
Euclid Writes an Algorithm:
A Fairytale

Translated from an anonymous Greek manuscript by
Leslie Lamport, Microsoft Research

Illustrated by Steve D. K. Richards
http://web.me.com/stevedeuce

6 June 2011

Prepared for a Festschrift celebrating the 60th birthday
of Manfred Broy.

Abstract

How Euclid might have written and checked the correctness of his
famous algorithm had he been a little further ahead of his time.

Euclid of Alexandria was thinking. A traveler had that morning told
him of a marvelous thing he had learned many years earlier from Eudoxus
of Cnidus: a marvelous way to find the greatest common divisor of two num-
bers. But Eudoxus had not revealed the proof, and Euclid was wondering
if it really was correct. He welcomed the distraction. Writing his Elements
had become wearisome, and he was not sure he would ever finish.

As Euclid idly scribbled in the sand, there suddenly appeared before him
a beautiful woman wearing a diaphanous gown.

“Who are you that disturbs my thoughts?” he asked.
“I am a Fairy Godmother, but my friends call me FG.”
“Wherefore have you appeared so abruptly?”
“I am from 2300 years in the future, and I have come to take you there so

you can write this algorithm that so intrigues you as it will then be written.”
“What is an algorithm?”
“There will be time to explain such things during our voyage. Come.”
FG led Euclid into the temporal wormhole from which she had emerged,

and they began their journey. As they traveled, she explained to Euclid what
someone in the twenty-first century A.D. needed to know, including com-
puters, programs, and mortgage-backed securities (which, in truth, Euclid
only pretended to understand).

After what seemed like a few weeks, FG said, “We have arrived in the
year people now call 2010.”

“Why chose you this year?”
“It is the sixtieth anniversary of the birth of the computer scientist Pro-

fessor Manfred Broy. In celebration, people are bringing him gifts. I have
taken you here to write this algorithm so we can present it to him.”

“He must be a wise and beloved man.”
“Indeed he is. But there is no time now to speak of him. We must be

off.”
FG led him to a shopping mall where she bought a brand-new computer.

“Let us now take it to my place and set it up,” she said.
FG spent two hours setting up the computer, occasionally uttering ex-

pletives that were not Greek to Euclid.
Euclid was puzzled. Finally, he said: “You have such wonderful devices.

Why are they so hard to use?”
FG replied, “We have made our computers so complicated that we can

no longer understand them. We now suffer the consequences.”
Euclid found this strange. But he was eager to begin writing his algo-

rithm, so he let it pass. “How do I begin?” he asked.

1

There suddenly appeared before him a beautiful
woman wearing a diaphanous gown.

2

module TheAlgorithm
extends Integers

constants M , N

(**********
--algorithm ComputeGCD
{ variables x = M , y = N ;
{ while (x 6= y) { if (x < y) { y : = y − x }

else { x : = x − y } } } }
**********)
(* BEGIN TRANSLATION *)
(* END TRANSLATION *)

Figure 1: Euclid’s first attempt.

“You must first choose a programming language in which to write the
algorithm.”

“But I am writing an algorithm, not a program.”
FG didn’t know how to respond to that. So, they searched the Web.

(Euclid read only the Greek of his day, and FG had to translate everything
they found.) They discovered something named PlusCal that was said to
be an algorithm language. From the documentation1, it looked like a pro-
gramming language. Since it was much simpler than any other (executable)
programming language FG had seen, Euclid decided to give it a try.

To use PlusCal, the documentation said they should download the TLA+

Toolbox, which is an IDE for TLA+. Euclid didn’t understand why people
used such incomprehensible strings of letters as IDE, TLA, and CIA.2 He
decided it was because of the strange custom, mentioned in passing by FG,
of feeding their children soup made from the alphabet.

FG and Euclid downloaded the Toolbox. With the aid of the documen-
tation, some trial and error, and much help from FG, Euclid succeeded in
writing the algorithm shown in Figure 1.3 (FG explained to him modern
mathematical notation, like the = symbol, and many modern concepts that
the documentation assumed.)

The algorithm Euclid wrote is meant to compute the greatest common
divisor (gcd) of two numbers M and N . When it terminates, x and y should

1Small superscript numbers, like the one above that led you to read this footnote, refer
to translator notes at the end.

3

With much help from FG, Euclid succeeded in writing the algorithm.

both equal that gcd. The extends statement imports the standard TLA+

module Integers that defines the usual operations of arithmetic.
Following the directions, Euclid then had the Toolbox translate the al-

gorithm. This inserted many non-Greek symbols that he didn’t understand
between the BEGIN TRANSLATION and END TRANSLATION comments. He ig-
nored them, being in a hurry to try out the algorithm.

FG had explained model checking to him, so Euclid clicked on the Tool-
box command to create a new model to check. To create the model, he
had to choose specific numbers to substitute for M and N . Euclid chose 72
and 48. He then ran the TLC model checker on the model, which quickly
informed him that no errors were detected. That wasn’t surprising, since it
wasn’t checking anything.

Euclid wanted to check that the algorithm really computed the gcd of M
and N . To do that, he first had to define the gcd. The gcd of two numbers
is the largest number that divides both of them. FG said that he needed to

4

write his definition in terms of simple logic and set theory.
Euclid was familiar with logic from studying Aristotle, and he found the

concept of a set to be obvious when FG explained it to him. He decided to
define:

p | q to be true if and only if the number p divides the number q .

Divisors(q) to be the set of divisors of the number q

Maximum(S) to be the maximum of the set of numbers S .

GCD(p, q) to be the gcd of the numbers p and q .

Euclid wrote his definitions as follows, in what he learned was a language
called TLA+, putting them immediately after the constants declaration.
(By number, Euclid meant positive integer, and he had found that . . is de-
fined in the Integers module so 1 . . q is the set of numbers from 1 through q .)4

p | q ∆= ∃ d ∈ 1 . . q : q = p ∗ d

Divisors(q) ∆= {d ∈ 1 . . q : d | q}
Maximum(S) ∆= choose x ∈ S : ∀ y ∈ S : x ≥ y

GCD(p, q) ∆= Maximum(Divisors(p) ∩Divisors(q))

Having defined GCD , Euclid modified his PlusCal code by adding the fol-
lowing statement after the while loop:

assert x = GCD(M ,N) ∧ y = GCD(M ,N)

This would cause the TLC model checker to report an error if, after exiting
from the while loop, x and y were not both equal to GCD(M ,N). TLC
did not report any error.

Euclid was now convinced that the algorithm worked for M = 72 and
N = 48. He could check it for other values of M and N by editing the
model, but that would be pretty tedious. Surely there must be a better way.

Reading more about PlusCal, Euclid found that, for any numbers M and
N , he could easily check that the algorithm computed the correct gcd of all
numbers x from 1 through M and y from 1 through N . To do this, he first
changed the declarations of the variables so x initially equals any number
from 1 through M and y initially equals any number from 1 through N . He
next added two variables x0 and y0 to “remember” the initial values of x
and y . This produced the following variable-declaration statement:

variables x ∈ 1 . .M , y ∈ 1 . .N , x0 = x , y0 = y ;

5

He then changed the assert statement after the while loop to:

assert x = GCD(x0, y0) ∧ y = GCD(x0, y0)

After translating this new algorithm, running TLC on the same model (M =
72 and N = 48) took a little over a minute to check all executions with those
initial values of x and y . It found no errors.

Euclid was now pretty confident that the algorithm would not compute
an incorrect gcd. However, what if it failed to compute the gcd of some pair
of numbers because it never finished, staying forever in the while loop? The
assert statement could not catch the error because that statement would
never be reached in such an execution.

In the Toolbox, Euclid saw a property labeled Termination that he could
select for checking. He was sure this would show whether the algorithm
finished in all those executions. But FG said that his time in the future was
limited, so he had best stick to checking only that the algorithm produced
the correct answer if it stopped.

Euclid reluctantly agreed. He would verify only this property of the
algorithm. He was quite sure that the algorithm did satisfy it, since TLC
had checked it for those 3456 pairs of initial values of x and y . But Euclid was
a mathematician. It didn’t matter how many particular values he checked
in this way; he wanted a proof.

How could he write a proof? Proof means mathematics, but the algo-
rithm wasn’t mathematics. It was written in the strange PlusCal language
that he didn’t completely understand. Exactly what did while and if and
that funny symbol : = mean?

Euclid realized that the answer lay in those symbols that the translator
had inserted between the BEGIN TRANSLATION and END TRANSLATION com-
ments. So, he sat down and began studying them. And studying them.
He spent many hours examining the translations of the two versions of the
algorithm he had written.

Finally, he shouted “Eureka!” (This was his favorite exclamation; it was
copied by his admirer Archimedes of Syracuse.) What Euclid had found was
that an execution of an algorithm is a sequence of states, where a state is an
assignment of values to variables. The algorithm’s executions are described
by two formulas:

• An initial predicate that specifies possible initial states. It contains
the algorithm’s variables. A possible initial state is an assignment of
values to variables that satisfies this formula.

6

• A next-state relation that specifies all possible steps from one state
to the next. It contains the algorithm’s variables, some occurrences
of which are primed. A step from a state s to a state t is possible if
the formula is satisfied when the unprimed variables are assigned their
values in s and the primed variables are assigned their values in t .

There were some other formulas in the PlusCal translation that Euclid didn’t
understand. They contained the symbol 2 and some subscripts. These
formulas didn’t seem important, so he ignored them.

The idea of describing the algorithm by an initial predicate and a next-
state action was wonderfully simple. They were mathematical formulas,
and he could prove things about mathematical formulas. But he found the
formulas produced by the translator to be more complicated than they had
to be. They contained an extra variable pc that had the value “Lbl 1” while
the algorithm was executing the while loop and the value “Done” after it
had finished. Moreover, in a state with pc equal to “Done”, the next-state
relation allowed steps in which no variables changed.

Euclid could describe this algorithm with simpler formulas. There was
no need for PlusCal and its extra variable pc. He could write his own
initial predicate and next-state relation. His next-state relation would not
be satisfied by any next state if the values of x and y were equal in the current
state. The algorithm would therefore stop in such a state. He defined his
initial predicate and next-state relation as

Init ∆= x = M ∧ y = N

Next ∆= (x < y ∧ y ′ = y − x ∧ x ′ = x) ∨
(y < x ∧ x ′ = x − y ∧ y ′ = y)

When he showed these to FG, she reminded him that the definition of Next
would be easier to read if he used the TLA+ convention of writing disjunc-
tions and conjunctions as lists of formulas bulleted by ∨ and ∧. Changing
this definition, he arrived at the TLA+ description of the algorithm in Fig-
ure 2.

Euclid looked with satisfaction at formulas Init and Next . “What a
simple and natural way to write the algorithm,” he said. “Why do people
use languages like PlusCal that make it more complicated? Why don’t they
just use mathematics, which is so simple?”

FG answered: “The people who design computers and write programs
think that mathematics is too difficult. They find while loops and if state-
ments easier to understand than sets and logic.”

7

module TheAlgorithmInTLA
extends Integers
constants M , N
variables x , y

Init ∆= (x = M) ∧ (y = N)

Next ∆= ∨ ∧ x < y
∧ y ′ = y − x
∧ x ′ = x

∨ ∧ y < x
∧ x ′ = x − y
∧ y ′ = y

Figure 2: Euclid’s description of the algorithm in TLA+.

“No wonder computers are so hard to use!” exclaimed Euclid. “I must
finish my Elements so they will see how simple and powerful mathematics
really is.”

FG did not have the heart to tell him that he did finish his Elements, but
programmers still think programming languages are simple and mathematics
is complicated.

Euclid had no time to dwell on these thoughts. He had expressed the
algorithm with two simple formulas, but he still had to prove that it produces
the correct answer if and when it stops.

Euclid couldn’t think of any way to show that a formula is true when
an algorithm stops. It seemed better to try to prove that a formula is true
throughout the entire execution of the algorithm. Since the algorithm is
stopped when x equals y , he just needed to prove that the every state of
every execution of the algorithm satisfied5

(x = y) ⇒ (x = GCD(M ,N) ∧ y = GCD(M ,N))

He named this formula ResultCorrect .
At this point, Euclid decided it would be wise to use the TLC model

checker to be sure he hadn’t made a mistake. He learned that a formula
that is true in every state of every execution is called an invariant, and that
TLC can check if a formula is an invariant. He created a model just like
before (substituting 72 for M and 48 for N) and ran TLC to check that
ResultCorrect really is an invariant of the algorithm.

8

TLC reported the error deadlock reached. Euclid examined the error
trace displayed by the Toolbox, but it showed a perfectly fine execution. He
asked FG to explain what deadlock meant, and she did.

“Deadlock is just a synonym for termination,” said Euclid. “Both mean
that the algorithm has reached a state from which it cannot take a step.”
Then he remembered those steps leaving all variables unchanged that are
allowed by the PlusCal translator’s next-state relation. He saw that they
were added just to keep the model checker from thinking that the algorithm
has stopped when it has stopped.

Fortunately, it was easy to tell TLC not to report deadlock as an error,
after which it found no error. Euclid then returned to the problem of proving
that ResultCorrect is an invariant.

Euclid knew he could use mathematical induction to prove that a formula
F is true in all states of any execution. He just had to prove two things:

(1) F is true in any possible initial state.

(2) For any states s and t , if F is true in state s and a step can go from
state s to state t , then F is true in state t .

For this algorithm, a possible initial state is one satisfying formula Init .
Euclid could see right away that this meant that (1) is expressed by the
mathematical formula

(1) Init ⇒ F

How could he write the second assertion as a formula? This stumped him
for a while. However, looking up TLA+ on the Web, Euclid (with FG’s
help) discovered that it was possible to prime a formula, not just a variable.
Priming a formula means priming all the variables in that formula. Euclid
remembered that a step from state s to state t is possible if and only if the
next-state relation Next is true when you replace the unprimed variables by
their values in state s and the primed variables by their values in state t .
He could therefore see that (2) is expressed by

(2) F ∧ Next ⇒ F ′

Proving (1) and (2) therefore proves that F is true in every state of every
execution of the algorithm—in other words, that F is an invariant.

Euclid was about to shout Eureka! when he realized that he could
not use this method to prove that ResultCorrect is an invariant. Formula
ResultCorrect is true in any state in which x and y are not equal, so (2)
could not be true when ResultCorrect is substituted for F .

9

He decided that he had to find an F satisfying (1) and (2) that implied
ResultCorrect—that is, an F satisfying

(3) F ⇒ ResultCorrect

Proving (1) and (2) proves that F is an invariant, and (3) then implies that
ResultCorrect is also an invariant. Euclid found that a suitable choice for F
would be the formula

InductiveInvariant ∆= ∧ x ∈ Number
∧ y ∈ Number
∧GCD(x , y) = GCD(M , N)

He then set about trying to prove formulas (1)–(3) with InductiveInvariant
substituted for F—formulas that he named InitProperty , NextProperty , and
WeakensProperty .

Euclid realized that he could not prove these properties without some
facts. The most obvious fact he needed was the assumption that M and N
are numbers. To write it, he had to know how to write the set of numbers in
TLA+. FG told him that what he called a number was now usually called
a non-zero natural number. The Integers module defines Nat to be the set
of natural numbers, so Euclid wrote the definition

Number ∆= Nat \ {0}

He asserted the assumption that M and N are numbers, and gave that
assumption the name NumberAssumption, by writing

assume NumberAssumption ∆= M ∈ Number ∧ N ∈ Number

Euclid knew that the algorithm’s correctness also depends on some simple
facts about the gcd. He was interested in proving the correctness of the
algorithm, not in proving such facts. So he decided to make them assump-
tions:

assume GCDProperty1 ∆= ∀ p ∈ Number : GCD(p, p) = p

assume GCDProperty2 ∆= ∀ p, q ∈ Number : GCD(p, q) = GCD(q , p)

assume GCDProperty3 ∆= ∀ p, q ∈ Number :
(p < q) ⇒ (GCD(p, q) = GCD(p, q−p))

Euclid did not want to bother proving these facts now. But what if he had
made a mistake and they weren’t really true?

10

FG suggested that they let TLC check them. The documentation told
them that it checks assume formulas, so they tried it. TLC reported the
error Nat is not enumerable. “Of course,” said Euclid. “The model checker
works by enumerating all cases. It cannot check if something is true for all
numbers because there are infinitely many of them.”

Looking through the Toolbox’s help pages, Euclid and FG discovered
that they could tell TLC to pretend that a definition had been replaced by
a new one, without having to change their formulas. They had TLC pretend
that Nat is the set 0 . . 50. After Euclid changed the values of M and N in the
model so TLC would find NumberAssumption to be true with this pretend
definition, it took about 10 seconds to determine that all the assumptions
were then true. Euclid felt confident that if the three gcd properties held
for all numbers up to 50, then he hadn’t made a mistake, so he could wait
to prove them later. He was now ready to write a proof of the algorithm.

Euclid was about to ask FG for a sandbox to write in when they noticed
that the Toolbox can also be used to run a proof checker. “Let us use that,”
he said. “Later,” said FG. “I have to do the grocery shopping now.” And
she left. While she was gone, Euclid wrote the proof in Figure 3 and had
the computer check it.

When FG returned, she found Euclid’s proof on the screen, all high-
lighted in green to indicate that it had been checked. “How did you do
that?” she asked. Euclid replied:

“I found some examples of proofs written in TLA+. The basic hierarchi-
cal structure of a proof like that of NextProperty was rather obvious once I
deduced that qed stands for what we have to prove (the current goal). It
was not hard to see that the suffices statement asserts that, to prove the
current goal, it suffices to assume the facts in the assume clause and prove
the prove clause. However, it took me a while to realize that it allows us
to assume those facts in the rest of the current proof 6, and that it made the
prove clause the current goal.

“It was a little hard getting used to explicitly stating almost everything
required by a proof—even which definitions must be used. (That’s what all
those def clauses do.) And I had a devil of a time figuring out that to use
the case assumption in the proof of 〈1〉1, I had to refer to it as 〈1〉1. (That
makes the proof look circular, as if a statement is being used to prove itself.)

“Fortunately, when the proof checker cannot verify something, the Tool-
box displays exactly what it is trying to verify. I could usually see that I
had forgotten to give it some fact or to tell it to use some definition. And I
must admit that writing exactly what’s used in each step makes it easier for
a human to understand the proof. Actually, a use statement allows you to

11

theorem InitProperty ∆= Init ⇒ InductiveInvariant
proof by NumberAssumption def Init , InductiveInvariant

theorem NextProperty ∆= InductiveInvariant ∧Next ⇒ InductiveInvariant ′

〈1〉 suffices assume InductiveInvariant , Next
prove InductiveInvariant ′

obvious

〈1〉 use def InductiveInvariant , Next

〈1〉1. case x < y
〈2〉1. y − x ∈ Number ∧ ¬(y < x)

by 〈1〉1, SimpleArithmetic def Number
〈2〉2. qed

by 〈1〉1, 〈2〉1, GCDProperty3

〈1〉2. case y < x
〈2〉1. x − y ∈ Number ∧ ¬(x < y)

by 〈1〉2, SimpleArithmetic def Number
〈2〉2. GCD(y ′, x ′) = GCD(y , x)

by 〈1〉2, 〈2〉1, GCDProperty3
〈2〉3. qed

by 〈1〉2, 〈2〉1, 〈2〉2, GCDProperty2

〈1〉3. qed

〈2〉1. (x < y) ∨ (y < x)
by SimpleArithmetic def Number

〈2〉2. qed
by 〈1〉1, 〈1〉2, 〈2〉1

theorem WeakensProperty ∆= InductiveInvariant ⇒ ResultCorrect
proof by GCDProperty1 def InductiveInvariant , ResultCorrect

Figure 3: Euclid’s machine-checked proof

12

say that facts and definitions are to be assumed for the rest of the current
proof. But I used it sparingly so the proof would be easier to read.

“I was getting nowhere trying to check proofs that depended on very sim-
ple facts about numbers until I discovered that I had to extend the standard
TLAPS module and use a magical fact from it called SimpleArithmetic.7

“I could check the proofs of individual steps by themselves as I wrote
the proof. The checker remembered what it had already verified and never
proved the same thing twice. But that wasn’t important, since it was able
to check my entire proof in seconds. These days, people must write much
longer proofs than I do.”

Although he now had a machine-checked proof, Euclid was not com-
pletely satisfied. His proof consisted of three separate theorems. Wouldn’t
it be nice if the correctness of the algorithm could be asserted by a single
formula?

Euclid suspected that this was possible. He felt that doing it required
understanding those formulas with 2 and subscripts produced by the Plus-
Cal translator. He was able to infer that he could describe the algorithm
with the single formula Spec defined by

Spec ∆= Init ∧ 2[Next]〈x , y〉

He also discovered that [Next]〈x ,y 〉 is an abbreviation for

Next ∨ unchanged 〈x , y 〉

and that unchanged 〈x , y 〉 simply means 〈x , y 〉′ = 〈x , y 〉, which implies
x ′ = x and y ′ = y . He still didn’t know what the 2 meant, but he knew it
was crucial.

In the TLAPS module, Euclid found

theorem Inv1 ∆= assume state I , state f , action N ,
I ∧ [N]f ⇒ I ′

prove I ∧ 2[N]f ⇒ 2I
proof omitted

As he was pondering this, FG said: “The hour has come. I must now take
you back to your time.”

“But how will we give the algorithm to Professor Broy?”
“I will handle that,” FG said as she led Euclid into a passing wormhole.
On the trip back, Euclid asked what Professor Broy had done that there

should be a special celebration of his birthday. FG replied: “I can spend

13

She led Euclid into a passing wormhole.

14

theorem Correctness ∆= Spec ⇒ 2ResultCorrect

〈1〉1. Spec ⇒ 2InductiveInvariant
〈2〉1. InductiveInvariant ∧ unchanged 〈x , y〉 ⇒ InductiveInvariant ′

by def InductiveInvariant
〈2〉2. InductiveInvariant ∧ [Next]〈x , y〉 ⇒ InductiveInvariant ′

by 〈2〉1, NextProperty
〈2〉3. InductiveInvariant ∧2[Next]〈x , y〉 ⇒ 2InductiveInvariant

by 〈2〉2, Inv1
〈2〉4. qed

by InitProperty , 〈2〉3 def Spec

〈1〉2. 2InductiveInvariant ⇒ 2ResultCorrect
by WeakensProperty , PropositionalTemporalLogic

〈1〉3. qed
by 〈1〉1, 〈1〉2

Figure 4: The mysterious proof.

many hours detailing his achievements, including his more than 200 publi-
cations and the many students he has inspired. But describing his contribu-
tions would require explaining things you have never heard of: semantics,
algebraic specification, abstract data types, dataflow, software engineering,
message sequence charts, system modeling, embedded systems, automobiles,
and more. It is enough to say that he has been a leader in the struggle to
make our computer systems easier to understand.”

With a puzzled look, Euclid said: “What are computer systems? These
words have a familiar echo, but I do not understand them.” He was for-
getting all that he had experienced in the future, as the logic of time travel
implied that he must.

“It does not matter,” said FG. “Tell me more about your Elements.”

Upon her return to 2010, FG glanced at the computer screen. She was
surprised to see the proof shown in Figure 4.8 “Where did that come from?”
she wondered.

15

Translator’s Notes

1. It is not clear what documentation Euclid and FG found. They could
have learned about PlusCal from the information on

http://research.microsoft.com/en-us/um/people/lamport/tla/pluscal.html

That site can also be reached by searching the Web for the 25-letter string
obtained by removing the hyphens from uid-lamport-pluscal-homepage.
They probably also went to http://tlaplus.net , the TLA+ user commu-
nity site. They may also have used

http://research.microsoft.com/en-us/um/people/lamport/tla/tla.html

a site that can be found by searching the Web for the 21-letter string ob-
tained by removing the hyphens from uid-lamport-tla-homepage .

2. The reader undoubtedly recognizes IDE as short for Integrated Devel-
opment Environment. The TLA in TLA+ stands for Temporal Logic of
Actions. The significance of the + is not clear, but it was often found at the
end of programming-language names.

3. Throughout this translation, I show not what Euclid saw while writing
his algorithm, but what the Toolbox displayed as the pretty-printed version.
In 2010, the pretty-printer still did not properly display PlusCal code, so I
have shown the algorithm itself as it should have been displayed.

Although forced to use the Roman alphabet and some English terms
like Integers and while, Euclid chose as identifiers transliterations of Greek
terms and phrases. I have taken the liberty of replacing them with their
modern English equivalents. For example, I changed UpologizoMKD , Eu-
clid’s transliteration of UπoλoγιζωMK∆ (the MK∆ of course standing for
µέγιστoς κoινóς διαιρέτης), to ComputeGCD .

4. The observant reader will note that the definitions do not say that p
and q are numbers or that S is a set of numbers. These definition have
the expected meanings only if their arguments have the expected “types”.
If we let q be the string “abc”, then the definition of Divisors implies that
Divisors(“abc”) equals

{d ∈ 1 . . “abc” : d | “abc”}

but we don’t know what this expression means. We couldn’t prove anything
interesting about it, and TLC would report an error if it had to evaluate it.

16

5. Euclid certainly knew that this formula is equivalent to the shorter one

(x = y) ⇒ (x = GCD(M ,N))

because x = y and x = GCD(M ,N) imply y = GCD(M ,N). He preferred
his formula because symmetry was central to the Greek concept of beauty.

6. Euclid may not have realized that, if the suffices step had a complete
step name like 〈1〉7 or 〈1〉suf , then those assume facts would have been
used only when referred to by that name. The need to use a step explicitly
can be avoided by not giving the step a complete name.

7. Using SimpleArithmetic as a fact in a proof instructs the proof checker
to apply Cooper’s algorithm, which can check any formula in a certain de-
cidable subset of arithmetic.

8. Had FG directed the prover to check this proof, she would have found
that it verified only steps 〈2〉1 and 〈2〉2. Checking the other steps would
have generated error messages because, in 2010, the proof checker could not
yet perform temporal logic reasoning. Its author must have guessed at some
details of the proof, such as the use of PropositionalTemporalLogic to invoke
a decision procedure.

Acknowledgment

I wish to thank my long-time collaborator Leo Guibas, an expert on dialects
of the Greek isles, for his help with the translation. Readers can thank
Kaustuv Chaudhuri for correcting an historical error. Euclid would have
wanted to thank Stephan Merz for simplifying the proof in Figure 3.

17

