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The revised version of the procedure Coulomb was t ranslated 
into IBM System/360 Algol and tested on an IBM S/360 Model 75 
Computer.  When v > 12 overflow problems were encountered in 
the generation of in termediate  arrays. These were due to the 
smaller exponent range of the S/360, --64 _< exp < 63. The follow- 
ing changes, while not  completely eliminating the overflow prob- 
e ins, great ly  al leviate them. 

tr~sert real  scale; 
after b e g i n  i n t e g e r  L, nu, nui ,  mu, mul,  i, k; 

Insert scale := 16 ~ ( - 5 7 ) ;  
c o m m e n t  This value of scale is appropriate for the IBM S/360. 

On a machine with a different base and a different exponent 
range, say a < exp _< ¢L the value of scale should be base ~" 
(6-f~); 

between e n d ;  
and epsilon :=  .5 X 10 T ( - d ) ;  

Change lambda [0] :=  lmin f0] := 1; lambda [1] := omega-eta; 
sum := ro X exp (omega X to); 

to lambda [0] := scale; lmin [0] := 1; 
lambda [1] := (omega-eta) X scale; 
sum := ro X exp(omega X to) X scale; 

Change lmin[L] := R r a [ L - -  1 ] X l m i n [ L -  1]; 
to b e g i n  

tl  := Rra [L -- 1] N lmin [L -- 11; 
c o m m e n t  The following constant 5 ~" ( -10)  is approximately 

2 X base T o~/scale, where base is the base of the f loat ing-  
point  number system and a < exp _~ ~; 

lmin[L] := i f  abs(tl) > 5 ~" (--10) t h e n  
tl e lse  0 

end; 

Change lain [0] :=  - r l ;  lam [1] := 1; 
to lain [0] :=  - r l  X scale; lain [1] :=  scale; 

Change lambda [L] :=  lmin [L] + tl  X (lain ILl + r l  X lmin [L]) 
to lambda [L] := lmin [L] X scale + tl  X 

(lain [L] + r l  X scale X lmin [LD 

Change F[0] := s u m / ( l + s ) ;  
to F[0] := sum/(scale+s);  

The authors grateful ly acknowledge the referee's helpful sug- 
gestions. 

The policy concerning the contributions of algorithms to 
Communications of the A CM has been revised and was pub- 
lished in the August 1970 issue, page 513. Copies of "Algo- 
r i thm Policy / Revised August  1970" will be mailed upon 
request. 
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In  a recent paper [1], James R. Bell gave a method for 
resolving collisions in a hash coded table search which 
generalized tile quadratic search method of W. D. Maurer 
[2]. However, he ignored an important anomaly of Maurer's 
method, as well as one singular ease. 

In  the quadratic search method, table locations 
k + ai + bi 2 modulo p are examined sequentially for 
i = 0, 1, 2, . .  • ; where p is tile table size which is a prime 
number, k is the hash code of the entry's key, and a and b 
are constants with b # 0 (p). The same table location is 
examined for i = it and i = /2, il # /~, if and only if 

k T ail + bil 2 ~ k + ai2 + bi22(p ) 

which is true if and only if 

(i~ -- il)[a + b(i~ + / 2 ) ]  ~- 0. 

This in turn is true if and only if 

i1~-i2 or it + i~ ~ (p - a ) /~b ,  

where/v  denotes division in the field of integers modulo p. 
I t  is easy to see from this that the procedure examines 
(p + 1 ) / 2  different table locations, if p > 2. However, it 
will examine them all on its first (p + 1)/2 tries only if 
a -= 0. Therefore, for an efficient procedure we should take 
a ~ 0. The search can then be stopped after (p + 1)/2 
tries. 

Bell's improvement of this procedure consists of letting 
a and b be pseudorandom functions of the entry's key. 
For his aIgorithm [1, p. 108], 

a ~ "some fixed constant" + Q/v2 

b ~ Q/p2, 

where Q is a function of the entry's key, and p > 2. (Al- 
though Bell states that  a is a constant, this is not true for 
the algorithm he describes.) The algorithm considers the 
search a failure (table "full" and entry not in it) when it 
returns to the first location examined. This occurs on ~he 
i t h t r y ,  w h e r e l  < i < p + l, i - 1 -= (p - a)/vb.  A t  
that  time, every other location which it has examined will 
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have been examined twice. Clearly, half the table will be 
searched only if we replace the "fixed constmlt" by a 
number congruent to - Q/v2. However, even if this is done, 
there is still the problem that when Q ~- 0, only one table 
location is examined! 

To correct these problems, replace steps (3) and (4) of 
Bell's algorithm with: 

(3) Initialize A with C, where C is defined below. 
(4) Increment A by 2Q. 

For this algorithm, we have a = Q + C, b = Q. We must 
then choose C so that C ~ - Q i f Q  ¢ 0 a n d C  ¢ - Q i f  
Q ~- 0. The algorithm will then search (p + 1 )/2 locations 
if Q ~ 0, and will search all p locations if Q -= 0. 

The trouble with this algorithm is that it requires testing 
for Q ~ 0, which means performing an extra division. A 
seemingly possible way out is to observe that if (p - a)/vb 

- j ,  b ¢ 0, then the algorithm searchesj fewer locations 
before it starts re-examining locations. We can then try to 
choose C so that we get j to be small, thereby examining 
nearly half the table before repeating. However, this re- 
quires that we make C ~ - (j + 1)Q. There does not ap- 
pear to be any simple algorithm for choosing a C satisfying 
this congruence for a small j when Q fi 0, and choosing 
C ¢ - Q  when Q ~ 0. ~ It  seems that the division is neces- 
sary. 

The corrected version of Bell's algorithm still contains a 
gross inefficiency. For Q ~ 0, it decided that the search is a 
failure after p tries, instead of the necessary (p q- 1)/2 
tries. This is easily corrected by changing the criterion for 
failure. 

In summary, Bell's algorithm requires a correction which 
adds an extra division to the initialization procedure. This 
must be considered in evaluating its efficiency. Bell's table 
comparing the efficiency of his method with that of 
Maurer's indicates that this extra initialization cost is 
justified only if checking a single entry is a relatively time 
consuming operation. 
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REPLY BY BELL. Before discussing Lamport's comment 
in detail, let us consider the correct observation on which 
it is based: Although any quadratic search (including 
quadratic quotient) hits half of the table entries, some- 
times some entries are hit twice before others are hit once. 

In other words, K + ai + bi 2 may not have maximum 
period for an arbitrary a and b. The author proves that 
forcing a to zero will guarantee maximal period. 

A much simpler constraint is to let the constant in step 

1 Note added in proof: In his reply below, Bell gives a simple 
method of choosing j = 1. 

(8) of the original algorithm be zero. Then 

h~(K) = R + (Q/2)i + (Q/2)i' 

and we first return to our original hash address when 

R = R +  ( Q / 2 ) i ÷  (Q/2)i ~, 
that is, when 

i =  - 1  or i = O  or Q = 0 .  
The first two cases state that h (K) has a maximum perio- 
dicity. The third case is the degenerate one where the quo- 
tient is congruent to zero. We could use a division to spot 
the degenerate case. But by adopting the suggestion of 
paragraph 3 of Section 3c of the original article we can use 

(Q A lowbitmask) + 1 

in lieu of Q to guarantee that this case does not occur. 
Lamport has taken a more complicated approach. 
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1. Introduction 

Weeg proved in [3] that the number of automorphisms of 
a strongly connected finite automaton divides the number 
of states of the automaton. In [1, Th. 6], the author 
generalized this result to finite singly generated automata 
by proving that  the number of automorphisms of such 
an automaton A divides the number of generators of A. 
This brief note improves the latter result. The number of 
automorphisms of A is shown to divide the number of 
minimal-length generators of A. 

The improvement is of practical value not only in the 
more general case of singly generated automata but also 
in the strongly connected case, for the number of states 
whose length is minimal is usually much smaller than the 
number of states of the automaton. The improvement is 
particularly striking when the number of generators (states, 
in the strongly connected case) is large but only one of 
them is of minimal length; in that case, the only auto- 
morphism is the identity. But without the present result 
it may be necessary to examine up to half the number of 
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