex-
periment.) In any case it is my feel-
ing as a user that user detection of
bugs can sometimes be cost-effective
and acceptable to users if they are
warned in advance that the system is
likely to contain some errors. As a
user, I would much rather be given
a program with two bugs now than a
perfect program next year.

The second kind of error, on the
other hand, is much more serious. By
definition it cannot be detected by
testing or proving techniques, since
the program meets its specifications.
It is invariably detected very quickly
by users, who inform the program-
mer that the formal program specifi-
cations do not meet their informal
specifications (needs). In my experi-
ence these errors are often exceed-
ingly expensive to fix; often the fix
requires an extensive rewrite of the
system.

Lientz, Swanson and Tompkins
[3] present the results of a survey of
69 ~DP organizations. This survey
confirms that maintenance due to in-
adequate or changing program speci-
fications is an important component
of today's EDP costs. On average the
surveyed users allocated 48 percent
of their annual personnel hours to
m a i n t e n a n c e and e n h a n c e m e n t .
Within this category, 60 percent of
the t ime was devo ted to user en-
hancements, improved documenta-
tion and recoding for computational
efficiency (40 percent to user en-
hancements alone). Only 17 percent
was devoted to emergency fixes and
routine debugging. Table V of their
article clearly shows that manage-
ment in the surveyed organizations
perceived user demands for enhance-

ments and extensions to be the num-
ber one problem area.

It is my opinion that methods for
avoiding program misspecification
are much more urgently needed than
methods for proving that a program
meet its specifications. For example,
I consider Michael Jackson's work
to be a step in the right direction [4],
as are the various concepts known
by the buzzwords chief-programmer
team, top-down design, iterative re-
finement, etc. (see Zelkowitz [5] for
a review).

R I C H A R D H I L L

A.C. Nielsen Management
Services S.A.
CH-6002 Lucerne
Switzerland

1. Huang, J.C. An approach to program test-
ing. Computing Surveys 7, 3 (Sept. 1975), 113-128.
2. Myers, G.J. A controlled experiment in pro-
gram testing and code walkthroughs/inspections,
Comm. A C M 21, 9 (Sept. 1978), 760-768.
3. Lientz, B.P., Swanson, E.B., and Tompkins,
G.E. Characteristics of application software main-
tenance. Comm. A C M 21, 6 (June 1978), 466-471.
4. Jackson, M.A. Information systems: Mod-
eling, sequencing and transformations. Proc. Third
International Conference on Software Engineer-
ing, Atlanta, Ga., May 1978, 72-81.
5. Zelkowitz, M.V. Perspectives on software
engineering. Computing Surveys 10, 2 (June 1978),
197-216.

[] It was time somebody said i t -
loud and c lear - the formal approach
to sof tware ver i f ica t ion does not
work now and probably never will
work in the real programming world.
In their well-written paper the au-
thors stress the obvious parallel to
mathematics: Little to nothing of the
immense wea l th of p r e sen t day
mathematics came out of formal rea-
soning like the predicate calculus,
etc., nor are theorems usually proved
by such means.

The one sentence that was quoted
from Poincar6 really says it all: " . . . if
it requires twenty-seven equations to
establish that 1 is a number, how
many will it require to demonstrate
a real theorem?"

Au tomat i c ver i f ica t ion by the
computer, much heralded only a few
years ago, has turned out to be a
totally impossible approach for any
program that lies outside the toy-
program world of the "greatest com-
mon div isors ," etc. Some of the
deeper reasons for this may be found
in Weizenbaum's excellent book [1].
But the fact that the verification
route has failed does not mean that

the need for' correct, reliable soft-
ware has d isappeared . Quite the
contrary: With the ever increasing
complex i ty of compu te r systems,
particularly of real-time process con-
trol systems, the problem has be-
come more aggravated than ever.

The authors at one point identify
"real life programming" with hourly
changing specifications, with "patch-
es," "glue, spit," etc. It seems to
me that with such a chaotic program-
ming style one would be as remote
from reality as are their chastised
colleagues of the "verification guild."

It is both interesting and fruitful
to draw parallels between the pro-
gramming world and the world of
mathematics. As the authors point
out there exist important differences,
t o o .

There are many deep mathemati-
cal theorems that may be written
down in a couple of lines; programs
may take thousands of lines but ex-
hibit a certain "shallowness." But
does it have to be that way? No
doubt, mathematics can be very con-
cise and deep-bu t must programs be
shallow? That this is now usually the
case may be one reason for the often
quoted "software problem." There is
one dimension that is crucial in "real-
l i fe" p rograms: complexi ty . The
problem of software engineering is
usual ly not the f inding of " d e e p
theorems" but rather the highly non-
trivial task of mastering complexity.
This is what system engineering-be
it for hardware or software-is all
about.

To attack this problem success-
fully nature can teach us a lesson or
two, if one is willing to see and to lis-
ten. Biological systems are extremely
sophisticated; we can hardly guess
their immense complexity. How does
nature "engineer" these extremely
complex systems? In his wonderful
and very readab le works Ar thu r
Koestler [2, 3] gives us some hints.

These systems are deeply struc-
tured and highly redundant. Many
years ago Koestler introduced the
concept of a holon that is gradually
finding acceptance in many disci-
plines. The modules of Portal (a
Pascal based real-time programming

622 C o m m u n i c a t i o n s
o f
t h e A C M

N o v e m b e r 1979
V o l u m e 2 2
N u m b e r 11

language developed at our research
lab) are something like holons. When
programming in Portal one is forced
to provide a certain amount of re-
dundant information. In his newest
book [3] Koestler very eloquently
shows how natural systems can be
represented as a hierarchy of holons
(as a "holarchy") .

We believe that complex software
should also be developed as a hier-
archy of such holons (or modules, as
they are now appearing more and
more in modern programming lan-
guages). Deep structuring and re-
dundancy: This is, in the long run,
the only way to come to grips with
complexity in software that can re-
liably operate in a real-life environ-
ment.

H. LIENHARD
LGZ Landis & Gyr Zug AG
CH-6301 Zug
Switzerland

1. Weizenbaum, J. Computer Power and Human
Reason. Freeman, San Francisco, 1978.
2. Koestler, A. The Ghost in the Machine.
Henry Regnery Co., Chicago, 1967.
3. Koestler, A. Janus--a Summing Up. Hutch-
inson, 1978.

[] It is with great satisfaction that I
noted that for the first time a paper
on the philosophy of computer sci-
ence, in this case the methodology
of program verification, has been
published in Communications.

I think the authors make a good
case in demonstrating that computer
science is at best like mathematics,
and that unfortunately not all mathe-
matics is classical, id est Euclidean
mathematics. The notion that mathe-
matics is a fallible, quasi-empirical
science has been defended very per-
suasively by Lakatos [1, 2]. Many of
the arguments the authors put for-
ward can be found in the first refer-
ence and it is only sad that the au-
thors do not seem to be aware of its
existence.

Once one accep ts the quas i -
empiricism in mathematics, and by
analogy in computer science, one can
either become an adherent of the
P o p p e r i a n school of c o n j e c t u r e s
(theories) and refutations [3], or one
may believe Kuhn [4] who claims
that the fate of scientific theories is
decided by a social forum, a thesis

the authors also appear to defend
and which can be directly derived
from Kuhn's views. Again an appro-
priate reference would have shown
that the ideas in the paper are only
novel on the level of analogy with
computer science.

Personally I have to admit to
feeling ill at ease with Kuhn's philos-
ophy because its direct application
implies that sociology, and worse,
astrology and scientology, are on a
par with "normal" science. I think it
is therefore preferable to state that a
program is corroborated as long as it
is producing results in agreement
with the program specification. When
a negative result occurs the core of
the program could still be correct
but then surely something is wrong
in one of the layers around the core
[5].

Finally, I wish to take issue with
the remarks made by the authors
about probabilistic proofs. The fact
that, for the time being, a proof is
considered a working proof, does not
mean that one can attach a probabil-
istic truth value to it. What value
would you assign it? And is it de-
pending on the successful use of the
theorem? Probability is a meaning-
less concept here (for a more de-
tailed argument see [5]). It is safer to
say that the probability is zero, just
as for any other empirical t heo ry -
we use it until it is replaced by a bet-
ter one, and so on, and so forth. The
most we can say is that we have faith
or confidence in a program, terms
which are, however, unknown in the
theory of knowledge.

J . VAN D E N Bus
University of Nijmegen
Nijmegen, The Netherlands

1. Lakatos, Mathematics, Science and Episte-
mology. Cambridge University Press, London,
1978.
2. Lakatos, I. Proo/s and Re/utations. Cam-
bridge University Press, London, 1976.
3. Popper, K. Conjectures and Re/utations.
Routledge and Kegan Paul, London, 1974.
4. Kuhn, T.S. The Struct.re o] Scientific Revo-
lutions. Chicago University Press. 1970.
5. Lakatos, I. The Methodology o/ Scientific
Research Programmes. Cambridge University
Press, London. 1977.

[] Congratulations on finally pub-
lishing a sensible paper on program
verification, namely "Social Proc-
esses and Proofs of Theorems and
Programs" by De Millo, Lipton and

Perlis. If that paper doesn't demolish
program verification, and the verifi-
cation freaks manage to make some
progress toward their goals, there
still will be a number of questions
which ultimately must be answered.

Consider the following thought
experiment. The designers of Euclid
(the name "Euclid" may be replaced
by the name of any other language of
similar intent) expect all Euclid pro-
grams to be verified. Euclid is a gen-
eral purpose programming language,
so it is reasonable to expect impor-
tant large scale programs to be writ-
ten with it; one of these programs
might well be an automatic Euclid
program verifier which accepts as in-
put a Euclid program and a formal
specification of what that program
does, and which returns a result of
"Verified" or "Not Verified." Al-
though not all Euclid programs may
in fact be verified, certain important
software ought to be verified, for ex-
ample, the automatic program veri-
fier itself. It makes sense then to ap-
ply the verifier to itself and to a
specification of what an automatic
Euclid program verifier does. Ques-
tions arise:
(1) Are there any grounds for believ-
ing such a self-application of the ver-
ifier would terminate?
(2) If such a self-application can be
shown to terminate, would it termi-
nate within the lifetime of anyone
currently interested in program veri-
fication?
(3) If it terminates with a result of
"Ver i f ied ," would anyone bel ieve
that the result is correct, and why?
(4) If it terminates with a result of
" N o t Ver i f ied ," perhaps lots of
people would believe it informally,
but again, what would be the formal
grounds for believing such a result?
Furthermore, would not such a cor-
rect result of self-application v e r g e

on the paradoxical?
If for some technical reason self-

a p p l i c a t i o n is no t a l lowed , how
would one decide to which Euclid
programs the verifier is applicable?
Would a "higher level" verifier be nec-
essary to verify the verifier? How
would that verifier be verified? And
so on, ad infinitum.

623 Communications
of
the ACM

November 1979
Volume 22
Number 11

I suspect that no major programs
written in Euclid, whether an auto-
matic Euclid program verifier, a Eu-
clid compiler, a database manage-
ment system, or an operating system,
would ever be verified by man, wom-
an, child, beast, or machine.

HARVEY ABRAMSON

The University of British
Columbia
Vancouver, B.C.
Canada V6T 1W5

[] The article by De Millo, Lipton
and Perlis presents among other is-
sues some theoretical limitations in
the possible use of automatic pro-
gram verifiers when applied to real-
world systems in which the specifica-
tions are often of the same order of
magn i tude as the p r o g r a m s t hem-
selves.

There is another aspect of the
theoretical limitations of such verifi-
ers the authors have overlooked. Be-
fore an automatic program verifier
can determine whether a program
realizes the specification from which
it was written, the specification itself
must be encoded in machine read-
able form for input to the verifier.
This encoding is in fact nothing more
or less than a program. Assuming
that the language used to encode the
specification has approximately the
same power as the language in which
the program to be verified is written,
it follows that the encoding of the
specification must be of the same
order of magnitude as the program
to be verified.

Even if the encoding of the speci-
fication were developed separately
from the program to be verified, it
would be subject to the same pro-
gramming errors to which all pro-
grams are liable.

Thus even assuming it were theo-
retically possible to develop a veri-
fier capable of handling a real-world
program, all it could really demon-
strate would be that one encoding of
a spec i f ica t ion accompl i shed the
same function as another encoding
of the specification. It could never
demonstrate that either encoding ac-
complished the actual functional re-

quirement of the specification itself,
much less that an encoding fulfilled
the much more elusive intentions of
those responsible for requesting the
system in the first place.

I am afraid these limitations ulti-
mately confine the role of the auto-
matic verifier to that of a historical
curiosity.

JOSHUA TURNER

Penn Mutual Life
Philadelphia, PA 19172

[] In "Social Processes and Proofs
of T h e o r e m s and P r o g r a m s , " De
Millo, Lipton and Perlis decry the
attention paid to program verifica-
tion at the expense of other, un-
named techniques. It appears that
the "ACM Algorithms Policy" was
published in the same issue (May
1979, pp. 329-330) to assure them
that they need not worry. This two-
page policy statement describes in
detail the criteria that a program
must meet in order to be publ i shed-
such things as what dialects of For-
tran are acceptable, where indenta-
tion should be used, and what kinds
of comments are needed.* Nowhere
is it stated that the correctness of the
program be demonstrated in any
way. What a wonderfully democratic
social process: All programs are in-
nocent until proven guilty. There is
even provision for a jury of peers; the
publication of "certifications" and
"remarks."

I 'm afraid that I am one of those
"classicists" who believe that a the-
orem either can or cannot be derived
from a set of axioms. I don't believe
that the correctness of a theorem is
to be decided by a general election.
To err is human. False theorems will

*The word "algorithm" usually means
a general method for computing some-
thing, and "program" means code that can
be executed on a computer. In the tradi-
tion of Computer Science, the ACM has
tried to make itself seem more erudite by
calling the programs it publishes "algo-
rithms." The "ACM Alogrithms Policy"
would not have allowed Euclid to publish
his algorithm, although he could have
published a Fortran program to compute
GCDs which was based upon it. In the
interest of restoring meaning to our lan-
guage, I will call programs "programs."
I urge the ACM to do the same.

be published. Yet must we rely so
heavi ly upon divine fo rg iveness?
Surely we should try to prove our
theorems as best we can.

For years, we did not know any
better way to check programs than
by testing them to see if they worked.
We were in the position of geometers
before Euclid: To see if a theorem
was true, all they could do was test it
on some diagrams. But the work of
Floyd and others has given us an-
other way. They taught us that a
program is a mathematical object, so
we can apply the reasoning methods
of mathematics to deduce its proper-
ties. (Of course, there were geomet-
ric proofs before Euclid, and pro-
gram verification before Floyd. I
hope the reader will forgive my rhe-
torical simplification of history.)

After Euclid, a theorem could no
longer be accepted solely on the basis
of evidence provided by drawing pic-
tures. After Floyd, a program should
no longer be accepted solely on the
basis of how it works on a few test
cases. A program with no demon-
stration of why it is correct is the
same as a conjec ture-a statement
which we think may be a theorem. A
conjecture must be exceptionally in-
teresting to warrant publication. An
unverified program should also have
tO be exceptional to be published.

The ACM seems to have gone too
far in its eagerness to reassure De
Millo, Lipton and Perlis. After all,
they did write of "the benefits that
could result f rom accepting a stand-
ard of correctness like the standard
of correctness for real mathematical
proofs." Let us heed their advice and
settle for the frail, human standards
of mathematicians. The ACM should
require that programmers convince
us of the correctness of the programs
that they publish, just as mathemati-
cians must convince one another of
the correctness of their theorems.
Mathematicians don't do this by giv-
ing "a sufficient variety of test cases
to exercise all the main features,"
and neither should computer scien-
tists.

LESLIE LAMPORT

SRI International
Menlo Park, CA 94025

624 Communications
of
the ACM

November 1979
Volume 22
Number 11

[] The catalog of criticisms of the
idea of p r o v i n g p r o g r a m s c o r r e c t
wh ich was p u b l i s h e d in the M a y
1 9 7 9 i s sue o f Communica t ions
(" S o c i a l P r o c e s s e s a nd P r o o f s of
Theorems and Programs," by R.A.
De Millo, R.J. Lipton and A.J. Per-
lis, pp. 271-280) demands a catalog
of responses by someone who be-
lieves in verification, as I do. The
following catalog is organized as a
series of responses to quotations, or
sequences of quotations, f rom the
De Millo, Lipton and Perlis paper
cited above.

(1) "The aim of program verification...
is to increase dramatically one's confidence
in the correct functioning of a piece of
software" (p. 271). "There is a fundamen-
tal logical objection to verification...
Since the requirement for a program is in-
formal and the program is formal, there
must be a transition, and the transition it-
self must necessarily be informal" (p. 275).
" . . . the monolithic view of verification is
blind to the benefits that could result from
accepting.., a standard of reliability like
the standard for real engineering struc-
tures" (p. 279).

This is a criticism of a viewpoint
on verification held for a long time
by most people in the f ield-this au-
thor i nc luded -bu t which has been
obsolete for at least two years. The
fact is that [6] "there are really two
kinds of software correctness, only
one of which can be proved. There is
program correctness (does a program
satisfy its specifications?) and speci-
fication correctness (are the specifi-
cations what the users wanted?) . De-
bugging a program involves the find-
ing and elimination of program bugs
(ways in which the program failed to
satisfy its specifications) as well as
specification bugs (ways in which the
users decided that the specifications
were wrong) . Usually, in practice,
there are more of the latter than of
the former. The trouble is that, al-
though we can prove that a program
meets its specifications, we have no
way of proving what users want."

S o f t w a r e co r r e c t ne s s , in o t h e r
words, is neither entirely formal, as
the older view would have it, nor
entirely informal, as one might infer
f rom reading De Millo, Lipton, and
Perlis. A proof of correctness con-

• sists of two steps, one formal, the
other informal; and neither of the
two is valid without the other one.

(2) "[Bertrand] Russell did succeed in
showing that ordinary working proofs can
be reduced to formal, symbolic deductions.
But he failed, in three enormous, taxing
volumes, to get beyond the elementary
facts of arithmetic. He showed what can
be done in principle and what cannot be
done in practice. If the mathematical proc-
ess were really one of strict, logical pro-
gression, we would still be counting on our
fingers" (p. 272).

It is easy to say that Russell did
not have a computer and that the
1,907 pages of mathematical formu-
las in Principia Mathematica could
be verified in less than two hours of
comput ing time, assuming 1,000,000
instructions per second, 100,000 in-
structions per line of theorem to be
verified, and 35 lines per page. This
facile reply, however, hides an im-
portant fact: One of the major goals
of verification is to provide a new
dimension in the way we do mathe-
matics, as well as in the way we do
c o m p u t e r sc ience . M a t h e m a t i c a l
facts can, in theory, be encoded in
machine readable form and verified
by computer in terms of other math-
ematical facts, until we have a com-
p e n d i u m of k n o w n m a t h e m a t i c a l
k n o w l e d g e r o u g h l y e q u i v a l e n t to
Gmelins ' 70-volume, over 100,000-
page Handbook of Inorganic Chem-
istry, or Beilstein's even larger Or-
ganic Chemistry. (Actually, all these
works suffer f rom J~he inclusion of
massive amounts of useless informa-
tion; better examples might be the
2400-page Handbook of Chemistry
and Physics, or Boss's General Cata-
logue of 33,342 Stars For The Epoch
1950 in astronomy.)

T h e s e w o r k s are no t pe r fec t ,
either, but they do provide a dimen-
sion in chemistry, physics, and as-
t ronomy that is totally lacking in
mathematics and computer science
today, and which would be impos-
sible to implement in either mathe-
matics or computer science, as Rus-
sell's example shows us, without the
aid of the computer. The tools for
c h e c k i n g m a t h e m a t i c a l p r o o f s by
computer have been with us for at
least fifteen years (see e.g.[l]) , and

a number of attempts to codify vari-
ous branches of mathematics have
been made since then. Many mathe-
maticians, however, remain disdain-
ful of routine work and unwilling to
investigate the capabilities that com-
puter science can give them.

We do not argue that strict logi-
cal deduct ion should be the only way
that mathematics should be done, or
even that it should come first; rather,
it should come last, after the theo-
rems to be proved, and their proofs,
are well unders tood informally.

(3) "Stanislaw Ulam estimates that math-
ematicians publish 200,000 theorems every
year A number of these are subse-
quently contradicted or otherwise disal-
lowed The theorems that get ignored
or discredited are seldom the work of
crackpots or incompetents.., increasing
the number of mathematicians working on
a given problem does not necessarily in-
sure believable proofs Even simplicity,
clarity, and ease provide no guarantee that
a proof is correct" (pp. 272-273).

Again, this is because mathema-
ticians do not use the computer in
verifying their proofs. They simply
throw together loosely constructed
arguments and hope that these stand
up to each other 's scrutiny. A num-
ber of chapters of my own Ph.D.
thesis [3], in fact, were devoted to
the re-expression of just such a proof
(originally formulated by my thesis
supervisor) into a rigorous form.

The stage of manipulating loosely
constructed arguments, in fact, seems
to be necessary in mathematics (un-
less we ask the computer to prove
our theorems as well as to verify their
c o r r e c t n e s s , an en t e rp r i s e w h o s e
main defect appears to be that it
takes all the fun out of the game) .
Once a loosely formulated argument
has been committed to paper, how-
ever, it should, in the ideal world we
are striving for, be verified by com-
puter.

(4) "One theoretician estimates.., that a
formal demonstration of one of Ramanu-
jan's conjectu/'es assuming set theory and
elementary analysis would take about two
thousand pages; the length of a deduction
from first principles is nearly inconceiva-
ble" (p. 273).

This sounds like the kind of esti-
mate we used to read about fifteen

625 Communications
of
the ACM

November 1979
Volume 22
Number 11

years ago concerning the length of a
program to play chess. The point is
that if we want to demonstrate a con-
jecture of Ramanujan's (say), it is
not necessary to assume set theory
and elementary analysis and nothing
else. We can always use lemmas and
other known theorems, whether we
are doing a computer generated proof
or not. Again, we are not expecting
perfection, because not all the lem-
mas we use are necessarily right; we
can only strive toward some future
day when most of the important
mathematical proofs in the world
will have been verified by computer.

(5) " . . . let us suppose that the program-
mer gets the message ' V E R I F I E D '
What does the programmer know? He
knows that his program is formally, logic-
ally, provably, certifiably correct He
does not know within what limits it will
work; he does not know what happens
when it exceeds those limits" (p. 277).

This is a fundamental misunder-
standing of the nature of program
correctness. The statement of cor-
rectness of any program says that if
we start it at the beginning with its
entry assertion valid, then it will end,
and when it does, its exit assertion
(the one that is associated with the
particular exit point where it ended)
will be valid. The exit assertion tells
us what the program has done; the
entry assertion tells us what must be
true in order for the program to work
properly. All the limits on the pro-
gram are built into the entry asser-
tion; and a program can always be
written to test whether its input is
within its own given limits, before
proceeding.

It is true that a higher level lan-
guage program can be proved cor-
rect with no reference to machine
limitations such as word size. Such a
proof, however, is not complete and
must be supplemented by a proof of
correctness of the object program in
its actual machine environment. The
theory behind such proofs is known
[4] and such proofs have actually
been constructed [5].

The warning which De Millo,
Lipton and Perlis give here may be
characterized more as misdirected
than as inappropriate. Instead of

saying that a programmer does not
know within what limits his verified
program will work, it would be more
to the point to say that he knows that
his verified program will do exactly
what he said it would, but that he
does not know whether this will con-
tinue to satisfy him. We have all
heard stories of labor unions which,
barred legally or financially from
calling a strike, have caused an effec-
tive slowdown by simply asking their
members to "work to ru les"- that is,
to obey every rule slavishly. Bugs in
verified programs should be expected
to be of this kind-sending out a
check for $0.00, for example, simply
because the program was never told
explicitly not to do that.

(6) "Verifications are not messages; a per-
son who ran out into the hall to communi-
cate his latest verification would rapidly
find himself a social pariah" (p. 275).

Not true. Let me give you an ex-
ample. A n u m b er of years ago a
fe l low exper t in ver i f ica t ion was
stumped by the problem .of trying to
figure out why the following program
terminates:

DIMENSION A(100)
I-----1

1 IF (A (I) . L E . A (I + 1)) G O T O 2
T = A(I)
A(I) = A(I + 1)
A(I + 1) = T
IF (I .EQ. 1) GOTO2
I - I - - 1
GOTO 1

2 I = I + 1
IF (I. NE. 100) GOTO 1

This program sorts 100 numbers, and
in the process the index I "wanders"
up and down until it finally reaches
100. T h e r e f o r e 1 0 0 - - I does not
satisfy the criteria for a termination
expression (i.e. an integer expression
which is non-negative at an assertion
point in a loop and which always de-
creases every time we go around the
loop). Consideration of the number
of adjacent pairs of elements A (I)
and A (I + 1) which are out of order
at any given time likewise fails to
provide us with a termination expres-
sion. Yet it is clear that this should be
a one-loop program, since statement
number 1 is inside every closed loop
of the program and hence a single

termination expression should suf-
fice.

I concluded my visit and left my
colleague's office, still thinking about
the problem, and was about a mile
down the nearest interstate when the
answer came to me: Instead of the
number of adjacent pairs, use the
number of all pairs (A(I) , A(J))
which are out of order at any given
time; this number should decrease
whenever an out-of-order pair is in-
te rchanged . Ful l of exc i tement , I
rushed back to my colleague's office,
where he confirmed that this was in-
deed the right idea. It turns out that
the unsortedness U (the number of
out-of-order pairs) is not quite the
termination expression we want, be-
cause it decreases only when an in-
t e rchange actual ly takes place. A
little experimentation, however, re-
veals that 2 U - I + 99 will work.
This is an integer expression which is
never negative at statement number
1, because I < 99 at statement num-
ber 1, while U >__ 0 by def ini t ion.
There are three paths from statement
number 1 around the loop and back
to statement number 1, and the be-
havior of U, I, and 2U -- I + 99 on
each of these three paths is as fol-
IOWS:

PATH NUMBER 1 2 3
INTERCHANGE NO YES YES
PATH GOES THROUGH

STATEMENT 2? YES YES NO
CHANGE IN VALUE

OF U 0 --1 - 1
CHANGE IN VALUE

OF I +1 +1 - 1
CHANGE IN VALUE

OF 2 U - I + 9 9 - I - 3 - 1

With this help, a formal proof may
be readily constructed.

V e r i f i c a t i o n s , l ike any o t h e r
mathematical proofs, have an infor-
mal stage at which we determine
assertions and test to make sure they
remain true as we go through the
program from one assertion point to
another. Quite often, in fact, a pub-
lished program will be accompanied
by a proof of its correctness which is
given in informal style only. It is the
formal verification of a program that
"cannot really be read; a reader can
f lay himself t h rough one of the
shorter ones by dint of heroic effort,

626 Communications
of
the ACM

November 1979
Volume 22
Number 11

but tha t ' s not read ing" (to cont inue
the above quo te) . But the same is
t rue of any to ta l ly fo rmal p roof in
m a t h e m a t i c s - o r , for that mat ter , of
a t race (in the usual sense) of any
p rog ram taking more than a few mil-
l iseconds of compu te r t ime.

(7) "There are even some cases of black-
box code, numerical algorithms that . . .
work for no reason that anyone knows;
the input assertions for these algorithms
are not even formulable, let alone formal-
izable. To take just one example, an im-
portant algorithm with the rather jaunty
name of Reverse Cuthi l l -McKee was
known for years to be far better than plain
Cuthill-McKee Only recently, how-
ever, has its superiority been theoretically
demonstrable. . , and even then only with
the usual informal mathematical proof,
not with a formal deduction. During all of
the years when Reverse Cuthill-McKee
was unproved, even though it automatic-
a l ly made any p rogram in which it
appeared unverifiable, programmers per-
versely went on using it" (p. 276).

Of course ; tha t ' s ca l led a conjec-
ture. Ma themat i c i ans use conjectures

all the t ime, and only la ter p rove
them; somet imes they remain un-

p roved for long per iods of time, and
yet o ther theorems based on them
cont inue to be bel ieved. In compute r
science, we der ive results based on
the P / N P conjec ture and p roceed to
act as if they were true; in mathe-
matics, we do the same with the Rie-
mann hypothesis . If Reverse Cuthi l l -

M c K e e were used in a p r o g r a m before
it was theore t ica l ly demons t ra ted ,
this would not make any p rog ram in
w h i c h i t a p p e a r e d u n p r o v a b l e ; it
would mere ly be p rovab le up to a

conjecture , in the same way that the
exponent ia l charac te r of the t ravel-
ing sa lesperson p rob l em is p rovab le
up to the P / N P conjecture .

(8) "Every programmer knows that alter-
ing a line or sometimes even a bit can
utterly destroy a program or mutilate it in
ways that we do not understand and can-
not predict There is no reason to be-
lieve that verifying a modified program is
any easier than verifying the original the
first time around. There is no reason to be-
lieve that a big verification can be the sum
of many small verifications. There is no
reason to believe that a verification can
transfer to any other program--not even to
a program only one single line different
from the original" (p. 278).

This is one of the mos t impor t an t
fal lacies in the paper . The first s tate-
ment above is true, but it does not
imply the o ther three. T h e reason is
that the first s ta tement has to do with
modi fy ing a correct p rog ra m in a
r easonab le seeming, but wrong way,
so as to p roduce an incorrec t p ro -
gram. If a p rog ra m is incorrect , no
amount of verif icat ion can prove it
correct . A n d it is t rue that cor rec t
p rog rams can be made to exhibit
wildly erra t ic b e h a v i o r - i n fact, they
no rma l ly will do s o - i f only a single
bi t is changed.

But cont ras t this with a careful ly
w o r k e d o u t , i n f o r m a l l y v e r i f i e d
change in a correct p rog ra m so as to
p roduce another cor rec t p rogram.
We have a p roof of correc tness of
the first p rog ra m and we need to de-
rive a p roof of correctness of the sec-
ond. U n d e r these condi t ions , large
amounts of the first p roo f remain un-
modif ied in the second; in par t icu lar ,
all the unmodif ied subrout ines will
still have the same entry and exit as-
sert ions and will still remain correct
with respect to these. The change in
the p roof should be expected to be
bigger than the change in the p ro-
gram, but not that much bigger.

The s ta tement about big verifica-
t ions not being the sums of smal ler
ones was apparen t ly m a d e in s imple
ignorance of the re la t ions between
the proofs of correctness of subrou-
tines and the proofs of correctness of
the p rog rams which call them. It is
perfect ly t rue that the use of p roce-
dures as parameters , and even the use
of call by reference, can lead to situ-
at ions in which the semantics of the
given p rog ra m are imperfec t ly un-
ders tood and p roof techniques are
of ques t ionable validi ty. But in the
case of call by value and result , the
s implest and most used of pa r ame te r
passing methods , several researchers
have der ived ways of handl ing sub-
rout ine calls in a p r o g r a m to be
p roved correct , p rov ided that the
subrout ine has a l ready been p roved
correct . In this way, if a p rog ra m is
b roken up into a main p rog ra m and
n subrout ines , we have n + 1 verifi-
cat ions to do, and that is all we have
to do in proving p rog ra m correct -

ness. (L e t us a lways remember , of
course, that the specif icat ion correct -
ness p r o b l e m is still with us.)

(9) "Verifications are long and involved
but shallow; that's what's wrong with them.
The verification of even a puny program
can run into dozens of pages, and there's
not a light moment or a spark of wit on
any of those pages Nobody is going to
buttonhole a colleague into listening to a
verification. Nobody is ever going to read
it. One can feel one's eyes glaze over at the
very thought" (p. 276).

We can make an analogy here
w i t h c o m p i l i n g a h i g h e r l e v e l

l anguage p r o g r a m into mach ine lan-
guage. Original ly , this was done by
hand; peop le wrote out p rog rams in
sequences of steps specified infor-
mal ly in Engl ish and then p roceeded
to t rans la te these into mach ine lan-
guages. Then compi lers came along,
and s tar ted to do this job au tomat ic -

ally. A t first peop le were against this,
and for much the same reasons as
given above. Compi le r s d id what had
previous ly been a fascinat ing human
job in a machine- l ike , humorless

manner . (T h e y also p roduced over ly
long object code, in much the same
way that a verifier p roduces over ly
long proofs .) N o b o d y is ever going
to read the objec t code p roduced by
a compi ler , ei ther; one s imply trusts
the compi le r and goes about one ' s
business. W h a t we hope for in veri-
fiers is that we will at least be able to
trust them to show p rog ram correct -
ness.

(10) "The formal demonstration that a
program is consistent with its specifications
has value only if the specifications and the
program are independently derived" (p.
275).

I t is true that many peop le used
to look on verif icat ion as a pure ly
ma themat i ca l process , whereas now
we look on it as two processes, only
one of which is mathemat ica l . But
the s ta tement above seems to be
denying the value of the par t which is
m a t h e m a t i c a l , w h e n in f ac t b o t h
par ts are necessary. I t may be t rue
that showing, informal ly , that the
specificat ions of a given p ro g ram will
satisfy the users of that p rog ram is a
fo rmidab le task. But the po in t is that,
even when we are finished with that

627 Communications
of
the ACM

November 1979
Volume 22
Number 11

task, we are not done; we still have
to go through the mathematical part,
to show that the program satisfies its
specifications.

It may be argued, of course, that
there is another way. Let us forget en-
tirely about proving anything about
our programs and concentrate on
testing them as thoroughly as we can.
All we can say in response to such an
argument is that this is the way other
sciences and engineering disciplines
used to function, with disastrous re-
suits. The Tacoma Narrows Bridge
collapsed because people were de-
signing bridges, in those days, with
no thought whatever to proving that
they would not collapse. That state
of affairs is now changed; and yet no-
body claims that proofs in bridge
engineering (or chemistry or phys-
ics or electrical engineering) are in
any sense perfect. They are approxi-
mations, for a different reason than
proofs of correctness are approxima-
tions; and yet they do increase our
confidence in the proper functioning
of the bridges, or the circuits, or the
chemical reactions, with which they
are concerned.

(11) "For even the most trivial mathemat-
ical theories, there are simple statements
whose formal demonstrations would be
impossibly long Suppose that we en-
code logical formulas as binary strings and
set out to build a computer that will decide
the truth of a simple set of formulas of
length, say, at most a thousand bits. Sup-
pose that we even allow ourselves the lux-
ury of a technology that will produce pro-
ton-size electronic components connected
by infinitely thin wires. Even so, the com-
puter we design must densely fill the entire
observable universe" (p. 278).

This is the same sort of argument
that has been used before against
using computers at all. Back when
the unsolvability of the halting prob-
lem was a relatively new result, peo-
ple used to use arguments which,
s t r i pped to the i r ba re essent ia ls ,
seemed to be saying that because we
cannot prove that all halting pro-
grams halt, it is futile to try to prove
that any halting program halts. In the
same way, the argument above seems
to be saying that because we cannot
prove the correctness of all correct
programs less than a thousand bits

in length, it is futile to try to prove
the correctness of a n y correct pro-
gram.

(12) [continuing the quotation above]
"This precise observation about the length
of formal deductions agrees with our intu-
ition about the amount of detail embedded
in ordinary, workaday mathematical
proofs. We often use 'Let us assume, with-
out loss of generality' or 'Therefore, by re-
numbering, if necessary' to replace enor-
mous amounts of formal detail" (p. 278).

Those who have been concerned
with formalizing mathematical proofs
are well aware of the fact that large
amounts of formal detail are, indeed,
passed over when writing out an in-
formal proof. But they are just as
aware that the complete specification
of this f o r m a l d e t a i l - a s long as
known results in mathematics may
be used, and theorems do not have
to proceed f rom first pr inc ip les- in-
volves an increase in size of perhaps
one or even two orders of magnitude
(that is, ten or a hundred times the
original size) but nowhere near the
difference between an actual com-
puter and a computer that would fill
up the universe: "The proofs pre-
sented in Chapter VI are consider-
ably more formal than the proofs of
the same theorems that appear in
mathematical textbooks. The text-
book version of the algebra proof is
a short paragraph; the formalized
version runs to 63 steps" [1].

(13) " . . . it might be argued that all these
references to readability and internaliza-
tion are irrelevant, that the aim of verifica-
tion is eventually to construct an automatic
verifying system. Unfortunately, thejie is a
wealth of evidence that fully automated
verifying systems are out of the question"
(p. 276).

It might be argued that it is futile
to answer this criticism in this par-
ticular paper, because the authors, in
their next paragraph, go on to as-
sume that a fully automated verifying
system could indeed be built, and
at tempt to show why such a system
could not produce the results ex-
pected of it. But I should like to an-
swer it anyway, because it is a point
quite commonly encountered. The
fact is that, in one sense, the authors
are r igh t - fu l ly automated verifying
systems, for any but the simplest

classes of programs, are out of the
question, roughly because we cannot
expect the computer to be a universal
theorem prover. But that doesn ' t
matter because, in practice, a verifier
does not have to be fully automated
in order to be useful. In fact, for
real machine language programs, a
wealth of information about the pro-
gram to be proved correct (normal ly
as long as or longer than the program
itself) must be supplied as input to
the verifier along with the program
(see e.g. [7]). If this information is
incorrect or incomplete, the program
will no t be p r o v e d c o r r e c t , even
though it may be correct. Other re-
searchers have experimented with
verification as an interactive process,
and to a certain extent with program
construct ion and verification as si-
multaneous interactive processes.

(14) "It seems to us that the scenario envi-
sioned by the proponents of verification
goes something like this: The programmer
inserts his 300-line input/output package
into the verifier. Several hours later, he re-
turns. There is his 20,000-line verification
and the message 'VERIFIED'." (p. 277).

This scenario is off in at least
four respects. It will not take several
hours; it will take about as long as a
compilation. It will not normally
happen on the first run, any more
than a compilat ion produces usable
results on the first run; the program-
mer must stay with the computer
until the verification is right, and
may have to communica te interac-
tively with it. There will not be
20,000 lines of output ; there is no
need for the intermediate steps in a
verification to be printed out at all.
Most importantly, the message does
not read simply " V E R I F I E D " : All
the assumptions that are made (the
entry assertion) are stated, and all
the actions of the program (the exit
assertions) are likewise. If the pro-
gram still has bugs in it after verifica-
tion (which it very likely will, if it is
being written for the first t ime) these
will be specification errors, not soft-
ware errors.

I should like to conclude by cit-
ing a number of statements made by
De Millo, Lipton and Perlis with
which I heartily agree:

628 Communications
of
the ACM

November 1979
Volume 22
Number 11

(15) " . . . w e w o u l d st i l l ins i s t t h a t v e r i f i c a -
t i on r e n o u n c e its c l a i m o n a l l o t h e r a r e a s

o f p r o g r a m m i n g ; to t e a c h s t u d e n t s in in-

t r o d u c t o r y p r o g r a m m i n g c l a s s e s h o w to d o

v e r i f i c a t i o n , f o r i n s t a n c e , o u g h t to b e as

f a r f e t c h e d as t e a c h i n g s t u d e n t s in i n t r o d u c -

t o r y b i o l o g y h o w to d o o p e n - h e a r t s u r g e r y "

(p . 2 7 6) .

I have been teaching program-
ming for thirteen years and verifica-
tion for eight, and never have I at-
tempted to teach verification to any-
one in an elementary programming
class, or advised others to do so. Ver-
ification is a mathematical subject re-
quiring mathematical maturity for its
understanding; it is properly taught
as part of a course on the analysis of
algorithms, the philosophy of pro-
gramming (as I teach it, along with
structured programming), or com-
piler construction (since verifier con-
struction is so similar).

(16) " . . . t h e r e h a s n e v e r b e e n a v e r i f i c a t i o n

of , s ay , a C o b o l s y s t e m t h a t p r i n t s r e a l

c h e c k s " (p . 2 7 9) .

This is true (although my student
Harry Keeling has been working on
Cobol program verification for some
time), but not for the reasons the au-
thors seem to imply. Cobol involves
a great wealth of programming lan-
guage features, whereas the inductive
assertion method of proving pro-
grams correct, as it was originally
formulated [2], applied only to pro-
grams containing simple assignment
(variable = expression), goto, con-
ditional goto, and halt statements. It
has taken researchers in verification
a long time to learn how to handle
all the features of a language as so-
phisticated as Cobol. But it has now
been done; program correctness has
changed from being impossible to
being merely hideously expensive. I
can prove the program corectness of
a two-page check writing program,
today, for about $10,000; yes, I
know that this is not cost-effective,
and the only reason I offer to do it is
because the proof would involve
quite a bit of general work that would
make succeeding proofs easier. (And
there are provisos; you have to ex-
plain to me, informally, how the pro-
gram works, and I take no responsi-
bility for the Cobol manuals being

wrong, which has happened to me in
the past.)

(17) " T h e d e s i r e to m a k e p r o g r a m s c o r r e c t

is c o n s t r u c t i v e a n d v a l u a b l e . . , t h i s is n o t

t he m o m e n t to r e s t r i c t r e s e a r c h o n p r o -

g r a m m i n g " (p . 2 7 9) .

Let no one forget that these
words were also written by De Millo,
Lipton and Perlis.

W.D. MAURER
School of Engineering
and Applied Science
George Washington University
Washington, DC 20052

1. Abrahams, P.W. Machine verification of
mathematical proof. Sc.D. Th., Dept. of Mathe-
matics, MIT, Cambridge, Mass., June 1963.
2, Floyd, R.W. Assigning meanings to pro-
grams. Proc. Syrup. Applied Math. 19 (Mathe-
matical Aspects of Computer Science), Amer.
Math. Soc., Providence, R.I., 1967, pp. 19-32.
3, Maurer, W.D. On minimal decompositions of
group machines. Ph.D. Th., Dept. of Mathematics,
U. of California, Berkeley, Jan. 1965.
4. Maurer, W.D. Some correctness principles
for machine language programs and micropro-
grams. Proc. 7th Annual Workshop on Micropro-
gramming (MICRO 7), Palo Alto, Calif., Sept.
1974, pp. 225-234.
5. Maurer, W.D. Proving the correctness of a
flight-director program for an airborne minicom-
puter. Proc. ACM SIGMINI /S IGPLAN Interface
Meeting, New Orleans, La., March 1976, pp. 103-
108.
6. Maurer, W.D. Software systems design and
correct software. Proc. IEEE COMPCON 77,
Spring (14th IEEE Computer Soc. International
Conf.) , San Francisco, Calif., Feb. 1977, pp. 194-
197.
7. Maurer, W.D. A microcomputer program
verifier and its assertion language. Proc. 12th
Hawaii International Conference on System Sci-
ences, Honolulu, Hawaii, Jan. 1979.

A uthors' Response:
Many of the points raised above

are addressed directly in our paper,
so in deference to conciseness we will
not a t t empt a p a r a g r a p h - b y - p a r a -
graph response to the correspondents.

Van den Bos raises the possibility
that our stance is in some sense an-
ticipated by more conventional phi-
losophies of science and mathemat-
ics. Indeed, we referred in the article
to the beautiful monograph by Laka-
tos [1]. Since writing the paper, we
have uncovered several other sources
of essentially the same notions in
computer science and mathematics.
The most striking of these is the dis-
cursive chapter on proof in [2]. Van
den Bos is incorrect, however, in his
assertion concerning "normal sci-
ence": Scientific theories should have
tests in reality!

Lienhard and Denenberg both
ra i se the c o n c e p t of r e l i ab i l i t y
coupled to validity. If by validity,
they mean knowledge in fact of cor-
rectness, if they mean certainty, then

we do not believe that validity is pos-
sible. In a manner of speaking we
hold a view which is exactly opposite
to Lamport 's . Lakatos [1] has put it
beautifully: " 'certainty' is far from
being a sign of success, it is only a
symptom of lack of imagination, of
concep tua l pover ty . It p roduces
smug satisfaction and prevents the
growth of knowledge."

The points raised by Lienhard,
Hill and Zettel concerning program
style have considerable merit. We do
not advocate sloppy or intellectually
inefficient programming techniques;
on the other hand style must not be
credited with more than it is capable
of del iver ing. P r o g r a m m i n g tech-
lvique cannot take.one far in the ab-
sence of talent. We are reminded of
Gauss's rebuke of a colleague: " . . .
[he] needs notions not notations!"

The arguments raised by Abram-
son and Turner are of course theo-
retical variations on the "who will
verify the verifier?" theme. Although
Abramson's point is technically cor-
rect, it does not necessarily imply
that verification is meaningless. Rec-
ognizing early the theoretical intrac-
tability of automated verification, the
verification community abandoned
the un i fo rm appl icab i l i ty of their
techniques , concen t ra t ing on pro-
grams that are "verifiable" and lan-
guages which encourage their con-
struction. It is not necessary to invoke
so esoteric an example of a program
which is not a verifiable program; the
fact that there are valuable programs
to which the social process cannot
apply seems to us an insurmountable
difficulty. Turner 's concern Over spec-
ification raises another problem. If
formal specification of the type re-
quired by these techniques is any less
error prone than programming, why
bother with the programming step at
all? As Turner points out, such a
specification is really an executable
object, and if it is more reliable than
the program with which it will be
proved consistent, then the program
is downright dangerous!

Lamport and Maurer display an
amazing inability to distinguish be-
tween algorithms and programs. Of
course, the social processes of math-

629 C o m m u n i c a t i o n s
o f
t he A C M

N o v e m b e r 1979
V o l u m e 2 2
N u m b e r 11

ematics will apply to algorithms and
even to their proofs! One has only to
glance at [3] or [4] or the proceed-
ings of any recent SIGACT conference
to see the processes at work--with
noticeable disregard of the trappings
of p rog ram ver i f icat ion. Maure r
makes our point. He was able to mull
over his 1 l-line sorting program pre-
cisely because it is compac t and
clean and interesting-the fact that
[4] is devoted largely to sorting algo-
rithms and their mathematical treat-
ment testifies to the inherent attrac-
t iveness of such problems. Would
Maurer be as motivated to mull over
the properties of a report writer em-
bedded deep within someone's Cobol
fixed assets package? Maurer would
probably claim that he would, but we
have seen some of this code (out of
necessity, not choice) and there is
nothing interesting about it; it is de-
tailed and baroque and valuable, but
it is also very boring. Number theo-
rists and accountants both do inter-
esting and valuable things with num-
bers. But to a number theorist, the
numbers are personal friends to be
cultivated and dealt with individu-
ally. The folklore of mathematics is
filled with stories of mathematical
discoveries resulting from an "idle"
consideration of a number. It is hard
to imagine an accountant sustaining
the same interest in his ledger figures.
We think that the implications for
p rog ram proving are clear. Com-
puter scientists enjoy computers and
programming, but to the rest of the
world the computer is a tool.

Maurer also expounds a view of
mathematics which is fairly far re-
moved from our experience. In our
paper we attempted to present math-
ematical proof in a setting which is
much closer to what we perceive is
mathematical practice. A still more
current example can be found in the
Mathematical Intelligencer (Volume
1, No. 4, 1979). In an article en-
titled "A Proof that Euler Missed,"
A. van der P oo r t en describes a
"proof" that the Riemann Zeta func-
tion, when evaluated at 3, is irra-
tional. Some excerpts:
1. It seems that Apery has shown
that zeta(3) is irrational.

2. What on earth is going on here?
3. Apery's incredible proof appears
to be a mixture of miracles and mys-
teries.

It is hard to imagine such a field
benefiting at all from the approach
suggested by Maurer.

Maurer also seems to have missed
the point that there is no notion of
continuity which makes "scaling up"
or approximation at all sensible. His
characterization of the Tacoma Nar-
rows Bridge disaster as the result of
not proving that bridges don't col-
lapse is a complete distortion of fact,
and to suggest that engineers do so
now is simply false.

It seems to us that the only po-
tential virtue of program proving lies
in the hope of obtaining perfection.
If one now claims that a proof of cor-
rectness can raise confidence even
though it is not perfect or that an in-
completed proof can help one locate
errors, then that claim must be justi-
fied! There is absolutely no objective
evidence that program verification is
as effective as, say, ad hoc program
testing in this regard. Indeed, all we
have to go on are the testimonials of
the verifiers-hardly a disinterested
group.

Finally, pervading several of the
letters is the sense that if only we did
things this way or that way or if we
drastically shifted our activities, then
program proving would work. Per-
haps, but we are troubled by Thor-
eau's advice: "Beware of any enter-
prise that requires new clothes."

RICHARD A . D E M I L L O

Georgia Tech
Atlanta, GA 30332

RICHARD J. LIPTON

University of California
Berkeley, CA 94720

ALAN J. PERLIS

Yale University
New Haven, CT 06520

1. Lakatos, I. ProoJ and ReJutations: The Logic
o/Mathematical Discovery. Cambridge, 1978.
2. Manin, :Yu I. .4 Course in Mathematical
Logic. Springer-Verlag, 1977.
3. Aho, A., Hopcroft, J., and Ullman, J. The
Design and Analysis o] Computer Algorithms.
Addison-Wesley, 1974.
4. Knuth, D.E. The Art o] Computer Program-
ming, Vol. 3, Sorting and Searching: Addison-
Wesley, 1973.

I official
~ _ _ _ ladministrat ive

oh.p,e,
q l e d g v m • •1 sig

n e w s
A C M Contributes to CSA Exam

Study. President Daniel D. Mc-
Cracken ccP has presented ACM'S
check for $7,500 to the Institute for
Certification of Computer Profes-
sionals for development work on the
Certificate in Systems Analysis exam-
ination. ACM'S contribution should
carry the program forward through
its first year.

William W. Cotterman, Georgia
State University, is chairman of the
ICCP ad hoc Commi t t ee on CSA.
Committee members are J. Daniel
Couger , Univers i ty of Co lo rado ;
Norman L. Enger, Applied Manage-
ment Systems; Frederick G. Harold,
F lo r ida At lan t ic Univers i ty ; and
Clement L. McGowan, SofTech.

A C M Announces College Con-
suiting Service. The Association has
initiated a consulting service for the
purpose of providing knowledgeable
computer personnel to assist colleges
and universities in planning for and
util izing compu te r s in three main
areas: (1) the uses of computers in
education; (2) computer science and
information systems curricula; and
(3) planning, selection, and adminis-
tration of computing resources.

The service, which is intended
primarily for undergraduate institu-
tions, is to be adminstered by Gerald
L. Engel of the Christopher Newport
College, and Richard H. Austing of
the University of Maryland, through
ACM'S Cur r icu lum Commi t t ee on
Computer Education.

Colleges and universities desir-
ing to obtain the help of a consultant
through this service during the 1979/
80 academic year must submit an ap-
plication form including information
on current facilities and plans as well
as preferred visit dates. Selected ap-
plicants will be provided with the
name of a qualified computer profes-
sional and will be expected to make
appropriate arrangements with that

630 Communications
of
the ACM

November 1979
Volume 22
Number 11

