
Checking a Multithreaded Algorithm

with +CAL

Leslie Lamport

Microsoft Research

11 Jul 2006

To appear in DISC 2006

Abstract

A colleague told me about a multithreaded algorithm that was later
reported to have a bug. I rewrote the algorithm in the +cal algorithm
language, ran the TLC model checker on it, and found the error. Pro-
grams are not released without being tested; why should algorithms
be published without being model checked?

Contents

1 Introduction 1
1.1 The Story . 1
1.2 The Moral . 3

2 Translating from the C Version 4
2.1 Labels and the Grain of Atomicity 6
2.2 Procedures . 8
2.3 Multiple Assignment . 8

3 Checking the Algorithm 8

4 Conclusion 13

Acknowledgment 14

References 14

1 Introduction

On a Wednesday afternoon in March of this year, my colleague Yuan Yu told
me that Detlefs et al. [3] had described a multithreaded algorithm to imple-
ment a shared two-sided queue using a double-compare-and-swap (DCAS)
operation, and that Doherty et al. [4] later reported a bug in it. I decided to
rewrite the algorithm in +cal [7] and check it with the TLC model checker,
largely as a test of the +cal language. After working on it that afternoon,
part of Sunday, and a couple of hours on Monday, I found the bug. This is
the story of what I did. A +cal specification of the algorithm and an error
trace that it produced are available on the Web [6]. I hope my experience
will inspire computer scientists to model check their own algorithms before
publishing them.

+cal is an algorithm language, not a programming language. It is ex-
pressive enough to provide a practical alternative to informal pseudo-code
for writing high-level descriptions of algorithms. It cannot be compiled into
efficient executable code, but an algorithm written in +cal can be trans-
lated into a TLA+ specification that can be model checked or reasoned about
with any desired degree of formality. Space does not permit me to describe
the language and its enormous expressive power here. The two-sided queue
algorithm is a low-level one, so its +cal version looks much like its descrip-
tion in an ordinary programming language. The features of +cal relevant
to this example are explained here. A detailed description of the language
along with the translator and model-checker software are on the Web [7].

1.1 The Story

I began by converting the algorithm from the C code of the paper into +cal
as a collection of procedures, the way Detlefs et al. described it. (They
actually extended C with an atomically statement to represent the DCAS
operation, and they explained in the text what operations were considered
atomic.) Other than minor syntax errors, the only bug in my first try was an
incorrect modeling of the DCAS operation caused by my confusion about
C’s “&” and “*” operators. I found my errors by running TLC on small
instances of the algorithm, and I quickly fixed them.

I next wrote a small test harness consisting of a collection of processes
that nondeterministically called the procedures. It kept an upper-bound
approximation to the multi-set of queued elements and checked to make sure
that the element returned by a pop was in that multi-set. It also kept a lower
bound on the number of queued elements and checked for a pop returning

1

“empty” when it shouldn’t have. However, my test for an incorrect “empty”
was wrong, and there was no simple way to fix it. So, I eliminated that test.

Running TLC on an instance of the algorithm with 2 enqueable values,
2 processes, and a heap of size 3 completed in 17 minutes, finding no bug.
(Except where noted, execution times are for a 2.4 or 3 GHz personal com-
puter.) The algorithm uses a fixed “dummy” node, so the maximum queue
length is one less than the heap size. My next step was to check it on a
larger model. I figured that checking with only a single enqueable value
should suffice, because a pop that correctly removed an element was un-
likely to return anything other than that element’s correct value. I started
running TLC on a model with 3 processes and 4 heap locations just before
leaving for a three-day vacation. I returned to find that my computer had
crashed after running TLC for two or three hours. I rebooted and restarted
TLC from a checkpoint. A day later I saw that TLC had not yet found an
error and its queue of unexamined states was still growing, so I stopped it.

I next decided to write a higher-level specification and let TLC check that
the algorithm implemented this specification under a suitable refinement
mapping [1] (often called an abstraction function). I also wrote a new version
of the algorithm, without procedure calls, to reduce the size of the state
space. This turned out to be unnecessary; TLC would easily have found the
bug without that optimization.

I made a first guess at the refinement mapping based on the pictures
in the Detlefs et al. paper showing how the implementation worked, but it
was wrong. Correcting it would have required understanding the algorithm,
and I didn’t want to take the time to do that. Instead, I decided that an
atomic change to the queue in the abstract specification was probably im-
plemented by a successful DCAS operation. So, I added a dummy variable
queue to the algorithm that is modified in the obvious way when the DCAS
operation succeeds, and I wrote a simple refinement mapping in which the
abstract specification’s queue equaled queue. However, this refinement map-
ping didn’t work right, producing spurious error reports on pop operations
that return “empty”.

A pop should be allowed to return “empty” if the abstract queue was
empty at any time between the call to and return from the operation. I had
to add another dummy variable to the algorithm to record if the queue had
been empty between the call and return, and to modify the specification.
Having added these dummy variables, I realized that I could check correct-
ness by simply adding assertions to the algorithm; there was no need for a
high-level specification and refinement mapping. I added the assertions, and
TLC found the bug in about 20 seconds for an instance with 2 processes and

2

4 heap locations. (TLC would have found the bug with only 3 heap loca-
tions.) The bug was manifest by a pop returning “empty” with a non-empty
queue—a type of error my first attempt couldn’t detect.

After finding the error, I looked at the paper by Doherty et al. to check
that I had found the same error they did. I discovered that I had found one
of two errors they reported. I then removed the test that caught the first
error and tried to find the second one. TLC quickly discovered the error on
a model with 3 processes and 4 heap locations. As explained below, getting
it to do this in a short time required a bit of cleverness. Using a naive,
straightforward approach, it took TLC 12

3 days to find the error. Explicit-
state model checking is well suited for parallel execution, and TLC can make
use of shared-memory multiprocessing and networked computing. Run on a
384 processor Azul Systems computer [2], TLC found the error in less than
an hour.

1.2 The Moral

I started knowing only that there was a bug in the algorithm. I knew nothing
about the algorithm, and I had no idea what the bug was—except that Yuan
Yu told me that he thought a safety property rather than a liveness property
was violated. (I would have begun by looking for a safety violation anyway,
since that is the most common form of error.) I still know essentially nothing
about how the algorithm was supposed to work. I did not keep a record of
exactly how much time I spent finding the error, but it probably totaled less
than 10 hours. Had Detlefs et al. used +cal as they were developing their
algorithm, model checking it would have taken very little extra time. They
would certainly have found the first error and would probably have found
the second.

There are two reasons I was able to find the first bug as quickly as I
did, despite not understanding the algorithm. The obvious reason is that
I was familiar with +cal and TLC. However, because this is a very low-
level algorithm, originally written in simple C code, very little experience
using +cal was needed. The most difficult part of +cal for most people is
its very expressive mathematical expression language, which is needed only
for describing more abstract, higher-level algorithms. The second reason
is that the algorithm was expressed in precise code. Published concurrent
algorithms are usually written in very informal pseudo-code, and it is often
necessary to understand the algorithm from its description in the text in
order to know what the pseudo-code is supposed to mean. In this case, the
authors clearly stated what the algorithm did.

3

Section 2 describes the algorithm’s translation from C to +cal, and
Section 3 describes how I checked it. The translation is quite straightfor-
ward. Had +cal been available at the time, I expect Detlefs et al. would
have had no trouble doing it themselves. However, they would have gotten
more benefit by using +cal from the start instead of C (or, more precisely,
pseudo-C). Before devising the published algorithm, they most likely came
up with other versions that they later found to be wrong. They probably
would have discovered those errors much more quickly by running TLC on
the +cal code. Algorithms are often developed by trial and error, devising
a plausible algorithm and checking if it works in various scenarios. TLC can
do the checking for small instances much faster and more thoroughly than
a person.

2 Translating from the C Version

A major criterion for the +cal language was simplicity. The measure of a
language’s simplicity is how simple its formal semantics are. A +cal algo-
rithm is translated to a TLA+ specification [8], which can then be checked
by TLC. The TLA+ translation defines the meaning of a +cal algorithm.
(Because TLA+ is based on ordinary mathematics, its formal semantics are
quite simple.) The simplicity of +cal was achieved by making it easy to un-
derstand the correspondence between a +cal algorithm and its translation.
The translator itself, which is implemented in Java, is specified in TLA+.

Simplicity dictated that +cal eschew many common programming lan-
guage concepts, like pointers, objects, and types. (Despite its lack of such
constructs, and in part because it is untyped, +cal is much more expressive
than any programming language.) C’s pointer operations are represented in
the +cal version using an explicit array (function) variable Heap indexed
by (with domain) a set of addresses. A pointer-valued variable like lh in the
C version becomes an address-valued variable, and the C expression lh->L
is represented by the +cal expression Heap[lh].L.

The only tricky part of translating from pointers to heap addresses came
in the DCAS operation. Figure 1 contains the pseudo-C version. Such an
operation is naturally defined in +cal as a macro. A +cal macro consists
of a sequence of statements, not an expression. I therefore defined a DCAS
macro with an additional first argument, so the +cal statement

DCAS(result, a1, ...)

represents the C statement

result = DCAS(a1, ...)

4

boolean DCAS(val *addr1, val *addr2,
val old1, val old2,
val new1, val new2) {

atomically {
if ((*addr1 == old1) &&

(*addr2 == old2)) {
*addr1 = new1;
*addr2 = new2;
return true;

} else return false; } }

Figure 1: The DCAS operation in pseudo-C.

macro DCAS(result, addr1, addr2, old1, old2, new1, new2) {
if ((addr1 = old1) ∧

(addr2 = old2)) {
addr1 := new1 ||
addr2 := new2 ;
result := TRUE;

} else result := FALSE; }

Figure 2: The DCAS operation in +cal.

The difficulty in writing the DCAS macro came from the pointer arguments
addr1 and addr2. A direct translation of the original DCAS operation would
have required an extra layer of complexity. A pointer-valued variable like
lh would have had to be represented by a variable whose value was not a
heap address, but rather the address of a memory location containing a
heap address. However, this complication was unnecessary because, in all
the algorithm’s uses of the DCAS operation, the first two arguments are
&-expressions. In the translation, I essentially defined the DCAS macro as if
the “*”s were removed from the *addr1 and *addr2 parameters in Figure 1,
and the “&”s were removed from the uses of the macro. This led me to the
macro definition of Figure 2. (The “||” multiple-assignment construct is
explained in Section 2.3 below; for now, consider it to be a semicolon.) The
statement

if (DCAS(&LeftHat, &RightHat, lh, rh, Dummy, Dummy)) ...

is then represented in +cal as

5

DCAS(temp, LeftHat, RightHat, lh, rh, Dummy, Dummy) ;

if (temp) ...

The +cal translator replaces the DCAS statement by the syntactic expansion
of the DCAS macro. (As explained below, the atomically is implicit in the
+cal version.)

Most of my colleagues cannot immediately see that the result of the
substitution is a correct translation of the C version. Since the expanded
+cal macro is quite simple, any difficulty must lie in understanding C’s “*”
and “&” operators. A language for describing algorithms should be simple,
and its operators should be easy to understand.

As an illustration of the translation, Figure 3 shows the original C version
of the popLeft procedure, exactly as presented by Detlefs et al., and my +cal
version. This was my original translation, before I added dummy variables
for checking. (While it is essentially the same as my first version, I have made
a number of cosmetic changes—mainly reformatting the code and changing
label names to correspond to the line numbers of the corresponding control
points in the C version.) The non-obvious aspects of the +cal language
that appear in this example are explained in Sections 2.1–2.3 below.

A cursory examination shows how similar the two versions are. I of
course formatted the +cal version to look as much as possible like the C
version. (To this end, I used +cal’s more compact c-syntax rather the
alternative p-syntax that is a bit easier to understand.) The +cal version is
three lines longer because of the extra line added in translating each DCAS
operation and because of the local variable declarations that are missing
from the pseudo-C code.

2.1 Labels and the Grain of Atomicity

Labels are used to specify the grain of atomicity in a +cal algorithm. Exe-
cution of a single atomic step begins at a label and continues until the next
label that is encountered. For example, execution of a step starting with
control at label O6:

• ends at O8 if lh = rh evaluates to true and the DCAS operation sets
temp to true.

• ends at O2 if lh = rh evaluates to true and the DCAS operation sets
temp to false.

• ends at O10 if lh = rh evaluates to false.

6

C Version
1 val popLeft() {
2 while (true) {
3 lh = LeftHat;
4 rh = RightHat;
5 if (lh->L == lh) return "empty";
6 if (lh == rh) {
7 if (DCAS(&LeftHat, &RightHat, lh, rh, Dummy, Dummy))
8 return lh->V;
9 } else {

10 lhR = lh>R;
11 if (DCAS(&LeftHat, &lh>R, lh, lhR, lhR, lh)) {
12 result = lh->V;
13 lh->L = Dummy;
14 lh->V = null;
15 return result;
16 } } } }

+cal Version
procedure popLeft()
variables rh, lh, lhR, temp, result; {

O2: while (TRUE) {
lh := LeftHat;

O4: rh := RightHat;
O5: if (Heap[lh].L = lh) {rVal[self] := "empty"; return};
O6: if (lh = rh) {

DCAS(temp, LeftHat, RightHat, lh, rh, Dummy, Dummy);
if (temp) {

O8: rVal[self] := Heap[lh].V; return}
} else {

O10: lhR := Heap[lh].R;
O11: DCAS(temp, LeftHat, Heap[lh].R, lh, lhR, lhR, lh);

if (temp) {
O12: result := Heap[lh].V;
O13: Heap[lh].L := Dummy ||

Heap[lh].V := null;
rVal[self] := result; O15: return ;

} } } }

Figure 3: The C and +cal versions of the popLeft procedure.

7

Because the DCAS macro contains no labels, its execution is atomic. (+cal
does not permit labels in a macro definition.)

To simplify model checking and reasoning about an algorithm, one wants
to write it with the coarsest possible grain of atomicity that permits all rel-
evant interleavings of actions from different processes. Detlefs et al. assume
that a read or write of a single memory value is atomic. (Presumably, a heap
address and an enqueued value each constitute a single memory value.)

I have adopted the standard method of using the coarsest grain of atomic-
ity in which each atomic action contains only a single access to a shared data
item. The shared variables relevant for this procedure are Heap, LeftHat ,
and RightHat . However, the labeling rules of +cal required some additional
labels. In particular, the label O2 is required, even though the call of the
procedure affects only the process’s local state and could be made part of
the same action as the evaluation of LeftHat .

2.2 Procedures

To maintain the simplicity of its translation to TLA+, a +cal procedure
cannot return a value. Values are passed through global variables. In this
algorithm, I have used the variable rVal to pass the value returned by a
procedure. When executed by a process p, a procedure returns the value v
by setting rVal [p] to v . In +cal code, self equals the name of the current
process.

2.3 Multiple Assignment

One of +cal’s restrictions on labeling/atomicity, made to simplify the TLA+

translation, is that a variable can be assigned a value by at most one state-
ment during the execution of a single atomic step. A single multiple assign-
ment statement can be used to set the values of several components of a
single variable. A multiple assignment like

Heap[lh].L := Dummy || Heap[lh].V := null

is executed by first evaluating all the right-hand expressions, and then per-
forming all the indicated assignments.

3 Checking the Algorithm

To check the correctness of the algorithm, I added two global history vari-
ables:

8

procedure popLeft()
variables rh, lh, lhR, temp, result; {

O2: while (TRUE) {
lh := LeftHat;
sVal[self] := (queue = << >>);

O4: rh := RightHat;
O5: if (Heap[lh].L = lh) {

assert sVal[self] ∨ (queue = 〈 〉) ;
rVal[self] := "empty"; return ;} ;

O6: if (lh = rh) {
DCAS(temp, LeftHat, RightHat, lh, rh, Dummy, Dummy);
if (temp) {

sVal[self] := Head(queue);
queue := Tail(queue);

O8: rVal[self] := Heap[lh].V;
assert rVal[self] = sVal[self];
return}

} else {
O10: lhR := Heap[lh].R;
O11: DCAS(temp, LeftHat, Heap[lh].R, lh, lhR, lhR, lh);

if (temp) {
sVal[self] := Head(queue) ;
queue := Tail(queue) ;

O12: result := Heap[lh].V;
assert result = sVal[self] ;

O13: Heap[lh].L := Dummy ||
Heap[lh].V := null;
rVal[self] := result; O15: return ;

} } } }

Figure 4: The popLeft procedure with checking.

• queue, whose value is the state of the abstract queue.

• sVal , where sVal [p] is set by process p to remember certain information
about the state for later use.

Adding dummy variables means rewriting the algorithm by adding state-
ments that set the new variables but do not change the behavior if the
values of those variables are ignored [1]. The +cal code for the popLeft pro-
cedure with the dummy variables appears in Figure 4. (The original code is
in gray.)

The queue variable is modified in the obvious way by an atomic step that
contains a successful DCAS operation (one that sets temp to true). The

9

assert statements in steps O8 and O12 check that the value the procedure
is about to return is the correct one.

The assert statement in step O5 attempts to check that, when the pro-
cedure is about to return the value "empty", it is permitted to do so. An
"empty" return value is legal if the abstract queue was empty at some point
between when the procedure was called and when it returns. The assertion
actually checks that the queue was empty when operation O2 was executed
or is empty when the procedure is about to execute the return in opera-
tion O5. This test is pessimistic. The assertion would fail if operations of
other processes made the queue empty and then non-empty again some time
between the execution of those two operations, causing TLC incorrectly to
report an error. For a correct test, each process would have to maintain a
variable that is set by other processes when they remove the last item from
the queue. However, the shared variables whose values determine if the pro-
cedure returns "empty" are read only by these two operations. Such a false
alarm therefore seemed unlikely to me, and I decided to try this simpler
test. (Knowing for sure would have required understanding the algorithm.)
TLC returns a shortest-length path that contains an error. I therefore knew
that, if the assertion could reveal an error, then TLC would produce a trace
that showed the error rather than a longer trace in which another process
happened to empty the queue at just the right time to make the execu-
tion correct. This assertion did find the bug—namely, a possible execution
containing the following sequence of relevant events:

• Process 1 begins a pushRight operation.

• Process 1’s pushRight operation completes successfully.

• Process 1 begins a pushLeft operation.

• Process 2 begins a popLeft operation

• Process 1’s pushLeft operation completes successfully.

• Process 1 begins a popRight operation.

• Process 2’s popLeft operation returns the value "empty".

The actual execution trace, and the complete +cal algorithm that produced
it, are available on the Web [6].

After finding the bug, I read the Doherty et al. paper and found that
there was another error in the algorithm that caused it to pop the same
element twice from the queue. I decided to see if TLC could find it, using

10

the version without procedures. The paper’s description of the bug indicated
that it could occur in a much coarser-grained version of the algorithm than
I had been checking. (Since an execution of a coarse-grained algorithm
represents a possible execution of a finer-grained version, an error in the
coarse-grained version is an error in the original algorithm. Of course, the
converse is not true.) To save model-checking time, I removed as many
labels as I could without significantly changing the code, which was about
1/3 of the them. I then ran TLC on an increasing sequence of models, and
in a few hours it found the error on a model with 3 processes and 4 heap
locations, reporting an execution that described the following sequence of
events:

• Process 1 begins a pushRight operation.

• Process 2 begins a popRight operation.

• Process 1’s pushRight operation completes successfully.

• Process 1 begins a popRight operation.

• Process 3 begins and then successfully completes a pushLeft operation.

• Process 3 begins a popLeft operation.

• Process 1’s popRight operation completes successfully.

• Process 1 begins and then successfully completes a pushLeft operation.

• Process 1 begins and then successfully completes a popLeft operation.

• Process 2’s popRight operation completes successfully.

• Process 3’s popLeft operation tries to remove an item from an empty
queue.

I found the second bug quickly because I knew how to look for it. How-
ever, checking models on a coarser-grained version when the fine-grained
version takes a long time is an obvious way of speeding up the search for
bugs. It is not often done because, when written in most model-checking
languages, changing an algorithm’s grain of atomicity is not as easy as com-
menting out some labels. Someone who understands the algorithm will have
a sense of how coarse a version is likely to reveal errors.

I decided to see how long it would take TLC to find the bug by checking
the fine-grained version. I started it running shortly before leaving on a long

11

trip. When I returned, I found that it had indeed found the error—after
running for a little more than a month. Examining the +cal code, I realized
that it had two unnecessary labels. They caused some operations local to
a process to be separate steps, increasing the number of reachable states.
I removed those labels. I estimate that TLC would have found the error
in the new version in about two weeks. However, by observing processor
utilization, it was easy to see that TLC was spending most of its time doing
disk I/O and was therefore memory-bound. I had been running it on a
2.4 GHz personal computer with 1 GByte of memory. I switched to a 3 GHz
machine with 4 GBytes of memory, and TLC found the error in 40 hours.
Running the model checker in the background for a couple of days is not a
problem.

TLC can be instructed to use multiple processors. We have found that
it can obtain a factor of n speedup by using n processors, for n up to at
least 8. TLC can therefore take full advantage of the coming generation of
multicore computers. (Inefficiencies of the Java runtimes currently available
for personal computers significantly reduce the speedup obtained with those
machines.) Using a version of TLC modified for execution with a large
number of processors, the 40-hour uniprocessor execution was reduced to less
than an hour on a first-generation 384-processor Azul Systems computer [2].
Since each of that computer’s processors is much slower than 3 GHz, this
probably represents a speedup by close to a factor of 328. (Azul Systems
does not reveal the actual speed of their processors.) It is likely that, within
a few years, computers will be widely available on which TLC runs 10 times
faster than it does today.

There is an amusing footnote to this story. After doing the checking,
I noticed that I had inadvertently omitted a label from the pushRight op-
eration, letting one atomic action access two shared variables. I added the
missing label and ran TLC on the slightly finer-grained algorithm, using
the same personal computer as before. Because TLC does a breadth-first
exploration of the state space, I knew that it would find a counterexample
with one additional step. Indeed, it found exactly the same error trace,
except with one of the original 46 steps split into two. However, instead of
40 hours, TLC took only 37.2 hours! It found the error after examining 148
million distinct states rather than 157 million. Figuring out how this could
happen is a nice puzzle.

12

4 Conclusion

+cal was not needed for this example. The algorithm could have been
written in other languages with model checkers. Promela, the language of
the Spin model checker, would probably have been a fine choice [5]. In
fact, Doherty did use Spin to demonstrate the bug, although he wrote the
Promela version expressly to find the bug he had already discovered [9].
However, most concurrent algorithms are not written as low-level pseudo-
C programs. They are often written as higher-level algorithms, which are
naturally described using mathematical concepts like quantification, sets,
and sequences rather than the primitive operators provided by languages
like C and Java. For such algorithms, +cal is clearly superior to Promela
and similar model-checking languages.

One can model check not only the algorithm, but also its proof. Because
TLA+ is based on mathematics, TLC is well suited to check an algorithm’s
proof. Rigorous proofs require invariance reasoning and may also involve
showing that the algorithm implements a higher-level specification under a
refinement mapping. TLC can check both invariance and implementation
under a refinement mapping. Since they understood the algorithm, Detlefs
et al. would have been able to define queue as a refinement mapping instead
of adding it as a dummy variable the way I did. An error in an invariant
or refinement mapping usually manifests itself before the algorithm does
something wrong, allowing a model checker to find the problem sooner.
Checking a refinement mapping might have revealed the two-sided queue
algorithm’s second error quickly, even on the fine-grained version.

Model checking is no substitute for proof. Most algorithms can be
checked only on instances of an algorithm that are too small to give us
complete confidence in their correctness. Moreover, a model checker does
not explain why the algorithm works.

Conversely, a hand proof is no substitute for model checking. As the
two-sided queue example shows, it is easy to make a mistake in an informal
proof. Model checking can increase our confidence in an algorithm—even
one that has been proved correct.

How much confidence model checking provides depends upon the algo-
rithm. A simple, easy-to-use model checker like TLC can verify only partic-
ular instances—for example, 3 processes and 4 heap locations. The number
of reachable states, and hence the time required for complete model check-
ing, increases exponentially with the size of the model. Only fairly small
instances can be checked. However, almost every error manifests itself on a
very small instance—one that may or may not be too large to model check.

13

TLC can also check randomly generated executions on quite large instances.
However, such checking can usually catch only simple errors.

My own experience indicates that model checking is unlikely to catch
subtle errors in fault-tolerant algorithms that rely on replication and un-
bounded counters. It does much better on traditional synchronization al-
gorithms like the two-sided queue implementation. However, even when
it cannot rule out subtle errors, model checking is remarkably effective at
catching simpler errors quickly. One can waste a lot of time trying to prove
the correctness of an algorithm with a bug that, in retrospect, is obvious.

Model checking can be viewed as a sophisticated form of testing. Testing
is not a substitute for good programming practice, but we don’t release
programs for others to use without testing them. For years, model checking
has been a standard tool of hardware designers. Why is it seldom used by
algorithm designers? With +cal, there is no longer the excuse that the
language of model checkers is too low-level for describing algorithms. Model
checking algorithms prior to submitting them for publication should become
the norm.

Acknowledgment

I want to thank Homayoon Akhiani for model checking the two-sided queue
algorithm with TLC on an Azul Systems multiprocessor.

References

[1] Mart́ın Abadi and Leslie Lamport. The existence of refinement map-
pings. Theoretical Computer Science, 82(2):253–284, May 1991.

[2] Azul Systems. Web page. http://www.azulsystems.com.

[3] David L. Detlefs, Christine H. Flood, Alexander T. Garthwaite, Paul A.
Martin, Nir N. Shavit, and Guy L. Steele Jr. Even better dcas-based
concurrent deques. In Maurice Herlihy, editor, Distributed Algorithms,
volume 1914 of Lecture Notes in Computer Science, pages 59–73, Toledo,
Spain, October 2000. ACM.

[4] Simon Doherty, David L. Detlefs, Lindsay Groves, Christine H. Flood,
Victor Luchangco, Paul A. Martin, Mark Moir, Nir Shavit, and Guy
L. Steele Jr. Dcas is not a silver bullet for nonblocking algorithm design.
In Phillip B. Gibbons and Micah Adler, editors, SPAA 2004: Proceedings

14

of the Sixteenth Annual ACM Symposium on Parallel Algorithms, pages
216–224, Barcelona, June 2004. ACM.

[5] Gerard J. Holzmann. The Spin Model Checker. Addison-Wesley, Boston,
2004.

[6] Leslie Lamport. An example of using +cal to find a bug. URL http://
research.microsoft.com/users/lamport/tla/dcas-example.html.
The page can also be found by searching the Web for the 28-letter string
formed by concatenating uid and lamportdcaspluscalexample.

[7] Leslie Lamport. The +cal algorithm language. URL http://research.
microsoft.com/users/lamport/tla/pluscal.html. The page can also
be found by searching the Web for the 25-letter string obtained by re-
moving the “-” from uid-lamportpluscalhomepage.

[8] Leslie Lamport. Specifying Systems. Addison-Wesley, Boston, 2003.

[9] Mark Moir. Private communication. April 2006.

15

