
Synchronizi.ng Clocks in the Presence of Faults

LESLIE LAMPORT AND P. M. MELLIAR-SMITH

SRI International, Menlo Park, California

Abstract. Algorithms are described for maintaining clock synchrony in a distributed multiprocess system
where each process h;as its own clock. These algorithms work in the presence, of arbitrary clock or
process failures, including “two-faced clocks” that present different values to different processes. Two
of the algorithms require that fewer than one-third of the processes be faulty. A third algorithm works
if fewer than half the processes are faulty, but requires digital signatures.

Categories and Subject Descriptors: D.4.5 [Operating Systems]: Reliability--fault tolerance; D.4.7
[Operating Systems]: Organization and Design-real-time systems

General Terms: Theory

Additional Key Words and Phrases: Byzantine failures, synchronization

1. Introduction
In a fault-tolerant multiprocess system, it is often necessary for the indiyidual
processes to maintain clocks that are synchronized with one another [4, 5,9]. Since
physical clocks doI not keep perfect time, but can drift with respect to one another,
the clocks must periodically be resynchronized. Such a fault-tolerant system needs
a clock synchronization algorithm that works despite faulty behavior by some
processes and clocks. This paper describes three such algorithms.

It is easy to construct fault-tolerant synchronization algorithms if one restricts
the type of failures that are permitted. However, it is difficult to find algorithms
that can handle arbitrary failures-in particular, failures that can result in “two-
faced” clocks. As an example, consider a network of three processes. We would
like an algorithm in which a fault in one of the processes or in its clock does not
prevent the other two processes from synchronizing their clocks. However, suppose
that

-Process l’s cloc:k reads l:OO.
-Process 2’s cloc:k reads 2:O0.
-Process 3’s clock is faulty in such a way that when read by Process 1 it gives the

value 0:OO and when read by Process 2 it gives the value 3:O0.

Processes 1 and Z! are in similar positions; each sees one clock reading an hour
earlier and one clock reading an hour later than its own clock. There is no reason
This work was supported in part by NASA under contract number NASl-15428 and the National
Science Foundation under Grant MCS-8 104459.
Authors’ address: SRI International, Computer Science Laboratory, 333 Ravenswood Ave., Menlo Park,
CA 94025.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1985 ACM 0004-541 l/85/0100-0052 $00.75

Journal ofthe Association for Computing Machinery, Vol. 32, No. I, January 1985, pp. 52-78.

Synchronizing Clocks in the Presence of Faults 53

why Processes 1 and 2 should change their clocks in such a way that would bring
their values closer together.

The algorithms described in this paper work in the presence of any kind of fault,
including such malicious, two-faced clocks. The first one is called an interactive
convergence algorithm. In a network of at least 3m + 1 processes it will handle up
to m faults. Its name is derived from the fact that the algorithm causes correctly
working clocks to converge, but the closeness with which they can be synchronized
depends upon how far apart they are allowed to drift before being resynchronized.

The final two algorithms are called interactive consistency algorithms, so named
because the nonfaulty processes obtain mutually consistent views of all the clocks.
The closeness with which clocks can be synchronized depends only upon the
accuracy with which processes can read each other’s clocks and how far they can
drift during the synchronization procedure. They are derived from two basic
interactive consistency algorithms presented in [6]. The first one requires at least
3m + 1 processes to handle up to m faults. The second algorithm assumes a special
method of reading clocks, requiring the use of unforgeable digital signatures, to
handle up to m faults with as few as 2m + 1 processes. The latter algorithm seems
to be of little practical value, since Halpem, Simons, and Strong [3] have recently
developed a more efficient algorithm based upon the same method of clock reading.
However, we feel that the way our algorithm is derived from the Byzantine Generals
algorithm is interesting enough to warrant its description.

Strong and Halpem [9] have recently proved that 3m + 1 processes are required
to allow clock synchronization in the presence of m faults if digital signatures are
not used. Hence, our first two algorithms use the minimal number of processes.

2. An Informal Discussion
Before stating and analyzing our algorithms in detail, we give an informal descrip-
tion of how they work. We make no attempt at rigor here; the purpose of this
section is to provide the intuition needed to understand the more rigorous exposi-
tion of the succeeding sections. The assumptions, conditions, and algorithms stated
here are restated more precisely later. The reader who is not interested in all the
details may wish to read only this section and skip the rigorous treatment, going
directly from the end of this section to the conclusion.

2.1. THE PROBLEM. Implementing reliable clock synchronization presents
many problems-from building accurate hardware clocks to designing program-
ming language primitives for reading the clocks. The purpose of this paper is to
present algorithms to solve one of these problems: maintaining clock synchroni-
zation once the clocks are initially synchronized. As discussed briefly in [5], the
type of message passing used by our clock-synchronization algorithms seems to
require that the sender and receiver have clocks that are already synchronized.
Achieving initial synchrony is a separate problem, whose solution will depend
strongly upon the details of how clock reading and interprocess communication
are implemented. We do not address that problem, and instead make the following
assumption.

AO. All clocks are initially synchronized to approximately the same value.

We assume that processes are provided with reasonably accurate clocks-an
assumption that we state as

A 1. A nonfaulty process’s clock runs at approximately the correct rate.

54 L. LAMPORT AND P. M. MELLIAR-SMITH

Of course, the “correct rate” for a clock is one second of clock time per second of
real time. We make no assumptions about faulty processes’ clocks.

Assumptions A0 and Al leave us with the problem of correcting for the slow
drifting apart of tlhe clock values caused by slightly differing clock rates. The easiest
way to do this is for processes periodically to reset their clocks. A process will have
a physical clock tlhat “ticks” continually and a logical clock whose value equals the
value of the physical clock plus some offset. It is the logical clocks that are
maintained in synchrony by periodically resetting them, a logical clock being reset
by simply changing its offset.

Instead of discontinuously changing clock values in this way, it might be desirable
to change the clocks gradually. This can be done by making the logical clock value
a more complicated function of the physical clock value, effectively spreading the
change over a finite interval. Given an algorithm for discontinuously resynchro-
nizing the clocks and a bound on how closely synchronized it keeps them, it is easy
to devise an algorithm that spreads out the change and to deduce how well it keeps
the clocks synchronized. We therefore consider only resynchronization algorithms
that periodically increment the clocks.

Having accurate clocks does no good unless those clocks can be read. Synchro-
nizing the clocks requires that each process be able to read not just its own clock,
but other processes’ clocks as well. Clock values are different from most other
values in a computer system because they are continually changing. This poses a
problem for a clock-synchronization algorithm unless the algorithm is so fast that
clocks do not change significantly during the resynchronization period. The solu-
tion to this probllem requires that a process read not another process’s clock, but
rather the difference between that clock and its own. We therefore make the
following assumption:

A2. A nonfaulty process p can read the difference Aw between another nonfaulty
process q’s clock and its own with at most a small error e.

Exactly how A2! is satisfied is of no concern for our first two algorithms. However,
our third algorithm is based upon a special method of reading clocks, which will
be described below. Assumption A2 asserts that a process can read every other
process’s clock. In the conclusion, we mention how our algorithms can be extended
to work when a process can read the clocks of only some other processes.

Before describing any clock-synchronization algorithms, we should specify what
conditions such am algorithm should satisfy. The first and most obvious require-
ment is

Sl. At any time, the values of all the nonfaulty processes’ clocks must be
approximately equal.

While it is obviously necessary, Sl is not a sufficient condition. For example, it
is satisfied if all clocks are simply set to zero and stopped. The additional require-
ment we need must intuitively say that the logical clocks keep a reasonable
approximation to real time.

By assuming that clocks are periodically resynchronized, and that a process’s
logical clock runs at the same rate as its physical clock except for this periodic
resynchronization, we have ruled out such trivial “solutions” as stopping the clocks.
However, we still have the possibility that each resynchronization causes the clocks
to jump arbitrarily far. Our second condition places a bound on the amount that
a clock can be incremented.

Synchronizing Clocks in the Presence of Faults 55

S2. There is a small bound L: on the amount by which a nonfaulty process’s
clock is changed during each resynchronization.

Condition S2 has two important consequences:

-If Z is much smaller than the resynchronization period, then resynchronization
introduces a small error in the average running rate of the clocks. This implies
that the processes’ clocks maintain a good approximation to absolute real time.

-Resynchronization can cause a process to change its clock’s value by some
amount A. If A > 0, then A seconds of clock time have disappeared. Anything
that the process should have done during those vanished A seconds cannot be
done at the proper time. If A c 0, then A seconds of clock time occur twice,
which could also cause problems. The easy way out of this difficulty is to let
each synchronization interval begin (or end) with an interval of length Z during
which nothing is scheduled to happen, so the process is idle for Z seconds during
each resynchronization period. This is an acceptable solution if Z is small. (If it
is not acceptable, then incrementation by A can be spread across a finite interval
of time, as mentioned above.)

2.2. THE INTERACTIVE CONVERGENCE ALGORITHM. Our first solution is the
interactive convergence algorithm CNV. It relies heavily upon the assumption that
the clocks are initially synchronized, and that they are resynchronized often enough
so two nonfaulty processes’ clocks never differ by more than 6. How closely clocks
can be synchronized depends upon how far apart they are allowed to drift before
being resynchronized. At least 3m + 1 processes are needed to handle up to m
faults. The algorithm works essentially as follows.

ALGORITHM CNV. Each process reads the value of every process’s clock and
sets its own clock to the average of these values-except that tfit reads a clock value
differingfrom its own by more than 6, then it replaces that value by its own clock’s
value when forming the average.

To see why this works, let us consider by how much two nonfaulty processes’
clocks can differ after they are resynchronized. For simplicity, we ignore the error
in reading another process’s clock and assume that all processes execute the
algorithm instantaneously at exactly the same time.

Let p and q be nonfaulty processes, let r be any process, and let c,, and c,, be the
values used by p and q, respectively, as process r’s clock value when forming the
average. If r is nonfaulty, then c,, and c,, will be equal. If r is faulty, then c,, and
c,, will differ by at most 36, since c,, lies within 6 of p’s clock value, c,, lies within
6 of q’s clock value, and the clock values of p and q lie within 6 of one another.

Let n be the total number of processes and m the number of faulty ones, and
assume that n > 3m. Processes p and q set their clocks to the average of the n
values c,, and c,,, respectively. We have c,, = c,, for the n - m nonfaulty processes
r, and 1 c,, - c,, 1 I 36 for the m faulty processes r. It follows from this that the
averages computed by p and q differ by at most (3m/n)& The assumption n > 3m
implies (3m/n)6 C 6, so the algorithm succeeds in bringing the clocks closer together.
Therefore, we can keep the nonfaulty processes’ clocks synchronized to within 6 of
one other by resynchronizing often enough so that clocks which are initially within
(3m/n)6 seconds of each other never drift further than 6 seconds apart.

It appears that by repeated resynchronizations, each one bringing the clocks
closer by a factor of 3m/n, this algorithm can achieve any desired degree of

56 L. LAMPORT AND P. M. MELLIAR-SMITH

synchronization. However, we have ignored two factors:

(1) The time taken to execute the algorithm.
(2) The error in reading another process’s clock.

The fact that a process p does not read all other clocks at exactly the same time
means that it must average not clock values, but the differences A, defined in A2.
It then increments its clock by the average of the values AqP, except with values
that are too large replaced by zero.

The clock-read.ing error t in Assumption A2 means that if 6 is the maximum
true difference be:tween the two clocks, then the difference read by process p could
be as great as 6 + c. Therefore, a value of A4,, read by process p is regarded as too
large, and replace:d by zero, if it is greater than 6 + c.

2.3. THE INTERACTIVE CONSISTENCY ALGORITHMS. Intheinteractive conver-
gence algorithm, a process sets its clock to the average of all clock values. Since a
single bad value can skew an average, bad clock values must be thrown away.
Another approach is to take a median instead of an average, since a median
provides a good value so long as only a minority of values are bad. However,
because of the possibility of two-faced clocks, the processes cannot simply read
each other’s clocks and take a median; they must use a more sophisticated method
of obtaining the values of other processes’ clocks. We now investigate what
properties such a method must have.

The median computed by two different processes will be approximately the same
if the sets of clock values they obtain are approximately the same. Therefore, the
Clock Synchronization Condition Sl will hold (for some suitably small 6) if the
following condition holds for every process r.

Ccl. Any two .nonfaulty processes obtain approximately the same value for r’s
clock-even if r is faulty.

While CC1 guarantees that all processes will compute approximately the same
clock values, it does not ensure that the values they compute will be reasonable.
For example, CC 1 is satisfied if every process always obtains the value zero for any
process’s clock-a procedure yielding an algorithm that violates the Clock Syn-
chronization Condition S2. To ensure that S2 is satisfied, we make the following
additional requirement.

CC2. If r is nonfaulty, then every nonfaulty process obtains approximately the
correct value of r’s clock.

If a majority of processes are nonfaulty, then this implies that the median clock
value computed by any process is approximately equal to the value of a good
clock.’ Since good clocks do not drift apart very fast, resetting a clock to the value
of another good clock ensures that Clock Condition S2 is satisfied for a small value
OfZ.

Conditions CC1 and CC2 are very similar to the requirements for a solution to
the interactive consistency or “Byzantine Generals” problem [6,7]. In this problem,
some process Y must send a value to all processes in such a way that the following

’ More precisely, it is either approximately equal to a good clock’s value or else lies between the values
of two good clocks.

Synchronizing Clocks in the Presence of Faults 57

two conditions are satisfied:

Kl. All nonfaulty processes obtain the same value.

IC2. If process r is nonfaulty, then all processes obtain the value that it sends.

Our two interactive consistency algorithms are modifications of two Byzantine
Generals solutions from [6] to achieve conditions CC1 and CC2. The reasons for
using these Byzantine Generals solutions, and the possibility of using other solu-
tions, is discussed in the conclusion.

2.3.1. Algorithm COM. Our first interactive consistency algorithm, denoted
COM(m), works in the presence of up to m faulty processes when the total number
n of processes is greater than 3m. It is based upon Algorithm OM(m) of [6].

We first consider the case n = 4, m = 1, and describe a special case of Algorithm
OM(1) in which the value being sent is a number. In this algorithm, process r sends
its value to every other process, which in turn relays the value to the two remaining
processes. Process r uses its own value. Every other process i has received three
“copies” of this value: one directly from process r and the other two from the other
two processes.* The value obtained by process i is defined to be the median of
these three copies.

To show that this works, we consider separately what happens when process r is
faulty and when it is nonfaulty. First, suppose r is nonfaulty. In this case, at least
two of the copies received by any other process p must equal the value sent by r-
the one received directly from r and the one relayed by another nonfaulty process.
(Since there is at most one faulty process, at least one of the two processes that
relay the value to p must be nonfaulty.) The median of a set of three numbers, two
of which equal u, is u, so condition ICl is satisfied. When process r is nonfaulty,
ICI implies IC2, which finishes the proof for this case.

Next, suppose that process r is faulty. Condition ICI is then vacuous, so we need
only verify IC2. Since there is at most one faulty process, the three processes other
than r must be nonfaulty. Each one therefore correctly transmits the value it
receives from r to the other processes. All of the other processes thus receive the
same set of copies, so they choose the same median, showing that the IC2 is
satisfied.

To modify Algorithm OM(l) for clock synchronization, let us suppose that
instead of sending a number, a process can send a copy of a clock. (Imagine clocks
being sent from process to process, continuing to tick while in transit.) Let us
further suppose that sending a clock from one nonfaulty process to another can
perturb its value by at most t, but leaves it otherwise unaffected. However, a faulty
process can arbitrarily change a clock’s value before sending it.

In Algorithm COM(I), we apply Algorithm OM(1) four times, once for each
process r. However, instead of sending values, the processes send clocks. Exactly
the same argument used above to prove ICl and IC2 proves CC1 and CC2, where
“approximately” means to within O(E).

The more general Byzantine Generals solution OM(m), which handles m faulty
processes, n > 3m, involves more rounds of message passing and additional median
taking. This algorithm can be found in [6]. Algorithm COM(m) is obtained from
OM(m) in the same way we obtained COM(1) and OM(1)-namely, by sending
clocks instead of messages.

* In case a process fails to receive a message, presumably because the sender is faulty, it can pretend to
have received any arbitrary message from that process. See [6] for more details.

58 L. LAMPORT AND P. M. MELLIAR-SMITH

This completes our description of Algorithm COM(m), except for one question:
how do processes send clocks to one another? The answer is that the processes
don’t send clocks, they send the clock differences. Process p sends a “copy” of q’s
clock to another process r by sending a message with the value &,,-a message that
means “q’s clock: differs from mine by Aw”

Now, suppose I’ receives a copy of q’s clock from p in the form of a message
(from p) saying ‘;q’s clock differs from mine by x.” How does r relay a copy of this
clock to another process? Process r reasons as follows:

-p tells me that ~7s clock differs from his by x.
-1 know that p’s clock differs from mine by Agr.
-Therefore, p has told me that q’s clock differs from mine by x + A,,.

In other words, then r relays a clock difference sent to him by p, he just adds A,,pr
to that difference.

2.3.2. Algorithm CSM It is shown in [7] that, with no assumptions about the
behavior of failed processes, the Byzantine Generals problem is solvable only if n >
3m. However, we can do better than this by allowing the use of digital signatures.
We assume that a. process can generate a message that can be copied but cannot
be undetectably altered. Thus, if r generates a signed message, and copies of that
message are relayed from process to process, then the ultimate recipient can tell if
the copy he receives is identical to the original signed message generated by r. With
digital signatures, we are assuming that a faulty process cannot affix the signature
of another process, to any message not actually signed by that process. See [6] for a
brief discussion of how digital signatures can be generated in practice.

Algorithm SM(m) of [6] solves the Byzantine Generals problem in the presence
of up to m faults for any value of n. (The problem is vacuous if there are more
than n - 2 faults.) We first consider the case II = 3, m = 1. In Algorithm SM(l),
process r sends a signed message containing its value to the other two processes,
each of which relays a copy of this signed message to the other. Each process p
other than r winds up with a pile containing up to two properly-signed messages:
one received direlctiy from process r and another relayed by the third process.
Process p may receive fewer than two messages because a faulty process could fail
to send a message:. The value process p obtains is defined to be the largest of the
values contained in this pile of properly signed messages. (If no message is received,
then some arbitrary fixed value is chosen.)

For notational convenience, we pretend that r sends a signed message to itself,
which it does not relay. It is easy to see that the piles of messages received by the
three processes satisfy the following two properties.

SMl. For any two nonfaulty processes p and q, every value in p’s pile is also
in q’s.

,942. If process r is nonfaulty, then every process’s pile has at least one properly
signed message, and every properly signed message has the same value.

Note that SM 1 lholds for p or q equal to r because of our assumption that r sends
a properly signed1 message to itself. Condition ICI follows immediately from
property SM 1, and condition IC2 follows immediately from property SM2, proving
that SM(1) is a Byzantine Generals solution.

In the general Algorithm SM(m), messages are copied and relayed up to m times,
with each relaying process adding its signature. When a process p receives a message
with fewer than mr signatures, p signs the message, copies it, and relays it to every

Synchronizing Clocks in the Presence of Faults 59

process that has not already signed the message. The reader can either verify for
himself or tind the proof in [6] that the stacks of messages received by the processes
satisfy conditions SM 1 and SM2. (Again, we assume that r sends a signed message
to itself, so SMl is satisfied when p or q equals r.) Hence, defining the value
obtained by a process to be the largest value in its pile gives an algorithm that
solves the Byzantine Generals problem.

To turn the Byzantine Generals solution SM(m) into the clock-synchronization
Algorithm CSM(m), we again send clocks instead of messages. Moreover, we allow
processes to sign the clocks that they send. As before, we assume that a clock’s
value is perturbed by at most E when sent by a nonfaulty process. However, instead
of allowing a faulty process to set a clock to any value when relaying it, we assume
that the process can turn the clock back but not ahead. More precisely, we assume
that, when relaying a clock, a faulty process can set it back arbitrarily far, but can
set it ahead by at most c.

We now use the same relaying procedure as in Algorithm SM(m) to send copies
of r’s clock to all processes. For this intuitive discussion, we assume that all clocks
run at exactly the same rate, except for the perturbations they receive when being
relayed. Each process keeps a copy of every properly signed clock, so after all the
relaying has ended, it has a pile of copies of r’s clock. (We assume that r keeps a
signed copy of its own clock.) Since a nonfaulty process perturbs a clock’s value by
at most t when relaying it, the same reasoning used to prove SMl and SM2 shows
that the following properties are true of these piles of copies of r’s clock.

CSMl . For any two nonfaulty processes p and q, if p has a properly signed clock
with value c, then q has a properly signed clock whose value is within me
of c.

C&K?. If process r is nonfaulty and its clock has the value c, then every other
process has at least one properly signed clock whose value is within c of
c, and every properly signed clock that it has reads no later than c + me.

The value that a process obtains for Js clock is defined to be the fastest clock in
its pile. Conditions CC 1 and CC2 then follow immediately from CSM 1 and CSM2,
where “approximately” means to within O(mc). Hence, this provides a fault-
tolerant clock-synchronization algorithm.

To finish the description of Algorithm CSM(m), we must describe how clocks
can be signed and relayed in such a way that they are disturbed by at most E when
relayed by a nonfaulty clock and can be set forward at most c by a faulty one. As
in Algorithm SM(m), we require a method for generating unforgeable signed
messages.

Let us first assume that processes and transmission lines are infinitely fast, so a
message can be relayed from process to process in zero time. We use this assumption
to construct a method of relaying clocks for which c equals zero. The message that
r sends, and that all the processes relay, is r’s clock value c,. The message c, acts
like a clock whose value is now c,. A nonfaulty process relays this value in zero
time, so the clock is sent with no perturbation. A faulty process cannot change the
value of the clock, since the value is contained in a signed message; all it can do is
delay sending the value. This is equivalent to stopping the clock while holding it,
which is tantamount to turning the clock back. Hence, the assumption about
sending clocks is satisfied, with zero perturbation.

In practice, processes and transmission lines are not infinitely fast. Instead, we
assume that the delay in processing and transmitting a message can be determined
to within some small t. If we include the time needed to generate a message as part

60 L. LAMPORT AND P. M. MELLIAR-SMITH

of the transmission delay, this can be expressed as:

A2’. (a) A message from a nonfaulty process is received at its destination
y + c seconds after it is sent, for some constant y.

(b) A message from a faulty process is received at its destination at least
Y - t seconds after it is sent.

Assumption A2’ permits the implementation of a clock-reading scheme satisfying
A2: process p reads process q’s clock by having it send a message with the current
time. To compute A,, process p adds y to the value in the message and subtracts
its own clock value. However, A2’ provides more than a way of implementing A2;
combined with digital signatures, it allows a clock value to be relayed from process
to process, each process in the chain adding its signature to the message. By
counting the number of signatures in the message, a process knows how many
times the message has been relayed, so it can correct the clock value in the message
by adding the appropriate multiple of y. The net effect is to introduce an error of
at most E each time the message is relayed by a nonfaulty process, and to allow a
faulty process to s,et the clock ahead by at most E, as required. Of course, this uses
the additional assumption:

A3. A process can generate an unforgeable digital signature for any message.

3. The Problem
We now begin oulr formal exposition. This section gives the precise statement of
the Assumptions AO-A2 and the correctness conditions.

3.1. CLOCKS. Any discussion of clocks involves two kinds of time:

Real Time. An assumed Newtonian time frame that is not directly observable.
Clock Time. Th,e time that is observed on some clock.

We adopt the lconvention of using lowercase letters to denote quantities that
represent real time and uppercase letters to denote quantities that represent clock
time. Thus, we will let the “second” denote the unit of real time and the “SECOND"
denote the unit of clock time. Within this convention, we use Roman letters to
denote large values and Greek letters to denote small values. In most applications,
“large” times may be on the.order of milliseconds or more and “small” times on
the order of microseconds.

It is customary to define a clock to be a mapping C from real time to clock time,
where C(t) = T means that at real time t the clock reads T. This is appropriate
when clocks are used to measure the time at which some event occurred-for
example, when a runner crossed the finish line. Thus, if t is the real time at which
the runner finished, then] C(t) - C’(t)] represents the difference in the finishing
times recorded by two such clocks C and C’.

In the process-control systems for which our clock-synchronization algorithms
were devised, systems such as the SIFT avionics computer [lo], clocks are used to
determine when events are generated-for example, when a valve should be shut.
In this case, it is Imore appropriate to define a clock to be the inverse of the usual
function, so it is a mapping c from clock time to real time, with c(T) denoting the
real time at which the clock c has the value T. Thus, if T is the clock time at which
the valve is to be shut, then] c(T) - c’(T)] represents the difference in the real
times at which two processors with clocks c and c’ issue the command to shut it.
We thus consider this kind of clock.

Synchronizing Clocks in the Presence of Faults 61

Two clocks c and c’ are said to be synchronized to within 6 at a clock time T if
It(T) - c’(T)] < 6, so they reach the value T within 6 seconds of one another.
This is the way that we will measure clock synchronization, since it is the
appropriate one for the class of applications that immediately concern us. If two
processes’ clocks are synchronized to within 6 at time T, then actions generated by
the two processes at that time occur within 6 seconds of one another.

If the clocks are used to measure when events occur, rather than to generate
events, then one is concerned with the difference between the inverse clocks-the
mappings from real time to clock time. Below, we formally state a result whose
intuitive meaning is that if c and c’ are good clocks that are synchronized to within
6 seconds on some interval, then their inverse clocks are synchronized to within
approximately 6 SECONDS on the inverse interval. Hence, our synchronization
algorithms can be used in this situation too.

It is most convenient to pretend that clocks run continuously, so a clock c is a
continuous function on some interval. (Otherwise, c would be defined only for a
discrete set of clock values.) Of course, real processor clocks advance in discrete
steps. We can model the discreteness of a real clock as an error in reading the
clock. Thus, discreteness adds a clock-reading error at most equal to the interval
between “ticks.”

Although we have been calling our clocks “functions,” only a monotonically
increasing clock can be represented by a single-valued function. This is not a
problem, since nonfaulty clocks are assumed to be monotonic. However, some
care must be taken when formalizing our concepts. We assume that the inverse of
a clock c is a single-valued function, so for any real time t there is a unique T such
that c-‘(t) = T.

Definition 1. A clock c is a good clock during the real-time interval [t,, tz] if it
is a monotonic, differentiable function on [T,, Tz], where Ti = C-‘(ti), i = 1, 2, and
for all T in [T,, Tz]:

This definition involves an arbitrary fixed value p, which represents twice the
maximum error in a clock’s running rate. (A perfect clock has dc/dT equal to one
second per SECOND.) Rather than fixing p, we could define a p-good clock. However,
this would require that all our results include an explicit mention of the parameter
p, which would needlessly complicate their statements. We will introduce several
similar quantities; they are all listed in a glossary at the end of the paper, which
contains a brief reminder of what they mean.

In terms of Definition 1, we can state the precise relation between the synchro-
nization of clocks and of inverse clocks as the following remark. Its proof is an
exercise in elementary calculus.

Remark. Let c and c’ be good clocks on an interval [T,, Tz], such that] c(T) -
c’(r)] < 6 for all times T in that interval. If p CK 1, then the inverse functions
C and C’ of these clocks exist and are differentiable on the interval [c(T,) + 6,
c(TZ) - 61, and] C(t) - C’(t)] 5 6 for all t in that interval.

We consider a network of n processes, where each process p contains a clock c,.
We assume that the clocks are initially synchronized to within &, of one another at

62

the “starting time” T(O), so we have

L. LAMPORT AND P. M. MELLIAR-SMITH

AO. For all processes p and q: 1 cP(T(O)) - c4(T(O)) 1 < 60.

Our algorithrns have the property that if enough processes are nonfaulty, then
the clocks of nonfaulty processes remain synchronized. To give a formal proof of
such a property, we would need a formal definition of a nonfaulty process. More
precisely, we would have to define what it means for a process to be nonfaulty
during a certain interval. There are two assumptions that must be made about a
nonfaulty process: that it correctly executes the algorithm and that its clock is good.
A rigorous statement of the first assumption would be tedious and unrewarding,
so we do not malke a formal definition of “nonfaulty during an interval.” Instead,
we informally assume that a nonfaulty process does what it is supposed to during
the interval in question. However, we do rigorously analyze the degree of synchro-
nization achieved by our algorithms, and this requires us to state the second
assumption precisely. This is done as follows.

A 1. If process p is nonfaulty during the real time interval [ti, CZ], then c, is a good
clock during that interval.

3.2. SYNCHRONIZATION. As mentioned in our informal description of the
algorithms, clock. synchrony is maintained by having processes periodically incre-
ment their clocks. Incrementing a clock c by A SECONDS means adding A to the
value read from the clock. This is described formally as defining a new clock c’ by

c’(T) = c(T - A).

For simplicity, we assume that clocks are resynchronized every R SECONDS. I&
T”’ = T(O) + iR, and let R(‘) be the interval [P, T(‘+‘)]. The clock c, represents
process p’s physical clock. Resynchronizing the clocks every R SECONDS means
having process p use a logical clock cz’ on the time interval R(l), where

c;‘(T) = Cp(T + cp> (1)
for some constant 0;‘. For convenience, we assume that CF) = 0, so $1 = c,.

No algorithm can maintain clock synchronization in the presence of too many
faulty processes, so the condition to be satisfied by our algorithms must contain
the hypothesis that there are enough nonfaulty ones. To help state this hypothesis,
we introduce the following terminology.

Definition 2. A process p is said to be nonfaulty up to time T(‘+‘) if it is
nonfaulty during the real-time interval [cr)(T(O)), cy)(T(‘+‘))].

Note that this interval runs from the time process p is started until the time its
clock reaches the end of the ith synchronization interval R(‘).

Our informal requirements for clock synchronization were that processes’ clocks
are synchronized to within a small bound, which we shall call 6, and that resynchro-
nization increments a clock by at most Z. These conditions depend upon the
parameters 6 and Z, so we should talk about a “6-2 synchronization algorithm.”
For notational simplicity, we leave implicit the dependence on 6 and Z, as well as
the dependence on m, the number of faulty processes tolerated. The following
condition defineis correct synchronization on the interval R”‘, again leaving i an
implicit parameter.

Synchronizing Clocks in the Presence of Faults 63

Clock Synchronization Condition. For all p and q, if all but at most m processes
are nonfaulty up to time T(‘+‘), then

Sl . If Processes p and q are nonfaulty up to time T(‘+‘), then for all T in R(‘)

1 c;‘(T) - c”‘(T) 1 < 6. 4
S2. If Process p is nonfaulty up to time T(‘+‘), then

Iq+‘) - qf’l < Es

Our problem is to find an algorithm for choosing the values C$+‘) such that if
the Clock Synchronization Condition holds for i, then it will hold for i + 1.

We place no restriction on the clock of a process that has failed. Thus, we are
not considering the problem of restarting a failed process and bringing it into
synchrony with the other processes. This is a nontrivial problem whose solution
depends upon the details of how a process reads other processes’ clocks, and is
beyond the scope of this paper.

3.3. READING CLOCKS. We now formalize our Assumption A2 about clock
reading. All the reading of clocks and transmitting of information in the compu-
tation of C$+‘) is assumed to take place in the final S seconds of the interval R(‘)-
that is during the interval Sci) = [T(‘+‘) - S, T(“‘)]. Assumption A2, required by
Algoriihms CNV and OM, is then stated as follows.

A2. If the Clock Synchronization Condition holds for i, and process p is nonfaulty
up to time p+‘), then for each other process q: p obtains a value &p during
the interval Sci). If q is also nonfaulty up to time T(‘+‘), then

1 c;‘(To + A,) - c(‘)(To) I < E 4 (2)

for some time TO in 5”‘).

Forp=q,wetakeA,= 0, so 2 holds in this case too. Remember that t is an
implicit parameter of A2.

The actual method by which p reads q’s clock might involve cooperative action
by both processes. In this case, determining Aw may require the synchrony of the
two processes’ clocks, which is why we assume in A2 that the Clock Synchronization
Condition holds for i.

3.4. APPROXIMATIONS. For real clocks, the maximum rate p by which they
may drift apart can be reduced to the order of 10m6 or less. We will simplify our
calculations by making approximations based upon the assumption that np << 1,
where n is the number of processes. This means that we will neglect quantities of
order npc and np2 in our calculations. The reader will be able to check the validity
of these calculations by showing that for an approximate inequality of the form
x s y, the neglected terms are at most of order npy. (The inequality x ;5 y means
x < y’ for some y’ = y.) We also assume R X= 6, which is the only case of practical
interest.

4. The Interactive Convergence Algorithm
Recall that the interactive convergence algorithm CNV is based upon the following
observation: the Clock Synchronization Condition for i implies that if p and q are
nonfaulty, then the true difference in their clocks is less than 6, and the observed
difference is less than 6 + t. Process p increments its clock by the average of all the
Aqp, with values greater than 6 + t set to zero. This is expressed precisely as follows,
where we assume that the processes are numbered from 1 through n.

64 L. LAMPORT AND P. M. MELLIAR-SMITH

ALGORITHM CNV. For all p:
CC+‘) = c(i) + A

P P P

&p = ifr#pand IArpI <A then Arp
else 0

A=:~+c

Note that Algorithm CNV depends explicitly upon 6 and t. We now prove its
correctness.

LEMMA 1. If Clock Synchronization Condition Sl holds for i, and processes p
and q are nonfaulty up to time T(‘+‘), then

l&156+&

PROOF. Let jr0 and Aw be as in A2. Writing

cF’(TO) - c;;‘(TO + Aqp) = #TO) - cf’(T,,) + c(‘)(TO) - cci)(TO + 4 P
A) WY

it follows easily from Sl and A2 that

1 cF’(TO) - cz’(T,, + A,)1 C 6 + cz.

The desired result then follows from A 1 and the assumption that p << 1. Cl

THEOREM 1. If

-3mc n
-6 R max(n’(2t + P(R + 2S’)), fJO + pR),

where ,n = n/(n - 3m)
S’ = (?I - m)S/n

-6 CK min(R, E/P)

then Algorithm CNV satisfies the Clock Synchronization Condition with Z = A.

PROOF. Condition S2 is easy, since Ap is the average of n terms, each less than
A. We prove Condition S 1 by induction on i. For i = 0, Al implies that two
nonfaulty clocks that are synchronized to within 60 up to time fl”) will remain
synchronized to within Jo + pR at time T(” = T(O) + R. Condition Sl then follows
immediately from A0 and the second hypothesis.

We therefore assume that Sl holds for i and prove it for i + 1. We begin with
the following lemmas.

LEMMA 2. If Clock Synchronization Condition Sl holds for i and process p is
nonfaulty up to time T(i+2J, then for any II such that] lI] < R and any Tin S?

]cy’(T+ II) - [c$>(T) + II]] < ; l-I.
0

Hence, tf pII is negligible, then

cr’(T + II) k: c;‘(T) + II.

PROOF. This follows easily from Al. Cl

LEMMA 3. If Clock Synchronization Condition Sl holds for i, and p and q are
nonfaulty up to time T(‘+‘), then for any Tin S(‘) and any II such that] II I < R and

Synchronizing Clocks in the Presence of Faults

pII << t:

65

Ic;~(T+~+A,)-c;(T+~)~ s~+pS.

PROOF. Letting T be as m A2 we ha:: 0 .
1 di’(T + II + bP) - c(‘)(T + ‘l-I) 1

’ = [#To + A, +‘T- To + l-I) - c$To + T- To + n)(
I @‘(To+A,)-c;‘(To)l +plT-T,,+III

[by two applications of Lemma 21
ae+plT-Tol [by A2 and the hypothesis that pII is negligible].

The result now follows from the hypothesis that T is in St’). Cl
LEMMA 4. If Clock Synchronization Condition S1 holds for i, and processes p,

q, and r are nonfaulty up to time Tci+‘), then for any T in S?

1 cy< T) + arp - [c!‘(T) - iirq] 1 .s 2(e + pS).

PROOF. It follows from Lemma 1 that I ArP] and] Aep] are both less than A, so
&, = ArP, zrq = A,, and PA, and PA, are both negligible. We therefore have

1 c!)(T) + zi, - [q(T) + a,q] 1
= 1 c;‘(T) + ArP - [c;‘(Z-‘) + Arq]]
c 1 cF’(T + ArJ - c”‘(T + A,q) I [by Lemma 21
5 1 c;‘(T + A,) - (“, c * (7) I + 1 c”‘(7) - c”‘(T + r r 4 A v) 1
5 2(c + pS) [by Lemma 31

proving the result. El
LEMMA 5. If Clock Synchronization Condition Sl holds for i, and Processes p

and q are nonfaulty up to time Tci+‘), then for any r and any T in Sci)

g’(T) + & - [clf’(T) + zrq] 1 < 6 + 2A.

PROOF. By the assumption that Sl holds for i, we have

Icy’ 4 - c’“(T)l < 6 *
Since] &I and] &q I are by definition no larger than A, the result follows
immediately. Cl

We now complete the proof of the theorem. Assume that processes p and q are
both nonfaulty until time fl ‘+‘! For notational convenience, let T denote T(“‘).
For any T’ in R(“‘) we have
@+::+L’(T’) - C$+l’(T’)I < 1 c?“(T) _ cbr:“‘(T)I + pR Iby All

= 1 $(T + AJ - cSf)(T + A,J 1 + pR [from the algorithm]

= I&7’) + AP - [c!)(T) + A,]1 + pR [by Lemma 2, since lAPpI, IA,] < A] = IO f j, (c$YT) + &p - [c$YT) + &I) + PR

[by definition of AP and A41

5 - 0 t, jl 1 c$‘(T) + i& - [c;‘(T) + &I I + PR

- m)(e + pS) + m(6 + 2A)] + pR,

66 L. LAMPORT AND P. M. MELLIAR-SMITH

where the last inequality is obtained by applying Lemma 4 to the n - m nonfaulty
processes r and Lemma 5 to the remaining m processes. Since A = 6 + 6, a little
algebraic manipulation shows that if

6 k n’(26 + p(R + 2S’)),

then

;; [2(n - m)(f + pS) + m(cY + 2A)] + ,oR .S 6.

Combining this with the above string of inequalities, we see that for any T’ in
@‘+I)

1 cr’)(T’) - cr”(T’)I 5 6,

so S 1 holds for i + 1. This completes the proof of Theorem 1. Cl

For any clock synchronization algorithm, we will have 6 z 6, + pR, where 6, is
the closeness with which the clocks can be resynchronized and pR is how far they
can drift apart during an R-SECOND interval. In the interactive convergence algo-
rithm CNV, there is a term (n’ - 1)pR in &, so how close the clocks can be
resynchronized depends upon how far apart they are allowed to drift.

5. Interactive Coruistency Algorithms

We begin our rigorous discussion of the interactive consistency algorithms by
formalizing conditions CC1 and CC2, given in Section 2.3. When p “obtains the
value” of r’s clock, what it actually finds is a constant &, such that

cl”(T) z c;‘(T + &,,).

(The values &, are not the same ones defined in the interactive convergence
algorithm.) We also allow the possibility that if r is faulty, then p may not be able
to read r’s clock. This is denoted by letting &, have the special value NULL.
Recalling the definition of Asp given by A2, and letting a NULL clock be approxi-
mately equal only to another NULL clock, we see that conditions CC1 and CC2
can be restated as follows:

CC. For some constant Q -K R and all i: if the Clock Synchronization Condition
holds for i, then for any processes p and q that are nonfaulty up to time P2):

(1) For all r # p, q: either

(4 I & - [A, + &I I C Q, or
(b) iirp = zi,, = NULL.

(2) &, # NULL, and] &, - Aw] < Q.

For convenience, we let x,, = 0 for all p. Condition CC2 is then equivalent to
CCl(a)forr=q.

Before stating our next result, we introduce some notation. We let n denote
thesetll,..., n). A multjset is a set in which the same element can appear more
than once. We use ordinary set notation for describing multisets, so the multiset
(1, 1,2] contains three elements, two of which are equal. The multiset (ai: i E n)
contains n elements, not all of which need be distinct. If M is a multiset, then

67 Synchronizing Clocks in the Presence of Faults

“median M” denotes the median of M, defined by

median M = a ln/2J,

where M = (a,, . . . , a,) with al I a2 I . . . I a,.
Our two interactive consistency algorithms are based upon the following result.

THEOREM 2. Zf m I 1 n/21, 60 < Q + E + pS, and CC holds for all i, then letting
p(T) s c;‘(T + AP)

where

AP = median(&,:r E n and &, # NULL],

satisfies the Clock Synchronization Condition for all i, with

6 k: n + 65 -t p(R + S),
2 = 2(Q + E) + p(R + S).

The proof of Theorem 2 requires the following two results about medians.

LEMMA 6. Zf 1 a, - b, 1 c ?r for all r E n, then

1 median(a,:r E n) - median(b,:r E n) 1 c ?r.

PROOF. We prove the stronger result that for any k: the kth highest values of
the multisets {a,) and {b,J lie within ?r of one another. Let the permutations (Y and
B be chosen such that:

a,(,) 5 a,(2) 5 . - - 5 a,(,),
b ,v(I) I bm, = - - - I bsc,,.

We prove that, for all k, I adk) - bfltk) I < T.
There are at least k values of i such that ai 5 a,(k). However, the hypothesis

implies that, if ai I am(k), then bi < aa + ?r. Hence there are at least k values of i
such that bi < aor + ?r, which implies that back) < a=(k) + ?r. A symmetric argument
shows that a&) C ha(k) + ?r, and combining these two inequalities gives the desired
result. 0

LEMMA 7. Zf I a, - a I c x for a majority of values r in n, then

I median(a,: r E n) - a I < T.

PROOF. It is easy to see that if A is any submultiset containing a majority of the
elements of (a,], then

min(A) 5 median(a,:r E n) 5 max(A).

Letting A be the multiset (a,: I a, - a I < ?r], this implies that

a - 7r 5 median(a,:r E n] 5 a + 7r,

which proves the lemma. 0

PROOF OF THEOREM 2. The proof is by induction on i. For i = 0, the result is
trivial. (Note that S2 is vacuous for i = 0.) Assume that the theorem is true for i.
By CC2 and Lemma 1, we see that

&J<n+s+e

for all nonfaulty p and q, so S2 follows easily from Lemma 7.
Since AP is the median of the &, and a majority of the processes rare nonfaulty,

the above inequality shows that we can neglect terms of order PA,,, and likewise

68 L. LAMPORT AND P. M. MELLIAR-SMITH

terms of order pAq. Lemma 1 implies that we can neglect terms of order pAw.
Letting T = pi+‘), we then have

Icy(T) _ cy)(T) 1

= 1 c$‘(T + L$,) - cb”(T + AJ 1 [by hypothesis]
= 1 cr’(T + A, + A,, - A,) - cb”(T + AJ I
= 1 c;‘(T + A& + A, - & - [cf’(T) + AJ I [by Lemma 21
5 I&-& -A,1 +e+pS [by Lemma 31
=] median{&, - a4p: r E n and 6, # NULL]

- median(&:r E n and & # NULL] I + t + pS
5 f-l + c + pS [by CC and Lemma 61.

Condition Sl follows easily from this inequality and Al. Cl
5.1. THE ALGORITHM COM. Achieving Condition CC requires that the proc-

esses not only read. each other’s clocks, but also send values to one another. If x, is
a value that process p sends to the other processes, then we let x, denote the value
that q receives from p. The manner in which the value is transmitted is irrelevant-
it might be sent as a message from p to q, or p might leave it in some register where
q can read it. We assume that if p and q are both nonfaulty, then x, = x,. If p or
q is faulty, then xDl may have any value.

We specify Algorithm COM as a recursive algorithm by which a process q obtains
a value COM(m, I’, x,, P)~ from process p, where x, is the value that p is sending
and P is some set of processes. The value x, being sent by p represents the difference
between some clock and p’s clock. If x, = 0, then p is sending its own clock value.
The actual clock-synchronization algorithm consists of each process q letting
COM(m, n, 0, q)P be the &, of Theorem 2. We write P - p to denote P - (p), for
any set P.

ALGORITHM COM. For any integer m I 0, any subset P of n, any value x, and
anyp, q E P:

COM(0, P, x,, p), = x, + AH
COM(m, P, x,, p), = median{ COM(m - 1, P - p, x,, + A,,, r)& r E P - P)

To prove the reiquired properties of Algorithm COM, we need the following
result.

LEMMA 8. I’ Clock Synchronization Condition Sl holds for i, and processes p,
q, and r are nonfaulty up to time Tci+*), then

I Apr + Arq -AmI ~3~+2pS.

PROOF. Let T be the time, obtained from A2, such that

Iqm 4 - c(‘)(T + A,) I < t.

We then have

l&r + Arq - ,&I
= 1 c(‘)(T + Apr + A,q) - c(‘)(T + A) I cl 4 w [by Lemma 21

I 1 ct’(T + Apr + A,q) - c!“(T + Ap,) I

+ 1 c”‘(T + Apr) - c”~(T)I + I c”‘(T) - c”l(T + A)I r P P

s 36 + 2ps [Ly A2 an: Lemma 31

which is the requir~ed result. 0

Synchronizing Clocks in the Presence of Faults 69

The following result is the analogue of Lemma 1 of [6].
LEMMA 9. For all m and k, tf n > 2k + m, Clock Synchronization Condition

Sl holds for i, and all but at most k processes in P are nonfaulty up to time Tci+*),
then for any of those nonfaulty processes p and q, and any x,:

I COMb-4 P, xp, P)* - [x, + AN]] 5 m(3c + 2~5’).

PROOF. The proof is by induction on m. The result is trivial for m = 0. Assume
it for m - 1. For any processor r in P - p that is nonfaulty up to time Tci+*), we
have

1 COM(m - 1, P - P, x,, + Apr, rk - Ix, + A,,1 I
= 1 COM(m - 1, P - P, x,, + APT, rlq - [xpr + A,, + &I

+ [Am + A, - AmI I [since p and r nonfaulty implies x,, = xp]
S (m - 1)(3f + 2pS) + (3E + 2pS),

where the last inequality comes from Lemma 8 and the induction hypothesis,
which can be applied because P - p has n - 1 elements and n - 1 > 2k +
(m - 1). Therefore, for every nonfaulty process r, we have

ICOM(m - 1, P - P, x,, + Apr, rlq - ix, + &I I 5 m& + &W.
The lemma now follows from Lemma 7, since n > 2k + m L 2k + 1. El

Our next lemma is the analogue of Theorem 1 of [6].

LEMMA 10. If Clock Synchronization Condition Sl holds for i, and P is a set
containing more than 3m processes, all but at most m of which are nonfaulty up to
time Tti+*), then for any of the nonfaulty processes p and q:

(1) ForallrinP,

I COM(m, P, xr, r)p - [Ap + COM(m, P, xr, r),] I S (2m + 1)(3~ + UPS),

(2) I COMm, P, x,, dp - xq - b I 5 m(3c + 2~4.
PROOF. Part 2 follows immediately from Lemma 9 by letting k = m. Part 1 is

proved by induction. For m = 0, it follows easily from the definition of COM and
Lemma 8. Let m > 0 and assume it holds for m - 1. We consider two cases: (i) r
faulty and (ii) r nonfaulty.

If r is faulty, then there are at most m - 1 faulty processes in P - r, and we can
apply the induction hypothesis to obtain

1 COM(m - 1, P - r, x,, s)~ - Aw - COM(m - 1, P - r, x,~, s)q(
S (2(m - 1) + 1)(3t + 2pS)

for any s in P - r. The result now follows easily from Lemma 6.
If r is nonfaulty, then we can apply the inequality from part 2 to obtain

1 COM(m, P, x,, r)p - [x, + A,p]] d m(3c + 2pS),
1 COM(m, P, xr, r)q - [xr + A,] 1 S m(36 + 2~s).

(3)

We then have

lCOM(m, P, x,, rlP - A, - COM(m, P, G, r),l
= 1 COM(m, P, x,, r)p - [x~ + A,]

- (COM(m, P, x,, r)q - [xr + A,]) + Arp - Arq - AqpI
5 2m(3c + 2pS) + (3~ + 2pS),

70 L. LAMPORT AND P. M. MELLIAR-SMITH

where the last inequality follows from the triangle inequality (3) and Lemma 8.
This finishes the proof of part 1 for m. 0

Taking xr = 0, Lemma 10 yields the following result,

THEOREM 3. lfall but at most m processes are nonfaulty up to time T(“‘), and
n > 3m, then Corulition CC is satisfied by

iiw = COMm, n, 0, &,

with Q = (2m + 1)(3~ + 2~s).

Combining this .with Theorem 2 yields our first interactive consistency clock
synchronization algorithm, with

6 k: (6m + 4)~ + (4m + 3)pS + pR,
Z = (12m + 8)~ + (8m + 5)pS + pR.

This algorithm requires that n be greater than 3m-that is, that more than two-
thirds of the processes be nonfaulty. As shown in [9], this is the best one can do.

5.2. THE ALGORITHM CSM. We begin our formal development of Algorithm
CSM with a precise statement of Assumption A2’.

A2’. If an event in a process q occurring at (real) time to causes q to send a
message to a process p, then that message arrives at a time tl such that

(a) ifp and q are nonfaulty, then] tl - to - y] c c,
(b) tl - to :b y - t,

for some constant y such that npy -=x e.

In practice, the value of y may depend upon p and q and on the type of event
generating the message. To avoid having to cope with all these different values, we
assume a single y for all messages. The only restriction we place on the size of y is
that npy << E, which means that y may be “medium-sized.” It will typically be
larger than c but much smaller than R.

We next restate our assumption of unforgeable digital signatures. Formally, a
digital signature mechanism consists of a function S, for each process p, satisfying
the following condition:

A3. For any prooess p and any data item D:

(a) No faulty process other than p can generate S,[D].
(b) For any X, any process can determine if X equals S,[D].

Note that the first assumption is stronger than the one made in 161, since it does
not permit one faulty process to forge the signatures of another faulty process.

Assumption A3(a) means that a faulty process cannot generate any arbitrary
value, so it restricts the class of faults that may occur. Hence, we can hope to find
a clock synchronization algorithm to handle m faults with fewer than 3m f 1
processes, and, indeed, our second interactive consistency algorithm requires that
only a majority of lthe processes be nonfaulty.

We define the message M(T, PO . . - pS), for any sequence PO, . . . , pS of processes-
including the null sequence X-as follows:

M(:r, A) = (T, PO, S,(T)),
MU’, PO - - . PJ = MT, PO - - - ps-I), ps, &&WT, PO - - - P~-I)I).

Synchronizing Clocks in the Presence of Faults 71

By A3(a), the value M(T, po . . . ps) can be generated only as the result of process
p. sending the message M(T, PO) to process pl, which sends the message
M(T, pop1) to process p2 . . , which sends the message M(T, p. . , . psel) to process
ps, which generates M(T, PO . . . ps). Moreover, A3(b) implies that any process can
determine whether a given data item X equals M(T, PO . . . ps) for some T and
PO ..’ Ps.

In Algorithm CSM, for some time TI, in Sci), process p sends the message
M(T,, p) to all other processes when its clock reaches Tp. Immediately upon
receiving this message, each other process p1 sends the message M(T,, pp~) to all
processes other than itself and p, and so forth. Any process q will therefore receive
messages M(T,, pp~ . . . ps) for many different sequences p1 . . . ps. Each such
message tells q that p’s clock read Tp approximately (s + 1)~ SECONDS ago. If p and
all the pi are nonfaulty, then this message is correct. If one or more of the pi are
faulty, then they can either fail to relay the message, so q never receives it, or they
can delay it. However, they cannot alter the value of T, or cause the message to
arrive too early. Hence, process q believes the message indicating the earliest time
at which p’s clock reached Tp.

There is a practical problem in implementing this approach. In order to perform
the appropriate message relaying, a process must be prepared to receive the
incoming message. This may require that the process not do anything else while
waiting, so it should know when the message will arrive and be able to ignore the
message if it does not arrive when it should. Since the uncertainty in message
transmission time is c, and the difference between p’s clock and q’s clock is 6, q
can expect to receive the message M(Tp, p) within about c + 6 seconds of when its
clock reads Tp + y. If q relays this message only if it arrives when it should, then
another process r can expect to receive the message M(Tp, pq) within about
2(~ + 6) of when its clock reads Tp + 2-y. Continuing, this leads us to the following
definition:

Definition 3. The message M(T, PO . . . ps) is said to arrive on time at process q
if either

(1) s L 0 and the message arrives at (real) time cy)(T’), or
(2) s= -1 (sop0 . . . ps is the null sequence) and T’ = T

and IT’- T-(s+ l)rl s(s+ 1)(6+~).

The 6 in this definition is the same one as in the Clock Synchronization
Condition. Its value will be given later.

The following algorithm describes how each process q determines the value &
for every p # q.

ALGORITHM CSM(m). For each process p, and for some clock time Tp in S?

(1) When its clock c!) reaches T,, process p sends the message M(T,, p) to every
other process.

(2) For each process q # p:
(A) Process q initializes EM to 00.
(B) Zf the message M(T,, ppI . . . ps) arrives on time at q, at time c!)(T), and

T-T,-@+ l)rc&,then
(a) Process q sets & equal to T - Tp - (s + 1)-y.
(b) Zf s < m, then immediately upon receiving this message, q sends the

message M(T,, ppI . . . psq) to every other process q’ not contained
among the processes ppI . . . ps.

72 L. LAMPORT AND P. M. MELLIAR-SMITH

(C) At time 3’p + (m + l)(r + 6 + e), if& = 00, then q sets ;iw equal to
NULL.

We have assumed A2’ instead of A2, so the values Aw are not yet defined. In
order to apply Theorem 2, we must define the L\4P and prove A2.

LEMMA 11. Assumption A2 is satisfied, except with the strict inequality replaced
by approximate .inequality, ifhP is defined to equal T - T4 - y, where T is the
value such that p receives the message M(T4, q) at time cF)(T), and to have any
value tfp receives .no such message.

PROOF. If p and q are nonfaulty, then the message M(TQ, q) is sent by q and
received by p. Taking TO = T4, we find

1 #TO + A& - cf’(To) I

= 1 c;‘(T - y) - c(‘)(T4)] 4
s 1 c”‘(T) - y - c”‘(T) I

P 4 q
[by Lemma 21

<C iby AWOI
which proves the lemma. Cl

Lemma 11 allows us to use the earlier results that assumed A2. (Since these
results all involve alpproximate inequalities, they are not invalidated when the exact
inequality in A2 is replaced by an approximate inequality.) We now prove the
main result for Algorithm CSM.

THEOREM 4. Jf all but at most m processes are nonfaulty up to time Tci+‘),
then the values Apq found by Algorithm CSM(m) satisfy condition CC with Sl k:
(m + 5)t + 2pS.

The proof uses the following lemmas.

LEMMA 12. Let Clock Synchronization Condition Sl hold for i, and let p and
q be nonfaulty up to time T(‘+‘). If the message M(T, p,-, . . . p$) arrives on time at
p, and s < m, then the message M(T, PO . . . pSp) arrives on time at q.

PROOF. Let cF)(T’) be the time at which M(T, po - . - pS) arrives at p, letting
T’ = Tifpo . . . pS is the null sequence, and let cy)(T”) be the time at which
MtT, PO . - - pSp) arrives at q. Then

1 cF’(T”) - cF’(T’ + y)]

z 1 c;‘(P) - c;‘(T’) - y I

5 1 cb”(T”) - cr’(T’) - y I + 6 [by Sll
St+6 [by W

It follows from Al, and the assumption that p-y is negligible, that

1 T” - T’ -71 sc?+t. (4)

We then have

IT”- T - (s + 2)y I
s 1 T” - T’ ,- 71 + (T’ - T-(s+ l)rl
5 6 + t + (s + I)(6 + c) [by 4 and the on-time arrival of M(T, p. . . . p,)]

which implies that M(T, PO - - - pSp) arrives on time at q. Cl

Synchronizing Clocks in the Presence of Faults 73

LEMMA 13. If Clock Synchronization Condition S1 holds for i, all but at most
m processes are nonfaulty up to T’i+2’, and p and (I are among the nonfaulty ones,
then for any process r: if h, # NULL then &, # NULL and

zi, + A, 5 &, + (m + 3)~ + pS.

(For r = q or p, a, is defined to be 0.)

PROOF. Let r. = r, and let T be the time such that
& = T - T, - (s + 1)y (5)

and the message M(T,, ro . . . rs) arrived at p (on time) at time ~~‘(2). (If r = p, so
s = - 1, then T = T,.) We consider two cases:

(1) 4=rj
(2) q not in the sequence ro . . . r,.

In case 1, it follows from A3(a) that the message MT,, ro . . . 5-l) must have
arrived on time at q at some time @(T’), so a14 # NULL, and

&, 5 T’ - T, - jy. (6)

A simple induction argument using A2’(b) shows that

cF)(T) - ct’(T’) - (s - j + 1)~ > -(s - j + 1)~. (7)
We then have

c:)(T) - $(T + (s -j + 1)~)

z c;‘(T) 4 - c(‘)(T’ + (s - j + 1)~ - A,) - E - pS [by Lemma 31
x c!)(T) - cy)(T’) - (s - j + 1)~ + & - c - pS [by Lemma 21
> -(s - j + 2)~ - pS + AqP Iby (7)l.

By Al, this yields

T - (T’ + (s - j + 1)~) Z -(s - j + 2)~ - pS + A,,
so

T’-jy+A,s T-(s+ l)r+(s-j+2)E+pS.

Subtracting T, from both sides of this inequality, we see that (5) and (6) imply

ii, + Aw S 3, + (s - j + 2)~ + pS,

which yields the desired result, since s 5 m.
For case 2, q not equal to any of the rj, we consider two subcases: s < m and

s = m. Ifs c m, then p sends q the message M(T,, r. . . . rsp), which, by Lemma
12, arrives on time at q. Hence, &, # NULL and

a, I T’ - Tr - (s + 217, (8)

where cy)(T’) is the time at which the message arrives. We then have

cF’(T’ + bp - y) - c;‘(T)

= c;‘(T’ + A,) - c;‘(T) - y by All
S cy’(T’) - c!)(T) - y + 6 + pS [by Lemma 31
c 2E + ps iby AW)l.

This implies that

T’ + AqP - y - T 5 2t + pS,

74 L. LAMPORT AND P. M. MELLIAR-SMITH

which can be rewritten as

T’ - (s + 2)~ + AW ;5 T - (s + 1)y + 2~ + pS.

Subtracting T, from both sides of this inequality shows that the desired result
follows immediately from (5) and (8).

Finally, we consider the case s = m, where q is not one of the rj. Since there are
at most m faulty processes, there is at least one process 6 that is nonfaulty up to
time T(‘+‘). Let cif)(T’) be the time at which rj received the message M(T,, ro . . .
rj-I)-or at which it sent the message M(T,, r), if j = 0. The same argument as
before shows that (7) again holds.

By Lemma 12, the message M(T,, r. . . . rj) arrives on time at q, so X, # NULL,
and

zq 5 T” - C-U+ Or, (9)

where cy)(T”) is the time at which the message arrives. By A2’(a) we have

c;)(T”) - cy’(T’) - y < E,

and combining this with (7) yields

c!)(T) - #T”) - (s - j)y > -(s - j + 2)~.

Using Lemma 3, we can deduce from this that

c!‘(T) - cz’(T” + A,) - (s - j)y R -(s - j + 3)~ - pS.

Since p(s - j)r is negligible, this implies by 41 that

T-T”-A,-(s-j)-y~-(s-j++)c-pS,

which can be rewritten as

T” - (j + 1)~ + AqP 5 T - (s + 1)~ + (s - j + 3)~ + ~5’.

Subtracting T, from both sides, we obtain the desired result from (9) and (5). Cl

PROOF OF THEOREM 4. Let p, q be as in Condition CC. It follows easily from
Lemma 12 that & # NULL. Condition CC2 then follows from Ccl(a) for r = q.
It therefore suffices to prove CC 1 for all r. This requires proving that if &,, # NULL,
then & # NULL auid

&, - AW - i& 5 (m + 5)~ + 2pS,
&I + 4p - Erp 5 (m + 5)~ + 2pS.

The fact that & # NULL and the second inequality follow from Lemma 13.
Reversing p and q in Lemma 13, we obtain

&p + A,, - Zrq 5 (m + 3)~ + pS.

To prove the theorem, we therefore need only show that

]Aw+A,(S2e+pS.

We write

1 c(‘)(To + A,) - c”‘(T - AmAl
’ I 1 cc;)(To + iP) ” c~‘(To) 1 + I cb”(To) - #To - A,,)]

sc+t+ps [by A2 and Lemma 31

where TO is as in A2, and the result follows from Al. 0

Synchronizing Clocks in the Presence of Faults 15

Combining Theorem .4 with Theorem 2 gives an interactive consistency algo-
rithm with

6 = (m + 6)~ + 3pS + pR,
Z=(2m+ 12)6+5pS+pR.

This is the value of 6 that should be used in the definition of on-time arrival.

6. Conclusion
We have described three clock synchronization algorithms. The interactive con-
vergence Algorithm CNV is the simplest, requiring only that every process read
every other process’ clock. The interactive consistency algorithms are more com-
plex, requiring a great deal of message passing. These algorithms are based upon
two Byzantine Generals solutions from [6]. A number of different Byzantine
Generals solutions have been proposed; a survey of them can be found in [8]. The
solutions we have used as the basis for our clock-synchronization algorithms are
optimal in the sense that they require the fewest “rounds” of message passing-
m + 1 rounds being required to handle m faults. Since each round adds an O(c)
term to the synchronization error, minimizing the number of rounds is a reasonable
criterion for choosing an algorithm.

In addition to minimizing the number of rounds, one also wants to reduce the
number of messages generated. Algorithm COM generates approximately nm+’
messages. All Byzantine Generals solutions we know of that generate fewer messages
either use more rounds or require digital signatures. Fortunately, in process-control
applications, n and m tend to be small enough so that nm+’ is not an unreasonable
number of messages. However, there may be other applications in which one would
be willing to use more rounds in order to generate fewer messages. While there are
Byzantine Generals solutions that do this, it is not clear how they can be converted
to clock-synchronization algorithms. Our method of deriving Algorithm COM
depended upon the specific details of Algorithm OM. We have not tried to derive
clock-synchronization algorithms from the other Byzantine Generals solutions.

The situation is different if we allow digital signatures. Algorithm CSM generates
almost as many messages as Algorithm COM. However, it is possible to reduce the
number of messages. In [2], Dolev and Strong reduced the number of messages
generated by Algorithm SM to 2n2 by simply eliminating redundant messages-
for example, a process never sends the same value twice to the same process. In
our intuitive description of Algorithm CSM, we can reduce the number of “clocks”
sent by having each process p obey the following two rules:

(1) p never sends a clock if it has already sent a faster clock.
(2) p never sends a clock that is approximately the same as one it has already sent.

In view of the improved algorithm of [3], which is not based upon a Byzantine
Generals solution, there seems little point in investigating these improvements to
Algorithm CSM.

To compare the closeness of synchronization achieved by these algorithms, we
assume that pS << c. This is a reasonable assumption, since, for most practical
applications, c will be on the order of microseconds, S at most a few milliseconds,
and p 5 10e6. To simplify comparisons with the interactive convergence algorithm,
in which 6 depends upon n, we assume that n = 3m + 1. This will be the case if
the only reason for having multiple processes is to achieve fault-tolerance through

76 L. LAMPORT AND P. M. MELLIAR-SMITH

redundancy. We then get the following values of 6:

Algorithm CNV: (6m + 2)~ + (3m + l)pR,
Algorithm COM: (6m + 4)~ f pR,
Algorithm SCM: (m + 6)t + pR.

We have proved only that the synchronization errors of the algorithms are less
than these quantities; we do not know if the errors can really become this large.
However, for want of an alternative, we use these bounds in comparing the
algorithms.

From these numbers, Algorithm CSM appears to be superior. However, this is
misleading because the t for Algorithm CSM is not necessarily the same as the c of
the other two algorithms, since it may come from a very different way of reading
the clocks. The Algorithms CNV and COM can use any method of reading clocks,
but clock reading in Algorithm CSM requires measuring the arrival times of
messages and knowing the delay in processing and sending a message. For the
tightly-coupled multiprocessors typical of process-control applications, we believe
that t is likely to be much larger for CSM than for COM. In this case, Algorithm
CSM is to be prefeirred only because it requires fewer processes to achieve the same
degree of fault-tolerance.

The algorithm of [3] reduces the term (m + 6)~ of Algorithm CSM to E. However,
that algorithm involves the same form of clock reading as Algorithm CSM, so its E
may be larger than that of our other two algorithms. For process-control applica-
tions, Algorithms CNV and COM may provide closer synchronization than any
algorithm requiring digital signatures.

Since Algorithms CNV and COM can use the same method of clock reading,
the above error bounds provide a meaningful comparison for them. If R is smaIl
enough-that is, if the clocks are resynchronized often enough-then Algorithm
CNV can achieve slightly better synchronization than Algorithm COM. However,
one usually wants to resynchronize only as often as is necessary to achieve a desired
value of 6. If this value of 6 is much larger than 6m5 then it is necessary to
synchronize 3m + 1 times as often with Algorithm CNV than with the interactive
consistency algorithms. For example, if m = 2, E = 2 microseconds, p = lO-‘j, and
6 = 50 microseconds-values that are reasonable for process-control systems in
which one procesls can directly read another’s clock-we obtain the following
resynchronization intervals R:

Algorithm CNV: 3.1 seconds,
Algorithm COM: 18 seconds.

We suspect that in most applications, Algorithm CNV will provide sufficiently
short resynchronization times.

We have assumed a system in which each process can communicate with all the
others, and have considered only process failure, not communication failure. Our
interactive consistency algorithms can be generalized to incompletely connected
networks of processes. In the same way that Algorithm COM was derived from
Algorithm OM(m), Algorithm OM(m, p) of [6] and the algorithm of [1] can be
used to obtain clock synchronization algorithms for incompletely connected net-
works. Algorithm CSM also works, with obvious modifications, in the more general
case. It can be shown that for a network of diameter d, Algorithm CSM(m) satisfies
Theorem 4 except with the maximum number of faulty processes reduced to
m-d+ 1.

Synchronizing Clocks in the Presence of Faults 77

In algorithms not using digital signatures, the failure of a communication line
joining two processes must be considered a failure of one of the two processes.
Indeed, a two-faced clock is perhaps more likely to be caused by communication
failure than by failure of the clock itself. For Algorithm CSM, assuming that a
faulty communication line cannot “forge” properly signed messages, a faulty
communication line is equivalent to a missing one. Hence, Algorithm CSM(m +
d - 1) can handle up to m process faults plus any number of communication line
failures, so long as the remaining network of nonfaulty processes and communi-
cation lines has diameter at most d.

Glossary
The maximum error in clock synchronization-Clock Synchronization Con-
dition S 1.
The maximum initial difference between the values of different processes’
clocks-AO.
The maximum error in reading clocks-A2.
The “normal” message-transmission time-A2’.
The rate at which nonfaulty clocks can drift apart-Definition 1.
The difference between process q’s clock and process p’s clock, as read by p.
The maximum amount by which a clock is advanced during resynchroni-
zation-Clock Synchronization Condition S2.
Defined in Condition CC.
The maximum number of faulty processes.
The total number of processes.
The length of a synchronization interval-that is, the time between successive
clock resynchronizations.
The ith synchronization interval.
The period at the end of the ith synchronization interval during which the
resynchronization algorithm is executed.
Ending time of the ith synchronization period.

ACKNOWLEDGMENTS. We wish to thank our fellow members of the SRI Computer
Science Laboratory, especially Robert Shostak, for their assistance and encourage-
ment, and Nancy Lynch for simplifying the proof of Lemma 6 and pointing out
many flaws in an earlier version.

REFERENCES

I. J~LEV, D. The Byzantine Generals strike again. J. Algor. 3, 1 (1982), 14-30.
2. D~LEV, D., AND STRONG, R. Authenticated algorithms for Byzantine Agreement. SIAM. J. 12, 4

(Nov. 1983), 656-666.
3. HALPERN, J., SIMONS, B., AND STRONG, R. An efficient fault-tolerant algorithm for clock synchro-

nization. IBM Tech. Rep. RJ-4094, IBM Thomas J. Watson Research Center, Yorktown Heights,
N.Y., 1983.

4. LAMPORT, L. The implementation of reliable distributed multiprocess systems. Comput. Nefw. 2
(1978), 95-114.

5. LAMPORT, L. Using time instead of timeout for fault-tolerant distributed systems. ACM Trans.
Prog. Lung. Syst., to appear.

6. LAMPORT, L., SHOSTAK, R., AND PEASE, M. The Byzantine Generals problem. ACM Trans. Prog.
Lung. Syst. 4, 3 (July 1982), 382-40 1.

7. PEASE, M., SHOSTAK, R., AND LAMPORT, L. Reaching agreement in the presence of faults. J. ACM
27.2 (Apr. 1980) 228-234.

8. STRONG, H. R., AND D~LEV, D. Byzantine Agreement. In Intellectual Leveragefor the Information
Society (Compcon). New York IEEE Computer Society Press, pp. 77-82.

78 L. LAMPORT AND P. M. MELLIAR-SMITH

9. DOLEV, D., HALP’ERN, J. Y., AND STRONG, H. R. On the possibility and impossibility of achieving
clock synchronization. In Proceedings of 16th Annual ACM Symposium on Theory of Computing
(Washington, DC, Apr. 30-May 2). ACM, New York, 1984, pp. 504-5 11.

10. WENSLEY, J., ET AL. SIFT Design and analysis of a fault-tolerant computer for aircraft control.
Proceedings of the IEEE 66, 10 (Oct. 1978).

RECEIVED JULY 198 1; REVISED MARCH 1982, FEBRUARY 1984, AND JULY 1984; ACCEPTED AUGUST 1984

Journal of the Ascciation for Computing Machinery, Vol. 32, No. I, January 1985.

