
2!

}~Ek\i[A];~/I(ON A L G O R I T H M 292 [$22]*
]~EGULAR COULOMB WAVE FUNCTIONS [Walter

Gautschi, Comm. A C M 9 (Nov. 1966), 793]
AND ON
REi \ IARK ON A L G O R I T H M 292 [$22]
REGULAR COULOMB WAVE FUNCTIONS [Walter

Gautschi, Comm. A C M I2 (May 1969), 280]
W. J. CODr AND KATHLEEY A. PACmaEK (Reed. 8 Sept.

1969 and 8 May 1970)
Argonne National Laboratory, Argonne, I L 60439

* Work performed under the auspices of the US Atomic Energy
Commission.

KEY WORDS AND P H R A S E S : Coulomb wave functions, wave
functions, regular Coulomb wave functions
CR C A T E G O R I E S : 5.12

The revised version of the procedure Coulomb was t ranslated
into IBM System/360 Algol and tested on an IBM S/360 Model 75
Computer. When v > 12 overflow problems were encountered in
the generation of in termediate arrays. These were due to the
smaller exponent range of the S/360, --64 _< exp < 63. The follow-
ing changes, while not completely eliminating the overflow prob-
e ins, great ly al leviate them.

tr~sert real scale;
after b e g i n i n t e g e r L, nu, nui , mu, mul, i, k;

Insert scale := 16 ~ (- 5 7) ;
c o m m e n t This value of scale is appropriate for the IBM S/360.

On a machine with a different base and a different exponent
range, say a < exp _< ¢L the value of scale should be base ~"
(6-f~);

between e n d ;
and epsilon := .5 X 10 T (- d) ;

Change lambda [0] := lmin f0] := 1; lambda [1] := omega-eta;
sum := ro X exp (omega X to);

to lambda [0] := scale; lmin [0] := 1;
lambda [1] := (omega-eta) X scale;
sum := ro X exp(omega X to) X scale;

Change lmin[L] := R r a [L - - 1] X l m i n [L - 1];
to b e g i n

tl := Rra [L -- 1] N lmin [L -- 11;
c o m m e n t The following constant 5 ~" (-10) is approximately

2 X base T o~/scale, where base is the base of the f loat ing-
point number system and a < exp _~ ~;

lmin[L] := i f abs(tl) > 5 ~" (--10) t h e n
tl e lse 0

end;

Change lain [0] := - r l ; lam [1] := 1;
to lain [0] := - r l X scale; lain [1] := scale;

Change lambda [L] := lmin [L] + tl X (lain ILl + r l X lmin [L])
to lambda [L] := lmin [L] X scale + tl X

(lain [L] + r l X scale X lmin [LD

Change F[0] := s u m / (l + s) ;
to F[0] := sum/(scale+s);

The authors grateful ly acknowledge the referee's helpful sug-
gestions.

The policy concerning the contributions of algorithms to
Communications of the A CM has been revised and was pub-
lished in the August 1970 issue, page 513. Copies of "Algo-
r i thm Policy / Revised August 1970" will be mailed upon
request.

Short Communications

r~Oaa~MM~Na TEeHN~ES

Comment on Bell's Quadratic Quotient

Method for Hash Code Searching

LESLIE LAMPOiRT

Appl ied Data Research, Inc., Wakefield, Massachusetts

Key Words and Phrases: hashing, hash code, scat ter storage,
calculated address, clustering, search, symbol table, keys, table
look-up
CR Categories: 3.74, 4.9

In a recent paper [1], James R. Bell gave a method for
resolving collisions in a hash coded table search which
generalized tile quadratic search method of W. D. Maurer
[2]. However, he ignored an important anomaly of Maurer's
method, as well as one singular ease.

In the quadratic search method, table locations
k + ai + bi 2 modulo p are examined sequentially for
i = 0, 1, 2, . . • ; where p is tile table size which is a prime
number, k is the hash code of the entry's key, and a and b
are constants with b # 0 (p). The same table location is
examined for i = it and i = /2, il # /~, if and only if

k T ail + bil 2 ~ k + ai2 + bi22(p)

which is true if and only if

(i~ -- il)[a + b(i~ + / 2)] ~- 0.

This in turn is true if and only if

i1~-i2 or it + i~ ~ (p - a) /~b ,

where/v denotes division in the field of integers modulo p.
I t is easy to see from this that the procedure examines
(p + 1) / 2 different table locations, if p > 2. However, it
will examine them all on its first (p + 1)/2 tries only if
a -= 0. Therefore, for an efficient procedure we should take
a ~ 0. The search can then be stopped after (p + 1)/2
tries.

Bell's improvement of this procedure consists of letting
a and b be pseudorandom functions of the entry's key.
For his aIgorithm [1, p. 108],

a ~ "some fixed constant" + Q/v2

b ~ Q/p2,

where Q is a function of the entry's key, and p > 2. (Al-
though Bell states that a is a constant, this is not true for
the algorithm he describes.) The algorithm considers the
search a failure (table "full" and entry not in it) when it
returns to the first location examined. This occurs on ~he
i t h t r y , w h e r e l < i < p + l, i - 1 -= (p - a)/vb. A t
that time, every other location which it has examined will

Volume 13 / Number 9 / September , 1970 C o m m u n i c a t i o n s o f t he ACM 573

have been examined twice. Clearly, half the table will be
searched only if we replace the "fixed constmlt" by a
number congruent to - Q/v2. However, even if this is done,
there is still the problem that when Q ~- 0, only one table
location is examined!

To correct these problems, replace steps (3) and (4) of
Bell's algorithm with:

(3) Initialize A with C, where C is defined below.
(4) Increment A by 2Q.

For this algorithm, we have a = Q + C, b = Q. We must
then choose C so that C ~ - Q i f Q ¢ 0 a n d C ¢ - Q i f
Q ~- 0. The algorithm will then search (p + 1)/2 locations
if Q ~ 0, and will search all p locations if Q -= 0.

The trouble with this algorithm is that it requires testing
for Q ~ 0, which means performing an extra division. A
seemingly possible way out is to observe that if (p - a)/vb

- j , b ¢ 0, then the algorithm searchesj fewer locations
before it starts re-examining locations. We can then try to
choose C so that we get j to be small, thereby examining
nearly half the table before repeating. However, this re-
quires that we make C ~ - (j + 1)Q. There does not ap-
pear to be any simple algorithm for choosing a C satisfying
this congruence for a small j when Q fi 0, and choosing
C ¢ - Q when Q ~ 0. ~ It seems that the division is neces-
sary.

The corrected version of Bell's algorithm still contains a
gross inefficiency. For Q ~ 0, it decided that the search is a
failure after p tries, instead of the necessary (p q- 1)/2
tries. This is easily corrected by changing the criterion for
failure.

In summary, Bell's algorithm requires a correction which
adds an extra division to the initialization procedure. This
must be considered in evaluating its efficiency. Bell's table
comparing the efficiency of his method with that of
Maurer's indicates that this extra initialization cost is
justified only if checking a single entry is a relatively time
consuming operation.

REFERENCES :

I. BELL, JAMES R. The quadratic quotient method: a hash code
eliminating secondary clustering. Comm. ACM 13, 2 (Feb.
1970), 107-109.

2. Ma_URER, W. D. An improved hash code for scatter storage.
Comm. ACM 11, 1 (Jan. 1968), 35-38.

REPLY BY BELL. Before discussing Lamport's comment
in detail, let us consider the correct observation on which
it is based: Although any quadratic search (including
quadratic quotient) hits half of the table entries, some-
times some entries are hit twice before others are hit once.

In other words, K + ai + bi 2 may not have maximum
period for an arbitrary a and b. The author proves that
forcing a to zero will guarantee maximal period.

A much simpler constraint is to let the constant in step

1 Note added in proof: In his reply below, Bell gives a simple
method of choosing j = 1.

(8) of the original algorithm be zero. Then

h~(K) = R + (Q/2)i + (Q/2)i'

and we first return to our original hash address when

R = R + (Q / 2) i ÷ (Q/2)i ~,
that is, when

i = - 1 or i = O or Q = 0 .
The first two cases state that h (K) has a maximum perio-
dicity. The third case is the degenerate one where the quo-
tient is congruent to zero. We could use a division to spot
the degenerate case. But by adopting the suggestion of
paragraph 3 of Section 3c of the original article we can use

(Q A lowbitmask) + 1

in lieu of Q to guarantee that this case does not occur.
Lamport has taken a more complicated approach.

SCIENTIFIC APPLICATIONS

On the Number of Automorphisms of a
Singly Generated Automaton

ZAMIi~ B~.VEL

University of Kansas,* Lawrence, Kansas

Key Words and Phrases: automata, finite automata, singly gen-
erated automata, automorphisms, generators, le, ngth of state,
minimal-length generators, orbit.
CR CATEGORY: 5.22

1. Introduction

Weeg proved in [3] that the number of automorphisms of
a strongly connected finite automaton divides the number
of states of the automaton. In [1, Th. 6], the author
generalized this result to finite singly generated automata
by proving that the number of automorphisms of such
an automaton A divides the number of generators of A.
This brief note improves the latter result. The number of
automorphisms of A is shown to divide the number of
minimal-length generators of A.

The improvement is of practical value not only in the
more general case of singly generated automata but also
in the strongly connected case, for the number of states
whose length is minimal is usually much smaller than the
number of states of the automaton. The improvement is
particularly striking when the number of generators (states,
in the strongly connected case) is large but only one of
them is of minimal length; in that case, the only auto-
morphism is the identity. But without the present result
it may be necessary to examine up to half the number of

* Department of Computer Science. This work was supported in
part by the National Science Foundation under Grant GJ-639.

574 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 13 / Number 9 / September , 1970

